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We study the combinatorial structure of the irreducible 
characters of the classical groups GLn(C), SO2n+1(C), 
Sp2n(C), SO2n(C) and the “non-classical” odd symplectic 
group Sp2n+1(C), finding new connections to the proba-
bilistic model of Last Passage Percolation (LPP). Perturb-
ing the expressions of these characters as generating func-
tions of Gelfand-Tsetlin patterns, we produce two families 
of symmetric polynomials that interpolate between charac-
ters of Sp2n(C) and SO2n+1(C) and between characters of 
SO2n(C) and SO2n+1(C). We identify the first family as a 
one-parameter specialization of Koornwinder polynomials, for 
which we thus provide a novel combinatorial structure; on the 
other hand, the second family appears to be new. We next 
develop a method of Gelfand-Tsetlin pattern decomposition 
to establish identities between all these polynomials that, in 
the case of irreducible characters, can be viewed as branch-
ing rules. Through these formulas we connect orthogonal and 
symplectic characters, and more generally the interpolating 
polynomials, to LPP models with various symmetries, thus 
going beyond the link with classical Schur polynomials origi-
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nally found by Baik and Rains (Duke Math. J., 2001). Taking 
the scaling limit of the LPP models, we finally provide an 
explanation of why the Tracy-Widom GOE and GSE dis-
tributions from random matrix theory admit formulations in 
terms of both Fredholm determinants and Fredholm Pfaffians.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Characters of irreducible polynomial representations of complex classical groups, 
also known as Schur polynomials, are symmetric (Laurent) polynomials in variables 
x = (x1, . . . , xn) indexed by partitions, half-partitions, signed partitions or signed half-
partitions.1 They are usually classified according to the type of the associated Lie algebras 
and root systems [19]:

• type A: characters s(n)
λ (x) of the general linear group GLn(C), i.e. standard Schur 

polynomials, indexed by a partition λ = (λ1, . . . , λn). They are symmetric in their 
variables x1, . . . , xn.

• type B: characters so(2n+1)
λ (x) of the odd orthogonal group SO2n+1(C), indexed by a 

partition or half-partition λ. They are invariant under permutation of their variables 
and inversion of any of them, i.e. xi �→ x−1

i .
• type C: characters sp(2n)

λ (x) of the symplectic group Sp2n(C), indexed by a partition 
λ. They have the same invariance properties as the characters of type B.

• type D: characters so(2n)
λε

(x) of the even orthogonal group SO2n(C), indexed by a 
signed partition or signed half-partition λε = (λ1, . . . , λn−1, ελn) with sign ε ∈
{+, −}. They are symmetric and invariant under inversion of an even number of 
their variables.

1 For the precise definitions of (signed) (half-)partitions, see the beginning of Section 2.

http://creativecommons.org/licenses/by/4.0/
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All these polynomials are often expressed in terms of their Weyl character formula [19], 
which reads as a ratio of determinants. Their determinantal structure also emerges 
through the so-called Jacobi-Trudi identities and Giambelli identities [35,18]. However, 
we will mainly work with the combinatorial interpretation of the characters as generating 
functions of Gelfand-Tsetlin patterns and other similar patterns composed of interlac-
ing partitions [44,35]. Further commonly used combinatorial definitions involve Young 
tableaux instead of patterns [55]. We will be also interested in the characters sp(2n+1)

λ (x)
of the odd symplectic group Sp2n+1(C); such a group, introduced by Proctor [40], is not 
counted among the classical groups, but its characters are also given as generating func-
tions of patterns and naturally fit our framework. For a review of all the aforementioned 
characters and details about our notation, see Section 2.

Perturbing the pattern representation of the symplectic and orthogonal characters, we 
will derive two families of interpolating symmetric polynomials, indexed by a partition 
or half-partition λ (see Section 3). This has been motivated by the study of the last 
passage percolation model, as will be discussed later in the introduction.

The polynomials of the first family, which we will here refer to as CB-interpolating 
Schur polynomials and denote by sCB

λ (x; β), will be defined as weighted generating func-
tions of split orthogonal patterns via a tuning parameter β. They interpolate between 
characters of type C and B, in the sense that sCB

λ (x; 0) = sp(2n)
λ (x) and sCB

λ (x; 1) =
so(2n+1)

λ (x). Via a combinatorial bijection between certain classes of split orthogonal and 
symplectic patterns (see Subsection 3.1), we will establish the “Weyl character formula”

sCB
λ (x;β) =

det
1≤i,j≤n

(
xλi+n−i+1
j − x

−(λi+n−i+1)
j + β

[
xλi+n−i
j − x

−(λi+n−i)
j

])
det

1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j

) , (1.1)

valid for any partition λ (a similar expression holds when λ is a half-partition, see 
Theorem 3.5). A consequence of such a determinantal expression is that this family 
can be identified with a one-parameter specialization of Koornwinder polynomials (see 
Subsection 3.2), thus providing a previously unknown combinatorial structure for the 
latter.

We will also introduce a family of DB-interpolating Schur polynomials sDB
λ (x; α), defin-

ing them as weighted generating functions of orthogonal patterns via a tuning parameter 
α. These symmetric polynomials interpolate between characters of type D and B, in the 
sense that sDB

λ (x; 0) = so(2n)
λ (x) and sDB

λ (x; 1) = so(2n+1)
λ (x). To the best of our knowledge 

this family of polynomials is new.
The first purpose of the interpolating Schur polynomials is to provide a new and uni-

fying perspective of the intensively studied probabilistic model of (directed) last passage 
percolation. To briefly introduce the model, let us denote by N the set of strictly posi-
tive integers. Given a field {Wi,j} of non-negative random variables on N2, usually called 
weights or waiting times, the Last Passage Percolation (LPP) time is defined as
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(1, 1)

(10, 10)

(a) Point-to-point path starting from (1, 1)
and ending at (10, 10).

(1, 1)

{i + j = 11}

(b) Point-to-line path starting from the point 
(1, 1) and ending at any point of the (dotted) 
line {(i, j) ∈ N2 : i + j = 11}.

Fig. 1. Directed paths in N2, highlighted in red, corresponding to the two geometries specified. The picture 
is rotated by 90◦ clockwise with respect to the Cartesian coordinate system, to adapt it to the usual 
matrix/array indexing.

L := max
π∈Π

∑
(i,j)∈π

Wi,j , (1.2)

where Π is a given set of directed paths. Here, by directed path we mean any finite 
sequence π = ((i1, j1), (i2, j2), . . . ) of points of N2 such that (ik, jk) − (ik−1, jk−1) is 
either (1, 0) or (0, 1) for k > 1, as shown in Fig. 1. In particular, the point-to-point LPP 
time, which we denote by L(m, n), is taken on the set of all directed paths starting from 
(1, 1) and ending at a given (m, n) ∈ N2.

It has been known since the late 1990s that certain LPP models can be studied using 
standard Schur polynomials (of type A). The point-to-point model with geometrically 
distributed weights was the first one to be solved exactly [22], just after the related Ulam’s 
problem of the longest increasing subsequence of random permutations [3]. Considering 
an array {Wi,j : 1 ≤ i, j ≤ n} of independent non-negative integer weights distributed as

P (Wi,j = wi,j) = (1 − piqj)(piqj)wi,j ,

for parameters pi, qi ∈ (0, 1), and applying the Robinson-Schensted-Knuth (RSK) corre-
spondence [26] and its properties, one obtains

P (L(n, n) ≤ u) =
∏

1≤i,j≤n

(1 − piqj)
∑
λ1≤u

sλ(p1, . . . , pn) · sλ(q1, . . . , qn)

for u ∈ Z≥0, where the sum is over partitions λ bounded above by u. Using this exactly 
solvable structure, Johansson [22] established the celebrated n1/3 fluctuation scaling and 
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derived the Tracy-Widom GUE limiting distribution2 from random matrix theory. See 
e.g. [4] for more details.

At the same time, Baik and Rains [5] (see also [45,14,17]) considered point-to-point 
LPP problems on the square lattice {(i, j) : 1 ≤ i, j ≤ N} with various symmetries: 
about the antidiagonal {(i, j) : i + j = N + 1}, about the diagonal {(i, j) : i = j} or both 
the diagonal and the antidiagonal. In other words, in these models some of the weights 
are independent and geometrically distributed, whereas others are determined by the 
symmetry constraints. We will denote the respective last passage times, for geometrically 
distributed weights with certain choice of parameters pi’s, α, and β that will be specified3

in Section 4, as Lβ (N, N), Lα(N, N), and Lα,β(N, N). For the sake of simplicity, let us 
assume for the moment that N = 2n. Via the use of the classical RSK on square matrices 
with symmetries, it was shown [5] that such symmetric LPP models also admit exact 
expressions in terms of Schur polynomials of type A:

P
(
Lβ (2n, 2n) ≤ 2u

)
∝

∑
μ1≤2u

βoddrowsμ · s(2n)
μ (p1, . . . , p2n) , (1.3)

P
(
Lα(2n, 2n) ≤ 2u

)
∝

∑
μ1≤2u

αoddrowsμ′ · s(2n)
μ (p1, . . . , p2n) , (1.4)

P
(
Lα,0(2n, 2n) ≤ 2u

)
∝
∑
μ1≤u

s(n)
μ (p1, . . . , pn) · s(n+1)

μ (p1, . . . , pn, α) , (1.5)

where oddrowsμ counts the number of odd rows of μ, while μ′ stands for the conjugate 
partition of μ. The symbol ∝ above denotes equality up to a multiplicative constant that 
does not depend on u.

In this work we will give a new perspective for the above symmetric models and 
derive formulas that involve characters of types other than A, including the interpolating 
Schur polynomials introduced earlier. Our analysis will be based on a modified point 
of view: this time, in the presence of antidiagonal symmetry we will work with the 
alternative formulation of the LPP problem in terms of point-to-line paths (see Fig. 1b) 
and apply the RSK correspondence as a bijection between triangular arrays, instead of 
square matrices (see Section 5). In the resulting arrays, we will recognize precisely the 
patterns that generate CB-interpolating Schur polynomials, thus arriving at the following 
identities (see Theorems 4.1 and 4.9):

P
(
Lβ (2n, 2n) ≤ 2u

)
∝
[ 2n∏
i=1

pi

]u∑
λ1≤u

sCB
λ (p1, . . . , pn;β) · sCB

λ (pn+1, . . . , p2n;β),(1.6)

2 Such a distribution has been introduced in [56] to describe the fluctuations of the maximum eigenvalue 
of an asymptotically large random matrix from the Gaussian Unitary Ensemble (GUE).
3 More precisely, the pi’s are the parameters of the geometric distributions, whereas the parameters β and 

α modulate the intensity of the weights on the antidiagonal and diagonal, respectively (in the presence of 
antidiagonal and diagonal symmetry, respectively).
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P
(
Lα,β(2n, 2n) ≤ 2u

)
∝
[

n∏
i=1

pi

]u ∑
λ1≤u

αoddrows(un−λ)′ · sCB
λ (p1, . . . , pn;β) . (1.7)

Here, un is the partition with n parts equal to u, whereas un−λ denotes the complement 
of λ with respect to un (see beginning of Section 2 for more precise definitions). In The-
orem 4.1 we will also obtain other exact expressions for Lβ in terms of CB-interpolating 
Schur polynomials. Observe that, in fact, (1.7) is more general than (1.5) as it does not 
require β = 0. Furthermore, even though via a more indirect method, we will derive an 
identity for the diagonally symmetric LPP model in terms of even orthogonal characters:

P
(
Lα(2n, 2n) ≤ 2u

)
∝
[
α

2n∏
i=1

pi

]u ∑
λ1≤u

so(2n+2)
(u,λδ) (p−1

1 , . . . , p−1
n , α−1) · so(2n)

λδ
(p−1

n+1, . . . , p
−1
2n ) .

(1.8)

In Theorem 4.5 we will also obtain other exact expressions for this model in terms of 
even orthogonal characters as well as DB-interpolating Schur polynomials.

Besides the fact that our analysis leads to, apparently, unnoticed links between ex-
actly solvable probabilistic models and fundamental algebraic structures, our identities 
have a significance in terms of asymptotic analysis. Indeed, they structurally explain 
the duality between Pfaffian and determinant formulations of certain universal random 
matrix distributions that appear as a scaling limit of LPP models.

To see this, notice first that (1.3), (1.4) and (1.7) are bounded Littlewood identities, i.e. 
(weighted) sums, over bounded partitions, of Schur polynomials indexed by the given par-
tition. On the other hand, (1.5), (1.6) and (1.8) are bounded Cauchy identities, i.e. sums, 
over bounded partitions, of products of two Schur polynomials indexed by (essentially) 
the same partition. Therefore, whenever Baik and Rains’ formulas are of Littlewood 
type, ours are of Cauchy type, and vice versa. Now, as mentioned earlier, all the char-
acters of the classical groups, and remarkably also CB-interpolating polynomials, can 
be expressed as determinantal functions via formulas of Weyl character type. Thanks to 
the well-known Andréief’s identity and de Bruijn identity (see Section 8) that express 
integrals/sums of determinantal functions as either determinants or Pfaffians, one can 
easily see that Littlewood identities lead to Pfaffian measures, whereas Cauchy identities 
lead to determinantal measures. Therefore, whenever a formula of Baik and Rains leads 
to a Pfaffian measure, ours leads to a determinantal measure, and vice versa.

The duality between Pfaffian and determinantal measures that emerges from com-
paring Baik and Rains’ formulas with ours at a finite n level also induces an analogous 
duality at the n → ∞ asymptotic level. It is well known (see [22,6,2]) that certain LPP 
times, when suitably centered and normalized at the fluctuation scale n1/3, converge 
to limiting distributions from random matrix theory, such as the fundamental Tracy-
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Widom GUE, GOE and GSE laws.4 Therefore, from this standpoint, the finite-n duality 
just described translates into a dual structure for such universal limiting distributions. In 
Section 8 we will analyze two notable cases: the Tracy-Widom GOE (as a scaling limit of 
the antidiagonally symmetric LPP L0 (2n, 2n)) and the Tracy-Widom GSE (as a scaling 
limit of the diagonally symmetric LPP L0 (2n, 2n)).5 Originally, these distributions were 
expressed in terms of infinite-dimensional Pfaffians, wider known as Fredholm Pfaffians, 
as well as in terms of Painlevé functions [57,58]. It was later found out [50,15] that they 
also possess a representation in terms of infinite-dimensional determinants, i.e. Fredholm 
determinants. The equivalence between the two formulations was shown in [15] by means 
of sophisticated linear operator tricks. On the other hand, the duality between Pfaffian 
and determinantal measures, that we establish, sheds light on the structural foundations 
of this duality. Namely, Baik and Rains’ formulas (1.3) and (1.4) for L0 (2n, 2n) and 
L0 (2n, 2n) lead to the Fredholm Pfaffian representations of the GOE and GSE Tracy-
Widom distributions, respectively, while our dual formulas (1.6) and (1.8) lead to the 
corresponding Fredholm determinant representations. Notice that, even though we do 
not undertake this task here (as it would require a longer asymptotic analysis), it should 
be also possible to obtain a non-trivial Fredholm Pfaffian representation of the GUE 
Tracy-Widom distribution from our formula (1.7) for L0,0(2n, 2n), dual to the Fredholm 
determinant representation that can be derived from (1.5).

Another purpose of this article is to generalize and unify identities between the char-
acters of the classical groups through interpolating Schur polynomials. The first kind of 
identities (see Section 6) describe how a Schur polynomial of rectangular or bi-rectangular
shape6 can be expressed as a bounded Cauchy sum for Schur polynomials of the same 
type. Given two sets of variables x = (x1, . . . , xn) and y = (y1, . . . , ym) and denoting 
x−1 := (x−1

1 , . . . , x−1
n ), we will prove:

s(n+m)
(un,vm)(x, y) =

[
n∏

i=1
xi

]u [ m∏
i=1

yi

]v ∑
μ1≤u−v

s(n)
μ (x−1) · s(m)

μ (y) (1.9)

and, assuming that n ≥ m,

sCB
un+m(x, y;β) =

∑
λ1≤u

sCB
(un−m,λ)(x;β) · sCB

λ (y;β) , (1.10)

sp(2n+2m+2)
un+m+1 (x, y, s) = s−u

∑
λ1≤u

sp(2n+1)
(un−m,λ)(x; s) · sp(2m+1)

λ (y; s) , (1.11)

4 Analogously to the GUE case, the GOE and GSE Tracy-Widom distributions have been introduced to 
describe the fluctuations of the maximum eigenvalue of an asymptotically large random matrix from the 
Gaussian Orthogonal Ensemble (GOE) and Gaussian Symplectic Ensemble (GSE), respectively [57].
5 The reason why in this context we consider the LPP models with β = 0 and α = 0 is not only convenience: 

if the value of α is too high, the asymptotic behavior becomes diffusive, i.e. with fluctuation scale n1/2 and 
Gaussian limiting distribution. See [2] for more details.
6 A rectangular (signed) (half-)partition is of the form un

ε = (u, . . . , εu), where ε = ±. A bi-rectangular 
partition (commonly known as a fat hook, see e.g. [53]) is of the form (un, vm) = (u, . . . , u, v, . . . , v).
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so(2n+2m)
un+m
ε

(x, y) =
∑
λ1≤u

so(2n)
(un−m,λδ)(x) · so(2m)

λδε
(y) . (1.12)

In representation theory, these are known as branching rules. In particular, (1.9) indicates 
how irreducible polynomial representations of GLn+m(C) associated to bi-rectangular 
partitions decompose when restricted to GLn(C) ⊗GLm(C). Notice that (1.10) special-
izes, for β = 0 and β = 1, to the corresponding identities for even symplectic characters 
and odd orthogonal characters, respectively: thus, for β = 0 and β = 1, (1.10) describes 
how irreducible polynomial representations of Sp2(n+m)(C) and SO2(n+m)+1(C), associ-
ated to rectangular (half-)partitions, decompose when restricted to Sp2n(C) ⊗ Sp2m(C)
and SO2n+1(C) ⊗SO2m+1(C), respectively. Finally, (1.11) and (1.12) describe how certain 
irreducible polynomial representations of Sp2(n+m+1)(C) and SO2(n+m)(C) decompose 
when restricted to Sp2n+1(C) ⊗ Sp2m+1(C) and SO2n(C) ⊗ SO2m(C), respectively. The 
identities that involve characters of classical groups were first proved in [38] using in-
tricate determinantal calculus based on the Weyl character formulas and the so-called 
minor summation formulas (a generalization of the Cauchy-Binet identity and the de 
Bruijn identity).7 Our contribution in this respect is to introduce a simple method of de-
composition of Gelfand-Tsetlin (and analogous) patterns of rectangular or bi-rectangular 
shape and use it to provide new combinatorial bijective proofs of Okada’s identities, thus 
shedding light on their structure. Our method of pattern decomposition is also suitable 
to prove formula (1.10), which is a generalization to CB-interpolating Schur polynomials, 
and formula (1.11) for odd symplectic characters, which was not dealt with in [38].8 We 
also expect this method to be applicable in wider settings, for more general functions 
that possess a similar combinatorial – but not necessarily determinantal – structure. As 
pointed out by an anonymous referee, (1.9) also admits an alternative, purely algebraic 
proof, which we outline in Subection 6.3; in particular, it is essentially a version of a well-
known decomposition formula for skew Schur functions. It is not clear to us, but it would 
be interesting to investigate, if this type of argument extends to the other decomposition 
identities (1.10)-(1.11)-(1.12).

Another set of identities that we will prove express an interpolating Schur polynomial 
of rectangular shape as a Littlewood sum of standard Schur polynomials:

sCB
uN (x1, . . . , xN ;β) =

[
N∏
i=1

xi

]−u ∑
μ1≤2u

βoddrowsμ · s(N)
μ (x1, . . . , xN ) , (1.13)

sDB
uN (x−1

1 , . . . , x−1
N ;α) =

[
N∏
i=1

xi

]−u ∑
μ1≤2u

αoddrowsμ′ · s(N)
μ (x1, . . . , xN ) , (1.14)

7 More specifically, Okada proved: (1.9) for v = 0 and n ≥ m; (1.10) for β = 0, 1; and (1.12).
8 A recent preprint by Okada [39], which appeared on arXiv after the present work, contains also a 

proof of (1.11) that relies on the same techniques as [38]. Therein this odd symplectic character identity is 
attributed to previous unpublished work of Brent-Krattenthaler-Warnaar.
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and, somewhat conversely, we will express a standard Schur polynomial of rectangular 
shape as a Littlewood sum of symplectic characters:

s(2n+1)
un (x−1

1 , . . . , x−1
n , x1, . . . , xn, α) =

∑
λ1≤u

αoddrows(un−λ)′ · sp(2n)
λ (x1, . . . , xn). (1.15)

The proofs we provide rely on certain identities established by Krattenthaler [31] for 
characters of “nearly rectangular” shape (see Section 7). This set of identities generalizes 
and unifies, by means of interpolating Schur polynomials, scattered identities in the 
literature for characters of various types: the specializations to β = 0, 1 and α = 0, 1
can be found in [51,35,38,31]. Notice also that the α = β = 0, u → ∞ versions of (1.13)
and (1.14) are classical (unbounded) Littlewood identities [34].

Let us mention that analogous identities at the level of elliptic functions and BC 
symmetric polynomials and in the form of Selberg type integrals (generalizing random 
matrix related integrals) were established by Rains [46–48]. However, it is not obvious 
whether (1.13), (1.14) and (1.15) specifically fall within Rains’ theory.

Organization of the article. In Section 2 we review the characters of classical groups, 
expressed both as generating functions of Gelfand-Tsetlin (and analogous) patterns and 
as ratios of determinants via the Weyl character formulas. In Section 3 we define CB-
and DB-interpolating Schur polynomials and establish various properties, including a 
determinantal formula of Weyl character type for the CB-interpolating polynomials. In 
Section 4 we present in detail and discuss our results that relate three symmetric last 
passage percolation models to the characters of various types and to the interpolating 
Schur polynomials; all these results are proved in the next sections. In Section 5 we 
show how the RSK correspondence applied to triangular arrays directly leads to new 
exact formulas for the aforementioned LPP models in terms of (interpolating) Schur 
polynomials of type other than A. In Section 6 we develop a method of decomposition 
of Gelfand-Tsetlin and related patterns, that we use to prove decomposition formu-
las (1.9)-(1.12) for (interpolating) Schur polynomials of rectangular shape. In Section 7
we prove identities (1.13)-(1.15) for (interpolating) Schur polynomials of (bi-)rectangular 
shape. Finally, in Section 8 we explain how our formulas, in the scaling limit, explain 
the duality between Fredholm determinant and Fredholm Pfaffian structures in certain 
universal random matrix distributions.

2. Gelfand-Tsetlin patterns and characters

Let us start by recalling some terminology. We call half-integer any number that is 
half of an odd integer, or equivalently any number of the form n +1/2 with n ∈ Z. We call
(unsigned) real n-partition an n-tuple λ = (λ1, . . . , λn) of real numbers such that λ1 ≥
λ2 ≥ · · · ≥ λn ≥ 0. We call signed real n-partition an n-tuple λε = (λ1, . . . , λn−1, ελn), 
where (λ1, . . . , λn) is a real n-partition and ε is a sign. Clearly, every real n-partition 
λ is in particular a signed real n-partition with positive sign, i.e. λ = λ+; on the other 
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hand, we have λ+ = λ− if and only if λn = 0. The parts of a signed real n-partition λε

are the λi’s and its length is the number of non-zero parts. When the parts are taken 
to be all integers or all half-integers, we obtain a signed n-partition or n-half-partition, 
respectively; notice that a signed n-half-partition is always of length n, whereas a signed 
n-partition may have smaller length. One can also view any signed real n-partition as 
an infinite real sequence by setting λi := 0 for all i > n. Therefore, it makes sense to 
refer to a signed real partition without reference to its maximum length n; however, we 
remark that a signed real partition with negative sign and length m ≤ n is a signed real n-
partition only when m = n (e.g., (3, 3, −1, 0, 0, . . . ) is a signed 3-partition but not a signed 
4-partition). Denoting by |·| the 1-norm of sequences, we have |λ+| = |λ−| =

∑
i≥1 λi. 

We denote by ∅ := (0, 0, . . . ) the partition of length zero.
An integer partition λ is usually depicted as a Young diagram, i.e. a collection of 

left-aligned square boxes containing λi squares in row i (counting from the top).
The conjugate partition of λ, denoted by λ′, is defined by setting λ′

i to be the number 
of j ≥ 1 such that λj ≥ i. For instance, the Young diagram of the partition λ = (4, 3) is 

and its conjugate partition is λ′ = (2, 2, 2, 1).
Given two signed real partitions μδ and λε, we write μδ ⊆ λε if λi ≥ μi for i ≥ 1; for 

integer partitions, this graphically means inclusion of the corresponding Young diagrams. 
If the stronger condition λi ≥ μi ≥ λi+1 (i ≥ 1) holds, then we say that μδ upwards 
interlaces with λε and write μδ ≺ λε. Notice that, in these definitions, the signs ε and δ
do not play any role. A rectangular signed real n-partition un

ε is the n-tuple (u, . . . , εu), 
where u ∈ R, u ≥ 0, and ε is a sign. If λ ⊆ un, then we denote by

un − λ := (u− λn, . . . , u− λ1) (2.1)

the complement partition of λ with respect to un. If λ is an integer partition, then

oddrowsλ :=
∑
i≥1

(λi mod 2) (2.2)

is the number of odd rows of the corresponding Young diagram (i.e. the number of odd 
parts of λ). Notice that, if λ ⊆ un, then we have

oddrowsλ′ =
n∑

i=1
(−1)i−1λi , oddrows(un − λ)′ =

n∑
i=1

(−1)n−i(u− λi) . (2.3)

A Young tableau is a Young diagram filled with symbols from an ordered set. A
semi-standard Young tableau T is a Young tableau with entries that strictly increase 
down columns and weakly increase along rows; the shape of T , denoted by sh(T ), is the 
partition associated with the underlying Young diagram.

In the following subsections we review Schur polynomials of types A, B, C and D, 
including Proctor’s “odd symplectic” ones, which we define both as generating functions 
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z1,1

z2,1z2,2

z3,1z3,2z3,3

zn,1zn,n

≤ ≤

≤ ≤ ≤ ≤

(a) Generic Gelfand-Tsetlin pattern of height n.

1

41

520

5310

≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

(b) A Gelfand-Tsetlin pattern of height 4, shape 
(5, 3, 1, 0) and type (1, 4, 2, 2).

Fig. 2. Gelfand-Tsetlin patterns. The entries are non-negative integers and the inequalities illustrate the 
interlacing conditions.

of the corresponding Gelfand-Tsetlin (or analogous) patterns and via their Weyl char-
acter formulas. For more details and for the equivalence of the two definitions, we refer 
to [44]. For the representation theoretic significance of these polynomials as irreducible 
characters of the associated groups, the reader may consult [19].

2.1. Gelfand-Tsetlin patterns and general linear characters

A reparameterization of a certain kind of Young tableaux leads to the notion of 
Gelfand-Tsetlin patterns. A Gelfand-Tsetlin pattern of height n – see Fig. 2 – is a trian-
gular array z = (zi,j)1≤j≤i≤n with non-negative integer entries that satisfy the interlacing 
conditions:

zi+1,j+1 ≤ zi,j ≤ zi+1,j for all meaningful i, j . (2.4)

We define the shape of z, denoted by sh(z), its bottom row (zn,1, . . . , zn,n). We define 
the type of z as the n-tuple type(z) ∈ Zn

≥0 with entries

type(z)i :=
i∑

j=1
zi,j −

i−1∑
j=1

zi−1,j for 1 ≤ i ≤ n ,

where the convention (that we always adopt from now on) is that the empty sum equals 
zero.

A Gelfand-Tsetlin pattern z of height n and shape λ can be equivalently viewed as an 
upwards interlacing sequence

Λ =
(
∅ = λ(0) ≺ λ(1) ≺ · · · ≺ λ(n) = λ

)
,

with λ(i) being an i-partition for 0 ≤ i ≤ n, by setting λ(i)
j := zi,j .

Moreover, we can map a semi-standard Young tableau T in the alphabet 1 < 2 <
· · · < n to a Gelfand-Tsetlin pattern z of height n by setting zi,j to be the number of 
entries not greater than i in row j of T , for 1 ≤ j ≤ i ≤ n.
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Notice that, in the equivalence z ↔ Λ ↔ T , we have sh(z) = λ = sh(T ) and type(z)i =
|λ(i)| − |λ(i−1)| = #{i’s in T}.

Schur polynomials of type A can be now defined as generating functions of Gelfand-
Tsetlin patterns (or, equivalently, semi-standard Young tableaux). Given an n-partition 
λ, let us denote by GT(n)

λ the set of all Gelfand-Tsetlin patterns of height n and shape 
λ.

Definition 2.1. The Schur polynomial in n variables x = (x1, . . . , xn) indexed by an 
n-partition λ is defined by

s(n)
λ (x) :=

∑
z∈GT(n)

λ

n∏
i=1

x
type(z)i
i . (2.5)

Schur polynomials are characters of GLn(C) and as such they are invariant under the 
action of the associated Weyl group Sn: namely, they are invariant under permutation 
of the variables x1, . . . , xn. Schur polynomials are determinantal, in the sense that they 
can be expressed as ratios of determinants via the Weyl character formula:

s(n)
λ (x) =

det
1≤i,j≤n

(
xλi+n−i
j

)
det

1≤i,j≤n

(
xn−i
j

) , (2.6)

where the denominator is the Vandermonde product 
∏

1≤i<j≤n(xi −xj). An elementary 
proof of the equivalence of (2.5) and (2.6), which does not resort to representation theo-
retic techniques, can be found in [41]. The symmetry property is immediate from (2.6), 
while it is not obvious from their combinatorial definition (2.5). Schur polynomials can 
also be expressed as single determinants of elementary or complete homogeneous sym-
metric polynomials via the so-called Jacobi-Trudi identities [18].

Finally, we mention a couple of properties of Schur polynomials that will turn out to 
be useful later on: denoting λ + t := (λ1 + t, . . . , λn + t), and recalling (2.1), we have

s(n)
λ+t(x1, . . . , xn) =

[
n∏

i=1
xi

]t
s(n)
λ (x1, . . . , xn) for t ≥ 0 , (2.7)

s(n)
un−λ(x1, . . . , xn) =

[
n∏

i=1
xi

]u
s(n)
λ (x−1

1 , . . . , x−1
n ) for u ≥ λ1 . (2.8)

These are obtained by using the changes of variables zi,j �→ zi,j+t and zi,j �→ u −zi,i−j+1

in (2.5), respectively.
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z1,1

z2,1

z3,1z3,2

z4,1z4,2

zN,1zN,�N/2�

≤

≤ ≤

≤ ≤ ≤

(a) Generic symplectic pattern of height N .

1

2

20

41

531

532

≤

≤ ≤

≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤

(b) A symplectic pattern of height 6, shape 
(5, 3, 2), and type (1, 1, 0, 3, 4, 1).

Fig. 3. Symplectic patterns. The entries are non-negative integers and the inequalities illustrate the inter-
lacing conditions.

2.2. Symplectic patterns and characters

The even symplectic group Sp2n(C) is the group of all non-singular complex matrices 
of order 2n that preserve a non-degenerate skew-symmetric bilinear form. It is a classical 
group with root system and Weyl group of type C. Since there are no non-degenerate 
skew-symmetric bilinear forms on odd dimensional spaces, this definition makes sense 
only in the even case. However, Proctor [40] proposed an extended definition of symplectic 
group, requiring that matrices preserve a skew-symmetric bilinear form of maximal rank. 
This allows defining the odd symplectic group Sp2n+1(C). Odd symplectic groups are 
neither simple nor reductive, hence they are not counted among the classical groups. 
They are, in various ways, related to root systems and Weyl groups of all three types B, 
C, and D – see [40] for details.

Besides the differences between even and odd symplectic groups, their characters are 
characterized by a very similar combinatorial definition as generating functions of certain 
patterns. For this reason, we introduce them simultaneously in this subsection.

A symplectic pattern of height N – see Fig. 3 – is a “half-triangular” array z =
(zi,j)1≤i≤N, 1≤j≤�i/2� with non-negative integer entries that satisfy the interlacing con-
ditions (2.4). Its shape is the bottom row sh(z) := (zN,1, . . . , zN,�N/2�) and its type is 
the N -tuple type(z) ∈ ZN

≥0 defined by

type(z)i :=
�i/2�∑
j=1

zi,j −
�(i−1)/2�∑

j=1
zi−1,j for 1 ≤ i ≤ N . (2.9)

A symplectic pattern z of height N and shape λ can be equivalently viewed as an 
upwards interlacing sequence

Λ =
(
∅ = λ(0) ≺ λ(1) ≺ · · · ≺ λ(N) = λ

)
,
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with λ(i) being an 
i/2�-partition for 0 ≤ i ≤ N , by setting λ(i)
j = zi,j .

Similarly to the standard Gelfand-Tsetlin case, symplectic patterns are in a bijective 
correspondence with the so-called “symplectic tableaux”; the latter have been introduced 
by King [23,24] in the even N case, and by Proctor [40] in the odd N case. Consider a 
semi-standard Young tableaux T in the alphabet 1 < 1 < 2 < 2 < · · · < n < n when 
N = 2n (respectively, in the alphabet 1 < 1 < 2 < 2 < · · · < n < n < n + 1 when 
N = 2n + 1), and such that all entries in row i are larger than or equal to i. Setting 
z2i−1,j to be the number of entries not greater than i in the j-th row of T and z2i,j to 
be the number of entries not greater than i in the j-th row of T , we obtain a symplectic 
pattern z of height N . In the equivalence z ↔ Λ ↔ T , we have sh(z) = λ = sh(T ), 
type(z)2i−1 = |λ(2i−1)| − |λ(2i−2)| = #{i’s in T}, and type(z)2i = |λ(2i)| − |λ(2i−1)| =
#{i’s in T}.

Symplectic Schur polynomials can be now defined as generating functions of symplec-
tic patterns (or, equivalently, symplectic tableaux). Given an 
N/2�-partition λ, let us 
denote by spP(N)

λ the set of all symplectic patterns of height N and shape λ.

Definition 2.2. The (2n)-symplectic Schur polynomial indexed by an n-partition λ is the 
Laurent polynomial in variables x = (x1, . . . , xn) defined by

sp(2n)
λ (x) :=

∑
z∈spP(2n)

λ

n∏
i=1

x
type(z)2i−type(z)2i−1
i . (2.10)

As characters of Sp2n(C), symplectic Schur polynomials are invariant under the action 
of the associated Weyl group (Z/2Z)n � Sn of type BC, i.e. they do not change if the 
variables x1, . . . , xn are permuted or any of them is replaced by its multiplicative inverse. 
One can deduce these properties from the Weyl character formula:

sp(2n)
λ (x) =

det
1≤i,j≤n

(
xλi+n−i+1
j − x

−(λi+n−i+1)
j

)
det

1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j

) . (2.11)

An “elementary” proof of the latter, not relying on any representation theory, can be 
found in [43].

Definition 2.3. The (2n +1)-symplectic Schur polynomial indexed by an (n +1)-partition 
λ is the Laurent polynomial in variables x = (x1, . . . , xn) and y defined by

sp(2n+1)
λ (x; y) :=

∑
z∈spP(2n+1)

λ

n∏
i=1

x
type(z)2i−type(z)2i−1
i ytype(z)2n+1 . (2.12)

Odd symplectic Schur polynomials are characters of Sp2n+1(C). They are invariant 
under the action of the Weyl group of type BC on the x-variables only. Namely, they do 
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not change if the variables x1, . . . , xn are permuted or any of them is inverted; however, 
they have no invariance property with respect to the variable y. A Weyl character formula 
for odd symplectic characters was given in [40] for the special case y = 1. A formula for 
general y has recently appeared in [39]:

sp(2n+1)
λ (x; y) =

det
1≤i,j≤n+1

(Aλ)

det
1≤i,j≤n+1

(A∅) , (2.13)

where, for any (n + 1)-partition μ, Aμ is the (n + 1) × (n + 1) matrix with (i, j)-entry

{(
xμi+n−i+2
j − x

−(μi+n−i+2)
j

)
− y−1(xμi+n−i+1

j − x
−(μi+n−i+1)
j

)
if 1 ≤ j ≤ n ,

yμi+n−i+1 if j = n + 1 .

Similarly to the standard Schur polynomials associated with GLn(C), the symplectic 
ones also have further determinantal expressions, such as the Jacobi-Trudi identities [18,
40].

2.3. Orthogonal patterns and characters

The (special) orthogonal group SON (C) is the group of all complex orthogonal matri-
ces of order N with determinant 1. Usually, characters of the even and odd orthogonal 
groups (which are of type D and B respectively) are combinatorially defined using var-
ious types of tableaux – see [24,27,28,54,55,44]. We will rather focus on two equivalent 
constructions of these polynomials as generating functions of patterns of two different 
kinds.

The first kind of pattern we deal with was first introduced by Gelfand and Tsetlin [20]
and further studied by Proctor [44]. Let us define an orthogonal pattern of height N – 
see Fig. 4 – to be a “half-triangular” array z = (zi,j)1≤i≤N, 1≤j≤�i/2� that satisfies the 
following properties:

• the entries are either all simultaneously integers or all simultaneously half-integers;
• the entries z2i−1,i for 1 ≤ i ≤ 
N/2�, which we call odd ends,9 can be also negative, 

whereas all other entries are non-negative;
• the interlacing conditions hold in absolute value10:

|zi+1,j+1| ≤ |zi,j | ≤ |zi+1,j | for all meaningful i, j . (2.14)

9 This terminology is motivated by the fact that these entries are the last elements of odd rows of z.
10 Here, |·| denotes the absolute value of a number, whereas elsewhere in this work it denotes the 1-norm 
of a tuple.
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0

2

3−1

53

54−3

654

≤

≤ ≤

≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤

(a) An orthogonal pattern of height 6, shape 
(6, 5, 4), and type (0, 2, 2, 4, 4, 3).

−2.5

2.5

5.50.5

7.51.5

7.57.5−0.5

≤

≤ ≤

≤ ≤ ≤

≤ ≤ ≤ ≤

(b) An orthogonal pattern of height 5, shape 
(7.5, 7.5, −0.5), and type (2.5, 0, 3.5, 3, 6.5).

Fig. 4. Orthogonal patterns. The generic orthogonal pattern has the same graphical representation as a 
symplectic pattern of the same height, see Fig. 3a. However, the entries here are either all integers or 
all half-integers, and odd ends are also allowed to be negative. The interlacing conditions, illustrated by 
inequalities, hold in absolute value.

The shape of z is its bottom row sh(z) := (zN,1, . . . , zN,�N/2�), which is an n-partition or 
n-half-partition, with or without sign according to whether N = 2n − 1 or N = 2n. We 
define the type of z as in the previous subsections but considering the absolute values 
of the entries:

type(z)i :=
�i/2�∑
j=1

|zi,j | −
�(i−1)/2�∑

j=1
|zi−1,j | for 1 ≤ i ≤ N , (2.15)

so that we have type(z) ∈
( 1

2Z≥0
)N .

For a given signed n-partition (respectively, signed n-half-partition) λε, an orthogonal 
pattern z of height 2n − 1 and shape λε can be equivalently viewed as an upwards 
interlacing sequence

Λ =
(
∅ = λ(0) ≺ λ(1)

ε1 ≺ λ(2) ≺ · · · ≺ λ(2n−3)
ε2n−3

≺ λ(2n−2) ≺ λ(2n−1)
ε2n−1

= λε

)
such that:

• λ
(2i−1)
ε2i−1 is a signed i-partition (respectively, a signed i-half-partition) for 1 ≤ i ≤ n;

• λ(2i) is an i-partition (respectively, an i-half-partition) for 0 ≤ i ≤ n − 1.

An orthogonal pattern of height 2n can be viewed as an analogous upwards interlacing 
sequence that, this time, ends with an unsigned n-(half-)partition.

Orthogonal patterns can be also shown to bijectively correspond to the so-called signed 
orthogonal tableaux – see [43, §8] for details.

As we will shortly see, both even and odd orthogonal Schur polynomials can be defined 
as generating functions of orthogonal patterns; however, the weight monomials differ from 
the ones used in the symplectic case.
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Let us start with the even case. Given a signed n-partition or signed n-half-partition 
λε, let us denote by oP(2n−1)

λε
the set of all orthogonal patterns of height 2n − 1 and 

shape λε. From now on, we set sgn(a) := +1 for a ≥ 0 and sgn(a) := −1 for a < 0.

Definition 2.4. The (2n)-orthogonal Schur polynomial indexed by a signed n-partition or 
signed n-half-partition λε is the Laurent polynomial in variables x = (x1, . . . , xn) defined 
by

so(2n)
λε

(x) :=
∑

z∈oP(2n−1)
λε

x
z1,1
1

n∏
i=2

x
sgn(z2i−3,i−1) sgn(z2i−1,i)[type(z)2i−1−type(z)2i−2]
i . (2.16)

Notice that the exponent of x1 in (2.16) can be also expressed, as the exponents 
of the other variables, in terms of the type of z and the sign of the odd ends: z1,1 =
sgn(z1,1) type(z)1.

As characters of SO2n(C), (2n)-orthogonal Schur polynomials are invariant under 
the action of the associated Weyl group (Z/2Z)n−1 � Sn of type D. Namely, they are 
invariant under permutation of the variables x1, . . . , xn and multiplicative inversion of 
an even number of them. These properties can be deduced from the Weyl character 
formula:

so(2n)
λε

(x) =
det

1≤i,j≤n

(
xλi+n−i
j + x

−(λi+n−i)
j

)
+ ε det

1≤i,j≤n

(
xλi+n−i
j − x

−(λi+n−i)
j

)
det

1≤i,j≤n

(
xn−i
j + x

−(n−i)
j

) . (2.17)

It is not difficult to prove, for example starting from Definition 2.4, the following 
property that will be useful later on to deduce Corollary 4.6:

lim
α↓0

αk so(2n+2)
(k,λε) (x1, . . . , xn, α

−1) = so(2n)
λε

(x1, . . . , xn) (2.18)

for any integer (respectively, half-integer) k such that k ≥ λ1, assuming that λε is a 
signed n-partition (respectively, signed n-half-partition).

Let us now pass to odd orthogonal characters. Given an n-partition or n-half-partition 
λ, let us denote by oP(2n)

λ the set of all orthogonal patterns of height 2n and shape λ.

Definition 2.5. The (2n + 1)-orthogonal Schur polynomial indexed by an n-partition or 
n-half-partition λ is the Laurent polynomial in variables x = (x1, . . . , xn) defined by

so(2n+1)
λ (x) :=

∑
z∈oP(2n)

λ

x
z1,1
1

n∏
i=2

x
sgn(z2i−3,i−1) sgn(z2i−1,i)[type(z)2i−1−type(z)2i−2]
i . (2.19)

Notice that the weight monomials in (2.16) and (2.19) coincide, but the sets of patterns 
over which the sums are taken differ. Observe also that the shape λ does not appear in 
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the weights of (2.19): it just plays the role of “bounding from above” the entries of the 
previous rows.

The Weyl group of SO2n+1(C) is of type BC, as was the case for Sp2n(C); this means 
that, as characters of SO2n+1(C), (2n + 1)-orthogonal Schur polynomials are invariant 
under permutation of the variables x1, . . . , xn and multiplicative inversion of any xi. This 
property immediately follows from the Weyl character formula:

so(2n+1)
λ (x) =

det
1≤i,j≤n

(
x
λi+n−i+1/2
j − x

−(λi+n−i+1/2)
j

)
det

1≤i,j≤n

(
x
n−i+1/2
j − x

−(n−i+1/2)
j

) . (2.20)

A property that relates odd and even orthogonal characters indexed by a “rectangular 
(half-)partition” uk := (u, . . . , u)︸ ︷︷ ︸

k times

is the following:

so(2n+2)
un+1
ε

(x1, . . . , xn, 1) = so(2n+1)
un (x1, . . . , xn) , (2.21)

with u ∈ 1
2Z≥0 and ε = ± being any sign. The latter can be easily verified using 

Definitions 2.4 and 2.5 and noticing that, due to the interlacing conditions, the first 
2n rows of an orthogonal pattern of height 2n + 1 and shape un+1

ε form an orthogonal 
pattern of height 2n and shape un.

Crucially for the development of this work, odd orthogonal characters can be also 
defined as generating functions of another kind of patterns, introduced by Proctor [44], 
where no negative entries are allowed but integer and half-integer entries might be si-
multaneously present. Let us introduce them. We call split orthogonal pattern of height 
2n – see Fig. 5 – any “half-triangular” array z = (zi,j)1≤i≤2n, 1≤j≤�i/2� of height 2n that 
satisfies the following properties:

• the entries z2i−1,i for 1 ≤ i ≤ n, which again we call odd ends, are in 1
2Z≥0;

• the other entries are either all simultaneously in Z≥0 or all simultaneously in 12 +Z≥0;
• the usual interlacing conditions (2.4) hold.

Assuming that z2n,1 is an integer (respectively, half-integer), we call atypical all the half-
integer (respectively, integer) entries of the array. According to the conditions above, 
atypical entries are necessarily odd ends, as shown in Fig. 5. Notice that, by definition, 
any symplectic pattern is a split orthogonal pattern of the same height where all entries 
are integers (in particular, with no atypical entries). The definitions of shape and type 
are the usual ones; just notice that the shape of a split orthogonal pattern of height 2n is 
either an n-partition or an n-half-partition, as even rows do not contain atypical entries.

For a given n-partition (respectively, n-half-partition) λ, a split orthogonal pattern z
of height 2n and shape λ can be equivalently viewed as an upwards interlacing sequence

Λ =
(
∅ = λ(0) ≺ λ(1) ≺ · · · ≺ λ(2n) = λ

)



E. Bisi, N. Zygouras / Advances in Mathematics 404 (2022) 108453 19
2

2

30

43

632.5

653

≤

≤ ≤

≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤

(a) A split orthogonal pattern of height 6, shape 
(6, 5, 3), and type (2, 0, 1, 4, 4.5, 2.5), with one 
atypical entry 2.5.

3

3.5

3.50.5

4.51.5

7.51.51

8.53.51.5

≤

≤ ≤

≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤

(b) A split orthogonal pattern of height 6, shape 
(8.5, 3.5, 1.5), and type (3, 0.5, 0.5, 2, 4, 3.5), 
with atypical entries 3, 1.

Fig. 5. Split orthogonal patterns. The generic split orthogonal pattern has the same graphical representation 
as a symplectic pattern of the same height, see Fig. 3a. All entries are non-negative, but may be either 
integers or half-integers here, with the constraint that all entries except odd ends are of the same type. As 
usual, the inequalities illustrate the interlacing conditions.

such that:

• λ(2i−1) is a real i-partition with the first i −1 parts in Z≥0 (respectively, in 1
2 +Z≥0) 

and the i-th part in 1
2Z≥0, for 1 ≤ i ≤ n;

• λ(2i) is an i-partition (respectively, an i-half-partition) for 0 ≤ i ≤ n.

Split orthogonal patterns bijectively correspond to certain tableaux introduced by 
Koike and Terada [27,28]. Consider a semi-standard Young tableaux T in the alphabet 
1 < 1̊ < 1 < 2 < 2̊ < 2 < · · · < n < n̊ < n such that (i) all entries in row i are larger 
than or equal to i and (ii) symbol ̊ i appears at most once in row i and never in any 
other row. The bijection then works similarly as the one between symplectic tableaux 
and symplectic patterns, with the convention that each extra symbol ̊i should be counted 
both as a half i and as a half i. More precisely, set z2i−1,j to be the number of entries 
not greater than i in the j-th row of T , increased by 1/2 if the j-th row also contains ̊i; 
also, set z2i,j to be the number of entries not greater than i in the j-th row of T . Then, 
z is a split orthogonal pattern of height 2n. In the correspondence z ↔ Λ ↔ T , we have 
sh(z) = λ = sh(T ), type(z)2i−1 = |λ(2i−1)| −|λ(2i−2)| = #{i’s in T} + 1

2#{̊i’s in T}, and 
type(z)2i = |λ(2i)| − |λ(2i−1)| = #{i’s in T} + 1

2#{̊i’s in T}.
It turns out that odd orthogonal Schur polynomials can be also defined as generat-

ing functions of split orthogonal patterns, using the same weight monomials as in the 
definition of even symplectic Schur polynomials – see (2.10). Given an n-partition or 
n-half-partition λ, let us denote by soP(2n)

λ the set of all split orthogonal patterns of 
height 2n and shape λ.

Definition 2.6. The (2n + 1)-orthogonal Schur polynomial indexed by an n-partition or 
n-half-partition λ can be defined as
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so(2n+1)
λ (x) :=

∑
z∈soP(2n)

λ

n∏
i=1

x
type(z)2i−type(z)2i−1
i . (2.22)

For an analogous definition in terms of Koike-Terada tableaux, see [27,28]. For the 
equivalence of Definitions 2.5 and 2.6, we refer to [44].

3. Transition between characters

In this section we introduce two classes of symmetric polynomials that, via a tuning 
parameter, establish a transition between classical groups’ characters of different types. 
We define them via generating functions of patterns and provide, for the first class, 
determinantal formulas, as we have done for the classical characters in Section 2.

In Subsection 3.1 we describe a combinatorial bijection between split orthogonal and 
symplectic patterns. In Subsection 3.2 we define a class of polynomials that interpo-
late between characters of types C and B; we also express them in terms of symplectic 
characters using the aforementioned combinatorial bijection and provide determinantal 
formulas of “Weyl character type”, which permit us to link them to Koornwinder poly-
nomials. In Subsection 3.3 we introduce a second class of polynomials that interpolate 
between characters of types D and B.

3.1. A bijection between symplectic and split orthogonal patterns

Here we introduce a combinatorial bijection between a class of split orthogonal pat-
terns with a fixed shape λ and symplectic patterns with a “perturbed” shape. The proof of 
this result is fairly natural and straightforward in the case of λ being a half-partition. On 
the other hand, the case of λ being an integer partition is more interesting, as it requires 
a non-trivial algorithmic procedure. In the latter case, our bijection can be also equiva-
lently viewed as a correspondence between Koike-Terada orthogonal tableaux [27,28] and 
Sundaram’s orthogonal tableaux [54]; for more details, see the remarks on the Relation 
to Sundaram’s tableaux at the end of Section 3.2.

For a split orthogonal pattern z of height 2n, we denote by a(z) ∈ {0, 1}n the n-tuple 
whose i-th entry equals 1 if and only if z2i−1,i is atypical, according to the definition 
given in Subsection 2.3. E.g., for the pattern in Fig. 5a, a(z) = (0, 0, 1). We also denote 
by |v| :=

∑n
i=1|vi| the 1-norm of any v ∈ Rn.

Theorem 3.1. For any n-partition λ and integer 1 ≤ k ≤ n, there exists a bijection

{z ∈ soP(2n)
λ : |a(z)| = k} ←→ {z′ ∈ spP(2n)

λ−ε : ε ∈ {0, 1}n, |ε| = k} (3.1)

that satisfies, for 1 ≤ i ≤ n,

type(z)2i − type(z)2i−1 = type(z′)2i − type(z′)2i−1 . (3.2)
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0.5

1

31

42

420

432

←→

0

0

30

41

410

431

0.5

2

21.5

32

322

432

←→

0

1

11

21

221

421

Fig. 6. An illustration of bijection (3.1) for n = 3 and λ = (4, 3, 2). In the two examples, for k = 1 and k = 2
respectively, the left-hand pattern is split orthogonal and the right-hand pattern is symplectic. All and only 
the entries of the patterns modified throughout the algorithm lie along the k colored non-intersecting paths 
(see proof of Theorem 3.1). In the k = 2 example, the red path is the first to be constructed in the map 
“→”; conversely, the blue path is the first to be constructed in the reverse map “←”.

Furthermore, for any n-half-partition λ and ε ∈ {0, 1}n, there exists a bijection

{z ∈ soP(2n)
λ : a(z) = ε} ←→ {z′ ∈ spP(2n)

λ−1/2} (3.3)

that satisfies, for 1 ≤ i ≤ n,

type(z)2i − type(z)2i−1 = type(z′)2i − type(z′)2i−1 + εi −
1
2 . (3.4)

Proof. We first prove (3.3)-(3.4), which is straightforward. Let λ be an n-half-partition 
and ε := (ε1, . . . , εn) ∈ {0, 1}n. Given a split orthogonal pattern z of height 2n, shape λ
and such that a(z) = ε, we define z′ by setting z′i,j = zi,j for all atypical (i.e. integer) 
entries and z′i,j := zi,j−1/2 for all the other entries of z. The entries of the new pattern z′

are all integers and still satisfy the interlacing conditions, hence z′ is a symplectic pattern 
of height 2n and shape λ −1/2. It is immediate to verify that, if ε remains fixed, z �→ z′ is 
a bijection. Since type(z′)2i = type(z)2i−εi/2 and type(z′)2i−1 = type(z)2i−1−(1 −εi)/2, 
we deduce (3.4).

Let us now prove (3.1)-(3.2). For the purpose of this proof, let I := {(i, j) : 1 ≤
i ≤ 2n, 1 ≤ j ≤ 
i/2�} be the index set of any “half-triangular” pattern of height 2n. 
Moreover, define a nearest neighbor path to be a sequence in I such that the element 
that comes after (i, j) is either (i + 1, j) or (i + 1, j + 1); with respect to the graphical 
representation of a pattern, this is a downwards path. Finally, by reverse nearest neighbor 
path we mean a sequence in I such that the element that comes after (i, j) is either 
(i − 1, j) or (i − 1, j − 1); graphically, this is an upwards path in a pattern.

Let λ be an n-partition and 1 ≤ k ≤ n. For any split orthogonal pattern z of height 
2n and shape λ with k atypical entries, we will construct a symplectic pattern z′ of 
the same height and shape λ − ε, being ε ∈ {0, 1}n with exactly k ones. We will do 
this via an algorithmic procedure, for which we refer to Fig. 6 as a guiding pictorial 
example. Let 1 ≤ l1 < · · · < lk ≤ n be such that z2l1−1,l1 , . . . , z2lk−1,lk are all and only 
the atypical entries of z. We construct the output pattern z′ by starting from the input 
z and performing the following actions for all l = lk, . . . , l1 consecutively in decreasing 
order of l:
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(i) Design a nearest neighbor path starting at (2l− 1, l) and ending on the (2n)-th row 
(i.e. the bottom row of the pattern) such that, given any (i, j) in the path:
• if zi,j = zi+1,j+1, the path goes from (i, j) to (i + 1, j + 1);
• if zi,j > zi+1,j+1, the path goes from (i, j) to (i + 1, j);
• if (i + 1, j + 1) /∈ I and (i + 1, j) ∈ I, the path goes from (i, j) to (i + 1, j);
• if (i + 1, j + 1) /∈ I and (i + 1, j) /∈ I, which happens if and only if i = 2n, the 

path stops at (i, j).
(ii) Update z by subtracting 1/2 from the first entry z2l−1,l and 1 from all the other 

entries along the path constructed in the previous step.

Such a procedure generates k uniquely determined nearest neighbor paths within z, 
which we claim to be non-intersecting. This in particular implies that each path ends 
at a different index (2n, j) of the bottom row. Therefore, at the end of the algorithm 
the shape λ of z has been modified by subtracting 1 from exactly k distinct parts; the 
shape of z′ is thus λ − ε, for some ε ∈ {0, 1}n with exactly k ones. To show the non-
intersecting property, assume by contradiction that a given path π intersects at least one 
of the previously constructed paths. Let (i + 1, j + 1) be the point of π with smallest i
such that (i + 1, j + 1) also belongs to some other path π′. Then, the index that comes 
before (i + 1, j + 1) in path π is necessarily (i, j) and, by construction, before updating 
the entries along path π, it has to be that zi,j = zi+1,j+1. But since (i + 1, j + 1) also 
belongs, by assumption, to the previously constructed path π′, entry zi+1,j+1 must have 
been already decreased by at least 1/2 during the update along path π′. On the other 
hand, by our assumption that (i + 1, j + 1) is the site with minimal i where π intersects 
any other path, we know that (i, j) does not belong to any previous path, so zi,j was 
left unchanged by previous updates. This means that the initial pattern z, before any 
updates, satisfied zi,j < zi+1,j+1, contradicting the interlacing conditions. This concludes 
the proof of the non-intersecting property of the update paths.

We now prove that the output pattern z′ has non-negative integer entries. Notice 
first that the entries along each update path are non-decreasing (both before and after 
the corresponding update), due to the interlacing conditions and the construction. Even 
though each path might contain various odd ends, the only atypical entry among these 
is the first one, since each atypical entry is the starting point of a path and paths 
do not intersect. This implies that, along each path, the first entry is a half-integer 
≥ 1/2, whereas the next ones are integers ≥ 1. Now, each of the k updates amounts to 
shifting the first entry along the update path by −1/2 and the remaining ones by −1; 
consequently, after such an update, the resulting pattern has still non-negative entries, 
with one atypical entry less (z2l−1,l is initially half-integer but becomes integer after 
the update). At the end of the algorithm, all the entries of z will thus be non-negative 
integers.

To conclude that the algorithm provides indeed the desired map, we are left to prove 
that it preserves the interlacing conditions of the pattern. We will show that any given 
update preserves them, assuming inductively that all the previous updates do. Since the 
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update decreases all and only the entries along an update path π, it suffices to prove 
that, for all (i, j) ∈ π, after the update, we have zi,j ≥ zi−1,j (if (i − 1, j) ∈ I) and 
zi,j ≥ zi+1,j+1 (if (i + 1, j + 1) ∈ I). We will only prove the former inequality: the proof 
of the latter is analogous, so we omit it. If zi,j is an odd end there is nothing to prove, so 
we may assume this is not the case; in particular, zi,j will be an integer (before and after 
the update). If (i − 1, j) belongs to π and zi−1,j is half-integer, then before the update 
we have zi,j ≥ zi−1,j + 1/2; after the update, zi−1,j and zi,j are decreased by 1/2 and 1, 
respectively, hence zi,j ≥ zi−1,j still holds. If (i − 1, j) belongs to π and zi−1,j is integer, 
then both zi−1,j and zi,j are decreased by 1 and the interlacing condition between them 
continues to hold after the update. We may assume from now on that (i − 1, j) does not
belong to π. Let (a, b) be the bottommost (i.e. with largest a) element of π such that 
a − b = i − 1 − j. The portion of the pattern of interest, before the update along π, is 
then illustrated in the following diagram:

zi−1,j

zi−2,j−1

. .
.

za+1,b+1

za,b

za+1,b

za+2,b+1

. .
.

zi−1,j−1

zi,j

≤

≤

≤

<
≤

=

=

=

=

Due to the choice of (a, b), the path must contain (a, b), (a + 1, b), (a + 2, b + 1), . . . , 
(i −1, j−1), (i, j): the corresponding entries along π are highlighted in red. Let us justify 
the ordering of the entries in the diagram above:

• the weak inequalities follow from the interlacing conditions of z;
• due to the choice of (a, b), we know that (a + 1, b + 1) does not belong to π, hence 

by the rules of the algorithm za,b > za+1,b+1;
• the equalities follow from the fact that π contains (a + 1, b), (a + 2, b + 1), . . . , 

(i − 1, j − 1), (i, j) and, again, from the rules of the algorithm.

From the diagram above we deduce that zi−1,j < zi,j . If zi−1,j were half-integer, then 
there would have been a previous path starting at (i − 1, j) and necessarily passing 
by (i, j), thus violating the non-intersecting properties of the paths. Therefore, zi−1,j
and zi,j are both integers and, before the update along π, zi−1,j < zi,j actually means 
zi−1,j + 1 ≤ zi,j . After the update along π, zi,j is decreased by 1 and zi−1,j is left 
unchanged, so the latter inequality turns into the desired zi−1,j ≤ zi,j .
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Finally, to prove identity (3.2), first notice that throughout our algorithm the same 
quantities are subtracted from two consecutive rows, unless either row contains an atypi-
cal entry; in the latter case, an extra 1/2 is subtracted from the lower row. This translates, 
in terms of the types of the patterns, as:

type(z′)2i−1 =
{

type(z)2i−1 − 1
2 if z2i−1,i ∈ 1

2 + Z,
type(z)2i−1 otherwise,

type(z′)2i =
{

type(z)2i − 1
2 if z2i−1,i ∈ 1

2 + Z,
type(z)2i otherwise.

From the above, it is immediate to deduce (3.2).
We now prove that our map is a bijection, by describing the inverse algorithm that 

maps z′ to z. Let z′ be a symplectic pattern of height 2n and shape λ − ε, where 
ε ∈ {0, 1}n has exactly k entries equal to 1. Let 1 ≤ m1 < · · · < mk ≤ n be all and only 
the indices such that εm1 = · · · = εmk

= 1. We construct z by starting from the input z′
and performing the following actions for all m = m1, . . . , mk consecutively, in increasing 
order of m:

(i) Design a reverse nearest neighbor path starting at (2n, m) and ending at some odd 
end (2l − 1, l), such that, given any (i, j) in the path:
• if z′i,j = z′i−1,j−1, then the index that comes after (i, j) is (i − 1, j − 1);
• if z′i,j < z′i−1,j−1 and (i − 1, j) ∈ I, then the index that comes after (i, j) is 

(i − 1, j);
• if z′i,j < z′i−1,j−1 and (i − 1, j) /∈ I, then the path stops at (i, j);
• if (i −1, j−1) /∈ I and (i −1, j) ∈ I, the index that comes after (i, j) is (i −1, j);
• if (i − 1, j − 1) /∈ I and (i − 1, j) /∈ I, i.e. (i, j) = (1, 1), then the path stops at 

(i, j).
(ii) Update z′ by adding 1/2 to the last entry z′2l−1,l and 1 to all the other entries along 

the path constructed in the previous step.

One can verify that the above algorithm returns a split orthogonal pattern z of height 
2n and shape λ with k atypical entries, and that our direct algorithm maps z �→ z′, as 
desired. �
3.2. Transition between even symplectic and odd orthogonal characters

Recall from Section 2 (see in particular (2.10) and (2.22)) that (2n + 1)-orthogonal 
Schur polynomials can be defined via the same weight monomials as (2n)-symplectic 
Schur polynomials. The difference is that orthogonal characters are generated by a larger 
set of patterns, whose entries may also be half-integers according to certain rules. This 
observation, in combination with a probabilistic motivation that will emerge in Section 4, 
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leads us to define a class of symmetric functions that interpolate between characters of 
types C and B via a parameter β.

Definition 3.2. We define the CB-interpolating Schur polynomial to be the following 
function in variables x = (x1, . . . , xn), parametrized by β and indexed by an n-partition 
or n-half-partition λ:

sCB
λ (x;β) :=

∑
z∈soP(2n)

λ

β|a(z)|
n∏

i=1
x

type(z)2i−type(z)2i−1
i , (3.5)

where |a(z)| is the number of atypical entries of z.

If β = 0, the sum in (3.5) is over all split orthogonal patterns of height 2n and 
shape λ with no atypical entries; in particular, if λ is an n-partition (respectively, n-
half-partition), these are (2n)-symplectic patterns (respectively, (2n)-symplectic patterns 
where each entry is increased by 1/2). Using (2.10), one then essentially recovers a (2n)-
symplectic Schur polynomial in both cases:

sCB
λ (x; 0) =

{
sp(2n)

λ (x) if λ is an n-partition ,

[
∏n

i=1 xi]
−1/2 sp(2n)

λ−1/2(x) if λ is an n-half-partition ,
(3.6)

with λ − 1/2 := (λ1 − 1/2, . . . , λn − 1/2). On the other hand, it is clear that, for β = 1, 
(3.5) reduces to the Definition 2.6 of (2n + 1)-orthogonal Schur polynomial:

sCB
λ (x; 1) = so(2n+1)

λ (x) (3.7)

for all n-partitions and n-half-partitions λ.
Using the combinatorial bijection introduced in Subsection 3.1, we are able to express 

CB-interpolating Schur polynomials in terms of even symplectic characters:

Theorem 3.3. If λ is an n-partition, then

sCB
λ (x;β) =

∑
ε∈{0,1}n

β|ε| sp(2n)
λ−ε(x) , (3.8)

where |ε| is the 1-norm of ε and by convention sp(2n)
μ (x) := 0 if μ is not a partition.11 If 

λ is an n-half-partition, then

sCB
λ (x;β) =

n∏
i=1

[
βx

1/2
i + x

−1/2
i

]
sp(2n)

λ− 1
2
(x) . (3.9)

11 Notice that λ − ε := (λ1 − ε1, . . . , λn − εn) is not necessarily a partition for all ε ∈ {0, 1}n, as the 
non-decreasing ordering might fail.
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Observe that, in (3.9), λ − 1
2 is an integer partition, so sp(2n)

λ− 1
2

is indeed a symplectic 
Schur polynomial.

Proof. By Definition 3.2, we may write

sCB
λ (x;β) =

∑
ε∈{0,1}n

∑
z∈soP(2n)

λ :
a(z)=ε

β|ε|
n∏

i=1
x

type(z)2i−type(z)2i−1
i .

(3.10)

Let first λ be an n-partition. By (3.1)-(3.2) of Theorem 3.1, we then have:

sCB
λ (x;β) =

n∑
k=0

βk
∑

z∈soP(2n)
λ :

|a(z)|=k

n∏
i=1

x
type(z)2i−type(z)2i−1
i

=
n∑

k=0

βk
∑

ε∈{0,1}n :
|ε|=k

∑
z′∈spP(2n)

λ−ε

n∏
i=1

x
type(z′)2i−type(z′)2i−1
i ,

keeping in mind that spP(2n)
λ−ε is empty if λ − ε is not a partition. By Definition 2.2, the 

rightmost sum over z′ ∈ spP(2n)
λ−ε equals sp(2n)

λ−ε(x), which implies (3.8).
Let now λ be an n-half-partition. By (3.3)-(3.4) of Theorem 3.1, we may rewrite (3.10)

as

sCB
λ (x;β) =

∑
ε∈{0,1}n

∑
z′∈spP(2n)

λ− 1
2

n∏
i=1

βεix
type(z′)2i−type(z′)2i−1+εi−1/2
i

=
∑

z′∈spP(2n)
λ− 1

2

n∏
i=1

[ 1∑
εi=0

βεix
εi−1/2
i

]
x

type(z′)2i−type(z′)2i−1
i

=
n∏

i=1

[
βx

1/2
i + x

−1/2
i

] ∑
z′∈spP(2n)

λ− 1
2

x
type(z′)2i−type(z′)2i−1
i .

By Definition 2.2, the latter sum equals sp(2n)
λ− 1

2
(x), which implies (3.9). �

As a consequence of the latter theorem and the invariance properties of symplectic 
characters, we can deduce the invariance properties of the CB-interpolating Schur poly-
nomials with respect to the variables xi’s, for any fixed β. Namely, sCB

λ (x; β) is always 
symmetric in the variables xi’s and, when λ is a partition, also invariant under multi-
plicative inversion of any xi. However, (3.9) implies that sCB

λ (x; β) is not invariant under 
inversion of the variables when λ is a half-partition, unless β = 1 (which corresponds to 
the odd orthogonal case).
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Notice that, in the case β = 0, Theorem 3.3 just reduces to (3.6). On the other hand, 
the specialization to β = 1 leads to:

Corollary 3.4. If λ is an n-partition, then

so(2n+1)
λ (x) =

∑
ε∈{0,1}n

sp(2n)
λ−ε(x) , (3.11)

with the same conventions as in Theorem 3.3. If λ is an n-half-partition, then

so(2n+1)
λ (x) =

n∏
i=1

[
x

1/2
i + x

−1/2
i

]
sp(2n)

λ− 1
2
(x) . (3.12)

Identity (3.11) first appeared in [42,54]. On the other hand, (3.12), which easily follows 
from the Weyl character formulas (2.20) and (2.11), can be found e.g. in [44].

We now obtain determinantal formulas of Weyl character type for the CB-interpolating 
polynomials. In principle, we could do this via a generalization of Proctor’s proof [43]
for the Weyl character formula of type C. However, this approach would be considerably 
long, as was the case in [43], and not innovative. Instead, we propose a different strategy 
that reduces the proof of the general β case to the Weyl character formula of type C, 
via the formulas of Theorem 3.3 and determinant expansions.

Theorem 3.5. If λ is an n-partition, then

sCB
λ (x;β) =

det
1≤i,j≤n

(
xλi+n−i+1
j − x

−(λi+n−i+1)
j + β

[
xλi+n−i
j − x

−(λi+n−i)
j

])
det

1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j

) . (3.13)

If λ is an n-half-partition, then

sCB
λ (x;β) =

det
1≤i,j≤n

([
βx

1/2
j + x

−1/2
j

] [
x
λi+n−i+1/2
j − x

−(λi+n−i+1/2)
j

])
det

1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j

) . (3.14)

Proof. Let λ be an n-partition. By (2.11), the symplectic characters appearing in (3.8)
can be written as

sp(2n)
λ−ε(x) =

det
1≤i,j≤n

(
xλi−εi+n−i+1
j − x

−(λi−εi+n−i+1)
j

)
det

1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j

) , (3.15)

for ε ∈ {0, 1}n such that λ − ε is a partition. When λ − ε is not a partition, in the sense 
that the non-decreasing condition fails, we have λi− εi < λi+1 − εi+1 for some i. In such 



28 E. Bisi, N. Zygouras / Advances in Mathematics 404 (2022) 108453
a case, since λi ≥ λi+1 and εi, εi+1 ∈ {0, 1}, it must hold that λi − εi = λi+1 − εi+1 − 1. 
Therefore, the i-th and (i + 1)-th rows of the numerator matrix in (3.15) are equal and 
the right-hand side of the equation vanishes. On the other hand, when λ − ε is not a 
partition, the left-hand side also vanishes by the convention adopted in Theorem 3.3. 
We conclude that (3.15) is actually valid for all ε ∈ {0, 1}n. Using the multilinearity of 
determinants, from (3.8) we then obtain:

sCB
λ (x;β) =

∑
ε∈{0,1}n

βε1+···+εn

det
1≤i,j≤n

(
xλi−εi+n−i+1
j − x

−(λi−εi+n−i+1)
j

)
det

1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j

)

=
det

1≤i,j≤n

(∑1
εi=0 β

εi
[
xλi−εi+n−i+1
j − x

−(λi−εi+n−i+1)
j

])
det

1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j

) .

The latter formula is clearly equivalent to (3.13).
Let now λ be an n-half-partition. By (2.11), we can rewrite (3.9) as

sCB
λ (x;β) =

n∏
i=1

[
βx

1/2
i + x

−1/2
i

] det
1≤i,j≤n

(
x
λi+n−i+1/2
j − x

−(λi+n−i+1/2)
j

)
det

1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j

) .

Applying the multilinear property to take the prefactor into the numerator determinant, 
we obtain (3.14). �

Notice that the above determinantal formulas have denominators of type C, just 
because they are deduced from (3.8) and (3.9). In particular, for β = 0, it is immediate 
to recover (3.6) using the Weyl character formula (2.11) for symplectic characters. On 
the other hand, for β = 1, (3.13) and (3.14) provide further determinantal expressions of 
odd orthogonal characters, equivalent to the Weyl character formula of type B. This can 
be shown starting from (2.20) and multiplying the j-th column of both the numerator 
and the denominator matrices by x1/2

j + x
−1/2
j :

so(2n+1)
λ (x) =

det
1≤i,j≤n

([
x

1/2
j + x

−1/2
j

] [
x
λi+n−i+1/2
j − x

−(λi+n−i+1/2)
j

])
det

1≤i,j≤n

([
x

1/2
j + x

−1/2
j

] [
x
n−i+1/2
j − x

−(n−i+1/2)
j

])

=
det

1≤i,j≤n

(
xλi+n−i+1
j − x

−(λi+n−i+1)
j + xλi+n−i

j − x
−(λi+n−i)
j

)
det

1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j + xn−i

j − x
−(n−i)
j

)

=
det

1≤i,j≤n

(
xλi+n−i+1
j − x

−(λi+n−i+1)
j + xλi+n−i

j − x
−(λi+n−i)
j

)
det

(
xn−i+1
j − x

−(n−i+1)
j

) .
1≤i,j≤n
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The latter equality follows from a manipulation on the denominator determinant: sub-
tract the n-th row from the (n − 1)-th row, then subtract the (n − 1)-th row from the 
(n −2)-th row and so on. The above display proves our claim that both (3.13) and (3.14)
reduce to (2.20) for β = 1.

Relation to Sundaram’s tableaux. There are some profound links between the results of 
Subsections 3.1-3.2 and the combinatorics of Sundaram’s orthogonal tableaux [54], as 
we now explain. A Sundaram’s orthogonal tableau is a semistandard Young tableau in 
the alphabet 1 < 1 < 2 < 2 < · · · < n < n < ∞ such that (i) the entries are weakly
increasing along the rows and down the columns, (ii) all “finite” entries 1, 1, 2, 2, . . . , n, n
are in strict increasing order down the columns (iii) the entries in row i are not less than 
i, and (iv) there is at most one ∞ symbol in each row. The latter condition ensures that 
the cells that contain ∞ form a so-called vertical strip contained in the shape λ of the 
tableau. Removing the ∞’s from a Sundaram’s tableau of shape λ, one simply obtains a 
symplectic tableau (as defined in Subsection 2.2) of a certain shape μ such that λ/μ is 
a vertical strip. Vice versa, a symplectic tableau is a Sundaram’s tableau with no ∞’s.

Fix now a partition λ and consider the combinatorial bijection (3.1). Recalling from 
Subsection (2.2) the correspondence between symplectic patterns and tableaux, one can 
realize that the set of symplectic patterns z′ ∈ spP(2n)

λ−ε with ε ∈ {0, 1}n is in bijection with 
the set of Sundaram’s tableaux of shape λ. In the tableau, the diagram μ := λ −ε contains 
the “finite” entries and the skew shape λ/μ, of size |ε|, contains the ∞’s; moreover, the 
fact that each εi is either 0 or 1 forces μ to be a vertical strip. On the other hand, we 
already observed in Subsection 2.3 that split orthogonal patterns z ∈ soP(2n)

λ bijectively 
correspond to Koike-Terada tableaux [27,28] of shape λ; the number of atypical entries 
in the pattern equals the number of “circled” symbols in the Koike-Terada tableau. 
Therefore, (3.1) can be seen as a correspondence between Koike-Terada tableaux with k
“circled” symbols and Sundaram’s tableaux with k occurrences of the ∞ symbol. After 
completion of this work, and led by the useful comments of an anonymous referee, we 
realized that a bijection of this type had been also discovered in [12]: their approach is 
based on a jeu de taquin procedure on tableaux that can be shown to be equivalent to our 
construction of non-intersecting paths on patterns (see proof of Theorem 3.1). From an 
algorithmic point of view, k represents the number of non-intersecting paths in our proof 
of Theorem 3.1 (respectively, the number of jeu de taquin operations in the framework 
of [12]) needed to map the split orthogonal pattern onto the symplectic pattern with 
perturbed shape (respectively, the Koike-Terada tableau onto the Sundaram’s tableau).

Sundaram [54] showed that the (2n + 1)-orthogonal Schur polynomials indexed by a 
partition λ can be expressed as

so(2n+1)
λ (x) =

∑
T

x
#{i’s in T}−#{i’s in T}
i =

∑
μ

sp(2n)
μ (x) , (3.16)

where the first sum is over all Sundaram’s tableaux T of shape λ, whereas the second 
sum is over all partitions μ ⊆ λ such that the skew shape λ/μ is a vertical strip. The 
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first equality was proven in [54] using an insertion algorithm. The second equality follows 
immediately from the definition of Sundaram’s tableaux and the definition of a symplectic 
character as generating function of symplectic tableaux. Notice that the equality between 
the left-hand side and the right-hand side of (3.16) is the way in which (3.11) first 
appeared in [42,54]. On the other hand, (3.8) allows us to interpret our CB-interpolating 
Schur polynomials (when indexed by an integer partition) as generating functions of 
Sundaram’s tableaux where all the ∞’s are assigned a weight β:

sCB
λ (x;β) =

∑
T

β#{∞’s in T}x
#{i’s in T}−#{i’s in T}
i , (3.17)

with the sum running over all Sundaram’s tableaux T of shape λ. When β = 0, the ∞’s 
are not allowed in the tableaux and we recover sp(2n)

λ (x); when β = 1, the ∞’s are given 

weight 1 and we recover so(2n+1)
λ (x).

Relation to Koornwinder polynomials. Koornwinder polynomials [29] can be viewed as a 
BC-analog of standard Macdonald polynomials, in the sense that they are associated to 
the root system of type BC instead of type A. They depend on the usual parameters q and 
t of Macdonald polynomials as well as four extra interchangeable parameters t0, t1, t2, t3. 
We now briefly introduce them, following the exposition of [49]. Denoting by

(z; q)∞ :=
∞∏
k=0

(1 − qkz)

the q-shifted factorial, we define the Koornwinder density in variables x = (x1, . . . , xn)
by

Δ(x; q, t; t0, t1, t2, t3) :=
n∏

i=1

[ ∏
ε∈{±1}

(x2ε
i ; q)∞∏3

k=0(tkxε
i ; q)∞

] ∏
1≤i<j≤n

[ ∏
ε,δ∈{±1}

(xε
ix

δ
j ; q)∞

(txε
ix

δ
j ; q)∞

]
.

For |q|, |t|, |t0|, . . . , |t3| < 1, we then define the inner product

〈f, g〉(n)
q,t;t0,t1,t2,t3 := 1

2nn!(2πi)n

∫
Tn

f(x)g(x−1)Δ(x; q, t; t0, t1, t2, t3)
n∏

i=1

dxi

xi
,

where Tn := {x ∈ Cn : |x1| = · · · = |xn| = 1} is the n-dimensional complex torus 
and f, g are Laurent polynomials with coefficients in C. Koornwinder polynomials are 
then defined as the unique 〈·, ·〉q,t;t0,t1,t2,t3-orthogonal family of BC-invariant Laurent 
polynomials Kλ = Kλ(x; q, t; t0, t1, t2, t3) on C indexed by n-partitions λ with leading 
coefficient xλ. In other words, they satisfy the following properties:

• they are invariant under permutations of the xi’s and inversion of any of them;
• they satisfy 〈Kλ, Kμ〉q,t;t0,t1,t2,t3 = 0 for all λ �= μ;
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• for any n-partition μ, the coefficient of the monomial xμ := xμ1
1 · · ·xμn

n in Kλ is zero 
unless μ ≤ λ (in the “dominance order” sense, i.e. μ1 + · · · + μk ≤ λ1 + · · · + λk for 
1 ≤ k ≤ n), and the coefficient of xλ is precisely 1.

Setting q = 0 and any12 two of t0, . . . , t3 to be zero in Kλ, one recovers the so-called 
Hall-Littlewood polynomials of type BC [59], which possess an expansion over the Weyl 
group of type BC. When taking also t = 0, such an expansion takes a determinantal 
form [49]:

Kλ(x; 0, 0; a, b, 0, 0)

=
det

1≤i,j≤n

(
xλi+n−i−1
j (xj − a)(xj − b) − x−λi−n+i−1

j (axj − 1)(bxj − 1)
)

det
1≤i,j≤n

(
xn−i+1
j − x

−(n−i+1)
j

) .

It is immediate to see that the latter expression corresponds to (3.13) for a = −β and 
b = 0, thus implying that CB-interpolating polynomials belong to the Koornwinder 
family. More precisely, for any n-partition λ, we have

sCB
λ (x;β) ≡ Kλ(x; 0, 0;−β, 0, 0, 0) .

The general definition of Koornwinder polynomials, given before, is abstract and dif-
ficult to handle in practice. On the other hand, our construction of CB-interpolating 
polynomials provides a concrete and explicit combinatorial interpretation, based on 
Gelfand-Tsetlin patterns, of a one-parameter specialization of Koornwinder polynomials.

It would be interesting to investigate if, and to what extent, the results of the present 
article extend to a further one-parameter generalization of CB-interpolating polynomi-
als, corresponding to the above determinantal specialization of Koornwinder polynomials 
(allowing b �= 0). Do these polynomials still have a combinatorial interpretation as gen-
erating functions of certain patterns? Do they satisfy similar decomposition identities? 
Do they appear in any LPP models?

3.3. Transition between even and odd orthogonal characters

Recall from (2.16) and (2.19) that (2n)- and (2n + 1)-orthogonal characters can be 
defined via the same weight monomials. The patterns that generate odd orthogonal char-
acters have one more row (which does not appear in the weight monomials, though) than 
the patterns that generate even orthogonal characters. Again motivated by a probabilis-
tic significance that will emerge in Section 4, it is then natural to introduce polynomials 
that interpolate, via an extra parameter α, between the characters of types D and B.

12 Since the Koornwinder density Δ is symmetric with respect to the tk’s, Koornwinder polynomials also 
are.
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Definition 3.6. We define the DB-interpolating Schur polynomials to be the following 
function in x = (x1, . . . , xn), with parameter α, and indexed by an n-partition or n-half-
partition λ:

sDB
λ (x;α)

:=
∑

z∈oP(2n)
λ

x
z1,1
1

n∏
i=2

x
sgn(z2i−3,i−1) sgn(z2i−1,i)[type(z)2i−1−type(z)2i−2]
i α

∑n
i=1(λi−z2n−1,i) .

(3.18)

Notice that the exponent of α in (3.18) does not coincide with type(z)2n according 
to (2.15), as z2n−1,n (the only entry involved that might be negative) is not taken in 
absolute value. Moreover, due to the interlacing conditions (2.14), the exponent of α is 
non-negative, while it equals 0 if and only if λi = z2n−1,i for all 1 ≤ i ≤ n. Therefore, for 
α = 0, the general term of the sum in (3.18) vanishes unless the (2n − 1)-th row equals 
the shape λ; we are then reduced to sum over z ∈ oP(2n−1)

λ , thus obtaining the even 

orthogonal character so(2n)
λ (x) defined in (2.16). It is likewise obvious that, for α = 1, 

(3.18) reduces to the odd orthogonal character so(2n+1)
λ (x) defined in (2.19). To sum up, 

as announced, the functions defined above interpolate between characters of type D and 
B:

sDB
λ (x;α) =

{
so(2n)

λ (x) if α = 0 ,
so(2n+1)

λ (x) if α = 1 ,
(3.19)

for all n-partitions or n-half-partitions λ. We stress that a transition between types D 
and B may only exist for unsigned partitions, although even orthogonal characters can 
be also indexed by signed partitions.

We can also express a DB-interpolating Schur polynomial as a “linear combination” 
of even orthogonal characters, with coefficients being powers of α:

Proposition 3.7. For all n-partitions (respectively, n-half-partitions) λ, we have

sDB
λ (x;α) =

∑
με≺λ

α
∑n−1

i=1 (λi−μi)+(λn−εμn) · so(2n)
με

(x) , (3.20)

where the sum is over all signed n-partitions (respectively, signed n-half-partitions) με

that upwards interlace with λ. In particular, when λ = un := (u, . . . , u)︸ ︷︷ ︸
n times

for some u ∈

1
2Z≥0, we have

sDB
un(x;α) =

2u∑
αk · so(2n)

(un−1,u−k)(x) . (3.21)

k=0
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Proof. The sum in (3.18), which defines a DB-interpolating Schur polynomial, is over 
orthogonal patterns z of height 2n and shape λ. Setting μi := |z2n−1,i| for 1 ≤ i ≤ n and 
ε := sgn(z2n−1,n), it turns out that με is any signed n-partition (or any signed n-half-
partition, if λ is an n-half-partition) that upwards interlaces with λ. On the other hand, 
the first 2n − 1 rows of z form a new orthogonal pattern of height 2n − 1 and shape με. 
The sum in (3.18) may thus be split into two nested sums, over με ≺ λ and over patterns 
in oP(2n−1)

με
respectively:

sDB
λ (x;α) =

∑
με≺λ

α
∑n−1

i=1 (λi−μi)+(λn−εμn)

×
∑

z∈oP(2n−1)
με

x
z1,1
1

n∏
i=2

x
sgn(z2i−3,i−1) sgn(z2i−1,i)[type(z)2i−1−type(z)2i−2]
i .

By Definition 2.4, the inner sum is a (2n)-orthogonal Schur polynomial in x, indexed by 
με; this yields (3.20).

Let us now specialize (3.20) to the case λ = un, for u ∈ 1
2Z≥0. The interlacing 

between με and un, defined by (2.14), forces λi = μi = u for 1 ≤ i ≤ n − 1. It then 
suffices to sum over all integers 0 ≤ k ≤ 2u, where k = λn − εμn = u − εμn (notice that 
k is always integer, independently of whether u is integer or half-integer). This readily 
yields (3.21). �

The case α = 1 in (3.20) degenerates to the classical branching rule from SO2n+1(C)
to SO2n(C) – see [44]. It follows directly from (3.20) and the invariance properties of even 
orthogonal characters that DB-interpolating polynomials, for any fixed α, are symmetric 
in the variables x1, . . . , xn and invariant under inversion of an even number of them.

Throughout this work we will be especially interested in DB-interpolating Schur poly-
nomials indexed by “rectangular (half-)partitions”, as in (3.21). In this case, it turns 
out that our interpolating function with arbitrary parameter α essentially reduces to a 
rectangular shaped even orthogonal character with one extra variable α−1, as the next 
proposition states.

Proposition 3.8. For u ∈ 1
2Z≥0, we have

sDB
un(x;α) = αu · so(2n+2)

un+1 (x, α−1) . (3.22)

Proof. Any orthogonal pattern z of height 2n and shape un, due to the interlacing 
conditions, satisfies z2n−1,i = u for 1 ≤ i ≤ n − 1. Therefore, by Definition 3.6 we have

sDB
un(x;α) =

∑
z∈oP(2n)

un

x
z1,1
1

n∏
i=2

x
sgn(z2i−3,i−1) sgn(z2i−1,i)[type(z)2i−1−type(z)2i−2]
i αu−z2n−1,n .

(3.23)
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On the other hand, by Definition 2.4 we have

so(2n+2)
un+1 (x, α−1) =

∑
z∈oP(2n+1)

un+1

x
z1,1
1

n∏
i=2

x
sgn(z2i−3,i−1) sgn(z2i−1,i)[type(z)2i−1−type(z)2i−2]
i

× α− sgn(z2n−1,n) sgn(z2n+1,n+1)[type(z)2n+1−type(z)2n] .

(3.24)

Now, by the interlacing conditions, any orthogonal pattern z of height 2n + 1 and shape 
un+1 must have (2n)-th row equal to un and (2n − 1)-th row equal to (un−1, z2n−1,n). 
This implies:

sgn(z2n+1,n+1) = sgn(u) = +1 , type(z)2n+1 = u , type(z)2n = u− |z2n−1,n| .

The exponent of α in (3.24) then equals −z2n−1,n. Moreover, the sum in (3.24) can be 
now taken over orthogonal patterns of height 2n and shape un, thus obtaining:

so(2n+2)
un+1 (x, α−1)

=
∑

z∈oP(2n)
un

x
z1,1
1

n∏
i=2

x
sgn(z2i−3,i−1) sgn(z2i−1,i)[type(z)2i−1−type(z)2i−2]
i α−z2n−1,n .

Comparing the latter with (3.23), we obtain (3.22). �

4. Character identities and last passage percolation

In Section 1 we have introduced the Last Passage Percolation (LPP) model. In this 
section we explain how LPP with certain symmetries on the weight array is related to 
character identities and decompositions of the irreducible polynomial representations of 
classical groups.

For bounded Cauchy or Littlewood sums, we will often use the following conventions. 
If μ is a fixed n-partition (respectively, n-half-partition), a sum over λ ⊆ μ will be taken 
on all n-partitions (respectively, n-half-partitions) λ such that λ ⊆ μ. Analogously, a sum 
over λε ⊆ μ will be taken either on signed n-partitions or on signed n-half-partitions 
according to whether μ is an n-partition or an n-half-partition. Recall also the notation 
un for the n-tuple (u, . . . , u), and (a, b) := (a1, . . . , an, b1, . . . , bm) for the concatenation 
of two tuples a = (a1, . . . , an) and b = (b1, . . . , bm). Finally, recall the notation oddrows
from (2.2).
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4.1. Antidiagonally symmetric LPP and decompositions of symplectic and odd 
orthogonal characters

Let us first consider the LPP model with weight array {Wi,j : 1 ≤ i, j ≤ N} symmetric 
about the antidiagonal {i + j = N + 1}, i.e. such that Wi,j = WN−j+1,N−i+1 for all 
(i, j). In this case, the link to combinatorics emerges when the weights on and above the 
antidiagonal are independent and such that, for all k ∈ Z≥0,

P (Wi,j = k) =

⎧⎪⎨⎪⎩
(1 − pN−i+1pj)(pN−i+1pj)k if i + j < N + 1 ,
1 − p2

j

1 + βpj
βk mod 2pkj if i + j = N + 1 .

(4.1)

We define the normalization constant (whose dependence on the pi’s is dropped from 
the notation) for the joint distribution of the above weights:

cβ :=
∏

1≤i<j≤N

1
1 − pipj

∏
1≤j≤N

1 + βpj
1 − p2

j

. (4.2)

Denote by Lβ(N, N) the point-to-point LPP time from (1, 1) to (N, N) with a weight 
array symmetric about the antidiagonal and distributed as in (4.1). Baik and Rains [5]
showed that the distribution of Lβ(N, N) is given in terms of classical Schur polynomials. 
Here, our main result states that the same distribution can be also expressed in terms of 
the CB-interpolating Schur polynomials with parameter β introduced in Subsection 3.2:

Theorem 4.1. For u ∈ 1
2Z≥0, the following quantities are equal:

Aβ := cβ · P
(
Lβ (N,N) ≤ 2u

)
,

Bβ :=
∑

μ⊆(2u)N
βoddrowsμ · s(N)

μ (p1, . . . , pN ) ,

Cβ :=
[

N∏
i=1

pi

]u
sCB
uN (p1, . . . , pN ;β) ,

Dβ :=
[

N∏
i=1

pi

]u ∑
λ⊆uN−n

sCB
(u2n−N ,λ)(p1, . . . , pn;β) · sCB

λ (pn+1, . . . , pN ;β) ,

where Dβ is valid for any integer n with 
N/2� ≤ n ≤ N .

Before discussing Theorem 4.1, we deduce its specializations to the cases β = 0 and 
β = 1. For β = 0, each weight on the antidiagonal is even and distributed as twice a 
geometric random variable, i.e. P (Wi,j = k) = (1 −p2

j)pkj for k ∈ 2Z≥0 and i +j = N +1. 
In particular, L0 (N, N) is almost surely even, hence it suffices to compute its distribution 
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function at even integers. We may therefore ignore the case of u half-integer in the 
next corollary. Thanks to (3.6), CB-interpolating Schur polynomials degenerate to even
symplectic characters for β = 0. Moreover, for β = 0 we establish a further connection 
with odd symplectic characters.

Corollary 4.2. For u ∈ Z≥0, the following quantities are equal:

A0 := c0 · P
(
L0 (N,N) ≤ 2u

)
,

B0 :=
∑

μ⊆(2u)N :
oddrowsμ=0

s(N)
μ (p1, . . . , pN ) ,

C0 :=
[

N∏
i=1

pi

]u
sp(2N)

uN (p1, . . . , pN ) ,

D0 :=
[

N∏
i=1

pi

]u ∑
λ⊆uN−n

sp(2n)
(u2n−N ,λ)(p1, . . . , pn) · sp(2N−2n)

λ (pn+1, . . . , pN ) ,

E0 :=
[
N−1∏
i=1

pi

]u ∑
λ⊆uN−n

sp(2n+1)
(u2n+1−N ,λ)(p1, . . . , pn; pN ) · sp(2N−2n−1)

λ (pn+1, . . . , pN−1; pN ) ,

where D0 holds for 
N/2� ≤ n ≤ N and E0 holds for 
(N − 1)/2� ≤ n ≤ N − 1.

Let us now consider β = 1. All the weights on the antidiagonal now follow the geo-
metric distribution defined by P (Wi,j = k) = (1 − pj)pkj for k ∈ Z≥0 and i + j = N + 1. 
Recalling from (3.7) that CB-interpolating Schur polynomials degenerate to odd orthog-
onal characters for β = 1, we have:

Corollary 4.3. For u ∈ 1
2Z≥0, the following quantities are equal:

A1 := c1 · P
(
L1 (N,N) ≤ 2u

)
,

B1 :=
∑

μ⊆(2u)N
s(N)
μ (p1, . . . , pN ) ,

C1 :=
[

N∏
i=1

pi

]u
so(2N+1)

uN (p1, . . . , pN ) ,

D1 :=
[

N∏
i=1

pi

]u ∑
λ⊆uN−n

so(2n+1)
(u2n−N ,λ)(p1, . . . , pn) · so(2N−2n+1)

λ (pn+1, . . . , pN ) ,

where D1 holds for any 
N/2� ≤ n ≤ N .
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Let us discuss the above results. Notice first that, if N = 2n in Theorem 4.1, the 
two CB-interpolating Schur polynomials of Dβ have the same number n of variables and 
are both indexed by the same n-partition λ. Therefore, for N = 2n, D0 and D1 read 
as bounded Cauchy sums of, respectively, even symplectic and odd orthogonal Schur 
polynomials of the same shape λ. Analogously, in the special case N = 2n +1, E0 reads 
as a bounded Cauchy sum of odd symplectic Schur polynomials of the same shape λ.

Identity Aβ = Bβ , whose proof we omit, corresponds to (1.3) and traces back to Baik 
and Rains [5] (see also [14] for a Poissonized model); it can be proved by applying the 
standard RSK correspondence on square matrices with symmetry about the antidiagonal. 
We will rather prove in Section 5 another identity that relates to last passage percolation, 
i.e. Aβ = Cβ , reformulating the probabilistic model in terms of point-to-line paths, 
applying the RSK on triangular arrays and then using certain pattern transformations. 
This point of view is inspired by earlier works of the authors on LPP models and a 
positive temperature version of it known as log-gamma directed polymer [8,37,7].

In section 7 we will also give a direct proof of Bβ = Cβ based on an identity estab-
lished by Krattenthaler [31] for a symplectic character of “nearly rectangular” shape. 
This proof involves classical tools from the theory of symmetric functions such as the 
dual Pieri rule, but also uses our formulas (3.8) and (3.9) that express CB-interpolating 
Schur polynomials in terms of symplectic characters. Identity Bβ = Cβ implicitly ap-
peared in [49, Theorem 4.1] in a more general form involving Macdonald polynomials, 
but crucially only in the case u half-integer. More precisely, if (q, t) are the Macdon-
ald parameters, the degeneration q = t = 0 of Rains-Warnaar’s formula coincides with 
Bβ = Cβ for u half-integer. The latter is the “trivial” case when CB-interpolating poly-
nomials essentially reduce to symplectic characters, as the parameter β factorizes out – 
see Theorem 3.3.

Specializations B0 = C0 and B1 = C1 are known and respectively due to [52, 
Theorem 4.1] and [35, Ex. I.5.16] (see also [51, Corollary 7.4]). Our result should then 
be viewed as unifying such special cases.

Finally, in Section 6 we will provide bijective proofs of Cβ = Dβ and C0 = E0 based 
on decomposition of split orthogonal patterns and symplectic patterns respectively. For 
convenience, we reformulate the latter identities (and their specializations) in a separate 
theorem, as follows.

Theorem 4.4. Given integers n ≥ m ≥ 1, we have

sCB
un+m(x, y;β) =

∑
λ⊆um

sCB
(un−m,λ)(x;β) · sCB

λ (y;β) , u ∈ 1
2Z≥0 , (4.3)

where x = (x1, . . . , xn) and y = (y1, . . . , ym). In particular, for β = 0 and β = 1, we 
deduce:

sp(2n+2m)
un+m (x, y) =

∑
m

sp(2n)
(un−m,λ)(x) · sp(2m)

λ (y) , u ∈ Z≥0 , (4.4)

λ⊆u
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so(2n+2m+1)
un+m (x, y) =

∑
λ⊆um

so(2n+1)
(un−m,λ)(x) · so(2m+1)

λ (y) , u ∈ 1
2Z≥0 . (4.5)

Moreover, we have

sp(2n+2m+2)
un+m+1 (x, y, s) = s−u

∑
λ⊆um+1

sp(2n+1)
(un−m,λ)(x; s) · sp(2m+1)

λ (y; s) , u ∈ Z≥0 ,(4.6)

where s is an extra univariate variable.

As mentioned in the introduction, identities (4.4) and (4.5) have been also proved by 
Okada [38, Theorem 2.2] via determinantal calculus.

4.2. Diagonally symmetric LPP and decompositions of even orthogonal characters

We now discuss the LPP model for a weight array {Wi,j : 1 ≤ i, j ≤ N} symmetric 
about the diagonal {i = j}, i.e. such that Wi,j = Wj,i for all (i, j). Here the link to 
combinatorics occurs when the weights on and above the antidiagonal are independent 
and such that, for all k ∈ Z≥0,

P (Wi,j = k) =
{

(1 − pipj)(pipj)k 1 ≤ i < j ≤ N ,

(1 − αpj)(αpj)k 1 ≤ i = j ≤ N ,
(4.7)

with parameters p1, . . . , pN , α. Notice that here the parameter α modulates the intensity 
of the diagonal weights, and therefore plays a role analogous to the parameter β in (4.1)
for the antidiagonal weights. We define the normalization constant (whose dependence 
on the pi’s is dropped from the notation) for the joint distribution of the above weights:

cα :=
∏

1≤i<j≤N

1
1 − pipj

∏
1≤j≤N

1
1 − αpj

. (4.8)

Denote by Lα(N, N) the point-to-point LPP time from (1, 1) to (N, N) with weights 
symmetric about the diagonal and geometrically distributed as specified in (4.7). We 
remark that, because of the symmetry constraint, Lα(N, N) coincides with the LPP 
time with the same weights and paths restricted to stay on or above the main diagonal 
{i = j}. Besides its well-established formula in terms of classical Schur polynomials [5], 
it turns out that the distribution function of Lα(N, N) can be also expressed in terms 
of DB-interpolating Schur polynomials with parameter α (see Subsection 3.3) as well as 
even orthogonal characters, as the next theorem states.

Theorem 4.5. For u ∈ 1
2Z≥0, the following quantities are equal:

Aα := cα · P
(
Lα(N,N) ≤ 2u

)
,
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Bα :=
∑

μ⊆(2u)N
αoddrowsμ′ · s(N)

μ (p1, . . . , pN ) ,

Cα :=
[

N∏
i=1

pi

]u
sDB
uN (p−1

1 , . . . , p−1
N ;α) =

[
α

N∏
i=1

pi

]u
so(2N+2)

uN+1 (p−1
1 , . . . , p−1

N , α−1) ,

Dα :=
[
α

N∏
i=1

pi

]u ∑
λδ⊆uN−n

so(2n+2)
(u2n+1−N ,λδ)(p

−1
1 , . . . , p−1

n , α−1) · so(2N−2n)
λδ

(p−1
n+1, . . . , p

−1
N ) ,

where Dα holds for any 
(N − 1)/2� ≤ n ≤ N .

Observe also that the two equivalent expressions of Cα in terms of DB-interpolating 
and even orthogonal Schur polynomials indexed by “rectangular” partitions are due to 
Proposition 3.8. For the diagonally symmetric LPP, we thus have a transition between 
characters of type D and B when α goes from 0 to 1.

The case α = 0 corresponds to all the weights on the diagonal being zero, thus 
L0 (2n, 2n) equals the LPP time from (1, 2) to (N − 1, N) with paths restricted to stay 
strictly above the diagonal. Using (3.19) and (2.18), we obtain:

Corollary 4.6. For u ∈ 1
2Z≥0, the following quantities are equal:

A0 := c0 · P
(
L0 (N,N) ≤ 2u

)
,

B0 :=
∑

μ⊆(2u)N ,
oddrowsμ′=0

s(N)
μ (p1, . . . , pN ) ,

C0 :=
[

N∏
i=1

pi

]u
so(2N)

uN (p−1
1 , . . . , p−1

N ) ,

D0 :=
[

N∏
i=1

pi

]u ∑
λδ⊆uN−n

so(2n)
(u2n−N ,λδ)(p

−1
1 , . . . , p−1

n ) · so(2N−2n)
λδ

(p−1
n+1, . . . , p

−1
N ) ,

where D0 holds for any 
N/2� ≤ n ≤ N .

For α = 1, the DB-interpolating Schur polynomial and the even orthogonal character 
appearing in Cα both reduce to the same odd orthogonal character, by (3.19) and (2.21)
respectively. Theorem 4.5 thus specializes to:

Corollary 4.7. For u ∈ 1
2Z≥0, the following quantities are equal:

A1 := c1 · P
(
L1 (N,N) ≤ 2u

)
,

B1 :=
∑

N

s(N)
μ (p1, . . . , pN ) ,
μ⊆(2u)
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C1 :=
[

N∏
i=1

pi

]u
so(2N+1)

uN (p1, . . . , pN ) ,

D1 :=
[

N∏
i=1

pi

]u ∑
λδ⊆uN−n

so(2n+2)
(u2n+1−N ,λδ)(p1, . . . , pn, 1) · so(2N−2n)

λδ
(pn+1, . . . , pN ) ,

where Dα holds for any 
(N − 1)/2� ≤ n ≤ N .

Notice that in C1 – and therefore in D1 – it is not necessary to invert the variables 
p1, . . . , pN as in Theorem 4.5, because odd orthogonal Schur polynomials are invariant 
under inversion of any number of variables (see Subsection 2.3).

Let us now discuss the results above and their proofs. Identity Aα = Bα was proved 
by Baik and Rains [5] by applying the standard RSK on symmetric matrices. In the 
case of antidiagonal symmetry (see Subsection 4.1), we are able to link directly the LPP 
model to the interpolating Schur polynomials, reformulating the probabilistic problem 
in terms of point-to-line paths. Notice however that, in the case of diagonal symmetry, 
it does not seem to be possible to prove Aα = Cα directly without passing through Bα .

In Section 7 we will prove Bα = Cα using the “branching rule” of Proposition 3.7
as well as an identity of Krattenthaler [31] for an even orthogonal character of “nearly 
rectangular” shape. The specializations B0 = C0 and B1 = C1 are already known and 
respectively due to [38, Theorem 2.3] and [35, Ex. I.5.16]. Thus, again, our result should 
be viewed as unifying these special cases.

By comparing Corollaries 4.3 and 4.7 one can notice that B1 and C1 exactly coincide, 
respectively, with B1 and C1 . This implies that A1 and A1 are equivalent, i.e. the distri-
butions of L1 (N, N) and L1 (N, N) are identical. Observe also that the distribution (4.1)
for β = 1 equals the distribution (4.7) for α = 1, under the row reversal i �→ N − i + 1. 
However, the fact that a -symmetric LPP model be equivalent to the -symmetric LPP 
model obtained by reversing the rows of the weights has no reason to hold in general. It 
is rather specific to the distribution (4.1) with β = 1, and yields a non-trivial identity 
in law between piecewise linear functionals of geometric random variables, which in the 
special case N = 2 reads as

W1,1 + max(W1,2,W2,1) + W1,1
d≡ W2,1 + max(W1,1,W1,1) + W1,2 . (4.9)

Using the identity max(a, b) = a + b − min(a, b), (4.9) is easily seen to be equivalent 
to the fact that the minimum of two independent geometric random variables, with 
parameters p and q respectively, follows a geometric distribution with parameter pq. 
Thus, the equality in distribution between L1 (N, N) and L1 (N, N) can be viewed as a 
high dimensional analog of this fact.

Finally, in Section 6 we will prove, via decomposition of orthogonal patterns of odd 
height, that Cα = Dα (and therefore C0 = D0 ). We notice that, comparing again 
Corollaries 4.3 and 4.7, C1 and C1 coincide exactly, whereas D1 and D1 do not. More 
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specifically, identities C1 = D1 and C1 = D1 are different decompositions of the same
odd orthogonal character in terms of odd and even orthogonal characters, respectively. 
For convenience, we reformulate in the next theorem the decomposition formulas to be 
proven.

Theorem 4.8. For u ∈ 1
2Z≥0, we have

so(2n+2m)
un+m
ε

(x, y) =
∑

λδ⊆um

so(2n)
(un−m,λδ)(x) · so(2m)

λδε
(y) , n ≥ m, (4.10)

so(2n+2m+1)
un+m (x, y) =

∑
λδ⊆um

so(2n+2)
(un+1−m,λδ)(x, 1) · so(2m)

λδ
(y) , n + 1 ≥ m, (4.11)

where x = (x1, . . . , xn) and y = (y1, . . . , ym).

Notice that the sign of the partition on the left-hand side of (4.10) is ε; on the other 
hand, the signs of the partitions on the right-hand side are δ and δε respectively, hence 
they are either equal or opposite according to whether ε is positive or negative. We also 
stress that, in case λ+ = λ− (i.e. λm = 0), the signed partition is counted only once in 
the sum.

As stated in the introduction, (4.10) was originally proven by Okada [38, Theorem 
2.2] via determinantal calculus.

4.3. Doubly symmetric LPP and decompositions of general linear characters

Finally, let us consider the LPP model for a weight array {Wi,j : 1 ≤ i, j ≤ 2n}
symmetric about both the antidiagonal {i + j = 2n + 1} and the diagonal {i = j}, 
i.e. such that Wi,j = W2n−j+1,2n−i+1 = Wj,i for all (i, j). In this case, we choose the 
weights on or above the antidiagonal and on or above the diagonal to be independent 
and distributed as follows:

P (Wi,j = k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − pipj)(pipj)k if i < j < 2n− i + 1 ,
1 − p2

j

1 + βpj
βk mod 2pkj if i < j = 2n− i + 1 ,

(1 − αpj)(αpj)k if 1 ≤ i = j ≤ n ,

(4.12)

with parameters p1, . . . , p2n, α, β satisfying p2n−i+1 = pi for all 1 ≤ i ≤ n. We define the 
normalization constant for the joint distribution of the above weights:

cα,β :=
∏ 1

(1 − pipj)2
∏ 1 + βpj

1 − p2
j

1
1 − αpj

. (4.13)

1≤i<j≤n 1≤j≤n
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Let Lα,β(2n, 2n) be the point-to-point LPP time from (1, 1) to (2n, 2n) with a doubly 
symmetric weight array distributed according to (4.12). We can express the distribution 
of Lα,β(2n, 2n) in terms of CB-interpolating polynomials:

Theorem 4.9. For all u ∈ 1
2Z≥0, we have

cα,β ·P
(
Lα,β(2n, 2n) ≤ 2u

)
=
[

n∏
i=1

pi

]u ∑
λ⊆un

αoddrows(un−λ)′ ·sCB
λ (p1, . . . , pn;β) . (4.14)

Inspired by computations we carried out for related models in [8,7], we will prove (4.14)
by reformulating the problem in terms of symmetric point-to-line paths and applying the 
RSK correspondence on symmetric triangular arrays. We recall from Subsection 3.2 that 
the CB-interpolating Schur polynomial in (4.14) degenerates to either a (2n)-symplectic 
or a (2n + 1)-orthogonal Schur polynomial in the cases β = 0 and β = 1, respectively. 
For β = 0, we also have further expressions in terms of standard Schur polynomials, as 
next theorem states.

Theorem 4.10. For all u ∈ Z≥0, the following four quantities are equal:

Aα,0 := cα,0 · P
(
Lα,0(2n, 2n) ≤ 2u

)
,

Bα,0 :=
[

n∏
i=1

pi

]u ∑
λ⊆un

αoddrows(un−λ)′ · sp(2n)
λ (p1, . . . , pn) ,

Cα,0 :=
[

n∏
i=1

pi

]u
s(2n+1)
(un,0n+1)(p

−1
1 , . . . , p−1

n , p1, . . . , pn, α) ,

Dα,0 :=
∑
μ⊆un

s(n)
μ (p1, . . . , pn) · s(n+1)

(μ,0) (p1, . . . , pn, α) .

Identities Aα,0 = Bα,0 and Aα,0 = Dα,0 relate directly to the LPP model. The first 
one is just (4.14) for β = 0. The second one comes from a parallel approach to study 
the distribution of Lα,β(2n, 2n) adopted in [5], consisting in applying the classical RSK
correspondence on a doubly symmetric square matrix. Baik-Rains’ formula, valid for 
general β, is in terms of “self-dual” Schur polynomials,13 and is omitted here for the 
sake of conciseness. For β = 0 the weights on the antidiagonal are all even: Forrester and 
Rains [17] thus deduced Aα,0 = Dα,0, which instead involves standard Schur polynomials, 
using a bijection between self-dual Young tableaux with even rows, domino tableaux, and 
pairs of semi-standard Young tableux.

13 As seen in Subsection 2.1, standard Schur polynomials can be seen as generating functions of Young 
tableaux of a certain shape. On the other hand, “self-dual” Schur polynomials are generating functions of the 
only Young tableaux that are self-dual with respect to a combinatorial bijection known as Schützenberger 
involution.
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In Section 7 we will prove Bα,0 = Cα,0 using an identity of Krattenthaler [31] for a 
standard Schur polynomial of “nearly rectangular” shape as well as the branching rule 
for general linear characters. The specializations to α = 0 and α = 1 are known [38, 
Theorem 2.6] and read as:

s(2n)
(un,0n)(p

−1
1 , . . . , p−1

n , p1, . . . , pn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
λ⊆un,

oddrowsλ′=0

sp(2n)
λ (p1, . . . , pn) if n is even,

∑
λ⊆un−1,

oddrowsλ′=0

sp(2n)
(u,λ)(p1, . . . , pn) if n is odd,

s(2n+1)
(un,0n+1)(p

−1
1 , . . . , p−1

n , p1, . . . , pn, 1) =
∑
λ⊆un

sp(2n)
λ (p1, . . . , pn) .

Therefore, our result unifies these special cases. Notice that a (q, t)-Macdonald version 
of the first identity has recently appeared in [33, Corollary 1.3]; it would be interesting 
to investigate an α-deformation of the latter, as in Bα,0 = Cα,0.

Finally, a more general version of Cα,0 = Dα,0 has been proved by Okada [38, Theorem 
2.1] using determinantal calculus. We will prove a further generalization of this formula, 
as the next theorem states, via decomposition of Gelfand-Tsetlin patterns.

Theorem 4.11. For n, m ≥ 1, l := min(n, m) and u ≥ v ≥ 0, we have

s(n+m)
(un,vm)(x, y) =

[
n∏

i=1
xi

]u [ m∏
i=1

yi

]v ∑
μ⊆(u−v)(l)

s(n)
(μ,0n−l)(x

−1) · s(m)
(μ,0m−l)(y) , (4.15)

where x = (x1, . . . , xn) and y = (y1, . . . , ym).

We will see in the proof of the latter theorem (see in particular (6.8)) that Okada’s 
formula is a specialization of (4.15) valid for n ≥ m and v = 0. Notice also that, by 
putting m = n +1, v = 0, x−1

i = yi = pi for 1 ≤ i ≤ n, and yn+1 = α in (4.15), we indeed 
recover Cα,0 = Dα,0. Besides Gelfand-Tsetlin pattern decomposition and determinantal 
calculus, a third (algebraic) method to approach Theorem 4.11 relies on skew Schur 
functions; we will outline this in Subsection 6.3.

For the sake of simplicity, throughout this subsection we have restricted ourselves to 
weight matrices W of even order 2n, and therefore to “even” LLP times (i.e. for directed 
paths from (1, 1) to (2n, 2n)). However, analogously to Aα,0 = Bα,0, one can show that 
the “odd” LPP time with doubly symmetric weights can be expressed as a bounded 
Littlewood sum of odd symplectic characters.

5. RSK on triangular arrays and last passage percolation

In this section we prove the identities that express the distribution functions of our 
LPP models in terms of formulas involving CB-interpolating Schur polynomials. In par-
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ticular, we prove Aβ = Cβ in Theorem 4.1 (which specializes to A0 = C0 of Corollary 4.2
and A1 = C1 of Corollary 4.3 in the cases β = 0 and β = 1), as well as (4.14) in The-
orem 4.9 (which specializes to Aα,0 = Bα,0 of Theorem 4.10 in the case β = 0). The 
proofs we present are all based on the Robinson-Schensted-Knuth (RSK) correspondence 
applied to triangular arrays. As described by Knuth [26], the RSK is a combinatorial 
bijection that maps matrices with non-negative integer entries to pairs of semi-standard 
Young tableaux, or equivalently pairs of Gelfand-Tsetlin patterns, of the same shape. Via 
Fomin’s growth diagrams [16,32], it can be generalized to a bijection mapping a Young 
tableau of a given (not necessarily rectangular) shape to another Young tableau of the 
same shape. If the entries of the input tableau are non-negative reals, then the output 
tableau has the constraint that the entry of the box (i, j), denoted by ti,j, obeys the in-
terlacing constraints ti,j ≥ max(ti−1,j , ti,j−1) for all sensible pairs (i, j). Restricting this 
bijection to square Young tableaux with non-negative integer entries yields the classical 
RSK correspondence: when the input tableau is a square matrix, the output tableau is 
a square matrix of the same dimensions and corresponds to the pair of Gelfand-Tsetlin 
patterns “glued together” along the common shape, which is the main diagonal of the 
output matrix. For the sake of brevity we will not give the explicit construction of RSK, 
but we will rather recall the properties that we need.

We first introduce some notation. Let I be the index set of a Young diagram,14 and 
let t = {ti,j : (i, j) ∈ I} be a Young tableau with non-negative real entries. We denote 
by

σk(t) :=
∑

(i,j)∈I :
j−i=k

ti,j (5.1)

the sum of the k-th diagonal of t. We call (i, j) outer index of I if none of the three sites 
(i, j + 1), (i + 1, j), (i + 1, j + 1) belongs to I, or equivalently if I \ {(i, j)} is still the 
index set of a Young diagram; we call (i, j) inner index otherwise. We say that (i, j) ∈ I
is a border index if (i +1, j+1) /∈ I, or equivalently if it is the last index of its diagonal. 
Clearly, every outer index is also a border index. We call ti,j an outer/inner/border 
entry of t if (i, j) is an outer/inner/border index of I, respectively.

For our purposes, it is essential to restrict the RSK bijection to input Young tableaux 
with inner and outer entries drawn from two different subsets A and B of R≥0 respec-
tively. In order for the image tableau to be of the same type (i.e., with inner and outer 
entries drawn from the same sets A and B, respectively), we need A ⊆ B to be sub-
monoids of the additive monoid R≥0. In other words, both A and B must be closed 
under addition and contain 0. In our proofs, we will need either A = B = Z≥0 (all 
entries are integers) or A = Z≥0 and B = 1

2Z≥0 (the outer entries are also allowed to 
be half-integers). The next proposition, whose proof is omitted, is a fairly straightfor-

14 Namely, I is a finite subset of N2 satisfying: if (i, j) ∈ I, then (i − 1, j) ∈ I if i > 1, and (i, j − 1) ∈ I
if j > 1.
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ward adaptation of a few classical properties of RSK to this setting. More details on this 
algorithm and its various properties and extensions can be found e.g. in [26,25,7,60].

Proposition 5.1. Let I be the index set of a Young diagram and let A ⊆ B ⊆ R≥0 be 
submonoids of the additive monoid R≥0. There exists a piecewise linear bijection

w = {wi,j : (i, j) ∈ I} �→ t = {ti,j : (i, j) ∈ I} , (5.2)

called RSK correspondence, between Young tableaux with inner entries in A and outer 
entries in B, such that the output tableau satisfies the ordering

ti−1,j ≤ ti,j if i > 1 and ti,j−1 ≤ ti,j if j > 1 , for (i, j) ∈ I . (5.3)

The RSK satisfies the following properties:

(i) For any border index (m, n) ∈ I, denoting by Πm,n the set of all directed paths from 
(1, 1) to (m, n), we have

tm,n = max
π∈Πm,n

∑
(i,j)∈π

wi,j . (5.4)

(ii) For any border index (m, n) ∈ I, we have

σn−m(t) =
m∑
i=1

n∑
j=1

wi,j . (5.5)

(iii) The symmetry of tableaux about the diagonal is preserved by the RSK correspon-
dence. Namely, assume that I is a symmetric index set, i.e. (i, j) ∈ I if and only if 
(j, i) ∈ I, and w is a symmetric tableau, i.e. wi,j = wj,i for all (i, j); then t is also 
a symmetric tableau. In this case, denoting by (n, n) the border index of the main 
diagonal, we also have that

n∑
j=1

wj,j =
n∑

j=1
(−1)n−jtj,j . (5.6)

Property (i) is a particular case of Greene’s Theorem [21] and states that the last 
entry of any diagonal of the RSK output tableau can be interpreted as a point-to-point 
LPP time on the input variables. Property (ii) relates the sum of a diagonal of the RSK
output to the sum of certain rectangular subarrays of the input array. Property (iii) is 
useful for dealing with symmetric input tableaux.

In the following proofs we will consider the RSK on triangular Young tableaux of 
shape (N, N − 1, . . . , 1), or equivalently indexed by I := {(i, j) ∈ N2 : i + j ≤ N + 1}. 
In such a case, the outer indices are {(i, j) ∈ N2 : i + j = N + 1}, whereas the border 
indices are {(i, j) ∈ N2 : N ≤ i + j ≤ N + 1}.



46 E. Bisi, N. Zygouras / Advances in Mathematics 404 (2022) 108453
5.1. Proof of Aβ = Cβ in Theorem 4.1

We first see the connection between the point-to-point LPP with symmetry about 
the antidiagonal and the point-to-line LPP, defined in (5.7) below. Let us consider the 
point-to-point LPP L (N, N) associated with a square weight array symmetric about 
the antidiagonal i + j = N + 1 (let us not specify the distribution of the weights for 
the moment). Because of the symmetry constraint, at least one of the maximal paths15
from (1, 1) to (N, N) is symmetric about the antidiagonal; the weights collected along 
such a path will be all counted twice (once above and once below the antidiagonal), 
except the one on the antidiagonal itself. Let us now consider the point-to-line LPP time 
L (N) for directed paths starting at (1, 1) and ending at any point of the antidiagonal 
line i + j = N + 1, which can be expressed in terms of point-to-point LPP times as

L (N) = max
i+j=N+1

L(i, j) . (5.7)

We then have that the -symmetric LPP coincides with twice the point-to-line LPP, i.e. 
L (N, N) = 2 ·L (N), assuming that the weights of the point-to-line LPP are halved on 
the antidiagonal.

Let us now consider the point-to-point last passage time Lβ(N, N) with weights dis-
tributed as in (4.1). Then, the corresponding point-to-line LPP Lβ(N) is taken on a 
triangular array of independent weights W = {Wi,j : i + j ≤ N + 1} distributed as

P (Wi,j = k) =

⎧⎪⎨⎪⎩
(1 − pN−i+1pj)(pN−i+1pj)k for k ∈ Z≥0, i + j < N + 1 ,
1 − p2

j

1 + βpj
β
1 1

2 +Z(k)
p2k
j for k ∈ 1

2Z≥0, i + j = N + 1 ,
(5.8)

where the indicator function 1 1
2+Z(k) gives 1 if k is a half-integer and 0 if k is an integer. 

Given the identity Lβ(N, N) = 2 ·Lβ (N), we are thus reduced to prove the point-to-line 
reformulation of Aβ = Cβ in Theorem 4.1:

cβ · P
(
Lβ (N) ≤ u

)
=
[

N∏
i=1

pi

]u
sCB
uN (p1, . . . , pN ;β) (5.9)

for u ∈ 1
2Z≥0, where Lβ (N) is taken on the modified weights (5.8).

To prove the latter, we first rewrite the joint distribution of W under (5.8):

P (W = w) =
∏

i+j<N+1
(1 − pN−i+1pj)(pN−i+1pj)wi,j

∏
i+j=N+1

1 − p2
j

1 + βpj
β
1 1

2 +Z(wi,j)
p
2wi,j

j

15 By maximal path we mean any of the allowed paths that maximize the passage time, see (1.2). Notice 
that such a path does not need to be unique.
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= 1
cβ

β#{j : wN−j+1,j∈ 1
2+Z}

N∏
i=1

p
∑i

j=1 wN−i+1,j
i

N∏
j=1

p
∑N−j+1

i=1 wi,j

j

for any triangular tableau w = {wi,j : i +j ≤ N+1} such that wi,j ∈ Z≥0 for i +j < N+1
and wi,j ∈ 1

2Z≥0 for i +j = N+1. Taking A = Z≥0 and B = 1
2Z≥0 in Proposition 5.1, we 

can consider RSK as a bijection w �→ t between Young tableaux of shape (N, N−1, . . . , 1)
with inner entries in Z≥0 and outer entries in 12Z≥0, such that the output tableau satisfies 
ordering (5.3). By property (i) of the proposition, each entry ti,j of the RSK output 
tableau such that i + j = N + 1 is the point-to-point last passage time on w from (1, 1)
to (i, j). On the other hand, all inner wi,j’s are integers, whereas the outer ones might 
also be half-integers; therefore, for each (i, j) with i + j = N + 1, ti,j is either integer, if 
wi,j is integer, or half-integer, if wi,j is half-integer. This, in particular, implies that

#
{
j : wN−j+1,j ∈

1
2 + Z

}
= #

{
j : tN−j+1,j ∈

1
2 + Z

}
under the bijection w �→ t. Using the latter identity and property (ii) of Proposition 5.1, 
we can write the distribution that W induces on its RSK image T as

P (T = t)

= 1
cβ

β#{j : t2n−j+1,j∈ 1
2+Z}

N∏
i=1

p
σ−N+2i−1(t)−σ−N+2i(t)
i

N∏
j=1

p
σ−N+2j−1(t)−σ−N+2j−2(t)
j

for all tableaux t = {ti,j : i + j ≤ N + 1} satisfying (5.3) and such that ti,j ∈ Z≥0 for 
i + j < N + 1 and ti,j ∈ 1

2Z≥0 for i + j = N + 1.
On the other hand, it follows from (5.7), (5.4) and (5.3) that the distribution function 

of Lβ (N) is given by

P
(
Lβ (N) ≤ u

)
= P

(
max

i+j=N+1
Ti,j ≤ u

)
=

∑
t : max ti,j≤u

P (T = t) .

Out of the array t, we now define a new array Z = (Zi,j)1≤i≤2N, 1≤j≤�i/2� by setting

Zi,j :=
{
u− tN+j−i,j if 0 ≤ i− j ≤ N − 1 ,
u if N ≤ i− j ≤ 2N − 1 .

(5.10)

This transformation amounts to a change of variables plus an artificial definition of new 
fixed entries equal to u. From its pictorial representation given in Fig. 7, one can visualize 
the following facts:

• all the entries Zi,j ’s are bounded between 0 and u, as the ti,j ’s are;
• Z satisfies the interlacing conditions (2.4), due to the ordering of the ti,j ’s;
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Fig. 7. A pictorial representation of transformation (5.10) for N = 4. Array t, on the left-hand side, satisfies 
an ordering that the transformation reverses. Moreover, on the right-hand side, extra entries equal to u (in 
red, bold) are introduced, to form a split orthogonal pattern Z of height 2N and shape uN (the picture 
should be rotated by 135 degrees clockwise to visualize the pattern as in Fig. 5). In blue, we have illustrated 
the lower bound 0 and upper bound u of all entries of the arrays.

• each of the entries Z2i−1,i, for 1 ≤ i ≤ N , runs in 1
2Z≥0, as the outer ti,j ’s do;

• the other Zi,j ’s are either all simultaneously in Z≥0, when u is an integer, or all 
simultaneously in 1

2 + Z≥0, when u is a half-integer.

By definition, array Z is then a split orthogonal pattern of height 2N and shape uN , 
whose atypical entries are in bijection with the outer half-integer entries of t. Conversely, 
every split orthogonal pattern of height 2N and shape uN can be constructed in such 
a way, starting from an array t with the features described above. Denoting by |Zi| :=∑�i/2�

j=1 Zi,j the sum of the i-th row of Z, it is easy to see that

|Zk| = 
k2 �u− σ−N+k(t) for 0 ≤ k ≤ 2N ,

with the convention that σ−N (t) = σN (t) := 0. Recalling the notation |a(Z)| for the 
number of atypical entries Z, we then obtain:

cβ · P
(
Lβ (N) ≤ u

)
=

∑
Z∈soP(2N)

β| a(Z)|
N∏
i=1

p
−|Z2i−1|+|Z2i|
i

N∏
j=1

p
u−|Z2j−1|+|Z2j−2|
j

uN
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=
N∏
j=1

puj
∑

Z∈soP(2N)
uN

β| a(Z)|
N∏
i=1

p
type(Z)2i−type(Z)2i−1
i .

We recognize the latter sum over soP(2N)
uN to be the CB-interpolating Schur polynomial 

appearing on the right-hand side of (5.9), thus proving the desired identity.

Remark 5.2. Setting β = 0, we obtain an LPP formula involving symplectic characters, 
i.e. A0 = C0 of Corollary 4.2. We remark that the latter may be proved via a more 
direct and ad hoc argument: let us quickly sketch this. For β = 0, all the weights (5.8)
of the corresponding point-to-line model are integers. Following the outline of our proof 
above, one may then apply the RSK bijection of Proposition 5.1 with A = B = Z≥0. 
The subsequent transformation defines a split orthogonal pattern where all entries are 
integers, i.e. a symplectic pattern, which will generate the symplectic character appearing 
in C0 .

5.2. Proof of Theorem 4.9

Let us consider the point-to-point LPP L (N, N) associated to a square weight array 
symmetric about both the antidiagonal i + j = N + 1 and the diagonal i = j, without 
specifying the distribution of the weights for the moment. Let us also consider the point-
to-line LPP time L (N) from point (1, 1) to the antidiagonal line i + j = N + 1, taken 
on a triangular weight array symmetric about the diagonal i = j. As in Subsection 5.1, 
we then have that L (N, N) = 2 ·L (N), assuming that the weights of the point-to-line 
LPP are halved on the antidiagonal.

In particular, if we consider Lα,β(2n, 2n) with the weights distributed as in (4.12), 
then the corresponding point-to-line LPP Lα,β(2n) is taken on a triangular array of 
independent weights W = {Wi,j : i + j ≤ 2n + 1} such that Wi,j = Wj,i for all i > j and

P (Wi,j = k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − pipj)(pipj)k for k ∈ Z≥0 , i < j < 2n− i + 1 ,
1 − p2

j

1 + βpj
β
1 1

2+Z(k)
p2k
j for k ∈ 1

2Z≥0 , i < j = 2n− i + 1 ,

(1 − αpj)(αpj)k for k ∈ Z≥0 , 1 ≤ i = j ≤ n ,

(5.11)

with p2n−i+1 = pi for all 1 ≤ i ≤ n. Recalling (2.3), and given the identity Lα,β(2n, 2n) =
2 · Lα,β(2n), we are thus reduced to prove the point-to-line version of Theorem 4.9:

cα,β · P
(
Lα,β(2n) ≤ u

)
=
[

n∏
i=1

pi

]u ∑
λ⊆un

α
∑n

i=1(−1)n−i(u−λi) · sCB
λ (p1, . . . , pn;β) (5.12)

for u ∈ 1Z≥0, where Lα,β(2n) is taken on the modified weight distribution (5.11).
2
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To prove the latter we first observe that, if W is distributed as in (5.11), then

P (W = w)

=
∏

i<j<2n−i+1
(1 − pipj)(pipj)wi,j

∏
i<j=2n−i+1

1 − p2
j

1 + βpj
β
1 1

2+Z(wi,j)
p
2wi,j

j

×
n∏

j=1
(1 − αpj)(αpj)wj,j

= 1
cα,β

α
∑n

j=1 wj,j · β#{i<j=2n−i+1: wi,j∈ 1
2+Z}

n∏
i=1

p
∑2n−i+1

j=1 wi,j

i

n∏
j=1

p
∑j

i=1 wi,2n−j+1
j

for all symmetric triangular tableau w of shape (2n, 2n − 1, . . . , 1) such that wi,j ∈ Z≥0
for i + j < 2n +1 and wi,j ∈ 1

2Z≥0 for i + j = 2n +1. Taking A = Z≥0 and B = 1
2Z≥0 in 

Proposition 5.1, we now consider the RSK bijection w �→ t. As w is symmetric, so is t by 
property (iii). Via a similar argument as in Subsection 5.1, one can realize that, under 
this bijection,

#
{
i < j = 2n− i + 1: wi,j ∈

1
2 + Z

}
= #

{
i < j = 2n− i + 1: ti,j ∈

1
2 + Z

}
.

Using the latter identity as well as properties (ii) and (iii) of the proposition, we see that 
the distribution that W induces on its RSK image T is given by

P (T = t) = 1
cα,β

α
∑n

j=1(−1)n−jtj,j · β#{i<j=2n−i+1: ti,j∈ 1
2+Z}

×
n∏

i=1
p
σ2n−2i+1(t)−σ2n−2i+2(t)
i

n∏
j=1

p
σ2n−2j+1(t)−σ2n−2j(t)
j

for all symmetric tableau t of shape (2n, 2n − 1, . . . , 1), satisfying (5.3), and such that 
ti,j ∈ Z≥0 for i + j < 2n + 1 and ti,j ∈ 1

2Z≥0 for i + j = 2n + 1.
Analogously to Subsection 5.1, we now write

P
(
Lα,β(2n) ≤ u

)
=

∑
t : max ti,j≤u

P (T = t) .

Next, we change variables in the latter summation, by setting

zi,j := u− t2n+j−i,j = u− tj,2n+j−i for 1 ≤ i ≤ 2n , 1 ≤ j ≤ 
i/2� . (5.13)

Such a transformation, illustrated in Fig. 8, defines a new array z =
(zi,j)1≤i≤2n, 1≤j≤�i/2� that, due to the properties induced by t, turns out to be a split 
orthogonal pattern of height 2n and shape λ ⊆ un. The atypical entries of z are in 
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Fig. 8. A pictorial representation of change of variables (5.13) for n = 3. The symmetric triangular array t, on 
the left-hand side, is mapped onto (two identical copies of) a split orthogonal pattern z, on the right-hand 
side. The transformation reverses the ordering of the variables. The dashed line on the right-hand side goes 
through the partition λ = (λ1, . . . , λn) = (z2n,1, . . . , z2n,n), which is the shape of z. All entries, before and 
after the transformation, are bounded below by 0 and above by u (in blue).

bijection with the half-integer entries of t above (or, equivalently, below) the diagonal. 
Using the fact that σ2n−k(t) = 
k/2�u − |zk| for 0 ≤ k ≤ 2n, we then obtain:

cα,β · P
(
Lα,β(2n) ≤ u

)
=

∑
λ⊆un

∑
z∈soP(2n)

λ

α
∑n

j=1(−1)n−j(u−λj)β|a(z)|
n∏

i=1
p
u−|z2i−1|+|z2i−2|
i

n∏
j=1

p
−|z2j−1|+|z2j |
j

=
n∏

i=1
pui

∑
λ⊆un

α
∑n

j=1(−1)n−j(u−λj)
∑

z∈soP(2n)
λ

β|a(z)|
n∏

i=1
p
type(z)2i−type(z)2i−1
i .

We recognize the latter sum over soP(2n)
λ to be the CB-interpolating Schur polynomial 

appearing on the right-hand side of (5.12), thus proving the desired identity.

6. Decomposition of Gelfand-Tsetlin patterns

Using a method that we call decomposition of Gelfand-Tsetlin patterns (actually in-
cluding all types of patterns introduced in Section 2), here we prove Theorems 4.4, 4.8, 
and 4.11. These results, in particular, imply the following identities: Cβ = Dβ of Theo-
rem 4.1 (and its specializations C0 = D0 of Corollary 4.2 and C1 = D1 of Corollary 4.3), 
C0 = E0 of Corollary 4.2, Cα = Dα of Theorem 4.5 (and its specializations C0 = D0
of Corollary 4.6 and C1 = D1 of Corollary 4.7) and Cα,0 = Dα,0 of Theorem 4.10.
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Fig. 9. A split orthogonal pattern of height 2n +2m and shape un+m, for n ≥ m, can be decomposed into: a 
“frozen” triangular part of u’s, shown in red; a split orthogonal pattern z of height 2n and shape (un−m, λ), 
which overlaps with the frozen part if n > m; a split orthogonal pattern z′ of height 2m and shape λ. The 
shapes of z and z′ lie at the level of the “cut”, illustrated by the dashed line. Such a decomposition is valid, 
in particular, for symplectic patterns of even height. The picture is for n = 3 and m = 2.

6.1. Proof of Theorem 4.4

Let us start by proving (4.3). The idea is to show that, for n ≥ m and u ∈ 1
2Z≥0, 

there exists a bijection

soP(2n+2m)
un+m ←→

⋃
λ⊆um

soP(2n)
(un−m,λ) × soP(2m)

λ (6.1)

that yields the desired identity.
We invite the reader to see Fig. 9 for an illustration of the bijection, which can be 

constructed as follows. We start by observing that any Z ∈ soP(2n+2m)
un+m satisfies Zi,j = u

for i − j ≥ n + m, due to the interlacing conditions. We call frozen part the portion 
of the pattern whose entries are all equal to u. Let us now cut Z horizontally at level 
2n (from the top) and ignore all the frozen entries below such a cut, i.e. all Zi,j = u

with i − j ≥ n + m and i > 2n. What remains can be seen as the union of two smaller 
split orthogonal patterns. The first one, denoted by z, is made of the first 2n rows of 
Z (from the top), i.e. zi,j := Zi,j for all 1 ≤ i ≤ 2n and 1 ≤ j ≤ 
i/2�. The shape of 
z is (un−m, Z2n,n−m+1, . . . , Z2n,n). The second pattern, denoted by z′, is obtained by 
reading from bottom to top the last 2m rows of Z after removing the whole frozen part: 
namely, z′i,j := Z2n+2m−i,n+m−i+j for all 1 ≤ i ≤ 2m and 1 ≤ j ≤ 
i/2�. The shape 
of z′ is (Z2n,n−m+1, . . . , Z2n,n). Notice that, when n > m, z overlaps with the frozen 
part; conversely, when n = m, there is no overlap and the two patterns z and z′ have 
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the same shape. By definition of split orthogonal pattern, each of the odd ends of Z is 
either an integer or a half-integer independently of everything else; therefore, the same 
holds for z and z′. Again by definition, all the entries of Z except the odd ends are either 
simultaneously integers or simultaneously half-integers; therefore, the same holds for z
and z′. Moreover, as can be visualized in Fig. 9, the interlacing conditions for Z directly 
imply that: (1) z and z′ also satisfy the interlacing conditions and (2) all entries of z and 
z′ are less than or equal to u. Changing now notation and denoting

λ := (λ1, . . . , λm) := (Z2n,n−m+1, . . . , Z2n,n) ,

it turns out that the shape of z is (un−m, λ) and the shape of z′ is λ. Here, λ is an 
arbitrary m-partition or m-half-partition (according to whether u is an integer or a half-
integer16) such that λ ⊆ um. This proves that z ∈ soP(2n)

(un−m,λ) and z′ ∈ soP(2m)
λ , thus 

establishing bijection (6.1).
Under this bijection, it is easy to verify that type(Z)i = type(z)i for 1 ≤ i ≤ 2n

and type(Z)2n+i = u − type(z′)2m−i+1 for 1 ≤ i ≤ 2m. It is also immediate that the 
number of atypical entries of Z equals the number of atypical entries of z and z′, i.e. 
|a(Z)| = |a(z)| + |a(z′)|. We will now use these facts to prove (4.3). In particular, we 
will split the summation over all patterns Z ∈ soP(2n+2m)

un+m by first summing over the 

sub-patterns z ∈ soP(2n)
(un−m,λ) and z′ ∈ soP(2m)

λ for a fixed m-(half-)partition λ, and then 
summing over all λ ⊆ um. According to Definition 3.2, we thus have:

sCB
un+m(x1, . . . , xn, ym, . . . , y1;β)

=
∑

Z∈soP(2n+2m)
un+m

β|a(Z)|
n∏

i=1
x

type(Z)2i−type(Z)2i−1
i

m∏
i=1

y
type(Z)2n+2m−2i+2−type(Z)2n+2m−2i+1
i

=
∑

λ⊆um

∑
z∈soP(2n)

(un−m,λ)

β|a(z)|
n∏

i=1
x

type(z)2i−type(z)2i−1
i

×
∑

z′∈soP(2m)
λ

β|a(z′)|
n∏

i=1
y
[u−type(z′)2i−1]−[u−type(z′)2i]
i

=
∑

λ⊆um

sCB
(un−m,λ)(x1, . . . , xn;β) · sCB

λ (y1, . . . , ym;β) .

Since CB-interpolating Schur polynomials are symmetric (see Subsection 3.2), we have

sCB
un+m(x1, . . . , xn, ym, . . . , y1;β) = sCB

un+m(x1, . . . , xn, y1, . . . , ym;β) ,

which concludes the proof of (4.3).

16 Notice that the λi’s occupy a row of even index, so none of them is an odd end.
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The specializations of (4.3) to β = 0 and β = 1 yield the corresponding identities (4.4)
and (4.5) for even symplectic and odd orthogonal Schur polynomials, respectively. Notice 
however that a more ad hoc proof of (4.4) is based on the restriction of bijection (6.1)
to symplectic patterns of even height, which reads as

spP(2n+2m)
un+m ←→

⋃
λ⊆um

spP(2n)
(un−m,λ) × spP(2m)

λ (6.2)

for u ∈ Z≥0.
We now prove (4.6). This is based on the bijection

spP(2n+2m+2)
un+m+1 ←→

⋃
λ⊆um+1

spP(2n+1)
(un−m,λ) × spP(2m+1)

λ , (6.3)

valid for n ≥ m and u ∈ Z≥0, which can be proved via a “graphical” decomposition as 
we did for (6.1). Essentially, one cuts a symplectic pattern Z of height 2n + 2m + 2 and 
rectangular shape um+n+1 at the level of the (2n + 1)-th row, thus obtaining a frozen 
part of u’s and two sub-patterns z and z′ of height 2n + 1 and 2m + 1, respectively.

By Definition 2.2, we have

sp(2n+2m+2)
un+m+1 (x1, . . . , xn, s

−1, ym, . . . , y1)

=
∑

Z∈spP(2n+2m+2)
un+m+1

n∏
i=1

x
type(Z)2i−type(Z)2i−1
i · s−[type(Z)2n+2−type(Z)2n+1]

×
m∏
i=1

y
type(Z)2n+2m−2i+4−type(Z)2n+2m−2i+3
i .

Using now bijection (6.3), under which type(Z)i = type(z)i for 1 ≤ i ≤ 2n + 1 and 
type(Z)2n+1+i = u − type(z′)2m+2−i for 1 ≤ i ≤ 2m + 1, the above expression becomes

∑
λ⊆um+1

∑
z∈spP(2n+1)

(un−m,λ)

n∏
i=1

x
type(z)2i−type(z)2i−1
i · stype(z)2n+1

×
∑

z′∈spP(2m+1)
λ

m∏
i=1

y
[u−type(z′)2i−1]−[u−type(z′)2i]
i · s−u+type(z′)2m+1

= s−u
∑

λ⊆um+1

sp(2n+1)
(un−m,λ)(x1, . . . , xn; s) · sp(2m+1)

λ (y1, . . . , ym; s) .

The latter equality follows from Definition 2.3 of odd symplectic characters. On the 
other hand, recalling from Subsection 2.2 the invariance properties of even symplectic 
characters, we have
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Fig. 10. An orthogonal pattern of height 2n + 2m − 1 and shape un+m, for n ≥ m, can be decomposed 
into: a “frozen” triangular part of u’s, shown in red; an orthogonal pattern z of height 2n − 1 and shape 
(un−m, λδ), which overlaps with the frozen part if n > m; an orthogonal pattern z′ of height 2m − 1 and 
shape λδ. The shapes of z and z′ lie at the level of the “cut”, illustrated by the dashed line. The picture is 
for n = 4 and m = 2.

sp(2n+2m+2)
un+m+1 (x1, . . . , xn, s

−1, ym, . . . , y1) = sp(2n+2m+2)
un+m+1 (x1, . . . , xn, y1, . . . , ym, s) ,

from which (4.6) follows.

6.2. Proof of Theorem 4.8

Eq. (4.11) immediately follows from (4.10) and (2.21), so it suffices to prove (4.10). For 
this, we are going to adapt the proof of Theorem 4.4 to the case of orthogonal patterns 
and characters of type D. We wish now to show that, for n ≥ m, u ∈ 1

2Z≥0 and ε = ±1, 
there exists a bijection

oP(2n+2m−1)
un+m
ε

←→
⋃

λδ⊆um

oP(2n−1)
(un−m,λδ) × oP(2m−1)

λδ
(6.4)

that yields identity (4.10).
Similarly to the cases considered in the previous subsection, an orthogonal pattern Z

of height 2n + 2m − 1 and shape un+m
ε has a frozen part of u’s, as visualized in Fig. 10. 

Ignoring all the frozen entries below the (2n − 1)-th row, we are left with two smaller 
orthogonal patterns of height 2n − 1 and 2m − 1 respectively. The first one, denoted 
by z, is defined by zi,j := Zi,j for all 1 ≤ i ≤ 2n − 1 and 1 ≤ j ≤ 
i/2� and has 
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shape (un−m, Z2n−1,n−m+1, . . . , Z2n−1,n). The second one, denoted by z′, is defined by 
z′i,j := Z2(n+m)−2−i,n+m−1−i+j for all 1 ≤ i ≤ 2m − 1 and 1 ≤ j ≤ 
i/2� and has shape 
(Z2n−1,n−m+1, . . . , Z2n−1,n). These are indeed orthogonal patterns as they inherit the 
properties of Z. Denoting

λδ := (λ1, . . . , δλm) := (Z2n−1,n−m+1, . . . , Z2n−1,n) ,

it turns out that the shape of z is (un−m, λδ) and the shape of z′ is λδ. Here, λδ is an 
arbitrary signed m-partition or signed m-half-partition (according to whether u is an 
integer or a half-integer) such that λδ ⊆ um. This proves that z ∈ oP(2n−1)

(un−m,λδ) and z′ ∈
oP(2m−1)

λδ
, thus establishing bijection (6.4). Notice that type(Z)i = type(z)i for 1 ≤ i ≤

2n − 1, type(Z)2n+i−1 = u − type(z′)2m−i for 1 ≤ i ≤ 2m − 1 and type(Z)2n+2m−1 = u.
We now proceed to prove (4.10). Starting from Definition 2.4 of even orthogonal Schur 

polynomials and applying the results described above, we obtain:

so(2n+2m)
un+m
ε

(x1, . . . , xn, ym, . . . , y1)

=
∑

Z∈oP(2n+2m−1)
u
n+m
ε

x
sgn(Z1,1) type(Z)1
1

n∏
i=2

x
sgn(Z2i−3,i−1) sgn(Z2i−1,i)[type(Z)2i−1−type(Z)2i−2]
i

×
m∏
i=1

y
sgn(Z2n+2m−2i−1,n+m−i) sgn(Z2n+2m−2i+1,n+m−i+1)[type(Z)2n+2m−2i+1−type(Z)2n+2m−2i]
i

=
∑

λδ⊆um

∑
z∈oP(2n−1)

(un−m,λδ)

x
sgn(z1,1) type(z)1
1

n∏
i=2

x
sgn(z2i−3,i−1) sgn(z2i−1,i)[type(z)2i−1−type(z)2i−2]
i

×
∑

z′∈oP(2m−1)
λδ

y
ε sgn(z′

1,1) type(z′)1
1

m∏
i=2

y
sgn(z′

2i−1,i) sgn(z′
2i−3,i−1)[type(z′)2i−1−type(z′)2i−2)]

i

=
∑

λδ⊆um

∑
z∈oP(2n−1)

(un−m,λδ)

x
sgn(z1,1) type(z)1
1

n∏
i=2

x
sgn(z2i−3,i−1) sgn(z2i−1,i)[type(z)2i−1−type(z)2i−2]
i

×
∑

z′∈oP(2m−1)
λδε

y
sgn(z′

1,1) type(z′)1
1

m∏
i=2

y
sgn(z′

2i−1,i) sgn(z′
2i−3,i−1)[type(z′)2i−1−type(z′)2i−2)]

i .

For the latter equality we have set z′2i−1,i �→ εz′2i−1,i for 1 ≤ i ≤ m, thus changing, if 
ε = −1, the sign of all odd ends of z′. The two sums over orthogonal patterns are, by 
definition, the two even orthogonal Schur polynomials appearing on the right-hand side 
of (4.10). On the other hand, by symmetry, the variables of the initial orthogonal Schur 
polynomial of shape un+m

ε can be reordered to get the left-hand side of (4.10).
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(u3,v2).

Fig. 11. A Gelfand-Tsetlin pattern of height n + m and shape (un, vm) can be decomposed into: a “frozen” 
triangular part of u’s, in red; a “frozen” triangular part of v’s, in blue; two Gelfand-Tsetlin patterns z and z′

whose shapes contain a common partition μ. If n ≤ m as in Fig. 11a, z is of height m and shape (μ, vm−n), 
whereas z′ is of height n and shape μ. If n ≥ m as in Fig. 11b, z is of height n and shape (un−m, μ), 
whereas z′ is of height m and shape μ. The shapes of z and z′ lie at the level of the “cut”, illustrated by 
the dashed line.

6.3. Proof of Theorem 4.11

This proof is similar in spirit to the previous ones, but differs for the presence of two
“frozen parts” (instead of one) in a triangular pattern (instead of “half-triangular”).

Let u ≥ v ≥ 0 be integers. We will first show the existence of two natural bijections:

GT(n+m)
(un,vm) ←→

⋃
vn⊆μ⊆un

GT(m)
(μ, vm−n) × GT(n)

μ if n ≤ m, (6.5)

GT(n+m)
(un,vm) ←→

⋃
vm⊆μ⊆um

GT(n)
(un−m,μ) × GT(m)

μ if n ≥ m. (6.6)

An illustration of these bijections is given by Fig. 11. A Gelfand-Tsetlin pattern Z ∈
GT(n+m)

(un,vm) is characterized by a portion made of u’s only, which we call “u-frozen part”, 
and a portion made of v’s only, which we call “v-frozen part”. More precisely, we have 
Zi,j = u for i − j ≥ m and Zi,j = v for j ≥ n + 1. This phenomenon is due to the 
interlacing conditions (2.4), as in the case of (split) orthogonal patterns. Assume first 
that n ≤ m: in this case we cut Z horizontally at level m (from the top) and ignore 
all the frozen entries below such a cut, i.e. all Zi,j = u for i − j ≥ m and Zi,j = v

for j ≥ n + 1, i > m. What remains can be seen as the union of two Gelfand-Tsetlin 
patterns. The first one, denoted by z, is made of the first m rows of Z (from the top), i.e. 
zi,j := Zi,j for all 1 ≤ j ≤ i ≤ m. The shape of z is the partition (Zm,1, . . . , Zm,n, vm−n). 
The second pattern, denoted by z′, is obtained by reading from bottom to top the last 
n rows of Z after removing the whole frozen parts: namely, z′i,j := Zn+m−i,n−i+j for all 
1 ≤ j ≤ i ≤ n. The shape of z′ is the partition (Zm,1, . . . , Zm,n). As can be visualized 
in Fig. 11, the interlacing conditions for Z directly imply that 1) z and z′ also satisfy 
the interlacing conditions, and 2) all entries of z and z′ are bounded between v and u. 
Changing now notation and denoting
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μ := (μ1, . . . , μn) := (Zm,1, . . . , Zm,n) ,

it turns out that the shape of z is (μ, vm−n) and the shape of z′ is μ, where μ is an 
arbitrary n-partition such that v ≤ μn ≤ · · · ≤ μ1 ≤ u. This establishes bijection (6.5). 
In case n ≥ m, we obtain a similar decomposition of Z via a horizontal cut at level n
(from the top) instead of m. Setting this time

μ := (μ1, . . . , μm) := (Zn,n−m+1, . . . , Zn,n) ,

we see that Z is in a bijective correspondence with a pair (z, z′) of Gelfand-Tsetlin 
patterns of height n and m respectively and shape (un−m, μ) and μ respectively, being 
μ an m-partition such that v ≤ μm ≤ · · · ≤ μ1 ≤ u. This proves (6.6). We also observe 
the following: when n < m, z overlaps with the v-frozen part; when n > m, z overlaps 
with the u-frozen part; when n = m, there is no overlap and the two patterns z and z′

have the same shape μ.
Identity (4.15) then follows from bijections (6.5) and (6.6). For the sake of simplicity, 

we will assume v = 0 and show that

s(n+m)
(un,0m)(x, y) =

[
n∏

i=1
xi

]u ∑
μ⊆ul

s(n)
(μ,0n−l)(x

−1) · s(m)
(μ,0m−l)(y) , (6.7)

where l := min(n, m). The general case v ≤ u can be deduced from the latter by 
multiplying both sides of (6.7) by [

∏n
i=1 xi

∏m
i=1 yi]v, applying (2.7) on the left-hand 

side, and finally replacing u with u − v.
Assume first that n ≤ m. A Schur polynomial indexed by (un, 0m) is, by Definition 2.1, 

a sum over Gelfand-Tsetlin patterns Z of shape (un, 0m). Thanks to bijection (6.5), for 
v = 0, we can rewrite this by first summing over Gelfand-Tsetlin patterns z and z′ of 
shape (μ, 0m−n) and μ, respectively, for a fixed m-partition μ, and then summing over all 
μ bounded above17 by u. It is easy to see that, under the bijection, type(Z)i = type(z)i
for 1 ≤ i ≤ m and type(Z)m+i = u − type(z′)n−i+1 for 1 ≤ i ≤ n. We thus obtain:

s(n+m)
(un,0m)(y1, . . . , ym, xn, . . . , x1) =

∑
Z∈GT(n+m)

(un,0m)

m∏
i=1

y
type(Z)i
i

n∏
i=1

x
type(Z)m+n−i+1
i

=
∑
μ⊆un

∑
z′∈GT(n)

μ

n∏
i=1

x
u−type(z′)i
i

∑
z∈GT(m)

(μ,0m−n)

m∏
i=1

y
type(z)i
i

=
[

n∏
i=1

xi

]u ∑
μ⊆un

s(n)
μ (x−1

1 , . . . , x−1
n ) · s(m)

(μ,0m−n)(y1, . . . , ym) .

17 There is no lower bound as v = 0.
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Since Schur polynomials are symmetric, (6.7) follows by reordering the variables xi’s and 
yi’s in the initial Schur polynomial indexed by (un, 0m).

Assume now n ≥ m. Under the bijection Z ←→ (z, z′) given by (6.6), it turns out that 
type(Z)i = type(z)i for 1 ≤ i ≤ n and type(Z)n+i = u − type(z′)m−i+1 for 1 ≤ i ≤ m. 
Proceeding similarly as in the case n ≤ m, we then obtain the identity

s(n+m)
(un,0m)(x, y) =

[
m∏
i=1

yi

]u ∑
μ⊆um

s(n)
(un−m,μ)(x) · s(m)

μ (y−1) .

Applying property (2.8) to the Schur polynomial in the y-variables on the right-hand 
side, we obtain:

s(n+m)
(un,0m)(x, y) =

∑
μ⊆um

s(n)
(un−m,μ)(x) · s(m)

(u−μm,...,u−μ1)(y) . (6.8)

We remark that (6.8) corresponds to the identity of Okada, as it appears in [38, Theorem 
2.1]. We now elaborate it further by setting λi := u −μm−i+1 for 1 ≤ i ≤ m and summing 
over the new partition λ thus defined:

s(n+m)
(un,0m)(x, y) =

∑
λ⊆um

s(n)
(un−m,u−λm,...,u−λ1)(x) · s(m)

λ (y)

=
[

n∏
i=1

xi

]u ∑
λ⊆um

s(n)
(λ,0n−m)(x

−1) · s(m)
λ (y) ,

where the latter equality follows from a further application of (2.8) to the Schur polyno-
mial in the x-variables. We conclude that (6.7) is true also for n ≥ m.

Alternative algebraic proof. As pointed out by an anonymous referee, Theorem 4.11 has 
an alternative, purely algebraic proof, which we outline here for the reader’s convenience. 
As noted above, it is enough to prove the v = 0 case. Assume also, for the sake of 
simplicity, that n ≤ m. Using (2.8), one is reduced to show that

s(n+m)
un (x, y) =

∑
μ⊆un

s(n)
un−μ(x) · s(m)

μ (y) .

On the other hand, recall the classical decomposition formula for skew Schur functions 
s(n+m)
λ/ν (x, y) =

∑
μ s(n)

λ/μ(x) · s(m)
μ/ν(y), where it is meant that s(n)

λ/μ = 0 whenever μ � λ. 
Using the latter with λ = un and ν = 0, we have

s(n+m)
un (x, y) =

∑
μ

s(n)
un/μ(x) · s(m)

μ (y) .

Therefore, it remains to prove that s(n)
un/μ(x) = s(n)

un−μ(x). This can be easily shown, 
for example, by expanding the skew Schur function in terms of Littlewood-Richardson 
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coefficients as s(n)
un/μ(x) =

∑
ν c

un

μν s(n)
ν (x) and noting that cun

μν = δν,un−μ (see e.g. [36, 
Eq. (1)]). Alternatively, one may use, on both sides of the identity to be proven, the 
Jacobi-Trudi formula s(n)

λ/ν(x) = det(hλi−νj−i+j(x))1≤i,j≤n (here hk(x) is the complete 
homogeneous symmetric polynomial of degree k in the variables x1, . . . , xn).

7. Identities for characters of (nearly) rectangular shape

In this section we prove those identities stated in Section 4 that express a rectangular 
shaped (interpolating) Schur polynomial as a bounded Littlewood sum of Schur polyno-
mials of a different type. More specifically, we prove identities Bβ = Cβ of Theorem 4.1, 
Bα = Cα of Theorem 4.5 and Bα,0 = Cα,0 of Theorem 4.10. Essentially, we provide a 
way to generalize known identities for rectangular shaped characters (see [51,35,38,31]) 
to the interpolating Schur polynomials that we have introduced in Section 3. Our re-
sults can be proven using certain identities established by Krattenthaler [31] for Schur 
polynomials of various types indexed by a “nearly rectangular” partition, i.e. a partition 
with rectangular shape except for the last row or column that might be shorter.

7.1. Proof of Bβ = Cβ of Theorem 4.1

Let us fix a set of variables p = (p1, . . . , pN ) as in Theorem 4.1. The identity of 
Krattenthaler [31, Theorem 2] that we need for this proof is:

∑
λ⊆(2u)N :

oddrowsλ=k

s(N)
λ (p) =

[
N∏
i=1

pi

]u
sp(2N)

(uN−k,(u−1)k)(p) , (7.1)

for any non-negative integers u and k such that k ≤ N . In words, the sum on the left-
hand side is taken over all N -partitions λ bounded above by 2u and with exactly k odd 
rows.

Assume first that, in Theorem 4.1, u is integer. From (7.1) it follows that

Bβ =
∑

μ⊆(2u)N
βoddrowsμ · s(N)

μ (p) =
N∑

k=0

βk
∑

μ⊆(2u)N ,
oddrowsμ=k

s(N)
μ (p)

=
[

N∏
i=1

pi

]u N∑
k=0

βk sp(2N)
(uN−k,(u−1)k)(p) =

[
N∏
i=1

pi

]u N∑
k=0

βk
∑

ε∈{0,1}N :
|ε|=k

sp(2N)
uN−ε

(p) .

The latter equality follows from the fact that (uN−k, (u − 1)k) is the only partition of 
the form uN − ε, where ε is a binary N -tuple with exactly k ones and N − k zeroes. 
Using (3.8), we conclude:
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Bβ =
[

N∏
i=1

pi

]u
sCB
uN (x;β) = Cβ .

Assume now u ∈ 1
2 + Z. We have

Bβ =
∑

μ⊆(2u)N
βoddrowsμ · s(N)

μ (p) =
∑

ν⊆(2u−1)N :
oddrows ν=0

N∑
k=0

βk
∑

ε∈{0,1}N :
|ε|=k

s(N)
ν+ε(p) .

In the latter expression we have changed variables by setting εi := μi mod 2 and νi :=
μi − εi for 1 ≤ i ≤ N , thus obtaining an N -tuple ε ∈ {0, 1}N and an N -partition ν
bounded above by 2u − 1 with even parts. The convention for the right-hand side of the 
latter display is that, as usual, s(N)

ν+ε(p) vanishes if ν+ ε is not a partition. The dual Pieri 
rule (see e.g. [35]) tells us that

∑
ε∈{0,1}N :

|ε|=k

s(N)
ν+ε(p) = e(N)

k (p) · s(N)
ν (p) , where e(N)

k (p) :=
∑

ε∈{0,1}N :
|ε|=k

N∏
i=1

pεii

is the elementary symmetric polynomial of degree k in N variables. Since e(N)
k (p) is 

homogeneous of degree k, we have

Bβ =
∑

ν⊆(2u−1)N :
oddrows ν=0

N∑
k=0

e(N)
k (βp) s(N)

ν (p) =

⎡⎣ ∑
ε∈{0,1}N

N∏
i=1

(βpi)εi
⎤⎦ ∑

ν⊆(2u−1)N :
oddrows ν=0

s(N)
ν (p) .

Since u is a half-integer, we can now use (7.1) replacing u with u − 1
2 and setting k = 0. 

We thus obtain:

Bβ =
[

N∏
i=1

(βpi + 1)
][

N∏
i=1

pi

]u− 1
2

sp(2N)
(u− 1

2 )N (x) =
[

N∏
i=1

pi

]u
sCB
uN (p;β) = Cβ ,

thanks to (3.9).

7.2. Proof of Bα = Cα of Theorem 4.5

Let us fix a set of variables p = (p1, . . . , pN ) as in Theorem 4.5. We will use the 
following identity of Krattenthaler [31, Theorem 2]: for any u ∈ 1

2Z≥0 and k ∈ Z≥0 such 
that k ≤ 2u, we have

∑
λ⊆(2u)N :

N ′

s(N)
λ (p) =

[
N∏
i=1

pi

]u
so(2N)

(uN−1,u−k)(p) . (7.2)
oddrows((2u) −λ) =k
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In words, the sum on the left-hand side is taken over all N -partitions λ ⊆ (2u)N such 
that the complement partition of λ with respect to (2u)N , i.e. μ := (2u)N − λ = (2u −
λN , . . . , 2u − λ1), has exactly k odd columns. It is easy to verify, by using (2.8) and 
replacing each pi with p−1

i , that (7.2) is equivalent to:

∑
μ⊆(2u)N :

oddrowsμ′=k

s(N)
μ (p) =

[
N∏
i=1

pi

]u
so(2N)

(uN−1,u−k)(p
−1) ,

where p−1 := (p−1
1 , . . . , p−1

N ).
Using the latter identity, along with (3.21), we obtain:

Bα =
∑

μ⊆(2u)N
αoddrowsμ′ · s(N)

μ (p) =
2u∑
k=0

αk
∑

μ⊆(2u)N :
oddrowsμ′=k

s(N)
μ (p)

=
[

N∏
i=1

pi

]u 2u∑
k=0

αk · so(2N)
(uN−1,u−k)(p

−1) =
[

N∏
i=1

pi

]u
sDB
uN (p−1;α) = Cα .

7.3. Proof of Bα,0 = Cα,0 of Theorem 4.10

Let us fix a set of variables p = (p1, . . . , pn) as in Theorem 4.10. We will now use the 
following identity of Krattenthaler [31, Theorem 1]: for any non-negative integer u and 
k such that k ≤ u, we have∑

λ⊆un :
oddrows(un−λ)′=k

sp(2n)
λ (p) = s(2n)

(un−1,u−k,0n)(p, p
−1) , (7.3)

where p−1 := (p−1
1 , . . . , p−1

n ). In words, the sum on the left-hand side is taken over 
all n-partitions λ ⊆ un such that the complement partition un − λ has exactly k odd 
columns.

From (7.3) it follows that[
n∏

i=1
pi

]−u

Bα,0 =
∑
λ⊆un

αoddrows(un−λ)′ · sp(2n)
λ (p)

=
u∑

k=0

αk
∑

λ⊆un :
oddrows(un−λ)′=k

sp(2n)
λ (p) =

u∑
k=0

αk · s(2n)
(un−1,u−k,0n)(p, p

−1) .

(7.4)

On the other hand, let us recall the well-known branching rule for Schur polynomials 
(which is an immediate consequence of Definition 2.1):
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s(m)
μ (x1, . . . , xm) =

∑
ν≺μ

x|μ|−|ν|
m s(m−1)

ν (x1, . . . , xm−1) ,

where the sum is taken over all (m − 1)-partitions ν that upwards interlace with μ. If we 
take m = 2n +1 and μ := (un, 0n+1), then all and only the (2n)-partitions that upwards 
interlace with μ are of the form (un−1, k, 0n) for any integer 0 ≤ k ≤ u. The branching 
rule and the symmetry of Schur polynomials then tell us that[

n∏
i=1

pi

]−u

Cα,0 = s(2n+1)
(un,0n+1)(p, p

−1, α) =
u∑

k=0

αnu−((n−1)u+k) · s(2n)
(un−1,k,0n)(p, p

−1)

=
u∑

k=0

αu−k · s(2n)
(un−1,k,0n)(p, p

−1) .

(7.5)

Comparing (7.4) and (7.5), we obtain Bα,0 = Cα,0.

8. Duality between Fredholm determinants and Pfaffians in random matrix theory

Certain distributions from random matrix theory, which describe the fluctuations of 
the largest eigenvalue of an N×N random matrix drawn from a specific ensemble as N →
∞, often possess dual expressions as Fredholm determinants on one hand and Fredholm 
Pfaffians on the other hand. In this section we briefly describe how the combinatorial and 
algebraic structures described in the present work explain, already at a finite N level, 
such a duality for two random matrix distributions: the Tracy-Widom GOE and GSE 
laws.

Let us start by briefly recalling the notions of a Fredholm determinant and a Fredholm 
Pfaffian. Given a measure space (X , μ), any linear operator K : L2(X ) → L2(X ) can be 
given in terms of its integral kernel K(x, y) by

(Kf)(x) :=
∫
X

K(x, y)f(y)μ(dy) , f ∈ L2(X ) .

The Fredholm determinant of K can then be defined through its series expansion:

det(I + K)L2(X ) := 1 +
∞∑

n=1

1
n!

∫
Xn

det
1≤i,j≤n

(K(xi, xj))μ(dx1) · · ·μ(dxn) ,

assuming the series converges.
The Pfaffian of a skew-symmetric matrix A = (ai,j)1≤i,j≤2n is defined via the sym-

metric group expansion

Pf(A) = 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏

k=1

aσ(2k−1),σ(2k)
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and it can be shown to be the square root of det(A). Let now

J := δ(x− y)
(

0 1
−1 0

)
for x, y ∈ X ,

where δ(·) is the Dirac delta function. Then the Fredholm Pfaffian of a skew-symmetric18

matrix-valued kernel

K(x, y) =
(
K11(x, y) K12(x, y)
K21(x, y) K22(x, y)

)
, with Ki,j : L2(X ) → L2(X ) ,

is defined as

Pf(J + K)L2(X ) := 1 +
∞∑

n=1

1
n!

∫
Xn

Pf
1≤i,j≤n

(K(xi, xj))μ(dx1) · · ·μ(dxn) ,

assuming that the series converge.
We also recall two crucial identities that express integrals of determinantal functions 

as Pfaffians or determinants, and that will be useful in the following of this section. 
Andréief’s identity (a generalization of the Cauchy-Binet identity, see [1]) states that

∫
x1≤···≤xn

det
1≤i,j≤n

(fj(xi)) det
1≤i,j≤n

(gj(xi))
n∏

i=1
ν(dxi) = det

1≤i,j≤n

⎛⎝∫
R

fi(x)gj(x) ν(dx)

⎞⎠ ,

(8.1)
where ν is a Borel measure on R and f1, . . . , fn, g1, . . . , gn are integrable functions. On 
the other hand, assuming for simplicity that n is even, the de Bruijn identity [11] states 
that

∫
x1≤···≤xn

det
1≤i,j≤n

(ϕj(xi))
n∏

i=1
ν(dxi) = Pf

1≤i,j≤n

⎛⎝∫
R2

sgn(y − x)ϕi(x)ϕj(y) ν(dx) ν(dy)

⎞⎠ ,

(8.2)
where ν is a Borel measure on R and ϕ1, . . . , ϕn are integrable functions.

8.1. The Tracy-Widom GOE distribution

The Gaussian Orthogonal Ensemble (GOE) is the space of N ×N real symmetric ma-
trices H endowed with the Gaussian probability density proportional to exp{−N

4 TrH2}, 
which turns out to be invariant under conjugation with the orthogonal group. The law 
of the largest eigenvalue of an N ×N GOE matrix converges as N → ∞, after suitable 

18 This means that Kj,i(y, x) = −Ki,j(x, y) for all 1 ≤ i, j ≤ 2 and x, y ∈ X .
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rescaling, to the so-called Tracy-Widom GOE distribution. This random matrix model 
has been first studied in [57].

The cumulative function of the Tracy-Widom GOE distribution admits the Fredholm 
Pfaffian expression [14]:

F1(s) = Pf(J + KGOE)L2[s,∞) , (8.3)

where, denoting by Ai(·) the Airy function and Ai′(·) its derivative, KGOE is the 2 × 2
matrix-valued kernel defined by

KGOE
11 (x, y) =

∞∫
0

Ai(x + λ) Ai′(y + λ) dλ−
∞∫
0

Ai(y + λ) Ai′(x + λ) dλ ,

KGOE
12 (x, y) = −KGOE

21 (x, y) =
∞∫
0

Ai(x + λ) Ai(y + λ) dλ + 1
2 Ai(x)

∞∫
0

Ai(y − λ) dλ ,

KGOE
22 (x, y) = 1

4

∞∫
0

dλ
∞∫
λ

dμAi(y − μ) Ai(x− λ) − 1
4

∞∫
0

dλ
∞∫
λ

dμAi(x− μ) Ai(y − λ) .

Equivalent but slightly different Pfaffian expressions for the Tracy-Widom GOE distri-
bution, as well as formulas in terms of Painlevé functions, also exist – see e.g. [58,13].

Remarkably, the Tracy-Widom GOE distribution also admits the following simpler 
Fredholm determinant expression:

F1(s) = det(I −B)L2[s,∞) with B(x, y) = 1
2 Ai

(x + y

2

)
. (8.4)

Expression (8.4) was originally discovered by Sasamoto [50] via analysis of the Totally 
Asymmetric Simple Exclusion Process (TASEP). A confirmation that (8.4) agrees with 
previously known formulas for the Tracy-Widom GOE distribution was provided by 
Ferrari and Spohn in [15] via a series of linear operator tricks.

It is possible to recover both the Pfaffian and the determinantal expressions for the 
Tracy-Widom GOE distribution by rescaling the formulas provided in Corollary 4.2
for the distribution of the antidiagonally symmetric LPP time. For convenience and in 
analogy with the asymptotic analysis carried out in [9], we will work with exponen-
tially distributed weights, instead of geometrically. Namely, we will consider an array 
{W̃i,j : 1 ≤ i, j ≤ 2n} symmetric about the antidiagonal and such that the weights W̃i,j

with i + j ≤ 2n + 1 are independent and distributed as

P (W̃i,j ∈ dx) = (�2n−i+1 + �j) e−(
2n−i+1+
j)x . (8.5)

Consider A0 = B0 in Corollary 4.2, with N = 2n. After replacing the Schur poly-
nomial in B0 with its Weyl character formula (2.6), expressing the denominator’s 
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Vandermonde determinant in its closed form and setting μi := 2λi for 1 ≤ i ≤ 2n, 
the identity reads as

P
(
L0 (2n, 2n) ≤ 2u

)
=
∏

1≤i≤j≤2n(1 − pipj)∏
1≤i<j≤2n(pi − pj)

∑
λ∈Z2n :

0≤λ2n≤···≤λ1≤u

det
1≤i,j≤2n

(
p2λi+2n−i
j

)
.

(8.6)
The LPP time L0 (2n, 2n) is taken on geometric weights Wi,j’s with distribution given 
by (4.1) (for N = 2n and β = 0). Scaling the parameters as pi := e−ε
i for ε > 0, the 
variables εWi,j will converge in law, as ε ↓ 0, to the exponential weights in (8.5). To 
obtain the analog of (8.6) for the LPP model with exponential weights, it then suffices 
to set also v := u/ε and take the limit as ε ↓ 0. By Riemann sum approximation, the 
sum on the right-hand side of (8.6) will then converge to a continuous integral, yielding:

P
(
L̃0 (2n, 2n) ≤ 2v

)
=
∏

1≤i≤j≤2n(�i + �j)∏
1≤i<j≤2n(�j − �i)

∫
0≤x2n≤···≤x1≤v

det
1≤i,j≤2n

(
e−2
jxi

) 2n∏
i=1

dxi ,

where L̃0 (2n, 2n) is the antidiagonally symmetric LPP time from (1, 1) to (2n, 2n) with 
weights as in (8.5). Recognizing in the latter expression the Schur Pfaffian

Pf
1≤i,j≤2n

(
�i − �j
�i + �j

)
=

∏
1≤i<j≤2n

�i − �j
�i + �j

and applying the de Bruijn identity (8.2) and a basic property of Pfaffians, we obtain:

P
(
L̃0 (2n, 2n) ≤ 2v

)
=

Pf
1≤i,j≤2n

⎛⎝4�i�j
v∫

0

dx
v∫

0

dy sgn(y − x) e−2
ix−2
jy

⎞⎠
Pf

1≤i,j≤2n

(
�i − �j
�i + �j

) . (8.7)

The Fredholm Pfaffian expression given in (8.3) for the Tracy-Widom GOE distribution 
can be derived as a scaling limit of the latter identity, after taking the weights to be 
exponential i.i.d. variables and setting v := vn := fn +σn1/3 for suitable constants f and 
σ. The asymptotic analysis of a Poissonized version of the antidiagonally symmetric LPP 
model, recovering (8.3), was carried out by Ferrari [14]. A previous asymptotic analysis 
via orthogonal polynomials and Riemann-Hilbert problems, recovering the expression of 
the Tracy-Widom GOE distribution in terms of Painlevé functions, was performed by 
Baik and Rains [6].

On the other hand, consider identity A0 = D0 in Corollary 4.2, for N = 2n. Using 
the Weyl character formula (2.11) for symplectic characters and taking – in the same 
fashion as before – the exponential limit, one obtains:
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P
(
L̃0 (2n, 2n) ≤ 2v

)
=

∏
1≤i,j≤n(�i + �n+j)∏

1≤i<j≤n(�i − �j)(�n+i − �n+j)

2n∏
i=1

e−v
i

×
∫

0≤xn≤···≤x1≤v

det
1≤i,j≤n

(
e
jxi − e−
jxi

)
det

1≤i,j≤n

(
e
n+jxi − e−
n+jxi

) n∏
i=1

dxi .

Recognizing in the latter expression the Cauchy determinant

det
1≤i,j≤n

(
1

�i + �n+j

)
=
∏

1≤i<j≤n(�i − �j)(�n+i − �n+j)∏
1≤i,j≤n(�i + �n+j)

(8.8)

and applying Andréief’s identity (8.1) and the multilinearity of determinants, we then 
obtain:

P
(
L̃0 (2n, 2n) ≤ 2v

)
=

det
1≤i,j≤n

⎛⎝e−v(
i+
n+j)
v∫

0

(
e
ix − e−
ix

)(
e
n+jx − e−
n+jx

)
dx

⎞⎠
det

1≤i,j≤n

(
1

�i + �n+j

) .

(8.9)

The latter identity was shown in [9] to directly lead, in the scaling limit, to the Fredholm 
determinant formula (8.4) for the Tracy-Widom GOE distribution. This was possible by 
means of a fairly standard procedure to turn a ratio of determinants like (8.9) into 
a Fredholm determinant (see e.g. [9, Theorem 2.1] or [10]) and a suitable asymptotic 
analysis via steepest descent.

From the discussion above we may conclude that comparing the Pfaffian identity (8.7)
and the determinantal identity (8.9) for the LPP model provides an explanation, at a 
finite n level, of the duality between the Fredholm Pfaffian and Fredholm determinant 
expressions of the Tracy-Widom GOE distribution.

8.2. The Tracy-Widom GSE distribution

The Gaussian Symplectic Ensemble (GSE) is the space of N ×N Hermitian quater-
nionic matrices H endowed with the Gaussian probability density proportional to 
exp{−N TrH2}, which is invariant under conjugation with the symplectic group. The 
law of the largest eigenvalue of an N×N GSE matrix converges as N → ∞, after suitable 
rescaling, to the so-called Tracy-Widom GSE distribution [57].

The cumulative function of the Tracy-Widom GSE distribution has the Fredholm 
Pfaffian expression [2]19

19 Other expressions in terms of the square root of a Fredholm determinant with 2 × 2 matrix-valued 
kernel [58,13] or with scalar kernel [30] also exist.
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F4(s) = Pf(J −KGSE)L2[s,∞) , (8.10)

where the kernel KGSE is given as a 2 × 2 matrix kernel with entries

KGSE
11 (x, y) = −1

2

∞∫
x

dλ
∞∫
0

dμAi(λ + μ) Ai(y + μ) + 1
4

∞∫
x

Ai(λ) dλ
∞∫
y

Ai(μ) dμ ,

KGSE
12 (x, y) = −KGSE

21 (y, x) = 1
2

∞∫
0

Ai(x + λ) Ai(y + λ) dλ− 1
4 Ai(y)

∞∫
x

Ai(λ) dλ ,

KGSE
22 (x, y) = 1

2
∂

∂y

∞∫
0

Ai(x + λ) Ai(y + λ) dλ + 1
4 Ai(x) Ai(y) .

On the other hand, F4 also admits the simpler Fredholm determinant expression

F4(s) = 1
2

[
det(I −B)L2[

√
2s,∞) + det(I + B)L2[

√
2s,∞)

]
. (8.11)

The latter has been established in [15] as a direct consequence of the Tracy-Widom 
GOE Fredholm determinant formula (8.4) and certain identities linking all three Tracy-
Widom distributions for the Gaussian random matrix ensembles (orthogonal, unitary 
and symplectic).

The Fredholm Pfaffian expression (8.10) of the Tracy-Widom GSE distribution can 
be derived as a scaling limit of the bounded Littlewood identity for the distribution of 
the diagonally symmetric LPP model with zero weights on the diagonal, i.e. A0 = B0
in Corollary 4.6.

On the other hand, we now wish to sketch how the bounded Cauchy identity A0 = D0 , 
for N = 2n, provides a direct route to the Fredholm determinant expression (8.11). We 
first rewrite this identity using the Weyl formula (2.17) for even orthogonal characters 
(with the denominator determinant expressed in its closed form of Vandermonde type, 
see [19]):

P
(
L0 (2n, 2n) ≤ 2u

)
=

∏
1≤i<j≤2n

(1 − pipj)
[ 2n∏
i=1

pi

]u

×
∑

λ∈Zn :
0≤|λn|≤λn−1≤···≤λ1≤u

det
1≤i,j≤n

(
p
−(λi+n−i)
j + pλi+n−i

j

)
+ det

1≤i,j≤n

(
p
−(λi+n−i)
j − pλi+n−i

j

)
2
∏

1≤i<j≤n(pi + p−1
i − pj − p−1

j )

×
det

1≤i,j≤n

(
p
−(λi+n−i)
n+j + pλi+n−i

n+j

)
+ det

1≤i,j≤n

(
p
−(λi+n−i)
n+j − pλi+n−i

n+j

)
2
∏

1≤i<j≤n(pn+i + p−1
n+i − pn+j − p−1

n+j)
.
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For convenience we again consider, as done in Subsection 8.2, the exponential limit of 
the latter expression. Let L̃0 (2n, 2n) be the cumulative function of the LPP time on a 
symmetric (2n) × (2n) array with exponential weights distributed as

P (W̃i,j ∈ dx) = (�i + �j)e−(
i+
j)x

for 1 ≤ i < j ≤ 2n and Wi,i = 0 for 1 ≤ i ≤ 2n. Then, setting pi := e−ε
i and u := v/ε

and then passing to the limit as ε ↓ 0 in the formula above for geometric LPP, via a 
Riemann sum approximation we obtain:

P
(
L̃0 (2n, 2n) ≤ 2v

)
=

∏
1≤i,j≤n(�i + �n+j)

4
∏

1≤i<j≤n(�i − �j)(�n+i − �n+j)

2n∏
i=1

e−v
i

×
∫

|xn|≤xn−1≤···≤x1≤v

[
det

1≤i,j≤n
(e
jxi + e−
jxi) + det

1≤i,j≤n
(e
jxi − e−
jxi)

]

×
[

det
1≤i,j≤n

(e
n+jxi + e−
n+jxi) + det
1≤i,j≤n

(e
n+jxi − e−
n+jxi)
] n∏
i=1

dxi .

We again recognize the Cauchy determinant (8.8) in the prefactor. Moreover, by standard 
observations about the even and the odd part, with respect to xn, of the integrand, the 
integral above can be reduced to a sum of two integrals over the domain {0 ≤ xn ≤ · · · ≤
x1 ≤ v}. Applying Andréief’s identity (8.1) to such two integrals, we finally obtain:

P
(
L̃0 (2n, 2n) ≤ 2v

)

= 1
2

⎡⎢⎢⎢⎢⎢⎢⎣
det

1≤i,j≤n

⎛⎝e−v(
i+
n+j)
v∫

0

(
e
ix − e−
ix

)(
e
n+jx − e−
n+jx

)
dx

⎞⎠
det

1≤i,j≤n

(
1

�i + �n+j

)

+

det
1≤i,j≤n

⎛⎝e−v(
i+
n+j)
v∫

0

(
e
ix + e−
ix

)(
e
n+jx + e−
n+jx

)
dx

⎞⎠
det

1≤i,j≤n

(
1

�i + �n+j

)
⎤⎥⎥⎥⎥⎥⎥⎦ .

The first summand in the above formula is exactly what appears in the formula (8.9), 
thus giving (in the limit n → ∞ after the appropriate scaling of v) the first Fredholm 
determinant in (8.11). The second summand only differs by a sign from the first one: 
following exactly the same procedure in the asymptotic analysis as the one carried out 
in [9] leads to the second term in (8.11).
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