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Abstract
The purpose of this research is to answer the question, ‘can analytics software measure end user computing electricity 
consumption?’ The rationale being that the success of traditional methodologies, such as watt metres, is limited by newly 
evolved barriers such as mobility and scale (Greenblatt et al., in Field data collection of miscellaneous electrical loads 
in Northern California: initial results. Ernest Orlando Lawrence Berkeley National Laboratory research paper, pp 4–5, 
2013). Such limitations significantly reduce the availability of end user computing use phase energy consumption field data 
(Karpagam and Yung, in J Clean Prod 156:828, 2017). This causes computer manufacturers to instead rely upon no-user 
present energy efficiency benchmarks (Energy Star, in Product finder, product, certified computers, results. Washington, 
D.C.: United States Department of Energy. https:// www. energ ystar. gov/ produ ctfin der/ produ ct/ certi fied- compu ters/ resul ts, 
2021) to act as baseline data for product carbon footprint reports. As the benchmark approach is previously tested to cause 
scope 2 greenhouse gas emissions quantification to be inaccurate by − 48% to + 107% (Sutton-Parker, in Determining end 
user computing device Scope 2 GHG emissions with accurate use phase energy consumption measurement, 1877-0509. 
Amsterdam: Science Direct, Elsevier B.V., 2020), testing a new methodology that includes the impact of human–computer 
interaction is arguably of value. As such, the proposed method is tested using a distributed node based analytics software 
to capture both computer asset and human use profile data sets from one hundred and eleven computer users operating in 
a subject organisation for 30-days. The simple rationale is that the node, unlike a watt metre, is not restricted by location, 
can be deployed and monitored globally from a centralised location and can move with the computer to ensure constant 
measurement. The resulting data sets are used to populate a current use phase electricity consumption calculation data flow 
(Kawamoto et al., in Energy 27:255, 2001; Roth et al., in Energy consumption by office and telecommunications equipment 
in commercial buildings: energy consumption baseline, 2002) in order to examine for omissions. Additionally, to test for 
data accuracy, one computer user acts as a control subject, measuring electricity consumption with both a watt-metre and 
the analytics software. The rationale being that the watt-metre data is extensively proven to be accurate (Energy Star, in 
Energy star computers final version 8.0 Specification, Washington D.C., United States Department of Energy. https:// www. 
energ ystar. gov/ produ cts/ spec/ compu ters_ versi on_8_ 0_ pd, 2020) and will therefore expose errors produced by the software 
in relation to power draw, on-time and resulting kilo-watt hours (kWh) values. Further to the data capture period, the find-
ings are mixed. Positively, the new method overcomes the barriers of numerous, assorted devices (scale) operating in ever 
changing locations (mobility). This is achieved by the node reporting in real-time make and model asset data together with 
device specific electricity consumption and location data via internet technologies. Negatively, the control subject identifies 
that the electricity consumption values produced by the software are inaccurate by a relatively constant 48%. Furthermore, 
data omissions are experienced including the exclusion of computer displays caused by the node requiring an operating 
system to collect data. This latter point would exclude the energy consumption measurement and therefore concomitant 
greenhouse gas emissions of any displays connected to desktop or mobile computers. Consequently, whilst the research 
question is answered, the identification of the software exaggerating use phase energy consumption by 48% and excluding 
peripheral devices, determines the analytics methodology to be in need of further development. The rationale being that use 
phase consumption quantification is key to lifecycle assessment and greenhouse gas accounting protocol and both require 
high levels of accuracy (WBCSD and WRI, in The greenhouse gas protocol. A corporate accounting and reporting standard, 
Geneva, Switzerland and New York, USA. https:// ghgpr otocol. org/ corpo rate- stand ard, 2004). It is therefore recommended 
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that further research be undertaken to specifically address omissions and to reduce the over reporting aspect identified as 
caused by algorithms in the software used to calculate hardware power draw.

Graphical abstract

Keywords Human–computer interaction · Use phase energy consumption · Computing scope 2 greenhouse gas emissions · 
Sustainable end user computing · Computing carbon footprints

Introduction

End user computing generates in excess 1% of global green-
house gas annual emissions (Andraea and Edler 2015; Beka-
roo et al. 2014; Belkhir and Elmeligi 2017; GeSI 2008, 2012, 
2015, 2019; Malmodin et al. 2010) and therefore potentially 
represents a rich source of pollution abatement in order to 
tackle global warming. Life cycle assessment research indi-
cates these greenhouse gases are predominantly generated by 
embodied emissions created by raw material extraction and 
manufacturing plus use phase emissions generated by elec-
tricity consumed by the devices during operation (Andrae 
and Andersen 2010; Andre et al. 2018; Arushanyan et al. 
2014; Subramanian and Yung 2016). Whilst this is agreed, 
the proportionate representation of each value varies consid-
erably between findings. As an example, the embodied phase 
ranges from 12 to 97% of the total and conversely use phase 
emissions from 3 to 88% (Atlantic Consulting and IPU 1998; 
Choi et al 2006; Duan et al. 2009; Hart 2016; IVF 2007; 
Kemna et al. 2005; Kim et al. 2001; Lu et al. 2005; PE Inter-
national 2008; Sahni et al. 2010; Socolof et al. 2005, 2017; 
Tekawa et al. 1997; Teehan and Kandliker 2012; Williams 
2004). From an embodied perspective, incongruity is caused 
by differences in the way lifecycle inventory data sources are 
calculated (Sonderegger et al. 2017; Steen 2006) meaning 
that depending on which database is accessed during calcu-
lation, the embodied value may change in prominence whilst 
remaining theoretically accurate (Finnveden et al. 2016; 
Peters and Weil 2016; Rigamonti et al. 2016; Rorbech et al 
2014). From a use phase perspective, unlike the embodied 
emissions the total electricity consumed during a device life 

span is not fixed and can vary between identical devices. 
This is due to the use profile generated by each user and the 
location of use. As an example, whilst power draw meas-
ured in watts differs between device types due to component 
specification, the resulting kilowatt hour value used to meas-
ure energy consumption is influenced by human–computer 
interaction. Specifically, the type of computing activities 
conducted and the regularity and duration of those activities 
will alter the energy consumption result. Additionally, the 
use phase emissions are calculated by multiplying the elec-
tricity consumed value (kWh) by the greenhouse gas conver-
sion factor published annually by each government where 
the energy is consumed (DoBEIS 2021). The factor is cre-
ated to reflect the carbon intensity of the electricity supply 
grid. As such it is reasonable to state that the same research 
conducted in different geographies will generate different 
proportionate emissions results. As an example, in North 
America, where transition to solar, wind and water sourced 
energy has been slow, a conversion factor of 0.45322 exists 
(Carbon Footprint 2020). Comparatively, where adoption of 
green energy has proved faster, such as the UK, the result-
ing conversion factor is 0.21233 (DoBEIS 2021). As such, 
10 kWh of electricity consumed in the former will create 4.5 
 kgCO2e greenhouse gas emissions compared to the latter of 
2.1  kgCO2e, thus increasing or decreasing the percentage 
contribution of end user computing use phase emissions.

Legacy sources of use phase electricity consumption 
data from the late twentieth century exist in relative abun-
dance due to the fact that the majority of end use computers 
were desktop bound. As such, large user samples could be 
measured in situ using watt metre methodologies pioneered 
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by prevailing researchers to capture the kWh values (Pie-
tte et al. 1985, 1991, 1995; Yu et al. 1986; Norford et al. 
1988; Nguyen et al. 1988; Dandridge 1989; Lovins and 
Heede 1990; Norford et al. 1990; Newsham and Tiller 1992; 
Johnson and Zoi 1992; Smith et al. 1994; Szydlowski and 
Clivala 1994; Koomey et al. 1995, 1996; Routurier et al. 
1994). However, current use phase data sets are recog-
nised as highly limited (Greenblatt et al 2013; Karpagam 
and Yung 2017; Malmodin et al 2010) due to 86% of end 
user computers becoming mobile (Gartner 2021; Statistica 
2020, 2021) meaning that the immobile watt metre can no 
longer track the influence of human interaction. Greenblatt 
et al. (2013) emphasise that consequently, widespread use 
phase field measurement is now avoided due to scale and 
mobility creating unsurmountable logistical complexities. 
Such is the limited availability of contemporary field data, 
Karpagam and Yung (2017) note that whilst conducting end 
user computing device lifecycle assessments their work was 
made all the more difficult by what is described as a field 
that is ‘data starved’. Belkhir and Emeligi, (2017) concur, 
conceding that electricity consumption findings are subject 
to error as validity of use profile variations is sought from 
sources predominantly tied to the desktop era between 1988 
to 2002 (Norford et al 1988; Koomey et al. 1995, Kunz 1997, 
Komor 1997, Hosni et al. 1999, Roth et al. 2002). Intellect 
(2016) consequently echo Malmodin’s et al. (2010) concerns 
concluding that using legacy source data to calculate modern 
day end user computing emissions is unreliable due to data 
being obsolete.

To compensate for the recent limitation, a second source 
of use phase electricity consumption data offers a contempo-
rary baseline value in the form of pre-sale energy efficiency 
Energy Star benchmarks (Energy Star 2021). Conducted 
under strict test set-up and conduct regulations, the pro-
gramme accurately measures newly manufactured comput-
ing devices for power draw in no-user present operational 
modes such off, sleep and idle (Energy Star 2020 ). The 
results are published online (Energy Star 2020) and include 
a typical energy consumption value to represent an antici-
pated annual kWh value. Whilst used as the basis for manu-
facturer carbon footprint publications (Apple 2021; Dell 
2021; HP 2021; Lenovo 2021; Microsoft 2020) the values 
are ultimately without validity in the context of a life cycle 
assessment as they do not include the active operation mode 
when a user is interacting with the device. Prior research 
determines (Sutton-Parker 2020) that this causes the typical 
energy consumption value to be inappropriate as a substitute 
for field measurements as the additional power required as 
the device carries out useful work is excluded from any cal-
culations (Sutton-Parker 2020). Specifically, the inaccuracy 
ranges from − 48% to + 107% (Sutton-Parker 2020) conse-
quently causing calculations reliant upon the benchmark 

method to under estimate the proportionate representation 
of use phase electricity consumption by an average of 30%.

Whilst the issue of embodied emissions incongruity 
is beyond the scope of this research, previous research 
designed to address key issues such as scale and mobility 
affecting the accuracy of use phase consumption values have 
been undertaken. Notably, in response to increasing legisla-
tion and policy to reduce scope 2 emissions in the public 
sector, Cartledge (2008) and Hopkinson and James (2009) 
produced the SustIT/JISC tool. Essentially an end user com-
puting device specific version of the use phase emissions 
consumption input tables from the Kenma et al. (2005) life 
cycle assessment energy consumption calculator, the tool 
enables any organisation wishing to complete computer use 
phase emissions quantification to do so following a few sim-
ple steps. First the organisation simply conducts an asset 
profile exercise and then inputs the high level results (e.g. 
20 × notebooks) into the tool. An annual energy consump-
tion value is then applied to each device type, having been 
generated by use profile field data measured within the rele-
vant universities where the original research was conducted. 
The resulting value is then multiplied by the relevant carbon 
emissions factor and a  kgCO2e unit value is produced. Whilst 
logical, again the limitation of the imposed use profile based 
upon a fixed seventy active hours per week may address the 
inclusion of an active value, it does introduce error of non-
specificity raised by Malmodin et al (2010). The issue lies 
within the uniform use phase electricity consumption value 
applied to device types (e.g. notebooks) rather than the spe-
cific notebook used by an organisation. As an example, the 
field measured annual electricity consumption in the work-
place for an Acer Chromebook is 11.93 kWh (Sutton-Parker 
2020) generating 2.53  kgCO2e of annual scope 2 emissions 
if used in the UK (DoBEIS 2021). Conducting the same 
calculation using the estimation tool (Hopkinson and James 
2009), an average electricity consumed value of 30 kWh 
is applied (JISC 2019). This value is translated to scope 2 
greenhouse gas emissions of 6.37  kgCO2e per device. As 
such, the inaccuracy introduced is equal to + 152%.

To overcome this non-specificity and the mobility barriers 
software has previously been trialled to achieve the similar 
action of a watt metre. The approach was called Joulemeter 
(Kansell 2010) and was capable of measuring and reporting 
real time energy consumption of both physical information 
technology hardware, virtual machines (VM) and software 
applications. Whilst the idea of moving to software based 
measurement would have offered scope for wide scale end 
user computing and use phase electricity consumption data 
to be generated, the tool suffered a setback for two reasons. 
Firstly, it required a watt meter for a calibration phase, thus 
re-introducing the issue it was designed to overcome plus 
upon scrutiny (Bekaroo et al 2014) it proved to only achieve 
59% accuracy. Subsequently, the software failed to progress 
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and is noted only by Microsoft as no longer publicly avail-
able and deprecated.

Consequently, the objective of this research is to test 
an alternative method of capturing end user computing 
use phase data regardless of scale, mobility and location 
parameters. This is attempted by using remotely deployed 
analytics software. The rationale being that the reliance upon 
fixed position watt metering that has continued since the 
late 1980s may be overcome by utilising such a node based 
distributed data base approach that allows for mobile energy 
metering. In doing so, the holistic value of the research is 
that contemporary computer use profile field data can be 
generated by researchers or manufacturers without restric-
tion and in abundance. Such untethered capability would 
produce data that both reflects the electricity consumption 
efficiency of today’s end user computers and captures the 
real time evolution of emerging human–computer interaction 
that may affect power draw, such as video conferencing. If 
proven feasible, a field described as data starved (Karpa-
gam and Yung 2017) and consequently reliant on aged data 
(Belkhir and Elmeligi 2017) could once again be populated 
with contemporary data. The impact of this will potentially 
enhance substantiation and accuracy for future research 
papers attempting to quantify the impact of end user com-
puting upon global greenhouse gas emissions. The rationale 
being that it is accepted that the data currently used for the 
use phase energy consumption and concomitant pollution 
is difficult to validate due to the lack of available field data 
(Andraea and Edler 2015; Bekaroo et al. 2014; Belkhir and 
Elmeligi 2017; GeSI 2008, 2012, 2015, 2019; Malmodin 
et al. 2010). At a product level, achieving the objective will 
also refine quantification as to the contribution of electricity 
consumption to the total carbon footprint of end user com-
puting devices that is subject to divided opinion (Atlantic 
Consulting and IPU 1998; Choi et al 2006; Duan et al. 2009; 
Hart 2016; IVF 2007; Kemna et al. 2005; Kim et al. 2001; 
Lu et al., 2005; PE International 2008; Sahni et al. 2010; 
Socolof et al. 2005, 2017; Tekawa et al. 1997; Teehan and 
Kandliker 2012; Williams 2004). This improvement may in 
turn speculatively, support emerging government procure-
ment policy and legislation created to abate the environmen-
tal impact of information technology in the workplace (HM 
Government 2020, 2021; European Commission 2021a, b). 
As an example, the new legislations require evidence to be 
delivered that increases accountability and reporting related 
to the procurement and subsequent carbon footprint of infor-
mation technology. As such, validating the use phase con-
tribution with widespread field data may potentially act as a 
vehicle to enable compliance in relation to this requirement.

As such, in order to achieve the objective and prove the 
value of the research, the following sections describe the 
methodology used to conduct the field experiment and the 
results and discussion generated by the undertaking.

Methodology

The objective of the experiment is twofold. Firstly, to test 
the feasibility of using analytics software to capture both 
asset and use profile data regardless of scale, mobility and 
location. Secondly, to measure the accuracy of the result-
ing use phase electricity consumption values. To achieve 
this the following structure is used:

 1. Identify a candidate organisation
 2. Determine a suitable time horizon
 3. Determine a test set-up and conduct for the organisa-

tion
 4. Determine a test set-up and conduct for the control user
 5. Determine a comparison test for the asset profile data 

collection
 6. Measure the electricity consumption of end user com-

puting devices for both the organisation and control 
subject

 7. Document the results
 8. Discuss the results
 9. Summarise and conclude
 10. Make recommendations and state limitations.

Selecting the subject organisation

Three considerations influenced the selection of the sub-
ject organisation. Firstly, more than fifty mobile users were 
required to test the capability of the software in relation 
to scale and mobility. The rationale being that the number 
is sufficiently significant to produce both device type and 
model variety. Secondly, operations within multiple coun-
tries was preferable to enable location capture to support 
the feasibility of identifying national based greenhouse 
conversion factors. Thirdly, a company already using the 
software for its intended use of digital experience manage-
ment to avoid reluctance or delay related to the installation 
of new software that may be perceived as an unplanned 
cost or network security issue. To meet the criteria, the 
analytics software vendor was contacted and asked if they 
could propose a customer willing to participate in the 
research. The rationale being that Lakeside has over three 
thousand active customers and the likelihood of a positive 
response was high. Perhaps surprisingly, Lakeside them-
selves agreed to be the test organisation as they obviously 
use the analytics software as part of their business opera-
tions and were highly interested in exploring sustainability 
options both internally and to promote to customers. The 
profile of the candidate organisation subsequently met all 
proposed criteria.
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Time horizon

The time horizon of the experiment is thirty days. This is 
determined by certain predefined reporting aspects built into 
the analytics software that offers both a daily and monthly 
cumulative report. Additionally, 30 days represents one 
month and as such can be extrapolated during the results and 
discussion to create annual values. It is recognised that the 
optimum duration would be one year although this experi-
ment is to test feasibility plus the accuracy of the control 
subject. As such, it proved unfeasible for the control subject 
to remain in one location and connected to a watt metre for 
a period any longer than one month.

Test set‑up and conduct for the organisation

The test set-up was relatively simple as Lakeside already 
use the analytics software and as such analytic database 
nodes resident on the end user computing devices were pre-
installed and already collecting the required data at ten sec-
ond intervals. To ensure that the asset and use profile data 
inputs identified as critical to the use phase consumption and 
concomitant greenhouse gas quantification were captured, a 
specific dashboard was created within the software’s visual-
izer capability. As such, data sets including computer name, 
device manufacturer, model, serial, chassis format and age, 
power average in watts, energy consumption in kilo watt 
hours (kWh), on time (OT) observed, and location were able 
to be extracted at the end of the 30-day period. The format 
is a simple Microsoft.xls Excel binary file.

The conduct for the main body of users required no inter-
vention or awareness. This was decided upon to ensure that 
the automatically captured data reflected the extraneous vari-
ables such as a multitude of unique user profiles experienced 
in a real life setting. The rationale being, that if the user 
was made aware that measurement was occurring, then this 
may change natural use patterns. However, as the control 
user was required to adhere to certain conditions to ensure 
comparison between the active time and watt metre readings, 
the following approach was employed in this instance only.

Test set‑up and conduct for the control user

The control user was a single mobile user measured by both 
the analytics software and an accurate watt meter for use 
profile values to enable future comparison of results. This 
extra measure is undertaken to determine whether the elec-
tricity consumption values produced by the analytics soft-
ware matched the accurate watt metre kWh results. Similar 
to the main cohort of users, the software was previously 
loaded and automatically reporting whereas the watt metre 
required specific set-up. To ensure that the notebook energy 
consumption measured by the watt meter was not altered 

by any additional power demands such as plug sharing or 
peripheral devices, elements of the Energy Star benchmark-
ing test set-up (Energy Star 2020) were incorporated in the 
test set-up as they are proven to enable accuracy. These 
include:

A. The ‘Input Power’ using alternating current (AC) mains 
supply must be connected to a voltage source appropri-
ate for the intended market (country). In this case the 
UK where nominal supply voltage is 230 V + 10%/ − 6% 
to accommodate transformer settings of 240 V

B. Connected to a watt meter meeting the IEC 62301 stand-
ards plugged in between the input power and the mains 
supply.

C. No peripheral devices were used or attached during the 
experiment

D. The notebook was connected to the power source for 
24 h per day for the duration of the experiment

It is noted that as per the Energy Star recommendations 
the notebook remains connected to a power source. This 
is undertaken to ensure the watt metre continues to collect 
energy data. The rationale being that unplugging the device 
from the power source will register a pause in power draw 
by the watt meter but not by the software. As such, removing 
the device from the power source would invalid the com-
parison of both data sources. As such, the notebook can be 
considered the equivalent to a desktop in this instance by 
the fact that it is required to remain static throughout the 
process. To safeguard that the notebook energy consump-
tion measured by the software was not affected by the loss 
of Wi-Fi signal during the experiment a local area network-
ing (LAN) cable was connected directly to the broadband 
router via the Ethernet port. It was confirmed by the software 
vendor that the network interface card (NIC) is included 
in power monitoring. The notebook was operated by one 
consistent user throughout. To mirror real world use, no 
restrictions were placed upon when the notebook could be 
used during each twenty-four-hour measurement period 
with the exception noted below. As both the watt meter and 
software are capable of measuring the time per day that the 
notebook is ‘on’ and drawing energy the following modes 
were measured.

A. ‘On Time’ (OT) representing the period of time in hours 
and minutes that the notebook was ‘on’ and drawing 
electricity. This is not to be confused with the ‘active’ 
measurement used in experiment 2 as it also includes 
periods of time when the notebook has transitioned to 
other modes such as short or long idle.

B. ‘Off’ representing the period of time that the notebook 
was either switched off or had powered down and was 
potentially no longer drawing energy.
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To enable comparison to existing TEC and active use 
comparative research, Energy Star recommendations were 
used for most part of the experiment as follows:

C. Display Sleep Mode was to initiate after 15 min of user 
inactivity as per Energy Star recommendations.

D. Sleep mode was set to initiate after 20 min of user inac-
tivity as per Energy Star recommendations.

Deviations to this test set-up were included in the experi-
ment on certain days to test the capability and accuracy of 
the software. These included changing the power settings 
for the device to disable the sleep and/or ‘turn off the dis-
play function’. The rationale was to test if certain aspects of 
the software required the user to be actively logged in and 
working for energy consumption reporting to occur. This is 
explained in full in the results discussion.

Whilst the software data collection is automated, the watt 
meter daily energy consumption (kWh) values and on time 
(hours and minutes) were noted manually from the LCD 
screen at the same time to maintain consistency.

Asset profile test comparison

As the experiment include testing both the use phase emis-
sions data capture and the asset profile data capture capabili-
ties of the software a comparison of capability for the latter 
is required in addition to the electricity consumption control 
user. The rationale being that without alternative methods 
of asset profile capture against which to compare the results 
to, any findings may prove less meaningful. As such, two 
further asset profile exercises are undertaken at two sepa-
rate large organisations using existing survey and asset 

management techniques. The results of all three approaches 
are then compared for ease and accuracy.

Measurement

The measurement occurred during March 2021 following 
the conduct previously documented, and the results are dis-
cussed in the following section.

Results

The results are discussed in two categories of feasibility and 
accuracy. As such the following sections firstly document 
the ability of the analytics software to capture asset and use 
profile data in relation to the majority of users, before dis-
cussing the accuracy of the use profile data as determined 
by the control user.

Feasibility testing asset and use profile data capture

The data flow created by Kawamoto et al (2001) and refined 
by Roth et al (2002) defines inputs required to calculate the 
use phase consumption of computer device types within 
large install bases such as companies, sectors and geogra-
phies. Effectively the model creates two data sets called asset 
profile data and use profile data. The first data set determines 
the types and number of devices used by various user types 
to create a stock unit quantity. The second captures user 
usage time and computer power demand in watts to calcu-
late a unit energy consumption (UEC) value. The two values 
are then multiplied by one another to create a total end user 
computing device use phase electricity consumption value. 
As an example, Fig. 1 shows the data flow utilised to enable 

Fig. 1  Modified Kawamoto et al (2001) and Roth et al (2002) end user computing kWh data flow
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the kWh consumption quantification of all end user comput-
ing devices within a University. In this instance, the educa-
tional establishment is able to not only understand the total 
energy consumption caused by devices such as notebooks, 
tablets and desktop computers but also sources of specific 
consumption such as student or staff notebooks further to 
population of the data.

Simplified, the calculation flow is represented by the 
equation Asset profile (units) × Use profile (kWh) = Total 
use phase energy consumption (kWh). Consequently, in 
order to accurately quantify end user computing device use 
phase electricity consumption values required for scope 2 
greenhouse gas emissions calculation, the analytics software 
must first capture the following data:

• Asset profile data—quantity (unit), type (description), 
model (description) and user (description)

• Use profile data—power draw (watts), usage (hours and 
minutes)

Whilst the asset profile data is self-explanatory, the use 
profile data arguably requires explanation as to how the 
quantification of watts and time produce kWh. As such, the 
energy value (kWh) is produced, as would be the case with 
any electrical item, by multiplying power (watts) supplied to 
the device by the length of time (hours) the device is used, 
divided by equivalent energy used by a 1000 W electrical 
device for one hour. As an example a 50 W personal com-
puter would take 20 h to consume 1 kWh. Therefore, the 
same 50 W device would consume 1.2 kWh if left in opera-
tion for twenty-four hours. Consequently, measured energy 
in kWh is expressed as follows:

In order to inspect the data captured by the analytics 
software, three separate reports within the digital experi-
ence monitoring solution were accessed including hardware 
(computer name, manufacturer, model, chassis), computer 
performance (computer name, user name, location) and 
power (computer name, power draw, kWh, OT). To eradi-
cate the complexity of cross referencing and possible intro-
duction of error, a browser accessed dashboard was created 
within the software’s visualizer function to isolate and dis-
play only the required data sets structured in a.xls format. 
In order to also ensure anonymity during the experiment, 
employee and computer names were intentionally obfuscated 
and replaced with alpha numeric sequenced descriptions 
(Table 1).

Asset profile data capture—quantity, type, model and user

Documenting the exact quantity of devices by type, model 
and associated users represents the foundation data required 
to complete the capture of asset profile data. As highlighted 
by the discussed JISC methodology (2019) previously, fail-
ure to produce device specific results generates inaccuracy. 
The original Kawamoto et al (2001) research utilised the cal-
culation flow to calculate the number of devices in operation 
at a national scale generating stock unit quantities for resi-
dential, commercial and industrial computer installations. 
As the asset capture is undertaken within a single company, 
the market input is replaced with a job role. The rationale 
being that when examining identified areas of high end user 
energy consumption and therefore concomitant greenhouse 

kWh =
Watts × Time (h)

1000
.

Table 1  Analytics asset and use profile data extract

Computer 
name

Power Av. 
(W)

OT observed 
(%)

Elec monthly 
(KWH)

Manufacturer Model Chassis Country loca-
tion

Role

Computer 1 17 15.9 2 Dell Inc Latitude 
E7450

Laptop NL Not collected

Computer 2 54 42 17 Dell Inc XPS 15 9570 Notebook US Not collected
Computer 3 Not collected Not collected Not collected Not collected Not collected Not collected US Technical 

Support
Computer 4 47 70.5 24 Dell Inc XPS 13 9370 Notebook US Not collected
Computer 5 10 21.4 2 Apple Inc Not collected Laptop Not collected Not collected
Computer 6 39 33.3 9 Dell Inc XPS 13 7390 Notebook US Not collected
Computer 7 32 69.6 16 Dell Inc XPS 13 9370 Notebook US Not collected
Computer 8 55 31.5 13 Dell Inc XPS 13 9370 Notebook US Not collected
Computer 9 30 91.7 21 Hewlett-

Packard
HP EliteBook 

Folio 1040 
G1

Notebook IL Not collected

Computer 10 34 24.4 6 HP HP EliteBook 
840 G6

Notebook PL Not collected
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gas emissions, an organisation is enabled to understand if it 
is a job role causing excessive OT. Additionally, to ensure 
appropriate national electricity conversion factors can be 
applied, an additional input of location is captured by the 
software. Further to the data capture period, the analytics 
software collected asset profile data from all one hundred 
and eleven end user devices. In relation to type, seven manu-
facturers were noted, consisting a total of forty-six different 
models of devices. Notably, no categorisation was achieved 
for 10% of devices, with a further 4.5% being tablets, 10% 
desktops and 75.5% notebooks. As demonstrated in the use 
profile section, type is vital to the data flow as a notebook 
will have a very different power draw to a desktop computer. 
The user role identified 17 sales people, 6 corporate work-
ers, 1 professional services consultant, 7 technical support 
representatives and 2 technical services engineers. As such, 
78 (70%) of employees were simply listed as ‘not collected’. 
Location was captured successfully in 90 instances across 
eight countries with 23 entries registered as ‘not collected’. 
Of the captured location data, 43% were based in the USA, 
26% in the UK, 10% in India, 2.2% in each of the Nether-
lands, Poland, and the United Arab Emirates and 0.9% in 
both Israel and South Africa.

Further to the findings, it is notable that whilst asset data 
was captured for 100% of devices, the success rate of each 
metric suffered omissions. The 10% omission of type was 
discovered to be due to the software application programme 
interface (API) accessing basic meta-information from the 
Microsoft Windows Management Instrumentation (WMI) 
database. The WMI stores definitions of products to work 
in conjunction with the Windows Driver Model (WDM) to 
allow for update and management of the device by acting 
as a repository of software drivers, applications and exten-
sions available in the Windows operating system (OS). As 
the inventory data populates automatically using the WMI 
data when the analytics agent is installed on the device, then 
the issue of type omission would require to be addressed 
within the WMI and is therefore arguably surmountable. The 
issue of only collecting 30% of job roles was defined as the 
role based attributed not being defined within the company’s 
active directory. Consequently, to improve accuracy simply 
updating the employee role details on the domain network 
would theoretically rectify the issue. Of location, no definite 
reason for 21% lacking in data although the hypothesis was 
suggested that users exhibiting this lack of granularity may 
be using internet protocol (IP) masking software therefore 
denying the function access to information identifying which 
country the device is being used in.

Whilst it is anticipated that each omission may be 
overcome with additional focus, to gauge if the proposed 
analytics approach represents an improvement to existing 
techniques, further asset profiling practices were under-
taken at two different organisations using survey and asset 

management software. The survey technique was under-
taken at the University of Sussex, having agreed to assist 
the research due to an interest in wanting to better under-
stand the environmental impact of the current end user 
computing estate with regards to use phase emissions. The 
technique proved highly time consuming from a creation 
process as it required sixty-eight specific questions to cap-
ture the required data via drop down, sliding scale and free 
type inputs. As the results were populated manually by the 
information technology manager, there was no ability to 
identify location of devices and only hardware supplied by 
the University could be included. As an example it was not 
possible to account for any student owned devices used in 
the campus. However, further to completion of the survey 
online via a supplied quick response (QR) code, the results 
identified 8,927 end user computing devices and 20,000 
light-emitting diode (LED) displays. By type the devices 
were noted as 5200 desktop computers, 1,840 integrated 
desktop computers, 960 workstations, 927 notebooks and 
20,000 monitors. Excluding the monitors, the devices are 
dominated by 58% desktops, 21% integrated desktops, 11% 
fixed workstations and 10% notebooks. Specifically, due to 
the prominence of monitors within the University estate, 
the survey technique highlighted that the analytics software 
failed to capture peripheral devices such as displays. Upon 
further investigation, it was found that the initial analytics 
‘hardware’ report includes a column indicating the num-
ber of monitors detected as connected to the device at any 
point during the measuring period rather than any associate 
make, model or size. Further to speaking with the analytics 
vendor, it was explained that as the condensed SQL node 
requires an operating system to interface and as such report-
ing asset or power profile data for peripheral devices, such 
as monitors, was not achievable currently. Considering that 
157 monitors are listed as connected to the devices profiled 
by the analytics software, the impact is significant as the 
resulting electricity consumption would be excluded from 
any calculations due to the lack of asset data. Comparing the 
two practices, each suffers setbacks. The survey technique 
lacks the automation of the analytics approach and cannot 
generate location context. Although positively, the ability 
to include peripheral devices is arguably essential for com-
plete representation of use phase emissions. From a time to 
completion perspective, the lack of automation suffered by 
the survey method is partially passed on to the person tasked 
to populate the asset profile data as noted by the University 
information technology manager:

‘I think the survey was very easy generally. There were 
a couple of sections I had to go back over because 
I’d not appreciated the whole breakdown of areas so 
consolidated initially and then had to separate once I 
realised, but this wasn’t bad and could be addressed 
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by providing a list of the areas in advance. That would 
probably help anyway to be honest as there is a fair 
amount of info to gather which I happened to have 
but I’m guessing not everyone would.’ – P. Collier, 
University of Sussex.

The comment highlights, however, that unless some 
form of asset list already exists then, unlike the analytics 
approach, the process may become unfeasible. Consequently, 
in order to offer an automated comparison to the analytics 
method, the same asset profile process was undertaken using 
automated asset management software at a prosthetic limb 
manufacturing company, Ossur. The company is an active 
participant in the United Nations Global Compact work-
ing towards sustainable and socially responsible goals and, 
similarly to the University, wished to assist the research in 
testing methodologies. As asset management software called 
Lan Sweeper was already installed at the company, a simi-
lar Microsoft Excel file extension spreadsheet was extracted 
using the software report structuring capability. As before, 
asset profile inputs such as quantity, manufacturer, model 
and location were generated with the exception of chassis 
(type) and role. This first exclusion was caused because the 
type of device, such as notebook, was not available within 
the report function as a criterion. To overcome this, a look 
up table was created to compare the captured device brand 
and model data with type data extracted from the  Energy 
Star (2021) online data base. With regard to role, it is fea-
sible within the software, although similar to the analytics 
software the function had not been configured at the active 
directory level. In order to overcome this in the short term, 
the captured location data was used to create role based con-
text. Although not conclusive, this was achieved because 
each Ossur site has a specific function such as manufactur-
ing and clinics. As such, a further lookup was created to 
generate a ‘role’ defined by location column including sup-
port, manufacturing and clinician. With the exception of the 
additionally created functions, unlike the survey method, the 
data extraction was instantaneous thus mirroring the time 
saving capabilities of the analytics solution. Arguably more 
importantly, the asset management software also identified 
peripheral devices such as monitors excluded by the analyt-
ics tool. Specifically, the asset management software method 
identified 3,928 end user computing devices. Of these 30% 
(1,160 units) were desktop computers, 67% (2,643 units) 
notebooks, 1% (43 units) integrated desktop computers and 
2% (82 units) workstations. A further 2,579 monitors were 
identified ranging from 14″ mobile screens to 92″ presenta-
tion and information displays. From a role perspective, 20% 
of devices were used by prosthetic, bracing and supports 
business units, 20% by clinicians, 14% by manufacturing 
and operations, 5% by research and development with 41% 
unable to identify a specific role. Location data was captured 

for 97.5% of the devices with only 95 devices indicating 
neither region nor country. Proportionately, the devices were 
located 62% in Europe, 32% in the Americas, and 6% in Asia 
and Pacifica.

Summarising the asset profile data capture capability of 
the analytics software, it is reasonable to state that when 
compared to the existing methods of survey and asset man-
agement software it is certainly a more efficient approach in 
terms of time spent. Contrarily, it is also reasonable to sug-
gest that having created the survey and the look up tables, 
this advantage diminishes when conducted for a second 
time. Undoubtedly, the survey method would fail if no prior 
records existed and as such the asset management software 
perhaps offers the ideal solution to populate the first half 
of the Kawamoto data flow. With regard to accuracy, to 
collect the key inputs of type, make, model, user and role 
analytics again outperforms both options from a granular-
ity perspective by achieving the chassis categorisation and 
location without intervention. However, the oversight of 
not specifying peripherals such as monitors causes it to be 
highly flawed considering that such devices consume often 
higher electricity values annually than notebook devices. 
Specifically, in both cases of the University and the medi-
cal manufacturer monitors constituted 69% and 40% of all 
end user computing devices, respectively. Although argu-
ably not always utilised by mobile device users operating 
notebooks and tablets within an organisation, considering 
too that fixed thin clients, desktop and workstations cannot 
operate without a monitor and represent 14% of all devices 
manufactured, ignoring this category is not feasible if accu-
racy is sought.

Use profile data capture—power draw, on time

Unlike the survey methodology and asset management 
software practice, the analytics software has the ability to 
collect use profile data required to populate second half of 
the Kawamoto et al (2001) data flow. Leveraging a distrib-
uted database architecture that is stored on the endpoint, the 
software captures thousands of end-user data points at five 
second intervals. The results are transmitted by networking 
technologies for compilation by a Microsoft SQL database 
operated by a master server situated either on-premises at 
the organisation’s data centre or in a cloud computing data 
centre. The graphical user interface offers a configurable 
dashboard that when configured, enables selected metrics 
to be displayed either in summary or by detail such as a 
single user device at any selected time. Among the available 
metrics, the power reporting function captures power draw 
(watts) per device and OT observed (hours and minutes) 
in order to generate a kilowatt hour (kWh) calculation. As 
discussed in the methodology, this capability is effectively 
mimicking the actions of a watt metre without the restriction 
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of being bound to a static power source. Consequently, the 
use profile data captured for the subject organisation’s 
devices is examined for completeness and tested for accu-
racy. Data quality assessment is achieved by ensuring the 
use profile data generated by the organisation’s workforce is 
complete and where appropriate the kWh data can be con-
verted to display location specific use phase greenhouse gas 
emissions, whereas accuracy is validated using a single user 
as a control subject measured by both a watt metre and the 
analytics software’s power capability.

Data completeness was high with regard to capturing 
the use profile values as only 7% of devices were excluded. 
Examining these exclusions revealed that only the egress IP 
location had been captured suggesting that the device had 
been used at some point during the last year but not during 
the measurement period. The rationale being that this data 
is retained until refreshed. Whilst not confirmed in this spe-
cific case, this may be because the devices are surplus stock 
awaiting assignment to new employees. Consequently, 103 
devices reported power and OT observed metrics required 
to complete the electricity consumption (kWh) calculation. 
The power draw is represented as a watt (W) average value 
for the entire period. This ranged from 10 W registered by 
an Apple MacBook Pro notebook to 145 W for the HP Elit-
eDesk 800 G5, which is a tower form factor desktop simi-
lar to a small server. This created an average power draw 
of 49 W for the entire end user estate. The demand was 
elevated specifically by the desktop category, as would be 
anticipated due to the component architecture of the devices. 
As an example, the desktop power draw ranged from 59 W 
required by a small form factor HP EliteDesk 800 G1, ris-
ing to the noted 145 W, creating a desktop computer cat-
egory average of 88 W. Comparatively, the notebook estate 
ranged from the noted 10 W value to 93 W registered by a 
Dell Latitude 5285 convertible notebook. As such, the meas-
ured notebooks averaged 39.66 W and 55% lower than the 
desktop estate. Examining existing research (Sutton-Parker 
2020), the notebook values in particular appear relatively 
high adding emphasis to the examination of the control data 
discussed below.

The second metric of ‘OT observed’ is represented by a 
percentage of the 30-day period that the software node regis-
ters the computer as being used. As such, a 10% OT reading 
means that the device is used for 72 h during the available 
720-h measurement period. Consequently, if the average 
power draw is 10 W, such a device would require 0.72 kWh 
of electricity consumption for one month. As with the W 
value, all but eight devices registered OT ranging from 2.4% 
(1 h 45 min) to 100% (720 h). The average for all devices 
was 41.42% OT during the thirty-day measurement period. 
As the month in which the measurement occurred included 
twenty work days this result indicated that the employees 
were either spending an average of almost fifteen hours per 

working day operating devices or that other factors were 
influencing use. These include the possibility of shared use, 
additional leisure use such as streaming, standard power 
management settings such as sleep being overridden or soft-
ware inaccuracy. As accuracy is investigated thoroughly by 
the control device and leisure time and power management 
are not tracked, shared use was examined. As such 10% of 
the devices exhibited between 90 and 100% OT raising the 
average value considerably. Of these devices, it was revealed 
that 64% were desktops operated by technical support in 
shifts that according to the organisation, enable the support 
team to action requests twenty-four hours per day.

Applying the power average to the OT in the manner pre-
viously discussed produces a total of 1592 kWh electricity 
consumption by the end user computing estate. Specifi-
cally, the data determines that eleven desktops representing 
just 10% of all devices consumed 41% (657 kWh) of the 
measured energy due to a combination of high W values 
and extended OT as discussed. Comparatively, one hundred 
notebooks representing 90% of the estate consumed 59% 
(935 kWh). By location the UK consumed the highest value 
of 699 kWh (24 units), followed by the USA 585 kWh (39 
units), India 66 kWh (9 units), Netherlands 29 kWh (2 units), 
Poland 19 kWh (2 units), the United Arab Emirates 23 kWh 
(2 units), Israel 21 kWh (1 unit) and South Africa 13 kWh 
(1 unit). The representation by country as displayed in Fig. 2 
allows for visual comparison as to the importance of loca-
tion when determining use phase emissions using national 
specific electricity conversion factors. Clearly whilst the use 
profile data determines the UK to be the highest consumer of 
electricity even though it has 14 less devices than the USA 
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operations, in terms of actual emissions the USA proves to 
be the highest polluter. This is as previously described, due 
to less renewable energy being available in the US supply 
grid and therefore generating a higher carbon intensity of 
carbon per kWh consumed.

To summarise, with the exception of the surplus devices, 
use profile data capture using the proposed analytics meth-
odology proved comprehensive. The key values of power 
(W) and use (hours and minutes) were captured successfully 
enabling concomitant greenhouse gas emissions values to be 
generated. As such it is reasonable to state that the analytics 
software achieved the same function as a watt metre whilst 
overcoming the barriers of scale and mobility. The ration-
ale being that 103 devices were measured in near real time 
across 4 continents, 8 countries, with 90% of the devices 
being mobile. However, whilst the data is represented 
cohesively, if proven inaccurate, then the advancement of 
technique is diminished. As such the next section examines 
accuracy via the control user results.

Determining the accuracy of analytics software 
captured use profile data

Following the completion of the 30-day measurement 
period, the control user results indicate that the analytics 
software overestimates electricity consumption (kWh) by 
an average of 48%. The range of error is between minus (+) 
29% to 58% with minor anomalies of − 100% caused by long 
period of ‘off mode’. At a summary level, the accurate watt 
metre measured 4.25 kWh for the single device, whereas 
the software measured 6.31 kWh of electricity consumed. 
In order to determine the source of the disparity, the two 
measured values used to generate the kWh result are exam-
ined for inconsistency. As noted in the use profile capture 
section, these values are the time spent in operation and the 
power drawn (W) during that period.

On time observed

As noted, ‘on time’ (OT) is defined as the period of time 
measured in hours and minutes that the notebook is regis-
tered as drawing power and therefore consuming energy. 
Due to the 30-day duration of the experiment the highest 
feasible OT would be 720 h (30 days multiplied by 24 h). 
OT represents one of the key values used to calculate a kWh 
value. The results highlight that the watt meter reported a 
total OT measurement of 44.3% or 318.95 h during the 
30-day period. Comparatively, the software reported an 
OT of 40.8% or 293.76 h. The results deliver an error of 
OT underreporting by the software of − 3.5% or − 25.2 h. 
Divided by the time horizon, this suggests that the software 
is not reporting electricity consumption for an average of 
close to 50 min per day. To identify the source of the OT 

inconsistency, data relating to ‘off’ and ‘sleep’ modes were 
examined.

‘Off Mode’ is defined (Energy Star 2020) as when the 
power consumption level in the lowest power mode which 
cannot be switched off (influenced) by the user and that 
may persist for an indefinite time when the appliance is 
connected to the main electricity supply. In context, off 
mode is achieved when the user has shut down (not sleep 
mode) the notebook yet it remains plugged into the power 
source. In this state no ‘OT’ should be registered by either 
the watt meter or the software. The results indicated that the 
watt meter did not register any OT when the notebook was 
in off mode. It was however noted that a minimal draw of 
0.005 kWh was recorded for a 24-h period. Reversing the 
kWh equation indicates that 0.2 W ‘trickle feed’ of electric-
ity occurs when the notebook is in off mode as the battery 
experiences a minor energy discharge. The standard Energy 
Star benchmarks are calculated with ‘off mode’ assumed as 
25% of annual use profile. Using this mode weighting and 
the experiment results, the watt meter measured value would 
be 0.456 kwh per annum. The official Energy Star published 
benchmark results for the HP Elite Book notebook is 0.2 W 
draw and 0.438 kWh. Consequently, the watt meter results 
confirm that the source is 100% accurate for reporting ‘OT’ 
in ‘off mode’ and 96% accurate with regard to kWh measure-
ment when extrapolated and compared to the typical energy 
consumed benchmark.

Comparatively, the software also correctly measured no 
‘OT’ when in the ‘off mode’. However, it was noted that 
the software also measured no power draw nor energy con-
sumed. The impact of the software not reporting ‘off mode’ 
electricity consumption creates an under reporting disparity 
ranging from zero to 2% maximum depending on the dura-
tion of ‘off mode’ weightings. As an example, the maxi-
mum off time that could be attributed to the experiment’s 
measured 30-day period is 55.7% or 16.7 days (401 h). As 
such, the total energy not measured by the software in this 
instance is equal to 0.0835 kWh or 1.9% of the total energy 
consumption measured. However, as the test set-up and con-
duct methodology includes a requirement for the notebook 
to be placed into sleep by the Energy Star governed power 
settings, there is no influence to the results of this experi-
ment. In relation to ‘Time’ reported during off mode, it is 
reasonable to state that both the software and watt meter are 
100% accurate and therefore this metric does not contribute 
to the 48% kWh disparity.

Having discounted ‘off mode’ as the source of error, 
the ‘sleep mode’ results were examined. ‘Sleep Mode’ is 
defined as a low power state that the computer is capable 
of entering automatically after a period of inactivity or by 
manual selection. As determined by the methodology the 
sleep mode was set to initiate automatically after 20 min 
for the predominant duration of the experiment. Exceptions 
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did occur including setting the notebook to sleep instantly 
at night and as described below in order to test the software 
capability. The results indicated that the watt meter regis-
tered 90 min of OT during a 24-h period when the notebook 
was in sleep mode consuming a maximum of 0.020 kWh per 
full day. The standard Energy Star typical energy consump-
tion benchmarks are calculated with ‘sleep mode’ assumed 
as 35% of annual use profile. Using this mode weighting 
and the experiment results, the watt meter measured value 
would be 0.895 kwh per annum. The official Energy Star 
published benchmark results for the HP Elite Book notebook 
(the equipment under test) is 0.3 W draw and 0.919 kWh. 
Consequently, the watt meter results confirm that the source 
is 97.4% accurate with regard to kWh measurement when 
extrapolated and compared to the typical energy benchmark 
and within the accepted 5% error range.

Comparatively, the software measured zero ‘OT’ during 
sleep mode and no associated power draw nor electricity 
consumption causing it to be determined unresponsive and 
therefore inaccurate for all periods of time spent in sleep 
mode. As the OT registered by the software is 40.8% and the 
methodology dictates no ‘off time’, this finding indicates that 
the notebook entered sleep mode for a maximum of 59.2% of 
the experiment’s duration. This time period is equal to 426 h 
and 14 min. The watt meter indicated that for each hour 
the notebook spent in sleep mode 3.83 min were classified 
as OT as the notebook was drawing a minimal amount of 
energy. Combining the mode and duration values indicates 
that 26.64 h of ‘OT’ has occurred but not been reported by 
the software due to sleep mode. Consequently, if the OT 
measured during sleep mode by the watt meter is added to 
the software OT reading, the result is 320.16 h of OT and is 
correct to within 0.37% of the watt meter ‘Time’ reading. As 
such, it is reasonable to state that the time disparity between 
the two data sources has been identified and explained.

Power draw

Whilst the difference between ‘OT’ values was satisfacto-
rily addressed, the finding did not correct the 48% energy 
consumption (kWh) disparity generated during the experi-
ment. Contrarily, if the additional kWh generated by the 
extra OT generated by sleep mode (0.1278 kWh) were added 

to the software results then the disparity would rise a fur-
ther 3–51%. As such, the second key value of power (W) 
was examined for inconsistency. Having determined that 
time reporting was consistent between sources to within an 
error of -7.9%, and that the watt metre was accurate within 
less than 3% compared to published TEC results, theoreti-
cally the over reporting error must be caused by inflated 
Watt readings. As Fig. 3 shows the kWh daily reading from 
both sources is relatively consistent in its disparity across 
all 30 days. Both data sets follow one another’s peaks and 
troughs across the experiment’s time horizon as content 
switching fluctuated the power draw as various components 
worked at varying paces. The only exceptions to this are 
shown on two weekends (days 21, 22 and 28, 29) when the 
notebook was used for a very limited (and in some cases 
not at all) period. In these examples, the sleep mode kWh 
reported by the watt metre exceeded the zero kWh noted 
by the software as previously validated. Consequently, it is 
clear that the power draw (W) is being over reported by 
the software by an average of 51% per day when the four 
anomalous days were excluded. The full range of error was 
between + 48% and + 58%.

As the uniform disparity became obvious from the 
results generated in the first week, a one-day test measure 
was introduced for the 8th day in the hope that the results 
generated might indicate the source of the error. As such, 
specific short-term changes were introduced to the test set-
up and conduct. Specifically, for the duration of day 8 only, 
the power options on the notebook were altered from those 
described in the methodology to the following:

• Turn off display when plugged in = Never
• Put the computer to sleep = Never

The rationale for the changes being that the notebook 
would remain in an apparent active work state for 24 h even 
after the user interaction had ceased. The results would 
list both the power requirements during working hours 
when content switching occurred and during the time that 
the screen was left active but resting during non-working 
hours (when no content switching occurred). Consequently, 
anomalies during either active or resting OT period may 
offer clues to the problem. The results for day 8 highlighted 

Fig. 3  Energy consumption 
(kWh) measurement by source 
(watt metre and software)
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that the as expected the OT reported by both the software 
and watt metre was exactly 24 h and therefore correct. This 
further validated that the software is accurate with regards 
to OT measurement. During the 9 h when the notebook 
experienced user interaction the kWh inaccuracy rose to 
63%. Comparatively, during the remaining 15-h period of 
the notebook being active but without user interaction, the 
kWh inaccuracy was lessened with a disparity of 46% when 
compared to the watt metre readings. Examining the watt 
results for the inactive period revealed that the software 
recorded a near constant reading of 19 W whereas the watt 
metre recorded 13 W. As such, it is reasonable to state that 
when the notebook is in idle or long idle mode (represented 
by the inactive period) the software is uniformly inconsist-
ent by 46%. Examining the watt results for the active 9-h 
period revealed that the software recorded a range of 19 W 
to 26 W. Whereas the watt metre ranged from 13 to 27 W. At 
the lower end, the results reflected the inactive period results 
as expected. However, it was notable that the high end read-
ings became almost equivalent in some instances. This sug-
gested that either the frequency of measurement, changes in 
user tasks or a combination may be causing the issue. The 
rationale being that if the watt metre reports in real time, 
then the equivalence may only last for one second yet could 
theoretically be measured by the software for a longer period 
causing a greater disparity. Before examining the method of 
measurement used by both sources the impact of user tasks 
on the watt readings was examined (Fig. 4). Both lowest and 
highest watt readings were noted during four tasks including 
logging on (powering on), resting (with applications open), 
productivity (email, documents, spreadsheets) and video 
conference calls. The watt meter exhibited as total range 
of 107% and the software 37% creating a difference of 70% 
range during the active period. Specifically, the two sources 
L to H readings ranged across the four tasks as follows:

1. Power on

a. Watt metre 32%
b. Software 24%

2. Resting (applications running)

a. Watt metre 8%
b. Software 5%

3. Productivity

a. Watt metre 57%
b. Software 37%

4. Video conference

a. Watt metre 93%
b. Software 9%

The disparity in percentage ranges generated by the 
watt results clearly indicated that the two sources were 
using different methods of data capture. As an example, 
the 84% range disparity attributed to video conferencing 
is a result of two factors. Firstly, the rapidity of content 
switching driving the watt requirement changes, as people 
interact via audio, video and screen presenter ownership. 
Secondly, the likelihood that only one of the two methods 
of measurement is able to keep pace. In order to substan-
tiate the hypothesis, the method of watt data capture was 
examined for both the watt meter and the software.

As expected, the watt meter updated the change in 
power draw (W) in real time as the user switched tasks, 
rising and falling as applications, video calls and web 
pages were opened, utilised and closed or left to rest. 
Monitored by filming the changes for two hours during 
a working day, it was noted that the watt metre W value 
altered on average every three seconds as content interac-
tion or focus changes. Comparatively, the Lakeside soft-
ware reports measurements every five seconds obtaining 
power and energy consumption data by querying the hard-
ware bios counters. The data points are then reported as 
an average power rating in Watts (W) and a total energy 
consumption figure in kilowatt-hours (kwh) for consecu-
tive ten minute periods during ‘OT’. As such, it is true to 
state the following:

• For a single data capture conducted at 5 s intervals by the 
software, the watt meter will between 1 or 2 power (W) 
readings. As such the regularity of data snapshot by the 
watt meter is feasibly 2:1 compared to the software.

• For each ten-minute average watt measurement reported 
by the software, the watt meter will have conducted a 
minimum of 200 calculations compared to the software’s 
120 readingsFig. 4  Task impact of watts required
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Consequently, it is reasonable to state that the software 
undertakes approximately 40% less W readings per day than 
the watt metre and this may cause increased margins of error 
if the components being measured are subject to content 
switching. As an example, during the 15-h non-interactive 
period this had no effect as the power requirements did not 
fluctuate during the 3 s watt metre reading internal and the 
5 s software interval. However, during the 9-h active period 
the rapidity of power fluctuation driven by content switching 
caused the resulting kWh calculate to increase in disparity 
by a further 17% when compared to the inactive period. As 
the ‘active OT’ period experienced during day 8 represented 
37.5% of the 24-h period, the overall disparity was increased 
by 7% to + 53%, registering energy consumption of 0.478 
kWh by the software versus 0.313 kWh. As content switch-
ing is random with no day exactly matching another in tasks 
undertaken or duration it was deemed highly unlikely that 
examining whether the duration (percentage) of ‘OT’ would 
uniformly affect the kWh disparity. As Fig. 5 highlights this 
was proven to be the case as the lines generated by the OT 
and kWh disparity do not track one another and instead often 
cross over with one value exceeding the other.

As an example, days 23, 27 and 30 all registered 52% OT, 
yet they have an energy consumption disparity between the 
software and the watt metre of 49%, 51% and 56% accord-
ingly. In the first two examples the results appear promising 
that there is a correlation, however the third day questions 
the validity of the statement. Examining the OT results, 
notes and calendars for the three days, reveal that days 
23 and 27 were spent working on research documents for 
the majority and therefore similar tasks were undertaken 
explaining the uniformity of the disparity in both OT and 
energy consumption. However, day 30 was spent viewing 
online training videos and participating in conference calls. 
Consequently, the tasks undertaken were evidently driving 
up the disparity due to the rapidity of content switching, 
despite the identical OT. As such, it is fair to state that whilst 
the active OT certainly influences the overall kWh meas-
urement it is the duration of time spent during this mode 
undertaking specific tasks that dictate the range of increased 
over estimation.

To summarise the findings of the accuracy test, it is clear 
that the software is with substantial error in relation to meas-
uring notebook energy use. Therefore, without compensa-
tory measures being introduced to the calculations to gen-
erate concomitant greenhouse gas values for the proposed 
application, the emissions reporting will also be incorrect.

As the experiment identifies, there are four specific fac-
tors that are causing the inaccuracy:

• A 46% uniform over reporting of kWh energy consump-
tion during ‘OT’

• An average additional 5% over reporting of kWh energy 
consumption during ‘OT’ generated by user content 
switching outpacing the measurement intervals

• A zero kWh value measured during ‘off mode’
• Zero OT recording during ‘sleep mode’ causing minor 

associated energy consumption to be excluded

These findings were discussed in depth with the analytics 
software manufacturer in an attempt to validate the causes 
suggested by the results. The engineering experts suggested 
that the uniform over reporting was most likely due to the 
fact that the software algorithmic tables that are used for 
component energy consumption had not been updated for 
several years. They explained that when the analytics soft-
ware was originally conceived the tables were based upon 
mechanical hard drives. As the device used in the test had 
a solid state hard drive which would require less watts to 
power then this would cause the erroneous but uniform dis-
parity. They accepted that the additional 5% over reporting 
due to content switching causing a lag in results due to the 
real time reporting of the watt meter and the software would 
be an issue during active user time. The zero kWh value 
measurement during off mode and the zero OT during sleep 
mode were also accepted as a minor issue that could not be 
overcome. The positive response was that based upon this 
research, Lakeside would re-examine their algorithms for 
component parts and bring them up to date to cope with the 
introduction of solid state storage and similar modern inno-
vation. Doing so may overcome the main issue of the 48% 
over reporting although this would require further research.

Fig. 5  On time versus kWh 
disparity
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Discussion of results

The objective of the field experiment is to answer the 
research question, ‘can analytics software measure end 
user computing electricity consumption?' From a prac-
tical perspective, the task is feasible as both end user 
computing device asset and use profile data are captured 
regardless of existing barriers such as scale and mobility. 
However, pragmatically, a lack of accuracy related to the 
electricity consumption results and data omissions gen-
erated during the asset profile process indicate that the 
methodology, is not currently fit for purpose. Specifically, 
the electricity consumption values were determined by 
the control measure to be on average + 48% inaccurate. 
The cause being due to outdated power draw algorithms 
applied to hard disc drives that have subsequently pro-
gressed from mechanical to solid state variants and as such 
requiring less electricity to operate. Additionally, the node 
based software failed to capture both the asset profile or 
use phase data of computer displays due to the software 
requiring an operating system to interrogate. This aspect 
is particularly concerning as the anticipated number of 
displays in operation within the subject environment out-
number mobile and desktop devices by 41%. Considering 
a watt measured energy consumption value for a modern 
24″ Acer B8 monitor is 0.096 kWh per business day (Acer, 
2021), the analytics software is omitting a potential 301 
kWh per month. Accounting for the + 48% over report-
ing of electricity consumption generated by the analytics 
software during the experiment, this equivalent to 36% 
of the total and therefore can be considered a significant 
issue. Theoretically, to overcome the problem, the place-
ment of watt metres between each display and the power 
source is technically feasible as these types of devices are 
not mobile and can remain connected. Subsequent data 
could be automatically supplied back to a master server 
by data loggers and compiled to add to the mobile and 
desktop computing data. However, undertaking such a task 
re-introduces the logistics issues that cause companies to 
avoid the practice in the first instance (Greenblatt et al. 
2013) and as such does not represent an advancement of 
methodology.

In isolation, the barriers of mobility and scale (Greenb-
latt et al. 2013) are overcome as numerous devices subject 
to use in multiple locations, such as notebooks, are meas-
ured in real time regardless of location and quantity. It is 
reasonable therefore to suggest that, as 86% of global end 
user computing devices are now mobile (Gartner 2021), the 
analytics software removes the logistics issues associated 
with watt metres that is causing a shortage of available end 
user computing use phase electricity consumption field data 
(Karpagam and Yung 2017; Belkhir and Elmeligi 2017). 

However, setting aside the electricity consumption measure-
ment error, omissions related to the captured location data 
prove an issue with regards to the production of scope 2 
greenhouse gas quantification. Specifically, 21% of devices 
were not identified by location due to possible IP masking. 
As location data is essential to the application of appropriate 
electricity consumption (kWh) to greenhouse gas  (kgCO2e) 
conversion factors (DoBEIS 2021), the calculation of scope 
2 concomitant emissions will also suffer invalidity due to a 
lack of specificity.

One aspect of the process does however arguably offer 
a possibility to expand research appreciation of use pro-
file data. This is delivered by the analytics software ‘OT’ 
measurements that proved almost 100% accurate during 
the experiment. Theoretically, determining the duration of 
human–computer interaction at scale could prove valuable. 
The rationale being that creating granular profiles for users 
by specific business types and job roles, could enhance end 
user computing annual scope 2 greenhouse gas reporting. 
As an example, a determined average number of active 
computing hours applied to accounting tools such as the 
JISC (2019) tool could improve the accuracy of estimation 
by moving away from pre-determine ‘time’ use profile data 
applied as a standard to all business types. Although, as per 
the objective of the experiment, attaining accurate use phase 
electricity consumption values that include human interac-
tion will still be required to account for the increased power 
draw created by use.

Conclusion

Whilst the asset data relating to end user computing devices 
can be improved by supplementary actions discussed in 
the results, the current omission of peripheral device pro-
filing and electricity consumption errors of 48% cause the 
proposed methodology to be currently inappropriate to 
produce meaningful kWh and concomitant scope 2 emis-
sions data. As such, it is reasonable to conclude that the 
proposed data capture process partially overcomes scale and 
mobility issues at the cost of inclusion and accuracy. As end 
user computing device energy consumption measurement 
is undertaken for several purposes, including device selec-
tion and scope 2 reporting, certain aspects of the discovered 
capabilities may prove useful. As an example, if an organisa-
tion wishes to use analytics to support a sustainable device 
procurement programme, then the method may be of worth. 
The rationale being that whilst inaccurate to an average of 
48% in relation to electricity consumption, the software 
does have the ability to uniformly identify differing energy 
use results across multiple devices. As such a stacked rank-
ing of energy efficient devices could be compiled and fed 
back to procurement teams as supplementary information 
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to current benchmark results such as the Energy Star typical 
energy consumption value. However, in comparison, if the 
analytics method is to be used to generate use phase data 
for either product carbon footprint reporting or mandatory 
emissions reporting, then it would prove inappropriate due to 
the omission of monitors and the excess reporting of power 
draw averages. Contrarily, if the method is to be used within 
mobile only environments, then it is reasonable to suggest 
an improvement in accessible field data has been achieved. 
The rationale being that as associated research substantiates 
(Sutton-Parker 2020) that use phase electricity consumption 
values determined by the Energy Star benchmarks create an 
error range of − 48% to + 107%, then reducing this to a near 
constant + 48% via analytics software is arguably a step in 
the right direction.

Limitations and recommendations

It is recognised that the control user was conducted on one 
notebook and a wider experiment with increased numbers 
of devices, brands and operating systems is suggested in 
order to further improve the comparative results. The ration-
ale being that where mechanical hard drives exist in legacy 
equipment the software may prove more accurate. It is also 
noted that the analytics use profile data proved highly accu-
rate and as such generates patterns of working hours for the 
subject organisation. This creates a feasible recommenda-
tion to advance the process of end user computing energy 
consumption that accounts for the active operational mode. 
Firstly, if specific models of devices within an organisation 
can be measured by an accurate watt meter for a number of 
business days, then patterns of electricity consumption by 
both vertical and role based use could be formed. Apply-
ing this as an hourly electricity consumption value to the 
analytics use profile by user would then arguably form an 
accurate value for the energy consumption and concomitant 
emissions. As such, it is recommended that in conjunction 
with improvements to algorithms undertaken by the software 
vendor, further research to triangulate measured energy con-
sumption with OT should be explored.
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