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Abstract—Accurate wind farm power prediction is of vital 
importance for the performance improvement of wind farms and 
their grid integration. In this paper, a novel method based on the 
state-of-the-art deep learning model (i.e. the Transformer 
network) is developed to tackle this issue. Specifically, the 
prediction task is modeled as a segmentation problem and the 
powerful Vision Transformer (ViT) is employed to predict each 
individual turbine’s power generation in a wind farm with wake 
interaction effects. The proposed method, called Wind 
Transformer (WiT), is evaluated by carrying out a set of 
numerical experiments. The results show that the proposed 
method achieves accurate and efficient wind farm power 
prediction and it outperforms other deep learning baseline 
models significantly. Particularly, the maximum mean absolute 
percentage error by the proposed method is only  1.030%, while 
they are 4.350% for LSTM and 3.510% for CNN models. 

I. INTRODUCTION 
As one of the most important sustainable energy resources, 

wind energy has demonstrated tremendous potential and 
experienced a great surge in recent years [1]. Even though lots 
of efforts have been involved to reduce its cost and to make it 
more competitive with the traditional power generation, a lot 
of challenges still remain in order to further improve the 
performance of wind farms [2]. To this end, this work 
investigates the prediction of wind farm power generations, 
which plays a vital role in the design of wind farms, their 
efficient operations, and their integration into the grid [3].  

`Wind farm wake models have been developed to predict 
wind farm power generations. The pioneering analytical wake 
model was proposed by Jensen [4] in 1983, which assumes that 
the wake expands linearly after a wind turbine. Thereafter, 
Larsen [5] constructed a semi-analytic wake model for the 
wake loading problem, while Frandsen [6] proposed a 
simplified model by conservation of momentum. The inherent 
weakness of these 1D models is the inaccurate assumption of 
velocity deficit profile. Hence, Bastankhah and Porté-Agel [7] 
proposed a two-dimensional (2D) Gaussian wake model. After 
that, Tian et al. [8] proposed the Cosine wake model and Gao 
et al. [9] developed the Jensen-Gaussian (J-G) wake model 
sequentially. Nevertheless, lacking the height dimension, the 
2D model is still limited for practical application. To address 
this issue, Sun [10] proposed and verified an analytical three-
dimensional (3D) wake model. Meanwhile, there are a series 
of works in analytical wind farm modeling recently, such as 
wind farm simulator [11] and bilateral Gaussian wake model 

[12], while certain surrogate modeling methods have also been 
introduced [13, 14] to enhance the efficiency. 

Based on the analytical wake models, a series of works on 
wind farm power predictions are conducted. For example, M. 
Lydia et al. [15] proposed a hybrid power prediction method 
that combined the wind speed and wind turbine power curve 
models. M. Gaumond et al. [16] introduced a novel simulation 
post-processing method to tackle the wind direction 
uncertainty issue when measuring the Horns Rev offshore 
wind farm. Even though the post-processing technique 
boosted the consistency of the simulations for wake modeling, 
accurate wake predictions were required for the narrow wind 
direction sectors method. M. He et al. [17] proposed a general 
spatio-temporal analysis framework deriving from the finite-
state Markov chain models to forecast the wind farm 
generation. Carlos et al. [18] introduced three Kalman filtering 
methods for wind speed prediction. Li et al.[19] built a 
physical approach for the wind power prediction based on the 
CFD pre-calculated flow fields. 

On the other hand, as a data-rich industry, substantial 
detailed and reliable data are available. This opens 
opportunities for big data-driven machine learning (ML) 
models for wind farm power prediction [20]. For example, in 
[21], two neural network-based methods were investigated by 
A. Khosravi et al. [21] which directly and rapidly constructed 
the prediction intervals for short-term forecasts of wind farm 
power generation. H. Liu et al. [22] proposed and compared 
two-hybrid methods based on the Artificial Neural Networks 
and Kalman Filter for wind farm prediction. Z. Lin et al. [23] 
constructed a five-layer feedforward neural network to predict 
wind power outputs. In [24], six multi-objective prediction 
frameworks based on machine learning algorithms were 
evaluated for power generation and structural fatigue load 
prediction. Although these attempts have made encouraging 
progress in wind farm predictions, almost all of them are based 
on simple ML methods, limiting their potential for more 
complex scenarios such as predicting the power generation of 
each individual turbine in a wind farm.  

Compared with simple ML methods, Deep Learning (DL) 
models, which usually stack multiple layers to extract 
nonlinear and hierarchical features, are more powerful and 
promising for power generation predictions. As an up-and-
coming solution to data-driven modeling and projections, DL 
has brought amazing progress and evolution in many fields 
[25-27]. Considering what the DL algorithms require is the 
vast amounts of data instead of the explicit mathematical 
model of the farm operational process [28], the utilization of 
DL models for the data-rich offshore wind energy industry 
demonstrates the tremendous potential to highly enhance the 
accuracy and efficiency for wind farm predictions. This work, 
therefore, explores the use of the state-of-the-art deep learning 
architecture, i.e. the Transformer networks, for wind farm 
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power predictions. Transformer, as a powerful and robust DL 
model, has shown strong capabilities to capture long-range 
dependencies and yield superb performances in a wide range 
of fields [29]. More recently, the tremendous success achieved 
in the language domain inspires researchers to explore the 
potential and adaptation of Transformer in the computer vision 
field [29]. Obviously, the successful application of 
Transformer will become the first and foremost step to 
integrate computer vision and natural language processing, 
thereby providing a universal and uniform artificial 
intelligence (AI) paradigm. Therefore, introducing the 
Transformer into the wind farm prediction will not only 
remedy the intricate forecast task but also integrate the 
aforementioned AI paradigm into the offshore wind farm 
prediction and control area. 

Therefore, in this paper, we propose a novel framework to 
address the wind farm predictions. Particularly, we introduce 
the DL model, especially the state-of-the-art Transformer 
network for wind farm predictions. Different from the DL-
based methods mentioned above which focused on the 
prediction of the whole farm or a single turbine, the proposed 
framework predicts the output of each individual turbine 
within an entire wind farm. 

To evaluate the proposed method, numerical experiments 
for an example wind farm are carried out. In particular, we first 
build a wind farm with 16 turbines. Then, based on a wind 
farm simulation platform called FLORIS [30], the power 
generation of each turbine is simulated under 6 conditions with 
different wind speeds and wind directions. Finally, the 
accuracies of the Transformer model are evaluated on the 
simulated dataset and compared with two DL baselines, i.e., 
LSTM and CNN models.  

 The remainder of this paper is organized as follows. The 
problem formalization and methodology are presented in 
section II. Then the experimental setting and the prediction 
results are presented in section III. Finally, we conclude the 
paper in Sec. IV. 

II. METHODOLOGY 

A. Problem Formalization 
Supposing an offshore wind farm comprising of N wind 

turbines denoted by the set 𝐹𝐹 = {1,2,3,⋯ ,𝑁𝑁} , each wind 
turbine 𝑖𝑖 ∈ 𝐹𝐹  is modeled by its rotor area, the inflow wind 
velocity, and a two-dimensional location (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) according to 

a common reference coordinate (𝑥𝑥, 𝑦𝑦). As shown in Fig.1, the 
power generation of the downstream turbine i can be 
calculated by [31]: 

𝑃𝑃𝑊𝑊𝑖𝑖 =
𝜌𝜌
2

(𝐴𝐴𝑖𝑖 cos𝛼𝛼𝑖𝑖)𝐶𝐶𝑃𝑃𝑖𝑖(𝛽𝛽𝑖𝑖 ,𝜆𝜆𝑖𝑖) �𝑣𝑣𝑖𝑖(𝑡𝑡) cos
1
3 𝛼𝛼𝑖𝑖 cos𝛾𝛾𝑖𝑖�

3
, (1) 

𝑃𝑃𝑊𝑊𝑖𝑖  is the output power generated by the turbine i. 𝜌𝜌 indicates 
the air density. 𝐴𝐴𝑖𝑖 represents the rotor-swept area of the. 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖, 
𝛾𝛾𝑖𝑖, and 𝜆𝜆𝑖𝑖 denote the tilt misalignment angle, the blade pitch 
angle, the yaw offset angle, and the tip-speed ratio (TSR). 
𝑣𝑣𝑖𝑖(𝑡𝑡) is the effective wind speed seen by the turbine i. 𝐶𝐶𝑃𝑃𝑖𝑖 is 
the power coefficient. From equation (1), the power output of 
the individual turbine is dependent on the turbine operational 
parameters, the inflow wind speed, and direction. However, 
the overlapping turbine wake interactions aggravate levels of 
turbulence and shear, leading to the complicated dynamic 
loads of the downstream wind turbines. Therefore, it is 
normally intractable to explicitly derive an accurate analytical 
expression for turbines on the wind farm. The wake 
interactions exacerbate with the increase of wind turbines, 
thereby weakening the power generations and the reliability of 
the overall wind farm. Also, the degree of the wake 
interactions relies on the operating point of each wind turbine, 
which is fairly complex to parametrize for a large wind farm. 
Therefore, instead of hammering out a detailed and complex 
analytical wind farm model with wake interactions, the wind 
farm prediction can be lightly represented by training a deep 
learning model based on big data of input parameters. 

B. Wind Farm Power Prediction based on Transformer 
Given a specific wind condition (i.e., wind speed and wind 

angle), we set the yaw angle of each turbine as the input of the 
wind farm while the output is the power generation of each 
turbine. Hence, considering the wake interactions between the 
turbines, the intuitive thought is to model the wind farm 
predictions as a sequence-to-sequence task. For sequence-to-
sequence, as an improved variant of the recurrent neural 
network, the long-short term memory (LSTM) is an effective 
method that can learn the information contained in series data. 
However, the spatial location information will be lost when 
transferring the input and output to sequence information. 
Therefore, modeling the issue to a segmentation task that 
maintains the input and output in the 2D format is a more 
sensible choice. 

 
Fig. 1. The illustration of two turbine model example. (a) The wake expansion model of the turbines i and j (top view) (b) The tilt misalignment model of the 
turbine i (side view). In the Cartesian reference frame (x, y), the x-axis points downwind along the free stream inflow direction, the y-axis is orthogonal to the x-
axis along the crosswind direction, and the z-axis is orthogonal to the x and y axis, and represents the altitude. The reference frame (�̅�𝑥, 𝑦𝑦�) is used to measure and 
represent the free stream inflow wind direction. 

  



Semantic segmentation, which assigns definite categories to 
groups of pixels in an image [32], could help to scene 
understand or better explain the global context of an image 
[33]. Specifically, the input of segmentation is normally the 
natural image, while the output is in the same shape as the 
input while each pixel represents the category of the 
corresponding pixel in the input. Therefore, we can formally 
model the wind farm prediction task to a segmentation model. 
The major difference is that the segmentation is a classification 
task while the wind farm prediction is a regression task. Hence, 
the loss function utilized to measure the disparity between the 
predicted results and ground truth is Mean Squared Error 
(MSE): 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑚𝑚
� (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑖𝑖
, (2) 

while 𝑦𝑦�𝑖𝑖 is the predicted result, 𝑦𝑦𝑖𝑖 is the ground truth, and 
m is the number of samples.  

For the segmentation task, the convolutional neural network 
(CNN) is the frequently-used method, which is usually built 
by multiple blocks including convolution layers, pooling 
layers, and fully connected layers. However, the CNN is 
designed to extract local patterns and lacks the ability to model 
global information in its nature. Therefore, for wind farm 
prediction, we introduce the Wind Transformer (WiT) based 
on the Vision Transformer (ViT) [34] due to its powerful 
capacity to model the long-range dependencies of the input. As 
can be seen from Fig. 2, WiT first reshapes the input yaw angle 
𝑥𝑥 ∈ 𝐻𝐻×𝑊𝑊 into a sequence of flattened patches 𝑥𝑥𝑝𝑝 ∈ 𝑁𝑁×𝑃𝑃2 , 
where 𝐻𝐻 × 𝑊𝑊 is the number of turbines in a wind farm, 𝑁𝑁 =
𝐻𝐻 × 𝑊𝑊, 𝑃𝑃2  is the resolution of each patch. To facilitate the 
understanding, we utilize the genuine picture to represent the 
input yaw angle in Fig. 2. Thereafter, the flattened patches are 
mapped to 𝐷𝐷  dimensions with a trainable linear projection, 
which is named patch embeddings. Besides, a learnable 
embedding ([class] embedding) to the sequence of embedded 
patches is prepended whose state at the output of the 
Transformer encoder serves as the input representation. 

After patch embeddings, position embeddings are operated 
to maintain positional information using the standard learnable 
1D position embeddings. Then the resulting sequence of 

embedding vectors is fed into the Transformer Decoder. The 
main components of Transformer Encoder [35] include 
alternating layers of multi-headed self-attention and MLP 
blocks, which can be seen from Fig. 2(b), (c), and (d). 
Layernorm (LN) is applied before every block and residual 
connections after every block. 

III. EXPERIMENTS 

A. Dataset Generation 
The assessment of the WiT has been conducted based on the 

wind farm simulation platform, i.e., FLORIS [30]. Concretely, 
16 NREL 5 MW turbines were utilized to conduct a 4 × 4 
layout wind farm with 7D (126m × 7) streamwise distance and 
3D (126m × 3) spanwise distance. The power generation of 
each turbine is measured as the wind farm output and the yaw 
angle settings are fed into the model as inputs, while other 
input parameters such as the blade pitch angle, the tilt angle, 
and the turbine operational characteristics including the TSR 
and the rotor speed are kept constant.  

For data generation, we considered six typical operating 
scenarios include diverse inflow wind speeds and directions: 
the mean wind speeds of 6 m/s, 9 m/s and 12 m/s with 270° 
wind direction, and the wind directions of 180°, 225°, and 315° 
with 9 m/s inflow wind speed. The input yaw angle for data 
generations in the FLORIS was randomly generated as a 
sample sequence consisting of 16 elements between -20° and 
20°, and each yaw angle is fully distinguished from the 
previous one. For every scenario, 10000 samples are generated 
for training, 1000 for validation, and 1000 for testing. All case 
studies were carried out using Python 3.6.9 on an Intel Xeon(R) 
Platinum 8268 CPU. 

B. Evaluation Metrics 
We evaluate the performance of the proposed WiT as well 

as two baselines, i.e., LSTM and CNN, using the Root Mean 
Square Error (RMSE), Mean Absolute Percentage Error 

 
Fig. 2. The illustration of the Wind Transformer (WiT). (a) The structure of Transformer for wind farm prediction. (b) Transformer Encoder. (c) Multi-Head 
Attention. (d) Scaled Dot-Product Attention. 

  



(MAPE), and Minimum Absolute Relative Percentage Error 
(MARPE): 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = �
1
𝑚𝑚
� (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑖𝑖
. (3) 

𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀 =
1
𝑚𝑚
� ��

𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

� × 100%�
𝑖𝑖

. (4) 

 

𝑀𝑀𝐴𝐴𝑅𝑅𝑃𝑃𝑀𝑀 = 𝑚𝑚𝑖𝑖𝑚𝑚 ��
𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

� × 100%� . (5) 

C. Experiment Results 
To evaluate the accuracy of the proposed method, we 

trained and verified the WiT as well as LSTM and CNN 
baselines on the six simulated datasets. All training and 

validation processes were implemented with PyTorch 1.8.0 on 
a single and Nvidia Quadro RTX 5000 GPU with 2048 batch 
size, and the optimizer was set as AdamW with a learning rate 
of 0.0003 and a weight decay value of 0.0025. For the learning 
rate scheduler, we adopted available ReduceLROnPlateau in 
PyTorch with the patience of 5 and the learning rate decrease 
factor as 0.5. If the loss on the validation set did not decrease 
for more than 10 epochs, the training procedure would be 
stopped, while the maximum iteration period was 1000 epochs. 
For LSTM, the input shape was in 1D sequence format, while 
in 2D format for CNN and WiT. 

As can be seen from Table Ⅰ, calculated by 100%-MAPE, 
the relative accuracy for all models can achieve at least 95%. 
But the performance between different methods has obvious 
differences. Concretely, the performance of CNN is better than 
that of LSTM most of the time, due to the spatial relationships 
between wind turbines being better retained by CNN. For WiT, 

 
Fig. 3. The qualitative comparison between the predicted result and the FLORIS data, while the horizontal axis represents the data generated by FLORIS and the 
vertical axis indicates the result predicted by the WiT.  

TABLE Ⅰ 

THE EXPERIMENTAL RESULTS UNDER SCENARIOS. 

Speed Direction 
LSTM CNN WiT 

RMSE MAPE MARPE RMSE MAPE MARPE RMSE MAPE MARPE 

6 270 0.015  3.417  1.471  0.014  2.633  1.293  0.003  0.660  0.251  

9 270 0.025  1.288  0.524  0.022  1.354  0.537  0.007  0.396  0.113  

12 270 0.042  1.047  0.454  0.050  1.262  0.526  0.011  0.282  0.102  

9 180 0.038  4.350  1.812  0.019  3.510  1.504  0.005  1.030  0.372  

9 225 0.029  1.060  0.430  0.016  0.588  0.227  0.004  0.207  0.066  

9 315 0.028  0.998  0.352  0.023  0.846  0.289  0.006  0.224  0.074  

 



the maximum MAPE (%) for wind power prediction is 1.030%, 
which indicates that the relative accuracy of wind farm power 
can achieve at least 98.970%. Meanwhile, the minimum 
MAPE (%) is merely 0.207%, signifying a 99.793% relative 
accuracy.  

For qualitative comparison, we illustrate the 2D scatter 
diagram for whole test samples and 3D scatter diagram for a 
specific test sample between the predicted result and FLORIS 
data in Fig. 3 and Fig. 4.  

In Fig. 3, the horizontal axis represents the data generated 
by FLORIS and the vertical axis indicates the result predicted 
by the WiT. As can be seen in Fig. 3, the dots are mainly 
located near the diagonal line, which means predicted results 
precisely match the FLORIS data. In Fig. 4, for each scenario, 
we choose a random yaw angle input and then visualize the ten 
turbines’ outputs generated by the FLORIS and WiT, where 
the magenta circle indicates the ground truth generated by the 
FLORIS, the dodger blue triangle denotes the result predicted 
by the WiT, and horizontal and vertical coordinates represent 
the spatial position of the corresponding turbine. As can be 
seen from Fig. 4, the predicted wind farm power generations 
of each turbine coincide highly with the values generated by 
FLORIS, which strongly demonstrates the effectiveness of the 
WiT.  

IV. CONCLUSION 
In this paper, we proposed a novel deep learning based 

method for the prediction of wind farm power generation. The 
proposed method, called Wind Transformer (WiT), was 
developed by first modeling the prediction task as a 

segmentation problem and then taking advantage of the 
powerful Vision Transformer (ViT) developed in computer 
science. The proposed prediction approach was designed to 
forecast the power output of each individual turbine in a farm 
instead of taking the whole farm as a black box and just 
predicting a total generation. Thus, it can provide detailed 
power generation information for each individual turbine. To 
evaluate the proposed method, substantial experiments were 
conducted, where six typical operating scenarios include 
diverse inflow wind speeds and directions widely were 
considered. Experiments conducted on simulated datasets 
demonstrated that the accuracy on MAPE of the proposed WiT 
can achieve at least 98.970%, significantly exceeding the 
LSTM and CNN baselines. 

In summary, for this article, we not only introduce the DL 
model for wind farm predictions but also model the issue as a 
segmentation task, thereby utilizing the Transformer network 
to address it. Our future work is to train the network and 
validate its effectiveness of the proposed WiT on real running 
records of the wind farm instead of the simulated data, thereby 
further enhancing the fidelity of the predicted results. 
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