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Theory and Applications of Probabilistic
Kolmogorov Complexity

Zhenjian Lu∗ Igor C. Oliveira†

Abstract
Diverse applications of Kolmogorov complexity to learning [CIKK16],

circuit complexity [OPS19], cryptography [LP20], average-case complex-
ity [Hir21], and proof search [Kra22] have been discovered in recent years.
Since the running time of algorithms is a key resource in these fields, it is
crucial in the corresponding arguments to consider time-bounded variants of
Kolmogorov complexity. While fruitful interactions between time-bounded
Kolmogorov complexity and different areas of theoretical computer science
have been known for quite a while (e.g., [Sip83, Ko91, ABK+06, AF09], to
name a few), the aforementioned results have led to a renewed interest in
this topic.

The theory of Kolmogorov complexity is well understood, but many use-
ful results and properties of Kolmogorov complexity are not known to hold
in time-bounded settings. Unfortunately, this creates technical difficulties
or leads to conditional results when applying methods from time-bounded
Kolmogorov complexity to algorithms and complexity theory. Perhaps even
more importantly, in many cases it is desirable or even necessary to con-
sider randomised algorithms. Since random strings have high complexity,
the classical theory of time-bounded Kolmogorov complexity might be in-
appropriate or simply cannot be applied in such contexts.

To mitigate these issues and develop a more robust theory of time-bounded
Kolmogorov complexity that survives in the important setting of randomised
computations, some recent papers [Oli19, LO21, LOS21, GKLO22, LOZ22]
have explored probabilistic notions of time-bounded Kolmogorov complex-
ity, such as rKt complexity [Oli19], rKt complexity [LOS21], and pKt com-
plexity [GKLO22]. These measures consider different ways of encoding
an object via a probabilistic representation. In this survey, we provide an
introduction to probabilistic time-bounded Kolmogorov complexity and its
applications, highlighting many open problems and research directions.
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1 Introduction
Consider an arbitrary binary string x ∈ {0, 1}∗, e.g.,

x = 1010101010101010101011110010110000101011 . (1)

The Kolmogorov complexity of x, K(x), is the length |M| of the shortest program
M that prints x when computing over the empty input string.1 Intuitively, K(x) can
be seen as a measure of the “randomness” of x, in the sense that simple strings
exhibiting an apparent pattern have bounded Kolmogorov complexity (e.g., the
leftmost 20 bits of the string x from Equation (1)), while a typical random n-bit
string has K(x) close to n, i.e., it cannot be compressed. The investigation of
Kolmogorov complexity has uncovered surprising connections to distant areas of
mathematics and computer science, ranging from computability, logic, and algo-
rithm design to number theory, combinatorics, statistics and a number of other
fields. We refer to [SUV17, LV19] for a comprehensive treatment of Kolmogorov
complexity and its applications.

Despite the appealing nature and wide applicability of Kolmogorov complex-
ity, its results and techniques tend to be inappropriate in settings where the running
time of algorithms is of concern, e.g., in complexity theory, computational learn-
ing theory, and cryptography. This is because K(x) does not take into account the
time that the machine M takes to output x. To address this issue, several authors
have contributed to the development of time-bounded Kolmogorov complexity. In
order to proceed with our discussion, we describe two prominent time-bounded
Kolmogorov complexity notions. (A formal treatment appears in Section 2.)

In an influential paper, Levin [Lev84] introduced Kt(x), a variant of Kol-
mogorov complexity that simultaneously takes into account the running time t
and description length |M| of all programs M that output x. More precisely, given
a string x ∈ {0, 1}∗, we let

Kt(x) = min
M, t≥1

{
|M| + dlog te | M outputs x in t steps

}
. (2)

To provide intuition and give a concrete example of the usefulness of this time-
bounded variant of Kolmogorov complexity to algorithms and complexity theory,
we consider the following computational problem at the intersection of mathemat-
ics and computer science:

Explicit Construction of Primes: Given an integer n ≥ 2, deterministically com-
pute an n-bit prime number.2

1We formally define (time-bounded) Kolmogorov complexity in Section 2.
2For instance, the string x in Equation (1) is a 40-bit prime (733008047147 in decimal repre-

sentation).



The fastest known algorithm that solves this problem runs in time Õ(2n/2)
[LO87], and it is a longstanding open problem to improve this bound (see [TCH12]).
Let A(n) denote this procedure, and consider the sequence {pn}n≥2 of primes out-
put by A(n). Since we can encode the fixed algorithm A using O(1) bits and any
fixed number n using O(log n) bits, it follows that some program M of descrip-
tion length O(log n) runs in time t = Õ(2n/2) and prints pn. Consequently, there
is an n-bit prime pn such that Kt(pn) ≤ O(1) + O(log n) + log t ≤ n/2 + O(log n).
More generally, a faster algorithm yields improved bounds on the Kt complexity
of some sequence of prime numbers. Conversely, it is possible to prove that if
there is a sequence {qn}n≥2 of n-bit primes such that Kt(qn) = λn, then the prob-
lem of explicit constructing primes can be solved in time Õ(2λn).3 This shows
that one can completely capture the problem of explicitly constructing primes via
time-bounded Kolmogorov complexity!

Note that in Kt complexity the time bound is not fixed and depends on the best
possible description of x. In some contexts, it is desirable to restrict attention to
programs M that run under a specified time bound t(n), e.g., in time ≤ n3. This is
captured by Kt complexity (see, e.g., [Sip83]), where t : N→ N is a fixed function:

Kt(x) = min
M

{
|M| | M outputs x in t(|x|) steps

}
. (3)

As a recent application of time-bounded Kolmogorov complexity, Liu and Pass
[LP20] connected one-way functions (OWF), a primitive that is essential to cryp-
tography, to the computational difficulty of estimating the Kt complexity of an
input string x, when t is a fixed polynomial. A bit more precisely, they showed
that OWFs exist if and only if it is computationally hard on average to estimate
Kt(x) for a random input string x (see their paper for the exact statement). This
provides another striking example of the power and reach of time-bounded Kol-
mogorov complexity.

While connections between time-bounded Kolmogorov complexity and dif-
ferent areas of theoretical computer science have been known for a long time
(see, e.g., [Sip83, Ko91, ABK+06, AF09]), recent applications of it to cryptog-
raphy [LP20, RS21, LP21], learning [CIKK16, HN21], average-case complex-
ity [Hir21], circuit complexity [OPS19], and proof search [Kra22] have led to
much interest in this topic and to a number of related developments. We refer the
reader to these papers and to [All92, All01, For04, Lee06, All17, LV19, All21]
for more information on different time-bounded Kolmogorov complexity mea-
sures and their applications.

3As discovered by Levin, this is achieved by an algorithm that attempts to compute an n-bit
prime by carefully simulating all programs of small description length for an appropriate number
of steps until an n-bit prime is found.



Probabilistic (Time-Bounded) Kolmogorov Complexity. The need to use time-
bounded Kolmogorov complexity in certain applications can create issues that are
not present in the case of (time-unbounded) Kolmogorov complexity. More pre-
cisely, several central results from Kolmogorov complexity are not known to hold
in a time-bounded setting. Some of them do survive under a plausible assump-
tion (e.g., a source coding theorem holds for Kt under a strong derandomisation
assumption [AF09]), but this leads to conditional results only. In other cases,
the validity of a result in the setting of time-bounded Kolmogorov complexity is
closely tied to a longstanding open problem in complexity theory (e.g., the compu-
tational difficulty of estimating Kt(x) and the aforementioned connection to OWFs
[LP20]). We refer to [Lee06] for an extensive discussion on the similarities and
differences between Kolmogorov complexity and its time-bounded counterparts.

Going beyond the technical difficulties of employing time-bounded Kolmogorov
complexity, which some papers such as [Hir21] managed to overcome with the
right assumptions in place, there is perhaps a more relevant issue in the appli-
cation of notions such as Kt and Kt to algorithms and complexity: these classi-
cal measures refer to deterministic algorithms and programs. However, in many
cases it is desirable or even necessary to consider randomised algorithms. Since
the random strings that are part of the input of a randomised algorithm have high
complexity, the classical theory of time-bounded Kolmogorov complexity might
be inappropriate or simply cannot be applied in such contexts.

To mitigate these issues and develop a more robust theory of time-bounded
Kolmogorov complexity that can be deployed in the important setting of ran-
domised computations, some recent papers have explored probabilistic notions of
time-bounded Kolmogorov complexity [Oli19, LO21, LOS21, GKLO22, LOZ22].
For this to make sense, we must conciliate the high complexity of a random string,
which can be accessed by a randomised algorithm, with the goal of obtaining a
succinct representation of x ∈ {0, 1}∗. Note that simply storing a good choice of
the random string r for a small program M that prints x when given r does not
lead to a succinct representation of x.

The key concept employed in the aforementioned papers is that of a probabilis-
tic representation of the string x. In other words, this is the code of a randomised
program M such that, for most choices of its internal random string r, M prints x
from r. Observe that the representation itself is a deterministic object: the code
of M. However, to recover x from M, we must run the randomised algorithm M,
meaning that we obtain x with high probability but there might be a small chance
that M outputs a different string.4 If |M| is small, we obtain a succinct probabilis-
tic representation of x. It is possible to introduce different variants of probabilistic
time-bounded Kolmogorov complexity, and we properly define them in Section 3.

4This is similar to the notion of a pseudodeterministic algorithm from [GG11].



The investigation of probabilistic Kolmogorov complexity and of probabilistic
representations is motivated from several angles:

(i) If we are running a randomised algorithm over an input string x, then stor-
ing a probabilistic representation of x instead of x can be done without loss
of generality. There is already a small probability that the randomised al-
gorithm outputs an incorrect answer, so it makes sense to tolerate a small
probability of computing over a wrong input as well (i.e., when x is not
correctly recovered from its probabilistic representation).

(ii) We will see later in the survey that probabilistic Kolmogorov complexity al-
lows us in some cases to obtain unconditional versions of results that previ-
ously were only known to hold under strong complexity-theoretic assump-
tions.

(iii) As alluded to above, there are situations where the deterministic time-bounded
measures simply cannot be applied due to the presence of randomised com-
putations involving random strings of high complexity.

(iv) Finally, advances in probabilistic Kolmogorov complexity can be translated
into results and insights for the classical notions of Kt complexity and Kt

complexity, under certain derandomisation hypotheses.

Before describing our results and explaining the points mentioned above in
more detail, we present a list of five fundamental questions to guide our investi-
gation and exposition of probabilistic Kolmogorov complexity.

Q1. Usefulness: Are there shorter probabilistic representations for natural ob-
jects, such as prime numbers? Can such representations detect structure in data
that is inaccessible for Kt and Kt?

Q2. Probabilistic Compression: If succinct probabilistic representations exist,
how can we efficiently compute one such representation? This is particularly rel-
evant for data compression.

Q3. Applications: Are there interesting applications of probabilistic time-bounded
Kolmogorov complexity to algorithms and complexity theory?

Q4. Computational Hardness: If provably secure cryptography exists, it must
be impossible to efficiently detect certain patterns in data. Is it computationally
hard to decide if a string admits a succinct probabilistic representation?



Q5. Finding an Incompressible String: Can we explicitly produce a string that
does not admit a short probabilistic representation? What are such strings use-
ful for?

In the remaining parts of this article, we explain the recent progress on Ques-
tions Q1-Q5 achieved by references [Oli19, LO21, LOS21, GKLO22, LOZ22].
Along the way, we highlight some concrete open problems and present directions
for further research. Due to space constraints, we often provide only a sketch of
the underlying arguments, referring to the original references for more details.

Organisation and Overview. For convenience of the reader, we provide below
a brief overview of each remaining section of this survey and how it relates to
Questions Q1-Q5 described above.

– Section 2 fixes notation and formalises the deterministic time-bounded Kol-
mogorov complexity notions Kt and Kt.

– Section 3 formalises the intuitive concept of probabilistic representations dis-
cussed above. We introduce the probabilistic measures rKt, rKt, and pKt and de-
scribe some simple applications.

– Section 4 addresses Question Q1 (Usefulness) and explains a result from [LOS21]
showing that infinitely many primes admit efficient probabilistic representations
of sub-polynomial complexity. This is a significant improvement over the afore-
mentioned ≈ n/2 bound for Kt complexity.

– Section 5 covers the relation between sampling algorithms for a distribution
over strings and the existence of probabilistic representations for individual strings
[LO21, LOZ22]. Such results are called source coding theorems and have appli-
cations to Question Q2 (Probabilistic Compression).

– Section 6 approaches Question Q3 (Applications) and discusses applications of
rKt, rKt, and pKt to average-case complexity and learning [GKLO22, LOZ22].
We employ these notions to simplify previous proofs, obtain new results that cru-
cially rely on probabilistic Kolmogorov complexity, and establish unconditional
analogues of theorems that were only known under derandomisation hypotheses.

– Section 7 is connected to Question Q1 (Usefulness) and focuses on the relation
between time-bounded deterministic and probabilistic measures. We observe that
these notions essentially coincide under strong enough derandomisation assump-
tions [Oli19, GKLO22]. Assuming them, insights from probabilistic Kolmogorov
complexity readily translate into information about Kt and Kt.



– Section 8 sheds light on Question Q4 (Computational Hardness) by uncondition-
ally establishing that certain computational problems about estimating the proba-
bilistic time-bounded Kolmogorov complexity of an input string cannot be solved
in probabilistic polynomial time [Oli19, LOS21].

– Section 9 shows that Question Q5 (Finding an Incompressible String) is closely
related to the existence of hierarchy theorems for probabilistic time [LO21, LOS21],
a fundamental question in computational complexity theory.

– Section 10 provides some concluding remarks and prospects for the potential
impact of (probabilistic) time-bounded Kolmogorov complexity in algorithms and
complexity.

Acknowledgements. We thank Michal Koucký for the invitation to write this
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Kabanets, Michal Koucký, Ninad Rajgopal, and Marius Zimand for sharing com-
ments and suggestions on a preliminary version of the text. This work received
support from the Royal Society University Research Fellowship URF\R1\191059
and from the EPSRC New Horizons Grant EP/V048201/1.

2 Preliminaries
For a positive integer m, we let [m] def

= {1, 2, . . . ,m}. Given a non-negative real
number α, we let dαe ∈ N denote the smallest integer a such that α ≤ a. For a
string w ∈ {0, 1}∗, we use |w| ∈ N to denote its length. We let ε represent the empty
string.

Let U be a Turing machine. For a function t : N → N and a string x ∈ {0, 1}∗,
we let

Kt
U(x) def

= min
p∈{0,1}∗

{
|p| | U(p, ε) outputs x in at most t(|x|) steps

}
be the t-time-bounded Kolmogorov complexity of x. The machine U is said to be
time-optimal if for every machine M there exists a constant cM such that for all
x ∈ {0, 1}n and t : N→ N satisfying t(n) ≥ n,

KcM ·t log t
U (x) ≤ Kt

M(x) + cM,

where for simplicity we write t = t(n). It is well known that there exist time-
optimal machines (see, e.g., [LV19, Chapter 7]). We fix such a machine, and drop
the index U when referring to time-bounded Kolmogorov complexity measures.



Given strings x, y ∈ {0, 1}∗, we can also consider the conditional t-time-bounded
Kolmogorov complexity of x given y, defined as

Kt(x | y) def
= min

p∈{0,1}∗

{
|p| | U(p, y) outputs x in at most t(|x|) steps

}
.

In the definitions above, the function t : N → N is fixed in advance. In many
situations, it is also useful to consider a notion of time-bounded Kolmogorov com-
plexity where the time bound of the machine is not fixed but instead affects the re-
sulting complexity measure. One of the most prominent such measures is Levin’s
Kt complexity, defined as

Kt(x) def
= min

p∈{0,1}∗, t∈N

{
|p| + dlog te | U(p, ε) outputs x in at most t steps

}
.

This definition can be extended to conditional Kt complexity Kt(x | y) in the natu-
ral way.

From now on, we will not distinguish between a Turing machine M and its
encoding pM according to U. While the running time t of M on an input y and the
running time of the universal machine U on (pM, y) might differ by a multiplicative
factor of O(log t), this will be inessential in all results and applications discussed
in this survey.5

We use K(x) to refer to the (time-unbounded) Kolmogorov complexity of the
string x.

3 Probabilistic Notions of Kolmogorov Complexity:
rKt, rKt, and pKt

In Section 2, we introduced two deterministic notions of time-bounded Kol-
mogorov complexity: Kt and Kt. In order to extend these definitions to the setting
of randomised computations, we consider an algorithm with a short description
that outputs a fixed string x ∈ {0, 1}n with high probability. Intuitively, the code of
this algorithm serves as a probabilistic representation of x.

A bit more formally, we consider a randomised Turing machine (RTM) M
such that

Pr
M

[M(ε) outputs x] ≥ 2/3.

Since we are interested in time-bounded representations, in our definitions we
must decide if we require (1) M(ε) to run in time ≤ t over all computation paths;

5It is also possible to consider prefix-free notions of Kolmogorov complexity. Since our results
hold up to additive O(log |x|) terms, we will not make an explicit distinction.



or (2) with probability ≥ 2/3, M(ε) runs in time ≤ t and outputs x. It turns out that
this distinction is not really crucial for the results discussed in this survey, since
they are robust to additive overheads of order log n. In more detail, by specifying
and storing a positive integer i ∈ [n], which can be represented using just log n
bits, we can always enforce the machine M to stop in time 2i.

Remark 1. In the definitions presented below, we abuse notation and refer to
a machine M and its code. Formally, as in the definitions from the preceding
section, M should be an arbitrary string (and not be restricted to a string that is
a well-formed description of a machine) that is provided as input to the machine
U.6 This is important to guarantee that the Kolmogorov complexity of an arbitrary
string of length n is at most n + O(1). Defining Kolmogorov complexity and its
time-bounded variants using the code of a machine might only allow us to prove
an upper bound of O(n), which can create issues in some applications where a tight
worst-case bound is needed. To simplify the presentation, we blur this distinction
in the remaining parts of this survey.

rKt Complexity [BLvM05, LOS21].7 This is the randomised analogue of Kt,
where the time function t : N→ N is fixed in advance. For a string x ∈ {0, 1}∗, we
let

rKt(x) def
= min

RTM M

{
|M| | M(ε) outputs x in t(|x|) steps with probability ≥ 2/3

}
denote its randomised t-time-bounded Kolmogorov complexity. As an example of
the use of rKt, suppose a computationally unbounded party A holds a string x, and
that A would like to communicate x to a t-time-bounded party B that has access to
random bits. Then A can send k = rKt(x) bits to B by communicating the descrip-
tion of a randomised Turing machine M as above. B is able to recover x from M
with high probability simply by running M(ε).

pKt Complexity [GKLO22]. Fix a function t : N→ N, as before. For a string x ∈
{0, 1}∗, the probabilistic t-time-bounded Kolmogorov complexity of x is defined as

pKt(x) def
= min

{
k ∈ N

∣∣∣∣∣∣ Pr
w∼{0,1}t(|x|)

[
∃TM M ∈ {0, 1}k, M(w) outputs x within t(|x|) steps

]
≥

2
3

}
.

Note that M is a deterministic machine in the above definition. In other words,
if k = pKt(x), then with probability at least 2/3 over the choice of the random
string w, given w the string x admits a t-time-bounded encoding of length k, i.e.,
Kt(x | w) ≤ k. In particular, if two parties share a typical public random string w,

6We assume that U has access to a tape with random bits.
7[BLvM05] refers to this notion as CBPt complexity.



then x can be transmitted with k bits and decompressed in time t = t(|x|). For a
reader familiar with standard complexity classes, the condition Kt(x) ≤ s is remi-
niscent of NP, while rKt(x) ≤ s and pKt(x) ≤ s essentially correspond to MA and
AM, respectively.

The definition of pKt complexity is more subtle than the definitions of Kt and
rKt. In particular, small pKt complexity provides a short efficient description only
in the presence of a fixed, “good” random string. Interestingly, pKt turns out to
be surprisingly useful in applications of time-bounded Kolmogorov complexity,
as discussed in Sections 5 and 6.

The following inequalities immediately follow from these definitions.

Fact 2. For every string x ∈ {0, 1}∗ and function t : N → N, we have pKt(x) ≤
rKt(x) ≤ Kt(x).

rKt Complexity [Oli19]. We can also consider the randomised Kt complexity of
a string x ∈ {0, 1}∗, defined as

rKt(x) def
= min

RTM M, t∈N

{
|M| + dlog te | M(ε) outputs x in t steps with probability ≥ 2/3

}
.

All these probabilistic notions of time-bounded Kolmogorov complexity can
be generalised to capture the conditional complexity of x given y in the natural
way. As a concrete example, suppose a Boolean formula F(x1, . . . , xn) admits a
satisfying assignment α ∈ {0, 1}n such that rKt(α | F) ≤ k. Then we can find
in time Õ(2k · |F|) and with probability ≥ 2/3 a satisfying assignment of F by
performing the following randomised computation: for each i ∈ [k], enumerate
all RTM M of description length i, run M(F) for at most 2k−i steps, and output the
first string β ∈ {0, 1}n generated in one of the simulations such that F(β) = 1.

An important property of Kolmogorov complexity is that, by a simple counting
argument, most strings of length n are incompressible, i.e., they do not admit
representations of length noticeably shorter than n. Similarly, most strings do not
admit succinct probabilistic representations, even in the presence of a fixed advice
string y.

Proposition 3 (Incompressibility). Let n ≥ 1 and consider an arbitrary time
bound t(n). For each string y ∈ {0, 1}∗, measure C ∈ {rKt, pKt, rKt}, and inte-
ger k ≥ 1, the following holds.

Pr
x∼{0,1}n

[
C(x | y) < n − k

]
= O(2−k).

Proof Sketch. For C ∈ {rKt, rKt}, the result follows from a simple counting argu-
ment, using that a valid probabilistic representation represents a single string (i.e.,



the success probability of printing the string is ≥ 2/3, so it is uniquely specified
given the machine).

On the other hand, when C = pKt, we argue as follows. If a large fraction
of n-bit strings x have bounded pKt complexity, by an averaging argument, there
is a fixed choice of the random string w ∈ {0, 1}t(n) such that, given w, a large
fraction of the n-bit strings admit bounded descriptions for this choice of w as the
random string. We can then use a similar counting argument to show that this is
contradictory. See [GKLO22] for the details. �

It is also possible to define pKt complexity, in analogy with the aforementioned
definitions. However, since we are not aware of an interesting application of pKt,
we will not discuss it here.

Other notions of time-bounded Kolmogorov complexity involving randomised
computations have been considered in the literature. For instance, [BLvM05]
considers CAMt, a variant that combines randomness and nondeterminism. Due
to space constraints, this survey will only cover rKt, rKt, pKt and their recent
applications.

4 Prime Numbers with Short Descriptions and Pseu-
dodeterministic PRGs

As briefly discussed in Section 1, an important question about prime numbers
is whether they admit succinct representations, which is tightly connected to the
fundamental problem of generating large primes deterministically. While this re-
mains a notoriously difficult question to answer, we can still ask whether prime
numbers admit succinct probabilistic representations. Results for this question
were recently obtained in [OS17b, LOS21], by considering different notions of
(time-bounded) randomised Kolmogorov complexity.

Before describing these results, we first note that it is impossible to compress
every prime, given the Prime Number Theorem, which asserts that the number of
primes whose values are less than or equal to N is roughly N/ log N. In particular,
by a simple counting argument, this means that we cannot compress every n-bit
prime to o(n) bits. Therefore, here we ask whether there is an infinite sequence
{pm}m∈N of increasing primes pm that admit non-trivial probabilistic representa-
tions. The first non-trivial result of this form was established for rKt complexity.

Theorem 4 (rKt Upper Bounds for Primes [OS17b]). For every ε > 0, there is an
infinite sequence {pm}m≥1 of increasing primes pm such that rKt(pm) ≤ |pm|

ε, where
|pm| denotes the bit-length of pm.



Theorem 4 was proved via the construction of a pseudodeterministic pseudo-
random generator. Informally, a pseudorandom generator (PRG) is an efficient
procedure mapping a short string (called seed) to a long string, with the property
that its output “looks random” to algorithms with bounded running time.8 A PRG
G is called pseudodeterministic if there is a probabilistic algorithm that, given a
seed z, computes G(z) with high probability. The following pseudodeterministic
PRG was obtained in [OS17b].

Theorem 5 (A Pseudodeterministic Sub-Exponential Time PRG [OS17b]).
For every ε > 0 and c, d ≥ 1, there exists a generator G = {Gn}n≥1 with Gn : {0, 1}n

ε
→

{0, 1}n for which the following holds:

Running Time: There is a probabilistic algorithm that given n, x ∈ {0, 1}n
ε
, runs

in time O
(
2nε

)
and outputs Gn(x) with probability ≥ 2/3.

Pseudorandomness: For every algorithm A that runs in time at most nc, there
exist infinitely many input lengths n such that∣∣∣∣∣∣ Pr

x∼{0,1}n
[A(x) = 1] − Pr

z∼{0,1}n
ε
[A(Gn(z)) = 1]

∣∣∣∣∣∣ ≤ 1
nd .

Assuming Theorem 5, we show how to obtain Theorem 4.

Proof of Theorem 4. Let A be a deterministic polynomial-time algorithm for pri-
mality testing (e.g., [AKS02]), which takes as input an n-bit integer x and outputs
1 if and only if x is a prime. Suppose A runs in time nc for some constant c > 0.
Note that by the Prime Number Theorem, a uniformly random n-bit integer is a
prime number with probability at least 1/O(n).

Let ε > 0 be any constant, and consider an infinitely often pseudodeterministic
PRG {Gn}n from Theorem 5 with Gn : {0, 1}n

ε/2
→ {0, 1}n that is secure against (nc)-

time algorithms and has associated error parameter γ = 1/n2. By the second item
of Theorem 5, for infinitely many values of n, we have∣∣∣∣∣∣ Pr

x∼{0,1}n
[A(x) = 1] − Pr

z∼{0,1}n
ε/2

[A(Gn(z)) = 1]

∣∣∣∣∣∣ ≤ 1
n2 ,

which implies

Pr
z∼{0,1}n

ε/2
[A(Gn(z)) = 1] ≥

1
O(n)

−
1
n2 ≥

1
O(n)

.

8Unconditionally constructing such PRGs is tightly connected to the derandomisation of prob-
abilistic algorithms. While this remains a longstanding open problem, there has been progress in
designing pseudodeterministic PRGs.



In particular, this means that there exists some z ∈ {0, 1}n
ε/2

such that p := G(z) is
an n-bit prime. By hardcoding n and this seed z, and using that G(z) is a uniform
procedure that can be computed probabilistically in time t(n) = O

(
2nε/2

)
, we get

that for infinitely many values of n, there is an n-bit prime p such that

rKt(p) ≤
(
nε/2 + O(log n) + O(1)

)
+ log

(
O
(
2nε/2

))
≤ nε,

as desired. �

For those primes shown to have small rKt complexity, given the corresponding
encoding, one can probabilistically recover the prime in sub-exponential time. We
can then further ask whether we can obtain succinct representations that can be
decoded more efficiently, say, in polynomial time. Note that this is precisely to
show that there are infinitely many primes whose rKpoly complexity is small. This
question was answered in the affirmative by a subsequent work of Lu, Oliveira
and Santhanam.

Theorem 6 (rKpoly Upper Bounds for Primes [LOS21]). For every ε > 0, there
is an infinite sequence {pm}m≥1 of increasing primes pm such that rKt(pm) ≤ |pm|

ε,
where t(n) = nk for some constant k = k(ε) ≥ 1, and |pm| denotes the bit-length of
pm.

Similar to Theorem 4, Theorem 6 was proved via the construction of a cer-
tain pseudodeterministic PRG. Note that the reason why we got sub-exponential
decoding time in Theorem 4 is due to the fact that the PRG from Theorem 5 re-
quires sub-exponential time to compute. Then to obtain a polynomial decoding
time as in Theorem 6, it suffices to construct a (pseudodeterministic) PRG that can
be computed in polynomial time. Such a PRG was obtained in [LOS21] using a
more sophisticated approach that builds on [OS17b].

Theorem 7 (A Pseudodeterministic Polynomial-Time PRG with 1 Bit of Ad-
vice [LOS21]).
For every ε > 0 and c, d ≥ 1, there exists a generator G = {Gn}n≥1 with Gn : {0, 1}n

ε
→

{0, 1}n for which the following holds:

Running Time: There is a probabilistic polynomial-time algorithm that given
n, x ∈ {0, 1}n

ε
, and an advice bit α(n) ∈ {0, 1} that is independent of x, outputs

Gn(x) with probability ≥ 2/3.

Pseudorandomness: For every algorithm A that runs in time at most nc, there
exist infinitely many input lengths n such that∣∣∣∣∣∣ Pr

x∼{0,1}n
[A(x) = 1] − Pr

z∼{0,1}n
ε
[A(Gn(z)) = 1]

∣∣∣∣∣∣ ≤ 1
nd .



Using Theorem 7, it is easy to show Theorem 6 by mimicking the above proof
of Theorem 4, with one caveat that computing the PRG in Theorem 7 requires one
bit of advice. However, this extra bit can be hardcoded into the encoding without
affecting its length by much.

We remark that the results presented above work in much more generality,
and can be used to show that any dense language decidable in polynomial time
admits infinitely many positive inputs of sub-polynomial rKtpoly complexity. The
set of primes is just one interesting example of such a language. We refer to
[OS17b, LOS21] for additional applications of pseudodeterministic PRGs and for
the proofs of Theorems 5 and 7.

We end this section with a couple of open problems. Note that both Theorem 4
and Theorem 6 show only that there are infinitely many values of n such that some
n-bit prime has rKt or rKpoly complexity at most nε.

Problem 8. Show that for each ε > 0, there exists n0 such that for every n ≥ n0,
there is an n-bit prime pn such that rKt(pn) ≤ nε.

Also, can we improve the sub-polynomial upper bounds to, say, poly-logarithmic?

Problem 9. Prove that there is a constant C ≥ 1 and an infinite sequence {pm}m≥1

of increasing primes pm such that rKt(pm) = (log |pm|)C.

5 Sampling Algorithms, Coding Theorems, and Search-
to-Decision Reductions

The coding theorem for Kolmogorov complexity roughly states that if a string
x can be sampled with probability δ by some algorithm A, then its Kolmogorov
complexity K(x) is at most log(1/δ) + OA(1). In particular, strings that can be
generated with non-trivial probability by a program of small description length
admit shorter representations. The coding theorem is a fundamental result in Kol-
mogorov complexity theory that has found many applications in theoretical com-
puter science (see, e.g., [LV92, Lee06, Aar14, IRS21]). In fact, [Lee06] regards
the coding theorem as one of the four pillars of Kolmogorov complexity.9

The proof of the coding theorem crucially explores the time-unbounded fea-
ture of the Kolmogorov complexity measure, and it is unclear how it can be
extended to the time-bounded setting. Ideally, we would like to show that if a
string x can be generated with probability δ by some efficiently samplable dis-
tribution, then its time-bounded Kolmogorov complexity Kt(x) is about log(1/δ).
One reason why such a time-bounded coding theorem is hopeful is that it can

9The other three are incompressibility, language compression, and symmetry of information.



be proven under certain strong derandomisation assumption [AF09].10 In par-
ticular, under such an assumption, if a polynomial-time samplable distribution
outputs a string x with probability at least δ, then Kt(x) ≤ log(1/δ) + O(log n).
However, the latter result is only conditional, in the sense that it relies on an
unproven assumption that seems far beyond the reach of currently known tech-
niques. Moreover, strong assumptions of this form could even be false. While
it remains unclear whether we can obtain a coding theorem for Kt, [LO21] con-
sidered the problem of establishing an unconditional coding theorem in the ran-
domised time-bounded setting. Somewhat surprisingly, it can be shown uncon-
ditionally that if a string x can be sampled efficiently with probability δ, then
rKt(x) ≤ O(log 1/δ) + O(log n). In a subsequent work [LOZ22], this result is
further improved to rKt(x) ≤ (2 + o(1)) · log 1/δ + O(log n).

Theorem 10 (Coding Theorem for rKt [LOZ22]). Suppose there is an efficient
algorithm A for sampling strings such that A(1n) outputs a string x ∈ {0, 1}n with
probability at least δ. Then

rKt(x) ≤ 2 log(1/δ) + O
(
log n + log2 log(1/δ)

)
,

where the constant behind the O(·) depends on A and is independent of the remain-
ing parameters. Moreover, given x, the code of A, and δ, it is possible to compute
in time poly(n, |A|), with probability ≥ 0.99, a probabilistic representation of x
that satisfies this rKt-complexity bound. (The running time of this algorithm does
not depend on the time complexity of A.)

Similar to the results in the previous section that are concerned with the com-
pressibility of prime numbers, the results of [LO21, LOZ22] again show the power
of utilizing randomness in Kolmogorov complexity, which enables us to establish
results for time-bounded Kolmogorov complexity that seem very difficult to show
in the deterministic setting. We refer to these papers for a discussion of the tech-
niques employed to show an unconditional coding theorem for rKt.

We note that (as in previous work of [LO21]) the coding theorem in Theo-
rem 10 has an unexpected constructive feature: it gives a polynomial-time prob-
abilistic algorithm that, when given x, the code of the sampler, and δ, outputs a
probabilistic representation of x that certifies the claimed rKt complexity bound.
(Additionally, the running time of this algorithm does not depend on the running
time of the sampler.) Such an efficient coding theorem has interesting implications
for search-to-decision reductions for rKt. Recall that a search-to-decision reduc-
tion is an efficient procedure that allows one to find solutions to a problem from the

10The assumption in [AF09] states that there is a language L ∈ TIME
[
2O(n)

]
that requires

Boolean circuits of size 2Ω(n) for all but finitely many n, even in the presence of oracle gates
to a Σ

p
2 -complete problem in the circuit.



mere ability to decide when a solution exists. Using results from [LO21, LOZ22],
one can show the following search-to-decision reduction for rKt.

Theorem 11 (Instance-Wise Search-to-Decision Reduction for rKt [LO21]). Let
O be a function that linearly approximates rKt complexity. That is, for every x ∈
{0, 1}∗,

Ω(rKt(x)) ≤ O(x) ≤ O(rKt(x)).

Then there is a randomised polynomial-time algorithm with access toO that, when
given an input string x, outputs with probability ≥ 0.99 a valid rKt representation
of x of complexity O(rKt(x)). Furthermore, this algorithm makes a single query q
to O, where q = x.

Proof Sketch. We would like to invoke Theorem 10 to efficiently compute an rKt
representation of x, but the “moreover” part of this result requires the explicit code
of a sampler. The idea is to construct a “universal” sampler that outputs x with the
desired probability, then to hit this sampler with an appropriate coding theorem
for rKt. For simplicity, suppose we knew the exact value k = rKt(x) ∈ N. Consider
the following sampler A:

A(1n): Randomly selects a randomised program M of length k among all strings
in {0, 1}k. Run M for at most 2k steps, then output the n-bit string that M outputs
during this simulation (or the string 0n if M does not stop or its output is not an
n-bit string).

Note that A runs in time t = poly(n, 2k) = poly(2k) (since k ≥ log n for any n-
bit string), and that it outputs x with probability at least δ = 2−k · 2/3, since by the
definition of k at least one such program prints x with probability at least 2/3. By
the coding theorem for rKt from [LO21] (which is stated in a slightly more general
form than Theorem 10), one obtains that rKt(x) = O(log(1/δ)) + O(log t) = O(k).
Since A is an explicit algorithm, crucially, its “moreover” part implies that we can
efficiently output an rKt-representation of x of complexity O(k). This completes
the sketch of the proof.

We refer to [LO21, Section 4] for the formal proof of Theorem 11, which is a
simple adaptation of the idea described here. �

An interesting feature of the above search-to-decision reduction is that it is
instance-wise in the sense that to produce a near-optimal rKt representation of x,
we only need to make a single query to a decision oracle for rKt on the same x.11

Note that there are known search-to-decision reductions in the context of time-
bounded Kolmogorov complexity with respect to various notions of complexity

11This is also called a search-to-profile reduction in some references in Kolmogorov complexity
[RSZ21].



(e.g., [CIKK16, Hir18, Ila20, ILO20, LP20, Ila21]), but they require an oracle to
the decision problem that is correct on all or at least on a large fraction of inputs.
As a consequence of this feature, we can easily derive the following result.12

Corollary 12 (“Short Lists with Short Programs” [LO21]). Given a string x of
length n, it is possible to compute with probability ≥ 0.99 and in polynomial time
a collection of at most ` = log(n) strings M1, . . . ,M` such that at least one of these
strings is a valid rKt representation of x of complexity O(rKt(x)).

Proof. We run the instance-wise search-to-decision reduction on the input x. While
it is not clear how to efficiently estimate rKt(x), we can still “guess” the rKt com-
plexity of x to be of order 2i, for each i ∈ {1, 2, . . . , log n}. We run the procedure on
each possible guess, obtaining a list of strings M1, . . . ,M`, where ` = log n. Since
there is at least one value i such that 2i = Θ(rKt(x)), we have the guarantee that in
this case the reduction outputs with probability at least 0.99 a valid rKt represen-
tation of x of similar complexity. Therefore, the list contains with probability at
least 0.99 a representation of the desired form. �

While the above coding theorem for rKt is a novel development after a long gap
in an area with only conditional results, it has an important drawback: the rKt up-
per bound is at least 2 log(1/δ)) and hence is sub-optimal. In contrast, the bounds
in the time-unbounded setting and in the conditional result of [AF09] mentioned
above have the form log(1/δ). A natural question then is whether we can show a
coding theorem for rKt with an optimal dependence on the probability parameter
δ, which is crucial in many applications of the result. It turns out that under a cer-
tain hypothesis about the security of cryptographic pseudorandom generators13,
the rKt bound in Theorem 10 is essentially optimal if we consider only coding
theorems that are efficient, i.e., where an rKt representation can be constructed
in polynomial time regardless of the running time of the sampler. In particular,
[LOZ22] showed that in this case, there is no efficient coding theorem that can
achieve a bound of the form rKt(x) ≤ (2 − o(1)) · log(1/δ) + poly(log n). On the
other hand, the conditional coding theorem for Kt in [AF09] is not efficient. This
leads to the following open problem on (unconditionally) showing an existential
coding theorem for rKt with optimal parameters.

12Results of this form were previously known in time-unbounded Kolmogorov complexity (see
[BMVZ18]).

13The hypothesis states that there is a pseudorandom generator G : {0, 1}`(n) → {0, 1}n, where
(log n)ω(1) ≤ `(n) ≤ n/2, computable in time poly(n) that is secure against uniform algorithms
running in time 2(1−Ω(1))·`(n). Note that every candidate PRG of seed length `(n) can be broken in
time 2`(n) · poly(n) by trying all possible seeds. This hypothesis can be viewed as a cryptographic
analogue of the well-known strong exponential time hypothesis (SETH) about the complexity of
k-CNF SAT [IP01].



Problem 13. Show that if there is an efficient algorithm A for sampling strings
such that A(1n) outputs a string x ∈ {0, 1}n with probability at least δ, then rKt(x) ≤
log(1/δ) + poly(log n).

To this point, we have mentioned the existence of an optimal coding theorem
for time-unbounded Kolmogorov complexity and an optimal conditional coding
theorem for Kt (in fact, the conditional result holds even for Kt for t = poly(n)).
Also, an unconditional coding theorem can be obtained for rKt but its dependency
on the probability parameter δ is not log(1/δ) (Theorem 10). Note that rKt can be
viewed as a “relaxed” notion of Kt and is intermediate between K and Kt. If we
consider some further relaxed notion of time-bounded Kolmogorov complexity,
can we show a coding theorem that is both unconditional and optimal?

Note that the time-bounded measure pK can be viewed as an intermediate
notion between time-unbounded Kolmogorov complexity and time-bounded rK.
It turns out that pKt admits an optimal coding theorem.

Theorem 14 (Coding Theorem for pKt [LOZ22]). Suppose there is a randomised
algorithm A for sampling strings such that A(1n) runs in time T (n) ≥ n and outputs
a string x ∈ {0, 1}n with probability at least δ > 0. Then

pKt(x) = log(1/δ) + O
(
log T (n)

)
,

where t(n) = poly(T (n)) and the constant behind the O(·) depends on |A| and is
independent of the remaining parameters.

The proof of Theorem 14 is similar in spirit to that of the conditional coding
theorem for Kpoly in [AF09]. As an application of the latter, [AF09] showed a
conditional characterisation of the worst-case running times of languages that are
in average polynomial time over all samplable distributions. Using Theorem 14,
[LOZ22] provided an unconditional characterisation, and this will be discussed in
Section 6.

Finally, we can connect the time-bounded coding theorems discussed in this
section to the compressibility of prime numbers discussed in the previous section,
via the following equivalence.

Theorem 15 (Equivalence Between Samplability and Compressibility [LO21]).
Let δ : N → [0, 1] be a time-constructible function. The following statements are
equivalent.

(i) Samplability. There is a randomised algorithm A for sampling strings such
that, for infinitely many (resp. all but finitely many) n, A(1n) runs in time
(1/δ(n))O(1) and outputs an n-bit prime qn with probability at least δ(n)O(1).



(ii) Compressibility. For infinitely many (resp. all but finitely many) n, there is
an n-bit prime pn with rKt(pn) = O(log(1/δ(n))).

Proof Sketch. The implication from (i) to (ii) relies on the existing coding theorem
for rKt. The other direction employs a universal sampler in the spirit of the proof
of Theorem 11 sketched above. See [LO21] for the details. �

Theorem 15 can be seen as an analogue of the relation between deterministi-
cally constructing large primes and obtaining Kt upper bounds for primes, which
was explained in Section 1. Using this result, the problem of showing that prime
numbers have smaller rKt complexity (Problem 9) can be reduced to showing the
existence of a faster sampling algorithm for primes. In particular, if we can sam-
ple an n-bit prime pn in time 2poly(log n) with probability at least 2− poly(log n), then
rKt(pn) ≤ poly(log n).

We remark that an even tighter equivalence between samplability and com-
pressibility can be established using pKt complexity, thanks to the optimality of
Theorem 14.

6 Applications to Average-Case Complexity and Learn-
ing Theory

Understanding the relation between the average-case complexity of NP and
its worst-case complexity is a central problem in complexity theory. More con-
cretely, if every problem in NP is easy to solve on average, can we solve NP
problems in polynomial time in the worst case? While addressing this question
remains a longstanding open problem, significant results have been achieved in re-
cent years using techniques from time-bounded Kolmogorov complexity [Hir20a,
Hir21, CHV22] (see [Hir22a] for an overview). Related techniques have also led
to the design of faster learning algorithms under the assumption that NP is easy on
average [HN21]. Interestingly, the problems investigated in these references make
no reference to Kolmogorov complexity. Still, the corresponding proofs rely on
Kt complexity and its properties in important ways.

In this section, we describe recent applications of pKt complexity to average-
case complexity and learning theory [GKLO22, LOZ22]. While the definition of
pKt is more subtle compared with Kt and rKt, its use comes with important bene-
fits. As we explain later in this section, depending on the context, pKt complexity
allows us to extend previous results to the important setting of randomised compu-
tations, significantly simplify an existing proof, or obtain an unconditional result.

Average-Case Complexity. We first review some standard definitions from average-
case complexity theory (see [BT06] for a survey of this area). Recall that D =



{Dn}n≥1, where each Dn is a distribution supported over {0, 1}∗, is called an ensem-
ble of distributions. We say that D ∈ PSamp (or D is P-samplable) if there is
a randomised polynomial-time algorithm A such that, for every n ≥ 1, A(1n) is
distributed according to Dn.

Let D be an ensemble of distributions. We say that a language L is solvable in
polynomial time on average with respect to D if there is a deterministic algorithm
A such that, for every n and for every x in the support of Dn, A(x; n) = L(x),
and there is a constant ε > 0 such that Ex∼Dn[tA,n(x)ε/n] = O(1), where tA,n(x)
denotes the running time of A on input (x; n). We remark that this is equivalent to
the existence of a deterministic algorithm B and of a polynomial p such that the
following conditions hold:

• For every n, δ > 0, and string x in the support of Dn, B(x; n, δ) outputs either
L(x) or the failure symbol ⊥;

• For every n, δ > 0, and every string x in the support of Dn, B(x; n, δ) runs in
time at most p(n, 1/δ);

• For every n and every δ > 0,

Pr
x∼Dn

[B(x; n, δ) = ⊥] ≤ δ.

We refer to [BT06] for more information about this definition and its motivation.
A pair (L,D) is a distributional problem if L ⊆ {0, 1}∗ and D is an ensemble

of distributions. For a complexity class C (e.g., C = NP), we let DistC denote the
set of distributional problems (L,D) with L ∈ C and D ∈ PSamp. We say that
(L,D) ∈ AvgP if L is solvable in polynomial time on average with respect to D.

Note that in the equivalent definition of AvgP the deterministic algorithm is
never incorrect on an input x in the support of the distribution. Similarly, it is pos-
sible to consider average-case complexity with respect to randomised errorless
heuristic schemes. Roughly speaking, such randomised algorithms are allowed to
sometimes output the wrong answer, provided that on every input x in the support
of the distribution, the fraction of random strings for which the algorithm outputs
the wrong answer is small compared to the fraction of random strings for which
it outputs either the right answer or the fail symbol ⊥. Analogously to the defi-
nition of AvgP, if a distributional problem (L,D) admits a randomised errorless
heuristic scheme, we say that (L,D) ∈ AvgBPP. We refer again to [BT06] for the
precise definition of this class and for an extensive discussion of this notion and
its extensions.14

14It is also possible to consider randomised algorithms that can sometimes be incorrect on an
input x with high probability over their internal randomness. This leads to the class HeurBPP of
distributional problems. Relaxing some assumptions in this section to the setting of HeurBPP is
an interesting research direction (see, e.g., [HS22]).



6.1 Worst-Case Time Bounds for Average-Case Easy Problems
Suppose that a language L is average-case easy. That is, L is solvable in deter-

ministic polynomial time on average with respect to all P-samplable distributions.
What can we say about the time needed to solve L in the worst case? In a beautiful
work, Antunes and Fortnow [AF09] characterised the worst-case running time of
such a language using the notion of computational depth [AFvM01]. Here the
computational depth of a string x for a time bound t is defined as the difference
Kt(x) − K(x). It was shown in [AF09], under a strong derandomisation assump-
tion, that a language L is average-case easy if and only if it can be solved in time
2O(Kpoly(x)−K(x)+log(|x|)) for every input x ∈ {0, 1}∗. The proof of this result crucially
relied on the use of an optimal coding theorem for Kt. Since such a coding the-
orem is only known under a strong derandomisation assumption (see Section 5),
the aforementioned characterisation is subject to the same unproven assumption.

As also mentioned in Section 5, it was observed in [LOZ22] that an optimal
coding theorem can be unconditionally proved for pKt (Theorem 14). It turns
out that such a coding theorem enables us to show an unconditional version of
Antunes and Fortnow’s characterisation, where the worst-case running times for
languages that are average-case easy can be characterised using a notion of prob-
abilistic computational depth.

A key idea in the proof of this result is a notion of universal distribution
via pKt. More specifically, for a computable time bound function t, we define
mt to be the (semi-)distribution whose probability density function is mt(x) def

=

2−pKt(x)−b log |x|, where b > 0 is a large enough constant (that depends only on t).15

Theorem 16 (Unconditional “Worst-Case Time Bounds for Average-Case Easy
Problems” [LOZ22]). The following conditions are equivalent for any language
L ⊆ {0, 1}∗.16

1. For every P-samplable distribution D, L can be solved in polynomial time
on average with respect to D.

2. For every polynomial p, L can be solved in polynomial time on average with
respect to mp.

15The reason why we define mt(x) this way instead of using just 2−pKt(x) is to make sure that it
forms a (semi-)distribution, i.e., that the sum of the probabilities is at most 1. More specifically,
for every t, there is some constant b > 0 such that K(x) ≤ pKt(x)+b log |x| for every x (see [LOZ22,
Lemma 32]), so

∑
x∈{0,1}∗ 2−pKt(x)−b log |x| ≤

∑
x∈{0,1}∗ 2−K(x) ≤ 1, where the second inequality follows

from Kraft’s inequality. (Formally, to apply Kraft’s inequality we need to consider prefix-free
encodings. This is not an issue here, as a large enough constant b makes this possible.)

16In this statement and in its proof, we do not make a distinction between distributions and
semi-distributions. (In a semi-distribution, the sum of the probabilities might add up to less than
1.)



3. For every polynomial p, there exists a constant c > 0 such that the running
time of some algorithm that computes L is bounded by 2O(pKp(x)−K(x)+c log(|x|))
for every input x ∈ {0, 1}∗.

Proof Sketch. For simplicity, to sketch the proof of this theorem we will also con-
sider the notion of average-case easiness with respect to single distributions in-
stead of ensembles of distributions,17 which does not incur a loss of generality
(see [BT06, Section 6]).

We first sketch the equivalence between Item 1 and Item 2. We need to show
that the class of distributions mpoly is “universal” for the class of P-samplable
distributions, in the sense that a language L is polynomial-time on average with
respect to mpoly if and only if the same holds with respect to all P-samplable
distributions. Recall that if a distribution D dominates another distribution D′

(i.e., D(x) & D′(x) for all x) and L is polynomial-time on average with respect to
D, then the same holds with respect to D′. Therefore, to show the “universality”
of mpoly, it suffices to establish the following claims.

1. Every P-samplable distribution is dominated by mp, for some polynomial
p.

2. For every polynomial p, mp is dominated by some P-samplable distribution.

The first item above says that for every P-samplable D, mp(x) & D(x) for some
polynomial p, which, by the definition of mp, means pKp(x) . log(1/D(x)). Note
that this is essentially an optimal coding theorem for pKpoly and hence follows
from Theorem 14. To see the second item, consider any polynomial p. We define
a P-samplable distribution roughly as follows. We first pick n with probability

1
n·(n+1) , and then randomly pick k ∈ [2n], w ∈ {0, 1}p(n), and a program M ∈ {0, 1}k.
We then run M(w) for at most p(n) steps and output the string that M outputs. It
is easy to see that for every x ∈ {0, 1}n , the above sampling process outputs x with
probability at least 2−pKp(x)/nO(1) and hence dominates mp.

It remains to show the equivalence between Item 2 and Item 3. Here we de-
scribe the implication from Item 2 to Item 3, which highlights the use of a fun-
damental result in Kolmogorov complexity called Language Compression. The
other direction follows from a simple calculation (see [LOZ22]).

Consider the time bound t described by an arbitrary polynomial p. Let A be an
algorithm that solves L in polynomial time on average with respect to mt, and let
tA(x) denote the running time of A on input x. For n, i, j ∈ N with i, j ≤ n2, define

S i, j,n
def
=

{
x ∈ {0, 1}n | 2i ≤ tA(x) ≤ 2i+1 and pKt(x) + b log |x| = j

}
.

17An algorithm A runs in polynomial time on average with respect to a (semi-)distribution D
if there exists a constant ε such that,

∑
x∈{0,1}∗

tA(x)ε

|x| D(x) ≤ O(1), where tA(x) denotes the running
time of A on input x.



Consider a nonempty set S i, j,n, and let r ∈ N be such that 2r ≤
∣∣∣S i, j,n

∣∣∣ < 2r+1. We
claim that for every x ∈ S i, j,n, its (time-unbounded) Kolmogorov complexity

K(x) ≤ r + O(log n). (4)

To see this, note that given i, j, n, we can first enumerate all the elements in S i, j,n,
which can be done since t is computable, and then using additional r + 1 bits, we
can specify x in S i, j,n. We remark that the core idea behind the above argument is
the language compression theorem for (time-unbounded) Kolmogorov complex-
ity, which states that for every (computable) language L, K(x) ≤ log |L ∩ {0, 1}n| +
O(log n) for all x ∈ L ∩ {0, 1}n.18

Now fix any n and i, j ≤ n2. Let r be such that 2r ≤
∣∣∣S i, j,n

∣∣∣ < 2r+1. Then by
assumption and by the definition of S i, j,n, we have for some constants ε, d > 0,

d ≥
∑

x∈S i, j,n

tA(x)ε

|x|
·mt(x) ≥ 2r ·

2ε·i

n
· 2− j = 2ε·i+r− j−log n,

which yields ε · i + r − j − log n ≤ log d. By Equation (4) and using j = pKt(x) +

b log n, this implies that for every x ∈ S i, j,n,

ε · i ≤ pKt(x) − K(x) + O(log n).

Therefore, we have that for every x ∈ S i, j,n,

tA(x) ≤ 2i+1 ≤ 2ε
−1·(pKt(x)−K(x)+O(log n)) = 2O(pKt(x)−K(x)+c log(|x|)),

where c > 0 is a large enough constant independent of n = |x|. Since it is not hard
to see that every x ∈ {0, 1}n is in some set S i, j,n, the result follows. �

6.2 Probabilistic Average-Case Easiness Implies Worst-Case Up-
per Bounds

The section covers recent developments from [GKLO22], which build on the
breakthrough results of [Hir21] and on the subsequent papers [CHV22, GK22,
Hir22b]. In short, the results from [Hir21] hold in the setting of deterministic
computations, while [GKLO22] provides a framework that allows new relations
between average-case complexity and worst-case complexity to be established in
the more robust setting of randomised computations.

18In fact, it is possible to slightly modify the above argument, by appropriately defining a lan-
guage with slices in correspondence to the sets S i, j,n, so that language compression can be applied
directly.



Next, we provide a high-level exposition of some results from [GKLO22] and
their proofs. In particular, we explain the role of (conditional) versions of “lan-
guage compression” and “symmetry of information” for pKt, and how pKt turns
out to be a complexity measure that is particularly well-suited for these applica-
tions (see Remark 21 on “Why pKt complexity?”).

Our goal is to show a worst-case complexity upper bound for an arbitrary
language L ∈ NP under an average-case easiness assumption, such as DistNP ⊆
AvgP or the weaker DistNP ⊆ AvgBPP. Note that Theorem 16 naturally suggests
an approach: if L is easy on average (Item 1), then we can compute L on every
input x ∈ {0, 1}∗ (Item 3) in time

2O(pKp(x)−K(x)) · poly(|x|),

where p(·) is a fixed but arbitrary polynomial. Therefore, if we could show that
the quantity pKp(x) − K(x) is bounded for every x, we would be done. (Note that
this is indeed the case for a uniformly random x, since pKt(x) and K(x) are close
to n = |x| with high probability.)

This is not possible, but we can still hope to adapt the proof of Theorem 16
to obtain a more useful bound, under the assumption that DistNP ⊆ AvgBPP.
A closer inspection of the argument reveals that the value K(x) in the bound
pKp(x)−K(x) comes from the use of language compression for (time-unbounded)
Kolmogorov complexity, which is applied to the sets S i, j,n. If we had a language
compression theorem for a time-bounded measure γ (e.g., γ = Kt), we would be
able to derive a worst-case running time exponent of the form pKp(x)− γ(x). This
makes progress towards our goal, since γ(x) ≥ K(x). This initial idea turns out to
be feasible, for γ = pKq (think of q(·) as a polynomial larger than p(·)).

Theorem 17 (Language Compression for pKt under DistNP ⊆ AvgBPP; Infor-
mal19). If DistNP ⊆ AvgBPP, then for every language S ∈ AM, there is a polyno-
mial q such that for every x ∈ S ∩ {0, 1}n,

pKq(x) ≤ log |S ∩ {0, 1}n| + log q(n).

In order to implement the aforementioned plan, we need to make sure that the
sets S i, j,n provide a language S that is easy to compute, since this is an assumption
in Theorem 17. One can sidestep this issue by settling for a weaker result which
assumes that the running time tA of the average-case algorithm on a given input can
be efficiently estimated without running the algorithm. This notion leads to a class
of distributional problems called AvgBPPBPP in [GKLO22], and to the stronger

19For technical reasons, the actual formulation of this result considers an ensemble of promise
problems with padded inputs of the form (x, 1m), where |x| = `(m). For simplicity, we omit this
here. See [GKLO22] for the precise statement.



initial assumption that DistNP ⊆ AvgBPPBPP. Another crucial idea, which we will
not cover in more detail here, is to prove that pKt(y) can be efficiently estimated
for every string y under the assumption that NP is easy on average. We can then
apply (an extension of) Theorem 17 to appropriately modified sets S ′i, j,n, which
yields a worst-case running time of the form

2O(pKp(x)−pKq(x)) · poly(|x|).

One could hope for the quantity pKp(x)−pKq(x), called the (p, q)-probabilistic
computational depth of x, to be bounded for every string x. While this is not clear
for the polynomials p(n) and q(n), a simple but neat argument involving a tele-
scoping sum [Hir21, GKLO22] shows that, for any string x of length n, for some
time bound t(n) ≤ 2O(n/ log n) we have pKt(x)−pKpoly(t)(x) = O(n/ log n). Intuitively,
if we could adapt the previous strategy so that it yields more general worst-case
upper bounds involving (t, poly(t))-probabilistic computational depth, then a non-
trivial exponent of O(n/ log n) would be achieved by applying the argument to
each choice of t ≤ 2O(n/ log n).

A careful implementation of this plan leads to the following stronger conse-
quence, where the worst-case upper bound holds for any language L ∈ AM.

Theorem 18 ([GKLO22]). If DistNP ⊆ AvgBPPBPP, then AM ⊆ BPTIME[2O(n/ log n)].

Can we obtain a similar worst-case upper bound under the weaker and more
natural assumption that DistNP ⊆ AvgBPP? (In other words, without assuming
that the running time of the average-case algorithm can be efficiently estimated?)
This is currently open. However, it is possible to prove the following implica-
tions, which can be seen as a strengthening of some results from [Hir21] to the
randomised setting. Recall that UP denotes the set of languages in NP whose
positive instances admit unique witnesses.

Theorem 19 (Probabilistic Worst-Case to Average-Case Reductions [GKLO22]).
The following results hold.

1. If DistNP ⊆ AvgBPP, then UP ⊆ RTIME
[
2O(n/ log n)

]
.

2. If DistΣP
2 ⊆ AvgBPP, then AM ⊆ BPTIME

[
2O(n/ log n)

]
.

3. If DistPH ⊆ AvgBPP, then PH ⊆ BPTIME
[
2O(n/ log n)

]
.

The proof of Theorem 19 relies on Symmetry of Information, another pillar
of Kolmogorov complexity (see [Lee06]). To describe a pair (x, y) of strings,
one can combine the most succinct representation of x with the most succinct
representation of y when x is given as advice. In Kolmogorov complexity, this



is captured by the inequality K(x, y) ≤ K(x) + K(y | x) + O(log(|x| + |y|)). The
symmetry of information principle is a theorem in Kolmogorov complexity stating
that this is essentially the most economical way of describing the pair (x, y). In
other words: K(x, y) ≥ K(x) + K(y | x) − O(log(|x| + |y|)). One can then easily
derive that K(x) − K(x|y) = K(y) − K(y | x), up to a term of order O(log(|x| + |y|)).
Roughly speaking, the information that x contains about y is about the same the
information that y contains about x.

The proof of symmetry of information for K requires an exhaustive search,
which is not available in the time-bounded setting. Nevertheless, different forms
of the principle can still be established in this more delicate setting under average-
case easiness assumptions [GK22, Hir22b, GKLO22].

Theorem 20 (Symmetry of Information for pKt under DistNP ⊆ AvgBPP [GKLO22]20).
If DistNP ⊆ AvgBPP, then there exist polynomials p and p0 such that for all suf-
ficiently large x, y ∈ {0, 1}∗ and every t ≥ p0(|x|, |y|),

pKt(x, y) ≥ pKp(t)(x) + pKp(t)(y | x) − log p(t).

Assuming Theorem 20, we provide a high-level exposition of the proof of a
variant of Item 2 from Theorem 19: If DistΣP

2 ⊆ AvgBPP then NP ⊆ RTIME[2O(n/ log n)].
(A detailed informal presentation of Item 2 of Theorem 19 can be found in [GKLO22,
Section 1.3].) Assume that DistΣP

2 ⊆ AvgBPP, and let L ∈ NP. Fix some NP-
verifier V for this language. For a string x ∈ L of length n, let yx be the lexico-
graphic first string such that V(x, yx) = 1.

1. On the one hand, it follows from Theorem 20 that there is a universal constant
a ≥ 1 such that, for every large enough t, pKta(yx | x) ≤ pKt(x, yx) − pKta(x) +

O(log t).

2. On the other hand, under the assumption that DistΣP
2 ⊆ AvgBPP, it is possible

to prove that, for some universal constant ε > 0 and for every large enough t,
pKt(x, yx) ≤ pKtε(x) + O(log t). This is non-trivial: while it is possible to recover
yx from x with a powerful enough oracle, we must obtain a description of the pair
(x, yx) from (a fixed but arbitrary) x without the aid of such an oracle, using only
an average-case easiness assumption.

3. Putting together the previous inequalities from Steps 1 and 2, we get that for
every large enough t, pKta(yx|x) ≤ pKtε(x) − pKta(x) + O(log t). Consequently, we
can upper bound pKta(yx|x) by the (tε, ta)-probabilistic computational depth of x
plus O(log t), for any t ≥ poly(n), where n = |x|.

20A more general version of this result is used by [GKLO22] to establish Theorem 19 and its
extensions.



4. As in the proof sketch of Theorem 18, one can show that for every x there is
some t(n) = 2O(n/ log n) such that pKtε(x) − pKta(x) = O(n/ log n). Consequently,
using that pKt1(·) ≤ pKt2(·) if t1 ≥ t2, there is a constant C ≥ 1 such that, for every
string x of length n, we have pKγ(yx | x) ≤ C · n/ log n, where γ(n) = 2C·n/ log n.

5. Finally, given a positive instance x of L and the upper bound on pKγ(yx | x) from
Step 4, we can recover yx with probability ≥ 2/3 in time 2O(n/ log n). Indeed, this
follows from the definition of conditional pKt complexity: by sampling a random
string w of length 2C·n/ log n and simulating all machines M of length ≤ C · n/ log n
on input (x,w) for at most 2C·n/ log n steps, we generate yx with probability at least
2/3 over the choice of w. Since we can test each string produced in this way using
the polynomial-time verifier V(x, ·), it follows that L ∈ RTIME[2O(n/ log n)].

Remark 21 (Why pKt complexity?). Both language compression (Theorem 17)
and symmetry of information (Theorem 20) are established using techniques from
computational pseudorandomness related to the design and analysis of pseudo-
random generators (PRGs). This approach has proven extremely useful in time-
bounded Kolmogorov complexity (see, e.g., [ABK+06]). In a bit more detail,
in the proof of both results we are interested in establishing bounds on the Kol-
mogorov complexity of a string x. A way of doing this is by considering the string
x as a source of “hardness” (e.g., view x as a hard truth-table) in the construction
of a generator Gx. The typical analysis of a PRG provides a reconstruction rou-
tine, i.e., an algorithm implementing the proof that if we can break Gx using a
distinguisher D, then x cannot be hard. In other words, we obtain bounds on the
conditional time-bounded Kolmogorov complexity of x given D. Crucially, under
assumptions such as DistNP ⊆ AvgBPP, it is often possible to break the corre-
sponding PRG Gx. This provides a powerful way of analysing the time-bounded
Kolmogorov complexity of strings in the context of Theorems 18 and 19. More re-
cently, the papers [Hir20b, Hir21] have highlighted the importance of a particular
“direct product” generator Gx = DPx, which has near-optimal “advice” complex-
ity in its reconstruction procedure and provides tighter bounds on the complexity
of x. In the randomised reconstruction procedure of DPx, the advice depends
on the particular choice of the random string employed by the procedure, which
shows that for a noticeable fraction of random strings w, x has a small description
if we are given the random string w. Now observe that this corresponds precisely
to pKt complexity! In previous work [Hir21], this issue is not present because the
stronger assumption that DistNP ⊆ AvgP provides near-optimal derandomisation
[BFP05] that allows one to directly get Kt bounds. However, the same PRG is not
known to be available under the weaker assumption that DistNP ⊆ AvgBPP.

As explained in [GKLO22], while previous works have employed various
techniques to remove randomness from their arguments in order to analyze Kt



complexity, the idea of incorporating randomness in the framework (via pKt)
comes with other benefits beyond the extension of results to the setting of ran-
domised computations. For instance, [CHV22] established fine-grained connec-
tions between worst-case and average-case complexity. Among other results, they
showed that if NTIME[n] can be deterministically solved in quasi-linear time on
average, then UP ⊆ DTIME[2O(

√
n log n)]. While the argument from [CHV22] re-

quires the construction of an extremely fast PRG via a delicate analysis, the same
result can be proved using pKt complexity with a simpler proof [GKLO22].

As a potentially accessible direction, we pose the following problem related
to Theorem 18 and Item 1 of Theorem 19.

Problem 22. Show that if DistNP ⊆ AvgBPP then NP ⊆ BPTIME[2O(n/ log n)].

6.3 Learning Algorithms from Probabilistic Average-Case Eas-
iness

This section describes an application of probabilistic Kolmogorov complex-
ity to computational learning theory. More precisely, we show that if DistNP ⊆
AvgBPP, then polynomial-size Boolean circuits can be (agnostically) PAC learned
under any samplable distribution in polynomial time. While it is not hard to learn
general Boolean circuits under a worst-case easiness assumption (e.g, NP ⊆ BPP)
using Occam’s razor (see, e.g., [KV94]), here we obtain an interesting conse-
quence for learning under a weaker average-case easiness assumption.

The proof adapts a similar learning result from [HN21], established under
the assumption that DistNP ⊆ AvgP (i.e., average-case easiness for deterministic
algorithms). This exhibits a natural example of a result that can be lifted to the
randomised setting with little effort via pKt complexity.

Let C be a class of Boolean functions. In the PAC learning model, a learner
has access to examples (x, f (x)) labelled according to an unknown function f ∈ C.
The examples x are drawn according to an unknown probability distribution Dn

supported over {0, 1}n. The goal of the learning algorithm is to produce, with
high probability over its internal randomness and draw of labelled examples, a
hypothesis h such that Prx∼Dn[h(x) , f (x)] ≤ ε.

We say that the distribution Dn ∈ Samp[T (n)]/a(n) if it can be sampled by
an algorithm that runs in time T (n) and has advice complexity a(n). (A sampler
described by a uniform machine of code length a counts as advice of length a.)
We consider the learnability of the class C = SIZE[s] of Boolean circuits of size
at most s(n), with respect to an unknown distribution Dn from Samp[T (n)]/a(n).

As in [HN21], the result described below also holds in the more challenging
setting of agnostic learning, where the function f only needs to be close to some
function in C. (See [GKLO22] for a concise presentation of this learning model.)



Theorem 23 (Agnostic Learning from Probabilistic Average-Case Easiness of
NP [GKLO22]).
If DistNP ⊆ AvgBPP, then for any time constructible functions s,T, a : N → N,
and ε ∈ [0, 1], SIZE[s(n)] is agnostic learnable on Samp[T (n)]/a(n) in time
poly

(
n, ε−1, s(n),T (n), a(n)

)
.

For the proof of this result, the main idea is to design a random-right-hand-
side-refuter (RRHS-refuter; see [Vad17, KL18]). In short, this is an algorithm
that distinguishes the distribution

(
x(1), . . . , x(m), f (x(1)), . . . f (x(m))

)
from the dis-

tribution
(
x(1), . . . , x(m), b(1), . . . b(m)

)
, where each x(i) is picked from a fixed but

unknown distribution Dn, f ∈ C is a fixed but unknown function and each b(i) is
a uniformly random bit. It is known that such an algorithm can be converted into
an agnostic learner for C under the distribution Dn.

In [HN21] an efficient RRHS-refuter is constructed using an algorithm that
estimates the Kt complexity of a given string, which can be shown to exist under
the assumption that DistNP ⊆ AvgP [Hir21]. In more detail, [HN21] proved that
if a string is sampled from the first distribution, where Dn is efficiently samplable
and f is computable by a polynomial size circuit, then it is likely to have bounded
Kt complexity (for carefully chosen parameters m and t). On the other hand, using
symmetry of information and optimal coding for Kt, which hold under an average-
case easiness assumption [Hir21], it can be shown that a random string from the
second distribution is likely to have large Kt complexity.

In contrast, under the weaker assumption that DistNP ⊆ AvgBPP, we design
an efficient algorithm that estimates the pKt complexity of a given string, which
is a more delicate measure than Kt. Combining this algorithm with the symmetry
of information for pKt (Theorem 20), which holds under the same probabilistic
average-case easiness assumption, and the optimal coding result for pKt (Theo-
rem 14), we are able to construct in a similar way an efficient randomised RRHS-
refuter. As before, this is sufficient to obtain the desired learning conclusion.

It would be interesting to understand if under the same average-case easiness
assumption one can non-trivially learn general Boolean circuits with respect to an
arbitrary distribution, i.e., in the standard sense of the PAC learning model.

Problem 24. Suppose that DistNP ⊆ AvgBPP. Is it possible to PAC learn
Boolean circuits of size O(n) (say, with error ε = 1/10) in time 2n/nω(1)?

We note that this would be possible (via Occam’s Razor) if the same average-
case easiness assumption led to stronger worst-case upper bounds for languages
in NP, such as the conclusion that NP ⊆ BPTIME[2n0.499

].



7 Probabilistic Versus Deterministic Time-Bounded
Kolmogorov Complexity

We have seen that some questions that remain open for classical notions of
time-bounded Kolmogorov complexity (such as Kt) can be unconditionally an-
swered in the case of rKt, rKt, and pKt. For instance, we presented better bounds
for primes with respect to rKt (Theorem 4) and rKt (Theorem 6) in Section 4, and
stated an optimal coding theorem for pKt (Theorem 14) in Section 5. Moreover,
we exhibit several applications of probabilistic time-bounded Kolmogorov com-
plexity to algorithms and complexity in Section 6. It is perhaps a good point to
discuss in more detail the relation between deterministic and probabilistic notions
of Kolmogorov complexity.

It turns out that, under strong enough derandomisation hypotheses, for ev-
ery string x, its deterministic and probabilistic time-bounded Kolmogorov com-
plexities essentially coincide. For instance, for Kt and rKt we have the following
relation.21

Theorem 25 ([Oli19]). The following results hold.

• If promise-BPE ⊆ promise-E, then Kt(x) ≤ O(rKt(x)) for every string x.

• If Kt(x) ≤ O(rKt(x)) for every string x, then BPE ⊆ E/O(n).

In particular, rKt and Kt are linearly related measures if E * i.o.SIZE
[
2Ω(n)

]
.

Note that the connection between derandomisation of probabilistic complexity
classes and time-bounded Kolmogorov complexity holds in both directions: in
a sense, collapsing Kt and rKt for every string x (up to a constant multiplicative
factor) is essentially equivalent to the derandomisation of (promise) BPE, as stated
in Theorem 25.

Similarly, under strong enough assumptions, we can show that pKpoly(x), rKpoly(x),
and Kpoly(x) coincide up to an additive term of order O(log n).

Theorem 26 ([GKLO22]). The following results hold.

• If E * i.o.SIZE
[
2Ω(n)

]
, then there is a polynomial p such that Kp(t)(x) ≤

rKt(x) + log p(t), for every n-bit string x and time bound t(n) ≥ n.

21Recall that E = DTIME[2O(n)] refers to the set of languages that can be decided in deterministic
time 2O(n), while BPE = BTIME[2O(n)] is the set of languages that can be decided in probabilistic
time 2O(n). The promise version of E is defined in the natural way. Recall that for promise-BPE
we do not enforce the acceptance probability of the randomised machine to be bounded away from
1/2 on inputs that do not satisfy the promise.



• If E * i.o.NSIZE
[
2Ω(n)

]
, then there is a polynomial p such that Kp(t)(x) ≤

pKt(x) + log p(t), for every n-bit string x and time bound t(n) ≥ n.

• If BPE * i.o.NSIZE
[
2Ω(n)

]
, then there is a polynomial p such that rKp(t)(x) ≤

pKt(x) + log p(t), for every n-bit string x and time bound t(n) ≥ n.

Proof. We describe the proof of the first item. The other two relations can be es-
tablished by an appropriate modification of the argument, and we refer to [GKLO22]
for the details.

Let x ∈ {0, 1}n, and let t(n) ≥ n. First, the assumption E * i.o.SIZE
[
2Ω(n)

]
im-

plies that there is a PRG G : {0, 1}O(log s)
→ {0, 1}s that (1/s)-fools size-s Boolean

circuits and has running time poly(s) [IW97]. Suppose rKt(x) ≤ k. Let M ∈ {0, 1}k

be a probabilistic machine of running time at most t that outputs x with probability
at least 2/3.22 Consider the following function C on inputs of length t:

C(w) = 1 ⇐⇒ M(w) = x.

Clearly, C can be implemented as a poly(t)-size circuit. By definition, the accep-
tance probability of C is at least 2/3. Consequently, there is a seed z ∈ {0, 1}O(log t)

such that C(G(z)) = 1, which in turn implies that M(G(z)) = x. This means
that, given the description of M and z, we can deterministically compute x in time
poly(t). In particular, Kp(t) ≤ k + log p(t), for some large enough polynomial p(·).
This polynomial is selected as a function of the overhead in running time and de-
scription length caused by the PRG. For this reason, it does not depend on x and
t. This completes the proof. �

As a consequence of these (conditional) equivalences, new insights about
probabilistic time-bounded Kolmogorov complexity can also shed light on the
classical deterministic notions.23 In particular, if one believes in the correspond-
ing derandomisation assumptions, establishing certain results for rKt, rKt, and pKt

can be seen as a necessary step before we are able to obtain similar statements for
Kt and Kt. One such example is the task of showing better upper bounds on the
time-bounded Kolmogorov complexity of prime numbers (Section 4).

Of course, one of the main advantages of probabilistic time-bounded Kol-
mogorov complexity is that certain results are known unconditionally. In partic-
ular, in applications there is often no need to rely on unproven conjectures from
complexity theory.

22If M runs for more than t steps on some computation path, we simply truncate its computation.
23As a concrete example, after proving Theorem 11 in [LO21], we noticed that a similar result

also holds for Kt, unconditionally. See [LO21] for more information on this.



8 Unconditional Hardness of Estimating Time-Bounded
Kolmogorov Complexity

In this section, we turn our attention to meta-computational problems, which
are problems that are themselves about computations and their complexity. An
example of such a problem is MCSP (Minimum Circuit Size Problem), where we
are given the truth table of a Boolean function f : {0, 1}m → {0, 1} (represented
as a Boolean string x of length n = 2m) and a size bound s, and must decide if
f can be computed by a Boolean circuit containing at most s gates. Similarly,
we can consider the problem of computing the Kt complexity of an input string
x ∈ {0, 1}n, where t(n) is some fixed polynomial, such as t(n) = n3. In both cases, it
is not hard to see that we obtain a problem in NP. Due to their meta-computational
nature, intriguing properties (e.g., [OPS19]), and connections to other areas such
as learning theory (e.g., [CIKK16]) and cryptography (e.g., [LP20]), it is possible
that the investigation of the complexity of meta-computational problems can offer
a fruitful path towards a proof that P , NP.

Given the challenge of establishing strong unconditional lower bounds for
problems in NP, it is also interesting to consider the complexity of computing
other notions of time-bounded Kolmogorov complexity, such as Kt and rKt. For
instance, given a string x ∈ {0, 1}n, can we efficiently estimate Kt(x)? Note that
this can be done in exponential time using a brute-force search, which places the
decision version of this problem in E = DTIME[2O(n)]. Intuitively, it seems that
computing Kt and rKt should be computationally hard for the following reasons:

(i) It looks like we must perform an exhaustive search over machines of non-
trivial description length.

(ii) Thanks to the definitions of Kt and rKt, even the mere act of checking
whether a specific machine M prints the string x could require an expo-
nential time simulation.

Note that (ii) is not present in problems such as MCSP. (We will revisit this
intuition later in the section.)

The next result shows that MrKtP, the Minimum rKt Problem, is computation-
ally hard for randomised algorithms. Indeed, even a gap version of the problem
remains difficult. Note that the result provides an unconditional complexity lower
bound for a natural problem.24

24As observed by [Oli19], the problem stated next can be solved in randomised exponential
time.



Theorem 27 (Complexity Lower Bound for Estimating rKt [Oli19]). For any 0 <
ε < 1, consider the promise problem Πε

rKt = (YESn,NOn)n∈N, where

YESn = {x ∈ {0, 1}n | rKt ≤ nε},
NOn = {x ∈ {0, 1}n | rKt(x) ≥ n − 1}.

Then Πε
rKt < promise-BPTIME[npolylog(n)].

Proof Sketch. The proof can be described in different ways. Here we provide a
high-level exposition of the argument using insights from computational learning
theory. For simplicity, we consider the weaker lower bound Πε

rKt < promise-BPP.
Assume towards a contradiction that Πε

rKt ∈ promise-BPP. We proceed as
follows.

1. Under this assumption, it is possible to show that there is a (promise) natural
property (in the sense of [RR97]) against functions computed by circuits of
size 2δn, for some δ > 0. In other words, we can efficiently distinguish
truth-tables of bounded complexity from random truth-tables.

2. By the main result of [CIKK16], this implies that Boolean circuits of size s
can be PAC learned under the uniform distribution with membership queries
in time poly(s).

3. Exploring the connection between learning and circuit lower bounds from
[OS17a], the existence of such learning algorithms implies that BPE *
SIZE(poly), where SIZE(poly) denotes the set of languages computed by
Boolean circuits of polynomial size.

4. Finally, we argue that if Πε
rKt is in promise-BPP then BPE ⊆ SIZE(poly).

Roughly speaking, this step explores techniques from pseudorandomess
[ABK+06] to show that every L ∈ BPE non-uniformly reduces to Πε

rKt.
Since by assumption this problem can be solved by efficient probabilis-
tic algorithms, and such algorithms can be non-uniformly simulated by
polynomial-size circuits, the inclusion follows.

Given that Items 3 and 4 are in contradiction, we obtain the desired complexity
lower bound. (A proof that employs a different perspective is provided in [Oli19].)

�

Curiously, establishing an analogous lower bound for MKtP remains a noto-
rious open problem (see, e.g., [ABK+06]). Here MKtP refers to the problem of
deciding, given a string x and a positive integer s, whether Kt(x) ≤ s. While it is
believed that MKtP < P, we currently only know how to resolve the randomised



version of the problem (Theorem 27).25 This provides another setting where prob-
abilistic time-bounded Kolmogorov complexity offers an advantage over its deter-
ministic counterpart. Note that Theorem 27 implies that MKtP < BPP under a
derandomisation assumption (Theorem 25).

Before presenting a different lower bound, we revise our initial intuition about
the hardness of computing rKt and Kt. In light of Corollary 12, a result established
after [Oli19], we now understand that the hardness of the gap version of MrKtP
can be blamed on Item (ii) only. Interestingly, an unexpected algorithmic result
sheds light on the hardness of estimating rKt complexity. At the same time, this
tells us that different techniques will be needed to understand the computational
hardness of problems such as MCSP or computing Kt, where the hardness must
come from the analogue of Item (i).

Next, we discuss a complexity lower bound for estimating the rKpoly complex-
ity of an input string.

Theorem 28 (Complexity Lower Bound for Estimating rKpoly [LOS21]). For any
0 < ε < 1 and d ≥ 1 there exists a constant k ≥ 1 for which the following holds.
Consider the promise problem Πε,k

rKt = (YESn,NOn)n∈N, where

YESn = {x ∈ {0, 1}n | rKt(x) ≤ nε},
NOn = {x ∈ {0, 1}n | rKt(x) ≥ n − 1},

and t(n) = nk. Then Πε,k
rKt < promise-BPTIME[nd].

Proof. We establish the weaker result that Πε,k
rKt < promise-DTIME[nd]. The lower

bound against probabilistic time can be established in a similar way, using that
the pseudodeterministic PRG from Theorem 7 also fools probabilistic algorithms
(see [LOS21] for the details).

Fix 0 < ε < 1 and d ≥ 1. Let ε′ = ε/2, d′ = 1, and c′ = d. Instantiate the
pseudodeterministic PRG from Theorem 7 with the parameters ε′, c′, and d′, and
assume that Gn : {0, 1}n

ε′

→ {0, 1}n can be computed probabilistically in time nk′ ,
for some constant k′ (when provided with the correct advice bit α′(n)). We let
k = 2k′.

Now suppose, towards a contradiction, that Πε,k
rKt ∈ promise-DTIME[nd]. Let

A be a deterministic algorithm running in time nd that accepts YESn and rejects
NOn, for every large enough n. We argue that the existence of A contradicts the
infinitely often guarantee of pseudorandomness provided by the PRG Gn. Indeed,
fix a large enough input length n for which Gn succeeds. On the one hand, by our

25The proof of Theorem 27 explores randomised computation to perform an indirect diagonal-
isation, and it is not clear how to implement a similar strategy when only deterministic computa-
tions are available.



choice of k and ε′, it is easy to see that every string y ∈ {0, 1}n in the image of
Gn satisfies rKnk

(y) ≤ nε. For this reason, Prz∼{0,1}nε
′ [A(G(z)) = 1] = 1. On the

other hand, by a counting argument, a random string x ∼ {0, 1}n satisfies rKnk
(x) ≥

n − 1 with probability Ω(1) (Proposition 3). This implies that Prx∼{0,1}n[A(x) =

1] ≤ 1 − Ω(1), since A rejects strings in NOn. Now notice that this violates the
pseudorandomness of Gn. In other words, we get that Πε,k

rKt < promise-DTIME[nd].
�

A complexity lower bound for computing Kt against deterministic polynomial-
time algorithms and for t = nω(1) was established by Hirahara [Hir20b] using
different techniques. In both cases, the time bound in the definition of the Kol-
mogorov complexity measure is larger than the time bound of the algorithm try-
ing to compute or estimate Kolmogorov complexity. Needless to say, it would be
extremely interesting to establish a complexity lower bound for computing Kol-
mogorov complexity with respect to a fixed polynomial t in Kt or rKt that holds
against arbitrary polynomial-time algorithms (see [LP20]).

A lower bound question that should be more accessible is presented next.

Problem 29 (Exponential Hardness of Estimating rKt). Show that for any constant
0 < ε < 1 there is a constant δ > 0 such that Πε

rKt < promise-BPTIME[2nδ].

9 Constructing Strings of Large rKt Complexity and
Hierarchy Theorems

The problem of explicitly constructing mathematical objects of different types
(beyond merely showing their existence) has received much attention in computer
science and mathematics. For instance, in Section 1 we described the problem of
deterministically producing an n-bit prime. In this section, we are interested in
the problem of constructing incompressible strings. Some problems of this form
are particularly challenging, since given a long incompressible string (e.g., with
respect to circuit size or Kpoly complexity), several other constructions problems
can be solved (see, e.g., [San12, Kor21]).

In more detail, here we consider the problem of explicitly constructing strings
that have large rKt complexity. To provide intuition, let us first consider the much
simpler case of Kt complexity. Our goal is to design a deterministic algorithm
that, given 1n, outputs an n-bit string x such that Kt(x) ≥ n/10. Does this problem
admit a polynomial-time algorithm? It is easy to see that this problem cannot be
solved in time 2o(n). Indeed, it follows from the very definition of Kt complexity
that any deterministic algorithm A(1n) running in time 2o(n) can only print an n-
bit string of Kt complexity o(n). However, it is not hard to see that this explicit



construction problem can be solved in time 2O(n) via an exhaustive search (for
instance, by enumerating all strings produced in time ≤ 2n/10 by machines of
description length ≤ n/10).

Similarly, we ask if there is an algorithm that runs in time 2O(n) and produces
an n-bit string x such that rKt(x) ≥ n/10. The natural brute-force approach to solve
this problems involves the simulation of randomised algorithms. For this reason,
we relax our goal as follows: Is there a randomised algorithm A(1n) that runs in
time 2O(n) and outputs with probability at least 2/3 a fixed n-bit string wn such that
rKt(wn) ≥ n/10? In other words, we would like to have a pseudodeterministic
construction of strings of large rKt complexity, in the sense of [GG11].

A careful inspection of the natural brute-force approach that works for Kt re-
veals that it simply does not work in the case of rKt: roughly speaking, the simula-
tion of different randomised machines comes with uncertainties, and it is not clear
if after all the simulations we isolate the same string wn with high probability.

In [LOS21], we connected the problem of constructing strings of large rKt
complexity to the longstanding question of establishing a strong time hierarchy
theorem for probabilistic computations. Recall that, while it is known that BPEXP *
BPP, it is consistent with current knowledge that inclusions such as BPTIME[2n] ⊆
BPTIME[2n0.01

] and BPTIME[n50] ⊆ BPTIME[n2] might hold.26

Theorem 30 (Explicit Construction Problem for rKt and Probabilistic Time Hier-
archies). The following statements are equivalent:

(1) Pseudodeterministic construction of strings of large rKt complexity: There
is a constant ε > 0 and a randomised algorithm A that, given m, runs in
time 2O(m) and outputs with probability at least 2/3 a fixed m-bit string wm

such that rKt(wm) ≥ εm.

(2) Strong time hierarchy theorem for probabilistic computation: There are
constants k ≥ 1 and λ > 0 for which the following holds. For any con-
structive function n ≤ t(n) ≤ 2λ·2

n
, there is a language L ∈ BPTIME[(t(n)k]

such that L < i.o.BPTIME[t(n)]/ log t(n).

The proof of Theorem 30 is elementary, and proceeds by associating with a
language L a sequence of truth-tables, one for each input length n (each truth-
table can be seen as a string of length m = 2n). For a sketch of the argument and
a detailed proof, see [LOS21].

Note that the connection between the explicit (pseudodeterministic) construc-
tion problem for rKt and hierarchy theorems goes in both ways. More generally,
[LOS21] explored the fruitful relation between pseudodeterministic PRGs (see

26Some separations have been established if we allow advice bits in the upper bound and lower
bound. For instance, BPTIME[n50]/1 * BPTIME[n2]/1 (see, e.g., [Bar02, FS04]).



Section 4), the explicit construction problem for rKt complexity, and hierarchy
theorems for probabilistic time to make advances in all these areas. On the other
hand, [LO21] connected rKt complexity and its coding theorem (Theorem 10) to
the study of time hierarchy theorems for sampling distributions (cf., [Wat14]).

10 Concluding Remarks
We presented key results in probabilistic Kolmogorov complexity and applica-

tions to several areas, including explicit constructions, complexity lower bounds,
sampling algorithms, average-case complexity, and learning theory. The proba-
bilistic measures rKt, pKt, and rKt are particularly useful in settings that involve
randomised algorithms. While it is quite possible for these complexity measures
to be essentially equivalent to their deterministic counterparts (Section 7), they
allow us to obtain unconditional results that do not rely on derandomisation as-
sumptions. In some cases, probabilistic Kolmogorov complexity can significantly
simplify existing arguments or is the only known approach to certain results.

The results presented in the preceding sections naturally suggest several prob-
lems and directions. For example, we believe that it should be possible to make
progress on the following fronts:

– Designing improved pseudodeterministic PRGs and obtaining better upper
bounds on the rKt complexity of prime numbers.

– Establishing new unconditional lower bounds on the complexity of meta-
computational problems such as MKtP and MrKtP.

For a more precise formulation of these problems, we refer to the concrete ques-
tions stated in the corresponding sections of the article (Section 4 and Section 8).
Additional questions of interest are presented in other parts of the survey.

Given the number of recent advances and applications of time-bounded Kol-
mogorov complexity to algorithms and complexity theory (see Section 1), it is
hard to predict which directions will be more fruitful. Nevertheless, we are par-
ticularly optimistic about the role that probabilistic Kolmogorov complexity can
take in the investigation of the relations between average-case complexity and
worst-case complexity, cryptography, and learning algorithms. In particular, anal-
ogously to results of [Hir21], under the assumption that DistNP ⊆ AvgBPP,
all main pillars of Kolmogorov complexity are known to hold for pKt complex-
ity: incompressibility (Proposition 3), coding theorem (Theorem 14), language
compression (Theorem 17), and symmetry of information (Theorem 20). Tak-
ing into account the wide applicability of these results and the ubiquitous role of
randomised algorithms in theoretical computer science, we expect to see further



developments in average-case complexity powered by tools and perspectives from
probabilistic Kolmogorov complexity.
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