Monthly Notices

MNRAS 514, 715-727 (2022)
Advance Access publication 2022 May 10

https://doi.org/10.1093/mnras/stac1278

Impact of radial truncation on global 2D hydrodynamic simulations
for a Sun-like model

D. G. Vlaykov “,'* I. Baraffe,!? T. Constantino,' T. Goffrey,* T. Guillet ”,! A. Le Saux,'?> A. Morison!

and J. Pratt ¥4

! Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK

2Ecole Normale Supérieure, Lyon, CRAL (UMR CNRS 5574), Université de Lyon, F-69342, France

3Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK
4Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA

Accepted 2022 April 29. Received 2022 April 29; in original form 2022 February 22

ABSTRACT

Stellar convection is a non-local process responsible for the transport of heat and chemical species. It can lead to enhanced mixing
through convective overshooting and excitation of internal gravity waves (IGWs) at convective boundaries. The relationship
between these processes is still not well understood and requires global hydrodynamic simulations to capture the important
large-scale dynamics. The steep stratification in stellar interiors suggests that the radial extent of such simulations can affect the
convection dynamics, the IGWs in the stably stratified radiative zone, and the depth of the overshooting layer. We investigate these
effects using 2D global simulations performed with the fully compressible stellar hydrodynamics code MUSIC. We compare
eight different radial truncations of the same solar-like stellar model evolved over approximately 400 convective turnover
times. We find that the location of the inner boundary has an insignificant effect on the convection dynamics, the convective
overshooting, and the travelling IGWs. We relate this to the background conditions at the lower convective boundary which are
unaffected by the truncation, as long as a significantly deep radiative layer is included in the simulation domain. However, we find
that extending the outer boundary by only a few per cent of the stellar radius significantly increases the velocity and temperature
perturbations in the convection zone, the overshooting depth, the power and the spectral slope of the IGWs. The effect is related
to the background conditions at the outer boundary, which are determined in essence by the hydrostatic stratification and the

given luminosity.
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1 INTRODUCTION

Stellar convection is a non-local process (Rieutord & Zahn 1995;
Spruit 1997; Brandenburg 2016), which can affect stellar structure
and evolution (Gough 1977; Canuto & Dubovikov 1997; Spruit
1997). Geometrical parameters, such as the aspect ratio and vertical
extent can play an important dynamical role in simulations of
boundary-driven convection (Hurlburt, Toomre & Massaguer 1984;
Wagner & Shishkina 2013; Cossette & Rast 2016; Pratt et al. 2016).
This work aims to further qualify this role, by studying the effects
of varying the radial extent in global 2D hydrodynamic simulations
of a Sun-like stellar model on the dynamics of the convective and
radiative zones and the boundary between them.

Global stellar hydrodynamic simulations are computationally
challenging because of the extreme dynamical ranges of length, time,
and amplitude scales found in stellar interiors. Typically, the geo-
metrical domain is restricted radially at some point below the stellar
photosphere and/or above the stellar core. For instance in global
solar simulations, Rogers & Glatzmaier (2006) set the radial range
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at 0.001-0.93 Ry and Brun, Miesch & Toomre (2011) use the radial
range 0.07-0.97R. When focusing on the solar convection zone
typical radial ranges are 0.72-0.97 R (Augustson et al. 2015), or
when including convective boundary effects, 0.71-0.96 R (Hotta &
Kusano 2021) or 0.61-0.96 R (Guerrero et al. 2013). While some
authors consider the effect of boundary conditions (e.g. by including
an outer cooling layer Guerrero et al. 2013; Hotta, lijima & Kusano
2019), the isolated effect of the radial truncation itself has rarely been
investigated to our knowledge (see below). However, both the inner
and outer boundary layers can house important processes with both
global and long-term effects.

The temperature and density stratification in the outer convective
layers can be very steep, dropping by an order of magnitude over
a per cent of a stellar radius. Thus a small change in radius leads to
a large change in the background thermodynamic conditions. Due
to the inherent non-locality of boundary-driven convection (Gough
1977; Canuto & Dubovikov 1997; Spruit 1997), this is expected to
impact the global dynamics of the simulation domain. In fact, it has
been suggested that the outer solar layers are the dominant driver
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of the convective zone (Spruit 1997; Brandenburg 2016) through an
‘entropy rain’ of radiatively cooled dense perturbations.'

The lower convective boundary is also of particular interest. Due to
inertia, flows from the convective zones can penetrate some distance
across the boundary into the stably stratified radiative zone. This
process has been referred to as convective penetration, overshooting
or convective boundary mixing (Zahn 1991; Hurlburt et al. 1994;
Brummell, Clune & Toomre 2002) in different contexts. Here we
follow the terminology in Brummell et al. (2002) and use the term
overshooting to indicate convective flows travelling through sub-
adiabatic layers. Despite occurring in a small stellar region (by
volume and mass), convective overshooting can have a quantitative
impact on the stellar evolution. In general, the dynamics at the lower
convective boundary are central to a number of open questions of
stellar physics relating to mixing and transport of material, angular
momentum, and magnetic fields. For instance, the enhanced mixing
of material from the well-mixed cooler convective zone across the
lower convective boundary can help deplete the surface lithium
abundance in pre-main-sequence and main-sequence stars (Baraffe
et al. 2017; Constantino et al. 2021). Convective motions along
and across the boundary excite internal gravity waves (IGWs) in
the stably stratified radiative zone (RZ; Press 1981; Goldreich &
Kumar 1990; Dintrans et al. 2005; Pingon, Belkacem & Goupil
2016). IGWs in turn are a sensitive probe of stellar interior structure,
observable in massive stars (Bedding et al. 2010; Rogers et al. 2013;
Bowman et al. 2019), and are involved in the redistribution of angular
momentum (Rogers et al. 2013) and chemical mixing (Rogers &
McElwaine 2017). Finally, there is an active debate regarding the
amplitude of the large-scale convective velocities in solar interior, the
so-called solar convective conundrum. Different helioseismological
techniques point to a bigger (Hanasoge, Duvall & Sreenivasan 2012)
or smaller (Birch et al. 2018) discrepancy compared to the typical
values obtained in numerical simulations. Sometimes considered as
part of the convective conundrum is also the problem of reproducing
the solar-type of differential rotation in the convection zone, i.e. fast
equator and slow poles?.

The solutions to such questions require stellar hydrodynamic
simulations, which can capture non-local processes in both space
and scale. While three-dimensional (3D) simulations can be more
realistic, their large computational cost makes extensive param-
eter studies challenging, especially over long-time intervals. The
relaxation time-scales may be shortened by artificially boosting the
stellar luminosity and thermal diffusivity. However, running such
simulations self-consistently requires that the convection zone be
adiabatic, to avoid changes in the temperature stratification due to
the boosting (Baraffe etal. 2021). It has also been shown that boosting
can have a significant impact on the dynamics throughout the stellar
interior (Baraffe et al. 2021; Le Saux et al. 2022). Therefore, in this
study, we do not resort to boosted simulations and consider instead
2D models with realistic stellar luminosity covering a wide selection
of radial truncations.

Several studies have examined the influence of the radial extent
using different sets of approximations. Hurlburt et al. (1984) per-

"Note that this study does not attempt to address the viability of the entropy
rain framework, because the considered simulation domain does not extend
to regions where radiative cooling becomes significant. We focus instead on
isolating the effect of radial extension of the region with efficient convection.
2Recent advances suggest that magnetohydrodynamic simulations with suf-
ficiently high resolution can reproduce the solar type of differential rotation
(Hotta & Kusano 2021).
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formed 2D fully compressible simulations on a Cartesian grid with
polytropic stratification and ideal gas law equation of state (EoS) and
found that mean kinetic energy grows with the density contrast in
the domain (which is analogous to the depth of the convection zone).
Cossette & Rast (2016) performed 3D anelastic simulations on a
Cartesian grid with polytropic stratification. They reported that the
super-adiabaticity in the boundary layer affects both the amplitude of
the temperature fluctuations in the convective bulk and the horizontal
length-scale of the velocity field. Such a change in super-adiabaticity
at the outer boundary occurs naturally when varying the radial extent
of the simulation domain using realistic stellar stratification. The
reason is that in this case hydrostatic equilibrium dictates a sharp
drop in density close to the stellar surface. This results in a decrease
of the total heat capacity of the outer layers and thus the amount of
luminosity that the convective heat flux can transport.’> As a result
the temperature stratification must become steeper than adiabatic, so
that the radiative flux can transport the remaining luminosity. Pratt
et al. (2016) performed 2D fully compressible global simulations
with a realistic EoS for a low-mass star, opacity, and stratification.
They studied the effects on convection and overshooting due to grid
resolution and the radial truncation of the simulation domain in a
low-mass pre-main sequence star, a ‘young sun’. They found that the
radial extent of the simulation domain and the coupling at the upper
and lower convective boundaries has a pronounced effect on the
dynamics of the convective zone and the depth of the overshooting
layer. Finally, Hotta et al. (2019) considered both local Cartesian
and global spherical simulations in 3D using a reduced speed of
sound technique and a combination of linear and tabulated EoS.
They found little difference in the convective bulk when comparing
the effects on the convection zone from (i) including a photospheric
outer layer with resolved radiative transport and (ii) adding artificial
cooling with a Gaussian profile around the top of the convection
zone. They also found that local Cartesian and global spherical
simulation produce similar results, and indicate that including a
photospheric layer is unlikely to help solve the solar convective
conundrum.

Building on these results, we perform global 2D fully compressible
simulations of a Sun-like star (with solar mass, luminosity, and
metallicity) on the main sequence (at ~4.6 Gyr) using a realistic
EoS, opacity, and initial stratification. In order to isolate the impact
of the radial extent of the outer convective and inner radiative zones
we do not consider the effects of rotation, magnetic fields, and
cooling from atmospheric layers. Similarly to Pratt et al. (2016),
we study the impact on the convective velocity and the depth of
the overshooting layer in 2D simulations. In addition, we measure
the temperature fluctuations as well as the impact on the generated
IGWs and their potential feedback on the overshooting. We highlight
the role of the outer boundary layers and how they can qualitatively
affect the entire convection zone and the overshooting region. We
use a main-sequence Sun-like model, which has a lower luminosity,
a significantly shallower convection zone and much steeper density
stratification in the radiative layers than the Pratt et al. (2016) model.
To our knowledge this is the first study of its type applied to a Sun-like
stellar model on the main sequence.

The paper is organized as follows. In Section 2, we describe the
numerical methods and the simulations. We examine and discuss the
impact of the radial truncation on the convection zone dynamics,

3With realistic stellar EoS the specific heat at constant pressure is not sensitive
enough to the temperature to counterbalance the effect of the decreasing
density.
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(Section 3), the overshooting (Section 4) and the IGWs in the
radiative zone (Section 5). We conclude with a summary of the
results and a discussion of their implications.

2 METHODS

2.1 Numerics: MUSIC

We use the fully compressible time-implicit code MUSIC. The code
is described in detail in Viallet, Baraffe & Walder (2011), Viallet
et al. (2016), and Goffrey et al. (2017). Here, we provide a brief
description of the main features used in this study. MUSIC solves
the inviscid Euler equations in the presence of thermal diffusion and
external gravity,

9(p) = =V - (pv), (1)
9, (pv) = =V - (pvv) — Vp + pg, 2
0,(pe) = =V - (pev) — pV - v+ V - (xVT), 3)

with density p, velocity v, specific internal energy density e, gas
pressure p, gravitational acceleration g, and thermal conductivity x.
In the presented simulations, the thermal conductivity is dominated
by radiative transfer:

_ 166T3
T 3kp

(C))

with « the Rosseland mean opacity, and ¢ the Stefan—Boltzmann
constant. We use realistic opacities and equation of state for stellar
interiors. The opacities are interpolated from the OPAL tables
(Iglesias & Rogers 1996) for solar metallicity and the equation of
state is based on the OPAL EoS tables of Rogers & Nayfonov
(2002), which are appropriate for the description of solar-like interior
structures.

We do not include explicit viscosity in the equations, because
its value in stellar interiors is too low to dominate over numerical
viscosity for computationally tractable grid resolutions. Instead we
rely on the numerical dissipation of the model and interpret the results
in the context of the implicit large-eddy simulation (ILES) paradigm.

2.2 Description of the simulations

The initial background state is defined by the density and tempera-
ture stratifications shown in Fig. 1 with R, = 7.0775 x 10"°cm =
1.0169Re, L. =3.792 x 10¥ ergs™' = 0.98772L), and M, =
1.9891 x 10¥ g = 1 M, where ® represents the solar reference
values. The initial conditions are generated with the 1D Lyon stellar
evolution code Baraffe & El Eid (1991) and Baraffe et al. (1998),
using the same opacities and equation of state as implemented in
MUSIC. Note that the lower boundary of the convection zone in
the model is at rshw ~ 0.72 R, as defined by the Schwarzschild
criterion, which gives the thermal stratification required for a con-
vective instability. Explicitly, the Schwarzschild criterion defines the
convective boundary via the super-adiabaticity being non-negative,
i.e.V — V4 > 0. Here, V = dlog 7/dlog p is the temperature gradient
and V4 = dlog 7/dlog p|s is the adiabatic temperature gradient, i.e.
at constant entropy S. In practice in the convection zone the super-
adiabaticity is very close to zero, as indicated by the quasi-isentropic
profile shown in Fig. 1. Note however that the convection zone is
not precisely adiabatically stratified with super-adiabaticity reaching
0(1072) close to the surface. A close analogue of this initial model
has been used in Baraffe et al. (2021) and Le Saux et al. (2022) to
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Figure 1. Initial background radial profile in density, temperature, pressure,
and entropy. The first three are normalized to their values at 0.4R,. to better
compare the stratification in the upper layers. The solid vertical line shows
the boundary between the convective and radiative zone. The dotted vertical
lines on the left show the truncation radii for r;, , the dashed vertical lines
on the right show the truncation radii for rpax -

study the effects of luminosity boosting. This requires minimizing
the super-adiabaticity in the convection zone (so that stratification
is not affected by the luminosity boosting). A comparison between
the two models shows that this leads to a significant change in the
total stellar radius and the lower convective boundary and a slight
increase in luminosity.

Table 1 summarizes the key parameters of the eight performed
simulations. We consider two lower boundaries (rmi,/R, € [0.4,
0.6]) and four upper boundaries (rmax /Rs € [0.9, 0.94, 0.97, 0.99]).
The 1D profile is extruded symmetrically in the angular direction.
The simulation domain covers the full angular range of 8 € [0°,
180°] with angular resolution of A = 0.357°. We use a fixed
radial resolution for all simulations of Ar = 6 x 10~* R, ~ 420 km.
The radial cell size is chosen to ensure good representation of the
pressure scale height H,(r) = —0dr/dIn (p(r)) even at the outermost
simulated layers. Thus, at the outer boundaries the radial cell size
corresponds to Ar = 0.225H,(0.99R..) and Ar = 0.017H,(0.9R,).
The large range of Ar/H,(rpax) is due to the strong stratification
which leads the pressure scale height to decrease sharply in the top
~10 per cent of the stellar radius, as can be inferred from Fig. 1.
At the lower convective boundary, the radial cell size corresponds to
Ar = 0.0075H,(rschw)-

At the polar boundaries (¢ = 0° and 6 = 180°), the normal
derivative is set to zero for all fields. At the radial boundaries, the
boundary conditions are reflective for the velocity. The density and
internal energy are linearly extrapolated in the ghost cells used to
calculate the spatial gradients and fluxes. This condition is well-
suited to the stratified background. Due to the use of staggered grids,
the radiative flux at the radial boundary must also be given. Here,
it is set to ensure a constant uniform energy flux corresponding
to the respective luminosity of the 1D model at that location. In
practice, this makes for a slightly different luminosity at the inner
boundary between the ry;,, = 0.4R, and rp;, = 0.6R, simulations
(see Table 1) but has no measurable difference at the outer boundaries
where Loy = 0.98772 L for all simulations. The slight difference
between the inner and outer boundary drives the background state
to evolve, however, this happens on the thermal time-scale which is
much longer than the duration of the simulations, as discussed below.

The duration of each simulation is given in Table 1. As we will
see in Section 3, the typical velocity and hence global time-scale in
the convection zone depends on the radial truncation. So, in order to

MNRAS 514, 715-727 (2022)
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Table 1. Simulation parameters: inner and outer simulation boundary, number of cells in the radial direction N,, radial cell width in units of the pressure
scale height at the outer boundary, total simulation duration 7 in units of the convective turnover time, the steady-state convective turnover time Tcony, the
inner luminosity in units of the solar luminosity, the average temperature at the outer boundary 7T(rmax ), the average density at the outer boundary p(rmax ),

hydrodynamic boundary layer thickness §,, in units of the stellar radius.

Fmin/Ri Fmax /R N, A Hp(Fmax ) Tiot/Teonv Teonv/10% s Lo TOmad/10°K  p(rma)/107 gem™ 8, /R,
0.4 0.9 840 0.017 346 5.8 0.98778 6.10 23.7 0.010
0.4 0.94 912 0.030 374 5.4 0.98778 3.44 9.9 0.009
04 0.97 960 0.060 547 4.7 0.98778 1.60 2.9 0.007
0.4 0.99 996 0.220 615 4.3 0.98778 0.51 0.3 0.002
0.6 0.9 504 0.017 366 59 0.98775 6.10 23.7 0.010
0.6 0.94 576 0.030 730 54 0.98775 3.44 9.9 0.009
0.6 0.97 624 0.061 551 4.6 0.98775 1.60 2.9 0.007
0.6 0.99 660 0.220 585 4.2 0.98775 0.51 0.3 0.002
R Kelvin—Helmholtz time-scale of the initial stellar structure used for
108 |- . our simulations is given by 4, = GM?/(RL), and ranges between
] 5 x 10*and 2 x 10° yr. This is computationally unreachable without
J . changing the underlying thermal time-scale, e.g. by boosting the
E "’;ﬂﬁ ‘ J"\ ;w. J; ﬂ ,.f'v. | luminosity to shorten the KH time-scale. However, as demonstrated
= \\‘\ ‘s“ by Baraffe etal. (2021) and Le Saux et al. (2022) such boosting causes
% 107 E significant changes in the convection dynamics, the overshooting
£ f Simulation: r/R. . layer and the internal gravity waves in the radiative zone. Conse-
S — [0.4-0.9] [0.6-09] ] quently, we refrain from luminosity boosting in this study. While the
— [0.4-0.94] [0.6-0.94] - simulations are not completely thermally relaxed, the evolution is
106 — [0.4-0.97] [0.6-0.97] | very slow and smooth over the time period we investigate. Thus, the
[0.4-0.99] === [0.6-0.99] 7 time-scales of the processes we follow are significantly shorter than
0~ i a0 H0 a0 S0 @0 7o o the simulation duration.
1/ Teony

Figure 2. Time evolution of the average kinetic energy density for all
considered simulations. Solid and dashed lines correspond to simulations
with rmin = 0.4R, and rmax = 0.6R,, respectively.

perform meaningful comparisons, we measure the evolution of the
simulation in terms of the convective turnover time 7.y, , Which we
define as

Tmax dr
Teony = / s ()
FSchw (vrms)l

where vms(r, 1) = /(v2(r, 0, 1))y and (), and ()g denote the time
and volume-weighted angular average, respectively. This estimates
the typical time to cross the convection zone at the r.m.s. velocity. As
shown in Fig. 2, the evolution is characterized by an initial relaxation
phase (approx. 100 t.ony) during which the spherically symmetric
1D initial conditions relax and convection develops. During the
subsequent evolution the convection is quasi-steady e.g. in terms
of the mean kinetic energy density (Ex), o = (pv? /2), 0. The value
of T.ony and all following results are based on the statistics of this
quasi-steady period of evolution.

We collect statistics for a few hundred 7.,,. This is needed
to ensure that the statistics in the convection zone are converged,
since the overshooting layer is characterized by intermittent statistics
(Brummell et al. 2002; Pratt et al. 2017; Baraffe et al. 2021). Thus,
the long simulation time allows us to determine that the simulation
is in a statistically stationary steady state.

Achieving exact thermal relaxation is a common challenge for
global hydrodynamic simulations of convection based on realistic
stellar interior structures (Meakin & Arnett 2007; Horst et al. 2020;
Higl, Miiller & Weiss 2021). The global thermal relaxation or

MNRAS 514, 715-727 (2022)

3 RESULTS: CONVECTION ZONE

It has been proposed (Spruit 1997; Brandenburg 2016; Képyla et al.
2017; Anders, Lecoanet & Brown 2019) that stellar convection is
primarily driven by the ‘rain’ of radiatively cooled (low entropy)
perturbations which originate at the top convective layers and buoy-
antly fall towards the lower convective boundary. The perturbations
traverse the bulk of the convection zone quasi-adiabatically. It takes
the boundary layer dynamics near the bottom convective boundary to
break them up and extract their entropy deficit. The flows through the
convective zone of our simulation are qualitatively consistent with
this picture, specifically in regards to the adiabatic transport through
the convective bulk.

Fig. 3 shows the radial profiles of the standard deviation of
the radial velocity o (v,) = 1/{(v, — (v,)g)?),.6 and the temperature
fluctuations o (T) = \/{((T — (T)9)*)1.6. As expected, both profiles
are almost constant in the bulk of the convection zone. Because
the background is stratified quasi-adiabatically, the latter indicates
that the fluctuations also evolve quasi-adiabatically in the convective
bulk. This implies that the fluctuations generated near the boundaries
do not have time to thermalize with the background as they travel
through the bulk. The ILES nature of the simulations prevents an
exact quantification of the time-scale of this thermalization because
of the numerical diffusion contribution. However, an upper bound is
given by the thermal diffusion time-scale 7,. Here, we compute it
based on the pressure scale-height as 7, = Hﬁ /kraa, With thermal
diffusivity knq = x/(pc,) and specific heat at constant pressure
¢p. Using this definition the thermal diffusion time-scale is of the
order of 2 x 10'2-1 x 10'3s in the convection zone increasing with
increasing radius, i.e. 7 to 8 orders magnitude larger than 7o, (see
Table 1). Note that this is also consistent with previous results (Viallet
et al. 2015; Pratt et al. 2016).
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Figure 3. Radial profiles of the standard deviation o of the radial velocity
(top) and horizontal temperature fluctuations (bottom). The Schwarzschild
boundary is marked by the vertical grey line.

The data show that increasing ry.x increases both o (v,) and o (7)
(note the logarithmic axis in Fig. 3). At the same time shifting 7, by
20 per cent of the stellar radius (from 0.4R, to 0.6R,) has an almost
imperceptible effect on both diagnostics. The same trend is observed
for the average kinetic energy density (see Fig. 2) which is dominated
by the convection zone. This is consistent with the results of Hurlburt
et al. (1984) who studied a convection layer under similar boundary
conditions but with an idealized setup (polytropic stratification, ideal
gas EoS, Cartesian geometry, and maximum density contrast of 21).
They reported a growth of the mean kinetic energy with the number
of pressure scale heights in the simulation domain.

At first glance the dependence on ry,x and the insensitivity to
Tmin that we report may be surprising because all simulations are
driven with the same luminosity and share the same stratification and
boundary conditions. Indeed, the main energy balance in steady state
in the convection zone is between the kinetic energy and convective
heat fluxes, which must add up to transport the total stellar luminosity.
However, due to mass conservation and the density stratification,
the mean kinetic energy flux is negative. Consequently, the energy
balance is not sufficient to determine the amplitudes of the two fluxes.
Thus, the amplitudes of the velocity and temperature fluctuations are
allowed to vary with ry,, while maintaining the same luminosity.
The dependence can be explained by the properties of the back-
ground at the top convective boundary, which change with r,,,x . For
instance the background temperature drops from 7 (7. = 0.9R,) =
6.1 x 10° to T(rmax = 0.99R,) = 0.51 x 10°K, and the density
drops from p(rpa = 0.9R,) =237 x 103 gem™ to p(rma =
0.99R,) = 0.3 x 1073 gcm™3, see Table 1. At the same time, the

Radial truncation in 2D Sun-like model 719

properties of the background at the lower convective boundary are
largely the same across all simulations (e.g. 7' (rschw) = 2.15 % 10°K
and p(rschw) = 0.16 gcm‘3). This implies that for a fixed realistic
stellar background, the properties of the radial velocity and temper-
ature fluctuations are determined by the conditions in the boundary
layers, at least for the type of convection zone that the simulations
can represent. This leads us to consider the outer boundary layer in
more detail. Specifically, we consider the fluctuations at ry,, and
how they evolve across the boundary layers.

As we evolve the specific internal energy density as a primitive
variable, o (T)(rmax) is implicitly set by the stratification and the
imposed luminosity. The larger value of o (7)(rmax ) for increasing
Tmax Can be primarily attributed to the corresponding decrease
of the mean heat capacity (oc,) ;. The luminosity is carried
predominantly* by the convective heat flux in this region. Hence,
as the mean heat capacity at r,x decreases across simulations,
0 (T)(rmax ) must increase to maintain the same luminosity.

To describe the radial structure of the temperature and radial
velocity fluctuations at the outer boundary, we use the linear rescaling
& = o (r) — Opui , (6)

|U(rmax) - abulkl
where o stands in for o (7) and o (v,) and o'y is the volume-weighted
mean value of the respective o (r) in the convective bulk. Here, we
consider the convective ‘bulk’ to consist of the shell [r,x — 0.08R,,
Fmax — 0.02R,].

Fig. 4 shows 6(T') and 6 (v,) along with the associated boundary
layer thickness defined similarly to Featherstone & Hindman (2016)
as

5= / 5(rdr. &)
rmax —0.08 R«

Here, we set the lower integration boundary well above the lower
convective boundary, so that é is not influenced by the boundary
layer near rschy. As the figure shows, the hydrodynamic boundary
layer becomes significantly thinner with increasing rp,y , as indicated
by 8., , see also Table 1. In contrast, the rescaled thermal fluctuations
6 (T) have the same radial dependence across all simulations with a
thermal boundary layer thickness §7 = 0.002R,.. As a result, the ratio
8,, /87 decreases with increasing rmax reaching unity for the rmy,, =
0.99R, simulations. This can explain the ry,x dependence of o (v,)
and o (T) in the convective bulk, as follows.

By definition, the hydrodynamic boundary layer is characterized
by the growth of the radial velocity from zero to its bulk value, due to
e.g. buoyancy. Similarly, the thermal boundary layer is characterized
by the decay of temperature fluctuations through e.g. diffusion
and horizontal shear. Thus, as 8, /§r increases the hydrodynamic
boundary layer is dominated by smaller temperature (and hence
density) perturbations and thus weaker buoyancy. At the same
time, the thermal boundary layer is characterized by weaker radial
advection and hence a longer time-scale over which the temperature
fluctuations can decay. Hence, as §,, /87 increases the saturation
values of both the temperature and velocity fluctuations, i.e. their
values in the convective bulk, drop. The precise values of §, are
87 are a result of a detailed balance between radial advection
and buoyancy, on one hand, and diffusion, horizontal shear and

“Because the radial velocity and the temperature are computed on staggered
grids in MUSIC, the radial velocity and hence the convective heat flux
interpolated to the centre of the outermost rmax cell can be non-zero. At
this location, the radiative diffusivity is negligible and hence the radiative
flux is insignificant.
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Figure 4. Radial profiles of temperature fluctuations (top) and radial velocity
(bottom) in the upper boundary layer linearly rescaled as indicated by
equation (7). The vertical lines indicate the corresponding boundary layer
thickness, see equation (7).

dissipation on the other. As is typical for global stellar hydrodynamic
simulations, the ILES nature of the simulations precludes an in-depth
discussion of this balance. However, we note that the boundary
layers thicknesses are not set by the local stratification, e.g. they
do no scale with Hy(rpax ). Moreover, the measured value of &7 is
limited by the grid resolution in all simulations (corresponding to
approximately 3 grid cells), while §,, is only resolution-limited in the
largest rmax simulations. Thus, the ratio §,, /87 should increase with
increasing radial resolution. We establish this by repeating the 0.4R.
— 0.94R, and 0.6R, — 0.99R, simulations with ~50 per cent larger
N,, while keeping all other parameters the same. The simulations
start from the same initial conditions and evolve for 1.8 x 10%s. The
thermal boundary layer shrinks in physical units with the increased
resolution, so that §7 remains approximately the same number of
radial grid cells. However, the §,, remains approximately the same
thickness (in physical units) for the 0.4R.—0.94R, truncation and it
grows by approximately 20 per cent for the 0.6R,—0.99R,, truncation.
Importantly, the radial profiles of o(7) and o (v,) in the convective
bulk are not affected by the small increase in resolution.

In summary, the thermal perturbations originating in the upper
boundary layer are effectively frozen while they travel through the
convective bulk, because of the long diffusion time scale. As a
result the speed and temperature contrast of the radial flows near the
lower boundary layer is effectively set by the conditions at the upper
boundary layers and not in the convective bulk. The key parameters
are the density stratification and the ratio between the hydrodynamic
and thermal boundary layer thicknesses. For this set of simulations,

MNRAS 514, 715-727 (2022)

the density stratification is steep enough to lead to decreasing heat
capacity with height, which requires larger temperature fluctuations
to maintain the same luminosity. In addition, the ratio of 8, /dr
decreases towards unity with increasing ry.x, meaning that an
increasingly bigger part of the radial velocity is generated by not
fully decayed thermal fluctuations with larger buoyancy. This leads to
0 (T)pux Which scales with o (T)(rmax ) and o (v,)pu Which increases
correspondingly. This qualitative picture illustrates how the boundary
layer dynamics can determine the properties of the convective bulk
and illustrates the non-locality of boundary-driven convection. It is
also consistent with the results of Cossette & Rast (2016), who find
that for boundary-driven convection the initial density and entropy
contrast of the adiabatically descending perturbations determine the
dynamical properties of the convective bulk.

4 OVERSHOOTING LAYER

4.1 Characteristic overshooting depth

As mentioned, the background properties near the lower convective
boundary are the same among all simulations. However, as we
show in this section, the non-locality of convection means that the
rmax -dependence of the outer convective layers makes a qualitative
difference to the lower convective boundary layer dynamics and
convective overshooting in particular.

We recall that we use the Schwarzschild criterion to locate the
lower convection boundary. The overshooting layer is then the region
below this boundary where convection flows are able to penetrate.
Specifically, we characterize the overshooting in the same way as
Baraffe et al. (2021). Namely, we consider the radial kinetic energy
F*¢ and convective heat flux F", defined by

FO™(r,0.1) = W (pv,), ®)

1
Frr, 0.0 = vEy = v, 500", ©9)

where i = e + pl/p is the specific enthalpy and the primes denote
fluctuations from the angular average, e.g. h' = h — (h) 4. Here, the
convective heat flux contains only the enthalpy fluctuations. From
the hydrostatic energy balance, i.e. hydrostatic equilibrium, it can
be seen that the mean enthalpy balances the gravitational potential
(see Appendix A). We consider F*°" because our simulations solve
the internal energy equations where the enthalpy appears naturally.
A quantity that is also often used in the literature is (Far) .9 = (p
cpATv,) ;¢ (Hurlburt et al. 1984; Zahn 1991; Baraffe et al. 2021),
where AT is the temperature fluctuations with respect to a reference
model. It is closely related to (F°™), 5 (as can be seen analytically
e.g. for an ideal gas), and in the considered simulations has the same
quantitative behaviour.

To identify an instantaneous local overshooting event, we track
the locations of the first zero-crossing of the two fluxes F°™ and
F,ke below the Schwarzschild boundary, /*(6, f) and [€™(6, 1),
respectively. Specifically, we consider the instantaneous position of
the boundary rsepy (f) = min{r: (V — V) ¢ > 0}. Retaining the
time-dependence of rschy () here allows us to extract the effects of
the convection motion in the stably stratified region and exclude the
motion of the convective boundary itself. Brummell et al. (2002)
distinguishes the two as ‘convective overshooting’ and ‘convective
penetration’, respectively. Note, however that the time variation of
the boundary rschy(?) is very slow (significantly slower than the
Teonv and much slower than the time-scale of individual overshooting
flows) and as such, it would be perceived as stationary by individual
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Figure 5. Time distribution of the instantaneous overshooting depth in units of the pressure scale height at the convective boundary (left axis) and radial cell
width (right axis): mean-in-0 lyyx (top row) and max-in-6 I.x (bottom row). The left-hand side panels use the convective heat flux and the right column — the
kinetic energy flux, i.e. the radial velocity. The simulations are ordered by decreasing rmax and rmin -

penetrating flows. We discuss the modification of the background
and possible convective penetration in more detail in Section 4.2.

The distribution of both /¢ and I can be associated with
significant frequency of extreme events both in time and space (Pratt
et al. 2017). We confirm this in the presented data sets, so we use
two summary statistics to describe the overshooting

L (1) = (1(0, 1))e, 10)
Imax (1) = maxo{l(0, 1)}. Y

Here, [y, describes the angular average and is interpreted as the
typical depth of overshooting, while [, is the angular maximum,
i.e. the instantaneous maximum depth of overshooting and /(0, 1) can
refer to either [°°™ (8, £) or [*(6, t). Fig. 5 shows the distribution of
these quantities across time in the different simulations in units of
the pressure scale height at the Schwarzschild boundary H,(rschw)-
We exclude a 15° angle around the polar axes, to reduce the impact
of the polar boundaries — the reflective boundary conditions drive
strong radial flows which result in locally deeper overshooting. The
figure shows that there is a clear dependence of the overshooting
depth on ry.x — larger ry,y is associated with a thicker overshooting
layer. There is also such a dependence for both /,yx and /,,x , based
on either of the fluxes, independent of whether we consider the time
average or either of the tails of the temporal distribution. At the same
time there does not seem to be a clear dependence on ry,;, shared by
all overshooting depth diagnostics, for the two ry;, we examine.

These observations correlate well with the dependence of the
convective intensity (as measured by e.g. o(v,) and o(7), i.e. the
radial velocity and temperature fluctuations) on rya.x and 7y,
see Fig. 3. This suggests that the larger overshooting depth is
caused by more vigorous convection, i.e. faster and colder down-
flows can reach deeper into the stably stratified region and such
flows are generated in simulations with larger ry,,. For instance,
in the ry, = 0.4R, simulations o (v,)(rsechw) takes the values
[5x10% 1 x 10%,3 x 103, 8 x 103 ] cm s~ ! for rye /R, =[0.9,0.94,
0.97, 0.99], respectively. The lack of dependence on ry,;, indicates
that either the feedback from the radiative zone is a negligible
influence on the overshooting, or that the feedback itself does not
depend very strongly on the spectral properties of internal gravity
waves, at least up to the variations of the IGWs across the presented
simulations. This will be discussed in more detail in Section 5, where
we show that the spectrum of the travelling waves does not depend
qualitatively on 7y -

It follows trivially from the definitions equations (8) and (9) that
the loci of I°™(0, f) and I**(0, ) can be identified with the first
zero-crossings of the vertical momentum and enthalpy fluctuations.
In other words, they track the bottom end of the downflows as
defined by their velocity and thermal properties. Furthermore, by
construction /X¢ > [ because /X depends only on the zeroes of
the radial velocity, while [°" is also triggered by the zeroes of the
enthalpy fluctuations. Physically, this is because the radial buoyant
acceleration vanishes at [°™ (6, ), while the radial velocity vanishes
at [*°(0, £). The inequality is not saturated in the presented simulations
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despite the long run times. Even instantaneously, the difference
between the bulk values I5, (¢) — <% (¢) remains steady at about 8 to
10 per cent of their mean value (I}, (£) + [E5% (1)) /2. The difference
between the extreme values /X°_(#) — [ (¢) is approximately 20 to
30 per cent of the corresponding mean.

This indicates that typically the temperature fluctuations dissipate
before the downflows stop descending (whereby we consider the
statistical variation to be negligible). While buoyancy is sufficient to
explain this, it is not the only the process acting on the overshooting
flows. More generally for the inequality /X > /" to be strict, the
mechanisms removing the heat deficit of downflows must operate
on shorter time-scales than those dissipating the excess radial
momentum. Broadly speaking, the heat deficit can be removed by
adiabatic compression and heat exchange with the background and
the IGWs, e.g. enthalpy mixing/entrainment and radiative flux, wave
excitation, and breaking. The radial momentum excess is removed by
buoyancy, turbulent mixing, viscous dissipation, and IGW excitation.

4.2 Modification of the thermal background

As the downflows travel below their local, instantaneous rsepw (6, 1)
depth, and the background stratification becomes sub-adiabatic, they
become hotter than the background. Some of this excess heat may
be deposited in the overshooting layer through irreversible processes
(e.g. IGW excitation/breaking, mixing, etc.). Indeed, as Fig. 6 shows,
there is a good correlation between the overshooting depth and a layer
which is slightly hotter than the background at the beginning of the
quasi-steady state.

Indications for a similar process (a layer with a negative enthalpy
flux, an excess radiative flux, or slightly larger mean temperature)
has been previously reported by e.g. Rogers & Glatzmaier (2006),
Brun et al. (2011, 2017), Korre, Garaud & Brummell (2019), Baraffe
etal. (2021), and Higl et al. (2021) in a variety of parameter regimes
(see section 3.2 Baraffe et al. 2021 for more details).

Baraffe et al. (2021) note that there is a good correlation between
the location of the radial profile of the heating layer and the trace
of the square rate-of-strain TrS? = Tr(Vv + VvT)?/4, where Vv
denotes the velocity gradient. We can confirm this correlation as well,
see Fig. 6. Note that TrS? encodes two types of material deformation
— dilatation and shear. However, because of the low Mach number
<1073, TrS? is dominated by the incompressible shear component
(not shown). This suggests that the primary component of the
heat deposition is shear-induced mixing of previously adiabatically
compressed hot material.

This local heating causes a dip in the sub-adiabaticity V — V4 just
below the convective boundary and a corresponding increase below
the dip, around the heat bump. If left unstopped this process may lead
to the so-called convective penetration in the language of Brummell
et al. (2002), i.e. the descent of the convective boundary and growth
of the convection zone.

Energetically, in a sub-adiabatically stratified medium adiabatic
compression of downflows and adiabatic expansion of upflows both
lead to downward/negative enthalpy flux (Hurlburt et al. 1994; Muth-
sametal. 1995; Brun et al. 2011; Pratt et al. 2017; Kipyléd et al. 2019;
Korre et al. 2019). So, as discussed in Baraffe et al. (2021), the reason
for the local change in the background stratification must be that the
heat deposited by the enthalpy flux cannot be efficiently evacuated.
Considering the internal energy equation, equation (3), the excess
heat deposited by the enthalpy flux can only be evacuated through
thermal diffusion, i.e. radiative flux (considering that the local Mach
number is <1073 the pV - v term does not play a significant role).
Indeed, as noted by Baraffe et al. (2021), the local heating must
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Figure 6. (top) Relative difference AT in the mean temperature background
in the quasi-steady state (7)) g, ; from the background at the beginning of the
quasi-steady state (Tp) g. The locations of the overshooting depth measured
by the convective heat flux are marked for reference. (bottom) Radial profile
of the squared rate-of-strain averaged over 6 and time. The location of the
peak AT is marked with e as a visual guide. The vertical grey line in both
panels corresponds to the Schwarzschild boundary.

lead to increased thermal diffusivity and hence increased radiative
flux. The feedback should eventually grow sufficiently to balance the
negative enthalpy flux. Indeed, we note a slow growth in the heating
rate throughout the simulated time interval.> However, such a regime
cannot be reached with the presented simulations.

5 RADIATIVE ZONE

One of the effects of the convection zone and the overshooting layer is
to excite internal gravity waves (IGW) in the radiative zone. Internal
gravity waves play a crucial role in the internal structure and evolution
of stars, as they redistribute angular momentum, energy, and chemical
species, deposited in the overshooting layer by convective flows. It
is interesting then to consider how the changes in the overshooting
layer and the convection zone due to the different radial truncations
are reflected in the IGWs, as well as the strength of any potential
feedback on to the convective overshooting.

We focus the analysis on the power spectra of radial velocity. The
spectral coefficients v, (¢, @) are obtained using the conventions in

5The available data is consistent with a constant convective heat flux and a
linearly growing radiative flux in the overshooting layer. Extrapolating this
in a zero-order approximation, the two fluxes would match and the excess
heating would saturate on a time-scale of 0(10%s).
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Figure 7. Power spectra of the radial velocity deep in the radiative zone — H,(rschw) below the Schwarzschild boundary (left), at the bottom end of the mixing
zone at Imax (middle), and in the bulk of the convection zone 0.841R, (right). Each row corresponds to spectra from the same simulation. All spectra are
produced from data spanning the last 2.25 x 107 s of each simulation. The lower five percentile of the data are rendered in black to improve the colour contrast
and aid visual comparison. The frequency axis extends up to 3/4 of the Nyquist frequency Ny to avoid aliasing artefacts. Ny = (281)~' = 100 uHz based on
separation between snapshots of 87 ~ 5 x 103 s. Note that the power deficit at the low-w high-£ region of the r = 0.64R, panels is associated with resolution

constraints related to the finite duration of the analysed data and the cell size.

Le Saux et al. (2022). In short, we perform a Blackman-windowed
Fourier transform with respect to time and a 2D spherical harmonic
transform (m = 0) with respect to the angular direction 6. The
resulting 2D power spectrum is then given by

|66, @) forw=0

- 2 (12)
2[5, w)|" for )0,

Plv- 1, w) = {

where ¢ is the angular degree and w is the frequency.

Fig. 7 shows the radial velocity power spectra for a representative
selection of simulations at three locations. The spectra are computed
from a subset of the data spanning 2.25 x 107 s in the quasi-steady
state. The deepest location is chosen in the bulk of the radiative zone
at r = 0.64R, = rschw — Hp(rschw) far away from any overshooting
activity and we expect it to be dominated by the IGW signal.
The intermediate location is at the convective boundary at rschy
and as such the spectra there are expected to exhibit signs of the
overshooting dynamics superposed with the IGW signal. The highest

location is in the bulk of the convective zone at r = 0.84R, and is
shown as a reference to illustrate the length- and time-scales of the
convective flow which is responsible for exciting the IGW signal.

The classical pattern of IGWs (Alvan, Brun & Mathis 2014; Horst
et al. 2020) is clearly visible in the radiative zone for all simulations,
most prominently in the low-£ range. This pattern can be inferred
from the dispersion relation w?/N? = k7 /k* (see e.g. Press 1981),
where k is the wave vector and k,% = (¢+ 1)r? its horizontal
component. After re-arranging, the dispersion relation can be seen
as

20+ 1\? 1 w?
-] (1= ) =1 13
(( 2rk, ) + 4r2k3>< Nz) ’ (13)

which describes a family of hyperbolae in (2¢ + 1)? and w? for a
fixed r (parametrized by k).

To confirm quantitatively that the computed spectra in the radiative
zone contain IGWs, we compute the frequencies of the g modes
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Figure 8. Frequency distribution of the radial velocity power spectrum 10,121 =2, w) deep in the radiative zone (left) and at the convective boundary rschw
(right). Top row shows a comparison of simulations with i, = 0.4R, and the bottom row — with rmax = 0.97R,. The dashed and dotted vertical lines show
the frequencies of the g modes obtained with GYRE for the rmin = 0.4R, and rmin = 0.6R,, respectively. The solid coloured vertical lines show the convective

frequency weony = 1/Tcony for the respective simulation.

(i.e. the standing waves) associated with the radiative zones of
the simulation for a few distinct values of ¢. The computation is
performed using the stellar oscillations code GYRE® (Townsend &
Teitler 2013; Townsend, Goldstein & Zweibel 2018). Since the
modes depend only on the stratification and the geometry of the
resonant cavity (i.e. the radiative zone), we obtain two distinct sets
of modes for the rp;, = 0.4R, and rp;, = 0.6R, sets of simulations.
As Fig. 8 shows for the £ = 2 modes, the frequencies obtained
with GYRE match almost perfectly the peaks in the spectra for both
values of rp, in the radiative zone and at the convective boundary
locations.

5.1 Dependence on ry,x and ry,

The value of ry,;,, changes the depth of the resonant cavity where
IGWs can propagate — for i, = 0.6R, it is very shallow, spanning
only about 0.12R, ~ 1.4H,(rschy), While for rpi, = 0.4R, it spans
approximately 0.32R, ~ 3.9H,(rschy). As a result the frequency
distribution of the g modes changes significantly. For instance, for the
rmin = 0.6R, simulations there are fewer g modes at high frequencies
than in the r;, = 0.4R, simulations, as shown in Fig. 8. Apart from
this, however, the power spectrum is quite similar between the two
sets of simulations, particularly for @ 2 5 uHz. This is consistent
with the earlier observations that the value of r,;, does not seem
to have any significant effect on the depth of the overshooting

©Version 6.0, see https://gyre.readthedocs.io.
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layer and the convection zone, for the presented diagnostics at
least (see Section 4.1). This suggest that the detailed frequency
distribution of the g modes has no direct impact on the overshooting
dynamics.

On the other hand, the value of ry,x has no impact on the
frequency distribution of the g modes. However, the amplitude
of both travelling and standing waves in the radiative bulk grows
significantly with increasing ry,y, as can be seen in both Figs 7 and
8. The qualitative relation can be intuitively expected because of
the more vigorous convection in the higher r,,,x simulations which
drives faster overshooting flows and a deeper overshooting layer.
Fig. 7 shows that the peak of the power spectrum in the radiative
zone grows by approximately 3 orders of magnitude from the 7, =
0.9R, to the rp.x = 0.99R, simulation, from 2.4 to 4.4 x 10> cm?s~2,
respectively. At the same time, in the bulk of the convection zone the
peak of the power spectrum grows by less than an order of magnitude
(from 5.8 x 10°t0 3.0 x 107 cm? s72) and so does o (v,) (see Fig. 3).
We note that o(v,) when restricted only to the downflows in the
convective bulk also does not have as strong r,,x dependence as the
IGWs amplitude (not shown).

With increasing rax the energy of the IGWs is shifted consistently
to higher frequencies (cf. Fig. 7). This is consistent with theoretical
expectations. Lecoanet & Quataert (2013) link the frequency of the
IGWs excited by Reynolds stress at the convective boundary with
the characteristic convective frequency @cony = 1/Tcony, Which grows
with rp. (see Table 1). Similarly, Pingon et al. (2016) link the
frequency of the IGWs excited by penetrating plumes with the plume
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lifetime in the penetration zone. While it is difficult to obtain a
direct estimate of the lifetime of penetration events with Eulerian
statistics, Pingon et al. (2016) suggest the convective time-scale
Teony @S a good first approximation. Under this approximation, the
plume lifetime would decrease with 7,y .7 Thus, both excitation
mechanisms indicate that with increasing rp,x more energy should
be deposited in higher frequency IGWs.

In terms of length-scales, at a given frequency, with increasing
Tmax » the energy is shifted to larger length-scales (smaller £). This is
also consistent with theory, since increasing r,,x leads to convective
eddies with larger length-scale (smaller £cqqy). In that case, they are
expected to excite waves with £ < £.qq, (Lecoanet & Quataert 2013).

Overall, the dependence of the IGW power spectrum in the
radiative zone on ry, are qualitatively analogous to the effect of
luminosity boosting discussed by Le Saux et al. (2022), who also
note an increase in power and shift to higher frequencies and larger
length-scales with increasing luminosity.

6 SUMMARY AND DISCUSSION

In this study, we investigate the effects of the radial extent on the
dynamics of hydrodynamic 2D simulations of a solar-like stellar
model. We consider the dynamics in the convective, overshooting,
and radiative zones.

The location of the outer boundary plays a crucial role in determin-
ing the convective intensity as measured by the radial velocity and
temperature fluctuations, i.e. o (v,) and o (7). AS rmax 1S increased,
the steep hydrostatic density stratification leads to a decrease of
the heat capacity of the outer layers and a corresponding increase
in the temperature fluctuations. The latter is required, so that the
convective heat flux can transport the given fixed luminosity. As we
do not consider rp,, high enough to include layers with inefficient
convection, the radiative flux is negligible throughout the simulated
convection zone. The larger temperature fluctuations in the outer
boundary layers drive faster radial flows through buoyancy. In turn
the faster radial flows advect larger temperature fluctuations out of
the diffusive thermal boundary layer. These fluctuations then travel
quasi-adiabatically in the convective bulk before dissipating at the
lower convective boundary layer and driving convective boundary
mixing.

The more intense convection leads to a deeper overshooting layer
below the lower convective boundary. We measure this by the radial
kinetic and convective heat fluxes. To characterize both the typical
and extreme overshooting events we consider both the mean and the
extreme overshooting depth, following Baraffe et al. (2021). Both
diagnostics grow rapidly with increasing 7y -

Over several hundred 7., the overshooting leads to a small but
measurable excess heating of the background in the overshooting
layer. The heating is well-correlated with strong mean background
shear, indicating that the process responsible for it is likely mechan-
ical mixing of adiabatically compressed hot convective material.
For a thermally relaxed state to be reached the excess heating
must be balanced by a feedback mechanism, e.g. naturally with
the increased background temperature comes an increase of the

7 Alternatively, a simple ballistic approximation can be constructed from
the average downward velocity at the Schwarzschild boundary, (v (rschw))
o, and either of the penetration depths /5, and /X . For the presented
simulations, both llgﬁlk/(w(rsmw))e,t and l];fax (v)(rschw))e,r decrease as
rmax increases, supporting the notion that the plume lifetime decreases as

Fmax INCreases.
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radiative flux. Despite the long simulation times (between ~340
and 730 Teny) a thermally relaxed state could not be reached in the
simulations, indicating that the relaxation time of the excess heating
is significantly longer (at least O(103 T¢on)).

The location of the inner boundary of the simulations 7y, is
expected a priori to change the properties of the internal gravity
waves in the radiative zone. In particular, it affects the frequency
of the standing waves (the g modes) and some wave reflection
off the bottom boundary is observed for shallower radiative zones.
However, this appears to have no strong or consistent impact on
the power spectrum of the travelling waves, the convection zone
and overshooting layers. This insensitivity is expected to hold while
the feedback of the IGWs on the overshooting layer is weak, e.g.
the radiative zone is deep enough to allow for significant wave
damping and no direct interaction between the overshooting and
bottom boundary layers.

The position of the outer convective boundary impacts signifi-
cantly the internal gravity waves in the radiative zone. Even though
the frequency dependence of the g modes remains unaffected, the
energy of all IGWs is increased because of larger overshooting ve-
locities (which also imply a larger overshooting depth). In particular,
larger frequency waves are more strongly excited in agreement with
theoretical expectations (Lecoanet & Quataert 2013).

6.1 Luminosity boosting analogy

It is interesting to note that the dependence of the overshooting
layer on rp,y is qualitatively similar to that on luminosity boosting
discussed by Barafte et al. (2021). Luminosity boosting is an often-
used technique in stellar hydrodynamics, which shortens the thermal
time-scale of the model and brings it closer to the convective one.
This leads to a substantial reduction in computational costs and
makes reaching thermal equilibrium feasible given a large enough
boost factor. However, it has to be done carefully in order to
maintain the original background stratification of the un-boosted
model, e.g. the thermal diffusivity has to be increased proportionally
and stratification in the convection zone has to be adjusted to as
close to adiabatic as numerically feasible. Even then, as discussed in
Baraffe et al. (2021), it comes at the cost of affecting the overshooting
dynamics by increasing the overshooting depth, the local heating in
the overshooting layer, and the shape of the IGW spectrum (Lecoanet
et al. 2019).

This effect is qualitatively similar to the dependence we find
on rmax, especially considering that the stellar models used by
Baraffe et al. (2021) and in this study have significantly different
background stratification and luminosity. Recalling that all the
presented simulations have the same luminosity, this highlights that
the underlying dependency is not on the energy flux per se, but on the
convective intensity, in the form of e.g. the temperature contrast and
the radial velocity. Ultimately, because of the adiabatic evolution in
the convective bulk, the dependence is on the stratification at the outer
boundary, which determines the fluctuations required to transport the
luminosity there.

It is difficult to make a direct quantitive comparison between the
effects of increasing rn,, in the simulations presented here and the
effects of boosting the luminosity discussed by Baraffe et al. (2021),
because the background stellar models are significantly different.
(For instance the boosted simulations have convection zone with
much smaller super-adiabaticity ~10~8, deeper convective envelope
I'schw ~ 0.68R,, smaller stellar radius R, ~ 0.8 Ry and larger stellar
luminosity). However, as an indication we note that the difference in
the overshooting depths between the 7,ax = 0.9R, and 7, = 0.99R,,
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simulations are comparable to the effect of boosting the luminosity
by a factor of 100 in the boosted simulations. Note that Barafte et al.
(2021) caution against using significantly larger boost factors in any
case, as they may lead to evolution of the background model and
spurious changes of e.g. the IGW spectrum. Similarly, extrapolating
the presented results to values of rp, significantly above the 0.99R,,
level is challenging, because this would include surface layers where
the opacity quickly decreases and additional physics would need to
be considered (e.g. the increasing impact of radiative cooling requires
a detailed treatment of radiative transport).

6.2 Outlook

Because of the steep stratification it is computationally challenging
to perform reasonably well-resolved global stellar hydrodynamic
simulations with r,x = 1R, with realistic radiation physics and self-
consistent surface boundary layers. Hence quantitative predictions
of convective velocities, IGW spectra and overshooting depths
should always be considered with great care. This is a big part of
the challenge of solving the so-called solar convective conundrum
(Hanasoge et al. 2012; Schumacher & Sreenivasan 2020; Hotta &
Kusano 2021; Vasil, Julien & Featherstone 2021) and is the reason
to refrain from a more quantitative analysis of the data. As rp,y is
increased towards unity the time and length-scales of the boundary
layers decrease while the cooling efficiency increase. Eventually, an
asymptotic limit must be reached for the amplitude of the radial
velocity and temperature fluctuations in the convection zone (and
consequently for the overshooting depth and IGW power spectrum).
However, it would be computationally unfeasible to seek such a limit
with the uniform radial grids used in this study. Encouragingly, Hotta
et al. (2019) find similar profiles of the root-mean-square velocities
in local convection zone simulations truncated at rp,x = 0.992R, and
rmax = 1R, when the former is augmented with an artificial surface
cooling layer. They attribute the similarity of the results to efficient
mixing in the near-surface region, which reduces the non-locality of
the convection. This indicates that it may be possible to model the
influence of the truncated, and difficult to resolve, surface boundary
layers. Further studies are needed to examine the influence that such
modelling may have on the overshooting depth and IGWs. It also
remains to be established how the presented non-local dependencies
translate to 3D convection and how they interact with other important
processes like rotation and magnetism, for which a follow-up study
is currently under way. However, the qualitative trends this study
has highlighted (the significant dependence on ry,,x and the weaker
dependence on ry,, ) should be robust results that can be linked to
physical mechanisms which operate in the stellar hydrodynamics
context.
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APPENDIX: CONVECTIVE HEAT FLUX
DERIVATION

In this work, we use equation (8) as a definition of the convective
heat flux. This is derived from the angular average of the total energy
density budget

1
0:(Er)o = —0, <§pvrv2 —XVT+pvrh+pvr<D> (A1)
6
= —3,(F\* + F} + F™ + F¥&) | (A2)

where we introduce E; as the sum of the kinetic, gravitational, and
internal energy densities, F* = —x VT as the radiative flux and
F 'r’kgr = (pv,)o(P + h)y as the flux due to the mean stratification.
We recall that F™ = (pv)’h’ and ~ designates deviations away
from the instantaneous angular average. In principle, given that in

Radial truncation in 2D Sun-like model 727

the convection zone (h) > /', the contribution of the mean specific
enthalpy to the energy transport may be non-negligible in the not
perfectly relaxed case even with a small mean radial momentum.
However, this is largely compensated by the hydrostatic stratification
through the mean potential energy (®). Using the fundamental
thermodynamic relation dh = Tds + p~'dp (with s the specific
entropy) we can express i = (h + ®) 4, the mean enthalpy excess
away from hydrostatic equilibrium (HSE), as

3 (h")g = (TVs+p~'Vp— p~'Vpuse)s (A3)

= (TVs+p~'Vp")e, (A4)

where we define Vpusg = —pV ® as the pressure gradient in HSE
and p’ = p — pyse as the pressure perturbations away from it. This
illustrates that mean enthalpy flux contains pressure perturbations
with respect to HSE and entropy perturbations. Given a dynamical
time scale of 10°~10% s in the convection zone (depending on radius),
any deviations of the mean stratification from HSE are quickly
corrected, so the p’ term can be neglected over the time-scales
considered in this study. The mean entropy perturbations are at the
order of 107> and are therefore similarly negligible. This justifies
neglecting the background flux F?*¢" and considering F™ as the
convective heat flux.

This paper has been typeset from a TEX/I&TgX file prepared by the author.
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