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ABSTRACT

A deconvolution accelerator is proposed to upsample n X n input to 2n X 2n output
by convolving with a k x k kernel. Its architecture avoids the need for insertion and
padding of zeros and thus eliminates the redundant computations to achieve high

resource efficiency with reduced number of multipliers and adders. The architecture
is systolic and governed by a reference clock, enabling the sequential placement of
the module to represent a pipelined decoder framework. The proposed accelerator

is implemented on a Xilinx XC7Z020 platform, and achieves a performance of 3.641
giga operations per second (GOPS) with resource efficiency of 0.135 GOPS/DSP for
upsampling 32 x 32 input to 256 x 256 output using a 3 x 3 kernel at 200 MHz.

Furthermore, its high peak signal to noise ratio of almost 80 dB illustrates that the

upsampled outputs of the bit truncated accelerator are comparable to IEEE double

precision results.

Subjects Artificial Intelligence, Distributed and Parallel Computing
Keywords Upsample, Transposed convolution , FPGA, Deep learning

INTRODUCTION

For the past decade, Deep Neural Networks (DNN) have been effectively employed in
various applications of computer vision (Dongseok et al., 2019; Chen et al., 2014), speech
recognition (Han et al., 2017) and image segmentation (Ronneberger, Fischer ¢ Brox,
2015). Most of these applications concentrate on classification and segmentation problems.
Convolutional layers form the primary modules of these DNN, where stacks of kernels
are convolved with the input images to generate feature maps, that are subsequently
passed through pooling and rectification layers to identify the dominant features (Ma et
al., 2016). The process of convolution, rectification and pooling operations are repeated
in a sequence till denser features are acquired from a larger receptive field. Finally, the
feature maps are flattened and presented to a fully connected layer which provides a
classification score (Zhang et al., 2015). Over the years researchers have attempted to
implement a few notable DNNs on hardware, such as the AlexNet, VGG-16 (Lu ef al.,
2020) with lesser resources but higher throughput (Liu et al., 2018; Di et al., 20205 Lu et
al., 2020). In general, these methods suffer from a common problem related to the usage
of the pooling layer which gathers information from larger receptive field but loses the
significant spatial coordinates from where the information has been obtained. To overcome
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this problem, DNN architectures incorporating encoder and decoder modules have been
proposed, and amongst them U-Net proposed by Ronneberger, Fischer ¢ Brox (2015) is
the most popular model that is mainly used for segmentation applications. In the U-Net
architecture, the feature maps that are downsampled in the encoder framework are later
upsampled in the decoder stages. Furthermore, the decoder module of the U-Net and
its variants include skip connections along with transpose convolution, also referred to
as upsampler or deconvolution modules, to generate segmentation results of resolution
equivalent to the input resolution (Ronneberger, Fischer ¢ Brox, 2015).

Although many hardware implementations have been produced for encoder
module (which is similar to VGG-16 architecture (Lu et al., 2020)), there are very few
implementations of the decoder module, which involves the bottle-neck associated with
the transpose convolution operation. One of the earliest deconvolution implementations
on hardware was proposed by Zhang et al. (2017), where reverse looping and stride hole
skipping mechanisms respectively ensure efficient deconvolution through the selection of
input blocks based on output space and the removal of fractional addresses within the
looping procedures. The deconvolution accelerator used C-based Vivado HLS libraries
where loop unrolling and pipelining techniques were introduced to exhibit parallelism on a
Zynq-7000 series FPGA. Dongseok et al. (2019) presented a lightweight CNN segmentation
processor that includes: (i) dilation convolutions (insertion of virtual zeros within the
kernel elements) for normal convolutions; (ii) transpose convolutions (insertion of virtual
zeros within the feature maps) for enlargement of the feature maps; and (iii) the use
of region of interest (ROI) based selection algorithm to enhance the throughput of the
segmentation model. Dongseok et al. (2019) reported that their model when tested on
a segementation application reduced the operational cost by 86.6% and increased the
throughput (GOPS) by 6.7 times. Lu et al. (2020) introduced the Fast Winograd algorithm
(FWA) to reduce the arithmetic complexity involved in the convolution operations
and thereby improve the performance of CNN implementations on FPGA. The FWA
exploits the structural similarity of the input feature maps and transforms the convolution
operations into Element-Wise Multiplication Manipulation (EWMM), which reduces the
number of multiplications and increases the required number of additions. Di et al. (2020)
extended the use of FWA for transposed convolution implementations on FPGA, where
the feature maps presented to the TransConv module were extended (by padding and
introducing zeros in between the elements) and decomposed into four smaller subblocks.
By applying FWA in parallel to these subblocks, the convolution output was obtained
through element-wise multiplication of the input elements with the corresponding kernel
coefficients. A performance improvement of 8.6 times was reported. However, the method
was inefficient since FWA is suitable only for small kernels (Shi et al., 2019).

A reconfigurable generative network acceleration (GNA) with flexible bits widths for
both inputs and kernels weights was proposed by Yazdanbakhsh et al. (2018). Inter and intra
processing element (PE) processing and cross layer scheduling mechanisms are engaged
to support the computations in the convolution, deconvolution and residual blocks. The
inclusion of the dual convolution mapping method (where convolutions are associated
with the outputs and deconvolutions are mapped to the inputs) efficiently balances the
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PE workload in convolution and deconvolution modules. It also improves the utilization
performance of the PEs by 61% when compared to traditional methods. The GNA reported
a409.6 giga operations per second (GOPS) at 200 MHz with 142 mW power consumption.
A convolution and deconvolution architecture capable of generating segmentations outputs
close to real time was presented by Liu et al. (2018). The deconvolution module does not
require addition of zeros between the input elements and produces upsampled outputs

through a series of operations viz: (i) multiplication of single input pixel with the kernels;

(ii) addition of overlapped outputs; and (iii) removal of outputs along the borders. An

automatic hardware mapping framework based MATLAB and C scripts was employed
to select the best design parameters which were then used to generate the synthesizable
HDL code for implementation on the Xilinx Zynq board. A U-Net architecture was
implemented and its performance was compared with GPU and CPU implementations. It
achieved the best power and energy performance with speed being second only to the GPU
implementation. Chang ¢» Kang (2018) presented a massively parallelized deconvolution
accelerator, referred as the TDC method, obtained by transforming the deconvolution
operator into the four sparse convolutions. To avoid the overlapping summation problem,
the height and width of the input images have to be determined to generate output blocks
that do not overlap. Also the method has a load imbalance problem caused by the weights
of the decomposed sparse convolution filters. Later in Chang, Kang ¢ Kang (2020), the
same authors optimized the TDC by rearranging filters which enabled DCNN accelerator
to achieve better throughput. When implemented using C-based VIVADO HLS tool, the
optimised TDC achieved 108 times greater throughput than the traditional DCNN.

We propose an FPGA-based scalable systolic deconvolution architecture (for different
nx n input and k x k kernels) with reduced number of multipliers and adders, requiring
no additional padding or insertion of zeros in between the inputs. Our contributions are
as follows:

1. We present a Register Transfer level (RTL) based deconvolution architecture capable
of upsampling # x # input to 2n x 2n output when convolved with a k x k kernel. The
proposed module can be used as a standalone or readily connected to a pipeline to
represent the decoder framework of the U-Net or the deconvolution CNN. We present
upsampled outputs for intervals 32 x 32 to 64 x 64; 64 x 64 to 128 x 128 and 128 x 128
to 256 x 256 and compare the bit width truncated FPGA results with those of double
precision MATLAB outputs.

2. The proposed architecture is systolic and governed by a single reference clock. After
an initial latency, an upsampled element is obtained at every clock pulse which is then
streamed to the next stage of the pipeline for further processing. A pipelined version
capable of generating 256 x 256 output from 32 x 32 input using 3 x 3 kernel requires
only 826.55 s when operating at the frequency of 200 MHz.

3. The proposed architecture is coded using Verilog HDL and hence is void of any
additional overheads associated in mapping CPU based algorithm directly to FPGAs.
Also, the deconvolution architecture includes simple hardware structures such as the
shift registers blocks, counters, comparators and FIFOs and thus can be extended to
provide upsampled outputs by convolving with different kernel sizes. We also present
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the relevant equations to upsample 7 X 1 to 2n X 2n using 5 X 5 and 7 x 7 kernels.
Further in ‘Hardware Implementation of the Upsampling Pipeline’ we present the
hardware implementation of upsampling an random 32 x 32 matrix to 256256 using
3x3 filters.

This paper is organized as follows. ‘Upsampling Techniques’ introduces the upsampling
techniques used in deep networks. ‘Deconvolution Hardware Architecture’ presents the
implementation of 4 x 4 to 8 x 8 deconvolution architecture. ‘Design of Experiments’
presents the experiments related to bit width requirements. ‘Analysis of the Deconvolution
Accelerator’ discusses the required computation time, computation complexity and
comparison results with other deconvolution architectures. ‘Hardware Implementation of
the Upsampling Pipeline’ illustrates the implementation of the upsampling pipeline and
finally ‘Conclusion” summarizes our contributions.

UPSAMPLING TECHNIQUES

The following are the upsampling methods used in deep networks: (i) Interpolation
techniques (Lee & Yoon, 2010); (ii) Max unpooling (Shelhamer, Long ¢ Darrell, 2016); and
(iii) Transpose Convolution (Chang, Kang ¢ Kang, 2020). Interpolation techniques could
be either K-Nearest Neighbours, Bilinear or Bicubic interpolation and Bed of Nails. The
first two interpolation methods introduce new samples either through direct copying or
by a distance based weighted averaging of the neighbouring inputs. With Bed of Nails,
upsampling is performed by inserting zeros in the positions other than the copied input
elements. Max unpooling operator introduced in the decoder pipeline acts opposite to
the max pooling operation of encoder framework. During the forward pass, at each
max pooling operation, the positional indices of the maximum values are stored and
later, during decoding, upsampling is performed by mapping the inputs at each stage to
the corresponding coordinates, with the rest being filled with zeros. This technique is
employed in SegNet (Badrinarayanan, Kendall & Cipolla, 2017), where coordinates of the
maximum values of the feature maps obtained during the forward pass are used for the
unpooling process during the decoding stages. The above techniques, though simple and
efficient have a fixed relationship between input and output, and therefore are independent
of the associated data. Hence they find less usage in deep networks where generalization
through learning from inputs is a fundamental requirement.

In recent years, many deep learning architectures employ transposed convolution for
deconvolution. Transpose convolution can be regarded as the process of obtaining the
input dimensions of the initial feature map with no guarantee of recovery of the actual
inputs since it is not an inverse to the convolution operation (Liu et al., 2018). Upsampling
using transpose convolution can be achieved by: (i) sparse convolution matrix (SCM) (Liu
et al., 2015); and (ii) fractionally strided convolutions (FSC) (Zhang et al., 2017; Liu et
al., 2018; Yazdanbakhsh et al., 2018; Chang ¢ Kang, 2018; Di et al., 2020). In SCM based
upsampling, the 2D convolution process can be regarded as the multiplication of a SCM
with an input image I. The convolution operation for an 8 x 8 input image witha 5x 5
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kernel, to give a 4 x 4 valid convolution output O are given by

ko,0) ko) - 0 0 d; - -
n
0 k(()’()) 0 0 d2
L)
0 0 0 0 d;
SCM = ] ) ] ) = d ,0=| 1 (1)
: ST : 4 .
0 0 e k(a9 0 :
16
L 0 0 k(4,3) k(4y4)_ _d64_ - -
SCMigxe64 X lgax1 =O16x1- (2)

SCM represents the spatial position of the kernels when slided across the image, where
k.0)-k0,1)k(0.2) ---k(a,4) denote the kernel values at corresponding positions. Ig4x; is the
flattened input to enable matrix multiplication and O16x; denote the flattened output after
matrix multiplication which is finally reshaped to O4x4. The number of rows and columns
of SCM depend on the number of input and output elements, respectively. Using the above
relations, the backward pass which recovers the input resolution (4 x 4 to 8 x 8) is trivial
by transposing SCM,, i.e., SCM6T4X16 X O16x1 = Igax1. SCM or SCMT, which contains the
positional coordinates of the kernel, defines the forward or transpose convolution.

The traditional convolution process can also be employed to upsample an n x n input to
2n x 2n output by convolving with a k x k kernel (K k). As the kernel is strided across the
input, the convolution operator has to provide contributions associated only with elements
present within the k x k window. Thus, to maintain the connectivity pattern and obtain
interpolated outputs, it is convenient to introduce zeros in between the input elements
before convolution. This procedure introduces fractional level convolution commonly
referred as FSC.

To upsample an input image I,,«,, an intermediate extended image Ej; is created by:
(i) insertion of (s— 1) zeros in between the input elements; (ii) padding zeros (p) around
the boundaries; and (iii) padding zeros (a) along the bottom and right edges of the input
Lixy. Table 1 summaries the description of all the parameters and Fig. 1 illustrates Ejyj,
where a= (n+2p—k) mod sand p= % Next, Ejx; is convolved with the corresponding
kernel Ky to obtain the upsampled output Oy, x, i.e.,

Omxm:Elxl @ kaky (3)

where € denotes the valid convolution operation, I = (2 x n— 1) +a+ 2p and
m=2n=sx(n—1)4+a+k—2p. To upsample I, using Kzx3, p=1,a=1,1=6
and m =2n=4, i.e.,, O4x4. Thus, FSC can be readily employed to upsample an #n x n input
to a 2n x 2n output. Both SCM and FSC when used for upsampling require introduction
of zeros (either in SCM or in E) and Table 2 illustrates the number of zeros added for
different upsampling intervals.

Thus, when implemented on hardware the redundant operations (due to the zeros)
consume large resources which generally lowers the performance of the hardware.
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Table 1 Summary of the parameters in deconvolution.

Parameter Description
n Resolution of the input image
1 Resolution of the extended image
m Resolution of the output image, m = 2n
s Forward computation stride s =2
(Dumoulin ¢ Visin, 2016)
Size of the kernel
p The number of zero padding
a The number of zeros added to the bottom
and right edges of the input
LK1 | k2 | ks
1123 ks | ks [ ks K
ky | ke | k 3%3
4 5 6 3x3 > : > z > ;
rlele d B H E
o) 1o o) ol [se[ss[safvel el 20
STeTrTsl z[s2] o s s [78] 0
516|718 z ds ds d; ds 52
-
9110|11{12
0 do| |dyg |diq |di ‘ 45 E
talufrsle sl vl
I dig |dig [did |4
4x4 65 75|
2655|128 |59(30(63|32]|16
E1ox10 Ogsxs

Figure 1 The image Ejy; is obtained by inserting 0’s (white grids) in between the elements of the input
image I,,«,. Cyan and red grids denote the padding zero parameters a and p, respectively. The arrows de-

note the input and kernel values at corresponding positions.

Full-size G DOI: 10.7717/peerjcs.973/fig-1

Table2 The number of zeros added for different upsampling intervals.

Upsampling interval 2x2 4x4 8x38 16 x 16 32 x 32
—>4x4 —8x8 —-16x16 — 32x32 — 64 x 64
Zscm 28 880 15808 259840 4185088
{n? x (m*—k?)}
Zrsc 32 84 900 3332
{r—n*}
Notes.

Zscwm and Zgsc represents the amount of added zero required.

However, when compared across different upsampling intervals the SCM requires

exponential padding of zeros along the rows and columns, and thus, like many hardware
implementations (Liu et al., 2018; Di et al., 2020; Chang, Kang ¢ Kang, 2020) we use FSC
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technique to upsample the inputs. Though the proposed method like Liu et al. (2018);
Chang, Kang ¢ Kang (2020) employs four convolution patterns for upsampling, but
efficiently decomposes the filters kernels into four simple, efficient and independent
equations that avoid the need for redundant zeros required for FSC based upsampling.

DECONVOLUTION HARDWARE ARCHITECTURE

To upsample an n x n input to 2n x 2n output using FSC requires the dilation of the input
as explained in the previous section. However, in practice for hardware implementations,
inserting and padding zeros are not viable. Thus the proposed architecture consists of the
following modules:

1. A shift register (SR) module used for temporary buffering of the streamed inputs.
The input passes through a series of flipflops (FFs), FF; to FF,, in a systolic manner
governed by a common reference clock.

2. PEs are used to compute interpolated outputs by multiplying the inputs from the shift
registers with the stored kernel coefficients.

3. A Data Control module (DCM) which consists of 2 control switches (CSW1 and
CSW2) and 4 FIFOs arranged in parallel. CSW1 facilitates the temporary storage of PE
outputs and CSW2 enables the systolic streaming of the upsampled results.

The length of the FIFOs and SR module depends on the kernel size and the upsampling
intervals, i.e., 4 x4 to 8 x 8 or 8 x 8 to 16 x 16, etc., and Table 3 illustrates the size
requirements for different kernel and upsampling intervals.

As the input data progresses at a prescribed data rate into the SR module of the
deconvolution accelerator, the PEs multiply the input data with the corresponding kernel
coefficient. The control switches of the DCM then enable efficient storage, retrieval and
streaming of the upsampled data.

Overview of 4 x 4 to 8 x 8 deconvolution architecture

To upsample a 4 x 4 input to a 8 x 8 output using FSC, a temporary extended image E
of size 10x 10 is created by inserting zeros between the input elements (shown as white
grids in Fig. 1), padding around the boundaries (shown as red grids) and along the right
and bottom edges (shown as cyan grids). As the 3 x 3 kernel slides across E, the output is
computed from four computational patterns expressed in colours: pink, blue, yellow and
green. For example, when the kernel is placed at the top left corner of E, the output O,
shown as the pink grids, the output image Ogyg is computed by multiplying the input d;
with central element ks of the kernel, i.e.,

01=K5Xd1. (4)

Likewise, progressing with a stride of 1 along the row followed by the column, the
interpolated elements corresponding to the 8 x 8 output is obtained from the 4 x 4 input.
For example, when the kernel is strided along the row and column, the blue and yellow
grids of Ogyg give the interpolated output O, and Os, i.e.,

0, =Ky xd;+Ks xd; (5)
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Table 3 The requirements for different kernel sizes and upsampling intervals.

Upsampling 4x4—8x8
Interval

8x8—16x16 16 x16—>32x32 32x32—>64x64 64x64— 128 x128 128 x 128 — 256 x 256

Kernel 3x3 5x5 7x7 3x3 5x5 7x7 3x3 5x5 7x7 3x3 5x5 7x7 3x3 5x5 7x7 3x3 5x5 7x7
size (k)
No. of FIFOs 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
and PEs
Length 16 16 16 64 64 64 256 256 256 1024 1024 1024 4096 4096 4096 16384 16384 16384
of FIFO
Size of the 5 10 15 9 18 27 17 34 51 33 66 99 65 130 195 129 258 387
Flipflops
Zero 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
padding
0O; =K, xd; +Kg x ds. (6)
Similarly the green grid denoted by O, computes the output
O4ZK1Xd1+K3Xd2+K7Xd5+K9Xd6. (7)

'The MATLAB code is provided where we
compare the upsampled outputs obtained
from Egs. (4) to (7) with the MATLAB
built-in command. Figshare DataPort
DOI: 10.6084/m9.figshare.19387118.

Figures 2A-2D illustrate the four computation patterns, where ki,k;,ks, ..., ko
respectively correspond to the 3 x 3 kernel coefficients 1,2,3,...,9, and d;,d>, ds, ..., d16
respectively denote the 4 x 4 input 1,2,3,...,16. Thus, by extending the 4 x 4 input and
employing Eqs. (4) to (7) we can compute the required 8 x 8 upsampled outputs.’

The deconvolution architecture to upsample a 4 x 4 input to a 8 x 8 output by convolving
with a 3 x 3 kernel is shown in Fig. 1 and according to Table 3, the architecture requires:
(i) SR module of length 5 to allow buffering and enable computations to be performed in
parallel; (ii) 4 PEs to compute Eqs. (4) to (7); (iii) 4 FIFOs each of length 16 are used to
store the upsampled outputs; and (iv) a DCM comprising of multiplexers and 4 counters
(countl, count2, count3, count4) for indexing the row and columns of the input and
output, respectively.

The length of the SR module is based on the kernel size and the input resolution. In
general the length of the SR module (NumgR) is given by Numgr = kz;l X n—+ % For
Iix4 and K33, the length of SR module is 5. Furthermore, the length each of the FIFO is
fixed as n x n. Since the input is 4 x 4, the FIFOs have a length of 16.

The PEs are hardware wired for a particular upsampling interval and kernel size, and
execute in parallel to compute one of Eqs. (4) to (7). For example, PE; receives input from
SR; and PE; receives inputs from both SR; and Dy. The input and output connections
of each PEs and their associated kernel coefficients are shown Fig. 3, where SRy, SR;, SRy
and SRs are respectively the outputs of the flip flops FF;, FF,, FF4 and FF5 of the SR
module.

To explain the operation of module we use the same inputs and kernel coefficients as
shown in Fig. 1, and the timing diagram of the generation of the outputs for the first 24
clock cycles is shown in Fig. 4. Once signal De is enabled, the deconvolution accelerator
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dil | % [[[ks| | =[O1] [di] [dz| ¥ [ka k6=.

(@) Oy (b) Oz

d4 k> di d, k4 ks

X =103 X = O4

ds ks ds| |[ds k7] [ko
(c) Os (d) Oy

Figure 2 (A-D) The four colours correspond to different computation patterns that correspond to the
colours within Ogyg in Fig. 1. The white grids denote 0’s.
Full-size &l DOI: 10.7717/peerjcs.973/fig-2

P 1 2 2 e 2 2 g 8 2 P
10bit SR,

22bit O1 10bit O
(a)PE4 All the precision of K are 12-bit ® 02

- 22bit
(b)PE; 0”All the precision of K are 12-bit

D SR;s
0 SR .
10bit 1 K (X 22bit
ks 1 "> 03
X 10bit
“0” “0,’ 22bit
(d)PEs Al the precision of K are 12-bit (€)PEs  Aji the precision of K are 12-bit

Figure 3 The hardware implementation: (A) PE;, (B) PE,, (C) PE; and (D) PE, corresponding to Eqs.
(6), (7), (8) and (9), respectively.
Full-size Cal DOI: 10.7717/peerjcs.973/fig-3

is active and the input data (signal Dy in the timing diagram) enters the SR module and
propagates forward through FF; to FF;5 at the positive edge of the clock.

At time T = t2, both PE; and PE; simultaneously receive their input from Dy and SRy,
respectively, which are then multiplied with their corresponding kernel coefficients of the
Ksx3 to present the outputs, O; and O,, respectively, i.e.,

PE1 :Ol =SR1 X k5 (8)
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10t11 t12t13 1411516 t17 t18t19t20 21122 t23 t24

CLOCKT LT LI LI LM LML L L L L L L L L L L L L L L L
De __ | |
Do
SRy
SR,
SR;

01 XXX X X BB I D XX EX B EX XD DX DX TX XD
0, (EXTXEKEXEXBXEXEXBX X TN T XX HEX BX XX T X XX TN 0>

z
0; (TXTX3 oooo@@@@@@@@
0 (EXIXEXEXEX DX T TR X5 B KX moX X K X T BT X 39X X K T

couNt1 X XX XXX XX X XXX X X EX XX DX EX XX DX XD

B 6 0 20 6 6 200 0. 5 0 0 50 26 0 0 6 6 0 0 2 6 0 D

count3 XX XXX XXX XXX X TX XXX XX XXX XKD

count4 X o X X X0 X1 X2 X3 X4 X5 X6 X 7 X0 X1 X2 X3 X4 X5 X 6 X7 X0 X1 X2
Read [

LC | I
TF BN N I T I Y S I O
Fr1 rririr oL rer
Fr2 il rir i rr
Fr3 I —
Fra | — 0700 I

DMee1ay
result CoXo7< 02X 03X 0 X 03X 03X 0 X5 X 18X 10X 2615 X 367X 20X 16 42X 96 52 X116 62X 13672 X 60)

Figure 4 Timing diagram illustrating the upsampling process of 4 x 4to 8 x 8 for T =t0to T = t24.
Full-size & DOI: 10.7717/peerjcs.973/fig-4

PE2102:DOXk6+SR1 Xk4. (9)

Subsequently as the input data advances, between clocks T = t3 and T = t6 and
employing just PE; and PE,, the upsampled elements of the first row (Row;) of Ogys
are computed. Due to zero padding at the rightmost boundary of the extended image, the
last computation within PE; requires just the multiplication of SR; x k4. This is achieved
by employing a counter (count2) to track the column indices and notify the multiplexer
as shown in Fig. 3B. The architecture of PE; and PE; are shown in Figs. 3A and 3B,
respectively.

To compute the upsampled elements of Row, and Rows, along with PE; and PE,,
PE; and PE, operate in parallel. At clock T = t6, all the PEs simultaneously receive their
input (Dy, SR}, SR4 and SR;) from the SR module which then gets multiplied with the
corresponding kernel coefficients and to simultaneously produce the respective outputs.
Figures 3C and 3D illustrate the architecture of PE; and PE4 where

PE3:O3=SR1 Xk8+SR5Xk2 (10)

PE4ZO4:DOXk9+SR1Xk7+SR4Xk3+SR5Xk1, (11)
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Here, O3 and Oy represent the outputs of PE; and PE,, respectively. The availability of
the input data at every clock cycle and the parallel execution of PEs enable the deconvolution
accelerator to compute all 16 interpolated outputs of Row,; and Row; of Ogyg within 4
clock cycles, i.e., between T = t7 and T = t10. As the input data proceeds into the
deconvolution module the elements of Row, to Row; are computed in the similar fashion.
Finally, to compute Rowg of Og, g, (row index is traced using countl) only PE; and PE,
execute in parallel and using Eqs. (10) and (11) produces upsampled outputs O3 and Oy.
Again, to compensate for the zero padding at the bottom and right edges, multiplexers and
additional controls are provided within PE; and PE,4 as shown in Figs. 3C and 3D.

Thus, at each clock instance, the PEs produce simultaneous outputs: Oy, O, by PE; and
PE, for Row;; O, 0, O3, 0, by PE,, PE,, PE; and PE, for Row; to Row;; and O3, O4 by
PE; and PE, for Rowg are temporarily stored in 4 separate FIFOs, FIFO;, FIFO,, FIFO;
and FIFO4 as shown in Fig. 5. The FIFOs write and read commands are synchronised with
the input clock of the accelerator module and a series of controls generated by the DCM
enables effective writing and streaming of the upsampled outputs from the FIFOs.

DCM of 4 x 4 to 8 x 8 deconvolution architecture
The DCM is shown in Fig. 6 and consists of two control switches CSW1 and CSW?2 that

assist in the generation of FIFO write and read commands, enabling temporary storage
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and retrieval of the data. CSW1 and CSW2 are controlled by counters countl and count3

which track the row indices of the input and the outputs, respectively. The FIFO write cycle

is as follows:

1. To store Row; of Ogyg: Initially countl = 0, CSW1 = 0, PE; and PE; execute in
parallel and their corresponding outputs stored in FIFO; and FIFO,, respectively.
Also, FIFO3; and FIFO, are write disabled.

2. To store Row; to Row; of Ogys: (Beginning T = t7) countl increments from 1 to 3,
CSW1 = 1, PE, PE,, PE; and PE, execute in parallel, and all the FIFOs are write
enabled. PE; and PE, are connected to FIFO; and FIFO, where as PE; and PE, are
linked to FIFO3; and FIFO,. The FIFO inputs are interchanged to enable easier read of
the outputs during the read cycle.

3. Finally for Rowg of Ogys: countl =4, CSW1 = 1, only PE; and PE, execute in parallel
and their outputs are connected to FIFO; and FIFO,.

The read operation is managed by CSW2 and the Read signal is asserted after a delay
of B clocks cycles and after De = 1 where 8 =6 4 FIFOggjay.0 (refer to ‘Computation
time of single Deconvolution Accelerator’) represents the delay before a valid sample is
available at the output of PEs and normally FIFOgelay = 2 clock cycles. Thus, to upsample
4 x4 to 8 x 8 using a 3 x 3 kernel we set B to 3 (6 = 2, for details refer to ‘Computation
time of single Deconvolution Accelerator’). Once the Read is asserted, count3 and count4
respectively track the number of rows and columns of Og,g and the data is read from the
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2Vivado project file for the 4 x 4 to 8 x 8 has
been uploaded at Figshare Dataport DOI:
10.6084/m9.figshare.13668644.

FIFOs using separate signals (Frl, Fr2, Fr3 and Fr4) that are controlled by line control
(LC) and transfer control signals (TF), respectively, as shown in Fig. 6. With LC =1 or 0,
and based on the rising edge of the TF, the data is read from the corresponding FIFO in an
orderly manner, i.e.,

Fri= !TF && LC. (12)
Fr2= TF && LC. (13)
Fr3= !TF && LC. (14)
Fra= TF && LC. (15)

where ! and && denote the logical NOT and logical AND operations, respectively. The

FIFO read cycle is as follows:

1. Initially read Row; of Ogys: count3 = 0, LC = 1 and TF is toggled for every clock
cycle. The generated read signals, Frl and Fr2, using Eqs. (12) and (13) control the
read operations of FIFO; and FIFO,, respectively.

2. To read Row; to Rows of Ogys: Starting at T = t13, count3 increments from 1 to 7,
LC increments for each update of count3 and TF is toggled for every clock cycle as
shown in Fig. 4. If LC is 0, using Eqs. (14) and (15) the computed results are read from
FIFO; and FIFO4. When LC is 1, FIFO; and FIFO, are enabled for reading. Note that
count3 is controlled by the column counter count4 which increments for every 0 to
2n—1.

The read cycle of the DCM introduces a delay (DCMgelay) of 3 clock cycles before the
outputs are streamed in a systolic manner regulated by a reference clock. The proposed
deconvolution architecture can be extended for various upsampling intervals by just
extending the number of FFs within the SR module. The number of the PEs remain the
same but their inputs differ. The PE equations for different upsampling internals for
different kernel size are given in Table A1.

DESIGN OF EXPERIMENTS

The proposed deconvolution accelerator was implemented on the Xilinx XC7Z020 FPGA
using the Hardware Descriptive Language, Verilog. The behavioural and structural models
were analyzed, simulated and synthesized using Xilinx VIVADO 2017.4.% For experiments,
we have chosen kernels of size 3 x 3, 5 x 5 and 7 x 7; image resolutions 32 x 32, 64 x 64 and
128 x 128 and clock frequencies 200 MHz.

Kernel bit width
At the positive edge of a clock signal, the deconvolution accelerator receives a stream of
pixels 8-bit width which propagates through the shift register and PEs. The inputs are
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multiplied with the corresponding kernel coefficients with the results stored in FIFOs.
For hardware implementations, fixed point is the natural choice of data representation
due to simplicity and less usage of hardware resources. Thus, the floating point kernel
coefficients are converted to fixed point by using a scaling factor of 2f and expressing
the output as (f + 1)-bit within the FPGA. Here the optimum f is chosen by comparing
the metrics such as Root Mean Square Error (RMSE) and the Peak Signal to Noise Ratio
(PSNR) for different combinations of 2/ with the corresponding IEEE double-precision
output. Table 4 illustrates the results, where the kernel coefficients were selected from the
distribution of range between —1 to 41 by invoking Keras tool (He et al., 2015). Initially,
when f =7, 8 and 9, the RMSE is high but with increase in the precision (bit width of the
kernel), the PSNR improves and RMSE lowers, suggesting that fixed-point calculations are
comparable to those of floating point operations. A scaling factor of 2!! gives acceptable
PSNR of 78.52 dB (Rao et al., 1990) with a low RMSE of 0.0303 and indicates that the
fixed-point result is close to the IEEE double-precision . Increasing the bit width above 12
resulted in no significant improvement in PSNR and therefore the bit width of the kernels
was set to 12-bit (f = 11 and 1 sign bit). Therefore a kernel value of (0.13250548),( was
first multiplied by 2048 (2!!) and its result (271.37122304);( was rounded to (271)yo. Its
equivalent fixed-point representation in 11-bit along with 1 sign bit (000100001111), was
used to represent the filter coefficient.

PEs output bit width

To illustrate that a deconvolution architecture produces upsampled outputs with
considerable accuracy, we compare the upsampled outputs at different upsamping intervals
(from 32 x 32 to 256 x 256) with those of the corresponding MATLAB outputs. For a
realistic comparison, an image with a flat Power Spectral Density (PSD) (e.g., a white
noise) was chosen as an input and the metrics, PSNR and RMSE, were used to evaluate the
model. Based on the experimental results of the previous section, the input and kernel bit
widths were set to 10-bit and 12-bit, respectively. The output the PEs were varied between
8 to 12-bit and the upsampled results of the deconvolution accelerator was compared with
the corresponding MATLAB outputs. Table 5 shows the results and it can be inferred that
10-bit output is sufficient since the PSNR averages more than 58 dB across all upsampling
intervals. Further increasing the bit widths resulted in no significant increase in the
PSNR but resulted in considerable increase in hardware. Therefore, the choice of 10-bit
upsampled outputs is reasonable. With the kernel and input width set to 12-bit and 8-bit,
the accelerator produces upsampled outputs of 22 maximum bits (computation within
the PEs include both multiplication and addition), and therefore the upsampled elements
are left shifted 11 times and the 9 most significant bits (MSB) bits in addition to the sign
bit are stored in the respective FIFOs. The shift operation compensates the earlier 2!}
multiplication of the kernel coefficients.

Comparison of upsampled results of different kernel sizes obtained
from a trained U-Net models

We compare the outputs of the deconvolution accelerator with the MATLAB versions
for various input sizes on kernel coefficients obtained from a trained U-Net model and
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Table 4 Comparison of different kernel bit widths with IEEE double-precision output.

f Data PSNR RMSE Maximum data PEs length
width length required (bits) word required (bits)
8 50.64 0.7489 18 16 to 18
9 50.13 0.7943 19 17 to 19
10 60.84 0.2315 20 18 to 20

10 11 67.64 0.1058 21 19to 21

11 12 78.52 0.0303 22 20 to 22

12 13 76.15 0.0397 23 21to 23

13 14 80.70 0.0235 24 221024

Notes.

BitWidths used by the designed accelerator are in bold.

Table 5 Resource utilization and comparison of IEEE double-precision output with different PEs out-

put bit widths. The input and kernel bit widths are set to 10-bit and 12-bit.

layer PE Output bitwidth RMSE PSNR LUT FilpFlop LUTRAM
8 36.7596 16.8234 408 489 6
32x32 9 4.9180 34.2950 459 498 8
N 10 0.2908 58.8579 484 511 8
64 x 64 11 0.2908 58.8579 502 528 9
12 0.2908 58.8579 534 534 10
38.8182 16.3501 417 517 16
64 x 64 5.6721 33.0559 469 532 18
N 10 0.2895 58.8976 503 540 20
128 x 128 11 0.2895 58.8976 540 565 22
12 0.2895 58.8976 594 580 24
39.3273 16.2369 481 565 32
128 x 128 5.8764 32.7486 530 581 36
N 10 0.2877 58.9532 570 596 40
256 x 256 11 0.2877 58.9532 609 614 44
12 0.2877 58.9532 657 629 48
Notes.

BitWidths used by the designed accelerator are in bold.

natural images obtained from various datasets. First, we upsampled an random image of
size 32 x 32 image to resolutions: 64 x 64, 128 x 128 and 256 x 256 using a 3 x 3 kernel with
a maximum and minimum values of 0.7219356 and —0.64444816. The kernel coefficients

obtained from the corresponding decoder frame work of the U-Net are stored in a register

as 12-bit fixed point representation (as explained in ‘Kernel bit width’) and the upsampled

results of the previous stage are provided as inputs to the current stage. Figure 7A illustrates

the upsampled images at each stage of the pipeline (32 to 256). Tables 6 and 7 respectively

show the corresponding performance scores and the resource usage. Furthermore, Table 8

reports resource usage for individual deconvolution units employing 3 x 3 kernels. Next,

the camera man and the Natural images are examined with similar interpolation intervals.

To illustrate that the proposed model can be extended for different kernel sizes, we also
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Table 6 Comparision of upsampled outputs at three different stages of the pipelined architecture.

Kernel 3x3 5x5 7x7

Input Face image Camera man image Lena image

Layers 32— 64 64 — 128 128 — 256 32— 256 32— 64 64 — 128 128 — 256 32— 64 64 — 128 128 — 256
PSNR 64.9057 63.2796 62.6464 65.3418 87.2817 77.2278 63.3388 64.6432 60.7390 58.0268
RMSE 0.2905 0.3503 0.3768 0.2763 0.0221 0.00703 0.3479 0.2994 0.4693 0.6413

present upsampled results (Figs. 7B and 7C) obtained from 5 x 5 and 7 x 7 kernel sizes with
maximum and minimum coefficient values of 0.78133786, —0.7012087, 0.5295713 and
—0.46372077, respectively. The 10-bit deconvolution accelerator output is compared with
the corresponding IEEE double-precision outputs using the metrics RMSE and PSNR. The
outputs across different upsampling intervals show low RMSE and high PSNR of almost
80 dB which are comparatively better than the 40 dB of maximum PSNR reported by
Chang, Kang ¢ Kang (2020). Thus the 10-bit deconvolution accelerator indeed produces
upsampled outputs comparable to MATLAB results.

ANALYSIS OF THE DECONVOLUTION ACCELERATOR

Computation time of single Deconvolution Accelerator
The total computation time (Tiotar) required in terms of clock cycles for upsampling is
given by

Trotal = Ter +6, (16)
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Table 7 Resource usage for upsampling 32 x 32 to 256 x 256 using a 3 x 3 kernel.

Resource Utilization Total Percentage (%)
LUT 2383 53200 4.48

Flipflop 2257 106400 2.12

BRAM 43 140 30.71

DSP 27 220 12.27

10 10 125 8.00

BUFG 4 32 12.50
LUTRAM 327 17400 1.88

Table 8 Resource usage for different deconvolution model using a 3 x 3 kernel.

Resource\upsample model 32 to 64 64to 128 128 to 256
LUTs (Total:53200) 484 509 591

Slice Registers (Total:106400) 517 579 606

DSPs (Total:220) 9 9 9

BRAM (Total:140) 2 4 16

Power 0.004W 0.011W 0.011W

where Tcrt is the time required to obtain 2n x 2n samples from a #n x n input, 6 denotes the
delay before a valid sample is available at the output of the PEs. Tct is obtained as follows:
1. To compute Row; of the 2n x 2n, PE; and PE, execute in parallel n times.
2. To compute Row,, of the 2n x 2n, PE; and PE, execute in parallel # times.
3. To computes rows Row, to Row,,,_; of the 2n x 2n, PE;, PE,, PE; and PE, operate
in parallel as batches represented by N with each batch executing # times.
Therefore

Ter=2xn+N xn, (17)

where 1 denotes the input size and N is given by

N [(Rowz” —2Row1)— 1].

(18)

The denominator indicates that 2 rows of the 2n x 2n output are computed when the
all the PEs execute in parallel. The initial delay & depends on k and is given by

o= (19)
4
[ ] denotes the ceiling operation. Figure 8 illustrates Tiota) and Table 9 tabulates 6,
Tot and Tieta for different upsampling intervals and kernels. Thus, using the 3 x 3 kernel
to upsample 4 x 4 to 8 x 8, (substitute k = 3 in Eq. (19)), the first effective result at the
output of the PEs (PE; and PE,) is obtained after a delay of two clock cyles, (i.e., 6 =2).
Subsequently (PE;, PE,) execute 4 times in parallel to compute the samples of Row;. For
Row;, to Rowy, all the PEs independently execute 4 times in parallel but in 3 pipelined
batches (N = 3 as computed using Eq. (18)). Finally, for Rows, (PEs3, PE,) again execute
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4 times in parallel. Substituting the execution cycles of PEs required to compute each row

of the output along with N in Eq. (17), the computation time T¢ct can be found. Thus, to
upsample 4 x 4 to 8 x 8; Tct = 20 (i.e.,, 2 X 4+ 3 x 4 =20) clock cycles, and Tipta) = 22
clock cycles. The upsampled outputs are temporarily stored in the FIFOs and after an initial

delay of B+ DCMgglay clock cycles are read simultaneously by initiating the FIFO read

signals as in Eqgs. (12) to (15). The time-to-read (TR) the upsampled elements is 21 x 2 for

an 1 X n input since the upsampled elements are streamed in a systolic manner (1 output

per clock cycle) in reference to the common clock.

Computation time for the Pipelined architecture
The DCM allows separate read and write controls of the FIFOs and thus the upsampled

elements of deconvolution accelerator can be readily streamed to the next stages: 2n x 2n

to 4n x 4n, 4n x 4n to 8n x 8n and so on to represent a pipelined architecture that is

similar to the decoder module of the U-Net. The computation time for the pipelined (Tp)

deconvolution framework is given by

Tp =D x (B+DCMgejay) + Tr.

(20)

where D denotes the number of upsampling intervals, Tr (time-to-read) is Tr = (20*")?)
and DCMgglay = 3, and B is the delay before the read signal (Read) is asserted (refer to
‘DCM of 4 x 4 to 8 x 8 deconvolution architecture’). To upsample 32 x 32 to 256 x 256
using Kss, Tp is computed by substituting D =3, f+DCMgejay = 8 (8 = 6 + FIFOgelay;
refer to Table 9 for 6 and ‘DCM of 4 x 4 to 8 x 8 deconvolution architecture’ for FIFOgejay
and DCMgglay, and TR = 65536 cycles ((2° x 32)?) in Eq. (20)). Thus, Tp = 65560 clock
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Table 9 0, Ter and Tiotal for different kernel size.

Kernel size Upsampling intervals 0 (cycles) T, (cycles) Ttotar (cycles)
4x4—>8x8 2 20 22
3x3 32x32—> 64x64 2 1056 1058
64 x 64 — 128 x 128 2 4160 4162
128 x 128 — 256 x 256 2 16512 16514
4x4—8x%x8 3 20 23
5x5 32x 32— 64 x64 3 1056 1059
64 x 64 — 128 x 128 3 4160 4163
128 x 128 — 256 x 256 3 16512 16515
4x4—8x8 3 20 23
7x7 32x 32— 64 x64 3 1056 1059
64 x 64 — 128 x 128 3 4160 4163
128 x 128 — 256 x 256 3 16512 16515

cycles (3 x 8+ (23 x 32)?). Furthermore, for example, if a clock frequency of 50 MHz

is considered, then the Tp of the three-stage pipelined deconvolution module capable
of upsampling 32 x 32 to 256 x 256 is 1310.84 s (65542 x 0.02 us), thus achieving a
frame rate of 763 fps (frames per second). Figure 8 illustrates Tp for a two stage pipelined
deconvolution framework (n x n to 4n x 4n).

Comparison of computation complexity of the proposed architecture
with other deconvolution architectures

The total number of operation (multiplications and additions) required to complete the
upsampling process represents the computation complexity of the model. For the proposed
architecture the number of multipliers OPp and adders OPgqq required to upsample
nxnto 2n x 2n using k x k kernel are given by

OPmu|=[nxk—é(k—l)z—}l(k—l)]z. (21)

1 1
OPadd=[nxk—g(k—1)2—Z(k—l)]z—(2n)2. (22)
The total operations OPiptg is given by
1 1
OPtotalzz[nxk—g(k—l)z—Z(k—1)12—4n2. (23)

Table 10 shows the OPmy1, OPaqq and OPyotg for various upsampling intervals and
kernel sizes. When compared with existing architectures(refer to Table 10) where the total
operations are computed using k*n? + 2k(k — s)(n —s) + (k? — s*)(n —2)? (for Liu et al.
(2018)) and (2 x k? — 1) x n? for (Zhang et al. (2017) and Yan et al. (2018)), the proposed
deconvolution architecture reduces the required operations by a maximum of 20%. We
attribute this reduction to the pipelined structure of the architecture which executes either
2 or 4 PEs in parallel per clock cycle to produce the interpolated outputs. Also, at any clock
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Table 10 Comparision of total operation of Liu et al. (2018), Zhang et al. (2017) and Yan et al. (2018) with our method for different kernel size

and upsampling intervals.

kxk nxn Method OP i OP.4d OPiotal % saving
Zhang et al. (2017) and Yan et al. (2018) 9216 8192 17408 20%
32x32 Liuetal. (2018) 9216 7572 16788 17%
our 9025 4929 13954 -
Zhang et al. (2017) and Yan et al. (2018) 36864 32768 69632 19%
3x3 64 x 64 Liu et al. (2018) 36864 31508 68372 17%
our 36481 20097 56578 -
Zhang et al. (2017) and Yan et al. (2018) 147456 131072 278528 18%
128 x 128 Liuetal. (2018) 147456 128532 275988 17%
our 146689 81153 227842 -
Zhang et al. (2017) and Yan et al. (2018) 25600 24576 50176 10%
32x32 Liu et al. (2018) 25600 22840 48440 7%
our 24649 20553 45202 -
Zhang et al. (2017) and Yan et al. (2018) 102400 98304 200704 8%
5x5 64 x 64 Liu et al. (2018) 102400 94776 197176 8%
our 100489 84105 184594 —
Zhang et al. (2017) and Yan et al. (2018) 409600 393216 802816 7%
128 x 128 Liu et al. (2018) 409600 386104 795704 6%
our 405769 340233 746002 -
Zhang et al. (2017) and Yan et al. (2018) 50176 49152 99328 8%
32x32 Liu et al. (2018) 50176 45804 95980 5%
our 47524 43428 90952 -
Zhang et al. (2017) and Yan et al. (2018) 200704 196608 397312 6%
7x7 64 x 64 Liuetal. (2018) 200704 189804 390508 4%
our 195364 178980 374344 -
Zhang et al. (2017) and Yan et al. (2018) 802816 786432 1589248 4%
128 x 128 Liuetal. (2018) 802816 772716 1575532 4%
our 792100 726564 1518664 -

instance, the maximum number of multiplier employed by the accelerator using a kernel
of size k x k is k2, which relates to the parallel execution of all PEs in a batch for rows 2 to
2n— 1. Furthermore from Table 10, we observe a significant reduction in operations when
3 x 3 kernel size is used for up-sampling which directly contributes to resource utilization.

We also compare our proposed architecture with other deconvolution architectures
in terms of (i) total operations, (ii) clock cycles required to complete an upsampling
interval, (iii) hardware usage, (iv) GOPS and (v) resource efficiency (GOPS/DSP). To
have favourable comparison across all architectures, we compare a single deconvolution
module based on fixed point representation capable of upsampling a 128 x 128 input to
256 x 256 using a 5 x 5 kernel and Table 11 shows the results. Here GOPS, which denotes
the processing performance of the model is computed using Di et al. (2020):

O I:’total

1 9
Total X Freq

GOPS = (24)
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Table 11 Comparison with other deconvolution architectures employing 3 x 3 kernel.
Work Di et al. (2020) Liu et al. (2018) Zhang et al. (2017) Chang, Kang & Kang (2020) Proposed Proposed
Deconvolution 128 to 256 128 to 256 128 to 256 128 to 256 128 to 256 32 to 256
Layer
Platform ZCU102 XC7Z045 XC7Z020 XC7K410T XC7Z020 XC7Z020
Precision 16 # 16 # 12# 13# 10 ] 12 10 ] 12
(fixed point)
OPsotal 294912 259350 294912 1318212 227842 298374
Total 20062 120909 31507 36864 16386 16390
Input Filpflops 49794 16384 16384 - 258 457
Output buffer 131072 147456 65536 - 65536 86016
Total of 12 # 13 # 9# 9# 9 27
DSP usage
GOPS 2.94 #(200) 0.429 #(200) 0.936 #(100) 4.644 #(130) 2.781(200) 3.641(200)
(Freq-MHz)*
Resource
efficiency
(GOPS/DSP)* 0.245 # 0.033 # 0.104 # 0.516 # 0.309 0.135
Power(W) 0.07 0.03 - 0.032 0.011 0.026
Maximum 200 200 100 130 200 200
Frequency

Notes.

* GOPS and GOPS/DSP are comnputed on single channel.
# Results obtained directly from the reference.

where Freq denotes the frequency. From Table 11, it is evident that the proposed

architecture uses fewer operations and therefore less hardware resources to upsample.

Furthermore, the proposed architecture produces the best resource efficiency of 0.309
GOPS/DSP at 200 MHz. The lowest clock cycles are required to upsample a 128 x 128

input to 256 x 256 across all considered architectures. We attribute the improvement to the
hardware design which benefits in the reduction of operations and produces a maximum
operations saving of 23% (by comparing the OPyotq of Di et al. (2020)) which directly
relates to lower usage of the hardware resources. Furthermore, the proposed deconvolution
accelerator achieves GOPS = 3.641 and GOPS/DSP = 0.135 for the pipelined architecture
32 x 32 to 256 x 256.

Extension of the proposed Deconvolution Accelerator

Although traditional U-Nets are based on 3 x 3 (Shvets ¢ Iglovikov, 2018) kernels, few
architectures either employ 5 x 5 (Chang, Kang ¢» Kang, 2020) or 7 x 7 (Badrinarayanan,
Kendall & Cipolla, 2017) in their encoder—decoder pipeline. Thus, to allow reusability of
the architecture, we present in Table A1, equations for different upsampling intervals for
3 x3,5x5and 7 x 7 kernels. The number of PEs are the same, but the length of the SR
module and the FIFOs differ(refer to Table 3). Thus, by rewiring the inputs to the PEs,
different upsampling intervals using different kernels sizes are obtained.
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Random Image

256x256

(a) Demonstration of thethree upsampling layers.

BROMI32x32 6464 128%12

[[1 Rom for initialization [ Deconvolution Accelerator [l Display module
(b) The schematic of implement.

Figure 9 (A) (left) Hardware setup and (right) zoomed illurstation of 32 x 32, 64 x 64,128 x 128 and
256 x 256. (B) The block diagram of the hardware setup illurstaing the BROM, pipelined upsampling

accelerators and display module.
Full-size & DOI: 10.7717/peerjcs.973/fig-9

HARDWARE IMPLEMENTATION OF THE UPSAMPLING
PIPELINE

Figure 9A illustrates the upsampling pipleline where 32 x 32 random input is upsampled
to 256 x 256 output using ZYNQ AX7020 FPGA board. Here to avoid computational
overheads, the 8 bit 32 x 32 input was initialized in ROM, and systolically presented

to the deconvolution accelerator pipeline as shown in Fig. 9B. The upsampling results
for each layer (64 x 64 and 128 x 128) along with final 256 x 256 output is shown

in the display screen (Fig. 9A). The complete upsampling pipeline required 131us
when executed at 50 MHz clock frequency. Here Xilinx IP cores, namely, Block ROM
(https:/docs.xilinx.commu/Ny8V_830YccMjYIS44XWXQ) and RGB to DVI Video Encoder
(employing HDMI interface) (https:/www.xilinx.com/ksupport/documentation/application
notesxapp495_S6TMDS_Video_Interface.pdf) were used for initialization of the inputs
and display of the upsampled outputs.

CONCLUSION

We present an FSC based systolic deconvolution architecture capable of upsampling n x n
input to 2n X 2n output using a k x k kernel. The standalone (128 x 128 to 256 x 256) and the
pipelined versions (32 x 32 to 256 x 256) implemented using 3 x 3 on a Xilinx XC7Z020
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platform, achieved an overall performance and resource efficiency of 2.781 GOPS and
3.641 GOPS, 0.309 GOPS/DSP and 0.135 GOPS/DSP, respectively. When compared with
other deconvolution architectures, the proposed architecture requires the least number of
operations (with a saving of 23%) which results in lower usage of hardware. Furthermore,
the high PNSR value demonstrates that the 10-bit upsampled results of deconvolution
accelerator are comparable to IEEE double-precision outputs. In addition, the proposed
architecture has a high scalability (the length of FIFOs and SR module change but number
of PEs remain same) to suit different upsampling intervals.

APPENDIX

Table A1 Appendix: Equations for extending the deconvolution accelerator different upsampling in-
tervals (n x n to 2n x 2n based different kernel sizes.

PE number
Equations of 3 x 3 kernel upsampling architecture
PE; SR x Ks
PE, Dy x Ks+SR; x Ks
PE; SR; x Ks+SR,41 x K,
PE, Dy x K9y+SR; x K;+SR, x K;+
SR,41 x Ky
Equations of 5 x 5 kernel upsampling architecture
PE, SRz X Ky 4+8Ryup1 x Ks+SR;, x Ks+
SR,z x Kii +SR,11 x K3 +SR, x Kis+
SR, x Ky +SR; x Ky +Dg x Kys
PE, SRy x Ky +SRy, x Ky 4+SR 4 x Kip+
SR, x K4 +8SR; x Ky 4Dy x Ky
PE; SR, X Ks+SR,11 x Kg+SR, x Ko+
SR, x Kis+SR; x Kig+Dg x Ky
PE, SR,+1 x K;+SR, x K¢+SR; x K7+
Dy x Ko
Equations of 7 x 7 kernel upsampling architecture
PE, SRyu42 X Ko +SRyup1 x Ky +SRy, x Kis+

SR,42 x Ky +SR,41 X Kys +SR, x Ky +
SR; x K37 +SR; x Kso+Dy x Ky

PE, SRyut3 X Ks +SRyup2 X Kig+ SRy x Ko+
SRy, X Ky +SRy43 X Ky +SRy2 x Kyg+-
SR,41 X Ky +SR, x Kys+SR; x Kse+

(continued on next page)
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Table A1 (continued)

PE number

SR; x Kss+SR; x Ky +Dg x Ky,
PE; SR3,.42 X Ky +SR3,11 x Ky +SRs, x Ke+
SRyu42 X Kig+SRyup1 X Kis+SRy, x Ky+
SR,z x Ko +SR,11 x Ky +SR,, x Ksy+
SR, x K+ SRy x Ky +Dp x Kyg
PE, Dy x Ky +SR; x Ky +SR; x Kys+
SR; x K3+ SR, x Ks54+SR,;; x Ksz+
SR,z x K31 + SR, 15 x Ky +SRy, x Ky +
SRyu41 X Kig+SRyu12 X Ki7 +SRyup3 x Kis
SR, X K7 +SRs,41 X Ks +SRsp40 X K54+ SRs,43 X K

The coefficients of each row of the kernel are appended and numbered in ascending order.
Example. K, is K1,K;, K5, ... K2
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