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Abstract

In this thesis the spin densities of three groups of materials are investigated,
these are GdCo5−xNix, Nd2Ir2O7, and NbFe2, primarily using the technique of Mag-
netic Compton Scattering, supported using magnetometry and density functional
theory.

Four samples of the polycrystalline GdCo5−xNix where x = 1, 1.28, 2, and 3
formed the first group with varying amounts of nickel replacing cobalt in the parent
compound GdCo5, a member of the RETM5 class of materials (where RE is rare
earth and TM is transition metal). The second group of materials, the pyrochlore
iridate Nd2Ir2O7, consisted of two samples. Nd2Ir2O7 has attracted a great deal
of interest due to its strong spin-orbital coupling, its electron correlations, and its
much-debated metal to insulator transitions. Two different off-stoichiometric single
crystal samples of NbFe2 formed the final group of materials having a rich and
complex phase diagram.

The experimental Magnetic Compton Scattering (MCS) investigations were
carried out using the BL08W beamline at the SPring8 synchrotron in the Hyōgo pre-
fecture in Japan which provided the high energy circularly polarised x-rays required
for this technique.

Complementary experimental techniques were used to categorise the samples
to provide further results in this study, such techniques included Superconducting
Quantum Interference Device (SQuID) magnetometry, Vibrating Sample Magne-
tometry (VSM) and Laue Diffraction. The SQuID and VSM magnetometry were
used to obtain the total moment of the samples which were then used with the
measured spin moment to calculate the orbital moment to provide a more complete
picture. Laue diffraction was used to align the single crystal measured to the required
crystallographic direction. In addition, by using theoretical modelling techniques it
was possible to separate the contributions to the total, spin, and orbital moments.
The theoretical models were calculated using ab initio codes such as ELK, which
use Density Functional Theory (DFT) methods. In addition to using the Compton
profiles to investigate the magnetic properties and phases of the sample and con-
tributing electrons, MCS was used to measure the spin moment of the samples at
a range of temperatures, allowing the study of the temperature dependence of the
total, spin and orbital moments.

xiv



Of the four GdCo5−xNix samples that were investigated, two had compensa-
tion temperatures within the range measurable with the experimental setup. These
experiments revealed the behaviour of the bulk spin moment at and around the com-
pensation temperatures for both samples, as well as the behaviour of the moments
on the sublattices. This sheds greater light on the samples, and could change the
view on the compensation temperature and appropriate methods of measuring it.
The third sample only had the single measurement at 300K but did not contradict
the conclusions drawn from the other two samples. The fourth sample, GdCo2Ni3,
did not replicate the pattern of the first three samples for its orbital moment, which
requires further investigation.

As for the two Nd2Ir2O7 samples, the contribution to the moments from the
4f electrons on the neodymium atoms were highly temperature dependent whereas
the contributions to the moments from the 5d electrons on the iridium atoms were
constant within error over the temperature range measured, 2K to 60K. Whilst this
was expected, the spin to orbital ratio result for the iridium 5d atoms were found
to be -1 which does not follow Hund’s rules. Further experimentation is required to
test the validity of the conclusion.

The iron rich sample of NbFe2 (Nb0.998Fe2.002), was much more closely aligned
to the ferrimagnetic stoichiometric configuration of the electronic structure calcula-
tions, than the ferromagnetic. In addition, of the configurations tested, the ferrimag-
netic configuration using the LSDA functional best agreed with the data. This cor-
responds with the earlier MCS results, although there are other studies which have
suggested that the result should be ferromagnetic. The debate would need more cal-
culations, particularly using off-stoichiometric values, to resolve. The other sample
of the NbFe2 group, the niobium rich sample (Nb1.004Fe1.996) produced inconclusive
results and thus did not show a clear distinction, largely because of insufficient data.
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Chapter 1

Introduction

This thesis details the investigation into three groups of materials; GdCo5−xNix,

Nd2Ir2O7, and off-stoichiometric NbFe2, using magnetic Compton scattering tech-

niques. The purpose behind this work is to use magnetic Compton scattering and

other, supporting techniques, along with theoretical methods to investigate the novel

magnetic phases and properties of the above materials. The MCS technique uses

high energy circularly polarised x-rays to directly probe the spin-polarised electron

momentum density projected along one dimension; this is called a Compton profile.

The theoretical techniques which have been used in this thesis to calculate theoret-

ical Compton profiles, are Hartree-Fock and Density Functional Theory (DFT).

GdCo5 belongs to the RETM5 group of materials (where RE = rare earth

and TM = transition metal). Some of the cobalt in this material is replaced with

nickel in GdCo5−xNix. These materials are of note due to the interplay of the rare

earth and transition metal electrons. Four samples where x = 1, x = 1.28, x = 2,

and x = 3, were investigated. Previous work on these materials showed a transition,

at a particular temperature (dependent on composition), where the direction of

the spin on the gadolinium and the cobalt-nickel sublattices, which are antiparallel,

flipped. In this thesis, it is shown that when the spin and orbital moments on the

sublattices are investigated separately, the picture becomes more complicated.
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Secondly, two nominally identical samples of the pyrochlore iridiate, Nd2Ir2O7,

were studied. Nd2Ir2O7 has attracted a great deal of interest due to strong spin-orbit

coupling and electron correlations and a much-debated metal to insulator transition.

Previous work has highlighted that different samples of Nd2Ir2O7, that are nomi-

nally identical, can behave in very different ways. This thesis aimed to investigate

a few of these samples to investigate these discrepancies in greater detail. Outside

factors limited the scope of this work, however we were able to show a significant

discrepancy in the spin moment in the two samples investigated.

Finally, two slightly off-stoichiometric samples of Nb1−yFe2+y were looked

at (where y = 0.002 and y = −0.004). These were chosen due to them being part

of a rich phase diagram including several exciting phases and a proposed quantum

critical point. Previous Compton scattering work looked at a sample of Nb1−yFe2+y

where y = 0.015 and, contrary to other studies, found it to be in a ferrimagnetic

state (rather than the expected ferromagnetic state). In this thesis the two samples

investigated were expected to reach a spin-density wave (SDW) state at low tem-

peratures, however were provisionally found to be in a ferrimagnetic state as well.

This opens questions for further investigation discussed later in the thesis.

1.1 Compton Scattering

Compton scattering, as depicted in figure 1.1, is the inelastic scattering of a photon

off an electron. The fact that it is inelastic scattering means there is a change in

energy. This change is called the Compton shift.

The Compton shift can be expressed as

∆E =
1

2me

(
p + ~

(
k− k′

))
=

~2q2

2me
+

~q ·p
me

, (1.1)

where p is the initial momentum of the electron, k and k′ are the incoming and

scattered wavevectors respectively, q is the scattering wavevector (q = k− k′), me
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Figure 1.1: Sketch of the Compton scattering process

is the mass of the electron, and ~ is the reduced Planck’s constant.

Magnetic Compton scattering expands on this by measuring a sample in a

magnetic field with high energy circularly polarised x-rays. The external field applied

to the sample is flipped between measurements and the difference measurement

can produce a magnetic Compton profile. The magnetic Compton profile is only

dependent on the unpaired electrons in a system and therefore with calculations,

modelling, and data analysis it is possible to gain insight into the magnetic properties

and phases of a system.

1.2 Motivation

A constant theme across the three series of samples is the extent to which the mag-

netic structure and properties are dependent on their composition. With GdCo5−xNix,

varying amounts of cobalt are replaced with nickel from the parent compound

GdCo5. This has a fundamental effect on the magnetic properties as at low tempera-

tures GdCo5 is ferrimagnetic with the cobalt sublattice aligned with the field whilst

GdNi5 is ferrimagnetic with the gadolinium aligned with the field. This change

happens at x ≈ 1. Furthermore, the different temperature dependences of the sub-

lattices creates an interesting bulk temperature dependence. The differences seen

in the two nominally identical samples of Nd2Ir2O7 have been attributed to slight
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changes in the stoichiometry, likely caused by different growth methods. With the

Nb1−yFe2+y series a rich and complex phase diagram is composition driven, going

through several distinct phases as the series progresses from niobium rich to iron

rich.

Some compositions of GdCo5−xNix have a temperature at which the moment

on the gadolinium sublattice, which is much more temperature dependent than the

cobalt-nickel 3d moment, becomes smaller than the moment on the cobalt-nickel

sublattice. This is defined as the compensation temperature and is often given as

the temperature at which the minimum of the total moment is located. This is

not necessarily the temperature at which the sublattices compensate for each other.

In this thesis, Compton scattering is used to find the spin moment at a range of

temperatures. This allows the temperature dependence of the total, spin, and orbital

moments to be studied, especially the behaviour around the compensation point.

In addition, it is possible through modelling the Compton profiles to separate out

the contributions to the total, spin and orbital moments from the gadolinium 4f

sublattice and the cobalt-nickel 3d sublattice. Being able to discern the behaviour

of the individual contributions will aid the understanding of this series of materials.

Compton scattering provides a way of separating the bulk, spin and orbit moments

that form the bulk total moment obtained from SQuID magnetometry. Once again,

as with GdCo5−xNix, by modelling the profiles from the magnetic electrons the

contributions from the neodymium 4f and the iridium 5d electrons can be separated

out.

The rich phase diagram of Nb1−yFe2+y has raised significant debate. In this

thesis, theoretical Compton profiles, obtained from the ab inito DFT code, ELK,

and using different ground states, can be fit to the experimentally obtained Compton

profile to find the ground state which best matches the data.
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1.3 Chapter Overview

Chapter 2 covers the theoretical aspects of this thesis, starting with the theory

behind the Compton effect and the concepts of scattering cross sections. This is

followed by a discussion of how electrons behave within a crystal. Various forms

of magnetism are introduced, including the electronic interactions associated with

them. The chapter concludes with an exploration on the theoretical aspects of the

magnetic Compton scattering technique and the magnetic Compton profiles.

In Chapter 4 the experimental and computational techniques are investi-

gated. Firstly the two codes used in this thesis are discussed, ELK and GAMESS,

briefly summarising the models these codes are built on and the key parameters

required for convergence, as well as where in the thesis each code is used to provide

computational Compton profiles that support the experimentally produced profiles.

Next the history of magnetic Compton scattering is discussed followed by details

on the experimental setup used for this thesis. Finally, a brief overview of the

techniques used for the characterisation of samples is included.

Chapter 5 involves the study of a series of samples that belong to the RETM5

group of materials. These materials have the formula GdCo5−xNix where x = 1,

x = 1.28, x = 2, and x = 3. Magnetic Compton profiles were obtained at a

large number of temperatures to investigate the effect of temperature on the spin

moment of the samples. Concurrence was found with earlier work on these materials.

Transition temperatures, where the total spin moment changes sign as well as the

sign of the antiparallel contributions from the 3d and 4f sublattices, were found in

the x = 1.28 and x = 2 samples.

Chapter 6 details the investigation into two nominally identical samples of

Nd2Ir2O7. Strong spin-orbit coupling, and electron correlations dominate the mag-

netic properties seen in this system. In this chapter the spin and orbital moments

from the 5d electrons from iridium and the 4f electrons from neodymium are sepa-
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rated out.

Chapter 7 is the final experimental chapter, discussing the itinerant ferro-

magnet NbFe2. NbFe2 has a complex and rich phase diagram, going through several

different ground states dependent on slight variations to the stoichiometry. In this

chapter two samples were investigated, Nb0.998Fe2.002 and Nb1.004Fe1.996. The phases

of these two slightly off-stoichiometric samples were tested.

Chapter 8 summarises this thesis and the work within it. This chapter also

discusses ideas for future work and experiments that could be performed on the

samples to further understanding.
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Chapter 2

Compton Scattering Theory,

Crystals, Electrons, and

Magnetism

In this chapter the theory and history of magnetic Compton scattering as a tech-

nique, including the Compton effect, scattering cross-sections and Compton profiles,

are discussed. In addition some aspects of condensed matter physics such as the the-

ory of crystalline solids, how electrons behave in these solids, and the magnetism

that can arise from this behaviour are discussed to give a grounding on what this

technique is used for.

To begin with, as the magnetic Compton scattering technique is key to this

thesis, the Compton effect that forms the basis of this technique is discussed.

2.1 The Compton Effect

The main effect discussed throughout this thesis is Compton scattering. A process

where a photon scatters inelastically off a charged particle. This forms the basis of

the knowledge used in the processes and techniques studied [1]. However, within
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this thesis it is intended to look solely at the electron as the charged particle, a

diagram of this interaction is seen in figure 2.1.

 

Figure 2.1: Sketch of a scattering event between a photon, γ, and an electron.

There is a change in energy, termed the Compton shift, which occurs during

the collision of the photon and electron. In addition to this, the direction of the

scattered photon alters from its original trajectory [2]. This Compton shift can be

written as:

∆E = E − E′ = E − E

1 +
(

E
mec2

)
(1− cosφ)

(2.1)

where E is the energy of the incoming photon, E′ is the energy of the scattered

photon and therefore ∆E is the change in energy. E′ can be calculated for the

experimental configuration used in this thesis by using these equations. However,

it is also possible to directly observe E′ experimentally by measuring the energy of

the Compton peak as discussed below.

As energy can be converted into wavelength, this Compton shift can also be

written as a wavelength shift. However, as this is of less use to our investigations

the shift will be discussed only in terms of energy.

This simplified picture assumes a stationary electron with no momentum,

which would give a delta function-like peak at E′, but broadened by the energy range

of the incoming beam, the range of scattering angles that can reach the detector,
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the resolution of the detector, and other such experimental factors. This peak would

be much narrower than the observed profile since the broadening of the observed

peak is as a result of the motion of the electrons in the sample, whilst the shape of

the observed peak gives information about the electronic structure of the material

being investigated.

2.2 Effect of Electron Momentum on the Scattered Pho-

ton

In order for the Compton shift equation to be useful and closer reflect the exper-

imental reality it needs to incorporate additional parameters. One of these is the

momentum of the electron. The probability of a scattering event should also be

considered. The simplified equation discussed above is limited by its assumption

that the electron is stationary. When the momentum of the electron is discussed,

the peak broadens in a doppler shift. The peak of the observed ’Compton peak’ is

still at the energy of this stationary electron example as the average of the momenta

would be 0. However, this broadening of the peak represents the full range of mo-

menta in the system The shift in energy due to the Compton scattering can now be

written as

∆E =
1

2me

[(
p + ~

(
k− k′

))2 − p2
]

=
~2q2

2me
+

~q ·p
me

(2.2)

This equation now takes into account the momentum of the electron in the

collision, p (k and k′ are the incoming and scattered wavevectors, respectively, and

q is the scattering wavevector (q = k − k′)). As can be seen this equation has

two terms. the first corresponds to the original Compton shift equation, i.e. when

the momentum of the electron is 0 with respect to the photon. The second term

represents the broadening discussed above. For a single scattering event, as this

equation describes, this either reduces or increases the Compton shift depending on

9



the momentum of the electron in the collision. A large number of photons scattering

off a large number of electrons with different momenta gives a broadening of the

profile centred about E′.

While the equation now better reflects the realities of a single scattering

event it is still simplified in respect to the complexities of an entire system. These

will be discussed in later sections.

2.2.1 Scattering Cross Section

To start describing an entire system we now need to discuss the likelihood of a

scattering event occurring. To do this we will look at the scattering cross section

as this is proportional to the probability of this event. In this section we will

discuss three different models and their corresponding cross sections. These examine

increasingly complex systems until we reach the Compton cross section which will

accurately describe our system and can lead to parameters that closer match reality.

The first cross section to be considered is the Thomson scattering cross sec-

tion, a non-relativistic model. This cross section is only dependent on the radius of

the electron and the scattering angle. However, this would not accurately describe

the interactions in this thesis as, at the energies used in Compton scattering, a cross

section need to include relativistic effects.

The Klein-Nishina (KN) cross section [3] takes into account relativistic effects

and in addition to the scattering angle of the photon, it takes into account the energy

of the photon. This is shown clearly in figure 2.2 when the KN cross section is plotted

for different energies, including those used experimentally. At lower energies, such

as 5.11KeV on the figure, this tends towards the simpler Thomson cross section.

The KN cross section is an improvement, at the energies used in this thesis,

on the Thomson model but still does not take into account any properties of the

electron. This effectively describes a compton scattering event only if the electron

completely stationary. To describe the Compton scattering events a cross section
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Figure 2.2: Cross-section against energy. Thomson cross section in red, KN cross
section with an incident energy of 5.11KeV, 51.1KeV, 511KeV, and 5.11MeV are in
green, blue, cyan, and magenta respectively, and 175KeV is black dashed (experi-
mental incident energy)

that includes the momentum of the electrons is necessary. For this the Compton

cross section needs to be defined [4; 5]. This cross section can be written as

dσ
dΩCompton

= r4e
4
k′2

k2

[ (
1 + cos2φ

)
+ ∆k (1− cosφ)

+ξ1sin
2φ− ξ3 (1− cosφ)

(
k + k′cosφ

)
ς̂
] (2.3)

where ξ1 and ξ3 are the Stokes parameters for linearly and circularly polarised light

and ς̂ is the unit vector for the direction of the electron spin. It is then possible to

split this into two cross sections, dependent and independent of the spin, as shown

in equations 2.4 and 2.5 respectively.

dσ

dΩmag
=
r4
e

4

k′2

k2

(
−ξ3 (1− cosφ)

(
k + k′cosφ

)
ς̂
)

(2.4)

dσ

dΩ charge
=
r4
e

4

k′2

k2

((
1 + cos2φ

)
+ ∆k (1− cosφ) + ξ1sin

2φ
)

(2.5)
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As shown in these two equations, if the helicity of the circular polarisation,

ξ3, or the direction of the electronic spin, ς̂, is flipped then the sign of equation 2.4

changes whilst equation 2.5 remains the same. If circularly polarised photons are

used to obtain Compton profiles a difference can be determined, making it possible

to isolate the spin-dependent term. Consequently, if two Compton profiles are ob-

tained, before and after flipping either the helicity or the external field (which would

change the spin on the electrons), then the difference between these profiles can be

obtained (cancelling out the charge term) to leave twice the magnetic Compton

profile, implying equation 2.6.

dσ

dΩ↑
− dσ

dΩ↓
= 2

dσ

dΩmag
(2.6)

At this point a step back, and a discussion of crystals that the magnetic

Compton scattering technique used to investigate, is now required as the behaviour

of these crystalline solids affects the properties that this techniques measures.

2.3 Crystals

All of the samples used throughout this thesis are crystalline solids, characterised

by their highly ordered structure, with the arrangement of atoms forming a crystal

lattice. [6] Therefore it is important at this point to discuss this arrangement, also,

called the crystal structure.

2.3.1 Real and Reciprocal Space Crystal Structure

There are two ways of describing this structure: one in real space and one in recip-

rocal space. In both cases these are described by the simplest, or smallest, repeating

section. The repetition of this can be used to describe the entire crystal. In real

space this is called the unit cell and in reciprocal space it is called Brillouin zone.
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Real Space Crystal Structures

To define the crystal structure in real space there are three main pieces of information

required: the space group, the Wyckoff positions and the lattice parameters and

angles.

Firstly, the space group is a way of describing the arrangement of atoms

within the unit cell. There are 230 unique space groups which are derived from 14

types of lattices named Bravais lattices. These lattices include, for example, simple

cubic, face centred cubic, hexagonal, and triclinic amongst others.

The second piece of information required is the Wyckoff position. These

describe the positioning of atoms and elements within the space group. Whilst these

are always necessary these become vital when describing complex space groups or

crystals with multiple elements.

The last piece of information required to completely describe the unit cell

are the lattice parameters and angles. These lattice parameters detail the size of the

unit cell and, for simplicity, are often used as the axes of the structure. Therefore,

they can be used to describe any point within the crystal. The lattice angles are

sometimes already defined by the Bravais lattice, as 90◦ or 120◦. However, they are

required for lattices where this is not defined.

Reciprocal Space Crystal Structure

As stated above, the crystal structure can be defined in reciprocal space as well as

real space. There are many analogous parameters, such as the Brillouin zone rather

than the unit cell, as discussed above, and reciprocal vectors take the place of real

space vectors. These reciprocal vectors are orthogonal to the real space vectors.

The first Brillouin zone, defined as the simplest repeating unit in reciprocal

space, can often be further reduced to a small wedge; known as the irreducible

Brillouin zone. From this the properties of the entire system can be calculated.

This helps to reduce the computational power needed to model the system.
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2.4 Energy Levels

The previous section describes the positions of the atoms within the lattice. This

section will endeavour to describe, firstly the position of the electrons on the atoms,

and then how these electrons interact with the electrons on neighbouring atoms.

With the current model of the atom the electrons occupy orbitals surrounding

it. The energy of these orbitals are discrete and quantized as these energy levels are

the eigenvalues of the Schrödinger equation that describes the atom. Electrons in

large atoms occupy different orbitals as the Pauli exclusion principle disallows them

from all having the same energy. No two electrons can occupy the same quantum

state, two can occupy the same orbital as they can have different spin, therefore any

atom with more than two electrons requires multiple orbitals.

The Schrödinger equation that describes single atoms, especially smaller

atoms with fewer electrons, is comparatively simpler to solve than large systems, as

each additional electron requires more coordinates. For larger systems with multiple

atoms this is made more complex by the atomic orbitals being replaced by molecular

orbitals. With systems that approximate real solids these energy levels start to form

a continuum, called energy bands

2.4.1 Energy Bands

Energy bands need to be discussed in further detail due to their roles in complex

multi-atom systems. To explain this phenomenon, we first consider a system where

two atoms are brought into close proximity with each other. If the atoms have any

unpaired electrons then two new orbitals will form, a lower energy bonding orbital

where these now paired electrons will sit, and higher energy, empty, antibonding

orbital [9]. This lowers the energy of the system. Energy bands occur when a large

number of atoms are brought into this system. These filled bonding orbitals, and

the unfilled antibonding orbitals, cannot occupy exactly the same energy as each
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other, again due to Pauli’s exclusion principle. Therefore, as the number of atoms

approaches that which is found in a real solid these massive number of orbitals

with very close energies, form a continual band [10]. These bands can contain both

bonding and anti-bonding orbitals. The picture becomes more complex with the

introduction of larger atomic species, with a greater number of electrons. As a result,

this can cause these bands to be unoccupied, occupied, or partially occupied. This

leads to macroscopic behaviour and the difference between metals and insulators

[11].

The structure of the bands is a good way of identifying a material’s conduc-

tive properties, i.e. whether it is a conductor, semiconductor or insulator. In the case

of sodium, which is both a metal and a conductor, the bonding and anti-bonding

orbitals, with increasing atoms, reach a point where they meet in energy space.

This creates a single half-filled band. Electrons can be freely and easily promoted,

to higher energy levels, within this band. This defines sodium as a conductor. In

other materials, a filled band is formed and an energy gap exists between this and

any unfilled band. A larger amount of energy is required to promote electrons to

a higher energy level, as a result of this gap. Materials with these properties are

defined as insulators and semiconductors.

Several models have been put forward to explain the electronic structure

of materials to predict their behaviour. The earliest model was the Drude model

[12; 13], which was later expanded upon to form the free electron model. The

Drude model used the idea of a ’gas’ of electrons. These electrons were free to

move between the ionic cores, on the basis of several assumptions. These were that

the electrons were only allowed to collide with the ionic cores and nothing else.

It was only through these collisions that the electrons were able to reach thermal

equilibrium. In addition, outside of these collisions, the electrons were influenced by

neither the ions or each other. A scattering rate, τ−1, was defined as the probability,

per unit time, of one of these collisions. Whilst treating the electrons as a classical
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gas was a leap forward in thought at the time, less than 3 years after the discovery

of the electron, this model has many flaws. Its most severe failings are the incorrect

prediction of electron heat capacity and thermal conductivity, amongst others. This

was significantly improved upon by the Sommerfeld, or free electron model. This

started to treat the electrons as quantum mechanical particles as opposed to atoms in

a classical gas. This correctly predicted the temperature dependence and magnitude

of electron heat capacity and was able to approximate the thermal and electrical

conductivity of metals. It was able to predict metallic properties in some materials,

for example sodium. However, it uses the approximation that the potential V (r)

is equal to zero; i.e the electrons do not interact with each other. This is not a

particularly good approximation in many materials, with the result that the model

fails to correctly categorise them (for example semiconducting silicon and metallic

calcium).

2.5 Electrons in the Lattice

Electrons in a solid, even in a metal, are not completely free; they move through

the potential created by the array of nuclei that make up the lattice. Applying a

crystal potential to the free electron model gives the nearly free electron model. As

this potential is formed by these nuclei, which are periodic in the lattice structure,

it follows that this potential would have to be periodic as well.

Due to this, boundary conditions are enforced on the wave function to require

the periodicity of the wave function to be identical to the periodicity of the poten-

tial. The boundary conditions used are called the Born-von-Karman conditions [14].

This implies that the wave function is a planewave that must obey these periodic

boundary conditions. By enforcing these conditions, as well as the correct normal-

ization, it is possible to show the solution to this is a particular form of planewave,

called a Bloch wave [15]. This is written as
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ψnk (r) = eik·runk (r) (2.7)

This leads to Bloch’s theorem which states that the eigenstates of the Hamil-

tonian used to describe the atom can be a planewave multiplied by a function

with the same periodicity of the lattice, i.e it can be a Bloch wave as long as

unk (r) = unk (r + R).

The additional subscript n here is called the band index. For each band n

there will be a set of wavefunctions determined by their wavevector, k. These will

lie along a dispersion curve, this is the basic concept of a material’s band structure.

2.5.1 Band Structure

The periodic potential applied to this model creates band gaps at the Fermi level in

some materials. Ab initio electron structure calculations are often used to calculate

the band structure of materials because the three dimensional nature and complexity

of real crystals can make them difficult to study.

2.6 Hund’s Rules

Moving on from discussing energies, magnetism and its affect on electrons must

now be considered. To begin this, i will first consider the ground state of systems.

Hund’s rules are useful for this as they are a series of three rules, proposed by F.

Hund in 1925 [16; 17], that when followed, estimate the combination of angular

momentum quantum numbers that minimise the energy of the system [18]. These

rules are given in decreasing importance. The first rule is followed first, followed by

second, and then the third, each without breaking a higher rule.

The first rule is to maximise S, the spin angular momentum quantum num-

ber. This minimises the Coulomb energy of the system. This is due to the Pauli

exclusion principle where two electrons of the same spin cannot occupy the same
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orbital [19]. This reduces Coulomb repulsion in the system. The second rule is to

maximise L, the orbital angular momentum quantum number, as long as S is still

maximised. This also works to reduce Coulomb repulsion. The third rule is to find

the value of J , the total angular momentum quantum number. It states that if the

shell is more than half full, it is found using J = |L + S|. If the shell is less than

half full, it is found using J = |L − S|. This rule is an attempt to minimise the

spin-orbit energy of the system. It is important to note, however, that this rule is

only applicable to certain systems where spin-orbit energies are significant enough.

For example in rare-earth systems this rule works well however, in transition metal

systems this rule is disobeyed as other energies, such as the crystal field, are more

important.

An example of the use of these rules, applied to the Gd3+ ion can be ex-

amined, as this species is found in GdCo5 studied in this thesis. The electronic

configuration of Gd3+ is [Xe]4f7. Using the first rule, S is maximised. This half

fills the shell with all 7 of the electrons in the spin up state. This gives a value of

S = 7 · 1
2 = 7

2 . The second rule is to maximise S. With a half-filled shell this is

maximised to 0, as all the spin up electrons cancel out the orbital moment. The

final rule is to find J . As the shell is exactly half filled, both equations will calculate

the same value for J = |L+ S| = |L− S| = 7
2 .

These spin and orbital moments directly lead to different forms of magnetism.

These are discussed in detail below.

2.7 Dipole Moments and Long-Range Magnetic Order-

ing

Magnetism is formed by the existence of spin moments (also called electron dipole

moments) as well as their alignment with respect to the lattice and each other.
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2.7.1 Types of Magnetism

There are several different types of magnetic ordering or magnetism. These differ-

ences are caused by the alignment of the dipole moments with respect to each other

and externally applied magnetic fields. In this section I will describe two common

arrangements that exist only within an external magnetic field: diamagnetism and

paramagnetism. As well as these, I will discuss three common configurations that

can align with their own internal fields; caused by the dipole moment within the

system and, therefore, can exist without an externally applied field. These are: fer-

romagnetism, anti-ferromagnetism and ferrimagnetism. This is not an exhaustive

list but discusses several of those relevant to this thesis.

Diamagnetism, as stated above, only exists in an externally applied mag-

netic field and is the weakest form of magnetism under discussion here. In this,

the moments within the system align to oppose (or anti-align) the applied field.

Paramagnetism, like diamagnetism, requires an external magnetic field. However,

the difference is that the moments align with the field rather than oppose it. In

both of these the moments are disordered and randomly orientated, having no net

magnetism, in the absence of the external field.

However, with other magnetic orderings, the order may remain when the

external field is removed, or potentially spontaneously form.

The first example of this type I will discuss is ferromagnetism. Ferromag-

netism is where the dipole moments will align with each other, either spontaneously

or with an external field. What makes this different to the forms above is that on re-

moval of the external field a net magnetism will remain as these moments will retain

alignment and ordering. To remove this net magnetism or change the polarity of

the ferromagnet a sufficiently large external magnetic field of the opposite polarity

would be required to overcome the remaining order within the magnet. This leads

to hysteresis in the magnetism when the magnetic field is flipped.

Anti-ferromagnetism is where the dipole moments within the structure do

19



not align with each other. This is an ordering system with no net magnetism, as

moments on sublattices, which are aligned with each other, oppose or anti-align

with the moments on the other sublattices. It is possible for certain external con-

ditions, such as temperature, pressure or external magnetic fields, to change the

magnetic ordering of a crystal. For example turning it from an anti-ferromagnet to

a ferromagnet. Examples of this are discussed in later chapters when relevant to

the samples studied in this thesis.

Ferrimagnetism is the last of these types I will be discussing. In this form

of magnetism, the dipole moments behave very much like anti-ferromagnetism with

moments on different sublattices opposing each other. However, the difference is the

magnitude of the moments on the sublattices are not equal, leading to a net moment

that can remain in the absence of an external field, much like ferromagnetism.

There are many other more complex and exotic forms of magnetism and

magnetic ordering, some of which will be discussed in later chapters as applicable

to the samples used in this thesis.

2.7.2 Long Range Ordering

Some of the forms of magnetism discussed above have long range ordering to spon-

taneously create or maintain magnetic order within a system. This long-range order

is mediated by the exchange interaction [20]. The exchange interaction is mostly

dictated by, and dictates, two quantum mechanical ideas. The first of these is the

Pauli-exclusion principle. This states that no two electrons cannot occupy the same

state in a system. The other idea that is key to the exchange interaction is Hund’s

Rules. This series of rules, discussed in a previous section, aid us in describing what

a system will so, as they help us to describe the lowest energy option.

The system will always align its moments in such a way as to minimise the

energy within the system as a whole and, therefore, the energy of the exchange

interaction as well. This exchange interaction has an associated exchange energy
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for a system. This is expressed as the negative of the sum of the exchange integral,

Jij , between every two electrons in the system.

For electrons within the same atom, this exchange integral (Jij), is generally

positive, this stabilises a symmetric high spin state following Hund’s first rule. With

electrons in different atoms, the situation can be very different and different types

of exchange need to be considered.

Two forms of exchange will now be discussed: direct exchange and a form of

indirect exchange. There are many types of indirect exchange but only the relevant

“itinerant” exchange, or the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction

will be considered at this point.

Direct exchange is when the electrons on neighbouring magnetic ions directly

interact via an exchange interaction. This is the simplest form of exchange; however,

it is often not an important mechanism in a lot of systems. This is due to this form

of exchange mostly occurring between electrons which are very close to each other.

This direct exchange generally leads to anti-ferromagnetic ordering, caused by the

overlap of the wave functions within real space. As stated above, this phenomenon

is often negligible as the electronic orbitals are often significantly smaller than the

interatomic spacing; therefore there is not a significant enough overlap of the wave

functions for direct exchange. As a result of this, it is often necessary to consider a

form of indirect exchange.

The next form of exchange to discuss is a form of indirect exchange. Indirect

exchange is responsible for coupling over larger distances, this is where the exchange

interaction takes place via an intermediary. One form of this exchange is itinerant

exchange or the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction [21]. The

intermediary used in this form of exchange are conduction electrons. These electrons,

which are often found in metals, are very delocalised, allowing for this long-range

coupling. At large distances (i.e. large values of r) what the RKKY exchange

integral is proportional to is;
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JRKKY (r) ∝ cos (2kF r)

r3
(2.8)

where kF is the radius of a spherical Fermi surface. As can be seen, depending

on the distance between the magnetic moments, the value of JRKKY can be either

positive or negative, meaning the system can be ferromagnetic or antiferromagnetic.

2.7.3 Spin-Split Bands

The theory discussed above implies that magnetism is solely caused by unpaired

electrons and their moments. This would further imply that the strength of mag-

netism per atom would always have to be in integer multiples of the magnetism of a

single unpaired electron. However, this is not the case, as the vast majority of mag-

netic materials have a non-integer value per atom for their magnetism. To explain

and rationalise this discrepancy spin-splitting of the bands is necessary [22]. Certain

materials, with strong Coulomb effects and a large density of states at the Fermi

level, will find it energetically favourable for unequal occupations of the spin-up and

spin-down bands. The change in energy due to spin-down electrons moving to the

spin-up band is defined as

∆E = 1/2n (EF ) (δE)2 [1− Ug (EF )] (2.9)

where n (EF ) is the number of electrons at the Fermi level, and δE is the change in

energy as a result of moving electrons from the spin-down band to the spin-up band,

and Ug (EF ) is the Stoner parameter. As can be seen, it is energetically favourable

for spin-splitting to occur when the Stoner parameter is greater than one; this is

known as the Stoner criterion [23]. For materials where this is true, spontaneous

ferromagnetism occurs. In addition, some materials, where the criterion is not

satisfied, the susceptibility can be altered. For example, platinum and palladium can

be thought of as systems on the verge of ferromagnetism; as the Stoner parameter is
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not sufficiently close to 1 to cause spontaneous ferromagnetism. It has a significant

effect on the susceptibility, making them easy to magnetise. This is known as Stoner

enhancement.

2.7.4 Spin-Orbit Coupling

In addition to discussing how the moments of a system interact to form magnetic

phases, it is also necessary to discuss the two moments that combine to form the

total magnetic moment of an electron in a system. This is the orbital moment and

the spin moment. They each play a role in the magnetism of the system. This is

further complicated as, in many systems, they are not independent and there is a

coupling interaction between the spin and orbital moments. This can change the

energy levels of the electrons in the system and can cause energy bands to split.

This effect can be crucial in theoretically describing some systems and in

other systems this can be completely negligible. As a rule of thumb systems which

rely on electrons with large orbital moments, such as f electrons, require this phe-

nomenon to be taken into account. In other systems, where the orbital moments

are much smaller, for instance ones which rely on d electrons, this phenomenon can

be ignored. In this thesis, in all the modelling done, the spin orbital coupling was

tested to eradicate doubt over its need [24].

To measure the magnetism, and specifically the magnetic moment, magnetic

Compton scattering is used in this thesis. Therefore it is important at this point

to discuss the theory of the Compton profiles, as they are both experimentally and

computationally obtained in this thesis and therefore it is key to explore what they

physically represent and what is actually measured.
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2.8 Compton Profiles

Now that we have discussed the various forms of magnetism, and their causes, we can

return to discussing how they were measured in this thesis, starting from the cross

sections discussed above. In themselves, these are not experimentally observable

nor do they produce actual quantities that can be measured. To be able to produce

a quantity that can be measured the Doubly Differential Compton Scattering Cross-

Section (DDCSCS) needs to be introduced [25]. The DDCSCS is the weighted sum

of the charge and magnetic Compton cross section. They are weighted by the charge

and magnetic Compton profiles respectively (J (pz) and Jmag (pz))

These Compton profiles are related to the electron momentum density as

they are the one-dimensional projections along the z axis in momentum space, pz.

In other words, they are the momentum density twice integrated along px and py.

The difference between these Compton profiles is the charge Compton profile uses

the spin independent or charge momentum density (ρ(p)), whereas the magnetic

Compton profile uses the difference between the spin dependent or magnetic mo-

mentum densities (ρ ↑ (p) and ρ ↓ (p)). This can be represented by the equations:

J(pz) =

∫∫
ρ(p)dpxdpy (2.10)

Jmag(pz) =

∫∫
ρ ↑ (p)− ρ ↓ (p)dpxdpy (2.11)

These Compton profiles are defined so that the integral of the charge profile

is equal to the number of electrons per formula unit, and the integral of the magnetic

profile is equal to spin moment per formula unit for the system.

Magnetic Compton scattering, as a technique, is an extremely effective method

for directly measuring the spin moment of a crystal. This is due to the energies in-

volved, which are high enough to allow the impulse approximation to apply, as
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interaction times are short. The result of this is that the measurement is com-

pletely independent of the orbital moment. In addition, the x-ray energies used are

particularly ineffective at exciting electrons into higher orbitals, meaning that this

technique is well suited to observing the ground state of a crystal.

As discussed above, it is possible to separate Jmag(pz) and J(pz) by using

circularly polarised x-rays. As seen in equation 2.4 the magnetic scattering cross

section depends on the helicity and the direction of the electronic spin. This means

two things; firstly, circularly polarised light is required for this cross section to be

non-zero and the magnetic Compton profile to be measurable at all. Secondly, it

provides two experimental ways of changing the sign of this cross section, allow-

ing the magnetic term to be isolated by summing two appropriate profiles. These

two ways are flipping the helicity of the circular polarization or using an external

magnetic field to flip the electronic spin of the sample.

2.8.1 Shape of the Magnetic Compton Profile

0 2 4 6 8 1 00 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5

J ma
g(p

z)

p z

Figure 2.3: Theoretical Hartree-Fock Profile for iridium 5d and the neodymium 4f
electrons (black and red respectively). Both profiles have the same area.
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At the beginning of this chapter (section 2.2) the need to incorporate electron

momenta, and its subsequent effect on the shape of the magnetic Compton profile,

was discussed. The more tightly bound the electron, such as core electrons, the

greater the momentum and the broader the profile. Less tightly bound, delocalised

electrons have a much narrower profile and a larger contribution at low momentum.

The real space and the momentum space wavefunctions, φ(r) and φ̃(p) respectively,

are related by a 3D Fourier transform. This effectively means that the broader and

more delocalised the real space wave function is in r, the narrower the reciprocal

momentum space wave function will be in p. This is illustrated in figure 2.3 as

the neodymium 4f electrons are more localised than the iridium 5d, thus having

a broader profile. Investigating the broadness of the profile can help identify the

electrons that contribute to the profile [28]. This will be used later in the thesis

to separate the Compton profiles of contributing electrons in compounds from the

total, experimentally obtained profile.
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Chapter 3

Computational and

Experimental Techniques

In this chapter the experimental aspects of this thesis are discussed. This is investi-

gated in two halves, the first discusses the computational techniques, the ELK and

GAMESS codes that are used to provide the theoretical profiles for this thesis. In

the second half of the chapter the experimental aspects of measuring the profiles

are discussed, including how the experimental profiles are obtained and normalised.

Throughout this thesis these theoretical and experimental profiles are compared and

used to compliment each other to aid in the understanding of these systems. In ad-

dition the experimental set up at SPring8 in Japan is explained and finally the other

techniques used in this thesis, to support the magnet Compton scattering technique

and to characterise the samples will be covered.

The first code that will be discussed is the ELK code, as well as the Full-

Potential Linearised Augmented PlaneWave (FP-LAPW) method that it uses.
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3.1 ELK Code

In this thesis the Denisty Functional Theory (DFT) code predominantly used is the

ELK code [29]. This is used in Chapter 6 to study NbFe2. This code uses the Full-

Potential Linearised Augmented Planewave (FP-LAPW) Method [30] to determine

the properties of crystals. Along with the GAMESS code, it is used in this thesis

to obtain theoretical Compton profiles from ab initio inputs. These can be then

compared to the experimental profiles, aiding in the understanding of the systems.

The FP-LAPW method views each wavefunction as two separate entities.

This allows a simplified approximation of these wavefunctions to be made for the

interstitial region and the region close to each atom. The approximation to the

wavefunction close to the atom would not be valid in the interstitial region and

vice versa. Without this method it would not be possible to easily approximate the

wavefunction across the entire system.

Near the atomic nuclei, these wavefunctions approximate as nearly spherical

in shape and in the interstitial region they are approximated to planewaves. Enough

freedom is provided for these approximations to be able to force the value and

gradient to be equivalent at the boundary of these regions, requiring the combined

wavefunction to be continuous. Once these wavefunctions are described, they can

be used by the ELK code to provide properties and parameters of the system; such

as band energies and, importantly for this thesis, Compton profiles.

A functional, dependent on the electron denisity, can be proved to exist. This

existence thus tells us that an exact analytical solution must exist but the exact

nature of this has yet to be determined. Due to this lack of a solution, approxima-

tions of this functional are required. The ELK code has many such approximations

included in it’s package, in this thesis two are used: the Local Spin Density approxi-

mation (LSDA) [31] and the Generalised Gradient Approximation (GGA) [32]. The

LSDA functional, as the name suggests, is dependent on the electron density (spin
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dependent) whereas the GGA functional, as well as taking into account this electron

density, also takes into account the gradient of the electron density. Each of these

functionals has flaws in its approach. The LSDA, famously, misidentifies the ground

state of iron. In this instance, the GGA correctly predicts this but has been known

to fail to replicate the ground state of other structures [33]. A benefit of LSDA can

be its slightly quicker run time, due to not needing to calculate the gradient of the

electron density. It is often useful to try both functionals, if possible, as a sense

check for the data produced. In this thesis, the functionals are explicity referenced

in the later chapters, when used. There are a few more complex functionals, such

as meta-GGA included in the ELK package but these are not used in this thesis.

When running a system through this code, the parameters for describing the

system, such as the space group, Wyckoff positions, and the lattice parameters and

angles (discussed in Chapter Two), are required. These parameters are fixed for

each crystal. Changing these would change the physical properties of the material

being investigated. There are other parameters, which are input, which describe the

calculation rather than the crystal. These include the following key parameters: the

hkmax and the ngridk. The hkmax is the maximum length of the h + k vectors. This

affects the maximum value of pz the Compton profiles are calculated to. The ngridk,

with three values, defines the number of k-points sampled in three dimensions. These

parameters allow realistic results to be achieved by the code, limiting the effect of

the calculation on the results.

It is important that these calculation parameters are converged. This is

where, changing the value of a parameter, for example increasing the number of

k-points the code is sampling over, no longer has an effect on the output. Ideally a

result should converge to every numerical value used in the code that is not related

to the system being tested. However, this is not feasible with the time constraints on

most applications, so important parameters are chosen. There are a few parameters

which, with infinite time, would be converged as well as the hkmax and ngridk
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chosen for this thesis. Examples of these include: the size of the initial external

field, the rate of decay of the field, the type of mixing the code uses at the end of

each loop, as well as others.

Other parameters included in the code, but not requiring convergence due

to their nature, are: spinorb, xctype, and fsmtype. Spinorb is a binary command

which informs the code if spin orbit coupling is to be included in the calculations.

Xctype defines the functional that the code will use. In this instance, GGA and

LSDA are the functionals selected for use, as discussed above. Finally, the fsmtype

allows for the magnitude or direction of the spin moments, or both, to be fixed for

the calculation. This allows particular states to be forced, meaning the profiles, and

other parameters, can be compared [34].

The ELK code is a particularly powerful and robust code and is useful for

many systems and crystals. However, it struggles with systems with large atomic

species and complex crystal structures, with little to no symmetry in their space

groups. This is due to the much higher demand for computational power presented

by these systems, making calculations unfeasible. In this thesis, GAMESS is used

as an alternative code for these systems.

3.2 GAMESS Code

The GAMESS, General Atomic and Molecular Structure System, code [35] uses sev-

eral variations, selectable in the code, on the Hartree-Fock method [36] to calculate

the wavefunctions of the electrons within a system. GAMESS is predominately de-

signed as molecular code rather than one which calculates across the entire crystal,

like the ELK code. The way it is used in this thesis, is that a single atom, or small

group of atoms, is chosen within the unit cell to calculate their contribution to the

system. This atom, or cluster, is sat in the potential generated by a larger, but still

comparatively small, subset of the repeating crystal. This is usually a few hundred,
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to a few thousand, atoms. In this thesis, this code is used in Chapter 5 to study

Nd2Ir2O7.

GAMESS assumes that the wavefunctions are a linear combination of atomic

orbitals, which are selected by the user. As the number of atomic orbitals used in-

creases the closer to the exact wavefunction the calculation gets. The group of

atomic orbitals used in a calculation are referred to as a basis set. To reach the

exact wavefunction an infinite basis set would be required. However, a compromise

between accuracy and CPU time is needed, because as the number of sets increase

the computational work increases by ≈ N4, which can quickly become unmanage-

able. [37]

There are several basis sets that are generally used, starting from the minimal

basis set, through the double zeta and the double zeta plus polarisation, and ending

with the triple zeta plus polarisation. The minimal basis set includes one atomic

orbital for each occupied orbital in the atom. The double zeta and the double zeta

plus polarisation both include two atomic orbitals, per occupied orbital, but the

double zeta plus polarisation includes the lowest unoccupied orbital as well. Finally

the triple zeta plus polarisation includes three atomic orbitals per occupied orbital

as well as the first unoccupied orbital. This final basis set, the triple zeta plus

polarisation, is the basis set used for calculations in this thesis.

Like in ELK, convergence is important here. In addition to similar param-

eters, discussed above, the size of the larger structure the cluster sits in should be

tested and ideally should reach convergence. This structure should also be as close

to symmetrical, about the cluster, as possible. This avoids false and uneven results

from unsymmetrical potentials.

The limitations of the GAMESS code can be seen in the way it deals with

metals. The small, non-repeating, structures used by the GAMESS code makes it

struggle with many materials; such as metals. The dependence on the potentials

and the itinerant electrons are not well dealt with. The strength of the code lies
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in its ability to focus in on the individual atoms within the larger structures. This

allows modelling of large atoms, such as iridium, that ELK struggles with due their

size within the repeating structure. For the same reason, GAMESS also has an

advantage with unit cells with low symmetry as ELK would have to model the

entire cell and GAMESS can choose to focus on key parts.

It is important to note that DFT codes, such as ELK and GAMESS, require

the calculation of several parameters which all depend on each other. To calculate

these, there is no one parameter you can start with which will lead to the others.

Therefore, to perform these calculations an iterative process is required. This pro-

cess is called the Self Consistent Field (SCF) method [38]. In this method, the key

parameters, such as electron density, total energy, and internal potentials, are cal-

culated from an initial guess in iterative loops until these parameters converge and

stop changing, as the loop cycles.

The next topics which need to be discussed are the experimental techniques

and the setup used in this thesis. To start with, a grounding in the history of

magnetic Compton scattering and how it developed as a technique is needed.

3.3 History of Magnetic Compton Scattering

The history of Magnetic Compton Scattering begins with the experiments of Laue

and Braggs, which won them Nobel prizes in 1914 and 1915. These experiments

are generally considered the start of the the study of the structure of solids at

an atomic level. It was around this time that Karl Compton, along with others,

were noticing the effect of magnetic fields on scattering experiments [39], although

this effect was not understood at the time. Karl Compton, was the elder brother of

Arthur Compton who the effect and technique was named after. At this time Arthur

Compton was trying to reconcile the inelastic scattering, later named Compton

scattering, with classical electromagnetism.
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In 1929, another step forward was taken as Klein and Nishina purposed a

scattering cross section [3] that correctly described the asymmetry of the scatter-

ing with regards to direction. It was about this time that diffraction experiments

were providing strong evidence for the wave-like behaviour of light and scattering

experiments were simultaneously providing compelling evidence of the particle-like

behaviour. This debate within physics as a whole is also seen reflected in the growth

of Compton scattering, whilst Compton strongly believed in that light was a wave

and tried to reconcile this with the inelastic scattering, he suggested a quantised

solution [2] of his results [40], which won him the Nobel prize in 1927.

The theory and technique of Compton scattering progressed over the next

50 years culminating in 1976 where Sakai and Ono performed the first magnetic

Compton experiment [41]. This experiment measured the magnetic Compton profile

of iron using circularly polarised γ rays. The experiment used a 57Co source, creating

γ rays at 122KeV via the beta decay of this isotope. This had a couple of issues,

predominately the need to keep the source at 50mK to get a net amount of circularly

polarised γ rays, this limited the strength of the source as self heating from the beta

decay would raise the temperature above this if the activity was too high. Despite

these limitations this experiment confirmed the validity of this technique for studying

solids.

The main problem with this technique at this time was finding a way of

providing circularly polarised photons at high energy and high flux. At the advent

of synchrotrons the access to high energy, high flux photons was addressed but ini-

tially they were not sources of circularly polarised photons, as the bending magnets

produced mostly linearly polarised light and the symmetric undulators produced

equal amounts of both helicities of circularly polarised light. At low energies, half

wave plates or other optics can be used to effect the polarity of incident light but

this is not possible at higher energies. Only the use of a helical undulator or an

asymmetric wiggler (as is used on the beamline used in this thesis) can produce a
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sufficiently high flux of high energy circularly polarised x-rays to be used for this

technique. However initally these sources were rare.

The first attempt at a magnetic Compton experiment at a synchrotron was

performed by Holt et al in 1986 [42], like Sakai and Ono [41] 10 years earlier, this was

performed on ferromagnetic iron but provided worse statistical accuracy than the

earlier γ ray experiments. This was followed two years later by the first interpretable

magnetic Compton experiment [43], this confirmed the use of synchrotrons and

marked the entry into the modern era of magnetic Compton scattering.

From here the key experimental aspects of magnetic Compton scattering and

the setup used in this thesis can be discussed.

3.4 Experimental Magnetic Compton Scattering

It is important to correctly calibrate the obtained magnetic Compton scattering

data. After first normalising the data to the monitor’s count rate to remove any

effects caused by any changes in the intensity of the beam, the spectra are calibrated

using well known energies of known absorption edges. Several different known en-

ergies are usually used; lead is particularly common as it is found in many of the

spectra since there is lead in numerous places in and around the experimental set-

up. Figure 3.1 shows an example of nickel data against channel number, with the

Compton peak being visible along with lead fluorescence peaks for calibration [44].

As can be seen, the peaks are all slightly misaligned with each detector. Calibrating

the spectra to an energy scale for each detector separately fixes this issue.

A second, more complex, example of a group of these spectra is shown in

figure 3.2, i.e. a profile for Nd2Ir2O7 with both lead and iridium florescence lines

used for normalisation, The lead kβ and the iridium kα are used but, because of

their similarity in energy, the iridium kβ and the lead kα overlap and are therefore

not used.
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Figure 3.1: Unprocessed nickel data collected at 300K and 1T, showing all 9 working
detectors. The difference in the positions of the Compton peaks is as a result of
the different calibrations of the detectors and is fixed by the calibration using the
well-defined lead fluorescence peaks
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Figure 3.2: Unprocessed Nd2Ir2O7 data collected at 10K and 5T, showing all 9
working detectors, as well as the fluorescence peaks for lead and iridium
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This energy scale is converted to a momentum scale. In order to do so,

a relationship between the scattered photon’s energy and the momentum of the

electron involved in the scattering event is required [45]; this relationship is given

by

pz =
1

αmc2

(
|k1 − k2|

2
+
E′ − E

2

√
1 +

2mc2

E′E(1− cosφ)

)
(3.1)

where

|k1 − k2| =
√
E′2 + E2 − 2E′Ecosφ (3.2)

These equations allow an ability to convert from the energy scale to a mo-

mentum scale using the scattering angle, φ, and the energy of the scattered photon,

E′. The Compton profile is a one-dimensional projection of the momentum density

along the scattering vector and, therefore, the momentum scale used is along that

direction as well. The (αmc2)−1 term in equation 3.1 is necessary to convert the

pz scale to atomic units (a.u.) and is equal to 0.26817. As the equations suggest

pz = 0 is at the peak of the Compton profile.

As determined previously, the MCP is the difference between the spin up

and spin down Compton profile and this difference is symmetrical about pz = 0. It

is possible to take advantage of this fact to improve the statistics of the data by

folding the data around pz = 0. To further increase the statistics the data is binned,

decreasing the number of points but reducing the error on each point.

The errors on a Compton profile are calculated by propagating Poisson count-

ing statistics. This error is propagated with all the post-processing performed on

the data.

The integral of a magnetic Compton profile, obtained experimentally, is pro-

portional to the spin moment of the sample. This data needs to be normalised to

calculate the spin moment from experimental data. To normalise the data a flipping
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ratio is used with the flipping ratio, FR, defined as

FR =
I ↑ −I ↓
I ↑ +I ↓

(3.3)

where I ↑ and I ↓ are the intensity of the Compton profiles measured in the two

field directions and are referred to as the spin up and spin down Compton profiles,

respectively. The error on this is calculated based on the error on I ↑ and I ↓ being

√
I ↑ and

√
I ↓ respectively. This means the error on FR can be written as,

σFR = FR

√
(I ↑ +I ↓)−1 +

(I ↑ +I ↓)
(I ↑ −I ↓)2 (3.4)

This flipping ratio can be used to calculate the spin moment by comparing

it to a calibration sample [46], (in this thesis nickel is used). The spin moment of

the sample, µs, can be calculated using the equation;

µs =
FRs
FRNi

× Zs
ZNi

× µNi (3.5)

where Zs and ZNi are the atomic number for the sample and nickel respectively and

µNi is the spin moment of nickel, which equals 0.56µB [47]. As above the error was

propagated through, using equation 3.4 to find the error on FRs and FRNi and

then using this to calculate the error on µs.

The experimental orbital moment can be calculated as a difference between

the total moment, obtained from the characterisation techniques discussed below

and this spin moment.

More information than just these bulk moments can be obtained from these

experimentally obtained profiles, for instance, information about the magnetic mo-

ments on different species within the crystal can be obtained from the shape. In

this thesis, theoretically calculated profiles are mathematically fitted to the tails of

the experimental data (above a particular value pz), using a least squares fit using
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a script written for this thesis in Matlab, the errors are propagated through using

this code as well. This can be done on crystals, where the magnetism is due to spin

on electrons with different constraints in real space (i.e localised or delocalised elec-

trons). As discussed above, constrained, localised, electrons have a much broader

profile in momentum space which allows them to be separated.

3.5 SPring8

In this thesis, much of the experimental data was collected on the BL08W beamline

at SPring-8 synchrotron in the Hyōgo prefecture, Japan.

3.5.1 Synchrotron Radiation

Synchrotrons can produce radiation in a broad range, for example SPRing-8 can

produce a range from soft x-rays at 300eV to hard x-rays of 300KeV. As previously

seen, high energy photons are required for high quality Compton scattering.

Synchrotrons are important for Compton scattering as they are the only

practical way to get sufficiently high energy x-rays with sufficiently high flux. At

these energies x-rays are also non-destructive, making Compton scattering experi-

ments also non-destructive, a point which is useful with important or hard to grow

samples from which many measurements are needed.

Synchrotron radiation is created by accelerating charged particles. Simply,

when charged particles, such as electrons, are accelerated along curved trajectories

they emit radiation known as synchrotron radiation. [48]

In synchrotrons, bending magnets are used to steer the beam of electrons,

creating this radiation. To increase the flux of radiation these facilities can produce

over just the bending magnets, other insertion devices are used as well such as

wigglers. These periodic field devices have periodic magnetic fields which accelerate

the electron beam and therefore produce this radiation. This is further improved by

38



the helical wiggler which, as the name suggests, have helical magnetic fields, which

allows for shorter magnetic periods, further increasing the brightness. [49]

These wigglers can emit light that is linearly polarised but many experiments,

such as Compton scattering, require circularly polarised light. For the experiments

within this thesis an asymmetric helical wiggler is used to provide the required

circularly polarised light. The principle of these devices is that the magnetic field

that accelerates the beam is not symmetric. Generally strong positive poles are

surrounded by two weaker negative poles, these combinations are then surrounded

by air gaps. Over the period the positive and negative fields are equal but not

symmetric. This asymmetric field provides the required circularly polarised photons.

[50]

3.5.2 The Experimental Set Up

The experimental magnetic Compton profiles were measured on beamline BL08W

at SPring8 in Japan. The energy spectrum of the scattered flux was measured

using a 10-element Ge detector at a mean scattering angle of 173◦. The incident

energy of 175keV and scattering angle of 173◦ resulted in a resolution of 0.44 a.u.

of momentum (where 1 a.u.=1.99× 10−24 kg m s−1).

When x-rays are absorbed, electron-hole pairs are created, creating a charge

pulse. The charge pulse is converted to a voltage pulse, which is converted to a

digital signal by an analog-to-digital converter (ADC) and analysed by a multi-

channel analyser with 8190 channels. The pulse’s voltage is proportional to the

energy and is converted to an energy scale, using known energy values as discussed

above.

During the time that the detector and the analyser are processing a count

they are unable to process another. The time when a second count cannot be re-

ceived is called dead-time. The experimentalist needs to balance the experimental

process in order to minimise dead-time whilst keeping the count-rate as high as
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possible. This is achieved by varying the size of the beam profile that can hit the

sample by controlling the width of the beam slits from the optics hutch. An approxi-

mate maximum count-rate of 15000cps and a maximum dead time of approximately

4% was used. For this reason, materials with the correct absorption profiles were

placed in front of the detector to filter out particular fluorescence peaks and increase

the proportion of counts in the Compton peak. For example using 1mm of tin in

front of the detector when measuring Nd2Ir2O7 will absorb ≈ 100% of neodymium

fluorescence, 86% of iridium fluorescence, 74% of lead fluorescence, and 58% of the

photons at the Compton peak energy. These values can be tuned with the thickness

of the tin and mean that a greater proportion of the count is from the Compton

peak. This can be seen in figure 3.3 that shows the percentage absorption against

energy for two different thicknesses of tin.

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 00

2 0

4 0

6 0

8 0

1 0 0

Ab
sor

pti
on 

(%
)

E n e r g y  ( K e V )

C o m p t o n  p e a k  
e n e r g y

P b  K α

I r  K α

N d  K α

Figure 3.3: Percentage absorption against energy for 1mm (black) and 0.5mm (red)
of tin. Dotted lines show the energies of neodynium, irridium and lead fluorescence
as well as the energy of the compton peak.
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3.6 Characterisation Techniques

To obtain more information, other techniques were used in this thesis alongside

magnetic Compton scattering including SQuID and VSM magnetometry and Laue

diffraction. These techniques were used to characterise the sample, either to obtain

the total magnetic moment or to align a single crystal along a crystallographic

direction.

3.6.1 Magnetometry

In this thesis SQuID and VSM magnetometry were used to obtain the total moment

of the samples. Using this information, the orbital moment could also be calculated.

With most of the samples a SQuID was used as the calibration is more stable and

therefore a more exact result can be obtained. The VSM was used when the sample

had too large a moment or was too large to fit in the physical confines of the SQuID

due to its smaller opening.

SQuID Magnetometry

Superconducting Quantum Interference Devices (SQuID) are used to measure the

total moment of a sample [51]. The sample is moved through a set of supercon-

ducting coils within a magnet, thus inducing a current in the coils. Any change in

current is proportional to the magnetic flux.

It is possible to keep the temperature at a fixed point and change the field,

making MvsH measurements, or to fix the field and sweep the temperature, making

MvsT measurements

VSM

A Vibrating Sample Magnetometer (VSM), vibrates a sample sinusoidally, perpen-

dicular to an applied uniform magnetic field. This oscillates the magnetic field of the
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sample inducing a voltage in the detection coils [52]. This voltage is proportional

to the samples total moment and therefore, it is possible to make MvsH and MvsT

measurements, as with the SQuID discussed above; However, the VSM used in this

thesis was set up in such a way as to optimise the taking of MvsH measurements

although this made MvsT measurements slow and helium-expensive.

3.6.2 Laue Diffraction

The final characterisation technique used in this thesis was Laue diffraction. This

technique was used to identify and align the single crystals measured to the crystal-

lographic direction, or often multiple directions, along the directions chosen for the

MCS experiments.

Using the Laue technique, x-rays were scattered off the sample and into a

camera, with the camera situated between the incoming beam and the sample itself.

The image obtained showed the crystallographic direction facing the incoming x-ray

beam and the camera. The sample was then placed on a goniometer which was then

adjusted, rotating the sample through three axes into the desired direction before

mounting onto the plate used for the MCS experiments. This is referred to as the

back-reflection Laue method.

The spots on a Laue diffraction pattern are crystallographic directions and

the pattern reflects the symmetry of the sample and of that direction. Bragg’s law

relates the planar index n, the wavelength of the x-rays λ, the distance between the

planes d and the scattering angle θ by;

nλ = 2dsin (θ) . (3.6)

For constructive interference, the scattering angle is 2θ.

The spots on these patterns are characteristic of the symmetry of the crystals

and are used to aid the alignment of the samples. Figure 3.4 shows the Laue pattern

42



Figure 3.4: Laue diffraction pattern of NbFe2 along the c direction

of NbFe2, the sample has been orientated so a high symmetry direction is facing the

camera, in this case the c axis, as can be seen by the spots converging at the centre

of the image.
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Chapter 4

Temperature Dependence of the

Spin Moments in GdCo5−xNix

4.1 Introduction

GdCo5 is a member of the RETM5 class of materials (where RE is rare earth and

TM is transition metal). These materials have a wide range of magnetic properties

due to the different number of 4f electrons from the rare earth element [53]. Since

useful magnetic properties, such as a high Tc, were found in the permanent magnet

SmCo5 over fifty years ago [54], there has been a lot of interest in studying this

series.

The complexity of this series can be split into three levels by the RE element

in the material. The simplest level uses yttrium which is a non-magnetic rare earth

metal with no 4f electrons. The second level is gadolinium, which has a half filled

4f shell, thus removing crystal field interactions and spin-orbit coupling effects. The

third and final level consists of the remainder of the rare earth series with partially

filled 4f shells [55]. In this chapter gadolinium, as the RE element, is considered.

In GdCo5, the symmetry of the 4f shell removes crystal field interactions. This is

particularly useful as it makes it easier to theoretically and experimentally study
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the interactions between the rare earth element and the transition metal [56].

Doping a RETM5 system with either a second rare earth element, e.g. GdxY1−xNi5

[57], or a second transition metal, such as GdCo5−xCux [58], YCo5−xNix [59], and

GdCo5−xNix, which is investigated in this chapter, can change the magnetic prop-

erties in a systematic manner [56].

There have been previous investigations on the series of samples studied in

this chapter. There are some studies which have been completed, examining the

properties of RETM5 samples, that are often at tangents to the Ni doped GdCo5

series studied in this chapter but where relevant, these have been discussed through-

out. A small number of previous studies have direct correlation to our sample group

and are discussed below. The previous work done on these samples is comprehensive

for the broad study of the sample series but follows a different line of investigation

to our studies, as they deal in the total moment. Because of the relative infancy

of this subject area, many of the papers and studies available are continuations of

each other: tightening in on various different properties, different sample series, or

replicas of each other whilst examining different samples or series.

Chuang et. al. [60] investigated GdCo5−xNix for values of x between 0

and 5, observing a decreasing Tc with increasing nickel content. Compensation

temperatures were also investigated, although the paper focused on temperatures

above 300K meaning that compensation temperatures less than 300K would not

have been found.

Liu et. al. also investigated this series at the low nickel end of the series

(x ≤ 1.05) [61] to find the coupling constant between the transition metal and

rare earth sublattices. Compensation temperatures have also been measured in

GdCo4−xNixAl [62] and this was shown to increase as the nickel content increases.

More recently, within the physics department at Warwick University, sam-

ples of RECo5−xTMx, where RE = Gd and Y, TM = Ni and Fe, and x ≤ 1, were

prepared and experimentally determined properties were compared to DFT calcu-
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lations [55]. A decrease in magnetism and Curie temperature was observed, both

experimentally and theoretically, with increasing nickel content. This led the way

to further work, within the group, into the doping of GdCo5−xNix by A. Tedstone

et. al. [56]. Compensation temperatures were found for samples within 1 < x < 3

range; for larger x no compensation temperature was observed below 360K and these

temperatures were found to increase with increasing nickel content. While this pa-

per provides broad investigations into the samples, measuring the total moment and

compensation temperatures, and excels in its use of computational methods, it does

not delve into the contributions to the total moment. This paper emphasises the

complimentary nature of theory and experimental investigations and this chapter

primarily aims to support the experimental aims of the group.

In this chapter investigations of four different compositions of polycrystalline

GdCo5−xNix were carried out: x = 1, x = 1.28, x = 2, and x = 3, building on the

work performed by A. Tedstone et.al.. It not only allows a way to separate the spin

and orbital moments from the total moment experimentally, but it also provides

a way of isolating the moments on the sublattices rather than just the bulk total

moment.

This is something that the previously mentioned studies neglected to incorpo-

rate in their investigations. In doing this, we can expand on the previous knowledge

and better understand the contributions at the compensation temperature. The

Compton scattering technique directly measures the spin moment, with no assump-

tions required, making it a powerful technique for separating out the bulk spin and

orbital moments of these samples. Due to the nature of the Compton profiles it is

possible, in this case, to separate out the contributions from the sub lattices. Whilst

this has more limitations, this still adds to the understanding of these samples. This

technique had yet to be applied and the discussions surrounding these properties

were lacking in depth and detail on this point. It is hoped that the work in this

chapter goes towards aiding further understanding and discussion.
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4.1.1 Crystal Structure

RETM5 materials crystallise into a hexagonal lattice with the space group P6/mmm

figure 4.1. The RE element is on the 1a site and the TM is on the 2c and 3g sites.

As is seen, alternating layers form, comprising of TM in the 3g position and central

RE atoms, surrounded by the TM on the 2c sites. This general picture holds true

for GdCo5 and for GdCo5−xNix studied in this chapter.

RE 1a site

TM 3g site

TM 2c site

Figure 4.1: Hexagonal structure of RETM5, space group P6/mmm (191) with the
RE element on the 1a site (purple), and the TM on the 2c site (light blue) and
the 3g site (dark blue). Showing both a unit cell and the alternate layers of TM3g

and RE atom surrounded by TM2c. (Box in both images represents the unit cell
boundary)

The relatively simple structure shown here, coupled with the complex and

diverse behaviour of different 4f electrons [63] makes this series ideal for investigat-

ing different TM-TM, TM-RE interactions as well as interactions with the crystal

field. However, as mentioned above, in the particular case of gadolinium as the rare

earth element, as is the case for this chapter, the symmetry of the 4f shell removes

crystal field interactions.

When GdCo5 is doped with nickel there has been previous work on whether

this favours the 2c or 3g sites. Neutron diffraction experiments on YCo5 which

was nickel doped [64] found a preference for the 2c sites, this was backed up by

computational work [55] on Ni-doped GdCo5.
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4.2 Electronic Structure and Magnetism

GdCo5, the material on which the samples studied in this chapter are based, is

ferrimagnetic [53]. The total moment and the applied field is aligned with the cobalt

3d moment and antiparallel with the gadolinium 4f moment [65]. However, at the

other end of this series with GdNi5, whilst also ferrimagnetic, the total moment is

antialigned with the cobalt 3d moment and parallel with the gadolinium 4f moment

[66]. GdNi5 also has a much lower curie temperature of 32K [57]. In this compound,

nickel has a much smaller moment than cobalt or gadolinium [67], which implies

that as the series progresses from GdCo5 to GdNi5 the magnetisation of the TM

sublattice is expected to decrease.

At low temperatures the moment on the gadolinium lattice is smaller than

the moment from the cobalt lattice in GdCo5 [55]. However, after a finite amount

of doping the moment on the cobalt-nickel sublattice is reduced to below that of

the gadolinium moment (x ≈ 1) [56]. The gadolinium moment has a much greater

temperature dependence than the cobalt-nickel lattice which implies that, for values

where x > 1, there is a temperature that these lattices compensate for each other and

cancel out, this is called the compensation temperature. Below this temperature the

gadolinium moment aligns with the field and above this temperature the 3d lattice

aligns. This creates an interesting temperature dependence which is discussed below.

In undoped GdCo5, as the temperature increases the magnetism increases

to a maximum at ≈ 800K [68]. Further increasing temperature decreases the mag-

netism to the Curie temperature of 1014K [69]. This slightly unusual temperature

dependence is due to the fact that the gadolinium moments are a lot more temper-

ature dependent and disorder much more rapidly than the cobalt moments that are

anti-aligned with them [55].

It was found that in these series (at zero temperature) the gadolinium, cobalt,

and nickel moment are 7, 1.6, and 0.6 respectively [56]. This implies that in GdCo5,
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and GdCo5−xNix with a sufficiently low value of x (x . 1), at low to zero tem-

peratures the moment of the ferromagnetically aligned cobalt-nickel, 3d, is greater

than the gadolinium. Therefore, in these materials the cobalt-nickel aligns with the

external field and the gadolinium moment opposes it. In these materials, as dis-

cussed above, the gadolinium is more dependent on the temperature this explains

the temperature dependence of the magnetisation that is observed [68; 70].

With GdCo5−xNix (x & 1) to GdNi5, at significantly low temperatures the

gadolinium moment is larger than the cobalt-nickel moment and therefore will align

with the field (with the 3d moment anti-aligned). In a subset of these materials,

(depending on the Tc of the material) as the temperature increases the magnetisation

decreases because the gadolinium moment decreases with temperature, whereas,

in comparison, the 3d moment is more constant with temperature. A point is

reached at a finite temperature where the cobalt-nickel sublattice has a greater

moment than the gadolinium atoms. At this transition temperature the signs of

the moments for the gadolinium and cobalt-nickel swap. After this the temperature

dependence is similar to that of GdCo5, increasing until the Curie temperature is

reached. This can only be observed in materials where their Tc is higher than where

the transition temperature is or would be (i.e. this effect is not seen in GdNi5 as

the curie temperature is 32K).

Using a Vibrating Sample Magnetometer (VSM), the total magnetic mo-

ment for the samples used in this chapter was obtained, seen in figure 4.2. The

temperatures used are discussed below. A VSM was used as the physical size of

the samples was too large for the sample are of the Superconducting Quantum

Interference Devices (SQuID) that was available.

The results, as seen in figure 4.2, show the discussed pattern for GdCo3.72Ni1.28,

in black and GdCo3Ni2 in red (GdCo2Ni3 in green, has a transition temperature out-

side the experimental range). A clear minimum can be seen for these two samples

where the total moment of the 3d and 4f sublattice compensate.
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Figure 4.2: VSM data for the total moment against temperature for GdCo3.72Ni1.28

(black), GdCo3Ni2 (red), and GdCo2Ni3 (green)

4.3 Results

Four samples were investigated in this chapter, with increasing amounts of cobalt

replaced with nickel. These samples were GdCo4Ni, GdCo3.72Ni1.28, GdCo3Ni2,

and GdCo2Ni3 (x = 1, x = 1.28, x = 2, and x = 3). On all four samples, the

Compton scattering measurements were performed at 2T with the temperatures

that the measurements were taken at shown in table 4.1. The temperature controller

used for these experiments would settle at a stable temperature slightly higher than

the setpoint. These higher recorded temperatures were also used to obtain the total

moments in the VSM (as opposed to the setpoint temperature).

For each of the samples, and temperatures: the total moment was collected

using a VSM, the spin moment was collected using the magnetic Compton scattering

result, and from these an orbital moment was also calculated by subtracting the

spin moment from the total moment. In addition to this, using the fact that the

3d moment from the cobalt/nickel is a lot more itinerant and therefore narrower
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Sample Set-point Actual Recorded Temperature

GdCo4Ni 300K 304K

GdCo3.72Ni1.28 15K 16.1K

GdCo3.72Ni1.28 50K 52.6K

GdCo3.72Ni1.28 80K 84.3K

GdCo3.72Ni1.28 95K 99.6K

GdCo3.72Ni1.28 100K 104.9K

GdCo3.72Ni1.28 105K 110K

GdCo3.72Ni1.28 110K 115K

GdCo3.72Ni1.28 115K 120.2K

GdCo3.72Ni1.28 120K 125.2K

GdCo3.72Ni1.28 125K 130.2K

GdCo3.72Ni1.28 150K 155K

GdCo3.72Ni1.28 200K 204K

GdCo3.72Ni1.28 250K 253K

GdCo3.72Ni1.28 300K 304K

GdCo3Ni2 15K 16.1K

GdCo3Ni2 100K 104.9K

GdCo3Ni2 200K 204K

GdCo3Ni2 225K 229K

GdCo3Ni2 275K 279K

GdCo3Ni2 300K 304K

GdCo2Ni3 15K 16.1K

GdCo2Ni3 300K 304K

Table 4.1: List of temperature the magnetic Compton scattering experiments were
performed at for all four samples investigated. The setpoint the temperature con-
troller was set to and the temperature recorded by the sample.
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Total Moment Spin Moment Orbital Moment 3d Spin 4f Spin

1.052 0.41± 0.02 0.64± 0.02 1.7± 0.2 −1.2± 0.1

Table 4.2: Total, spin and orbital moments, in µB/F.U. for GdCo4Ni at 2T and
300K. Including the calculated contributions to the spin moment from the narrow
3d and broader 4f orbitals.

in momentum space than the much more localised Gadolinium 4f moment, it is

possible to separate out the contributions to the spin moment from these orbitals,

as is discussed in chapter 2.

The results from the VSM and Compton scattering experiments will be dis-

cussed separately for each material in the sections that follow and then referred to

collectively in the discussion section later in the chapter.

4.3.1 GdCo4Ni

Although GdCo4Ni was one of the samples investigated in this chapter, taking into

account the fact that a change in sign of the spin moment would happen at a

temperature that could not be attained with the set-up used, if one existed at all,

and bearing in mind time constraints, only one temperature, 300 K, was measured

with this sample. Table 4.2 shows the moments obtained experimentally as well as

the 3d and 4f contributions.

As can be seen, the 3d moment is parallel to the applied field and the 4f

moment is antiparallel. This fits with the theory for the series. The one value that

was taken, is not enough to tell if there is a transition temperature, or if the 3d spin

moment remains positive at zero temperature. However A. Tedstone et al. [56] did

not observe a compensation temperature down to 10K.

The Compton profile obtained for this sample is shown in figure 4.3.

Figure 4.3 demonstrates the method used in this chapter to separate out the

contributions to the total spin moment from the sublattices. The figure shows the

Compton profile of GdCo4Ni at 2T and 300K. A gadolinium profile is fit to the data
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Figure 4.3: Compton profile of GdCo4Ni (Black squares) with gadolinium profile
(red) and difference (green) i.e. GdCo4Ni profile − Gd profile. Inset shows a nickel
profile, collected at 300K and 2T, to give a reference of a 3d system.

where pz ≥ 4A.U.. This gives the gadolinium contribution to the Compton profile.

The difference between the profiles, shown in figure 4.3 in green, is a typical 3d

shaped profile (as is demonstrated by the nickel profile in the inset). This reinforces

the idea that the profiles are made of 4f and 3d sublattices.

The value of momentum, pz ≥ 4A.U., chosen to be the zero value of the fit

(i.e the Gd profile was fit to the data above this value), was chosen by eye. This

took into account the point at which the gadolinium contribution was dominant in

the experimental profile. This fit was not strenuously tested, for different values of

pz, due to time constraints. Further work is required to confirm the results of this

chapter. The work done provides a starting place for this further study.

In addition, an experimental Gd profile was used in this fitting, therefore

introducing experimental errors on the fit. This further work may include the use

of theoretical profiles to check for agreement.
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4.3.2 GdCo3.72Ni1.28

GdCo3.72Ni1.28 along with GdCo3Ni2, of the four samples referred to in this chapter,

were the samples on which the most investigation was carried out. This was due to

the compensation temperature for these two samples being comfortably within the

measurable range (10K-300K). Figure 4.4 shows all the moments collected at all the

temperatures, this has been split into four regions based on the behaviour of the

moments.
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Figure 4.4: Total (black), spin (red) and orbital (green) moments for GdCo3.72Ni1.28

at 2T. Four regions (A, B, C, and D) have been defined based on the behaviour of
the moments and are explained in the text.

Figure 4.4 clearly shows the point at which the spin moment changes sign

and the orbital moment dominates the system, occurring just above 130K, at the

boundary of region C. After this the spin moment increases, it changes sign again

at between 200K and 250K at the boundary of region D.

Figure 4.5 shows what is happening to the contributions to the spin moment.

Starting with the 4f contribution the sign flips at the minima of the total moment
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Figure 4.5: Total spin moment (red) (as in figure 4.4) with contributions to the spin
moment from the 3d (light blue) and 4f (dark blue) orbitals for GdCo3.72Ni1.28 at
2T. Using the same regions as figure 4.4.

(region B). However the 4f spin moment remains larger than the 3d spin moment,

causing the total spin moment to become negative, (region C). This is due to an

orbital moment attached to the 3d orbitals. At the point where the anti-parallel 4f

moment has reduced to less than the parallel 3d moment, the spin moment becomes

positive again. (Region D boundary)

The behaviour of these four regions (A, B, C, and D) are shown in figure 4.6.

Region A represents the region where the gadolinium sublattice dominates, there is

a large total spin moment (red) parallel to the gadolinium contribution (dark blue)

and antiparallel to the orbital moment (green) and the cobalt-nickel contribution

(light blue). Region B represents the transition region in which the moments are

flipping. In addition to this there is a possible canting as discussed below. Region

C represents the region where the cobalt-nickel 3d sublattice is aligned with the

total moment and the applied field, and it is antialigned with the larger gadolinium

moment. This means that the total spin moment is negative and the system is
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Figure 4.6: Sketch of the alignment of the moments in GdCo3.72Ni1.28 in the four
regions discussed. Colours match figures 4.4 and 4.5 i.e. total moment in black, spin
moment in red, and orbital moment in green in the top figure and the total spin
moment in red and the 3d and 4f contributions in light and dark blue respectively.

dominated by the orbital moment, aligned with the 3d spin contribution.

The transition temperature can be seen to be between ≈ 110K and ≈ 130K.

However, defining a transition temperature as a minimum of the total magnetism, as

previous studies have, is no longer a sensible definition. This is because the minimum

in the total moment is at 115K, the temperature at which the spin moment passes

zero is ≈ 130K for the first time, a second transition temperature could be defined

as the second point the spin moment passes through zero at ≈ 240K and, thirdly,

the temperature that the 3d and 4f moments pass through zero is 110K. Any of

these temperatures could be used to define a transition temperature.

Comparing the Compton profile obtained at 16.1 K (in region A) to the

profile obtained at 304 K (region D), figure 4.7 clearly shows the change in sign of

the two contributions. The high momentum region, dominated by the localised 4f

electrons, is positive at 16.1 K and is negative at 304K. At low momentum the sign

on the 3d moment also changes between low and high temperatures. In addition, the

ratio of these moments change with temperature, implying a different temperature

dependence to the moments of the sublattices.
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Figure 4.7: Compton profiles of GdCo3.72Ni1.28, obtained at 16.1K (black) and 304K
(red). Both profiles were obtained at 2T

A second important comparison is between 115K and 130.2K, both within

the transition region (B). This is shown in figure 4.8.

The comparison in figure 4.8 is interesting because, as can be seen in figure

4.5, whilst the spin moment plateaus between these temperatures, the contributions

in this region changes dramatically. As is seen in figure 4.8, whilst both profiles have

the same area, at 130.2K there are much larger contributions from the sublattices.

The size of the contributions to the spin moment are shown in figure 4.5, coloured

light and dark blue and are calculated by fitting a gadolinium profile to the data.

The clear change in shape of the profiles in figure 4.8 explains the change in the

contributions in figure 4.5.

Looking at a profile before and after the spin moment changes sign for the

second time, i.e. a profile in region C and D respectively, shows that there is not a

drastic change in the profiles. Figure 4.9 shows a comparison between the profiles at

155 K and 304 K. The change in sign in the total spin moment is due to a gradual
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Figure 4.8: Compton profiles of GdCo3.72Ni1.28, obtained at 115K (black) and
130.2K (red). Both profiles were obtained at 2T

decrease in the 4f moment whilst the 3d moment remains comparatively constant.

4.3.3 GdCo3Ni2

GdCo3Ni2 was the second of the four samples to have its transition temperature

within the range measured. The transition temperature is between 230 K and 280

K. However, unlike GdCo3.72Ni1.28, the temperature at which the parallel 3d spin

moment is larger than the anti-parallel 4f spin moment and the total spin moment

becomes positive again (defined as the boundary of region D above) is outside the

range measured (> 300 K). This is seen in figures 4.10 and 4.11.

Previous studies find the transition temperature to be 230 K [56]. This

fits reasonably with the data which shows a transition temperature between the

measured 229 K and 279 K. However, once again, the validity of only using the

minimum of the total moment to calculate the transition temperature is in question.
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Figure 4.9: Compton profiles of GdCo3.72Ni1.28, obtained at 155K (black) and 304K
(red). Both profiles were obtained at 2T
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Figure 4.10: Total (black), spin (red) and orbital (green) moments for GdCo3Ni2
at 2T. Using the same concept of region discussed above (region D is at too high a
temperature and was not measured for this sample)
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Figure 4.11: Total spin moment (red) with contributions to the spin moment from
the 3d (light blue) and 4f (dark blue) orbitals for GdCo3Ni2 at 2T. Separated into
three regions discussed in text as in figure 4.10.

4.3.4 GdCo2Ni3

GdCo2Ni3 was measured at five temperatures within the achievable temperature

range but, like GdCo4Ni, the temperature at which the spin moment changes sign

was outside the experimental range. However, unlike GdCo4Ni, it is too high a tem-

perature, i.e. above 300K. A. Tedstone et al. found the compensation temperature

to be 323K [56]. Figures 4.12 and 4.13 clearly show the moment tending towards a

point above 300K but it is not possible to extrapolate an exact temperature. This

suggests that it would follow the same pattern as the previously discussed samples

in this series if it were possible to measure this sample to a higher temperature with

this set-up.
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Figure 4.12: Total (black), spin (red) and orbital (green) moments for GdCo2Ni3 at
2T.
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Figure 4.13: Total spin moment (red) with contributions to the spin moment from
the 3d (light blue) and 4f (dark blue) orbitals for GdCo2Ni3 at 2T.
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4.4 Discussion

The four samples investigated showed increasing transition temperatures with in-

creasing nickel content. This supports the theory of the electronic structure dis-

cussed above and agrees with previous literature [55; 56].

Looking at the samples as a series, a few interesting trends appear. Firstly,

the total moment reaches a minimum value at the compensation temperature but

does not reach zero. It has been suggested that a cause of this is that with RETM5

sufficiently high fields can cause the moments on the sublattices to precess from

ferrimagnetic to ferromagnetic. These samples stop being ferrimagnetic at a field

B1 and become ferromagnetic at a second field strength B2. For values of field

between these values the moments cant, creating a non-collinear phase [71]. For

GdCo5 this first field, B1, was calculated theoretically to be 46.1 T at 0 K [73] and

found experimentally to be 46 T at 5 K [72], much higher than the 2T measured at.

However, it was found in GdCo12B6 that also has a compensation point, that this

value of B1 decreases as the temperatures approach the compensation point [71].

This has been proposed as the reason for the non-zero magnetisation [56].

Another interesting point is that, as seen in figures 4.5 and 4.11, the flip-

ping of spins at the compensation temperature does not happen when the two spin

contributions are equal; this is made clear by the fact that the total spin moment

continues to drop after this point. The compensation temperature occurs when the

3d spin and orbital moments are greater than the gadolinium spin moment, which

allows a negative spin moment because the orbital moment dominates the system.

This is seen in region C in figures 4.4 and 4.10. The fact that the orbital moment

found closely follows the shape of the cobalt moment tells us that orbital moment

stems from the 3d orbitals. This is reinforced by Hund’s rules that postulate that

there is no orbital moment on gadolinium.

This leads to an unexpected result from the data where GdCo2Ni3, with
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the largest amount of nickel, has an orbital moment that is opposite to the 3d

moment. This result is different from the other three samples at all temperatures

and requires further investigation to establish whether this continues with increasing

nickel content. Another technique, such as X-Ray Magnetic Circular Dichroism

(XMCD), could be used to check this unexpected result. One possibility is that the

cobalt-nickel sublattice is disordered enough to quench the orbital moment on the 3d

moments. However, it is still unexpected that the orbital moment would align with

the gadolinium moment or antialign with the 3d moment. To investigate this, the

first step would be to repeat the measurements of the moments and then, ideally,

obtain data on other samples with large nickel content, x > 2. This comparison

would allow us to see if this effect is observable in other samples of similar nickel

content, and if a value when this effect first appears can be ascertained. Further

DFT theory work could also be used to attempt to discover the cause of this result.

The transition temperature of GdCo3.72Ni1.28 appears to be very broad, tak-

ing approximately 100K to completely flip spins. This broadness makes it difficult

to accurately find a transition temperature. This could be due to the mechanism

of the flipping of spins discussed above, as the 2T field could be causing increasing

quantity of the moments to cant by increasing angles. However, a second possibility

could be the purity of the samples. Whilst with these samples, the values of x are

well characterised there is a possibility that there are nickel or cobalt rich regions

within the crystal (the average composition of the entire crystal being the known

value of x). This would cause the nickel deficient regions flipping at a lower field

than the nickel rich regions, smearing out the transition. The moments started

to flip between 52.6K and 84.3K and had definitely finished between 130.2K and

155K. Assuming the maximum range, and extrapolating from given values [56], the

maximum range of values for x would be 1.1 & x & 1.4, and likely less. A possible

solution to this would be to first repeat the experiment at different fields to see if

there is a significant change to the width of the transition. A second option would
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be to repeat the experiment using a single crystal, if available.

4.5 Conclusion

In this chapter, four samples of GdCo5−xNix, with increasing levels of nickel were

investigated. Two of these samples had transition temperatures within the measur-

able range (10 ≤ T ≥ 300), these were GdCo3.72Ni1.28 and GdCo3Ni2 (x = 1.28 and

x = 2). GdCo3Ni2 has previously been experimentally shown to have a transition

temperature of 230K [56]. Whilst the work in this chapter agrees with this result,

the investigation of the spin moments, on the separate sublattices, suggests that

this is no longer a sensible characterisation of this series of samples. This compen-

sation temperature is only defined as the minimum of the bulk total moment and

therefore hides the complexity of this region. Potentially a more useful, or interest-

ing, characteristic to define, would be the two temperatures at which the bulk spin

moment passes zero, or the range of temperatures at which the spin moments on

the sublattices cancel each other out, and the system is driven by the bulk orbital

moment.

GdCo3.72Ni1.28, found a transition temperature to be between ≈ 110K and ≈

130K, which follows the pattern of transition temperatures found in this chapter and

demonstrated in literature. The large temperature range over which the transition

takes place suggests similar complex behaviour to GdCo3Ni2. However, with this

sample, as the transition temperature was more centred on our experimental range,

and more data points were gathered, this behaviour was even clearer. Over the range

of temperatures where the moments on the sublattices have approximately the same

magnitude, although opposite sign; cancelling each other out, Compton profiles at

several points were obtained. It is immediately clear, in these Compton profiles, that

there is a large change in this magnitude of the moments. This is abundantly clear

in figure 4.8, which shows a comparison between the Compton profiles at 115K and
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130.2K. Whilst both of these temperatures are within the ’transition region; B’, and

both have low total moments, there is a large difference in the contributions from the

sublattices which is immediately visible in the figure. In addition, the spin moment

on the sublattices compensate a second time at a significantly higher temperature;

where the total moment is comprised exclusively of the orbital moment. Whilst this

is not seen in GdCo3Ni2 as it is outside the experimental range, it is observed in this

sample, where it occurs at approximately 240K. This second compensation point,

and the temperature range between them, where the spin moment is significantly

negative, can not be seen on any technique that measures the bulk total moment.

This makes Compton scattering a particularly useful technique to investigate this

phenomena.

A single Compton profile was obtained for GdCo4Ni at 300K. Whilst one

result can not confirm the ideas supposed from the other samples it equally does

not contradict any of the conclusions drawn and follows the pattern expected, i.e.

having a positive 3d moment and a negative 4f moment at high temperature.

All these samples, except GdCo2Ni3, had the bulk orbital moment being

parallel to the cobalt-nickel 3d spin moment. In GdCo2Ni3 however, the orbital

moment is positive and antiparallel to the cobalt-nickel 3d spin moment. Despite

this the spin moments, for this sample, both the total and the 3d and 4f contri-

butions, followed the expected trend, i.e. the gadolinium moment is positive and

the cobalt-nickel moment is negative (the expected transition temperature of 323K

[56] is outside the experimental range). This difference in orbital moment to the

other three samples requires more research. A repeat of the Compton scattering

experiment, in order to replicate the result and rule out experimental error, as well

as more profiles and moments from samples, with a similar nickel doping, would aid

in understanding. Theoretical work using DFT codes could also be used to further

understanding of the change in pattern observed in this sample.
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Chapter 5

Spin and Orbital Moments of

the Pyrochlore Iridate,

Nd2Ir2O7

5.1 Introduction

Nd2Ir2O7 has a cubic pyrochlore structure. Along with other pyrochlore iridates of

this structure, Nd2Ir2O7 has attracted a great deal of interest due to strong spin-

orbit coupling and electron correlations [74]. Nd2Ir2O7 has shown, experimentally

and theoretically [75], to have novel transport properties, for example, a possible

metal to insulator transition (MIT) from a magnetically ordered insulator to a dis-

ordered metallic phase. [76]

This novel behaviour has been attributed to the Ir4+ 5d electrons, which,

together with the Nd3+ 4f electrons, comprise the magnetic electrons that contribute

to the magnetism in this material. In this chapter two nominally identical samples of

Nd2Ir2O7 are investigated. These samples produce different total, spin and orbital

moments, and were studied in an attempt to discern any observable change which

could explain this discrepancy. Earlier studies have also found differing results for
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both the existence and temperature of the MIT, [77; 78] the total magnetism, and the

spin and orbital contributions. It has been suggested that this is due to extremely

small changes to the stoichiometry of the samples, of the order of around 1% [79].

It is probable that the biggest source of the discrepancy in this material is due to

the different synthesis methods.

The previous studies for these samples have a tendency to disagree with each

other on several of the physical and magnetic properties of the samples. Many of

the studies are similar to one another, with small changes in technique or theory

while other are repetitions to confirm or disprove others’ work.

A particular area of interest to our study is the proposed MIT, as discussed

above. While these studies disagree on these properties, an attempt to add to

the discussion by using Magnetic Compton scattering to observe a change, or lack

thereof, of magnetic behaviour and configurations has yet to be done. This technique

may not be the most powerful to be using, in this instance, and has issues with

regards to the samples used. These are discussed in detail below. However, it was

deemed worth the effort to perform the experiment and test whether it could add

support to one side or the other. The impact of this study to the current state of

the art knowledge is examined in the discussion.

5.1.1 Iridates

Iridate compounds continue to attract interest for several reasons [80], particularly

their electron-electron correlation effect and unusual phase transitions proposed in

several of these materials [81], and the behaviour of the 5d electrons in the iridium,

which are highly material dependent. These electrons can cause many interesting

magnetic and electronic phases, such as topological Mott insulator, Weyl semimetals

and axion insulators [82]. This also makes it difficult to accurately predict the

behaviour of the material.

Two other materials were proposed for this project, CaIrO3 and Sr2IrO7.
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CaIrO3 shows a phase transition from a perovskite phase, space group Pbnm, to a

post-perovskite phase, space group Cmcm [83]. In addition, like the other iridates,

there is strong spin-orbit coupling driving the groundstate [84]. Sr2IrO7 has strong

spin-orbit coupling and electron correlations that give rise to a Mott insulator. Also

its similarities to La2CuO4 have suggested that it would be a good candidate for

novel states of matter, such as unconventional superconductivity (with doping) [85;

86]. However, the spin moments on the samples of CaIrO3 were too small to be

measured and the samples of Sr2IrO7 were physically too small to measure with the

current experimental setup.

5.1.2 Pyrochlore Iridates

Nd2Ir2O7 belongs arguably to one of the most interesting iridates as a result of the in-

triguing phase diagram namely the pyrochlore, or 227, iridates. These materials have

the structure A2Ir2O7. Several noteworthy and novel phases are predicted within

these materials, caused in the main by the strong spin-orbit coupling, including

topological Mott insulators, Weyl semimetals and axion insulators [87; 88; 89; 90].

This series has been investigated experimentally and both chiral spin liquid states

and quantum critical semimetalic states have been observed in Pr2Ir2O7 [91; 92; 93]

and MITs have been observed in A2Ir2O7 with A = Lu to A = Nd [94; 95]

Through changing the species, A, where A is a lanthanide, a transition from

magnetically ordered insulators to spin-disordered metals, is seen; the temperature

of this transition decreasing as the ionic radius increases. This transition is predicted

to occur at 0 K at an ionic radius ’between’ that of Nd and Pr [79], this is a quantum

MIT. Neodymium iridate is the A2Ir2O7 compound that is closest to this expected

quantum transition. Note that Nd2Ir2O7 is still expected to show this MIT, although

not at zero temperature [78].

In Nd2Ir2O7 the MIT temperature has been widely disputed. It has been

found in some studies to be approximately 27K - 36K [79; 74] whilst in other cases a
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MIT is not found at all [76; 96]. Other studies that investigated doping the sample,

either with Ca [80], or with Pd (the next lanthanide in the series) [97] found large

differences in the MIT with small amounts of doping, adding weight to the argument

that these differences are driven by the stoichiometry.

5.2 Crystal Structure

Nd2Ir2O7 has the space group Fd-3m and a lattice constant a=10.3768Å with eight

formula units in the unit cell. The neodymium ion occupies the 16d site at (1/2,

1/2, 1/2), the iridium ion occupies the 16c site at (0, 0, 0), and the oxygen occupies

the 48f site at (x, 1/8, 1/8), and the 8b site at (3/8, 3/8, 3/8) [98] (for Nd2Ir2O7

x = 0.330 [82]). This structure, as seen in figure 5.1, is the 227 structure discussed

above and is referred to as a pyrochlore compound.

 

Figure 5.1: Structure of Nd2Ir2O7.

This structure consists of two interpenetrating sublattices, each formed of

corner sharing tetragonal structures of the neodymium and iridium ions respectively

[99], called the pyrochlore lattice [100]. A portion of the iridium sublattice is shown

in figure 5.2, demonstrating the corner sharing tetrahedra.
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Figure 5.2: Structure of the iridium sublattice, showing the corner sharing tetrahe-
dra.

5.3 Electronic Structure

The 4f electrons in neodymium and the 5d electrons in iridium contribute to the

magnetisation in Nd2Ir2O7. Spin and orbital moments are expected on both these

species. In this material neodymium forms Nd3+ ions which have the electronic

configuration [Xe] 4f3, (neodymium atoms have the structure - [Xe] 4f4 6s2). The

unpaired 4f3 electrons contribute to the magnetism of the material. Using Hund’s

rules, discussed in chapter 2, the first rule gives S = 3
2 , the second rule gives L = 6,

and the third rule give J = 9
2 . The spin-orbit ratio of neodymium 4f3 electrons

can be assumed to be -0.5, which means that the orbital moment is opposite to and

twice the size of the spin moment. Using these rules, it is possible to calculate the

contributions to the orbital and total moments of both the neodymium and iridium,

if the spin moment contributions are known. 4f electrons are very localised in space,

which means their MCP are highly broad in momentum space. For the MCP of
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Nd2Ir2O7 the tails at high momentum will be completely due to the neodymium

4f electrons since the momentum density of the iridium 5d would have be at to

zero by this point, (approximately 4 A.U.). This allows the two contributions to be

separately identified.

This zero point of 4 a.u. was chosen by eye, as where the neodymium 4f

dominates, and the iridium 5d has reached zero. In further study, this needs to be

more rigorously checked. Trialling other values, other than 4 a.u., would allow for

higher confidence in the results and conclusions. This process of checking the data

is hampered by the experimental noise, however. The small moment, at low a.u.,

once the Nd has been subtracted is assumed to be Ir, however experimental noise, or

fitting error, can not be ruled out as a possibility for this residual moment. Without

a cleaner and clearer profile it is not possible to rule this out. An attempt to produce

a iridium contribution, by subtracting the neodymium profile from the experimental

data, was not performed as the level of experimental noise in the data would not

have produced a clear profile. Unfortunately, it was not possible to use GAMESS

calculations to define this contribution as we did not have the necessary computing

power needed. Presently, variations in the results and conclusions, caused by small

changes to this zero value, would be lost. Despite these limitations, the value chosen

within this thesis allows us to consider the behaviours observed. Future studies, with

clearer data, will prove or disprove the conclusions made.

Ir4+ ions, as iridium forms in this sample, has the structure [Xe] 4f14 5d5,

(iridium atoms have the electronic structure - [Xe] 4f14 5d7 6s2). The contributing

electrons are the 5d5, these electrons are less localised than the 4f electrons in

Neodymium and therefore form a narrower MCP. 5d electrons have a less defined

spin-orbit ratio as it is dependent on the species and the material. These 5d electrons

have strong spin orbit coupling with a Jeff = 1/2 [99], as it is proposed that they

occupy t2g orbitals. However it has also been suggested that there is possibly some

mixing of the t2g and eg orbitals [101] and due to this, metallic ground states would
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be expected. However, these strong spin orbit interactions allow a gap to open and

create Mott-like insulating ground states. These states can be observed in many

iridates such as Sr2IrO4 [102].

One suggestion is that the moments on these atoms form an all-in-all-out

structure (AIAO). This means that the tetrahedra mentioned above alternate from

their moments all pointing into the centre of the structure and all pointing out

from the middle, this is shown in figure 5.3. These moments then cant in an applied

magnetic field, creating a net moment for these structures and, therefore, the system

[103]. The iridium tetrahedra has an AIAO order whilst the neodymium sublattice

forms a similar all-out-all-in order (AOAI). Under an applied field the neodymium

moments can become canted and will suddenly flip to a 3-in-1-out order. This can

induce a change in the iridium sublattice from a AOAI order to an AIAO order

[104]. In the cases where no MIT is found, a two-in-two-out structure is proposed

[96]. Since this chapter investigates a polycrystalline powder, it is not possible to

see evidence of this in the results or investigate the effects.

5.4 Synthesis and Characterisation

5.4.1 Nominal Composition and Different Synthesis Methods

For these experiments, a polycrystalline powder was used. This powder was com-

pressed into a pellet with no adhesive so that only the sample itself would be mea-

sured. Two of these thin samples were attached to each plate to increase the scat-

tering volume whilst reducing the chance that an air pocket in the sample would

cause it to break when placed in a vacuum. The size and weight of these com-

pressed powders was measured, and the density of these samples were found to be

approximately 40 times less dense than a solid grown sample. This, in itself, cre-

ates further problems due to the drastic drop in scattering volume this causes. As

mentioned above, it is suspected that tiny variations in the stoichiometry cause the
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Figure 5.3: Structure of the corner sharing sublattice showing the all-out-all-in
magnetic order.

large variations seen in the properties of different samples [105]. The samples that

were measured were synthesised using two different methods; sample 1, which most

of this chapter focuses on, was synthesised using the hydrothermal method, while

sample 5 was synthesised using the solid state method [94].

5.4.2 SQuID Magnetometry

To calculate the spin and orbital moments and the contributions from the atom

species it is important to measure the total moment of the different samples. As

discussed in chapter 4, the method used to measure the total moment was SQuID

magnetometry from which both M vs H and M vs T curves were obtained. As is

shown in figures 5.4 and 5.5 and as discussed above, there is a large variation in

the magnetism between the samples, likely due to differences in stoichiometry. The

lack of hysteresis in the curve at 2K, in both samples, shows that it is a very soft

ferromagnet. There is no hysteresis visible in any other temperature, though the
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curves are more paramagnetic. Referring back to figures 5.4 and 5.5 it is shown that

the moments decrease rapidly as the temperature increases.
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Figure 5.4: MvsH curve for Nd2Ir2O7 (Sample 1) at 2K (black), 30K (red) and 300K
(blue).

5.5 Results

5.5.1 MCPs and Spin Moments

The magnetic Compton profile was measured on sample 1 at 2K, 5K, 10K, 20K, 30K,

60K, and 300K whilst sample 5 was measured at 2K, 30K and 300K for comparison.

The results at 300K have not been included in all the figures below as the moment is

very small, the errors are large and there is a large temperature difference with the

next highest temperature (60K), making it problematic to clearly show on a graph.

Calculations, using GAMESS, were used to obtain a theoretical profile for

the neodymium 4f contribution to the total profile. This was then spherically

averaged to obtain a polycrystalline signal. As the neodymium 4f moments are a

lot more localised than the iridium 5d moments in momentum space they have a
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Figure 5.5: MvsH curve for Nd2Ir2O7 (Sample 5) at 2K (black), 30K (red) and 300K
(blue).

much broader Compton profile. This can be thought of as a result of Heisenberg’s

uncertainty principle. Using this fact, we can fit this profile to the high momentum

tails of the experimental profile, in this case above 4 A.U., figure 5.6. This gives

us a way of separating out the neodymium contribution from the spin moment of

the system. Below 4 A.U., the neodymium fit is below the data, therefore this

low momentum narrow peak is the iridium moment. Comparing the neodymium

spin moment to the total spin moment obtained experimentally gives the iridium

contribution. These results are shown in figure 5.7. These suggest that, whilst the

neodymium moment decreases over this temperature range like the total moment,

the iridium moment stays constant within error.

5.5.2 Orbital Contribution

As mentioned above, the well categorised spin-orbit ratio of 4f electrons allows the

orbital contributions of neodymium to be obtained as it is double and the opposite

sign to the spin moment. The total orbital moment can be obtained by subtracting
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Figure 5.6: Magnetic Compton Profile of Nd2Ir2O7 at 2K in black, GAMESS calcu-
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profile is fitted to the data. Below 4 A.U. the calculated profile is shown with a
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Figure 5.7: Spin moment of Nd2Ir2O7 (Sample 1) against temperature, Total spin
(black), neodymium spin (red) and iridium spin (blue).
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the total spin from the total moment obtained using the SQuID. Using this total

orbital moment, it is possible to also find the iridium contribution by subtracting the

total orbital moment from the neodymium orbital moment. As is shown in figure

5.8, the orbital moments follow a similar pattern to the spin moments and, like the

iridium spin moment, the iridium orbital moment stays constant within error over

this range. As these results suggest, these iridium spin and orbital moments cancel

within error providing no net total iridium moment. This implies a spin orbit ratio

of −1 for the iridium contribution. It also suggests that all of the bulk total moment

is from the neodymium atoms.

For both the spin, orbital and total moments, in both bulk and the separated

contributions, sample 5 appears to follow the trends discussed for sample 1 (with

different values for all the moments). However, more temperatures would have to

be investigated to show this definitively.
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Figure 5.8: Orbital moment of Nd2Ir2O7 (Sample 1) against temperature, Total
orbital (black), neodymium orbital (red) and iridium orbital (blue).
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5.5.3 Sample 1 vs Sample 5

2K 30K
Sample 1 Sample 5 Sample 1 Sample 5

Bulk

Total 1.85 2.38 0.41 0.54
Spin −1.9 ± 0.3 −3.5 ± 0.5 −0.7 ± 0.2 −0.9 ± 0.2

Orbital 3.7 ± 0.3 5.9 ± 0.5 1.1 ± 0.2 1.5 ± 0.2
S/L −0.50 ± 0.07 −0.59 ± 0.09 −0.6 ± 0.2 −0.6 ± 0.2

4f

Total 1.6 ± 0.6 2.5 ± 0.8 0.3 ± 0.3 0.4 ± 0.3
Spin −1.6 ± 0.3 −2.5 ± 0.4 0.3 ± 0.2 −0.4 ± 0.1

Orbital 3.2 ± 0.5 5.0 ± 0.7 0.5 ± 0.3 0.8 ± 0.2
S/L 0.5

5d

Total 0.3 ± 0.7 −0.1 ± 1.1 0.2 ± 0.4 0.1 ± 0.4
Spin −0.3 ± 0.4 −1.0 ± 0.6 −0.4 ± 0.2 −0.5 ± 0.2

Orbital 0.5 ± 0.6 0.9 ± 0.9 0.5 ± 0.3 0.7 ± 0.3
S/L −0.5 ± 0.8 −1.1 ± 1.3 −0.7 ± 0.6 −0.8 ± 0.5

Table 5.1: Comparison of results from sample 1 and sample 5 at 2K and 30K,
including the total, spin, and orbital moments along with the spin-orbit ratio for
the bulk sample as well as the contributions from the 4f and 5d sites. All moments
are in µB/F.U.

Table 5.1 shows the comparison between the moments from sample 1 and

sample 5 at 2K and 30K. Sample 5 shows larger total and spin moments for the

SQuID and the Compton measurements respectively, as well as a larger orbital

moment at both temperatures. With regards to the moments from the 4f and 5d

orbitals, whilst the moments are all bigger for sample 5 the ratio of 4f to 5d is

6± 7 for sample 1 and 2± 1 for sample 5. This could suggest a change in the ratio

of neodymium to iridium in the sample, however, the small iridium moment (and

its comparatively large error) make this difficult to conclude definitively. Data on

sample 5 is included in table form only as a graph would not be useful. As only two

data points were obtained, a graph would not be able to demonstrate any trends or

conclusions. Table 5.1 best shows its comparison to sample 1.
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5.6 Discussion

It has been suggested, by using µSR, that the iridium sublattice is ordered whilst

the neodymium remains in a paramagnetic state [76]. This is difficult to separate

out in the bulk technique of Compton scattering. As is shown in figures 5.7 and

5.8, large neodymium spin and orbital moments dominate at low temperatures with

the neodymium spin moment being approximately 6 times larger than the iridium

for sample 1 at 2K. As the temperature increases the neodymium spin and orbital

moments rapidly decrease until they are close to the value of the iridium moment

and, at approximately 20K, drop below the value for the iridium moment albeit the

errors here are larger than the difference between the spin moments. From about

20K onwards iridium makes up at least half of the total spin moment on the sample

and this is the same for the orbital moment.

The spin and the orbital moments of the iridium appear to cancel within

error and therefore the bulk total moment is formed only of the sum of neodymium

spin and orbital moments. Since the spin to orbit ratio of the neodymium is -0.5, the

total moment of the sample is equal to half the orbital moment of the neodymium

ions (or −1 times the spin).

This is clearly shown in figure 5.9, as the temperature increases from 2K

to 60K, the spin to orbit ratio of the sample shifts from nearly −0.5 towards −1.

This is as the sample becomes less dominated by the neodymium moments and more

towards the ordered iridium moments. This is as expected as the neodymium is much

more temperature dependent than the iridium which is approximately constant over

this temperature range. Conversely, this is not what is expected from Hund’s rules

for iridium. Whilst a reason for this could be a more complex ground state than

expected, or possible hybridisation between orbitals in the neodymium and iridium,

another possible cause of this result is experimental factors.

As can be seen in figure 5.9, at 60K the error bar almost spans from the −0.5
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Figure 5.9: Spin to Orbit Ratio of Nd2Ir2O7

to the −1 lines. The errors in the results are a direct result from the errors on the

Compton profiles. The large errors have two causes, firstly, the moment/number of

electrons in the formula unit being so small (−1.88/330 ≈ 0.0057) (which is over

three and a half times smaller than nickel which is used for the calibration sample

(0.56/28 = 0.02)). This means that theoretically it would take over 12 times as

long to get the same quality result. Secondly, it is made worse by the process of

compressing the samples into a pellet (without any adhesive as that would have

also been measured, creating a background that would not have been possible to

separate out from the result). By necessity these samples were very thin, and the

compressing created samples that were approximately 40 times less dense than solid

Nd2Ir2O7. The thinness and reduced density of the samples mean these sample

have an extremely low scattering volume and this leads to a much-reduced signal to

noise ratio. This led to the spin moment being measured experimentally at roughly

three times smaller than the spin used after the background had been modelled and

removed from the signal, which leads to large errors.
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This large background is likely to be a cause of error in the spin moment.

If the, mostly non-magnetic, background is underestimated it would likely lead to

the measured spin moment to be smaller than the true spin moment. The total

moment was measured in the SQuID and, as the pressed pellets would neither fit or

survive breaking into smaller pieces without reverting to a powder, the samples were

measured as a free to rotate powder. This, whilst measuring a more accurate result

in terms of the total moment of the system, likely overestimated the total moment of

the pellets measured in the Compton experiment. These two errors would both lead

to an underestimating of the orbital moment but to what effect (and what degree)

this would have on the spin to orbit ratio, is not possible to conclude.

Comparing the profiles at different temperatures, there is no sharp change

in the shape around the proposed MIT that would help confirm the existence of the

transition. However, the error bars on the data other than 2K make this difficult to

determine, particularly with a very subtle change. This appears to agree with the

conclusions found in [76; 77], which find no MIT at any temperature, but contrary

to [100; 79], that find a MIT at around ≈ 36K. To better confirm this, it would

be useful to try more computational models to see if any change could be noticed,

however the size of the unit cell and the number of electrons in the species make

this difficult for many DFT codes. If there is no MIT in this sample, it could

be due to the stoichiometry of the sample and could be present in other samples.

Unfortunately, there are not enough data points on sample 5 to be able to postulate

whether we can see a MIT in that sample.

5.7 Conclusion

Whilst there were not enough temperatures taken on sample 5 to reach a conclusion,

the temperatures measured imply the same pattern measured in sample 1, as seen

in table 5.1, but with a slightly higher moment. Sample 1’s magnetism comprises
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of a 4f moment on the neodymium and a 5d moment on the iridium. Separating

out these contributions to the spin moment obtained from the Compton profile

gives a highly temperature dependent 4f moment which at 60K is approximately

20% of the value at 2K. In contrast the iridium moment is constant, within error,

over this range. The orbital moments follow a similar pattern, the neodymium

moment is forced to follow the spin moment, by defining it from the spin-orbit

ratio. However at all temperatures the iridium spin-orbit ratio is calculated to be−1,

within error (however some of the errors are very large). This would imply that the

total moment is only dependent on the neodymium spin and orbital moment. This

is an unexpected result that would need further investigation as the current data is

not sufficient to be confident in its accuracy. As discussed the best way to improve

this experimental error would be to improve the quality of the sample, preferably a

single crystal but a solid piece of polycrystalline sample would be an improvement

in scattering volume. Another way would be to reduce the background scattering

detected whilst performing the experiment, this is possible with an experimental

redesign into a windowless setup.

Another notable trait of sample 1 is the Nd moment drops rapidly from 2K

to 20K. Between 20K and 60K, the Nd moment appears to flatten out or decrease

at a slower rate; the size of the errors means that it is not possible to determine

which. There are two possible conclusions to draw from this. The first is that this is

a continual decay, associated with the thermal disordering of the Nd moment. The

second option would be that there is a sharp drop in the Nd moment, around 20K to

30K, which could be associated with a MIT or a magnetic transition. This reading

of the data would be further complicated by the fact we would still expect to see

thermal disordering, on top of this feature. Whilst the errors on the data are too

large to confidently conclude which of these options are happening in the samples, I

personally believe the data trends to be caused exclusively by thermal disordering,

as I am not confident enough is this evidence of an MIT, however further work would
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definitely be needed to confirm or disprove this.

5.7.1 Future Work

To continue this work, more measurements would be necessary on both the already

obtained samples and temperatures and a greater range of samples and tempera-

tures. However, the limiting factor of these experiments is the background to signal

ratio on collecting these measurements. This was caused by the moment/number of

electrons in the formula unit being extremely small (as discussed above). Also, the

process of compressing the samples into a pellet created very thin samples which

were better able to survive the temperature and pressure changes of taking the

measurements without breaking. This, along with the significantly reduced density

over a crystal of Nd2Ir2O7, drastically reduced the scattering volume and therefore

also decreased the signal to noise ratio. An enhancement to this work would be

to use a single crystal or a polycrystalline pellet. This would vastly improve the

results because, firstly, with a single crystal the ability to look at an individual di-

rection rather than a polycrystalline average would increase the ability to model the

data obtained, and secondly, either a single crystal or a polycrystalline pellet would

provide a much denser sample than the compressed powder, vastly expanding the

scattering volume and therefore the signal to noise ratio.

Whilst more data would be necessary to advance this investigation, it is likely

to prove difficult to improve the statistics meaningfully with the current experimen-

tal set up within any reasonable time frame. To progress this work significantly,

these samples would be better measured in a windowless set up. This setup would

reduce the background signal to zero as much of the background noise is caused

from scattering off the windows and, therefore, would make it possible to obtain

results from these samples with much greater accuracy and speed.
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Chapter 6

Studies into the Spin Moments

of Off-Stoichiometric NbFe2

6.1 Introduction

NbFe2 has generated much interest recently due to being near to a magnetic quan-

tum critical point. Quantum critical points are where a continuous, or second order,

phase transition happens at absolute zero, 0 K. Materials near these critical points

have been found to have novel and interesting ground states including superconduc-

tivity [106], nematic phases [107] and magnetic order [108], attributed to quantum

fluctuations around these points.

Non-stoichiometric NbFe2 (Nb1−yFe2+y) has a rich magnetic phase diagram.

As the value of y varies, iron rich and niobium rich samples (y ≤ −0.02 and

y ≥ 0.01 respectively) have been thought to be ferromagnetic [109], due to rem-

nant magnetism. However both ferromagnetic and antiferromagnetic fluctuations

have been found [110] and previous Compton scattering experiments have found

ferrimagnetism in the iron rich range (y = 0.015) [111]. Within this range, near

stoichiometry (−0.02 ≤ y ≤ 0.01), there has long been debate as to the ground

state [108]. It has been suggested that in this range there may be spin density wave

84



(SDW) order [106] or long range antiferromagnetism [108]. In addition, recent work

on Nb0.975Fe2.025 postulates that as the temperature is reduced, the sample transi-

tions from paramagnetic to ferromagnetic to a spin glass order [112], implying an

even more complex phase diagram.

Whilst antiferromagnetic quantum critical points are well studied, ferromag-

netic quantum critical points are notoriously difficult to investigate [113]. It is

theorised that approaching the putative quantum critical point, one of two scenar-

ios take place. Either the transition becomes discontinuous, first order, or another

phase, such as spin density wave order, forms at low temperature thus hiding the

quantum critical point. It has been proposed that NbFe2 follows this second sce-

nario and a ferromagnetic quantum critical point is buried in the spin density wave

order phase [114].

The current state of the art knowledge for these samples is limited. Compar-

atively few transitional metal compounds have been studied in detail until recently.

In the last decade, or so, there have been a slew of studies in this area, in quick

succession. The relevant studies to our investigation, and the developments made

in the area, have been picked out and discussed below.

Haynes et. al. [111] formed the basis for the investigations completed in

this chapter. It used Compton scattering to examine the magnetic properties of a

particular Fe rich sample within this series. Previous work had found samples in

this region to be ferromagnetic whilst this study found them to be ferrimagnetic.

In particular Moroni-Klementowicz et. al. [115] first populated the phase diagram

suggesting the SDW state which is in debate. This diagram is discussed in figure

7.6. The aim of our study was to use Compton scattering to investigate two samples,

within the theorised SDW region, and experimentally determine the true magnetic

ground state.

Friedmann et. al. [113] also expands on the previous work completed for

this sample series. Their study suggests a tricritical point over the simpler quantum
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critical point discussed in other studies. This is not an issue in Haynes et. al. as the

sample investigated is outside the region this would affect but it is significant for the

samples investigated in this chapter. Friedmann et. al. suggest that NbFe2 is the

first series in which this tricritical point has been found but it goes on to suggest

that it present in other sample series, a matter which needs to be addressed going

forwards.

Subedi et. al. [107] provides a comprehensive look at the computational

aspects of this sample. It discusses multiple spin configurations within NbFe2 and

suggests a ferrimagnetic ground state. However, whilst discussing that stoichiometry

is important, and the changing of the ground state with doping, this is not included

in their computational study. In addition, SDW states are not studied in detail.

This study further emphasises the need to combine experimental and theoretical

work, to understand this and other samples.

6.1.1 Quantum Critical Points

A typical phase is between a paramagnetic metal and some long-range order, such

as ferromagnetism. Many materials display these second order phase transitions

and the transition temperature can be tuned using an external parameter such as

pressure or doping [116]. It has been found that tuning this transition temperature

to 0 K would give rise to critical phenomena, Hertz coined the phrase quantum

criticality to explain these effects [117]. A sketch of such a phase diagram is seen

in figure 6.1. However, whilst a paramagnetic to ferromagnetic transition was one

of the first quantum critical points to be proposed, in the majority of ferromagnets,

other behaviour intervenes before the temperature can be tuned to zero [116].

Tricritical Points

Tricritical points form at a non-zero temperature, Ttc > 0K. Above this temperature,

transitions are second order and below this temperature transitions are first order.
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Figure 6.1: Sketch of a phase diagram with a quantum critical point (QCP) at 0 K, a
continuous, second order phase transition between paramagnetism and a long-range
order region. The quantum critical point is at 0 K.

However when the effect of a magnetic field is investigated, it has been found that

in the three dimensional space of temperature, field and the control parameter a

surface emanates from the tricritical point ending in two quantum critical points in

the zero temperature plane with finite values for the magnetic field [118]. A sketch

of this is shown in figure 6.2.

In NbFe2 the external control parameter used for tuning is doping, that is

changing the value of y in Nb1−yFe2+y to create iron and niobium rich samples and

allowing for the tuning necessary to attempt to find quantum critical points. [119]

6.2 NbFe2 Crystal Structure

NbFe2 has a hexagonal C14 structure with niobium at the 4f(1/3, 2/3, x) and iron

at the 2a(0, 0, 0) and 6h(z, 2z, 3/4) sites. Where a = 4.8401Å, c = 7.8963Å [115],

x = 0.0652 and, z = 0.1705. The unit cell consists of 4 formula units [106]. The

structure is shown in figure 6.3. This structure and parameters were used for the
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Figure 6.2: Sketch of a phase diagram with a tricritical point. Showing the quantum
critical points at non-zero values of magnetic field. Adapted from [118].

full potential linearised augmented planewave code, ELK, in this chapter.

As can be seen, NbFe2 forms a layered structure with alternating layers of

iron on the 6h site in a hexagonal pattern and layers of niobium on the 4f site and

iron on the 2a site. The niobium atoms lie within iron cages as is more clearly

shown in figure 6.4 which illustrates a single niobium atom and its corresponding

iron cage.

6.3 Electronic Structure

Several different magnetic configurations have been proposed and tested using DFT

code. Ferromagnetic, ferrimagnetic and antiferromagnetic configurations have been

tested in other texts [107; 111; 120] and in this thesis using the ELK DFT code.

They are often tested on stoichiometric NbFe2, for ease of computation, and this is

the case for this chapter. The ground state configurations are chosen and the ground

state energies and Compton profiles are calculated. The two possible ground state

configurations that are focused on in this chapter are a ferrimagnetic configuration
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Figure 6.3: Crystal structure of NbFe2. Hexagonal Laves phase space group C14
P63/mmc (No. 194). Niobium atoms in green, iron atoms in orange (6h in light
orange, 2a in dark orange). Viewed along the c and a axis

 

Figure 6.4: Crystal structure of NbFe2 isolating a single niobium atom and the iron
cage surrounding it. Niobium atoms in green, iron atoms in orange (6h in light
orange, 2a in dark orange).
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where the 2a iron sites are anti-aligned with the 6h sites, and the 4f niobium sites

are aligned with the 2a sites (with a much smaller moment), and also a ferromagnetic

configuration where all the iron sites are aligned (the niobium sites are anti-aligned

with the iron but with a small moment and therefore for clarity, since the iron

sites are ferromagnetic, it is considered ferromagnetic). Both the ferrimagnetic and

ferromagnetic configurations without the niobium sites are shown in figure 6.5.

a) b)

Figure 6.5: Sketch of two possible configurations of NbFe2 with the iron 2a sites in
light orange and the 6h iron sites in dark orange. Firstly, the ferrimagnetic case,
with the iron 6h and the 2a sites antialigned and secondly the ferromagnetic case
where all the iron sites are aligned.

6.4 Off-Stoichiometric Variations in the Crystal and Elec-

tronic Structure

The experimental values of a, c, x, and z in the crystal structure vary slightly for

off-stoichiometric samples from the stoichiometric values quoted above. Values have

been obtained for many different compositions by D. Moroni-Klementowicz et al.

between y = 0.2 and y = −0.097 [115]. These have been found experimentally

and do not include the exact compositions used in this chapter, although it has

been shown that the vales of a and c decrease linearly with increasing y over the

range −0.04 ≤ y ≥ 0.04 [119]. Using this fact and D. Moroni-Klementowicz et al
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values for a and c, the values for the samples studied can be interpolated. These

interpolated values can be seen in table 6.1. Comparing the off-stoichiometric values

to the stoichiometric values in the table shows the extent of the variation. Whilst

these values do indeed show the change, the stoichiometric values were chosen to

be used for the DFT calculations in this chapter as the computational resources for

calculating off-stoichiometric samples are considerable and were not available for

the purposes of this thesis.

y a c

Stoichiometric 0 4.8401Å 7.8963Å

Iron rich 0.002 4.8398Å 7.8960Å

Niobium rich −0.004 4.8410Å 7.8980Å

Table 6.1: Lattice parameters for stoichiometric [115] and interpolated lattice pa-
rameters for off-stoichiometric [119].

The ground state electronic structure variations are one of the more interest-

ing properties of this series of materials. It has been proposed, as stated above, that

as the series progresses from iron rich to niobium rich, the ground state progresses

through ferromagnetic to a complex state, generally considered to be a spin density

wave state, and back to a second ferromagnetic state. A phase diagram, adapted

from [111], is shown in figure 6.6. This shows the phase diagram proposed by D.

Moroni-Klementowicz et al, with a black × marking the temperature and composi-

tion measured by T. D. Haynes et al and green stars marking the composition and

temperature measured in this chapter.

6.5 Theoretical Calculations

Using ELK, several different electronic configurations were tested in a continuation

to the A. Subedi et al paper [107]. A ferromagnetic configuration, where the 2a and

6h iron sites were aligned, and a ferrimagnetic configuration where the 2a and 6h

are anti-aligned can be seen in figure 6.5.
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Figure 6.6: Phase diagram of Nb1−yFe2+y. The black × marking the composition
and temperature measured in [111] and the two green stars marking the composition
and temperature measured in this thesis. Adapted from [111] and [115].

Both configurations were tested with both GGA and LSDA functionals, dis-

cussed in chapter 3. LSDA depends on the electronic density at any given point

while GGA also depends on the gradient of the density at that point. Whilst LSDA

has famously failed to calculate the correct ground state in certain materials that

GGA has successfully characterised (notably iron), testing using both functionals

can reveal much more information than just using GGA.

The profiles in this section (figures 6.7, 6.8, and 6.9) have been normalised

so the area under the profile is equal to 1. This is done for ease of comparison as the

calculated spin moments, seen in table 6.3 are so different it would not be possible

to compare the shape if they are normalised to the spin moment.

These configurations were tested with and without the spin orbit coupling

Hamiltonian discussed in earlier chapters. Calculations were performed to test

whether the effect of spin-orbit coupling is important to the characterisation of the

system in these configurations. In all cases there is no difference to the theoretical

Compton profile with or without spin orbit coupling. This is illustrated in figure 6.7
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where the theoretical profiles from four calculations, ferrimagnetic LSDA and fer-

romagnetic GGA both with and without spin orbit coupling, are shown. As can be

seen there is almost complete overlap between the profiles suggesting that including

spin orbit coupling in the calculations has no effect on the calculated profiles, albeit

slight differences arise from the different number of k-points used in the calculation.

When spin-orbit coupling is used some of the symmetry of the crystal is broken, this

has the effect of reducing the number of k-points used in the calculation. When spin

orbit coupling was verified as negligible, as seen in 6.7, further calculations could be

performed without including spin-orbit interactions.

0 1 2 3 4 5 6 7 80 . 0 0 0 0
0 . 0 0 2 5
0 . 0 0 5 0
0 . 0 0 7 5
0 . 0 1 0 0
0 . 0 1 2 5
0 . 0 1 5 0
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Figure 6.7: Unconvoluted theoretical magnetic Compton profiles for ferrimagnetic
LSDA calculations, with and without spin orbit coupling (black and red respectively)
and ferromagnetic GGA calculations, with and without spin orbit coupling (green
and blue respectively), all resolved along the c axis. Normalised so

∫
Jmagdpz = 1

for clarity.

The four calculations, that is, the two electron configurations using both

functionals (all without spin orbit coupling), are shown in figure 6.8. As can be

discerned, with both functionals, the ferrimagnetic configuration dips to a lower

value at low momentum, pz, than the ferromagnetic option.
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Another feature of these profiles, especially the LSDA ferrimagnetic case

(in red), is a large quantity of Umklapp features, which are caused by interactions

between electrons at the Fermi level and the lattice, indicative of a rich Fermi surface

[? ].

Theoretical ground state energies were obtained from the two models using

the two functionals, as shown in table 6.2. These are shown relative to the obtained

energy from a non-spin polarised calculation run in ELK, the non-spin polarised

case was renormalised to zero and the other cases relative to that. Comparing

these theoretical ground state energies shows that, for the LSDA calculations, the

ferrimagnetic case has a lower ground state energy, which agrees with earlier LSDA

calculations [107]. However, the GGA calculations show the ferromagnetic case has

a lower ground state energy, as seen in table 6.2.

Configuration LSDA Functional GGA Functional

Ferrimagnetic −0.0029182 +0.3206064

Ferromagnetic +0.0167706 −0.0037175

Table 6.2: Theoretical ground state energies for NbFe2, given relative to the ground
state energy of a calculated non spin polarised case. Calculations were performed
in ELK and have separately used LSDA and GGA functionals. These results are
given in atomic units of energy.

To compare the theoretical profiles to the experimental profiles collected at

SPring8, the profiles obtained from the ELK calculations need to be convolved with

a Gaussian distribution using the standard deviation of the experimental resolution,

σ = 0.44 a.u.. The result of the convolution is shown in figure 6.9.

Site LSDA, Ferri LSDA, Ferro GGA, Ferri GGA, Ferro

Nb 4f (µB per site) −0.1064 −0.3373 −0.2479 −0.2376

Fe 2a (µB per site) −0.9510 1.7584 −4.1007 0.8946

Fe 6h (µB per site) 0.6533 1.6237 2.6415 1.3288

Total (µB per F.U.) 0.3734 2.9268 1.5401 2.2029

Table 6.3: Spin moments obtained theoretically from the ELK DFT code, detailing
the different orientations and sizes of spin moments for the two configurations and
two functionals.
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Figure 6.8: Theoretical magnetic Compton profiles. Ferrimagnetic using GGA in
black, Ferrimagnetic using LSDA in red, ferromagnetic using GGA in green and
finally ferromagnetic using LSDA in blue, all resolved along the c axis. All profiles
have not been convoluted with experimental resolution Gaussian profile. Normalised
so
∫
Jmagdpz = 1 for clarity.
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Figure 6.9: Convolved Theoretical magnetic Compton profiles. Ferrimagnetic us-
ing GGA in black, Ferrimagnetic using LSDA in red, ferromagnetic using GGA
in green and finally ferromagnetic using LSDA in blue, all resolved along the c
axis. (Convolved with a Gaussian distribution with σ = 0.44a.u.). Normalised so∫
Jmagdpz = 1 for clarity.
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Table 6.3 shows the spin moments calculated in ELK for the two electronic

configurations and the two exchange functionals. The total moments of the two

ferromagnetic calculations are similar, however, the LSDA calculation has a signifi-

cantly larger moment on the 2a site. In contrast, the two ferrimagnetic calculations

are significantly different, in both the total moment and the contributions from the

sites. The much higher moments on the GGA calculations are unexpected and call

for further investigations.

6.6 Experimental Results

Two different off-stoichiometric single crystal samples of Nb1−yFe2+y were investi-

gated, an iron rich sample where y = +0.002 (Nb0.998Fe2.002) and a niobium rich

sample where y = −0.004 (Nb1.004Fe1.996). The experiment was performed at 2K

along the c-axis, the iron rich sample was measured at 1T and the niobium rich

sample was measured at 2T.

In this section the computational profiles are normalised so the area under

the profile is equal to the experimentally obtained spin moment. Again this is

done for clarity and ease of comparison due to the variation of computational and

experimental spin moments.

Starting with the iron rich sample, y = +0.002, the results when compared

to the results for the two different functionals as shown in figure 6.10 and 6.11. With

both functionals the ferrimagnetic configuration is a better fit to the experimental

data than the ferromagnetic option, shown in table 6.4 showing χ2 values for the

models.

These values were calculated using a Matlab script and were calculated over

all momenta. The profiles were scaled, so the area of the theoretical profiles matched

those of the experimental ones, before the χ2 was calculated. This does not take

into account the different moments obtained from the ELK code, meaning that these
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need to be taken into consideration when discussing the best match to the data.

This suggests that for this sample the ground state is ferrimagnetic. This

sample was found to have a spin moment of µs = 0.099 ± 0.004µB. This is much

smaller than the calculated moments, likely due to the failure of the calculations to

describe the spin fluctuations, which have the effect of lowering the spin moment

[121].

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
- 0 . 3
0 . 0
0 . 3
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0 . 9
1 . 2
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1 . 8
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z) (
x10

2 ) / 
µ B/F

.U.

p z  /  a . u .
Figure 6.10: Experimental results of the iron rich sample of Nb0.998Fe2.002 in black
with the LSDA functional calculation (ferrimagnetic configuration in red and ferro-
magnetic configuration in green)

For the niobium rich sample considerably less data was collected resulting in

much larger errors. The experimentally found spin moment is µs = 0.052±0.007µB,

significantly lower than the value found for the iron rich sample. Figures 6.12 and

6.13 show the experimental data plotted against the theoretical profiles.

Comparing the quality of the models to the data using a χ2 analysis, the

result are in table 6.4, these results show that for the iron rich sample, the ferrimag-

netic models (with both functionals) are better fits to the data than the ferromag-

netic models. The niobium rich sample shows that with the GGA functional the
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Figure 6.11: Experimental results of the iron rich sample of Nb0.998Fe2.002 in black
with the GGA functional calculation (ferrimagnetic configuration in red and ferro-
magnetic configuration in green)
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Figure 6.12: Experimental results of the niobium rich sample of Nb1.004Fe1.996 in
black with the LSDA functional calculation (ferrimagnetic configuration in red and
ferromagnetic configuration in green)
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Figure 6.13: Experimental results of the niobium rich sample of Nb1.004Fe1.996 in
black with the GGA functional calculation (ferrimagnetic configuration in red and
ferromagnetic configuration in green)

Sample LSDA, Ferri LSDA, Ferro GGA, Ferri GGA, Ferro

Nb0.998Fe2.002 0.7694 0.9090 0.7436 0.9080

Nb1.004Fe1.996 1.4092 1.3685 1.3847 1.4067

Table 6.4: List of χ2 values for the four models and two samples.

ferrimagnetic model fit the data better as with the other sample. However, with the

LSDA functional it shows a slightly better fit with the ferromagnetic model. How-

ever, the quantity of the data and size of the errors in the niobium rich sample is

much worse. This, along with the large and near identical χ2 results, makes drawing

conclusions from this data difficult as the models are arguably almost equal in the

quality of the fit.
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6.7 Discussion

6.7.1 Iron rich sample (Nb0.998Fe2.002)

The iron rich sample, Nb0.998Fe2.002, from comparing the magnetic Compton profile

to the theory produced in ELK (figures 6.10 and 6.11), implies that the ground state

is in a ferrimagnetic state where the 4f and the 2a iron sites are anti-aligned as seen

in table 6.4. This is supported by the earlier LSDA stoichiometric calculations [107].

The result for the iron rich sample in this chapter contradicts the phase

diagram in figure 6.6 since it is found to be in a ferrimagnetic state rather than

spin density wave state expected. The most likely reason for this is that the field in

which this experiment is performed takes the sample out of the spin density wave

order and into a ferrimagnetic state. This can be better understood if the phase

diagram is thought of with reference to the field as well. This is shown in figure

6.14, a phase diagram proposed by S. Friedemann et al [113]. As can be seen, a field

of 1T would be outside the spin density wave region.

Considering again earlier Compton scattering experiments (on an iron rich

sample of Nb0.985Fe2.015, y = 0.015 (black cross in figure 6.6)) performed by T.

D. Haynes et al., the samples were found to be in a ferrimagnetic phase [111].

However these results are contradicted by D. Rauch et al. who, using Mossbauer

spectroscopy suggest that Nb0.984Fe2.016 is ferromagnetic [114]. This result has been

confirmed by further Mossbauer studies [122] which find parallel, if smaller than

theoretically expected, moments on the 2a and 6h sites. One postulated cause for

this discrepancy is that the larger energy window from Compton scattering when

compared to Mossbauer spectroscopy could cause slowly fluctuating moments to

appear static [114]. It may also be a problem with the ab initio calculations used,

if the Compton profile of stoichiometric NbFe2 in the ferrimagnetic configuration is

similar to the profile for a ferromagnetic off-stoichiometric model.
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Figure 6.14: Composition-magnetic field-temperature phase diagram for
Nb1−yFe2+y. Adapted from [113].

6.7.2 Niobium Rich Sample (Nb1.004Fe1.996)

With the niobium rich sample, it has not been possible to conclude the ground state

phase as the GGA calculations lowest energy is the ferromagnetic phase (table 6.2),

whilst the ferrimagnetic phase has a lower χ2 (table 6.4) and the LSDA calculations

produce the opposite result. This discrepancy in the χ2 is likely due to the quantity

of this data, which is significantly less than the iron rich sample. This means that

drawing conclusions on the ground state from the χ2 values is impossible, this can

be seen by eye in figures 6.12 and 6.13 (especially when compared to figures 6.10

and 6.11).

The experimental spin moments of the samples were both significantly lower

than the theoretical spin moments from all the calculations seen in table 6.3. For

the LSDA ferrimagnetic calculation a scaling factor of approximately 0.3 would be

needed, and for the niobium rich sample a scaling factor of 0.1 is needed. T. D.
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Haynes et al found a scaling factor of approximately 0.6 was required to match the

experimental spin moment of 0.245±0.004µB to their theoretical result [111]. This is

probably due in part to the failure of the calculations to describe the spin fluctuations

[121; 123]; However the significantly different experimental spin moments obtained

suggest that this could also be accounted for, at least in part, by the fact the

calculations are based on the stoichiometric system.

The difference in the calculated ground state energies in table 6.2 is inter-

esting. Previous LSDA calculation have found the ferrimagnetic state to have the

lowest energy [107], and previous measurements have found the ferrimagnetic fits

the data well [111]. Nevertheless, as all these calculations work on stoichiometric

systems, this may not be an accurate view of the systems measured. The complexity

of the phase diagram and the substantial changes in the system, from small changes

in y, shows that stoichiometry is particularly important for this series. More calcu-

lations are needed as the samples measured in this chapter, and in the earlier work

by the group [111], may fit better to different configurations when calculations are

performed on the true structure of the sample.

Also, it is important to note the ferrimagnetic phase is the lowest energy in

the calculations in ELK, using the LSDA functional. This agrees with other calcu-

lations done by others using LSDA functionals [107; 111]. However, interestingly,

using the GGA functional the lowest energy ground state is found to be the ferro-

magnetic state. Without a stoichiometric sample to test and compare the models

against (or off-stoichiometric calculations), it is difficult to tell which configuration

would be the ground state for the stoichiometric sample. However, both ferrimag-

netic configurations, using both functionals, appear to fit the data better than the

ferromagnetic models, with the exception of the LSDA functional for the niobium

rich sample. This apparently fits the ferromagnetic better, although this is likely

due to a lesser quality and quantity of data in comparison to the iron rich sample.
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6.8 Conclusion

In summary, the niobium rich sample data y = −0.004 is inconclusive as insufficient

data was collected to provide a clear distinction as to which model fits the data more

closely. Using the LSDA functional the ferromagnetic calculation fits the data better

and using the GGA functional the ferrimagnetic model fits better. The probable

cause of this discrepancy is insufficient data and therefore, to categorise this sample,

more data would need to be collected.

In contrast, the iron rich sample is more closely aligned to the ferrimagnetic

stoichiometric configuration of the electronic structures tested in this chapter, as

opposed to the stoichiometric ferromagnetic configuration. However it was expected

for this sample to have a spin density wave order. The probable cause for the absence

of this order is the size of the field applied to the samples when the profiles were

measured. It is likely that the field was large enough to move out of the spin density

wave phase and into the ferromagnetic or ferrimagnetic phase.

As to the debate between ferrimagnetic and ferromagnetic, whist the sample

fits better to the stoichiometric ferrimagnetic calculation, further off-stoichiometric

calculations are necessary to make this claim definitively. It may be that the orien-

tation on the iron on the niobium sites (and vice versa) could change the shape of

the profile enough to change the fit. Further investigations and calculations would

be necessary to test this.

In addition to this there are possible features observable on the profiles, for

example a noticeable jump at approximately 3 A.U.. This is fairly noticeable on the

iron rich sample and arguably present on the niobium rich sample. However, with

the poor quality of data, this cannot be claimed with any certainty. This feature does

not appear in the computational data and further, increasingly complex, calculations

may reveal the source of these jumps. With the size of these features, and the size

of the error on the experimental data, there is a distinct possibility that they are
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simply experimental noise. Further experimental data, along with the calculations

discussed above, would be needed to truly ascertain the nature of these jumps.

6.8.1 Future Work

The next step in developing this work further would be to perform more calcula-

tions using the off-stoichiometric values. This would require using, for example, the

KKR code, rather than the ELK code, although this would need considerably more

computing power than was available in this thesis. This would be important to the

development of this work as it would provide a better understanding of if and when

the ground state changes as the value of y changes in Nb1−yFe2+y.

Secondly more experimental data would be preferable in the niobium rich

sample. The data collected for this sample, partly because it has a smaller moment,

is not as accurate as that of iron rich sample.

Finally, data on more samples with different values of y across this range

would provide a more complete picture of the phase diagram and how the ground

state changes and if and how this effects the magnetic Compton profile.
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Chapter 7

Conclusion

In this thesis, the spin densities of four samples of polycrystalline GdCo5−xNix, two

samples of nominally identical Nd2Ir2O7, and two different off-stoichiometric single

crystal samples of Nb1−yFe2+y were measured using the magnetic Compton scatter-

ing technique (MCS) at the BL08W beamline at the SPring-8 synchrotron in the

Hyōgo prefecture, Japan. This was supported by the use of density functional the-

ory (DFT) codes, which were used to provide theoretical models that can be tested

against the data. In addition to the primary technique of MCS, characterisation

techniques were used on the samples, including magnetometry and Laue diffraction,

in order to provide more information on the magnetic structure and to align crystals

along the desired directions.

The purpose behind this work was to use MCS and the supporting techniques

mentioned, along with theoretical methods, to investigate the magnetic phases and

properties of the above mentioned materials.
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7.1 Results

7.1.1 GdCo5−xNix

GdCo5 is a member of the RETM5 class of materials, which have many interest-

ing magnetic properties, dependent on the rare earth species. This material was

investigated for the interplay of transition metal and rare earth electrons and the

compensation temperature, where the sign of the moments on the antiparallel sub-

lattices switch and which is found in the nickel doped GdCo5−xNix.

Four samples of GdCo5−xNix, with increasing levels of nickel were investi-

gated of which two had transition temperatures within the measurable range, namely

GdCo3.72Ni1.28 and GdCo3Ni2.

GdCo3Ni2 has previously been experimentally shown to have a transition

temperature of 230K and the work in this chapter supports this result. However,

the magnetic Compton profiles have revealed more information on the behaviour of

the bulk total, spin, and orbital moment. It is shown that whilst the total moment

does not reach zero at the transition temperature, the spin moment passes through

zero and becomes negative for a range of temperatures where the orbital moment

dominates. Furthermore, using theoretical models to separate out the contributions

to the spin from the gadolinium and cobalt-nickel sublattices provides a very clear

picture at the point the signs on the spin moments flip. This happens at a temper-

ature at which the gadolinium spin moment is still larger then the spin moment on

the cobalt-nickel sublattice, however, the total moments on the sublattices compen-

sate due to the orbital moment on the cobalt sites. This result can only be seen

with a technique that not only measures the spin moment but is also capable of

separating out the contributions to the moments, such as MCS.

With regard to GdCo3.72Ni1.28, a transition temperature was determined to

be between ≈ 110K and ≈ 130K. This follows the pattern of transition temperatures

found in this chapter and outlined in other texts, although the large temperature
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range over which the transition takes place coupled with the low spin moments

makes it difficult to as accurately pin point as was determined with GdCo3Ni2.

GdCo4Ni, only had one measurement taken at 300K. This measurement does

not contradict any conclusions drawn from the other samples and follows the pattern

expected, having a positive 3d moment and a negative 4f moment.

GdCo2Ni3 was the only sample not to repeat the pattern of the other three.

The spin moments, both the total and the 3d and 4f contributions, follow the ex-

pected trend, i.e. the gadolinium moment is positive and the cobalt-nickel moment

is negative albeit that the expected transition temperature of 323K was outside the

experimental range. However, the orbital moment is positive and antiparallel to

the cobalt-nickel 3d spin moment. This is a differing result from the other three

samples and requires investigation to understand why this has occurred. Theo-

retical work using DFT codes could help to explain this anomaly. Nonetheless, it

would be preferable if a repeat of the experiment, with more results from samples

with a similar nickel doping could be carried out to clarify the results and aid in

understanding.

7.1.2 Nd2Ir2O7

The pyrochlore iridate Nd2Ir2O7, has attracted interest due to a debated metal to

insulator transition, both as to its temperature and even its existence, as well as the

many novel magnetic phases attributed to strong spin-orbit coupling and electron

correlations.

Sample 1’s magnetism comprises of a 4f moment on the neodymium and a

5d moment on the iridium. Separating out these contributions to the spin moment

obtained from the Compton profile gives a highly temperature dependent 4f moment

which at 60K is approximately 20% of the value at 2K. In contrast, the iridium

moment is constant, within error, over this range. The orbital moments follow a

similar pattern, the neodymium moment is forced to follow the spin moment by
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defining it from the spin-orbit ratio. Nonetheless, at all temperatures the iridium

spin-orbit ratio is calculated to be −1 within error (albeit some of the errors are

very large). This would imply that the total moment is only dependent on the

neodymium spin and orbital moment. Whilst there were not enough temperatures

taken on sample 5 to reach a conclusion, the temperatures measured imply the same

pattern measured in sample 1, albeit with a slightly higher moment.

This is an unexpected result. As before, more information gleaned from

repeating the experiments, with more measurements on both the already obtained

samples and temperatures and a greater range of samples and temperatures would

help clarify the reason for the generally anomalous result.

However, the limiting factor of these experiments was the signal to noise

ratio on collecting these measurements. This was caused by the moment/number

of electrons in the formula unit being extremely small. Also, the process used of

compressing the samples into a pellet created very thin samples which, though better

able to survive the temperature and pressure changes of taking the measurements,

along with the significantly reduced density over a crystal of Nd2Ir2O7, drastically

reduced the scattering volume and therefore also decreased the signal to noise ratio.

Whilst more data is key to advancing this investigation, it is likely to prove difficult

to improve the statistics significantly with the current experimental set up.

To progress this work significantly, therefore, firstly it would be advantageous

to use a single crystal or a polycrystalline lump. This would improve the results

since, with a single crystal, the ability to look at an individual direction rather

than a polycrystalline average would increase the ability to model the data obtained

and, also, either a single crystal or a polycrystalline lump would provide a much

denser sample than the compressed powder, vastly expanding the scattering volume

and, therefore, the signal to noise ratio. Secondly, these samples would be better

measured in a windowless set up. Such a setup would reduce the background signal

to zero as much of the background noise is caused from scattering off the windows
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and, therefore, it would make it possible to obtain results from these samples with

much greater accuracy and speed.

7.1.3 Nb1−yFe2+y

The interest in NbFe2 is caused by the complex, composition driven phase diagram.

Over a small range of y, Nb1−yFe2+y passes through several interesting phases,

including a proposed spin density wave order and a putative quantum critical point.

In summary, the iron rich sample was more closely aligned to the ferrimag-

netic stoichiometric configuration of the electronic structures tested in this chapter,

compared to the stoichiometric ferromagnetic configuration. It has been suggested

that at these compositions a spin density wave order is expected. The probable

cause is the size of the applied field in which the samples were measured. It is

likely that the external field was large enough to move out of the spin density wave

phase, however it is predicted that it will move into a ferromagnetic phase rather

than the ferrimagnetic phase observed. As for the debate between ferrimagnetic

and ferromagnetic, whilst the sample fits better to the stoichiometric ferrimagnetic

calculation, further off-stoichiometric calculations are necessary to make this claim

definitively. It is possible that the orientation of the moments of the iron on the

niobium sites (and vice versa) could change the shape of the profile enough change

which configuration best agrees with the data.

In contrast, the niobium rich sample data y = −0.004 was inconclusive as it

was not possible to establish a clear distinction as to which model fit the data more

closely. Whilst the χ2 values show a possible slight better fit in some of the models

the nearly identical values (all significantly higher than with the iron rich sample)

mean that conclusions cannot be drawn.

The next step in developing this work further would be to perform more cal-

culations using the off-stoichiometric values. This would require using, for example,

the KKR code, rather than the ELK code. A significant downside to this is that
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considerably more computing power would be needed. If this could be achieved, it

would provide a better understanding of if and when the ground state changes as

the value of y changes in Nb1−yFe2+y. Secondly more experimental data would be

preferable in the niobium rich sample. The data collected for this sample, partly

because it has a smaller moment, was not as accurate as that of the iron rich sam-

ple. Finally, data on more samples with different values of y across this range would

provide a more complete picture of the phase diagram and how the ground state

changes and if and how this effects the magnetic Compton profile.
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