
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 3, JUNE 2023 657

Robust Optimization Over Time by Estimating
Robustness of Promising Regions

Danial Yazdani , Member, IEEE, Donya Yazdani , Jürgen Branke , Member, IEEE,
Mohammad Nabi Omidvar, Senior Member, IEEE, Amir Hossein Gandomi , Senior Member, IEEE,

and Xin Yao , Fellow, IEEE

Abstract—Many real-world optimization problems are
dynamic. The field of robust optimization over time (ROOT)
deals with dynamic optimization problems in which frequent
changes of the deployed solution are undesirable. This can
be due to the high cost of switching the deployed solutions,
the limitation of the needed resources to deploy such new
solutions, and/or the system being intolerant toward frequent
changes of the deployed solution. In the considered ROOT
problems in this article, the main goal is to find solutions that
maximize the average number of environments where they
remain acceptable. In the state-of-the-art methods developed
to tackle these problems, the decision makers/metrics used
to select solutions for deployment mostly make simplifying
assumptions about the problem instances. Besides, the current
methods all use the population control components, which
have been originally designed for tracking the global optimum
over time without taking any robustness considerations into
account. In this article, a multipopulation ROOT method is
proposed with two novel components: 1) a robustness estimation
component that estimates robustness of the promising regions
and 2) a dual-mode computational resource allocation com-
ponent to manage subpopulations by taking several factors,
including robustness, into account. Our experimental results

Manuscript received 13 August 2021; revised 3 January 2022,
10 March 2022, and 5 April 2022; accepted 20 May 2022. Date of publication
7 June 2022; date of current version 31 May 2023. This work was sup-
ported in part by the Research Institute of Trustworthy Autonomous Systems,
Guangdong Provincial Key Laboratory under Grant 2020B121201001; in part
by the Program for Guangdong Introducing Innovative and Entrepreneurial
Teams under Grant 2017ZT07X386; and in part by the Shenzhen Science and
Technology Program under Grant KQTD2016112514355531. (Corresponding
author: Xin Yao.)

Danial Yazdani is with the Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
(e-mail: danial.yazdani@gmail.com).

Donya Yazdani is with the Department of Computer Science, University of
Sheffield, Sheffield S1 4DP, U.K. (e-mail: dyazdani1@sheffield.ac.uk).

Jürgen Branke is with the Operational Research and Management Sciences
Group, Warwick Business School, University of Warwick, Coventry CV4
7AL, U.K. (e-mail: Juergen.Branke@wbs.ac.uk).

Mohammad Nabi Omidvar is with the School of Computing and Leeds
University Business School, University of Leeds, Leeds LS2 9JT, U.K.
(e-mail: m.n.omidvar@leeds.ac.uk).

Amir Hossein Gandomi is with the Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
(e-mail: gandomi@uts.edu.au).

Xin Yao is with the Research Institute of Trustworthy Autonomous Systems
and the Guangdong Provincial Key Laboratory of Brain inspired Intelligent
Computation, Department of Computer Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China, and also
with the CERCIA, School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U.K. (e-mail: xiny@sustech.edu.cn).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TEVC.2022.3180590.

Digital Object Identifier 10.1109/TEVC.2022.3180590

demonstrate the superiority of the proposed method over other
state-of-the-art approaches.

Index Terms—Computational resource allocation (CRA), evo-
lutionary dynamic optimization (EDO), multipopulation, robust
optimization over time (ROOT), robustness estimation.

I. INTRODUCTION

SEARCH spaces of many real-world optimization prob-
lems are dynamic. To tackle optimization problems in

dynamic environments, it is important that the optimization
algorithms can efficiently react to the environment changes [1],
[2]. A dynamic optimization problem (DOP) can be
defined as

f (t)(�x) = f
(
�x, �α(t)

)
(1)

where f is the objective function, t ∈ [0, T] is the time
index, �x is a solution in the search space, and �α is a vec-
tor of time-dependent control parameters of the objective
function. Almost all existing works in the field of DOPs
consider problems whose environmental changes occur only
at discrete-time steps, i.e., t ∈ {1, . . . , T}. For a DOP with
T environmental states, there is a sequence of T stationary
environments
{

f
(
�x, �α(k)

)}T

k=1
=

{
f
(
�x, �α(1)

)
, f

(
�x, �α(2)

)
, . . . , f

(
�x, �α(T)

)}
.

(2)

Some main characteristics of a DOP are defined based on its
change severity and frequency. Hence, these two are among the
main criteria used for classifying DOPs [2]. The change sever-
ity shows how much the morphology of the problem space
changes after each environmental change. In the DOP liter-
ature, it is mostly assumed that environmental changes are
not highly severe and there is a degree of similarity between
consecutive environmental states. This is the case for many
practical applications [3]–[5]. In real-world DOPs, change
frequency is defined based on the duration of the time interval
between environmental changes which depends on the nature
of the events that cause the environmental changes. In some
problems, the duration of this time interval can be very short,
which results in higher change frequency (e.g., the short time
gaps between changing demands/customers in some dynamic
covering location problems [6]). Change frequency is usually

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7799-5013
https://orcid.org/0000-0003-2151-0547
https://orcid.org/0000-0002-4343-5878
https://orcid.org/0000-0002-2798-0104
https://orcid.org/0000-0001-8837-4442

658 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 3, JUNE 2023

very low (i.e., longer time gap between changes) for problems
where environmental changes are caused by accidents or faults
in parts of the system.

Evolutionary algorithms are commonly used for tackling
DOPs [1], [5], [7]. However, since these algorithms are orig-
inally designed for solving static optimization problems, they
cannot directly be used for DOPs. This is due to the chal-
lenges caused by the environmental changes in DOPs, which
are: global and local diversity loss, outdated stored fitness val-
ues,1 and limited number of fitness evaluations that can be
performed in each environment (i.e., between two consecu-
tive environmental changes)2 [8]. In order to avoid influences
of some factors, such as hardware, compiler, and program-
ming skills, the academic community of evolutionary dynamic
optimization (EDO) uses the number of fitness evaluations as
the unit of change frequency instead of time in the real-world
applications. In many real-world DOPs, the fitness evalua-
tion is time consuming (e.g., in large-scale problems [9], or
simulation optimization). Consequently, a limited number of
fitness evaluations can usually be performed in each envi-
ronment. To address the aforementioned challenges of DOPs,
EDO algorithms are often created by augmenting evolutionary
algorithms with other algorithmic components to address the
DOPs’ challenges stated above [2].

The majority of the existing EDOs tackle DOPs by track-
ing the moving global optimum after each environmental
change [3], [10]. However, tracking is impractical for solv-
ing many real-world DOPs because frequent change of the
deployed solution is not possible. This can be due to different
reasons, such as high switching cost [11], [12], limited avail-
able resources to deploy new solutions, or system intolerance
for frequent changes in the deployed solution [13], [14].

To solve this type of DOPs, Yu et al. [13] proposed an
approach called robust optimization over time (ROOT). In
ROOT, in order to reduce the number of times that the
deployed solution is changed, it is reused (i.e., kept deployed)
until its quality degrades to an unacceptable level. Therefore,
although a deployed solution in an environment is not nec-
essarily the best solution, it must satisfy a quality-based
constraint [15]. In this type of ROOT problems, a new solu-
tion must be chosen for deployment when the current deployed
solution is no longer acceptable after the last environmental
change [10]. We wish to maximize the average number of
environments where the previously deployed solutions can be
reused and kept deployed [15], [16]. Later, two other types of
ROOT problems were investigated: 1) time window-based [17]
and 2) switching cost-based [12] ROOT problems. In this arti-
cle, we focus on the first type, i.e., ROOT problems with
a quality-based constraint [13]. Unless otherwise stated, we
use the term ROOT to refer to this specific type of ROOT
throughout this article.

To solve a ROOT problem, not only should an EDO be capa-
ble of addressing the challenges of reacting/responding to the
environmental changes but also the challenges of estimating

1Also called the outdated memory issue in the DOP literature.
2Also called limited available computational resources in each environment.

the robustness and acceptability of solutions in the forthcom-
ing environments. A desirable solution in ROOT can remain
acceptable for a higher number of environments in the future.
Nevertheless, accurate estimation/prediction of the future
acceptability of solutions is very challenging. Depending on
how the existing ROOT methods deal with this challenge,
they can be categorized into fitness prediction [15], [17] and
promising regions’ reliability-based approaches [10], [18]. In
prediction-based methods, the actual fitness function is altered
with a substitute fitness function that considers the predicted
fitness values of the candidate solutions in the upcoming envi-
ronments [15], [17]. It is shown in [18] that using the predicted
future fitness values to find robust solutions is too error prone
for problem instances generated by the moving peaks bench-
mark (MPB) [19]. Reliability-based methods, on the other
hand, choose the solutions for deployment based on the esti-
mated behavior of the promising regions instead of predicting
the future fitness values of solutions [18], [20]. In these meth-
ods, some reliable promising regions are determined based
on the gathered information by a multipopulation method.
Thereafter, a solution is chosen for deployment from a reli-
able promising region based on a strategy, such as picking the
best found solution in the reliable promising region with high-
est fitness3 [20], or the best found solution in the promising
region with the smallest estimated shift severity [18].

Despite the importance of ROOT in many real-world appli-
cations and more than a decade from the first time it was
introduced [13], very little attention has been given to the
field. A major weakness of the existing methods is that
they are all tailored for very simple problems. For exam-
ple, some of their components are specifically developed
for low dimensions [16], simple dynamics [18], and/or reg-
ular/smooth search space/promising regions [15], [16], [18].
This creates a gap between the academic research and the
real-world applications. Moreover, all existing ROOT meth-
ods use EDOs [10], [15], [16], which are originally designed
for performing tracking the moving global optimum where
robustness is not considered in their population management
and control components. Despite the significant role of EDOs
in the ROOT methods, little attention has been given to design
EDO components which are ROOT-specific.

In this article, we propose two components that address
the aforementioned shortcomings: 1) a robustness estima-
tion component and 2) a systematic dual-mode computational
resource allocation (CRA) component. By combining the
proposed components with those of a multipopulation EDO
capable of tracking multiple moving promising regions, a new
ROOT method is formed. Thanks to the proposed robustness
estimation component, the new ROOT method is not depen-
dent on some oversimplified characteristics of the benchmark
problems. This component keeps and transfers the historical
knowledge about the covered promising regions and estimates
their robustness degrees accordingly. The estimated robustness
degree of each promising region is calculated based on the
number of environments that previous promising region’s sum-
mit positions could be reused/kept as the deployed solution

3In this article, maximization problems are considered.

YAZDANI et al.: ROBUST OPTIMIZATION OVER TIME BY ESTIMATING ROBUSTNESS 659

until the current environment. The estimated robustness val-
ues of the promising regions are used for choosing the next
solution for deployment and controlling the subpopulations.
A systematic dual-mode robustness-based CRA component
for managing the subpopulations is also proposed. Using this
component, the proposed method controls the subpopulations
based on the estimated robustness of the covered promising
regions and the system status.4

The organization of the remainder of this article is as
follows. Section II covers the related works. The proposed
method is described in Section III. Section IV explains the
experiment setup, including the used benchmark, performance
indicator, comparison algorithms, and parameter settings, and
also reports experimental results, comparisons, and analysis.
Finally, Section V concludes this article.

II. RELATED WORK

A ROOT method is usually constructed by assembling
an EDO and some additional components, such as a deci-
sion maker [20] or a transformation of the objective func-
tion [15], [17]. The literature of EDOs is not covered in this
article due to space limitations and the readers can refer to
the two-part survey in [2] and [5]. Instead, we only focus
on reviewing ROOT methods and the components specifically
designed for them.

A. ROOT Problems

Three types of ROOT problems have been investigated in
the literature: 1) ROOT problems based on acceptability of the
deployed solution in which the deployed solution is kept as
long as it remains acceptable [13]; 2) ROOT problems with
time window in which the deployed solution is kept during
each time window [17]; and 3) ROOT problems based on
acceptability of the deployed solution and switching cost in
which the deployed solution is kept until it becomes unaccept-
able or another solution is found whose fitness is considerably
higher than that of the deployed solution, making the benefit
of switching outweigh the cost [12]. As stated before, in this
article, we focus on the first type of ROOT problems where
the main objective is to minimize the number of times when
the deployed solution is changed.

Given a DOP f (t)(�x) with T environments, the aim of ROOT
is to find a set of deployed solutions S = {�s1,�s2, . . . ,�sl} where
1 ≤ l ≤ T . The main objective in ROOT is to minimize l. A
deployed solution �si ∈ S is considered robust if it remains
acceptable across more than one environment. For a deployed
solution �si to be acceptable in the tth environment, f (t)(�si)

must be greater than a predefined threshold μ [17]. Otherwise,
a new solution must be chosen for deployment. This accept-
ability evaluation approach has been used to determine the
acceptability of solutions in the majority of the works in the
literature [11], [18], [20], [21].

4In the proposed method, the system can be in two different states: 1) the
deployed solution is currently acceptable or a new solution for deployment
has already been chosen and 2) the deployed solution is no longer acceptable
and a new solution must be chosen for deployment before a deadline.

B. ROOT Methods

Despite the importance of ROOT in tackling many real-
world DOPs, this field has not received much attention so far.
To the best of our knowledge, there are only three main ROOT
methods, which are proposed by Jin et al. [15], Fu et al. [17],
and Yazdani et al. [18]. The rest of the works in the field are
designed based on these three works [12], [22], [23].

Jin et al. [15] proposed the first ROOT method in 2013.
This method uses the predicted fitness values of solutions in
a predefined number of future environments to estimate their
robustness. The main components of this method include a
single-population EDO, a database, an approximator, and a
predictor. The single population EDO is responsible for gath-
ering data to train the predictor and also the optimization
process. The historical data are archived in the database over
time, which is used to train the approximation and prediction
methods. Jin’s method uses a substitute objective function,
which is the accumulation of the actual fitness, predicted, and
approximated values.

Fu et al. [17] proposed a survival time-based ROOT method
whose main components are the same as Jin’s method, how-
ever, the used substitute objective function is different

F(t)(�x) =
{

0, if f (t)(�x) < μ

1+max
{
l′|∀i ∈ {

1, 2, . . . , l′
}

: f ′′(t+i)(�x) ≥ μ
}
, otherwise

(3)

where f ′′(t+i) is the prediction function that predicts the future
fitness value of �x in the (t+i)th environment. According to (3),
if the fitness value of a solution in the current environment is
less than μ, this solution is considered as a nonrobust solution.
Otherwise, robustness value of this solution will be the number
of successive future environments in which its fitness values
are predicted to remain above μ.

Several multiobjective ROOT methods have been proposed
to find robust solutions based on the substitute objective func-
tion in (3) and an additional objective function such as average
fitness of the deployed solutions or switching cost. In [24], the
algorithm tries to find a Pareto front based on the substitute
objective functions of average fitness over a predefined time
window and survival time. In [11], a multiobjective approach,
called ROOT/SC, is proposed for optimizing two objectives,
including maximizing the survival time (3) and minimizing the
switching cost. The switching cost is defined as the Euclidean
distance between the current deployed solution and a candi-
date solution. ROOT/SC was modified in [21] by adding the
current fitness of candidate solutions as the third objective.
Another group of multiobjective ROOT methods is designed
to find robust Pareto optimal solutions [25]–[27]. In these
methods, the main goal is to find Pareto optimal solutions
whose performance is acceptable for the current and upcoming
environments.

Yazdani et al. [18], [20] proposed a reliability-based ROOT
method. Unlike the previous ROOT methods that search for
robust solutions based on a substitute objective function, this
method works on the search space constructed by the original
objective function. The components include a multipopula-
tion EDO capable of locating and tracking multiple moving

660 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 3, JUNE 2023

promising regions and a decision maker that chooses the solu-
tions for deployment. The multipopulation EDO is responsible
to gather information about the promising regions (e.g., shift
severity and fitness fluctuation degree). Based on the gathered
information, the reliability of each covered promising region
is determined for choosing the next solution for deployment.
To this end, first, the fitness fluctuation degree of each region
covered by the ith subpopulation (popi) is calculated after each
environmental change as follows:

τ
(t)
i =

∣∣∣f (t−1)
(
�g∗(t−1)

i

)
− f (t)

(
�g∗(t−1)

i

)∣∣∣ (4)

where τ
(t)
i is the fitness fluctuation in the tth environmental

change, and �g∗(t−1)
i is the best found position by popi in the

t−1th environment. Thereafter, the average values of τi in the
past environments (τ̄i) are used for determining the reliability
of the region using

ρi =
{

1, if f (t)
(
�g∗(t)i

)
− τ̄i ≥ μ

0, otherwise.
(5)

If the best found position �g∗(t)i is reliable, it means that it is
expected that its worst possible future fitness value will remain
above the threshold μ for at least another environment. In the
tth environment, if the previous deployed solution becomes
unacceptable, the best found positions in the reliable promising
regions (i.e., ρi = 1) are considered as a set of candidate
solutions C for the next deployed solution. In [20], the solution
j in C is picked for deployment using

j = argmax
i∈C

(
f
(
�g∗(t)i

)
− τ̄i

)
(6)

where the solution from C that has the highest worst estimated
future fitness value is chosen for deployment. Another strategy,
used in [18], to choose a solution for deployment is as follows:

j = argmin
i∈C

(
s′i

s′max
+ h′i

h′max

)
(7)

where s′i and h′i are the estimated shift and height severity
values of the promising region covered by the ith subpopula-
tion, respectively, and s′max and h′max are the largest s′ and h′
values among reliable promising regions, respectively.

A major shortcoming of the reviewed methods in this sec-
tion is that they are all tailored for very simple problems. For
example, some of their components are designed for low num-
bers of dimensions, regular/smooth search space/promising
regions, and/or simple dynamics. As described before, both
Jin’s and Fu’s methods use approximation and prediction com-
ponents to estimate the solutions’ future fitness values. On the
one hand, it is shown in [10] that using such approximation
and prediction methods to estimate the future fitness values
of solutions can be error prone. On the other hand, Yazdani’s
method depends on the accuracy of the estimated fitness fluc-
tuations in (4). Until now, this method has only been tested
on MPB whose promising regions are regular/smooth, without
ill-conditioning, fully separable, and symmetric peaks [28],
with fixed peak relocation length over time and homoge-
neous dynamics [2]. However, our investigations indicate that
the effectiveness of determining reliability of the promising

Algorithm 1: Procedure of the ROOT Method Constructed
by Assembling the Proposed Components and Those of
Multipopulation EDO

1 Initialize pop1;
2 repeat
3 Choose sub-populations for execution by the proposed resource allocation

(Alg. 3);
4 foreach chosen popi do
5 popi ← Optimizer(popi);

6 Execute population management and diversity control components;
7 if Environment has changed then
8 Estimate robustness of the covered promising regions (Alg. 2);
9 Execute change reaction components;

10 if a solution need to be deployed then
11 Choose the best found solution in the promising regions with the

highest estimated robustness;

12 until stopping criterion is met;

regions based on the estimated fitness fluctuations deteriorates
where the problems are more challenging.

The last issue concerns the EDOs used in every ROOT
methods to perform the optimization in dynamic environ-
ments. All existing ROOT methods use EDOs, which are
originally designed for tracking the moving global opti-
mum (Jin’s and Fu’s methods use a single-population EDO
presented in [29], and Yazdani’s method uses the multipopu-
lation EDO from [30]). Despite the significant role of EDOs
in the ROOT methods, little attention has been given into
designing some components of EDOs, which take ROOT’s
considerations into account.

III. ROBUSTNESS ESTIMATION AND COMPUTATIONAL

RESOURCE ALLOCATION FOR ROOT

In this section, to address the shortcomings of the existing
ROOT methods, we propose two new components.

1) A robustness estimation component that uses an explicit
archive to keep and transfer historical knowledge
about the covered promising regions for estimating
their robustness degrees. The estimated robustness val-
ues of the promising regions are used for choosing
the next solution for deployment and controlling the
subpopulations.

2) A systematic dual-mode robustness-based CRA compo-
nent that picks the subpopulations to run in each iteration
in order to manage the consumption of the fitness evalua-
tions. This is done according to several factors, including
the system status, the estimated robustness of each cov-
ered promising region, and roles and task achievements
of subpopulations.

We integrate the proposed components into a state-of-the-
art multipopulation EDO to construct a ROOT algorithm.
Algorithm 1 shows a high level procedure of the resulting
ROOT method. As shown in this pseudocode, the proposed
robustness estimation component is executed after each envi-
ronmental change (line 8). The proposed resource allocation
is executed at the beginning of each iteration (line 3) to pick
the subpopulations to be run in the current iteration.

The high-level components of a multipopulation EDO
can be classified into change reaction (line 9), optimization

YAZDANI et al.: ROBUST OPTIMIZATION OVER TIME BY ESTIMATING ROBUSTNESS 661

(line 5), and population management and diversity controlling
components (line 6), which usually include the mechanisms
used for dividing the population into subpopulations, remov-
ing/randomizing redundant individuals/subpopulations, gener-
ating new subpopulations, and increasing/maintaining global
diversity.5 Finally, a decision maker is used (line 11) to choose
a solution for deployment.

In the rest of this section, we describe the following.
1) Suitable multipopulation EDOs that can be equipped

with the proposed components to form ROOT
algorithms.

2) The proposed robustness estimation component.
3) The proposed CRA.

A. Compatible Multipopulation EDO

In ROOT, the main responsibility of the multipopula-
tion EDO is not to find the global optimum but to locate
and track multiple moving promising regions. Each sub-
population tracks and covers one promising region. The
main purpose of tracking the promising regions for tackling
ROOT problems is that the solutions around their summits
are more likely to remain acceptable after environmental
changes [14], [18], [31]. Using the proposed robustness esti-
mation component’s explicit archive, the historical information
of the best found positions by each subpopulation in the
previous environments is retrieved and used to estimate the
robustness of each covered region.

Although many multipopulation EDOs have been developed
for tracking the moving global optimum, not all of them are
efficient at performing tracking multiple moving promising
regions. For example, many state-of-the-art multipopulation
EDOs, such as those that form the subpopulations by cluster-
ing the individuals based on their fitness and position [32],
are defective for this purpose as they may lose track of
the inferior (based on fitness) promising regions. Besides,
those multipopulation EDOs, whose number of subpopulations
and overall population size do not adapt to the discovered
promising regions, are not suitable for constructing a ROOT
method. Such EDOs are incapable of tracking multiple moving
promising regions effectively in the problems whose num-
ber of promising regions is larger than the number of the
EDO’s subpopulations. In such problems, several promising
regions cannot be covered due to the limited number of
subpopulations.

A suitable class of multipopulation EDOs for performing
a stable and reliable tracking of multiple moving promis-
ing regions over time are those whose number of sub-
populations adapts to the number of discovered promising
regions, where the membership of individuals in each sub-
population is fixed and determined based on the individuals’
indices [8], [30], [33]. These multipopulation EDOs usually
start with one subpopulation (Algorithm 1, line 1) and once it
has converged to a promising region, a new subpopulation is
initialized (Algorithm 1, line 6).

5The readers are referred to [2] for a detailed review of the population
management and diversity controlling components used in multipopulation
EDOs.

B. Proposed Robustness Estimation Component

The first component that is triggered right after an environ-
mental change is the proposed robustness estimation whose
main responsibility is to estimate the degree of robustness of
the covered promising regions. Estimated robustness values are
used for choosing solutions for deployment and also in the
population control by the proposed resource allocation. The
pseudocode of the proposed robustness estimation component
is shown in Algorithm 2.

Each popi is equipped with an explicit memory Mi, which
is a circular queue of size mmax. After each environmental
change, the best found position by popi in the last environ-
ment (�g∗(t−1)

i) is archived in Mi (line 1). mi is the number
of archived solutions in Mi. In the case in which the explicit
archive is full (i.e., mi = mmax) the oldest archived solution
is removed, then �g∗(t−1)

i will be archived.
After updating the explicit archive of all subpopulations, a

robustness value γ is calculated for each covered promising
region (lines 7–9). To this end, for each popi, γi is first reset to
zero. Thereafter, the acceptability of the archived solutions in
Mi in the current environment t is evaluated. We first evaluate
f (t)(Mi,1). If f (t)(Mi,1) is acceptable [i.e., f (t)(Mi,1) > μ],
we increment γi by one. Then, we repeat this step for Mi,2,
which contains �g∗(t−2)

i . This step is repeated until we either
reach an archived solution, which is unacceptable or have
evaluated all mi archived solutions in Mi.

The calculation of γ is costly (i.e., it consumes fitness
evaluations), in particular, when the number of discovered
promising regions is large. To avoid wasting the computational
resources for calculating γ , archived solutions are reevaluated
one-by-one from the most recent to the oldest, and once an
unacceptable archived solution is detected, the reevaluation
process stops. Furthermore, after detecting an unacceptable
archived solution, this solution and all older ones are removed
from the explicit archive. Actually, when a historical best
found solution in a promising region is not accepted in the
current environment, it cuts off the chain of robustness in the
successive environments. Consequently, we take no account of
the older archived solutions in the robustness estimation. We
remove the older archived solutions once the chain of robust-
ness is cut off by an unacceptable archived solution (line 12).
This pruning mechanism helps to reduce the burden of fit-
ness evaluation consumption caused by using the robustness
estimation component.

According to Algorithm 2, γi ∈ {0, 1, . . . ,mi}. The value
of γi indicates the number of successive environments for
which if any of the previous best found positions by popi
were deployed, they would have remained acceptable until the
current environment. Besides, considering the removal of the
unacceptable archived solutions in line 12, all existing archived
best found solutions in the tth environment were acceptable
from the environment that they were added to the archive until
the current environment, i.e.,

f (t−j)
(
�g∗(t−k−1)

i

)
≥ μ|j, k ∈ {0, 1, . . . , γi} ∧ k ≥ j. (8)

For a popi, larger values of γi show that the promising region
covered by this subpopulation had some characteristics during

662 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 3, JUNE 2023

Algorithm 2: Estimating the Robustness of popi (γi) and
Managing the Explicit Archive Mi

Input: Mi and �g∗(t−1)
i .

Output: Mi and γi.

1 Mi ← Push(�g∗(t−1)
i);

2 mi ← Update(mi);
3 γi ← 0;
4 j← t;
5 repeat
6 j← j− 1;

7 �y← Retrieve(�g∗(j)i ∈Mi);
8 if f (t)(�y) ≥ μ then
9 γi ← γi + 1;

10 until γi = mi ∨ f (t)(�y) < μ;
11 if γi < mi then
12 Remove({g∗(t−k)

i ∈Mi|k > γi});
13 mi ← γi;

the recent γi environments that resulted in acceptability of
the best found solutions over a larger numbers of the envi-
ronmental changes. Larger values of γi can be due to several
morphological and dynamical characteristics, such as smaller
shift severity, smaller fitness fluctuation, and/or wider shape
of the promising region. Therefore, larger values of γi indicate
higher likelihood of robustness to environmental changes.

C. Decision-Making Process

A decision maker is responsible to choose a solution for
deployment based on γ values calculated by the robustness
estimation component (Algorithm 1, line 11). Indeed, γ values,
which indicate robustness of the covered promising regions
from past to the current environment, form the historical
knowledge that is used by the decision maker for choosing
solutions for deployment. These solutions are chosen from the
promising regions with more reliable and suitable dynamical
and morphological characteristics, which are likely robust to
the upcoming environmental changes. To identify such promis-
ing regions, we use the gathered historical knowledge, i.e.,
γ values, to estimate their future robustness. We describe the
relation between γ values, some dynamical and morphological
characteristics of promising regions, and likelihood of future
robustness in Section S-I in the supplementary material.

In the proposed ROOT method, the best found position in
the promising region with the largest γ value is chosen for
deployment. The purpose of choosing such a solution is to
maximize the survival time, which is the number of successive
environmental changes that the deployed solution can remain
acceptable. Applying Algorithm 2 for the promising region
covered by popi, the output indicates that during the last γi

environments, a best found position in this region, which could
be successfully deployed, is still reusable until the end of the
current environment. Larger γ values for a promising region
demonstrate that it has some dynamical and morphological
characteristics, which make it more suitable for choosing solu-
tions for deployment that are likely robust to the upcoming
environmental changes.

Note that in the proposed robustness estimation component,
the archived solutions are used to form the historical knowl-
edge to estimate the future robustness of the promising regions
and they are not candidates for deployment. Indeed, similar
to [18], the proposed method focuses on robustness of promis-
ing regions, which differs from those ROOT methods proposed
in [15] and [16], which focus on the robustness of all candidate
solutions. This allows us to avoid the complexities and issues
of using approximation and prediction components [10], [18],
which are necessary for estimating the robustness of candidate
solutions used in [15] and [16].

D. Proposed Computational Resource Allocation Component

In most existing multipopulation EDOs, a simple round
robin/parallel method is used to allocate computational
resources to subpopulations in each iteration [2]. Knowing
that subpopulations do not necessarily share the same prior-
ity [2], [8], equal allocation of resources to all subpopulations
is inefficient [2].

Herein, we propose a new CRA component, which works
based on the estimated robustness of the covered promis-
ing regions, the role of the subpopulations, subpopulations’
progress in their tasks, their age, and the current system status.
The proposed resource allocation component uses three thresh-
olds to identify the role of the subpopulations and measuring
subpopulations’ progress in their tasks.

1) rconv: When the spatial size of a subpopulation is less
than rconv, it is assumed that is has converged to a
promising region. Otherwise, it has not yet converged
to any promising region and is still performing explo-
ration. Such a mechanism is commonly used to identify
converged subpopulations in EDOs [2], [34]. In this
article, the spatial size λi of a subpopulation popi is
defined as the Euclidean distance of the farthest pair of
individuals [35], which is calculated by

λi = max
�xj,�xk∈popi

‖�xj − �xk‖. (9)

2) rcover: When the spatial size of a subpopulation drops
below rcover, we assume that it has converged to the
promising region’s summit. Note that rcover < rconv and
if rcover < λi < rconv, we assume that although popi has
converged to the promising region, it is still climbing
the promising region to reach the summit.

3) rmin: This threshold has the smallest value out of the
three, i.e., rmin < rcover < rconv. When the spatial size
of a subpopulation drops below rmin, it is assumed that
the individuals of popi have collapsed on the summit of
a promising region. In this circumstance, it is assumed
that the tracking task has been fulfilled. Many EDOs use
rmin to deactivate collapsed subpopulations [9], [36].

Algorithm 3 shows the details of the proposed resource
allocation component. In each iteration, it determines which
subpopulations are allowed to run and use computational
resources (Algorithm 1, line 3). As can be seen in Algorithm 3,
the proposed resource allocation component is composed of
two operational modes, which are selected based on the current

YAZDANI et al.: ROBUST OPTIMIZATION OVER TIME BY ESTIMATING ROBUSTNESS 663

Algorithm 3: Selecting Subpopulations to Run in the
Current Iteration

Input: t, f (t)(�s), and γ and λ of all sub-populations.
Output: L.

1 L← ∅; // Create an empty set L
2 if t = 1 then // For the first environment
3 foreach {popi |λi > rmin} do
4 L← L ∪ i;

5 else
6 γmax = max{∀ popi}(γi);

7 if f (t)(�s) < μ ∧ {∃ popi |rmin < λi ∧ γi = γmax} then
8 Mode← Quick recovery;

9 else
10 Mode← Normal;

11 if Mode = Normal then
12 foreach {popi |rmin < λi ≤ rcover} do
13 Calculate pi using (10);
14 if U [0, 1] ≤ pi then
15 L← L ∪ i;

16 foreach {popi |λi > rcover} do
17 L← L ∪ i;

18 else if Mode = Quick recovery then
19 foreach {popi |rmin < λi ∧ γi = γmax} do
20 L← L ∪ i;

system status: 1) normal (lines 11–17) and 2) quick recovery
(lines 18–20).

1) Normal Mode: In the environments in which the
previously deployed solution is still acceptable/reusable,
or the new solution for deployment has been chosen.

2) Quick Recovery Mode: When the previously deployed
solution is no longer acceptable and a new solution must
be chosen for deployment.

In the following, we describe these two modes.
1) Normal Mode: In the normal mode, the proposed

resource allocation prioritizes the following subpopulations.
a) Subpopulations with larger γ values: These subpopu-

lations are very important since they are tracking the promising
regions that likely contain high quality robust solutions.
Consequently, by allocating more computational resources
to such subpopulations, their exploitation capability will be
accelerated and improved.

b) Subpopulations with unfinished explo-
ration/exploitation tasks: The proposed resource allocation
component also considers relatively young subpopulations
whose γ values are small, but they are important for locat-
ing and covering promising regions. A promising region
can be considered properly covered when a subpopulation
exploits around its summit and tracks it. The last generated
subpopulation is the one that is responsible for the vital task
of performing exploration in the multipopulation method.
This subpopulation fulfills its task once it has converged to
a promising region. Besides the explorer subpopulation, the
ones that have lately converged to the promising regions, but
still have not got close to the summit, are also prioritized by
the proposed resource allocation component. The main task of
each of these subpopulations is to exploit the promising region
and getting close to its summit. Assigning computational

resources to such subpopulations to fulfill their current
tasks is crucial for providing more accurate information for
the robustness estimation component. Besides, the lack of
prioritizing such subpopulations may even result in losing the
coverage of the newly discovered promising regions.

Allocating computational resources to converged subpop-
ulations is a waste of limited resources. For this reason,
resource allocation component stops optimizing subpopula-
tions with lost local diversity. This happens irrespective of
the resource allocation component mode, environment num-
ber, and γ values. In the resource allocation component, when
the spatial size of a subpopulation becomes smaller than rmin,
it does not get selected until its spatial size is increased by
the local diversity control component after each environmental
change [2], [10].

In the first environment, the round robin method is used
to allocate an identical amount of computational resources
to all subpopulations (whose spatial size is larger than rmin)
in each iteration since in the first environment, γ = 0 for
all subpopulations (Algorithm 3, lines 2–4). After the first
environmental change, in each environment where either the
previous deployed solution is still acceptable or a new solu-
tion has been chosen for deployment, the resource allocation
component in normal mode is activated. Below, we describe
this process.

In all iterations, the resource allocation component selects
the subpopulations with unfinished exploration/exploitation
tasks to run in the current iteration. The spatial size of the
the last generated subpopulation is always larger than rconv
since right after its spatial size falls under the threshold, a
new subpopulation is initialized. Therefore, the resource allo-
cation component selects any subpopulation whose spatial size
is larger than rconv. Besides, the subpopulations that have
recently converged to the basin of attraction of a promising
region and are not yet close to the summit are selected. These
subpopulations are the ones whose spatial sizes are less than
rconv but more than a second threshold rcover. When the spatial
size of a subpopulation falls under rcover, we assume that it
has converged to the promising region’s summit and fulfilled
its previous task. Since rcover < rconv, the proposed resource
allocation component’s normal mode selects all subpopula-
tions with spatial sizes larger than rcover, which are assumed
to be not finished with their exploration/exploitation tasks, to
run in the current iteration.

The main tasks of the subpopulations with spatial sizes
less than rcover include tracking the optimum of the promis-
ing region and providing a history of the optimum position
in each environment for the robustness estimation component.
It is expected that after initial environments and due to pri-
oritizing the subpopulations that have not converged to the
summits yet, most existing subpopulations will become tracker
subpopulations whose spatial sizes are less than rcover. The rea-
son is that the number of the promising regions in the DOPs
considered in this article—and in all existing works—is not
excessively high to hinder performance [2]. Consequently, it is
expected that after a while, most of the promising regions will
be covered by subpopulations that are residing around their
summits. Among these subpopulations, the proposed resource

664 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 3, JUNE 2023

allocation component prioritizes those with larger γ values
using a probability-based selection process. To this end, at
the beginning of each iteration, the resource allocation com-
ponent assigns a probability pi to each popi, which satisfies
rmin < λi ≤ rcover, i.e., the subpopulations participating in the
selection process are the ones whose spatial sizes are larger
than rmin and smaller than rcover. This probability is calculated
as follows:

pi = γi

max{
popj |rmin<λj<rcover

} γj
. (10)

Afterward, a random number is generated in [0, 1] with uni-
form distribution for each of these popi and if this number
is less than pi, then popi will be selected by the resource
allocation component to execute an internal iteration. In other
words, after determining the probability value for each subpop-
ulation using (10), a selection process is independently run for
each subpopulation, which decides whether it is chosen to run
in the current iteration or not. Since the probability of select-
ing the subpopulation with the highest robustness value among
the participating subpopulations in the selection process is 1.0
using (10), it will definitely be selected. Other participating
subpopulations also are selected with probability pi. Thus, at
least one subpopulation and at most all participating subpop-
ulations might be chosen. According to this probability-based
selection process, the superior subpopulations, i.e., the ones
with larger robustness values, have more chance to be selected
in each iteration. Note that although the inferior subpopula-
tions are less likely to be selected, they still have a chance
to be selected and perform tracking. Moreover, the more fre-
quent the superior subpopulations are selected, the quicker
they will be omitted in the selection process due to loss of
diversity (once their spatial sizes have shrunk to less than rmin).
Consequently, by excluding the subpopulations with larger γ

values, the selection probabilities for inferior subpopulations
increase.

2) Quick Recovery Mode: When the algorithm responses
to an environmental change, if the deployed solution is no
longer acceptable, the proposed resource allocation component
switches to the quick recovery mode. This mode is designed to
ensure that the full potential of the algorithm in finding a better
solution for deployment is used, in particular, when the change
frequency is high or there is a deadline (temporal constraint)
for deploying a new solution [3]. As stated in Section III-C, the
best found solution in the promising regions with the highest
γ value is chosen for deployment. To this end, we first identify
the highest value of robustness among all subpopulations as
γmax = max{∀ popi}(γi). Then, we identify the subpopulations
whose γi = γmax and compare their best found solutions. The
one with the highest fitness value is chosen for deployment
(see Algorithm 4, lines 24 and 25).

In this mode, only the subpopulations whose γi = γmax run
in all iterations while all other subpopulations are hibernated.
The resource allocation component remains in this mode until:

1) the spatial sizes of the running subpopulations become
less than rmin (i.e., sufficient exploitation has been
performed);

Algorithm 4: Instantiation of the Proposed ROOT Method
1 Initialize pop1;
2 repeat

// Executing the proposed computational resource
allocation component

3 Obtain list L using Alg. 3;
// Execute the optimization component of EDO

4 foreach popi ∈ L do
5 popi ← Optimizer(popi);

// Execute population management and diversity
control components of the EDO

6 foreach {popi & popj |i �= j} do // Exclusion component
7 if ‖�x∗i − �x∗j ‖ < ϕexcl then
8 Remove the inferior sub-population;

9 foreach popi do // Spatial size calculation
10 Update λi by Eq. (9);

11 if {� popi |λi > rconv} then
12 Initialize a new sub-population;

13 if Environment has changed then
14 foreach popi do
15 Agei = Agei +1;
16 Calculate ŝi by Eq. (S-3);

// Executing the proposed robustness
estimation component

17 foreach {popi |Agei > 1} do
18 Calculate γi by Alg. 2;

// Executing change reaction components of the
EDO

19 foreach {popi |λi < rconv} do
20 Re-diversify by Eq. (S-2);

21 foreach popi do
22 Update stored fitness values in the new environment;

23 if a solution need to be deployed then
24 γmax = max{∀ popi}(γi);

25 Deploy �x∗i from {popi |i = argmax{popj |γj=γmax}(f (t)(�x∗j))};
26 until stopping criterion is met;

2) the computational budget has run out before the
deadline.

When one of the aforementioned conditions is met, the
resource allocation component will switch back to the normal
mode immediately.

E. Detailed Description of an Instantiation of the
Proposed ROOT Method

Algorithm 4 shows how the proposed robustness estimation
and resource allocation components and those of a multipop-
ulation EDO are assembled to form an instantiation of the
proposed ROOT method. Herein, we choose a simple, yet very
efficient, multipopulation EDO framework from [9] and [10],
which is described in Section S-II in the supplementary
material. A complexity analysis of the instantiation of the
proposed ROOT method shown in Algorithm 4 is provided
in Section S-III in the supplementary material.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first describe the experimental design.
Then, we investigate the effectiveness of the proposed robust-
ness estimation and CRA components. We finally compare
the performance of a multipopulation EDO equipped with the
proposed components and several peer ROOT algorithms.

YAZDANI et al.: ROBUST OPTIMIZATION OVER TIME BY ESTIMATING ROBUSTNESS 665

A. Experimental Design

1) Benchmark Generator: The experiments in this article
are based on various problem instances generated by the
generalized MPB (GMPB) [28], [37]. GMPB is a bench-
mark generator, which is capable of generating landscapes
with a controllable number of promising regions with a vari-
ety of parametric and changeable characteristics, including
symmetry, condition number, irregularity, roughness, modal-
ity, and variable interaction. GMPB has several parameters
(see Table I) that can be set by the user to generate problem
instances with a vast variety of morphological and dynamical
characteristics and difficulty levels. Detailed information of
the GMPB used in this article is provided in Section S-IV in
the supplementary material. The MATLAB source code of this
benchmark is available from [38].

2) Performance Indicator: The focus of this article is on
solving ROOT problems in which the main goal is to find
solutions for deployment in order to maximize the average
number of environments that the deployed solutions remain
acceptable. It is worth to mention that none of the algo-
rithms examined in this article, including the proposed one,
are designed to maximize the fitness of deployed solutions
or minimize the switching cost, which are related to other
classes of ROOT problems or can be considered as other objec-
tives [11], [12], [17]. Considering the focus of this article, we
compare the performance of the algorithms according to the
average survival time [17], which is the most commonly used
performance indicator in the field [16], [18].

3) Algorithms: In the experiments, we use the multipop-
ulation framework from [10] for all multipopulation-based
methods, including the proposed one. We also use PSO with a
constriction factor [39] as the optimization component in the
multipopulation framework. To evaluate the effectiveness of
proposed resource allocation and robustness estimation com-
ponents, we add them to mPSO. This approach is denoted as
mPSO+CRA

+RE in the experiments.
Besides mPSO+CRA

+RE , we also use three other multipopula-
tion comparison algorithms, which are: mPSO, mPSOb, and
mPSOsh. mPSO is a tracking the moving global optimum
method that is adapted to tackle ROOTs in which the best
found solution (in terms of fitness) is chosen for the next
solution for deployment. mPSORb uses the ROOT decision
maker from [20], where the best found solution among the
candidate reliable promising regions is chosen for deployment.
mPSORsh applies (7) (for which estimated shift and height
severity values are needed) to choose the next solution for
deployment [18].

We also choose the fitness prediction-based ROOT methods
from [17] (denoted as PbMF) and [15] (denoted as PbMJ)
as comparison algorithms. For the experiments, we assume
that these methods have access to the previous environmental
parameters; thus, they do not need any approximation method.
It should be noted that the fitness evaluations used for training
the predictor in the previous environments are not counted
toward the overall computational cost. This means that the
results obtained by these algorithms are not affected by the
approximation error and can therefore be taken as an upper

TABLE I
PARAMETER SETTINGS OF THE GMPB. THE DEFAULT PARAMETER

VALUES ARE HIGHLIGHTED WHERE SEVERAL VALUES ARE USED IN

OUR EXPERIMENTS. THE MATLAB SOURCE CODE OF THE

USED GMPB CAN BE ACCESSED FROM [38]

bound for what the algorithms are capable of achieving in
practice.

In this article, we focus on DOPs with visible environmen-
tal changes where the optimization algorithms are informed
about environmental changes by other parts of the system, such
as sensors and agents, similar to many real-world DOPs [2].
Therefore, the examined algorithms in this article do not
use any change detection component. If needed, a simple
reevaluation-based change detection component [40] could be
added to the algorithms.

4) Parameter Settings: Table I shows the parameter set-
tings of GMPB. The experiments are done on the problem
instances with various numbers of promising regions (m),
acceptability threshold (μ), and dimensions (d). The param-
eter settings chosen in Table I are commonly used in the
ROOT and EDO literature. Different parameter settings result
in problem instances with different difficulty levels. In addi-
tion, different parameter settings generate problem instances
with different maximal robustness values for both problems
and promising regions. By increasing μ, the regions containing
the robust solutions shrink, the maximal possible survival time
decreases, and finding robust solutions becomes more chal-
lenging [16]. The higher the number of promising regions m,
the easier to find robust solutions. This is due to the fact that in
landscapes with larger numbers of the promising regions, the
size/number of areas containing robust solutions with better
qualities increases [18]. In addition, in problems with larger m
values, the promising regions are likely to overlap and support
the deployed solution to remain acceptable for further envi-
ronments. Finally, by increasing the dimension, the problem
instances become more challenging.

We use the parameter settings extracted from the sensitiv-
ity analysis in [10] for our multipopulation EDO framework
and also for PSO in the multipopulation methods. Besides,
the parameter settings of the proposed components are taken

666 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 3, JUNE 2023

TABLE II
PARAMETER SETTINGS OF THE COMPONENTS OF mPSO+CRA

+RE . THE MOST

RIGHT COLUMN INDICATES WHETHER THE PARAMETER SETTINGS ARE

TAKEN FROM THE ORIGINAL REFERENCES OR FROM THE SENSITIVITY

ANALYSIS RESULTS REPORTED IN SECTION S-V IN THE SUPPLEMENTARY

MATERIAL. NOTE THAT VALUES OF OTHER PARAMETERS OF THE

PROPOSED COMPONENTS, γi AND γmax, ARE CALCULATED IN EACH

ITERATION BY ALGORITHM 2 AND LINE 24 OF ALGORITHM 4,
RESPECTIVELY

from the sensitivity analysis reported in Section V in the sup-
plementary material. Parameter settings of mPSO+CRA

+RE are
summarized in Table II. For the parameter settings of the
comparison algorithms, the values suggested in their original
references are used. Our investigations also indicate that these
algorithms show their best efficiency with those suggested
settings.

B. Experimental Results

The statistical results provided in this section are based on
31 independent runs. For statistical analysis, we use multiple
comparison tests using the Wilcoxon rank-sum test with
Holm–Bonferroni p-value correction and α = 0.05.

1) Effect of the Proposed Components on Performance: In
this section, we investigate the effectiveness of the proposed
robustness estimation and CRA components. To this end,
we compare the performance of mPSO, mPSO with robust-
ness estimation component (mPSO+RE), and mPSO with
both proposed robustness estimation and CRA components
(mPSO+CRA

+RE). Fig. 1(a) compares the average survival time
over time by these three methods on GMPB with the default
parameter settings from Table I. We also compare the aver-
age percentage of the previously deployed solutions that are
reused (i.e., remaining acceptable) by these methods in each
environment in Fig. 1(b). Comparing the performance of
mPSO and mPSO+RE in these plots based on average sur-
vival time and the average percentage of acceptability of
the previously deployed solutions demonstrates the effective-
ness of this component in choosing more robust solutions for
deployment.

As can be seen in Figs. 1(a) and (b), adding the proposed
CRA component further improves the performance of the algo-
rithm. This improvement is a result of systematic control of
the computational resource consumption by each subpopula-
tion according to their estimated robustness value (provided
by the proposed robustness estimation component), role, task
achievement, and current system status. To further investigate

(a)

(b)

Fig. 1. Effects of the proposed robustness estimation and computation
resource allocation components on the performance of mPSO for GMPB
with the default parameter settings from Table I. This figure compares the
efficiency of simple mPSO, mPSO with robustness estimation component
(mPSO+RE), and mPSO with both proposed robustness estimation and com-
putation resource allocation components (mPSO+CRA

+RE). The plots are obtained
by averaging the results of 31 independent runs. (a) Average survival time over
time plot. (b) Average percentage of the previously deployed solutions which
are reused (i.e., remaining acceptable) in each environment. For the ith envi-

ronment, the value plotted in this figure is obtained by [(
∑b̂

b=1 ai,b)/b̂]×100
where b̂ is the total number of runs and ai,b ∈ {0, 1} shows the acceptability
of the last deployed solution in the ith environment of bth run. ai,b = 1 indi-
cates that the last deployed solution is still acceptable and reused in the ith
environment, and it is zero otherwise.

the effectiveness of the proposed resource allocation, we com-
pare the performance of mPSO+RE and mPSO+CRA

+RE on the
problem instances generated by GMPB with different num-
bers of the promising regions and the default settings for the
remaining parameters. The results are compared in Fig. 2. As
can be seen in this figure, by adding the proposed resource
allocation component, the performance is improved, in par-
ticular, in the problem instances with larger numbers of the
promising regions. In such problems, larger numbers of sub-
populations are generated to cover the promising regions.
Thus, the role of resource allocation becomes more vital
since larger numbers of the fitness evaluations are needed
in each iteration. mPSO+RE suffers from a shortage of the
available computational resources before the deployment time.
However, for the mPSO+CRA

+RE , this challenge is ameliorated
by systematic allocation of the computational resources to the
subpopulations with higher robustness and taking the system
status into account.

As described in Section III-D, besides prioritizing the
subpopulations with larger γ values, the proposed CRA
component also prioritizes the subpopulations, which are per-
forming exploration or recently have converged to a promising
region and are moving toward the summit. This systematic

YAZDANI et al.: ROBUST OPTIMIZATION OVER TIME BY ESTIMATING ROBUSTNESS 667

Fig. 2. Investigating the effect of the proposed CRA by comparing the
obtained average survival time by mPSO+RE and mPSO+CRA

+RE in problem
instances generated by GMPB with different numbers of promising regions
(m) and the default parameter settings from Table I for the rest of the
parameters.

Fig. 3. Investigating the effect of the proposed CRA by comparing the
ability of finding and covering/tracking promising regions in mPSO+RE and
mPSO+CRA

+RE over 100 environments of GMPB with 50 promising regions
(m = 50) and the default parameter settings from Table I for the rest of the
parameters. The plots are obtained by averaging the results of 31 independent
runs. Note that usually some smaller promising regions are covered by larger
ones, thus, the number of visible promising regions is usually less than m.
Besides, by changing the size and location of promising regions, the number
of visible promising regions changes over time [28].

prioritizing approach considerably improves the abilities of
exploration, exploitation, and tracking, which results in discov-
ering and covering larger numbers of promising regions. Fig. 3
shows the effect of using the proposed resource allocation in
the ability of the algorithm in finding and covering/tracking
promising regions over time. Note that a promising region is
considered covered if there is a subpopulation whose individ-
uals reside in the basin of attraction of the promising region.
As can be seen in this plot, thanks to the proposed resource
allocation component, mPSO+CRA

+RE covers larger numbers of
promising regions in comparison to mPSO+RE. By cover-
ing larger numbers of promising regions in mPSO+CRA

+RE , the
possibility of missing promising regions, which may contain
solutions with higher robustness, decreases that in turn results
in improving the performance of the algorithm in finding better
robust solutions.

2) Comparison With Peer Algorithms: In this section, we
compare the results obtained by mPSO+CRA

+RE and the peer
algorithms described in Section IV-A3 in solving problem
instances generated by GMPB with different dimensions d,
numbers of promising regions m, and acceptability thresh-
old values μ. The average survival time (and standard error)
obtained by the algorithms is reported in Table III, where

TABLE III
AVERAGE SURVIVAL TIME (AND STANDARD ERROR) ON GMPB WITH

DIFFERENT d, μ, AND m VALUES. THE HIGHLIGHTED ENTRIES ARE

SIGNIFICANTLY BETTER USING WILCOXON RANK-SUM TEST WITH

HOLM–BONFERRONI p-VALUE ADJUSTMENT (α = 0.05)

the best results are highlighted according to the performed
statistical analysis. The reported results in this table clearly
demonstrate that mPSO+CRA

+RE performs significantly better than
all comparison algorithms in all cases, thanks to the proposed
robustness estimation and CRA components. The robustness
estimation component used in mPSO+CRA

+RE does not rely on
any estimated parameter values related to the dynamical char-
acteristics of the promising regions, such as fitness fluctuation
(used in both mPSORsh and mPSORb), and/or shift and height
severity values (used in mPSORsh). As a result, mPSO+CRA

+RE
does not suffer from inaccuracy in estimating these values,
especially, in the DOPs with random and/or heterogeneous
dynamics [2] where estimating these parameter values is
error prone. Besides, additional morphological and dynamical
characteristics of the promising regions are also implicitly con-
sidered in the calculation of the estimated robustness values
in mPSO+CRA

+RE , which are not taken into consideration for
choosing solutions in mPSORsh and mPSORb.

The proposed CRA component is another major feature
of mPSO+CRA

+RE . The used resource allocation methods in
mPSORsh, mPSORb, and mPSO are designed for tracking the
moving global optimum [10], and they do not consider any
attribute related to the robustness of promising regions in
controlling subpopulations. On the other hand, the proposed
resource allocation is particularly designed for tackling ROOT
problems, which controls the subpopulations based on sev-
eral factors, including the robustness of the promising regions

668 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 3, JUNE 2023

and the acceptability of the deployed solution. Besides, the
proposed resource allocation takes the roles of subpopula-
tions, their convergence status, and their task achievements
into consideration.

To further investigate the performance of mPSO+CRA
+RE in

problem instances with different characteristics, we carry out
additional experiments on the problem instances generated by
GMPB with different acceptability ROOT threshold values,
change frequencies, shift severity degrees, and computational
budget values. The results are reported in Section S-VI in the
supplementary material. Moreover, to show the independence
of the proposed components with respect to the optimization
component used, we compare the performance of the mul-
tipopulation methods when they use differential evolution
(DE) [42] as the optimization component in Section S-VII
in the supplementary material. The results indicate the superi-
ority of the proposed ROOT method when DE is used as the
optimization component.

V. CONCLUSION

In this article, we have presented two new components—
robustness estimation and dual-mode CRA—for ROOT meth-
ods. The robustness estimation component is responsible for
estimating the robustness degree of the covered promising
regions, while the systematic dual-mode robustness-based
CRA component controls the subpopulations. These two com-
ponents and those of a multipopulation EDO, which is capable
of tracking multiple moving promising regions, are assembled
to form a new ROOT method. Unlike the existing compo-
nents for determining robust solutions, the performance of
the proposed robustness estimation component does not rely
on the oversimple characteristics of the benchmark problems,
such as fixed relocation length of the promising regions, uni-
modality and smoothness of the promising regions, and/or low
dimensionality of the problem. Moreover, using the proposed
dual-mode CRA component, the proposed ROOT method
is the first one that takes robustness and the system status
into account for controlling the subpopulations. The proposed
ROOT method and a set of peer methods have been used for
maximizing the average survival time of the deployed solutions
in 48 different problem instances with various characteristics
generated by GMPB. The experimental results have shown the
superiority of the proposed method in almost all test cases.

In our algorithm, we monitor the spatial size of subpopula-
tions to determine their role and also progress in carrying out
their tasks, where we used a simple widely used method [35]
for calculating the spatial size of subpopulations. Designing
a more advanced and systematic spatial size monitoring
method that takes some problem characteristics, such as ill-
conditioning and asymmetry into account, is a potential future
research direction.

In the proposed robustness estimation component, the value
of mmax should be set considering the scope of robustness in
the problem. In this article, the value of mmax is fixed over
time, which may not be efficient for solving heterogeneous
DOPs [2] in which dynamical behavior changes over time. In
such problems, the scope of robustness significantly changes

over time following the changes in the dynamical charac-
teristics, such as change frequency and severity. A potential
future work will be designing parameter adaptation mecha-
nisms [43] for adapting the value of mmax to the changing
scope of robustness over time in heterogeneous DOPs.

There are many real-world problems whose search
spaces contain multiple moving promising regions and the
multipopulation-based methods, such as our proposed method,
are efficient in solving them. A potential future work will be
solving a real-world ROOT problem. An example of real-world
ROOT problems is crowd monitoring and management [44],
which is a dynamic covering location problem [45]. In this
problem, the locations of security agent units are changed over
time based on the status of the crowd. However, frequently
changing the locations of security agent units is undesirable as
it disturbs the monitoring task. Consequently, in this problem,
we seek solutions (i.e., the locations of the security agent units)
that can remain acceptable for a longer time.

REFERENCES

[1] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic
optimization: A survey of the state of the art,” Swarm Evol. Comput.,
vol. 6, pp. 1–24, Oct. 2012.

[2] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao,
“A survey of evolutionary continuous dynamic optimization over
two decades—Part A,” IEEE Trans. Evol. Comput., vol. 25, no. 4,
pp. 609–629, Aug. 2021.

[3] T. T. Nguyen, “Continuous dynamic optimisation using evolution-
ary algorithms,” Ph.D. dissertation, Dept. School Comput. Sci., Univ.
Birmingham, Birmingham, U.K., 2011.

[4] J. Branke, Evolutionary Optimization in Dynamic Environments, vol. 3.
New York, NY, USA: Springer, 2012.

[5] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao,
“A survey of evolutionary continuous dynamic optimization over
two decades—Part B,” IEEE Trans. Evol. Comput., vol. 25, no. 4,
pp. 630–650, Aug. 2021.

[6] R. Z. Farahani, N. Asgari, N. Heidari, M. Hosseininia, and M. Goh,
“Covering problems in facility location: A review,” Comput. Ind. Eng.,
vol. 62, no. 1, pp. 368–407, 2012.

[7] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence
for dynamic optimization: Algorithms and applications,” Swarm Evol.
Comput., vol. 33, pp. 1–17, Apr. 2017.

[8] D. Yazdani, R. Cheng, C. He, and J. Branke, “Adaptive control of
subpopulations in evolutionary dynamic optimization,” IEEE Trans.
Cybern., early access, Dec. 7, 2020, doi: 0.1109/TCYB.2020.3036100.

[9] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,
“Scaling up dynamic optimization problems: A divide-and-conquer
approach,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 1–15,
Feb. 2020.

[10] D. Yazdani, “Particle swarm optimization for dynamically changing
environments with particular focus on scalability and switching cost,”
Ph.D. dissertation, Dept. Doctor Philos., Liverpool John Moores Univ.,
Liverpool, U.K., 2018.

[11] Y. Huang, Y. Ding, K. Hao, and Y. Jin, “A multi-objective approach
to robust optimization over time considering switching cost,” Inf. Sci.,
vols. 394–395, pp. 183–197, Jul. 2017.

[12] D. Yazdani, J. Branke, M. N. Omidvar, T. T. Nguyen, and X. Yao,
“Changing or keeping solutions in dynamic optimization problems
with switching costs,” in Proc. Genet. Evol. Comput. Conf., 2018,
pp. 1095–1102.

[13] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust optimization over time—
A new perspective on dynamic optimization problems,” in Proc. IEEE
Congr. Evol. Comput., 2010, pp. 1–6.

[14] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Characterizing environmental
changes in robust optimization over time,” in Proc. IEEE Congr. Evol.
Comput., 2012, pp. 1–8.

[15] Y. Jin, K. Tang, X. Yu, B. Sendhoff, and X. Yao, “A framework for
finding robust optimal solutions over time,” Memetic Comput., vol. 5,
no. 1, pp. 3–18, 2013.

http://dx.doi.org/0.1109/TCYB.2020.3036100

YAZDANI et al.: ROBUST OPTIMIZATION OVER TIME BY ESTIMATING ROBUSTNESS 669

[16] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Robust optimization over
time: Problem difficulties and benchmark problems,” IEEE Trans. Evol.
Comput., vol. 19, no. 5, pp. 731–745, Oct. 2015.

[17] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Finding robust solutions
to dynamic optimization problems,” in Proc. Eur. Conf. Appl. Evol.
Comput., 2013, pp. 616–625.

[18] D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization over time
by learning problem space characteristics,” IEEE Trans. Evol. Comput.,
vol. 23, no. 1, pp. 143–155, Feb. 2019.

[19] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in Proc. IEEE Congr. Evol. Comput., vol. 3,
1999, pp. 1875–1882.

[20] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A new multi-
swarm particle swarm optimization for robust optimization over time,”
in Applications of Evolutionary Computation, G. Squillero and K. Sim,
Eds. Cham, Switzerland: Springer Int., 2017, pp. 99–109.

[21] Y. Huang, Y. Jin, and K. Hao, “Decision-making and multi-
objectivization for cost sensitive robust optimization over time,” Knowl.
Based Syst., vol. 199, Jul. 2020, Art. no. 105857.

[22] M. Fox, S. Yang, and F. Caraffini, “An experimental study of prediction
methods in robust optimization over time,” in Proc. Congr. Evol.
Comput., 2020, pp. 1–7.

[23] P. Novoa-Hernández, D. A. Pelta, and C. C. Corona, “Approximation
models in robust optimization over time—An experimental study,” in
Proc. Congr. Evol. Comput., 2018, pp. 1–6.

[24] Y.-N. Guo, M. Chen, H. Fu, and Y. Liu, “Find robust solutions over
time by two-layer multi-objective optimization method,” in Proc. IEEE
Congr. Evol. Comput. (CEC), 2014, pp. 1528–1535.

[25] M. Chen, Y. Guo, H. Liu, and C. Wang, “The evolutionary algorithm to
find robust Pareto-optimal solutions over time,” Math. Problems Eng.,
vol. 2015, Apr. 2015, Art. no. 814210.

[26] Y. Guo, H. Yang, M. Chen, J. Cheng, and D. Gong, “Ensemble
prediction-based dynamic robust multi-objective optimization methods,”
Swarm Evol. Comput., vol. 48, pp. 156–171, Aug. 2019.

[27] Y. Guo, H. Yang, M. Chen, D. Gong, and S. Cheng, “Grid-based
dynamic robust multi-objective brain storm optimization algorithm,” Soft
Comput., vol. 24, no. 10, pp. 7395–7415, 2020.

[28] D. Yazdani, M. N. Omidvar, R. Cheng, J. Branke, T. T. Nguyen,
and X. Yao, “Benchmarking continuous dynamic optimization: Survey
and generalized test suite,” IEEE Trans. Cybern., vol. 52, no. 5,
pp. 3380–3393, May 2022, doi: 10.1109/TCYB.2020.3011828.

[29] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimization:
Detection and response to dynamic systems,” in Proc. Congr. Evol.
Comput., vol. 2, 2002, pp. 1666–1670.

[30] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A
novel multi-swarm algorithm for optimization in dynamic environments
based on particle swarm optimization,” Appl. Soft Comput., vol. 13,
no. 4, pp. 2144–2158, 2013.

[31] L. Adam and X. Yao, “A simple yet effective approach to robust
optimization over time,” in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI),
2019, pp. 680–688.

[32] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Trans.
Evol. Comput., vol. 14, no. 6, pp. 959–974, Dec. 2010.

[33] T. Blackwell, Particle Swarm Optimization in Dynamic Environments.
Berlin, Germany: Springer, 2007, pp. 29–49.

[34] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 459–472, Aug. 2006.

[35] K. Trojanowski, “Properties of quantum particles in multi-swarms for
dynamic optimization,” Fundamenta Informaticae, vol. 95, nos. 2–3,
pp. 349–380, 2009.

[36] M. Kamosi, A. B. Hashemi, and M. R. Meybodi, “A hibernating multi-
swarm optimization algorithm for dynamic environments,” in Proc. 2nd
World Congr. Nat. Biol. Inspired Comput., 2010, pp. 363–369.

[37] D. Yazdani et al., “IEEE CEC 2022 competition on dynamic
optimization problems generated by generalized moving peaks bench-
mark,” 2021, arXiv:2106.06174.

[38] D. Yazdani. “Generalized Moving Peaks Benchmark for Robust
Optimization Over Time (MATLAB Source Code).” 2021. [Online].
Available: https://bitbucket.org/public-codes-danial-yazdani/gmpb-for-
root/src/main/ (Accessed: Dec. 6, 2021).

[39] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Proc. IEEE Congr. Evol.
Comput., vol. 1, 2001, pp. 84–88.

[40] H. Richter, “Detecting change in dynamic fitness landscapes,” in Proc.
IEEE Congr. Evol. Comput., 2009, pp. 1613–1620.

[41] T. Blackwell, J. Branke, and X. Li, “Particle swarms for dynamic
optimization problems,” in Swarm Intelligence: Introduction and
Applications (Lecture Notes in Computer Science), C. Blum and
D. Merkle, Eds. Berlin, Germany: Springer, 2008, pp. 193–217.

[42] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[43] C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning
methods for metaheuristics,” IEEE Trans. Evol. Comput., vol. 24, no. 2,
pp. 201–216, Apr. 2020.

[44] C. Martella, J. Li, C. Conrado, and A. Vermeeren, “On current crowd
management practices and the need for increased situation aware-
ness, prediction, and intervention,” Safety Sci., vol. 91, pp. 381–393,
Jan. 2017.

[45] F. Plastria, Covering Location Problems. New York, NY, USA:
Springer-Verlag, 2002, pp. 37–79.

Danial Yazdani (Member, IEEE) received the Ph.D.
degree in computer science from Liverpool John
Moores University, Liverpool, U.K., in 2018.

He is currently a Research Fellow with the
Data Science Institute, Faculty of Engineering and
Information Technology, University of Technology
Sydney, Ultimo, NSW, Australia. Prior to that,
he was a Research Assistant Professor with the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China. His main research interests

include evolutionary algorithms, dynamic optimization problems, large-scale
optimization, and covering location problems.

Dr. Yazdani was a recipient of the Best Thesis Award from the Faculty
of Engineering and Technology, Liverpool John Moores University, and the
SUSTech Presidential Outstanding Postdoctoral Award from the Southern
University of Science and Technology. He is a member of the IEEE Task
Force on Evolutionary Computation in Dynamic and Uncertain Environments,
and the IEEE Task Force on Large-Scale Global Optimization.

Donya Yazdani received the Ph.D. degree in com-
puter science from the University of Sheffield,
Sheffield, U.K., in 2020, with a thesis on the time
complexity analysis of artificial immune systems for
combinatorial optimization.

She is currently a Visiting Researcher with the
University of Sheffield. Prior to that, she was a
Lecturer with the Department of Computer Science,
Aberystwyth University, Aberystwyth, U.K. Her cur-
rent research interests include theoretical analysis
of evolutionary algorithms, dynamic optimization

problems, and combinatorial optimization.

Jürgen Branke (Member, IEEE) received the Ph.D.
degree from the University of Karlsruhe, Karlsruhe,
Germany, in 2000.

He is a Professor of Operational Research
and Systems with the Warwick Business School,
University of Warwick, Coventry, U.K. He has
been an active Researcher in the area of evo-
lutionary optimization since 1994 and has pub-
lished more than 200 papers in international
peer-reviewed journals and conferences and a
book on Evolutionary Optimization in Dynamic

Environments. Besides dynamically changing environments, his research
interests include multiobjective optimization, handling of uncertainty in
optimization, simulation-based optimization, and the design of complex
systems.

Prof. Branke is an Editor of ACM Transactions on Evolutionary Learning
and Optimization, an Area Editor of the Journal of Heuristics and the
Journal on Multi-Criteria Decision Analysis, as well as an Associate
Editor of IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION and
Evolutionary Computation Journal.

http://dx.doi.org/10.1109/TCYB.2020.3011828

670 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 3, JUNE 2023

Mohammad Nabi Omidvar (Senior Member,
IEEE) received the first bachelor’s degree (First
Class Hons.) in computer science, the second bach-
elor’s degree in applied mathematics, and the Ph.D.
degree in computer science from RMIT University,
Melbourne, VIC, Australia, in 2010, 2014, and 2016,
respectively.

He is currently an Assistant Professor of Artificial
Intelligence in Financial Services affiliated with
Leeds University Business School and School of
Computing, University of Leeds, Leeds, U.K., and

the Chair of IEEE Computational Intelligence Taskforce on Large-Scale
Global Optimization. Prior to that, he was a Research Fellow with the
School of Computer Science, University of Birmingham, Birmingham, U.K.
His current research interests include large-scale global optimization, high-
dimensional machine learning, and AI for financial services.

Dr. Omidvar is the winner of IEEE CEC Large-Scale Global Optimization
Competition in 2019, and a recipient of the IEEE TRANSACTION ON

EVOLUTIONARY COMPUTATION Outstanding Paper Award for his research on
large-scale global optimization in 2017, the Australian Postgraduate Award in
2010, and the Best Computer Science Honours Thesis Award from the School
of Computer Science and IT, RMIT University.

Amir Hossein Gandomi (Senior Member, IEEE)
received the Ph.D. degree in engineering from the
University of Akron, Akron, OH, USA, in 2015.

He is a Professor of Data Science and an ARC
DECRA Fellow with the Faculty of Engineering and
Information Technology, University of Technology
Sydney (UTS), Ultimo, NSW, Australia. Prior to
joining UTS, he was an Assistant Professor with
the Stevens Institute of Technology, Hoboken, NJ,
USA, and a Distinguished Research Fellow with
the BEACON Center, Michigan State University,

East Lansing, MI, USA. He has published over 300 journal papers and 12
books which collectively have been cited over 27 000 times (H-index = 77).
His research interests are global optimization and (big) data analytics using
machine learning and evolutionary computations in particular.

Prof. Gandomi has received multiple prestigious awards for his research
excellence and impact, such as the 2022 Walter L. Huber Prize. He has
been named as one of the most influential scientific minds and Highly Cited
Researcher (top 1% publications and 0.1% researchers) for five consecutive
years from 2017 to 2021. He also ranked 17th in GP bibliography among
more than 12 000 researchers. He has served as an associate editor, editor,
and guest editor in several prestigious journals, such as an Associate Editor
of IEEE TRANSACTIONS ON BIG DATA and IEEE INTERNET OF THINGS

JOURNAL. He is active in delivering keynotes and invited talks.

Xin Yao (Fellow, IEEE) received the Ph.D. degree
from the University of Science and Technology of
China, Hefei, China, in 1990.

He is a Chair Professor of Computer Science
with the Southern University of Science and
Technology, Shenzhen, China, and a part-time
Professor of Computer Science with the University
of Birmingham, Birmingham, U.K. He was a
Distinguished Lecturer of the IEEE Computational
Intelligence Society (CIS). His major research
interests include evolutionary computation, ensem-

ble learning, and their applications to software engineering.
Prof. Yao received a prestigious Royal Society Wolfson Research Merit

Award in 2012, the IEEE CIS Evolutionary Computation Pioneer Award in
2013, and the 2020 IEEE Frank Rosenblatt Award. His paper on evolving
artificial neural networks won the 2001 IEEE Donald G. Fink Prize Paper
Award. He also won the 2010, 2016, and 2017 IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION Outstanding Paper Awards, the 2011 IEEE
TRANSACTIONS ON NEURAL NETWORKS Outstanding Paper Award, and
many other best paper awards. He was the President of IEEE CIS from 2014 to
2015 and the Editor-in-Chief of IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION from 2003 to 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

