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ALMOST BI-LIPSCHITZ EMBEDDINGS AND ALMOST

HOMOGENEOUS SETS

ERIC J. OLSON AND JAMES C. ROBINSON

Abstract. This paper is concerned with embeddings of homogeneous spaces
into Euclidean spaces. We show that any homogeneous metric space can
be embedded into a Hilbert space using an almost bi-Lipschitz mapping (bi-
Lipschitz to within logarithmic corrections). The image of this set is no longer
homogeneous, but ‘almost homogeneous’. We therefore study the problem
of embedding an almost homogeneous subset X of a Hilbert space H into a
finite-dimensional Euclidean space. We show that if X is a compact subset of
a Hilbert space and X − X is almost homogeneous, then, for N sufficiently
large, a prevalent set of linear maps from X into R

N are almost bi-Lipschitz
between X and its image.

1. Introduction

In this paper we investigate abstract embeddings between metric spaces, Hilbert
spaces, and finite-dimensional Euclidean spaces. Historically (starting with Bouli-
gand in [3]), attention has been on bi-Lipschitz embeddings. By weakening this to
almost bi-Lipschitz embeddings, we are able to obtain a number of new results.

A metric space (X, d) is said to be (M, s)-homogeneous (or simply homogeneous)
if any ball of radius r can be covered by at most M(r/ρ)s smaller balls of radius ρ.
Since any subset of RN is homogeneous and homogeneity is preserved under bi-
Lipschitz mappings, it follows that (X, d) must be homogeneous if it is to admit
a bi-Lipschitz embedding into some R

N (cf. comments in Haj�lasz [6]). The As-
souad dimension of X, dA(X), is the infimum of all s such that (X, d) is (M, s)-
homogeneous for some M ≥ 1.

Assouad [1] showed that (X, d) is homogeneous if and only if the snowflake spaces
(X, dα) with 0 < α < 1 admit bi-Lipschitz embeddings into some R

N (where N
depends on α). However, the three-dimensional Heisenberg group equipped with
its Carnot-Carathéodory metric is homogeneous but cannot be embedded into any
Euclidean space in a bi-Lipschitz way (see Semmes [22]). Furthermore, there are
examples due to Laakso [13] (see also Lang & Plaut [12]) of homogeneous spaces that
do not even admit a bi-Lipschitz embedding into an infinite-dimensional Hilbert
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space. This paper starts with a simple result, based on Assouad’s argument, that
any homogeneous metric space admits an almost bi-Lipschitz embedding into an
infinite-dimensional Hilbert space.

The class of γ-almost L-bi-Lipschitz mappings f : (X, d) → (X̃, d̃) (or almost
bi-Lipschitz mappings for short) consists of all those maps for which there exists a
γ ≥ 0 and an L > 0 such that

(1.1)
1

L

d(x, y)

slog(d(x, y))γ
≤ d̃(f(x), f(y)) ≤ Ld(x, y)

for all x, y ∈ X such that x �= y. Here slog(x) is the ‘symmetric logarithm’ of x,
defined as

slog(x) := log(x+ x−1),

and so an almost bi-Lipschitz map is bi-Lipschitz to within logarithmic corrections.
Although the bi-Lipschitz image of a homogeneous set is homogeneous, this is

not true for almost bi-Lipschitz images; they are, however, almost homogeneous:
we say that (X, d) is (α, β)-almost (M, s)-homogeneous if

(1.2) NX(r, ρ) ≤ M

(
r

ρ

)s

slog(r)βslog(ρ)α

for all 0 < ρ < r < ∞, where NX(r, ρ) is the minimum number of balls of radius
ρ necessary to cover any ball of radius r. The Assouad (α, β)-dimension of X,

dα,βA (X), is the infimum of all s such that X is (α, β)-almost (M, s)-homogeneous
for some M ≥ 1.

If X is a subset of a vector space, then one can define the set of differences
X −X:

X −X = {x1 − x2 : x1, x2 ∈ X} .
Olson [17] showed that given a compact X ⊂ R

N with dA(X−X) = d, almost every
projection of rank k > d provides an almost bi-Lipschitz embedding of X into R

k.
In this paper we show a similar result for compact subsets X of a Hilbert space: if

the set of differences1 X −X is almost homogeneous with dα,βA (X −X) = d, then
‘most’ linear maps into Euclidean spaces Rk with k > d provide almost bi-Lipschitz
embeddings of X. More explicitly, if k > d, then the set of almost bi-Lipschitz
embeddings into R

k is prevalent in the space of all linear maps into R
k, in the sense

of Hunt, Sauer & Yorke [9].
There is an unfortunate gap here. An almost homogeneous metric space has an

almost bi-Lipschitz image that is an almost homogeneous subset of a Hilbert space.
However, our embedding theorem for a subset X of a Hilbert space requires that
not X itself, but the set X −X of differences, is almost homogeneous.

In Section 2 we state some elementary properties of the (α, β)-Assouad dimension
and show that any almost homogeneous metric space (X, d) can be embedded into a
Hilbert space in an almost bi-Lipschitz way. That such almost bi-Lipschitz images

1The introduction of a condition on the dimension of the setX−X of differences, rather than on
X itself, is common in the literature on abstract embeddings. The proof of Mañé’s 1981 embedding
theorem requires the Hausdorff dimension of X − X to be finite, a condition not ensured by the
finiteness of the Hausdorff dimension of X. Foias & Olson [4] and Hunt & Kaloshin [11] treat the
upper box-counting dimension, which is unusual in having the property that dF(X) < ∞ implies
that dF(X − X) < ∞. [Recall that dF(X) = lim supε→0 logN(X, ε)/(− log ε), where N(X, ε) is

the minimum number of balls of radius ε needed to cover X.]
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of almost homogeneous spaces are again almost homogeneous is shown in Section
3. Section 4 treats the local versions of homogeneity and almost homogeneity.
Section 5 contains our main result on embedding a subset X of a Hilbert space with
X − X almost homogeneous, while in Section 6 we consider what is possible for
such subsets knowing only properties of X. In Section 7 we explore the relationship

between dα,βA (X) and dα,βA (X−X). After Section 8, where we give an example of a
homogeneous subset of a Hilbert space that cannot be bi-Lipschitz embedded into
any R

k using any linear map, we finish with some interesting open problems.
Throughout the paper all Hilbert spaces are real.

2. Almost homogeneous metric spaces

As discussed above, we will say that a metric space (X, d) is (α, β)-almost (M, s)-
homogeneous (or simply almost homogeneous) if any ball of radius r can be covered
by at most2

(2.1) NX(r, ρ) ≤ M

(
r

ρ

)s

slog(r)β slog(ρ)α

balls of radius ρ (with ρ < r), for some M ≥ 1 and s ≥ 0, where slog(x) =
log(x+ x−1).

We now give some simple properties of the function slog.

Lemma 2.1. Given L > 0 and γ ≥ 0, there exist constants AL, BL, aγ , bγ , σ ∈
(0,∞) independent of x such that

(p1) | log(x)| ≤ slog(x) ≤ log 2+ | log(x)|, in particular slog(2k) ≤ (1+ |k|) log 2,
(p2) AL slog(x) ≤ slog(Lx) ≤ BL slog(x),
(p3) aγ slog(x) ≤ slog(x slog(x)γ) ≤ bγ slog(x),

for all x ≥ 0, and

(p4) if 2−(k+1) ≤ x ≤ 2−k, then slog(x) ≥ σ slog(2−k).

Proof. (p1) is elementary. For (p2) consider the quotient function g : (0,∞) →
(0,∞) defined by

g(x) =
slog(Lx)

slog(x)
.

Let aL = inf { g(x) : x ∈ (0,∞) } and bL = sup { g(x) : x ∈ (0,∞) }. Since
lim
x→0

g(x) = 1, lim
x→∞

g(x) = 1, and 0 < g(x) < ∞ for x ∈ (0,∞),

then both aL and bL are finite positive constants. The proof of (p3) is similar. For
(p4) set x = 2−r with k ≤ r ≤ k + 1. Since slog(x) = log(x + 1/x) ≥ log 2 and
slog(2−r) ≥ | log 2−r| = |r| log 2 from (p1), then slog(x) ≥ (1 + |r|)/2. Therefore,
the estimate

slog(2−k)

slog(x)
≤ (1 + |k|) log 2

(1 + |r|)/2 ≤ 4 log 2

gives (p4) with σ = 1/(4 log 2). �
2For bounded metric spaces (2.1) could be replaced by

NX(r, ρ) ≤ M ′
(
r

ρ

)s

log(e + ρ−1)γ

(in terms of our current definition we would have M ′ ≥ M and γ = α + β), while for compact
spaces the factor of e in the logarithm could also be dropped by considering only ρ ≤ r ≤ ε for
some ε > 0 (see Section 4). However, (2.1) allows us to treat general metric spaces.
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We define the Assouad (α, β)-dimension of X, dα,βA (X), to be the infimum of all
s for which X is (α, β)-almost (M, s)-homogeneous. When α = β = 0 we recover
the standard definition of a homogeneous space and the usual Assouad dimension.

We note here that it is straightforward to show that the Assouad (α, β)-dimension
satisfies the minimal properties we would ask for in a dimension, namely that

X ⊆ Y ⇒ dα,βA (X) ≤ dα,βA (Y ), dα,βA (X ∪ Y ) = max(dα,βA (X), dα,βA (Y )),

and dα,βA (O) = n if O is an open subset of Rn. Furthermore,

(2.2) α1 ≥ α2 and β1 ≥ β2 ⇒ dα1,β1

A (X) ≤ dα2,β2

A (X).

We now show that if (X, d) is almost homogeneous, then it can be embedded
into an infinite-dimensional Hilbert space in an almost bi-Lipschitz way. Key to
this result is the following proposition, which although not given explicitly in this
form, essentially occurs in Assouad’s paper. Indeed, it is the main ingredient in his
proof of the existence of bi-Lipschitz maps between (X, dα) and R

N .

Proposition 2.2. Let (X, d) be an (α, β)-almost (M, s)-homogeneous metric space
and distinguish a point a ∈ X. Then there are constants A,B,C > 0 such that for
every j ∈ Z there exists a map φj : (X, d) → R

Mj , where Mj = C(1+ |j|)α+β, with
φj(a) = 0, and for every x1, x2 ∈ X

(a1) 2−(j+1) < d(x1, x2) ≤ 2−j implies that ‖φj(x1)− φj(x2)‖ ≥ A, and
(a2) ‖φj(x1)− φj(x2)‖ ≤ BMj min[1, 2jd(x1, x2)].

Proof. The proof follows exactly the steps in Assouad’s original paper (see also
Heinonen’s book [7] or lecture notes [8] for an account that is easier to follow)
which we outline very briefly here: if Nj is a maximal 2−j net in (X, d), then for
every x ∈ X

card
(
Nj ∩B(x, 12 · 2−j)

)
≤ NX(12 · 2−j , 2−j−1)

≤ 24M slog(12 · 2−j)α slog(2−j−1)β

≤ C(1 + |j|)α+β,

where the constant C is a product of M and constants appearing in Lemma 2.1.
Thus, there exists a ‘colouring map’ κj : Nj →

{
e1, . . . , eMj

}
, where

{
e1, . . . , eMj

}
is the standard basis of RMj , such that κj(a) �= κj(b) if d(a, b) < 12 · 2−j . Let

φ̃j(x) =
∑

ai∈Nj

max
{
(2− 2jd(x, ai)), 0

}
κj(ai).

Note that 22−j < d(x1, x2) ≤ 23−j implies that φ̃j(x1) is orthogonal to φ̃j(x2). It

is then straightforward to show that the map φj(x) = φ̃j+3(x) − φ̃j+3(a) satisfies
the properties given in the statement of the proposition. �

Theorem 2.3. Let (X, d) be an (α, β)-almost (M, s)-homogeneous metric space and
H an infinite-dimensional separable Hilbert space. Then, for every γ > α+ β + 1

2 ,
there exists a map f : X → H and a constant L such that

1

L

d(x, y)

slog(d(x, y))γ
≤ ‖f(s)− f(t)‖ ≤ Ld(x, y),

i.e., f is γ-almost bi-Lipschitz.
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Proof. Let {ej}j∈Z
be an orthonormal set of vectors in some Hilbert space. Let

δ > 1/2 and define f : (X, d) →
⊕∞

j=−∞R
Mj ⊗ ej � H by

(2.3) f(x) =

∞∑
j=−∞

2−j

(1 + |j|)δMj
φj(x)⊗ ej ,

where the maps φj are those of Proposition 2.2. Since f(a) = 0, the upper bound
on ‖f(s) − f(t)‖ that we now prove will also show convergence of the series (2.3)
defining f . Let (x1, x2) be a pair of distinct points of X. Thus, there exists
l ∈ Z such that 2−(l+1) < d(x1, x2) ≤ 2−l. Note that for such a pair of points
‖φl(x1)− φl(x2)‖ ≥ A. We have

‖f(x1)− f(x2)‖2 =
∞∑

j=−∞

2−2j

(1 + |j|)2δ
‖φj(x1)− φj(x2)‖2

M2
j

≤
∞∑

j=−∞

B2

(1 + |j|)2δ d(x1, x2)
2

≤ c1 d(x1, x2)
2,

where the sum converges since 2δ > 1.
The lower bound is straightforward, since

‖f(x1)− f(x2)‖ ≥ 2−l

(1 + |l|)δMl
‖φl(x1)− φl(x2)‖ ≥ A

2−l

(1 + |l|)δMl

≥ c2
2−l

(1 + |l|)α+β+δ
≥ c2

d(x, y)

(1 + |l|)α+β+δ
.

Since d(x, y) = 2−r with l ≤ r < l + 1 it follows using (p1) from Lemma 2.1 that

1 + |l|
slog(d(x, y))

=
1 + |l|

slog(2−r)
≥ 1 + |l|

(1 + |r|) log 2 ≥ 1

2 log 2
,

and so

‖f(x1)− f(x2)‖ ≥ c3
d(x, y)

slog(d(x, y))α+β+δ
.

Taking L = max(c1, 1/c3) finishes the proof. �

We note here that if (X, d) is bounded, then there exists a k such that d(x1, x2)
≤ 2k for all x1, x2 ∈ X. In this case the definition of f in (2.3) can be simplified to

(2.4) f(x) =

∞∑
j=−k

2−j

(1 + |j|)δMj
φj(x)⊗ ej ,

and will still provide a γ-almost bi-Lipschitz embedding.

3. Almost bi-Lipschitz images of sets

Since we can embed any almost homogeneous metric space into a Hilbert space
using an almost bi-Lipschitz map, it is natural to study the effect of such mappings
on almost homogeneous spaces. Here we show that almost bi-Lipschitz images of
almost homogeneous metric spaces are still almost homogeneous. In particular this
implies that it is necessary that X be almost homogeneous if it is to enjoy an almost
bi-Lipschitz embedding into some R

N .
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Lemma 3.1. Let (X, d) be an (α, β)-almost (M, s)-homogeneous metric space and

φ : (X, d) → (X̃, d̃) a γ-almost L-bi-Lipschitz map. Then (φ(X), d̃) is an almost

homogeneous metric space with dα+γ,β+γ
A (X) ≤ dα,β+γ

A (φ(X)) ≤ dα,βA (X).

Proof. Increase L if necessary so that

(3.1) L2bγ(log 2)γ ≥ 1,

where here and in the rest of the proof b = bγ , with bγ the constant occurring in (p3)
in Lemma 2.1; clearly φ remains γ-almost L-bi-Lipschitz under this assumption.

Take s > dα,βA (X), 0 < ρ < r < ∞, and consider an arbitrary ball BX̃(φ(x), r) of
radius r in φ(X). Now, we have

BX̃(φ(x), r) ⊆ φ {BX(x, Lrbγslog(Lrbγ)γ)} ,

since using (p3) in Lemma 2.1

1

L

Lrbγslog(Lrbγ)γ

slog(Lrbγslog(Lrbγ)γ)γ
≥ rbγslog(Lrbγ)γ

[b slog(Lrbγ)]γ
= r.

By our choice of L in (3.1) and since ρ < r we have 0 < ρ/L < Lrbγslog(Lrbγ)γ ,
and so we can cover BX(x, Lrbγslog(Lrbγ)γ) by

NX(Lrbγslog(Lrbγ)γ , ρ/L)

≤ M

(
Lrbγ slog(Lrbγ)γ

ρ/L

)s

slog(Lrbγ slog(Lrbγ)γ)β slog(ρ/L)α

≤ c1

(
r

ρ

)s

slog(r)β+γslog(ρ)α

balls of radius ρ/L (in X), where c1 depends on M , L and the constants appearing
in Lemma 2.1. Denote these balls by BX(xi, ρ/L). Since

φ {BX(xi, ρ/L)} ⊆ BX̃(φ(xi), ρ)

and BX̃(φ(x), r) was arbitrary, it follows that

Nφ(X)(r, ρ) ≤ c1

(
r

ρ

)s

slog(r)β+γslog(ρ)α

for any 0 < ρ < r < ∞. Thus φ(X) is (α, β + γ)-almost (c1, s)-homogeneous.

Taking the infimum over s > dα,βA (X) yields dα,β+γ
A (φ(X)) ≤ dα,βA (X).

By considering the inverse map φ−1 : φ(X) → X similarly, one obtains the lower

bound dα,β+γ
A (φ(X)) ≥ dα+γ,β+γ

A (X). �

Combined with Lemma 3.1, the embedding result of Theorem 2.3 shows that any
almost homogeneous metric space (X, d) has an almost bi-Lipschitz image f(X)
that is an almost homogeneous subset of a Hilbert space.

We end by noting that since almost bi-Lipschitz maps are, in fact, Lipschitz, then
for any almost bi-Lipschitz map φ the upper box-counting (‘fractal’) dimension (see
footnote 1 for a definition) satisfies dF(φ(X)) ≤ dF(X). Moreover, it is not difficult
to prove the following:

Lemma 3.2. Let (X, d) be a metric space and φ : (X, d) → (X̃, d̃) an almost
bi-Lipschitz map. Then dF(φ(X)) = dF(X).
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4. Aside: Compact spaces and local versions of

(almost) homogeneity

In this section we briefly discuss the local definitions of homogeneity and al-
most homogeneity, and the dimensions associated with them. While they agree for
compact spaces, they are distinct in general.

A metric space (X, d) is said to be locally (M, s)-homogeneous (or simply locally
homogeneous) if there exists an ε > 0 such that any ball of radius r < ε can be
covered by at most M(r/ρ)s smaller balls of radius ρ. The constant ε for a locally
homogeneous space may be interpreted as a small scale beneath which the set may
be viewed as homogeneous. In this case M may depend on ε, which in turn depends
on the units of measurement used in the definition of the metric.

Movahedi-Lankarani [16] defined the metric (or ‘Bouligand’) dimension as

(4.1) dB(X) = lim
ε→0

lim
t→∞

sup

{
logNX(r, ρ)

log(r/ρ)
: 0 < ρ < r < ε and r > tρ

}
.

This dimension, dB(X), is the infimum of all s such that (X, d) is locally (M, s)-
homogeneous for some M ≥ 1.

Here we give a simple example that shows that the concepts of homogeneous
and locally homogeneous are indeed different. Let H be a Hilbert space with
orthonormal basis given by {en}n∈N

. Define

X = { ρnen : n ∈ N } , where ρn = 1− 1

n
.

If (X, d) is (M, s)-homogeneous for some M and s, then

(4.2) NX(ρ2n, ρn) ≤ M(ρ2n/ρn)
s = M

(
2n− 1

2n− 2

)s

≤ M.

However, each ball B(0, ρ2n) contains the n points

{0} ∪ { ρkek : n < k < 2n }

which are mutually more than a distance ρn apart. Therefore NX(ρ2n, ρn) ≥ n.
Taking n large enough shows that (4.2) cannot hold, and so (X, d) is not homoge-
neous. On the other hand, (X, d) is locally homogeneous for any ε < 1.

Note that if (X, d) is compact, then the notions of homogeneous and locally
homogeneous are equivalent (see Olson [17]). Thus dA(X) = dB(X) for compact
spaces X.

As with homogeneous spaces, there is a similarly distinct notion of locally (α, β)-
almost (M, s)-homogeneous. This means there is some ε > 0 such that (2.1) holds for
all 0 < ρ < r < ε. Similar arguments to those given in Olson [17] show that the no-
tions of almost homogeneous and locally almost homogeneous are equivalent when

(X, d) is compact. Define the local Assouad (α, β)-dimension of X, dα,βB (X), to be
the infimum of all s such that (X, d) is locally (α, β)-almost (M, s)-homogeneous
for some ε > 0 and M ≥ 1.

Let (X, d) be a metric space. In general dα,βB (X) ≤ dα,βA (X). Both dα,βA and dα,βB

are invariant under a rescaling of the metric. Thus, the metric space (X̃, d̃), where

X̃ = X and d̃ = ηd for some η > 0, has dα,βA (X̃) = dα,βA (X) and dα,βB (X̃) = dα,βB (X).
Note that

d
α+θβ,(1−θ)β
B (X) ≤ dα,βB (X) ≤ d

(1−θ)α,θα+β
B (X)
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for 0 ≤ θ ≤ 1. Moreover, if X is compact, then

dF(X) ≤ dα,βA (X) = dα,βB (X),

where dF(X) denotes the fractal or upper box-counting dimension.
We note here that dB shares with dA the usual properties of dimension discussed

in Section 2, along with the monotonicity property in (2.2).

5. Embedding Hilbert subsets X with X −X homogeneous

In this section we prove our main result, in which we take a subset X of a
Hilbert space, assume that X − X is almost homogeneous, and obtain an almost
bi-Lipschitz embedding into a finite-dimensional space.

Our argument is essentially a combination of that of Olson [17], who treated
a subset X of a Euclidean space with dA(X − X) finite, and that of Hunt &
Kaloshin [11], who considered a subset of a Hilbert space with finite upper box-
counting (‘fractal’) dimension. The key to combining these successfully is Lemma
5.3, below.

In line with the treatment in Sauer, Yorke & Casdagli [21] and in Hunt &
Kaloshin [11], our main theorem is expressed in terms of prevalence. This concept,
which generalises the notion of ‘almost every’ from finite to infinite-dimensional
spaces, was introduced by Hunt, Sauer & Yorke [9]; see their paper for a detailed
discussion.

Definition 5.1. A Borel subset S of a normed linear space V is prevalent if there
exists a compactly supported probability measure µ such that µ(S + v) = 1 for all
v ∈ V . In particular, if S is prevalent, then S is dense in V .

Note that if we set Q = supp(µ), then Q can be thought of as a ‘probe set’,
which consists of ‘allowable perturbations’ with which, given a v ∈ V , we ‘probe’
and test whether v + q ∈ S for almost every q ∈ Q.

Since we will use it below, and for its historical importance, we quote Hunt &
Kaloshin’s result here, in a form suitable for what follows. Given a set X, its upper
box-counting (‘fractal’) dimension is defined as

dF(X) = lim sup
ε→0

logN(X, ε)

− log ε
,

where N(X, ε) denotes the minimum number of balls of radius ε necessary to cover
X. Also, its thickness exponent, τ (X), is

(5.1) τ (X) = lim sup
ε→0

log d(X, ε)

− log ε
,

where d(X, ε) is the minimum dimension of all finite-dimensional subspaces, V , of
B such that every point of X lies within ε of V . We note here for later use that
τ (X) ≤ dF(X).

Theorem 5.2 (Hunt & Kaloshin). Let X be a compact subset of a Hilbert space
H, D an integer with D > dF(X −X), and τ (X) the thickness exponent of X. If
θ is chosen with

θ >
D(1 + τ (X)/2)

D − dF(X −X)
,
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then for a prevalent set of linear maps L : H → R
D there exists a c > 0 such that

c‖x− y‖θ ≤ |Lx− Ly| ≤ ‖L‖‖x− y‖ for all x, y ∈ X;

in particular these maps are injective on X.

We note here that dF(X−X) ≤ 2dF(X), so that for zero thickness sets with finite
box-counting dimension one can choose any D > 2dF(X) and θ > D/(D−2dF(X)).

5.1. Construction of the probability measure µ for a given X. We now
apply the definition of prevalence given a particular compact subsetX of our Hilbert
space H such that X −X is (α, β)-almost (M, s)-homogeneous.

For some fixed N , let V be the set of linear functions L : H → R
N . We now

construct a compactly supported probability measure µ on V (as required by the
definition of prevalence) that is carefully tailored to the particular set X. The key
to this is the following result.

Lemma 5.3. Suppose that X is a compact (α, β)-almost (M, s)-homogeneous subset
of H. Then there exists a sequence of nested linear subspaces Un with Un ⊆ Un+1,

dimUn ≤ C(1 + n)α+β+1,

and

‖Pnx‖ ≥ 1

8
‖x‖ for all x ∈ X with ‖x‖ ≥ 2−n,

where Pn is the orthogonal projection onto Un.

Proof. Consider the collection of shells

∆j =
{
x ∈ X : 2−(j+1) ≤ ‖x‖ ≤ 2−j

}
.

Since ∆j ⊂ B(0, 2−j) it can be covered using

NX(2−j , 2−(j+3)) ≤ 8sM(log 2)2(1 + |j|)β(4 + |j|)α ≤ c2(1 + |j|)α+β := Mj

balls of radius 2−(j+3), where c2 is independent of j. We choose the centres{
u
(j)
i

}Mj

i=1
of these balls so that ‖u(j)

i ‖ ≥ 2−(j+2).

Since X is compact, X ⊂ B(0, 2k) for some k sufficiently large, and so

n⋃
j=−k

∆j =
{
x ∈ X : ‖x‖ ≥ 2−n

}
.

Let Pn be the orthogonal projection onto the linear subspace Un spanned by the

collection
{
u
(j)
i : j = −k, . . . , n and i = 1, . . . ,Mj

}
. Then the dimension of Un is

bounded by c3(1 + n)α+β+1 using the same estimate as in (6.1). Moreover, for

every x ∈ ∆j there exists u
(j)
i such that x = u

(j)
i + v, where ‖v‖ ≤ 2−(j+3). Since

‖Pn‖ = 1 and ‖Pnu‖ = ‖u‖ for u ∈ Un, then

‖Pnx‖ = ‖Pn(u
(j)
i + v)‖ ≥ ‖Pnu

(j)
i ‖ − ‖Pnv‖ ≥ 2−(j+2) − 2−(j+3) ≥ 1

8
‖x‖.

�
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Applying this lemma to X − X there are subspaces Uk with dimUk ≤ dk :=
c(1 + k)α+β+1 such that ‖Pkz‖ ≥ ‖z‖/8 for all z ∈ X −X with ‖z‖ ≥ 2−k. Let Sk

denote the closed unit ball in Uk. Clearly any φ ∈ Sk induces a linear functional
Lφ on H via the definition Lφ(u) = (φ, u), where (·, ·) is the inner product in H.
Let ζ > 0 be fixed and define Cζ = 1/

∑∞
k=1 k

−1−ζ . We now define the probe set
(5.2)

Q =

{
(l1, . . . , lN ) : ln = Lφn

, where φn = Cζ

∞∑
k=1

k−1−ζφnk with φnk ∈ Sk

}
.

We can identify Sj with the unit ball Bdj
in R

dj , and we denote by λj the probability
measure on Sj that corresponds to the uniform probability measure on Bdj

. We let
µ be the probability measure on Q that results from choosing each φnk randomly
with respect to λdk

. Note that Q is a compact subset of V and that all elements of

Q have Lipschitz constant at most
√
N .

Before proving our main theorem we will prove a key estimate on µ. Although
the argument is essentially the same as that in Hunt & Kaloshin [11], our version
is a little more explicit and we include it here for completeness. The estimate relies
on the following simple inequality.

Lemma 5.4. If x ∈ R
j and η ∈ R, then

λj {ω ∈ Bj : |η + (ω · x)| < ε } ≤ cj1/2ε|x|−1,

where c is a constant that does not depend on η or j.

Proof. Let x̂ = x/|x|. This follows immediately from the estimate

λj {ω ∈ Bj : |η + (ω · x)| < ε } ≤ λj

{
ω ∈ Bj : |ω · x̂| < ε|x|−1

}
=

Ωj−1

Ωj
2

∫ min(ε|x|−1,1)

0

(1− ξ2)(j−1)/2 dξ

≤ Ωj−1

Ωj
2ε |x|−1,

where Ωj = πj/2Γ(j/2 + 1) is the volume of the unit ball in R
j . �

Lemma 5.5. If x ∈ H and f ∈ V , then

µ {L ∈ Q : |(L− f)(x)| < ε } ≤ c(d
1/2
k k1+ζε‖Pkx‖−1)N

for every k ∈ N, where c is a constant independent of f and k.

Proof. Given k ∈ N, let J be the index set J = N \ {k} and define

B =
(⊕

j∈J
Bdj

)N
.

Given α = ((αnj)j∈J )Nn=1 ∈ B fixed, define

Aα =
{
(φnk)

N
n=1 : |(ηn + k−1−ζφnk)(x)| < ε for all n

}
,

where
ηn(x) = Cζ

∑
j∈J

j−1−ζαnj(x)− fn(x).

By Lemma 5.4 there is a constant c independent of α, f and k such that

λN
dk
(Aα) ≤ c(d

1/2
k k1+ζε‖Pkx‖−1)N .
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Let P = µ {L ∈ Q : |(L− f)(x)| < ε }. Then
P ≤ µ {L ∈ Q : |(ln − fn)(x)| < ε for all n} .

Let

ΦN =

{(
(φnk)

∞
k=1

)N
n=1

: Cζ

∣∣∣ ∞∑
k=1

k−1−ζ(φnk − fn)(x)
∣∣∣ < ε, ∀n = 1, . . . , N

}
.

Then by Fubini’s theorem

P ≤
( ∞⊗

j=1

λdj

)N
ΦN

=

∫
α∈B

∫
φ∈Aα

dλN
dk
(φ) d

(⊗
j∈J

λdj

)N
(α)

≤
∫
α∈B

c(d
1/2
k k1+ζε‖Pkx‖−1)N d

(⊗
j∈J

λdj

)N
(α)

= c(d
1/2
k k1+ζε‖Pkx‖−1)N .

This finishes the proof. �

5.2. Almost bi-Lipschitz embeddings. We are now in a position to state and
prove our main theorem, that a compact subset X of a Hilbert space with X −
X almost homogeneous admits almost bi-Lipschitz linear embeddings into finite-
dimensional spaces. Unfortunately homogeneity of X is not automatically inherited
by X−X: Olson [17] exhibits an example of a set X with dA(X) = 0 but for which
dA(X −X) = +∞ (for more see Section 7).

Theorem 5.6. Let X be a compact subset of a Hilbert space H such that X −X

is (α, β)-almost homogeneous with dα,βA (X −X) < s < N . If

γ >
2 +N(3 + α+ β) + 2(α+ β)

2(N − s)
,

then a prevalent set of linear maps f : H → R
N are injective on X and, in partic-

ular, γ-almost bi-Lipschitz.

Proof. First choose ζ > 0 in the definition of Q small enough such that

(5.3) γ >
2 +N(3 + 2ζ + α+ β) + 2(α+ β)

2(N − s)

Since τ (X) ≤ dF(X) ≤ dF(X − X) ≤ dα,βA (X − X) we can apply Hunt &
Kaloshin’s result (Theorem 5.2, above) with θ chosen so that

θ >
N(1 + s/2)

N − s

to obtain a prevalent set S0 of linear functions f : H → R
N such that f ∈ S0

implies there exists a θ < 1 and c1 > 0 such that

(5.4) |f(x)− f(y)| ≥ c1‖x− y‖θ for all x, y ∈ X.

(We note here that the compactly supported probability measure used in the def-
inition of prevalence for S0 differs from the measure µ constructed in Section 5.1,
but is defined on the same normed linear space V of linear maps from H to R

N .)
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We use this result to bootstrap a refined argument that makes use of the stronger

hypothesis that dα,βA (X −X) < ∞.
Let S1 be the subset of V consisting of those linear functions f : H → R

N such
that f ∈ S1 implies there exists δ > 0 such that

(5.5) |f(x)− f(y)| ≥ ‖x− y‖
slog(‖x− y‖)γ for all ‖x− y‖ < δ.

We now show that the set S1 is also prevalent. Given f ∈ V , let K be the Lipschitz
constant of f . We wish to show that µ(f + S1) = 1. This is equivalent to showing
that µ(Q \ (f + S1)) = 0.

Define the layers of X −X by

(5.6) Zj =
{
z ∈ X −X : 2−(j+1) ≤ ‖z‖ ≤ 2−j

}
and the set Qj of linear maps that fail to satisfy the required continuity property3

for some z ∈ Zj by

Qj =
{
L ∈ Q : |(L− f)(z)| ≤ Ψ−γ(2

−j) for some z ∈ Zj

}
,

where

Ψ−γ(2
−j) :=

2−j

σγ slog(2−j)γ

and σ is the constant occurring in (p4) in Lemma 2.1. We now bound µ(Qj).

By assumption dα,βA (X −X) < s, and so Zj can be covered by

(5.7) Mj ≤ M slog(2−j)γs slog(2−j)β slog(Ψ−γ(2
−j))α ≤ c2(1 + j)α+β+γs

balls of radius Ψ−γ(2
−j). Let the centres of these balls be z

(j)
i ∈ Zj , where i =

1, . . . ,Mj . Given any z ∈ Zj there is a z
(j)
i such that ‖z− z

(j)
i ‖ ≤ Ψ−γ(2

−j). Thus

|(L− f)(z)| ≥ |(L− f)(z
(j)
i )| − |(L− f)(z − z

(j)
i )|

≥ |(L− f)(z
(j)
i )| − (K +

√
N)Ψ−γ(2

−j)

implies that

Qj ⊆
Mj⋃
i=1

{
L ∈ Q : |(L− f)(z

(j)
i )| ≤ (K + 2

√
N)Ψ−γ(2

−j)
}
.

It follows, setting k = j in Lemma 5.5, that

µ(Qj) ≤
Mj∑
i=1

µ
{
L ∈ Q : |(L− f)(z

(j)
i )| ≤ (K + 2

√
N)Ψ−γ(2

−j)
}

≤ Mj

(
d
1/2
j j1+ζ(K + 2

√
N)Ψ−γ(2

−j)‖Pj(z
(j)
i )‖−1

)N
.

Now (5.7) and Lemma 5.3 imply that

µ(Qj) ≤ c2(1 + j)α+β+γs
(
d
1/2
j j1+ζ(K + 2

√
N)2j+3Ψ−γ(2

−j)
)N

.

In particular (recall that dj ≤ C(1+j)α+β+1) there is a constant c3 > 0 independent
of j such that

µ(Qj) ∼ c3j
α+β+γs+N(α+β+3+2ζ−2γ)/2 as j → ∞.

3Strictly speaking the union of the Qj forms a set strictly larger than the complement of S1.



ALMOST BI-LIPSCHITZ EMBEDDINGS 157

Since (5.3) implies that N(2γ − 3− 2ζ − (α+ β))/2 > 1 + α+ β + γs, we have
∞∑
j=1

µ(Qj) < c4.

It follows from the Borel-Cantelli Lemma that µ-almost every L is contained
in only a finite number of the Qj ; i.e. there exists a J such that for all j ≥ J ,

2−(j+1) ≤ ‖z‖ ≤ 2−j implies that |(L− f)(z)| ≥ Ψ−γ(2
−j). It follows from (p4) in

Lemma 2.1 that

|(L− f)(z)| ≥ σγΨ−γ(‖z‖) =
‖z‖

slog(‖z‖)γ for every ‖z‖ ≤ 2−J .

Thus L− f ∈ S1, and so L ∈ S1 + f for µ-almost every L.
Define S = S0 ∩ S1. Since the intersection of prevalent sets is prevalent (Fact 3′

in Hunt et al. [9]), S is prevalent. Let f ∈ S. Then there are c1 and δ such that
both (5.4) and (5.5) hold. Thus

|f(x)− f(y)| ≥ c5
‖x− y‖

slog(‖x− y‖)γ for all x, y ∈ X,

where c5 = min {1, c1δ/Ψ−γ(R)} and R > 0 is such that X −X ⊆ B(0, R). �

Note that for a space X with X −X homogeneous, i.e. α = β = 0 in the above
theorem, for any γ > 3/2 we can choose N large enough to obtain a γ-almost
bi-Lipschitz embedding into R

N .
A Banach space version of Theorem 5.6, which requires in particular a significant

extension of the ideas used by Hunt & Kaloshin [11], is given in Robinson [20].
This result allows one to use the Kuratowski isometric embedding of (X, d) into
the Banach space L∞(X) (given by x �→ dx, where dx(y) = d(x, y) for all y ∈ X;
see Heinonen [8]) to prove a new almost bi-Lipschitz embedding result for compact
metric spaces.

6. Lipschitz approximating dimension of Hilbert subsets

and Hölder-Lipschitz embeddings

The strong result of the previous section requires that X −X is almost homoge-
neous, while for a general almost homogeneous metric space (X, d) the embedding
result of Theorem 2.3 only provides a subset f(X) of a Hilbert space that is itself
almost homogeneous.

Here we investigate further some of the properties of f(X), and are led to define
the ‘Lipschitz approximating dimension’ and the ‘Lipschitz deviation’. In particular
we show that it is possible to replace Hunt & Kaloshin’s thickness exponent with
the Lipschitz deviation.

6.1. Further properties of the image f(X). First we consider the almost bi-
Lipschitz image f(X) of a compact almost homogeneous metric space (X, d) in a
Hilbert space, as provided by Theorem 2.3. We show that f(X) can be very well
approximated by linear subspaces: it has ‘better than zero’ thickness.

As remarked after the proof of Theorem 2.3, when (X, d) is compact the function
f defined by the simplified series

f(x) =

∞∑
j=−k

2−j

(1 + |j|)δMj
φj(x)⊗ ej
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still provides a γ-almost bi-Lipschitz embedding of X into a Hilbert space (choosing
a k such that d(x1, x2) ≤ 2k for all x1, x2 ∈ X). Now, for n ∈ N any element of
f(X) can be approximated to within

B

∞∑
j=n+1

2−j

(1 + |j|)δ ≤ B

∞∑
j=n+1

2−j ≤ B2−n

by an element of the subspace

U =

n⊕
j=−k

R
Mj ⊗ ej ,

which has dimension

(6.1)

n∑
j=−k

Mj ≤ (n+ k + 1)C(1 + n)α+β ≤ c1(1 + n)α+β+1.

Here c1 depends on C, k and the constants in Lemma 2.1 but is independent of n.
It follows that

(6.2) d(f(X), ε) ≤ c2
[
log(e + 1/ε)

]α+β+1
.

One consequence of this inequality is that the thickness exponent of f(X) is zero,
but (6.2) is significantly stronger than this.

6.2. The Lipschitz deviation. Inspired by the quantity d(X, ε) used to define the
thickness, we now introduce a more general quantity, the m-Lipschitz deviation: we
denote by δm(X, ε) the smallest dimension of a linear subspace U such that

dist(X,GU [φ]) < ε

for some m-Lipschitz function φ : U → U⊥,

‖φ(u)− φ(v)‖ ≤ m‖u− v‖ for all u, v ∈ U,

where U⊥ is the orthogonal complement of U in H. We will write GU [φ] for the
graph of φ over U :

GU [φ] = {u+ φ(u) : u ∈ U } .
Clearly δm(X, ε) ≤ d(X, ε) for all m ≥ 0.

In Section 6.1 we showed that for the almost bi-Lipschitz embedding f(X) of an
almost homogeneous metric space into a Hilbert space,

α(f(X), ε) ≤ c2
[
log(e + 1/ε)

]α+β+1
.

We now show that Lemma 5.3 implies a bound of a similar form on δ8(X, ε) for any
subset of a Hilbert space with X −X almost homogeneous.

Proposition 6.1. Let X be a compact subset of a Hilbert space with the set of
differences X −X (α, β)-almost (M, s)-homogeneous. Then there exists a sequence
of linear subspaces Uk with dimUk ≤ C(1+k)α+β+1 and Uk+1 ⊇ Uk, and 8-Lipschitz
functions φk : Uk → U⊥

k such that

dist(X,GUk
[φk]) ≤ 2−k.

In particular

δ8(X, ε) ≤ K
[
log(e + 1/ε)

]α+β+1
.
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Proof. Applying Lemma 5.3 to X −X we obtain a nested sequence of linear sub-
spaces for which

1

8
‖x− y‖ ≤ ‖Pkx−Pky‖ ≤ ‖x− y‖ for all x, y ∈ X with ‖x− y‖ ≥ 2−k,

where Pk is the orthogonal projection onto Uk.
Define φk : Uk → U⊥

k as follows. Let Nk be a maximal 2−k net in (X, d) and set
φk(Pkx) = (I − Pk)x for x ∈ Nk. Given Pkx, Pky ∈ PkNk we have

‖φk(Pkx)− φk(Pky)‖ ≤ ‖(I − Pk)(x− y)‖ ≤ ‖x− y‖ ≤ 8‖Pkx− Pky‖.
Therefore φk : PkNk → U⊥

k is an 8-Lipschitz function. Now, extend this φk to an
8-Lipschitz function Uk → U⊥

k .
Since Nk ⊂ GUk

[φk], any point of X lies within 2−k of GUk
[φk]. Thus

δ8(X, 2−k) ≤ c2(1 + k)α+β+1,

and the result follows. �

We now show that this argument can be reversed, i.e. that the results of Lemma
5.3 and Proposition 6.1 are essentially equivalent.

Proposition 6.2. Suppose that X is a compact subset of a Hilbert space X. For
any m ≥ 0 let {Uk}∞k=1 be a sequence of linear subspaces such that for each Uk there

exists an m-Lipschitz function φk : Uk → U⊥
k with

dist(X,GUk
[φk]) ≤ 2−k.

Then there exists an integer n and a constant cm > 0 (which depends on m but is
independent of k) such that for every k

‖Pk+n(x1 − x2)‖ ≥ cm ‖x1 − x2‖ for all x, y ∈ X with ‖x1 − x2‖ ≥ 2−k.

Proof. First note that for any x ∈ H we have

dist(x,GUk
[φk])

2 = inf
u∈Uk

(
‖Pkx− u‖2 + ‖(I − Pk)x− φk(u)‖2

)
,

and since for any u ∈ Uk we have

‖(I − Pk)x− φk(Pkx)‖2 = ‖(I − Pk)x− φk(u) + φk(u)− φk(Pkx)‖2

≤ 2‖(I − Pk)x− φk(u)‖2 + 2‖φk(u)− φk(Pkx)‖2

≤ 2‖(I − Pk)x− φk(u)‖2 + 2m2‖u− Pkx‖2

≤ l2m
(
‖Pkx− u‖2 + ‖(I − Pk)x− φk(u)‖2

)
,

where l2m = 2max(1,m2), it follows that for x ∈ X

(6.3) ‖(I − Pk)x− φk(Pkx)‖ ≤ lm dist(x,GUk
[φk]) ≤ lm2−k.

Now suppose that x1, x2 ∈ X with

‖x1 − x2‖ ≥ 2−k.

Let n be the smallest integer such that 3lm ≤ 2n and set

x̃j = Pk+nxj + φk+n(Pk+nxj) for j = 1, 2.

Clearly, Pk+n(x1 − x2) = Pk+n(x̃1 − x̃2). Furthermore, it follows from (6.3) that
‖xj − x̃j‖ ≤ 2−k/3 for j = 1, 2. Therefore, ‖x̃1 − x̃2‖ ≥ ‖x1 − x2‖/3.
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Now, since x̃1, x̃2 ∈ GUk+n
[φk+n],

‖Pk+nx̃1 − Pk+nx̃2‖2 = ‖x̃1 − x̃2‖2 − ‖φk+n(Pk+nx̃1)− φk+n(Pk+nx̃2)‖2

≥ ‖x̃1 − x̃2‖2 −m2‖Pk+n(x̃1 − x̃2)‖2,
and so

‖Pk+n(x1 − x2)‖ = ‖Pk+n(x̃1 − x̃2)‖ ≥ ‖x̃1 − x̃2‖√
1 +m2

≥ ‖x1 − x2‖
3
√
1 +m2

.

�

6.3. Almost homogeneous subsets of a Hilbert space. If we assume only the
almost homogeneity of X, rather than of X −X, we can apply a simplified variant
of the argument of Theorem 5.6 to obtain the following minor improvement to the
embedding theorem of Hunt & Kaloshin (under our stronger hypothesis). For a
zero thickness set X with dF(X) ≤ d they obtain an upper limit of N/(N − 2d)

for the Hölder exponent, while under the assumption that dα,βA (X) ≤ s we obtain
(N − s)/(N − 2s) as the upper limit. Note that we replace any assumption on
the thickness by (6.4), which in particular is satisfied by the almost bi-Lipschitz
embedding f(X) of an almost homogeneous metric space with m = 0 (see (6.2)).

Theorem 6.3. Suppose that X is a compact subset of a Hilbert space H with

dα,βA (X) < s and that for some m > 0, σ ≥ 0,

(6.4) δm(X, ε) ≤ K[log(e + 1/ε)]σ.

Then for any integer N > 2s, if θ > (N − s)/(N − 2s) there is a prevalent set S of
linear maps f : H → R

N such that for every f ∈ S there exists c > 0 such that

(6.5) |f(x)− f(y)| ≥ c‖x− y‖θ for all x, y ∈ X.

Proof. Set
dj = δm(X, 2−j) ≤ K

[
log(e + 2j)

]σ
and define Q as in (5.2) with ζ = 1. Define the layers Zj as in (5.6) and

Qj =
{
L ∈ Q : |(L− f)(z)| ≤ 2−jθ for some z ∈ Zj

}
.

Let R > 0 be chosen so large that X ⊂ B(0, R). Cover X by

NX(R, 2−(j+1)θ) ≤ M

(
R

2−(j+1)θ

)s

slog(R)βslog(2−(j+1)θ)α

≤ c12
jθs(1 + jθ)α

balls of radius 2−(j+1)θ centred at points xi ∈ X. Denote these as

Xi =
{
x ∈ X : ‖x− xi‖ < 2−(j+1)θ

}
.

Now consider the larger balls

Bi =
{
y ∈ X : ‖xi − y‖ ≤ 2−(j+1)θ + 2−j

}
.

Cover each of these balls by at most

NX(2−(j+1)θ + 2−j , 2−(j+1)θ)

≤ M
(
1 + 2(j+1)θ−j

)s
slog(2−(j+1)θ + 2−j)β slog(2−(j+1)θ)α

≤ c22
j(θ−1)s(1 + j)β(1 + jθ)α
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balls of radius 2−(j+1)θ. Since

Zj =
⋃
i

⋃
x∈Xi

{
x− y : 2−(j+1) < ‖x− y‖ < 2−j

}
⊆
⋃
i

(Xi − Bi)

it follows that Zj can be covered by

Mj = c1c22
js(2θ−1)(1 + jθ)2α(1 + j)β

balls of radius 2−jθ. Let z
(j)
i denote the centres of these balls.

Applying similar estimates as in the proof of Theorem 5.6 (these rely on Propo-

sition 6.2 to ensure that ‖Pkz
(j)
i ‖ ≥ c‖z(j)i ‖ for some c > 0) one can show that

µ(Qj) ∼ 2js(2θ−1)j2α+β [j2+σ2j(1−θ)]N as j → ∞.

Thus
∑

µ(Qj) converges, provided that θ > (N − s)/(N − 2s). The argument is
now concluded as in Theorem 5.6. �

By combining this with Theorem 2.3 we obtain the following Hölder-Lipschitz
embedding result for homogeneous metric spaces (cf. Lemma 9.1 in Foias & Olson
[4] which has a similar result for spaces with finite upper box-counting dimension).

Corollary 6.4. Let (X, d) be an almost homogeneous metric space with dα,βA (X) <
s. If N > 2s and θ > (N − s)/(N − 2s) there exists a map φ : (X, d) → R

N such
that

c−1 d(x, y)θ ≤ |φ(x)− φ(y)| ≤ c d(x, y) for all x, y ∈ X.

Of course one can prove finite-dimensional versions of Theorems 5.6 and 6.3
using very similar techniques.

6.4. The Lipschitz deviation. It is interesting that our argument shows that for
any fixed m > 0 the thickness exponent in the statement of Theorem 5.2 can be
replaced by the m-Lipschitz deviation, devm(X), which we define by analogy with
the thickness exponent (cf. (5.1))

devm(X) = lim sup
ε→0

log δm(X, ε)

− log ε
.

We note that devm(X) ≤ τ (X) and that this gives an indication of why the thick-
ness exponent can be expected to play a rôle in determining the Hölder exponent
in (6.5). We state without proof:

Theorem 6.5. Let X be a compact subset of a Hilbert space H, let D be an integer
with D > dF(X −X), and let devm(X) be the m-Lipschitz deviation of X. If θ is
chosen with

θ >
D(1 + devm(X)/2)

D − dF(X −X)
,

then for a prevalent set of linear maps L : B → R
D there exists a c > 0 such that

c‖x− y‖θ ≤ |Lx− Ly| ≤ ‖L‖‖x− y‖ for all x, y ∈ X;

in particular these maps are injective on X.

The Lipschitz deviation is examined in more detail in Pinto de Moura & Robinson
[18].
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7. The relationship between dα,βA (X) and dα,βA (X −X)

In this section we give some results relating the homogeneity of X and X −X.
First, we give an example of a set X for which dA(X) = 0 but dA(X −X) = +∞.
It is easy to show that the set

(7.1) X∗ =
{
anen : an = 4−(2j), n = 2j−1, . . . , 2j − 1

}
,

where en is an orthonormal basis of a Hilbert space H, has dA(X
∗) = +∞. Note

that |an| ≤ 4−n for all n. Now consider the subset X of H ×H defined by

X =
{
(4−nen, anen)

}∞
n=1

∪
{
(4−nen, 0)

}
.

A simple argument shows that dA(X) = 0, while X − X contains a copy of X∗,
and so dA(X −X) = ∞.

This negative result appears to be in some ways typical for almost homogeneous
sets as well, as we will now show. We begin with two preparatory lemmas.

Lemma 7.1. The orthogonal sequence with algebraic decay

X∗ =
{
bnen : bn ∼ εn−γ

}
,

where ε, γ > 0 has dα,βA (X∗) = +∞ for any α, β ≥ 0.

Proof. Let n0 be chosen so large that

ε(2n)−γ < |bn| < ε(n/2)−γ for n > n0.

Let rn = ε(n/2)−γ and ρn = ε(4n)−γ . Suppose, for a contradiction, that dα,βA (X∗) <
s < ∞. Then there exists an M ≥ 1 such that

(7.2) N (rn, ρn) ≤ M
( rn
ρn

)s
slog(rn)

βslog(ρn)
α.

On the other hand,

B(0, rn) ⊇ { bkek : n < k ≤ 2n} ,
where the points bkek with n < k ≤ 2n are each a distance greater than |bk| >
ε(4n)−γ apart from each other. Therefore,

(7.3) N (rn, ρn) ≥ card
(
{ bkek : n < k ≤ 2n}

)
= n.

Combining inequality (7.2) with (7.3) and applying (p1) of Lemma 2.1 we obtain

n ≤ M8γs
(
log 2 + | log ε(n/2)−γ |

)β(
log 2 + | log ε(4n)−γ |

)β
.

Letting n → ∞ yields a contradiction, and so dα,βA (X∗) = ∞. �

Lemma 7.2. Given two unit vectors v, w ∈ H set e1 = v and choose α ∈ R and a
unit vector e2 such that e1 cosα − e2 sinα = w and cosα = (v, w). Note that e2 is
orthogonal to e1. Extend {e1, e2} to a basis for H, and define the rotation

Rx =

(
cos(αψ(x)) sin(αψ(x))
− sin(αψ(x)) cos(αψ(x))

)
⊕ id,

where ψ : H → R is a fixed C∞ function such that

ψ(x) =

{
0 if ‖x‖ ≤ 3/4 or ‖x‖ ≥ 2,
1 if ‖x‖ = 1.
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Let f(x) = Rxx. Then f ∈ C∞ and f(v) = w. Moreover, fη(x) = η−1f(ηx) is
uniformly bi-Lipschitz continuous for η > 0 and different from the identity only for
x ∈ H such that (3/4)η−1 < ‖x‖ < 2η−1.

Proof. By construction f ∈ C∞, f(v) = w and f(x) = x for ‖x‖ ≤ 3/4 or ‖x‖ ≥ 2.
Rescaling shows that fη(x) is different from the identity only for (3/4)η−1 < ‖x‖ <
2η−1. We now show that fη(x) is uniformly bi-Lipschitz continuous for η > 0.

Let x, y ∈ H with ‖x‖ ≤ ‖y‖. If ‖x‖ ≥ 2η−1, then fη(x) = x and fη(y) = y, so
we consider only the case ‖x‖ < 2η−1. Then

‖fη(x)− fη(y)‖ = ‖Rηxx−Rηyy‖
≤ ‖(Rηx −Rηy)x‖+ ‖Rηy(x− y)‖
≤ ‖Rηx −Rηy‖‖x‖+ ‖Rηy‖‖x− y‖
≤ 2η−1‖Rηx −Rηy‖+ ‖x− y‖.

Since

‖Rηx −Rηy‖ =

∥∥∥∥
(

cos(αψ(ηx))− cos(αψ(ηy)) sin(αψ(ηx))− sin(αψ(ηy))
− sin(αψ(ηx)) + sin(αψ(ηy)) cos(αψ(ηx))− cos(αψ(ηy))

)∥∥∥∥
≤ C1αη‖x− y‖ := C2η‖x− y‖,

it follows that

‖fη(x)− fη(y)‖ ≤ (2C2 + 1)‖x− y‖,
where the Lipschitz constant 2C2 + 1 does not depend on η. Since fη is injective
with inverse f−1

η formed by the same construction but with the roles of v and w

reversed, we obtain the same bound for ‖f−1
η (x)− f−1

η (y)‖. �

Proposition 7.3. Let X be a connected subset of a Hilbert space H that contains
more than one point. Then there exists a C∞ bi-Lipschitz map φ : H → H such
that

dα,βA (φ(X)− φ(X)) = +∞
for every α, β ≥ 0. Furthermore φ may be chosen such that distH(φ(X), X) is
arbitrarily small.

Proof. Since X contains more than one point, there exist two disjoint balls B(x1, R)
and B(x2, R) of radius R > 0. Moreover, since X is connected, then there are points
x2+i ∈ X for i = 1, 2 such that ‖x2+i − xi‖ = R/4. Thus, the four balls B(xi, R/8)
with xi ∈ X for i = 1, . . . , 4 are disjoint. Moreover,

4⋃
i=1

B(xi, R/8) ⊆
2⋃

i=1

B(xi, 3R/8).

Recursively define nested families of disjoint balls such that

2j+1⋃
i=1

B(xi, R8−j) ⊆
2j⋃
i=1

B(xi, 3R8−j).

For j = 0, 1, 2, . . . and i = 1, . . . , 2j+1 let aj = (1/2)R8−j and eij = e2j+1−2+i,
where ei is an orthonormal basis of H. Choose the points yij ∈ B(xi, R8−j) such
that ‖xi − yij‖ = aj . Further define

gij(x) = xi + fη(x− xi),
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where fη is the function given in Lemma 7.2 for v = (yij − xi)/aj , w = eij and
η = 1/aj . If ‖x − xi‖ ≥ 2aj = R8−j or ‖x − xi‖ ≤ (3/4)aj = 3R8−j−1, then
fη(x− xi) = x− xi and gij(x) = x. Therefore the function gij is C∞, bi-Lipschitz
and different from the identity only on the annulus B(xi, R8−j) \ B(xi, 3R8−j−1).
Moreover, by construction we have

gij(yij) = xi + fη(yij − xi) = xi + aif(v) = xi + aieij .

Set

φ(x) =
∞∑
j=0

2j+1∑
i=1

gij(x).

Since the gij are different from the identity only on disjoint sets and the bi-Lipschitz
constant of fη is independent of η, then the map φ is a bi-Lipschitz C∞ map of H
onto H. Since φ(X)− φ(X) contains{

ajeij : j = 0, 1, 2, . . . and i = 1, . . . , 2j+1
}

=
{
bnen : bn = (1/2)R8−j , n = 2j+1 − 1, . . . , 2j+2 − 2

}
where 4R/(n + 2)3 ≤ bn ≤ 4R/(n + 1)3, then bn ∼ 4Rn−3 and hence Lemma 7.1

implies dα,βA (φ(X)− φ(X)) = ∞.
Finally, note that distH(φ(X), X) may be made arbitrarily small by taking R > 0

sufficiently small in step one. �

A consequence of this result is that it is not necessary for X −X to be homoge-
neous in order to obtain a bi-Lipschitz embedding of X into some R

k. Indeed, any

set X that can be so embedded has a bi-Lipschitz image that has dα,βA (X−X) = ∞.
However, it may still be the case that X −X has to be homogeneous in order to
obtain a linear bi-Lipschitz embedding as in Theorem 5.6.

On a more positive note, if X is an orthogonal sequence, then homogeneity of
X does imply homogeneity of X −X.

Lemma 7.4. Let X = {xj}∞j=1 be an orthogonal sequence in H. If dA(X) < +∞,

then dA(X −X) ≤ 2dA(X).

Proof. Suppose that X is (M, s)-homogeneous. We write BX(r, x) = B(r, x) ∩X,
and consider a ball B = BX−X(r, x−y) ⊆ X−X of radius r centred at x−y ∈ X−X.
Since B ⊆ BX−X(ρ, 0) ∪

(
B \ {0}

)
, we need only cover B \ {0}.

Suppose that x = y, so that B = BX−X(r, 0). Let a− b ∈ B \ {0}. Then a �= b,
and therefore a is orthogonal to b. It follows that∥∥(a− b)− (x− y)

∥∥2 = ‖a‖2 + ‖b‖2 < r2.

Hence a, b ∈ BX(r, 0), and consequently

B \ {0} ⊆ BX(r, 0)−BX(r, 0).

Cover BX(r, 0) with M(2r/ρ)s balls BX(ρ/2, ai) of radius ρ/2 centred at ai ∈ X.
Then ⋃

i,j

BX−X(ρ, ai − aj) ⊇
⋃
i

BX(ρ/2, ai)−
⋃
j

BX(ρ/2, aj)

⊇ BX(r, 0)−BX(r, 0) ⊇ BX−X(r, 0) \ {0} .
It follows that B is covered by 1 +M2(2r/ρ)2s balls of radius ρ.
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Now suppose that x �= y. Let a − b ∈ B \ {0}. Again a �= b, and therefore a is
orthogonal to b. We have

‖(a− b)− (x− y)‖2 =

⎧⎨
⎩

‖a− x‖2 + ‖b− y‖2
‖a+ y‖2 + ‖2x‖2
‖2y‖2 + ‖b+ x‖2

if
a �= y, b �= x,
a �= y, b = x,
a = y, b �= x,

and so
a ∈ BX(r, x) b ∈ BX(r, y)
a ∈ BX(r,−y) b ∈ BX(r, x)
a ∈ BX(r, y) b ∈ BX(r,−x)
a ∈ BX(r, y) b ∈ BX(r, x)

⎫⎪⎪⎬
⎪⎪⎭ if

⎧⎪⎪⎨
⎪⎪⎩

a �= y, b �= x,
a �= y, b = x,
a = y, b �= x,
a = y, b = x.

Therefore

B \ {0} ⊆
(
BX(r, x)−BX(r, y)

)
∪
(
BX(r,−y)−BX(r, x)

)
∪
(
BX(r, y)−BX(r,−x)

)
∪
(
BX(r, y)−BX(r, x)

)
.

Cover each of BX(r, x), BX(r,−x), BX(r, y) and BX(r,−y) by M(2r/ρ)s balls of
radius ρ/2. An argument similar to before yields a cover of B by 1 + 4M2(2r/ρ)2s

balls of radius r/2.
Since we have NX−X(r, ρ) ≤ 1+4M2(2r/ρ)2s it follows that dA(X−X) ≤ 2s. �

8. Non-existence of bi-Lipschitz linear embeddings

In this section we give a simple example showing that if we require a linear
embedding (as in Theorem 5.6), then we can do no better than almost bi-Lipschitz.
First we prove the following simple decomposition lemma for linear maps from H
onto R

k (cf. comments in Hunt & Kaloshin [10]).

Lemma 8.1. Suppose that L : H → R
k is a linear map with L(H) = R

k. Then
U = (kerL)⊥ has dimension k, and L can be decomposed uniquely as MP , where
P is the orthogonal projection onto U and M : U → R

k is an invertible linear map.

Note that the result of this lemma shows that Theorem 5.6 remains true with
linear maps replaced by orthogonal projections. This gives a much more concise
proof of the result in Friz & Robinson [5].

Proof. Let U = (kerL)⊥ and suppose that there exist m > k linearly independent
elements {xj}mj=1 of U for which Lxj �= 0. Then {Lxj} are elements of Rk; since

m > k at least one of the {Lxj} can be written as a linear combination of the
others:

Lxi =
∑
j �=i

cj(Lxj).

It follows that (
xi −

∑
j �=i

cjxj

)
= 0,

which contradicts the definition of U .
Let P denote the orthogonal projection onto U , and M the restriction of L to U .

Let x ∈ H, and decompose x = u + v, where u ∈ U and v ∈ kerL. Note that this
decomposition is unique. Clearly Lx = Lu = Mu = M(Px). It remains to show
that M is invertible. This is clear since dimU = dimR

k = k and M is linear. �
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Following Ben-Artzi et al. [2] we now prove

Lemma 8.2. Suppose that X − X contains a set of the form {αnen}∞n=1 with

αn �= 0 and {en}∞n=1 an orthonormal set. Then no linear map into any R
k can be

bi-Lipschitz between X and its image.

Proof. We assume that L(H) = R
k; otherwise it is possible to prune some redun-

dant dimensions from R
k. Suppose that L is bi-Lipschitz from X into R

k. Write
L = MP as in Lemma 8.1. Since L is bi-Lipschitz on X, for all y ∈ X−X we have

‖y‖ ≤ c|Ly| = c|MPy| ≤ C‖Py‖,

where C = c‖M‖. In particular we have

‖αnen‖ ≤ C‖P (αnen)‖ ⇒ C‖Pen‖ ≥ 1.

However,

k = rankP = TraceP ≥
∞∑

n=1

(Pen, en) =

∞∑
n=1

‖Pen‖2 = +∞,

a contradiction. �

We note that this result also follows from Lemma 2.4 in Movahedi-Lankarani &
Wells [16] which gives a characterisation of sets X that can be linearly bi-Lipschitz
embedded into some R

k: such an embedding is possible if and only if the weak
closure of {

x− y

‖x− y‖ : x, y ∈ X, x �= y

}
does not contain zero (“weak spherical compactness of X”).

Now consider the homogeneous set X = {2−nen} ∪ {0}, which has dA(X) = 0.
Since X is an orthogonal sequence, it follows that X − X (which in particular
contains X) is also homogeneous; but Lemma 8.2 shows that no linear map into
any finite-dimensional Euclidean space can be bi-Lipschitz on X. This shows that,
with the requirement of linearity, our Theorem 5.6 cannot be improved.

However, note that there is a simple non-linear bi-Lipschitz map φ from X into
[0, 1], given by

φ(2−nen) = 2−n :

For n < m we have

1

4
(2−n + 2−m)︸ ︷︷ ︸

1
4 |2−nen−2−mem|

≤ 2−(n+1) ≤ |2−n − 2−m|︸ ︷︷ ︸
|φ(2−nen)−φ(2−mem)|

≤ 2−n ≤ (2−n + 2−m)︸ ︷︷ ︸
|2−nen−2−mem|

.

The relationship between linear embeddings and general bi-Lipschitz embeddings
is delicate. Suppose that X is a connected set containing more than one point. The
result of Proposition 7.3 shows that even if X can be linearly bi-Lipschitz embedded
into some Rn, it is nevertheless bi-Lipschitz equivalent to a space φ(X) that cannot
be bi-Lipschitz embedded into any R

n using a linear map.
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9. Conclusion

We have identified a new class of almost homogeneous metric spaces, and shown
that such spaces enjoy almost bi-Lipschitz embeddings into Hilbert space. Further-
more we have shown that any compact subset X of a Hilbert space with X − X
almost homogeneous can be embedded into a finite-dimensional Euclidean space in
an almost bi-Lipschitz way.

Some outstanding problems remain:

(1) Is there a homogeneous subset of a Hilbert space that cannot be bi-Lipschitz
embedded into any R

k?
(2) Can any (almost) homogeneous subset of a Hilbert space be (almost) bi-

Lipschitz embedded into some R
k?

(3) Can one construct an almost bi-Lipschitz embedding f of a compact almost
homogeneous metric space (X, d) into a Hilbert space in such a way that
X −X is almost homogeneous? (This would answer (2) positively.)

(4) Is the exponent γ in Theorem 5.6 (the power of the slog term) in any way
optimal? (Pinto de Moura & Robinson [19] show that one can do no better
than γ > 1

2 in general.)
(5) Can one bound the Assouad dimension of the attractors of dissipative PDEs

(or preferably the set of differences of solutions lying on such attractors)?
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