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NetworkldentificationUsinge-PMU and Smart
MeterMeasurements

Priyank ShahStudent MembetEEE and Xiaowei Zhao

Abstract The network identification plays a very prominent
role for the network operator to accomplish the various
objectives such as stateestimation, monitoring, control,
planning, and real-time analytics. The network structure varies
from time-to-time and its details areoften not availablewith the
network operator. To address this issue, an alternating direction
method of multipliers (ADMM) based framework is presented
herein to identify the network topology and line parameters
using smartmeter (SM) and micro phasor measurement unitj-
PMU) measurements. The presented algorithm is divided into
two sections, 1) approximateparameter evaluation through
regression, to extract the partial topology information, and 2)
complete network topology dentification through the ADMM
framework. This algorithm accomplishes the objectives of
identifying the network configuration, branch parameters (e.g.
conductance and susceptance),and change in branch

parameters. Simulation results demonstrate the effectiveness of

the presented algorithmon the benchmarked IEEE 13-bus and
IEEE 123-bus feeders under various operating scenarios.
Furthermore, the presented framework illustrates excellent
network identification evenwith the presence ofthe stochastic
nature of renewable power generationThe presented algorithm
exhibits an excellent performance even with the consideration of
noise in both measurements.In addition, the comparative
performance is carried out on the benchmarked unbalanced
IEEE 13-bus andbalancedIEEE 33-bus feedergo highlight the
efficacy of the presentedframework over the stateof-art
framework .

Keywords Grid parameter estimation, Distribution feeder,
Phasor measurement uni{fPMU), Smart grid, and Smart meter.

. INTRODUCTION

Nowadays, thephasor measurement uni(PMUSs) are
widely popular in the electrical grid orderto acquire system
information (e.g. magnitude and phagseThis traditional
PMU has good estimation accuracy floelong transmission
line asthenetworkhasasignificant phase differendetween
the buseshowever,t is not the same ithe case of thdow-

synchronkzed voltage and current samples. The machine
learning algorithm] needs enough time to let the algorithm
learn and develapenough tocomply their purpose with a
considerable amount of accuracy and relevanthis
algorithm [8]is autonomous but highly susceptible to errors
and it may not be ableot discover immediately. These
graphicalalgorithms B-8] are not able to identify the line
parameters, change in branch parameters, etc. In contrast with
the graphical algorithm €8], the maximum likelihood
estimation method is analyzed i8] o estimatethe branch
parameters and network configuration use¥®MU data.
Although this method provides robust operation with the
presence of noise, it fails to suffice identification objectives
for an unbalanced distribution netwarko overcome these
shortcomings, the least absolute shrinkage and selection
operator (Laso) algorithm is anabed in the literaturel0-

11] to identify the line parameters, event, change in structure
for low-voltage feedersNevertheless there are several
scenarios in the lowoltage feeders where synchreed data
(e.g., voltage, currenty@anot available to stydlue to having

the high cost ofa e-PMU device which creates hindrance

to accomplismg the identification objectivesHence, the
smart meter ign emergng devicein low-voltage feeders to
aquire systeminformation.

The affinity propagation clusterinhased approach is
reportedin [12] for the connectivityidentificationin a low-
voltage distribution feedarsing smart meter datalthough
these algorithmsl1P-13] identify the networkconfiguration,
they are not capable to identify the network branch
parameterswith the presence of Gaussian noise in the
measurementd.he topology identificatioralgorithm[13] is
formulated using the weighted least square framework via
multiagent systems. Thisamework[13] does not comply
with the identification objectives such as branch parameters,
changs in network configurationetc Peppaneret al [14]
have constricted the serieircuit regression model for

voltage distribution feedefd]. Hence, the researchers have,qyork identification usinggM data. Howbeit, this series

introducedamicro-phasor measurement u@tPMU) device
to improve the estimation accuradpr a low-voltage
distribution network In addition the smart mete(SM)

device is als@opularin the network t@acquireactive power,
reactive powerand voltage magnitude measuremeiiise

measuremenfsom the SMs and-PMUs arevery helpful for
anetwork operatoto achieve the optimal operati¢2-3] of

the distribution network.

The network identificatiorhelps the network operatto
accomplish theoperatios [4-5] such as statestimation,
network expansio, networkplanning fault detectionetc. It
is well-known fact thatthe stateestimation algorithm is
successful only when the systetopology and the line
parameter®f the systemare accurately knownTherefore,
various algorithms areeportedin the literature[6-8] to
identify the network structureaccurately, with the
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circuit model is less accurasmdpossibly involes mistakes
while performing thepairing processLikewise, it fails to
facilitate the new upstream node into the existing model,
which may render erroneous resuli& overcome these
shortfalls, Shiet al. [15] have described the paraHeircuit
regression model to identify the network configuration.
Nonetheles, this algorithm I5] may not suffice the
identification objectives with the presence of noiserimart
meterdata for unbalanced distributed system

To overcome these shortcomings, tmeixed-integer
linearquadratic programming (MILPMIQP)  based
algorithm is developedin [16] to identify the network
configuration and outages fdhe unbalanceddistribution
network. However, it suffefsom high-dimensionéty issues
and a high computational burderzhanget al [17] have
developed a numerical approach to identify the branch
parameters, topologyand sudden change in the network
using SM data. The Markov random filedtechnique is
analyzed in18] to accomplish théopology identificatiorfor
the distribution networkThis algorithm lacks tsolve long
distance correlations of observation sequeacets



TABLE-I COMPARISONSBETWEEN EXISTING FRAMEWORKS

References Type of Network Topology Identification Event Detection Parameter Estimation
Prostejovskyet al. [2] Balanced Not Feas!ble Not Feas@ble Feasibl_e
) Unbalanced Not Feasible Not Feasible Not Feasible
Babakmehet al. [4] Balanced Feasibl_e Feasib[e Feasibl_e
) Unbalanced Not Feasible Not Feasible Not Feasible
Hosseiniet al.[8] Balanced Feasibl? Not Feasible Not Feasible
) Unbalanced Feasible Not Feasible Not Feasible
Sietal[12] Balanced Feasibl_e Feasib[e Not Feas@ble
Unbalanced Not Feasible Not Feasible Not Feasible
Gandluruet al.[16] Balanced Feas!ble Feas?ble Not Feas@ble
) Unbalanced Feasible Feasible Not Feasible
Zhanget al.[17] Balanced Feasibl_e Feasibl_e Feasibl_e
) Unbalanced Not Feasible Not Feasible Not Feasible
Heet al.[21] Balanced Feasibl_e Feasib[e Not Feas@ble
) Unbalanced Not Feasible Not Feasible Not Feasible
Tianet al.[22] Balanced Feasible Feasible Not Feasible
) Unbalanced Not Feasible Not Feasible Not Feasible

*|t performs only phase identification for a balanced and unbalanced network.

susceptible to obtaining accurate local optimal solutions.

In objectives without having particular knowledge of the

addition, it overlooks to analyze the impact of the stochastic number othousehold and its load profile.

nature of renewable power mgEration on network 0 In contrast with the statef-art methods4, 6,17, 22], the
identification objectives. The impact of a renewable energy presented algorithm efficiently estimat¢he network
sources is studied on the benchmarked network configuration configuration, branch parameters, change in branch

[19-21]. Papadopoulos teal. [19] have developed a
probabilistic framework to studyédynamics andmpact of
uncertainties associated with the variation

energy sourcedNeverthelessthe overall analysis depends
upon the accurate availability of the network configuratio
and event locéion. To deal with these issues, the auto
regression model and random matrix thebaged hybrid
framework is described in2]] to identify the network
configuration and event detectidor the given network.
Nonetheless, the statd-art framework 21] does not capable

to estimate thebranch parameters for either balanced or

unbalancd system configurationThe comparative summary
between various frameworks to
configuration, event, and branch parameiessmmarizedn
Tablel. Therefae, it is necessy to formulate a robust
algorithm to accomplish the identification objectivesith
hdp of synchronizedd.g, e-PMU) and norsynchronized
(e.g, smart meterjlata.

In this paper, a robusilternating direction method of
multipliers (ADMM) is presentedto identify the network
structure, branch parameters, event detecttn, usinge-
PMU and SM measurementsThe salient featuref the
presented worlaresummarized as follows.

in network
configuration, events, and stochastic nature of renewable

identify the network

parametersand change or event in network structlirés
validated foran unbalancedEEE 13-bus network with
theopening ofathreephase branch (e.granch671-692)
and connection ofa threephase branch (e,gbranch
betweer680to 692).

lllustrative comparative performances aaried out to
validate the effectiveness of the presented algoraten
traditional algorithms 10-11, 17. The comparative
identification result is demonstratedto estimate the
revised branch parametewgith the 10% variation in
branchparametes (e.g, branch between®. to 680) on
the IEEE 13bus unbalanced feedein addition, he
comparativeestimation of branch parametessanalyzed
between the presented astdteof-art framework [17] on
the benchmarked IEEB3-busbalancedeeder with the
presence of Gaussian noise.
Themethodologyfor networkidentificationis described in
Sectionll. In Sectionlll, the results and discussidior the
presented frameworkreanalyzedfor themodified IEEE 13-
bus and IEEE 13zbus feedes under various operating
scenarios such aschange in branch parameter, change in
network structureTo demonstrate the effectivenesstbé
presented framework over the traditiofraimeworkg10-11,
17], the comparative performancase analyged in Section

U The presented ADMM based algorithm leverages thi®/. The conclusions are described in Sectibn

measurements from both SMs awPMUs, for accurate
network identification whereas, the statdf-art
algorithms [10, 1722] deals withuniform measurements
(e.g, either e-PMUs or smart meters) tdulfil the
identification objectives
Thepresentedrameworkprovides robusand efficacious
identification performancesvenwith wide variatiors of
standard deviatiorin the e-PMUs and smart meters
measurementsn addition, he scalability and efficacy of
the presented frameworlare validated through the
benchmarked IEEE23-bus feeder.

The presented framework accomplishes the netwo
identification objectives even with the presencetha
stochastic nature of renable power generation. To

The methodology for network identification is reported in
this section. Initially, the available measurements are
described, obtained from the smart meters areMUs
installed at various nodes in the network. Later, a method to
obtain the partial information of the topology using only the
smart meter measurements is described. Finallys-fhIU
measurements are used to obtain the complete network
identification. The topology information, as well as the
onductances and susceptances of each of the lines, is
aﬁtained through this method. The methodology is thus
organized in three subsections, described as follows.

METHODOLOGY FORNETWORK IDENTIFICATION

validate this feature, the performance is validated of. Available Measurements
benchmarked IEEE 1Bus feeders with the presence of The measurements are amale from the smart meters and
renewable energy sources on certain buses. the distributed phasor measurement units. The measurements

U As the presented framework does not depend upon thgailable from the smart meters are the real and reactive
types of load, it accomplshes the network identification
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power injections and the voltage magnitudes, while the A pseudeinverse techniquep], is then used to compute
measurements with distributed phasor measuremens urtith e appr ox i G#®t enavtali e sasaf 06
include the timestamped voltage phasors and the current e "ER A% A R )
phasors. It is assumed that the smart meters are installedvatre, €™ corresponds to the first matrix of the righand
certain buses, while the phasor measurement units ggrt of (6), while i is the corresponding second matrix.
installed at the r esG0 odB)od hifewiked B& Smat ABgUMEnNngompated as,
are the suscéance and conductance of a line between the Al "Eff AE  AE RE (8)
nodi®ds ajdidi 6 sthen the active and reactive power |t may be noted that only the information of conductances
injections at a given bus can be written 28] ,[ and susceptances corresponding to the smart meter nodes is
0 s o OAI-O & OEL 1) obfcained from (7-X_8) . The % odilé_t aigre tamae
distribution feeder, is usual
- : e AER xR A 0, co3hedfordt hle obt ai ncgdl aBgid ue s
voWR @ OOB+ o Al 2 from@7}( 8), form the afgEr aBidmat e
whemPé 4a@a a&re the nodal r dobp utigesinge sucgeeding sepdepicted inig. 1.
power injections, whilev| represents the voltage magnitude2
at a iModEhe& smart meter me

. Lo Ralydis® M€ N
processed using (AP) as base equations, in order to extract ; ,
the partial information of the topology, while tisePMU In this step, the approximate values of conductances and

measurements are then utilized to extract the compldfi Susceptances obtained in stepre used to obtain the
topology information. corresponding exact values of the partial topology

information (corresponding to the smart meter nodes)
B. Extractionof Partial Topology Information using Smart depicted in Fig. 1The NewtorRaphsonNR) method [L7]
Meter Measurements is employed here, where the approximate conductances and
Assuming that the smart meter measurements are availagigceptances serve as a fine initial start for this method. Using
only at certain nodesthe partial information about the the available active and reactive power injection
network topology is extracted using the correspondingieasurements, at the buses with smart meters, the change in
measurements. This infoation is extracted in two main the active and reactive power matrices are built as,

Stepll: Parameter Evaluation through NewtdRaphson
) o tsvualre |ugn|NtW|IaPFy

steps.The first step involves a regression process to evaluate 0 0 E O 0
the approximate values of the partial topology parameters, i.e. YE é E é
the line susceptances and the conductances, while the second O O 8 0 O
step involves obtaining their exazstimates. - - = - - ©
) v v E v V]
1) Stepl: Parameter Evaluation through Regression YE é E é
From(1}( 2), for a giwén numberpoé$snbidel 68 U 0
to write, where, tchedpneféegs BHhe calcul a
. . . WS these real and reactive powers are calculated using the
L v d ¢ E P s 3) approximate susceptances and conductances. The Jacobian
’ ’ ar n ar n -4 ar |'| 2
SOISIES (V) 0 0 E o gie)g
where, _____C?_____I
“dl O A .|. —é b O E—T— (4) Smarit:rri’et;r ém?ég;f;t::big' VI Perform orth(_)gona] triangular
sn "OO0EL 6 Ai-O £-PMU measurements: |V}, d; decomposition of Vpnasr

i=r,r+1,é ,n. @rest of certain buses

v

Sort diagonal elements of the

Initially, using the available smart meter measurements (i.€;
real power, reactive power and the voltage magnitude) at oo oimaedcTand 57| | upper triangular matrix
different time stamps, the folldng matrices are formulated g | for donodeswith help of smart !

|

f OKO G nstants of measur emen|t gnaemeasurementsion(®to® Obtain the linearly

|
|
|
|
|
|
|
|
-r——— —— —¢ —— — — — — I independent rows of 6/y.0
|
|
|
|
|
|
|
|

The s up €ds ctKpdredtesent the time instants ! of Newton-Raphson method Obtain &t & rad Krad

~___ E Il _
1§ S E s s . 1< | Celculate P and Q¥ using | v
EI’T [ é E e a | {% approximated [G'] and [B'] [ Obtain sub-matrix
) ’ I v I 4,0& M,Hand d ;68,0
11 1
8 iy [ Formulate the changein active and ! s
b s s s U ! ! é S
~ (5) | | reactive power for certain nodesin (9) | | ,S Obtain M:6in (24)
~ E 'l I =
« 198 L ¥ oA ! Evaluate Jacobin matrix in (12) I é
"Er'f 1 @ E é -~ I , ' o | Formulatetheproblem
’ T | statement (26) & solve
11 i L= ;
8 “ I Obtain the accur ate conductance, £ [ usng ADMM approach
W s $ 8 v I'| susceptance, phase angle of buses with help 1o
|
|
|

I
I
I
I
and & r40using (25) !
I
I
I
I

of measur ement s, 16w hdol re(’leprhees:esrutb stchr¥ p | o]
numbers corresponding to a node assuming that the smart _ o
meters are instvalslend 3F), thérid nodex (1 ="~ :
following expression can be written, : FO'%LM‘E“Z;_’;EE;’;?E% | LN e
d E d ws E ws ]
"Eff 6 E 6 @& E & (6)
S o We 8 s Fig. 1 Flowchart of the presented framework for netwinkéntification
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matrix [17] in the NR method is as, It may be noted that the elements of the current injections
. vector areUs rps and the nodal voltages vector are

YE _|E4 - = i“//::: (10 ®s ki, both of which are the complex quantities.
Y'E T EEY phasors at a parkbicdhasei phtas
no obtained from the phasor measurement units installed in the
where, network. The information available from the phasor
- L . 'H' . - § — measurement units are the tistamped current and voltage
YH € IYVH é 1y € E & (1) phasors wittah Snowthéshoéare given
0 g _ 5 — & p E & 0
The problem (10), is solved using the pseiml@rse[17] as, r]'_hfv , € EE é
e d ©p E @O0
o o YE (12 b o p E 00 ao
YH e e € YE sfi;‘p, , € E é
Y B bp E 0O
The conductances, the susceptances as well as the voltagfne indices in the brackets in (16) represent the voltage and
angles are updated as, e current samplle Kans 6Winavslabléhr o m
HH HH YHYHY (13 phasor infor m&td ome e dish et omabte i

The new values of the line parameters and the voltagey this purpose, the problem statement is formulated as,
angles are then used for the next NR iteration, while these

iterations are carried out until theonvergence point is B _ ﬁﬂh“ oy

reached. For the threshold for convergence, computation of 7 ®i "Qa QB ,,FJJ T eili ve »

the pseudénverse(d) as well as the Jacobian matrix, the N=lf v » an
reader is directed td.¥]. A threshold is set for the topology o iwata

modification, where the small values of conductanaed [ 0 Q@AWY N

susceptances are identified as wrong branches and there, )

eliminated. The NR iteration is run again whenever a branch | W p E w L

is less than this threshold. the accuracy of the voltage angle r'iiH: vo» € E é (19
estimation is also improved using a pseudo power flow : E wo

conducted with the rhown information, before every The vector in (18) is the phasor vector of voltages
iteration. The overall proces® obtain the accurate network corresponding to the buses with smart metegsh u s #s 0
parameterss illustrated in Fig. 1 tor6. 6 The information of this
measured maA@PHhi whidkee BHhe angl e

C. Complete  Topology  Information  with e-PMU also known, from (13). Thefore, the feasible solution to the

Measure.mer]ts _ . problem statement (17) could be obtained from the available
The partial information of the line susceptances an@formation. By solving (17), the accura®md i s obt ai
conductances are obtained, using the smart meigm i | e t h ¥uda d csu raactqeu i G-2etherebyn s e c

measurements, bgolving the NR method insection B2. t he compl et e Yish famxrisobtaiied hiso f 6
However, to obtain the complete information of the topologynformation depicts both the topology, along with the line
thee-PMU measurements are mandatory. As depicted earligrar amet er s of the net wisodk . H
for SM i nstlatl dbed tahte biunsfeosr nfattixidieedtly i@ (1B is ¢h&léhging, owing to the sparsity
from solving (12), are the elements of the true conductange, ¢t he mat ri x4 Iki@mmaﬁﬂ@'@ma}te fMinge

and susceptance matrices, corresponding (o the approXimgif geficient matrices. Therefore, the procedure to obtain
matrices €' and A" in (6) and (7) respectively. Thuas 4/ 5 accurat el y is reported as

t h&d oaBa for om dh eromre acsuraldly  niialy the upper triangular elements of the admittance
known by step B , whi ch i mptdi 0 wtsh Mrixé u djirPthe‘?uncti(j@ﬁﬂ as,

bus admittance matrix are known accuratély, from the "Ofy 1 O O 5 8 &
systemds bus admittancerydbmat ri x"( 163)5, (btrf]weg a)urpmat (1§)x o]
corresponding to the enméirelri x with fir(ﬁtﬁ grg o owWs, i s
kngwn. o E O A binaryOwpeéesator mal ated, th
n e S| the 'Ofy; to 0 QO 7, which implies thatd Qs
I u)e E u)e i |= "Orny 7. Thus, (17) is rewritten using (19) d){11],
I L (14 Oy O Q6 Qffy  y$ . F B

1w 5 B0 gn oe T (20)

L € E € i 0 Qék_uliv .

uow E w U

L " . . where,§ represents Kronecker product.
The m&tér iixs 6t he matrrd xr ovw $ bwﬂ q

e : s o®the ok stficture of the matrices (16), a
Mo I n (14), associated wighg r{ggfeo r“rﬂé‘t”fﬁ%d‘{r’(%izevn%lté‘rerﬁatrix) Fhus t

main gqal istestimate the elYamews iﬁ)ﬂ’r@lzgted,ttﬁb&pamfé thé linéarly tndependent rows from
the availablee-PMU voltage phasor and the current phas«x?e Iinearlg/ dependent rows as

measurements. For andlisitmbémuto nﬁlgive.t‘y\gqgﬁk%with ) 1)
nodes, the admittance matrix is associated with the currentI LR PO . .
n. Jl)l s a .matpd i Ixi rwe drhl yt hien o

injectiomwnedas &ahd Bhaeo vnoddteasgelsm(" tohe. O
Fowsh o

the following way, ’ “a ~-,éa#w1@ Wi t h t héep dovesmfai ni n
0O 0Q 8 VTQ thg;, oG ymatri x.
fm8® @ 0 8 o0 (19
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To obfi@di,n fdrstly, t he redude h ihey comgutationdlr buedeng anekacuts the
decompo shitydosn sofdodne and t hmEnimizatiangiodeperidentylinéken the ltasso framework
of the upper triangular matrix are sortetD]f The overall [10, 17, 2429]. The iterative steps dhe ADMM algorithm

processtm bt &ddn i i | | us Thenatheeficbt arﬁexpmssg:fs, 1. o
@ elements of the permutation&Bmatdn 'QofEMIs obt aiszmed,
selected as the indices~of the linearly independent rows. The g oi E“Q('] Q% P P - (35)
submat r igzbesad@® are thuwawd inothet ai ned LR L
similar way,submat r E& eaAabc cr r espondi ng td& t e ¢l & (36)
c'iéfi;‘;,@a;e also obtaineie., The iteration 84)-(36) is updated until the stopping
ﬁ'Esfrii v o B A (22) criterion is satisfiedThe stopping cr|ter|ovn is defined,as
The transformation operation for the admittance matrix is E‘ " ‘ e 5’ h " (37)
evaluated fﬂrom (21) an@2) as, » 8 8 ‘ A |
el T . »NedhBle Nedhiwii - o3 Where,*  and ‘'  are absolutetolerance, relative
gjl gjl (29 tolerance respectively
Asgdd is a IinearIyTAﬁd nadeplechdbat vector, 0
writthn Os:g, 6 wher e, lll.  RESULTS ANDDISCUSSIONS
o i (O & hOEA 24) To validate the effectiveness of the presented ADMM
O © & N Al based network identificatioframework the benchmarked
where,] "Q&epresents MoorenrosgseudoinverseThus, IEEE 13bus and IEEBR 23-bus feeders are considered herein
from (21)(24), B - with acoupledhouseholdoad The Electric Power Research
g A ooy 88 A 25 Institute (EPRY) hasdeveloped the open distribution system
Ny Ny simulator (OpenDSY software which facilitates the

Finally, the optimization problem (20) is reformulatedd inputioutput information tostudy the dynamics of the
estimatedadmittancesulmatrices (); , Ny ) is computed benchmarked distribution feedefhe main advantage of

using~(23)(25) as L10-11], OpenDSS platform is that it is capable to performulti-
Ony  "Ony phase power flow,unbalanced power flow analysis,

Sl 040 0% O o fault/event analysis, and stability analysisunlike

. - F F (260  MATPower® and PowerWorl8 simulator platform. Fig2

e Y shows thedetailed process ofan iterative procedure of
v qu»:q n Qeep nQeep & & MATLAB ® software with OpenDSS platform The
To simplify the problem statement (26), the elements fymponent object model (COM) interface platform is used to

(26) are assigned to new variables as, communicatebetween OpenDSS ardATLAB © software.
€S on;  Ony (27)  The detailed script of location and rating of integrated
s 0S8 O |= |= (28)  renewable energy sources, variation in branch parameters,

fis 0 Q(Ix»:q A "QEED type of events, etc., are writteand recordedin the
. (299  MATLAB ® environment anthis script isprocessed as input

n Qep & 80 to the OpenDSSplatform. Likewise, the everbgger of the

The si6z ei n6(29) xdan) be identified as OpenDSS platform also has an inherent feature to
Ce i Ce i p& 1N jcg The rest ofsub trackrecord the operation, control action, switching

matrices fi; , fi ) can be obtainethrough @5). Therefore, oOperation, and event for the given netwoikie voltage
from (26)(29), the system at hand, is described througheasurementis directly obtained from the node. The current

following equation, measurement is obtained by takihgdifference between the
A & (30) et injected current and net outgoing currerg @rtain bus.
wher é, i 6 6aussiannmeaserement noise. For & commandseparated value (.csv) report of the voltage
singleit row, (30) can be written as, current dataseis obtainedandprocessed into the_MA_LTA%
A g S e (31 software to accomplish the identification objectiv@ie

Toobtaintheo ® from the (31), tSHent D?irésgffrt@%fagiv.ep{qt;edt#eraeﬁf,qictgqrﬁ Fig.2.
[24-25] is formulated using alternating direction method of '€ detailed configuration of the modified IERES-bus

multipliers (ADMM) approach as follow system is illustrated in Fig3. From Fig. 3, it is easy to
Ol Q4MRE £ & HE | DA observe that the IEEE3-bus system isighly unbalanced
L ] :

(32) lateral aeach phasts not connected with all buseiSor the
OOABDAA G ™ reliability of the electric power supply, the normally open
where| is aregularization parameter factdr;aretypicaly (NO) and normally closed (NC) breakers are coupled
weighted vectoand intermediateactor 6.8 1} . Based on between 69580 and 69&671 buses as depicted in FRy.
theformulation ofthe ADMM method[24-25], theLagrange The detailed installation of the smart meter greiMUs are
multiplier (¢ ) is incorporated into the existirfigrmulated ~demonstrated in Fig. Based on optimal locatiorthe SMs
problem(32) as follows (e.g.,611, 645, 646, 652, 671, 6_&684) andp_—PMUs(e_.g,
3 &hr P picE £ Ha&E | DA 632, 633, 634650,675) are considered herein to suffice the
de 8 ticm, o (33)  identification objectivesThe necessary datat each bs of
where,” is apositivepenalty parametein ADMM method
€;andg; are updated in an alternating or sequential fashio
which accounts for the term alternating directiofhe
minimization problem is divided intbwo subproblemso

the IEEE 13-bus system isacquired from the OpenDSS
oftware then processedurtherin theMATLAB ® platform.
he realtime measurements of the local load profile for the
benchmarked IEEE3-bus systenareacquired from the



4 N
Data I nput :
Simulator m
Node Information )
Lines
Capacitor
Energy Storage :> Output
Transformers o Dataset
Voltage Regulators Distribution System
Demand Response Simulator
(Electric Power
Resear ch I nstitute) Comma-
Renewable Power Saperated Toolsf
Ceneration ol ValueFile oS 1or
(e.g., Solar, wind Report Graphical
energy, etc.) Response
. it :
% I I Vi
Rating and L ocation . .
= ( N Component Object Model Server Data Handling )
§ ( Snapshot of load flow Time-series Analysis Optimization )
5 MATLAB Script are Used to Access & Interface with an OpenDSS Module )

Fig. 2 Iterative framework betwed@penDSS and MATLAB® to accomplishedetwork identification objectives

Autonomous Decentralised Renewable Energy Systerigentification is very low as the presented method provides
(ADRES) project repository2p-27]. The performance of the robust identification and has good accuracy due to having
network identification algorithm igested under several insusceptibility against poor conditioning.h@ detailed
operating scenarios such as basic identification, identificati@malysis of the identification error in conductance and

with the consideration afoise in the measuremenisipact susceptance of each branch (e.g. for pltased , -6ploa s @ n d
of change in standard deviation in measurements, apdased ¢ 6 ) i s p 4 (df). it ead be ieasily Seenghemt.
identification undeachange irthesystem configuration. The the error in estimated parameters is achieved within 2%.

detailed analysis of the presentEedmework with various

casess analyzed as follows. Casell Performance of Network Identification with

Consideration of Noise in SM Measurements

Casel Basic Identification of Topology Fig.5 (a) and Fig.5 (b) demonstrate the robust
Figs. 4 (ac) demonstrate the basic identification of the

modified IEEE 13-bus system. As smart meter data @nd

PMUs data are obtained from the defined buses, the preserfPé
ADMM algorithm segregatethe data based on the type of6711
measurements and ideiggthe network configuration using ez
(7)-(8), (13) and (31) Fig. 4 (a) shows the identification of s34y
phased aobthe given IEEEL3-bus lowvoltage distribution Zgzi
system. From Fig.4 (a), it can be obserdethat the |
identification error in the admittance matrix is quite low insss.1
the rangeof p 1. Similarly, the identificationin the 21
admittance matrix for the phageb 6 andcpPphase (b)
illustrated in Figs. 4 (i&). The typical value of error in é§° : 'é’ﬁ'ﬁ'é"ﬁ&&&’&l
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X3 Voltage regulator 3 NC Three-phase Switch _ (e ® .
[T Transformer ] NO Three-phase Switch Fig. 4 Estimation of branch parameters of for the IEEBbUS feeder using
presented framework {@ Coloured representation of individual phase
mm Smart meter (SM) . c-PMU admittance matrix estimation errors (a) Phasg @) Phaséé b6 and, ( ¢

Phased c 6f) Relative error of the estimated conductance and susceptance

Fig. 3 Detailed schematics of the benchmarked IEEBUS3systi
9 clatied schematics of the benchmarke ystem of each of the branches of (d) Ph#sa 6 , (b6 ,Ph(@f€)® Phase
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performance of the network identification algorithm withlow for havinga small value of the standard deviation. The

consideration of noise in th®M measurements. Fid (a)
shows the illustrative-B heat map of estimation err(o) of

measurements. The Newt&aphson algorithm (913) has abs ol ut e

presented algorithm has better noise rejection capability [2
25], thereby, the identification objective is not compromised
each branch versus standard degiain SM measurements. asdepicted in Fig6 (a) As the standardeviation is increased

It is easy to observe that identification error is quitén the measurements, the identification error is increased as
noticeably low for havinga low standard deviation d6M

depictedinFigb( a) . T

he

det ai |
percentage 6@yforthe 6 i s

ed

erro

inherent advantages of swiftness and quadcatiovergence estimatecconductance and susceptance of each branch. It can

rate. As standard deviation

is

increased
measurements, the identification error is considerabbccomplished within the rge of 0 p T

in the SMe easily observed that the permissible standard deviation is

for the

increased as depicted in Fig.(a). Furthermore, the mean satisfactory operation of the identification algorithm as

absolute percentage error for the estimated branch parametstimation error breaches the maximum allowable change
of each phases analyzed in Fig5 (b) with the variation of (10%) in branch parameters afterward. The salient point of
teMetwoek ddentification ésrdéssribed T HFg(b) OFigl 7u e 6
i ndi cat elowsttheerequiredenamber atbrations toa estimate ehe ¢ e n t

standard
6redo

error o
respectively. The presented ADMM based

deviati on
col or graph
for

i n

t he

est i matsusteptamce ractwratet beanch parametersiwdilvariation inthe standard
nekwordeviation.The presented algorithm has a better convergence

identification algorithm provides accurate results as it followsate with a low number of iterations, which is explained as
follows. The NewtortRaphson algorithm has a quadratic
sulproblems (34Y36) are coordinated to find a solution to aconverge rate and obtained information is processed further

the decompositiorcoordination procedure and

large global problemin general, the typical variation in theto estimate the branch parameters through ADMM

range of 10% is observed in the estimated branch parametaigorithm. Inthe ADMM algorithm, it explicitly targetghe
when any dynamic reconfiguration/evéras occurred in the minimization problemby splitting it into two distinct
system. Therefore, it may leaddaindication of the change objectives and provides better optimizatiof24-25]. In
in the network configuration fohaving erroneous results in addition,

local

the presented ADMM algorithm naturally

estimatedconductance andusceptance parameters. Hencejecouplsthe norsmoothterm from the smooth term, which

the limit line is chosen at 10% in theaximum absolute is computationally advantageous over staftart algorithms
percentage errotMAPE) graph in Fig.5 (b). One can be [24-25, 2830]. Furthermore, the actual effects dhe
easily observed that the permissible standard deviation iégentification ofthe admittance matriareillustrated in Fig.
found in range of0.07 for the satisfactory identification as 8. One can ealy notice that there iasignificant error in the
estimation error breaches the maximum allowable changkentified branch parameters tihe range often Therefore,

(10%) in branch parameters afterwards.

Caselll

Performance of Network
Consideration of Noise in-RMU Measurements

Identification with

this estimation erromithe admittance matrix will propagate

operation of the system.

in the stateestimation and will lead tdhe nonroptimal

presented algorithm to suffice the identification objectives
with the consideration of noise in thePMU measurements.
Fig. 6 (a) shows the illustrative -B® heat map of estimation of standard deviation for different numbersipPMUs are

error (%) of each branch versus standard deviatippRMU

measurements. It shows that the identification error is quiegror for having threg-PMUs in the IEEEL3-bus(e.g.,632,

Number ofu-PMUs

The estimation of branch parameters witide variatiors

analyzed in Figs.9 (a-b). Fig.9 (a) shows the identification

a
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650, 679 low-voltage distribution system. Thaentification
error for having thre@-PMUsis accomplishedvithin range
of 40 with consideration of standard deviatiorpoft in the
measurementsThe identification error can be reducby
having more numbers @f-PMUs in the system as depicted

in Fig. 9 (b). The identification performance is shown in Fig.

9 (b) for having fourp-PMUs in the systenfe.g, 632, 634,
650, 675). The identification error is achieved withthe
range of 30 with consideration @f standard deviation of

p T in the measurement§he mean absolute percentage

error for parameter identification is analyzed for hathrge,
four, and five ui-PMUs in the IEEE 1dusfeeder As the
number of u-PMUs increass, the identification error is
reduced, however, it ia tradeoff between accuracy and
overall cost of thaetwork monitoring system.

in Network Configuration

Figs.10 (a-c) show the identification of evesin the IEEE
13-bus distribution systemwith analtered statusf thethree
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Fig. 8 Effect of change in standard deviatiosiRMU measurements on the
CaseV Performance of Network Identification with Changephase6 a 6
thechange is symmetricée.g.,Y 671692, Ye71-671, aNd Ye92671)

in the heat map as the thrpbase breaker between the buses
671-692 is altered from its nominal statusikewise, the
phase breakdretween the buses 6BB2 and 68692 These change in the conductance and susceptaaag, {f ssoso2
results are captured by taking the difference of estimat&@sosso and Yes2es0) Of the corresponding buses are also
admittance matrix, which are computed before the event addtectedn Figs. 10 (a-c) asthe threephase breaker between
after the event, in the network. Figs. 1&jashow the amount the buses &03-692 is altered from itsnominal status The

of change in the admittanceatnix with the specific bus typical change in the estimated admittance matrix is about to
number for each phase, respectively. It is worth noticing thae intherange of 15 t@0for each phase. The detailed change
in the conductance and susceptance of the estimated
admittance matrix is analyzed in Fid® (d-f). In addition,

the typical changes irtonductance and susceptance values

are capt

admi ttance matri x

ured through its variation in

error

the estimated

conductance and susceptance at two different instants (e.g.
before and after the event). For ease of understanding, the
change in branches 676B2 has been analyzed in Fig8.(d-

f) as the branches 6892 did not exist before the event.
Hence, the typical variation of the branch parameters, (e.g.
671-692) for eah phase is illustrated in Figs0 (d-f).

CaseVI

Performance of Network Identification wi@nly

H-PMUsMeasurement

Figs11 (a-c) show the performance of the system with only
the presence of-PMU measurements (i.e., placed at all
Buses) fothegiven benchmarked IEEE 43us feeder. The
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e-PMUs S g%
error in theestimated nodal admittance matrix is plotted int"* @15
Figs. 11 (ac). It can be easy to observe that identification 7554 5 ¢ 7 5 5 Vi3 34567500 1
error for phase 60 aié quite low and attained within Branches in phase-»0 Branches in phase-©0
satisfactory limits as depicted in Figl (a). As these ® ®

measurements includée voltage phase angle and Currengig. 10 Coloured representation of individual phase admittance matrix

phase angle, the identificqtion cqmputationgl time qUit_e loWAhd, (c) Phasé c 6-f) Relative error of the estimated conductances and
(i.e., phase angle of the distribution buses is not required dasceptancesf each of the branches in three phases, following the switching
estimate throughhe NewtonRaphson method). Likewise, eventforphasé a6, -6ptoa aedic phase

the network  identification for phaseband phas® ¢ 0 tie $roblem can be easily parallelized or scalable even for
illustrated in Figs.11 (b-c). Hence, the presented ADMM |arge network/topology. Hence, the presented framework
algorithmbased framework effectively iderigbthe network \yorks satisfactorily for the benchmarked IEEE 128

structure. Therefore, the identification task can befeeder, andit successfully illustrates the scalability and

accomplished quickly as compared to nominal topologgfﬁcacy for the large feeder system.

identification. L .
- CaseVIl Performance of Network Identification with

CaseVlll Performance of Network Identification for Integration of Renewable Energy Sources

. Benchmarked IEEE 1?Bus Feeder Fig. 13 shows the performance of the system with the

Fig. 12 (@) shows the schematics of the benchmarked IEEfzesence of renewable energy sources. The location of the
123bus feeder. The detailed configuration, connection, andnewable energy sources at certain busgisés as follows:
Ioc_ation of power system componentg(evqltag_e regulator, 650, 632, 671, 63380, 684, and 652.Certain points are
switch, transformer, etc.) are described in Fig.(4). The needed to be clean understand the impact of renewable
reattime measurements of the local load profile (e.g., thénergy sources on the network identification objectives. The
household electrical load, commercial load, and industrifeat bar in the lefhand side of the heatap manifests the
load) for the benchmarked IEEE 1B8s system are aotied  grror in the estimated nodal admittance matrifoteethe
from the Autonomous Decentralised Renewable Energshnnection of the renewable energy sources. Likewise, the
Systems (ADRES) project repository [26]. For simplicity, pypble size and bubble colorepresent an increment of
the identified network for phase of the IEEE 123eeder is  identification error in the estimated nodal admittance matrix
demonstrated in Fig 2i(b). It shows the error itneestimated yjth the presence of renewable energy sources. One can
nodal admittace matrix of the identified —system gpserve that thaentified error in an estimated admittance
configuration. One can easily notice that identification errghatrix is accomplished withithe range of 0.35, which is
in theadmittance matrix (e.g., conductance and susceptanggjite lower tharthe nominal operating scenario. It is easy to
is quite low and accomplished within permissible limits aggtice that most ofhe bubble in the heamap is orange,
depicted in Fig. 2 (b). The presenteframework provides yellow, and skyblue colour, whih denotes a minor
swift network identification as compared to thteof-art  jncrement in identification error with integration of
least absolute shrinkage and selection operator (Lasgg@hewable energy sources Nonetheless, the presented
algorithm The advantage of the presented framework lies flamework identifies the network configuration satisfactorily

the formulation of optimization problem [2B0] and an \yith the presence of the renewable energy sources.
update of search variable can be decomposed, which means

f

stimation errors, following the switching event (a) Phase6 , (-6 Phas



