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A B S T R A C T

Battery manufacturing plays a direct and pivotal role in determining battery performance, which, in turn,
significantly affects the applications of battery-related energy storage systems. As a complicated process that
involves chemical, mechanical and electrical operations, effective battery property predictions and reliable
analysis of strongly-coupled battery manufacturing parameters or variables become the key but challenging
issues for wider battery applications. In this paper, an interpretable machine learning framework that
could effectively predict battery product properties and explain dynamic effects, as well as interactions
of manufacturing parameters is proposed. Due to the data-driven nature, this framework can be easily
adopted by engineers as no specific battery manufacturing mechanism knowledge is required. Reliable battery
manufacturing dataset particularly for coating (one key stage) collected from a real battery manufacturing
chain is adopted to evaluate the proposed framework. Illustrative results demonstrate that three types of
battery capacities including cell capacity, gravimetric capacity, and volumetric capacity can be accurately
predicted with 𝑅2 over 0.98 at the battery early-manufacturing stage. Besides, information regarding how
the variations of coating mass, thickness, and porosity affect these battery capacities is effectively identified,
while interactions of these coating parameters can be also quantified. The developed framework makes the
data-driven model become more interpretable and opens a promising way to quantify the interactions of battery
manufacturing parameters and explain how the variations of these parameters affect final battery properties.
This could assist engineers to obtain critical insights to understand the underlying complicated battery material
and manufacturing behavior, further benefiting smart control of battery manufacturing.
. Introduction

.1. Literature review

Due to the superiorities in terms of high energy density and low
ischarge rate, lithium-ion (Li-ion) batteries have been widely viewed
s a promising energy storage solution for numerous sustainable appli-
ations such as smart grid and transportation electrifications (Klintberg,
ou, Fridholm, & Wik, 2019; Liu, Gao, et al., 2022; Wang, et al., 2020).
owever, a major limiting step for the wider applications of Li-ion
attery lies in the enhancement of its manufacturing process (Liu, Wei,
t al., 2022). As a significantly complicated chain, parameters involved
n each stage of battery manufacturing and their related electrochemi-
al interactions would determine final battery performance such as its
apacities directly and significantly (Kwade, et al., 2018). Therefore, it
s vital to well analyze parameters within the battery production chain
n the pursuit of smart control for battery manufacturing.

∗ Corresponding author at: WMG, The University of Warwick, Coventry, CV4 7AL, United Kingdom.
E-mail addresses: kailong.liu@warwick.ac.uk, kliu02@qub.ac.uk (K. Liu).

As battery manufacturing chain consists of a number of chemical,
mechanical as well as electrical operations and would generate numer-
ous strongly-coupled parameters or variables, engineers in particular
often rely on the experiment experiences, expert advice, trial and error
approach to analyze or evaluate the feature parameters within their
battery manufacturing chain. These approaches result in huge laborious
and time consumption, slow battery product development, inaccurate
quality control, and difficulty in capturing the manufactured battery
performance in the early-production cases. In light of this, advanced
data science solutions to effectively analyze manufacturing parameters
and better quantify their interactions during battery production are
urgently required.

With the rapid development of cloud platforms and machine learn-
ing technologies, data-driven methods have become a powerful and
popular tool for effective battery operation management (Hu, et al.,
2019; Li, et al., 2019; Wei, et al., 2018). A good deal of data-driven
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solutions have been designed to estimate battery internal states (Fang,
Srivas, de Callafon, & Haile, 2017; Tang, Gao, Liu, Liu, & Foley,
2021; Zhou, Stein, & Ersal, 2017), predict battery service life under
cyclic (Severson, et al., 2019; Tang, et al., 2020) or calendar ageing
modes (Hu, Ma, Liu, & Sun, 2022; Hu, Ma, Sun, & Liu, 2022; Liu, Peng,
et al., 2022), diagnose battery faults (Dey, et al., 2016; Hu, et al., 2020;
Majdzik, Akielaszek-Witczak, Seybold, Stetter, & Mrugalska, 2016),
equalize cells within a pack (Feng, et al., 2020; Feng, Hu, Liu, Lin, &
Liu, 2019; Ouyang, Wang, Liu, Xu, & Li, 2019), achieve efficient energy
management (Shafikhani, 2021; Shang, et al., 2019) and charging con-
trol (Liu, Li, & Zhang, 2017; Liu, Zou, Li, & Wik, 2018; Pourabdollah,
Egardt, Murgovski, & Grauers, 2017). In summary, through deriving
proper data-driven solutions, efficient battery management could be
achieved. However, these data-driven works mainly focus on improving
the performance of battery products but relatively little has been done
on techniques for manufacturing their internal components. As battery
manufacturing especially for several key stages such as coating could
also generate available data and have a more direct impact on deter-
mining the performance of the final battery, designing a reasonable
data-driven method to benefit battery smarter manufacture is worthy
of study.

However, compared with the field of battery management where
numerous mature data-driven solutions are available, there are still
limited explorations of deriving suitable machine learning strategies to
benefit battery from a manufacturing perspective (Aykol, Herring, &
Anapolsky, 2020; Liu, Wang, & Lai, 2022; Wanner, Weeber, Birke, &
Sauer, 2019). Among limited research on battery production (e.g., pa-
rameter monitoring (Knoche, Surek, & Reinhart, 2016), variable ad-
justment (Schünemann, Dreger, Bockholt, & Kwade, 2016) and quality
control (Günther, et al., 2020; Ju, Li, Xiao, Huang, & Biller, 2013)), de-
signing suitable machine learning solutions to forecast key performance
indicators (KPIs) of intermediate product or properties of final battery
product, as well as perform sensitivity analysis of manufacturing and
control parameters of interest is drawing increasing attention. For in-
stance, according to the cross-industry standard process (CRISP), linear
as well as neural network models have been designed in Schnell, et al.
(2019) for the manufacturing process dependency identification and
battery manufacturing properties prediction. Turetskyy, et al. (2020)
utilized the decision tree techniques to perform battery maximum
capacity predictions and analyze feature importance analysis. In Turet-
skyy, Wessel, Herrmann, and Thiede (2021), a multi-output method
through using data-driven models is proposed to predict the final
product properties from intermediate manufacturing feature variables
for battery manufacturing design. Duquesnoy, Lombardo, Chouchane,
Primo, and Franco (2020) proposed a data-driven method named sure-
independent-screening and sparsifying-operator (SISSO) to analyze the
effects of uncalendared electrode structure on battery cell performance
after calendering. After performing data driven-based statistical analy-
sis of fluctuation from battery manufacturing, the fluctuation effects on
the battery product capacity are explored in Hoffmann, et al. (2020).
Based upon the two-dimensional graphs generated from three con-
ventional data-driven models, the interdependencies between slurries
features and battery electrode properties are analyzed in Cunha, Lom-
bardo, Primo, and Franco (2020). After deriving a random forests-based
classification framework with out-of-bag prediction, Gini index, and
predictive measure of association, the importance and correlations of
four parameters from mixing and coating stages within the battery
manufacturing chain are analyzed in Liu, et al. (2021).

1.2. Gap analysis and original contributions

Despite the aforementioned research that gives the promising results
of exploring data-driven strategies to analyze and forecast battery
properties from a manufacturing perspective, there are still many lim-
itations and challenges that need to be improved particularly for the
interpretability of battery manufacturing analysis as: (1) most of the
2

works that simply adopt the conventional machine learning methods
such as neural network and support vector machine can just provide
the single property prediction of battery products, lack of sensitivity
analysis of relevant manufacturing or control parameters for engi-
neers to better understand their manufacturing chain. (2) although a
few machine learning tools such as tree-based techniques have been
adopted to quantify feature importance and correlations of interested
manufacturing parameters recently, their interpretability is still lim-
ited and worthy of further improvement. For example, random forests
(RF) are a typical tree-based ensemble machine learning technique.
After combining multiple individual decision trees (DTs) based on
the ‘bagging’ solution, the final output of RF becomes the average of
outputs from all DTs for the regression task (Liaw & Wiener, 2002).
Through aggregating the Gini or entropy indexes of individual DTs at
the forest level (Mishra & Subbarao, 2021), RF have the capability to
directly quantify the importance value of all input battery manufac-
turing variables. To the best knowledge, limited data-driven studies
are conducted to (1) explain how the variation of battery material
or manufacturing parameters would dynamically affect the properties
of intermediate or final battery products. (2) identify and rank the
strength of interactions of interested battery manufacturing or control
parameters when using them to predict battery properties. In real
battery manufacturing applications, engineers are interested in under-
standing how the parameters of interest are interacted with each other
and would specifically affect the relevant battery products’ properties.
Lack of these explanations would not only significantly prevent the use
of data-driven models in such sensitivity analysis assessment, but also
lose the opportunities to explore more in-depth underlying mechanisms
of parameter dependence during battery manufacturing.

To address these research limitations, this study proposes an inter-
pretable machine learning-based framework to predict various types of
battery capacities at the early production stage, while the interactions
of multiple coating parameters of interest and how the variations of
these parameters would affect battery capacities are also taken into
account. Some contributions of this study can be summarized as fol-
lows: (1) After identifying three important coating property parameters
from a real battery manufacturing chain, an enhanced random forests-
based interpretable machine learning framework is derived to predict
different capacity types of battery products at the early manufacturing
stage efficiently. (2) Through integrating two interpretable solutions
including the accumulated local effect (ALE) and H-statistic, dynamical
information regarding how the variations of coating mass, thickness,
and porosity affect the relevant battery capacities is identified, while
the interactions of these coating parameters can be also quantified
and understood by the designed framework. (3) The prediction results
as well as the complicated non-linear behavior underlying the bat-
tery manufacturing chain are comprehensively evaluated and visually
interpreted for three key and different battery capacity cases (cell
capacity, gravimetric capacity, and volumetric capacity). This is the
first known application of improving the interpretability of RF with
ALE and H-statistic tools to quantify the interactions of coating property
parameters and explain how the variations of these parameters affect
the capacities of relevant battery products. It is an illustration of devel-
oping effective control engineering tool to handle a key but challenging
issue for industrial practitioners. Due to the superiority in terms of
model interpretability and data-driven nature, the proposed framework
could directly explain the dynamic effects of interested battery material
parameters or intermediate manufacturing properties as well as their
interactions, further helping the engineers perform experimental de-
signs that could bring additional critical insights, eventually leading
to the closed-form adjustment, control or optimization strategies for
battery smarter manufacturing.
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Fig. 1. Key stages of battery manufacturing particularly for electrode manufacturing.
.3. Paper organization

The remainder of this article is organized as follows. The fun-
amental of the battery production chain particularly for electrode
anufacturing is presented in Section 2. Section 3 details the rele-

ant methodologies and machine learning framework to perform in-
erpretable analysis of interested coating parameters as well as predict
attery capacities. Section 4 gives the in-depth evaluation of prediction
esults of different battery capacities and discusses the analysis results
btained from the designed interpretable machine learning framework.
inally, the conclusion of this study is summarized in Section 5.

. Experimental battery manufacturing

As a complex process involving numerous chemical, mechanical and
lectrical operations, battery manufacturing line generally consists of
hree primary parts including battery electrode manufacturing, battery
ssembly as well as battery formation (Duffner, et al., 2021). As an
arly production stage, battery electrode manufacturing plays a pivotal
ole in determining electrode property, further significantly affecting
he following stages and final battery product performance (Liu, Hu,
eng, Guerrero, & Teodorescu, 2021).

Fig. 1 summarizes several key and individual battery manufac-
uring stages especially for battery electrode production. Specifically,
fter preparing suitable materials such as active materials (NMC-622
nd graphite), conductive additives (carbon black), solvent (N-Methyl-
-pyrrolidone or water) as well as binder, Li-ion battery electrode
anufacturing would usually start with a mixing stage to mix these
aterials within a mixing tank such as soft blender. Then the generated

lurries from the mixing stage will be coated onto the surface of metal
oils during a coating stage. For anode and cathode electrodes, the
lurries would be generally coated onto the surface of copper foil
nd aluminum foil, respectively (Reynolds, Slater, Hare, Simmons,

Kendrick, 2021). After that, the coating products would be dried
y a dryer such as an oven with predefined temperatures and then
ove to the calendering stage for evaporating the residual solvent.

inally, a cutting or slitting stage would be conducted to cut the calen-
ered electrode into suitable sizes. It should be known that numerous
ighly-nonlinear manufacturing parameters and strongly coupled inter-
ediate product variables could be generated during battery electrode
roduction line (Liu, Wei, et al., 2022). In light of this, manufac-
uring parameters and intermediate product properties within battery
lectrode production must be well monitored and analyzed.

In this context, to enable the training and evaluation activities of
he interpretable machine learning framework, a real battery scale-up
anufacturing line in the Warwick manufacturing group (WMG) is set
p to generate available battery manufacturing data particularly for the
oating stage. The parameters of this battery manufacturing line would
3

be changed in a systematic manner to affect electrode structure, further
producing cathode coating with different physical properties of mass
loading (mass), thickness, and porosity. For this study, the electrode
active material is the nickel manganese cobalt oxide that formed 96%
of the whole cathode slurry mixture. The mixture also contains 2%
of additive carbon black, and 2% of polyvinylidene fluoride binder.
Coating stage is performed via the lab-scale coating machine of Dürr
Megtec, as shown in Fig. 2(a). This machine uses the comma bar tech-
nology to generate shear force and equips with a 3-zone thermal dryer
to generate an effective drying length of almost 4 m. Fig. 2(b) details
the comma bar equipment to deposit the slurry onto the electrode
foil, while the oven and dryer would be then used to evaporate the
slurry solvent and provide the final electrode product. During battery
electrode manufacturing process, the slurry would be first prepared
within a mixing tank, as illustrated in Fig. 2(c). Then the prepared
slurry will be continuously checked to ensure the desired quality. After
the comma bar coating stage, the slurry would be deposited onto the
surface of aluminum foil with a thickness of 15um. Fig. 2(d) shows a
case of the coated foil.

After that, the battery electrode product would be cut into several
disks with a diameter of 15 mm. These disks will be then adopted to
assemble battery coin cells in 2032 size. It should be known that this
battery assembly process is conducted manually within the isolated
rooms. As this study focuses on the cathode electrode, the counter
electrode is Li-metal to minimize the effects of anode uncertainties
on the sensitivity analysis studies and predictability of the derived
data-driven model.

To obtain useful battery manufacturing dataset for battery capaci-
ties prediction and coating parameters analysis, some feature param-
eters including the coating mass loading (mass), coating thickness
and electrode weight require to be measured. Specifically, the coating
mass is measured by a high precision scale for weight with an error
below 0.0001 grams. Coating thickness is measured by a high-quality
micrometre with accuracy in micrometre range. Based on these two
feature parameters, coating porosity of the cells could be then obtained
as a dimensionless number in percent (%) by:

𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 −
𝑔𝑠𝑚

𝜌𝑎𝑣𝑔 ∗ 𝑡ℎ
(1)

where 𝑔𝑠𝑚 denotes the coating mass loading with the unit of g∕m2; 𝑡ℎ
shows the coating thickness with the unit of um; 𝜌𝑎𝑣𝑔 stands for the
average density of the coating with the unit of g∕cm3.

Following this process, 115 battery coin-cells are produced in the
battery manufacturing line. These battery cells would then go to a
testing stage for extracting their electrochemical properties such as
capacities. Specifically, the cells are placed in a thermal chamber with
an ambient temperature of 25 ◦C and would be cycled with constant-
current constant-voltage (CCCV) charging and constant-current (CC)
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Fig. 2. Battery scale-up manufacturing line in WMG to produce battery electrode: (a) laboratory scale electrode manufacturing machine, (b) comma bar coating machine, (c)
cathode slurry mixture, (d) coated foil.
discharging. Then battery cell capacity (Cap) with the unit of mAh
ould be obtained after fully discharging each cell from its up cut-off
oltage to down cut-off voltage as an index for Cap. According to the
easured cell weight and dimension, another two types of capacities

ncluding the gravimetric capacity (GCap) with unit of mAh∕g as well as
he volumetric capacity (VCap) with unit of mAh∕cm3 can be obtained

as:
{

𝐺𝐶𝑎𝑝 = 𝐶𝑎𝑝∕𝑤𝑒𝑖𝑔ℎ𝑡

𝑉 𝐶𝑎𝑝 = 𝐶𝑎𝑝∕𝑣𝑜𝑙𝑢𝑚𝑒
(2)

where 𝑤𝑒𝑖𝑔ℎ𝑡 represents the weight of a single cell with the unit of 𝑔;
𝑜𝑙𝑢𝑚𝑒 means the cell coating volume with the unit of cm3 that can be
btained by multiplying coating area (𝑎𝑟𝑒𝑎) and 𝑡ℎ as:

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑎𝑟𝑒𝑎 × 𝑡ℎ (3)

Based on the above-mentioned progress, the dataset that contains three
coating parameters (mass, thickness and porosity) and three various
types of capacities (Cap, GCap and VCap) can be generated and col-
lected. Then the interpretable machine learning framework could be es-
tablished after preprocessing this experimental battery manufacturing
dataset.

3. Methodology

This section details the machine learning-based methodology and
framework to achieve a reliable interpretation for the effects of coating
parameters on various types of battery capacities. Specifically, the ran-
dom forests-based regression model is first introduced, followed by the
descriptions of accumulated local effects as well as H-statistic tool for
feature dynamic effects analysis and feature interaction quantification,
respectively. Furthermore, the framework designed in this study to
predict battery three different types of capacities and analyze related
coating parameters is derived.
4

3.1. Random forests

Due to the merits of non-parametric behavior and simplification,
classification and regression tree (CART) is generally utilized as the DT
within RF (Loh, 2011). The detailed structure of RF regression is shown
in Fig. 3.

For the RF-based regression, supposing training set 𝑇𝑆 =
{(

𝑋1, 𝑌1
)

,
(

𝑋2, 𝑌2
)

,… ,
(

𝑋𝑚, 𝑌𝑚
)}

contains 𝑚 observations, each input vector 𝑋𝑖 =
(

𝑋𝑖1, 𝑋𝑖2,… , 𝑋𝑖𝑁
)

has 𝑁 features, while 𝑌𝑖 is the output of RF. The
work flow to establish a RF-based regression model is detailed in
Table 1 as follows:

The key step of RF-based regression model training is to con-
struct individual DTs. Through using the specific bootstrap samples
to train each DT, the diversity of DT could be significantly increased.
Furthermore, the correlations of DTs are effectively reduced. That
is, RF could be established without pruning, leading to a relatively
low computational effort. Through averaging numerous de-correlated
DTs to obtain prediction results, RF could become less sensitive to
the noise. For the construction of each DT, based upon the bagging
solution, not all TS will be selected as the bootstrap sample. This could
result in some observations named the out-of-bag (OOB) samples would
not be adopted for training a DT. In general, the number of OOB
samples reaches nearly one-third of TS. After a DT is established, its
OOB samples could be utilized to achieve an unbiased estimation. In
this way, the over-fitting issue can be relieved, further enhancing the
generalization performance of RF.

3.2. Accumulated local effects

In the previous work (Liu, et al., 2021), a flexible RF-based model
is established to predict the battery electrode properties and quantify
the importance as well as correlations of four manufacturing variables
of interest. The results illustrate the superiorities of RF in model-
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Fig. 3. Structure of RF-based regression model.
Table 1
Detailed flow to establish a RF-based regression model for predicting battery capacities.

1: Procedure: RF-based regression model training

2: For 𝑑 = 1 to 𝐷: (𝐷 is the number of DTs)

3: Formulating the bootstrap sample 𝐵𝑆𝑑 with 𝑀 observations from training set 𝑇𝑆

4: Training the tree 𝐷𝑇𝑗 based on the related 𝐵𝑆𝑑

(a). Splitting a node based on all the observations of 𝐵𝑆𝑑

(b). For all unsplit nodes, repeating the following procedures recursively:

(i). Selecting 𝑛 features from 𝑁 features pool randomly: 𝑛 ← 𝑁(𝑛 < 𝑁)

(ii). Discovering a split way that could provide the best impurity among all splits of 𝑛 features
from step (i).

(iii). Splitting this node into two sub-nodes through using the discovered split way from step
(ii).

5: Constructing the RF regression model by ensembling all trained tree learners 𝑓𝑑 (⋅) ∶ 𝑑 = 1∶𝐷.

6: End procedure

7: Procedure: RF-based regression model prediction

8: After constructing the RF-based regression model 𝑅𝐹 (⋅), its output 𝑅𝐹 (X) for a new observation 𝑋 as
input can be obtained by:

𝑅𝐹 (X) =
𝐷
∑

𝑑=1

𝑓𝑑 (𝑋)
𝐷

where 𝑓𝑑 (𝑋) reflects the prediction results of all well-trained DTs with a total number of 𝐷.

9: End procedure
i

ing and analyzing feature variables within the battery manufacturing
chain. However, it is difficult for the traditional RF model to explain
prediction mechanisms such as how the features would dynamically
affect the prediction results. In many applications, understanding the
prediction mechanism of an established model is much more conducive
to the application of model. Besides, it could also benefit the battery
manufacturer to analyze how manufacturing parameters specifically
affect the performance of relevant battery products. In this study, to
obtain information regarding how the variation of coating parameters
would dynamically affect battery capacities, the accumulated local
effect (ALE) is explored based on the well-established RF model.

In theory, ALE is able to explain how feature parameters of interest
would affect the prediction of a model on average. The key of ALE is
to simplify a complicated prediction function 𝑓 to a function that only
relies on several factors. Then the ALE plots are capable of averaging
the variations of predictions and accumulating them over the grid. To
quantify local effects, features would be divided into many intervals
and the uncentered effect would be estimated by:

̂̃𝑓 𝑗,𝐴𝐿𝐸 (𝑥) =
𝑘𝑗 (𝑥)
∑

𝑘=1

1
𝑛𝑗 (𝑘)

∑

𝑖∶ 𝑥𝑗 𝑖∈𝑁𝑗 (𝑘)
[𝑓

(

𝑧𝑘,𝑗 , 𝑥
(𝑖)
∖𝑗

)

− 𝑓 (𝑧𝑘−1, 𝑥
(𝑖)
∖𝑗 )] (4)

where 𝑧𝑘,𝑗 represents the boundary value of the 𝑘th interval for the
𝑗th feature, 𝑛𝑗 (𝑘) stands for the amount of samples in the 𝑘th interval,
𝑖∶ 𝑥 𝑖 ∈ 𝑁 𝑘 means the 𝑖th sample point in the 𝑘th interval, 𝑥 stands
𝑗 𝑗 ( ) ∖𝑗

5

for the features other than feature 𝑗. In order to make the mean effect
becomes zero, this ALE estimator can be centered by:

𝑓𝑗,𝐴𝐿𝐸 (𝑥) = ̂̃𝑓 𝑗,𝐴𝐿𝐸 (𝑥) − 1
𝑛

𝑛
∑

𝑖=1

̂̃𝑓 𝑗,𝐴𝐿𝐸

(

𝑥(𝑖)𝑗
)

(5)

The value of 𝑓𝑗,𝐴𝐿𝐸 (𝑥) could be interpreted as the main effect of the 𝑗th
feature at a certain point in comparison with the average prediction
of the data. It should be known that ALE plots are able to not only
present the effect of single feature parameter, but also could reflect
the interaction effect of two feature parameters. In this context, the
main and overall mean effects of two feature parameters of interest
would be adjusted. Specifically, the ALE plots for two feature param-
eter cases would only reflect the second order effects (the additional
interaction effects) of these two feature parameters rather than their
main effects (Molnar, 2020). To calculate the ALE-based second-order
effect of feature pair 𝑥𝑗 and 𝑥𝑙, the sample ranges of ALE plots would
be divided into 𝐾2 rectangular cells. Supposing 𝑘 and 𝑚 stand for the
ndices into the grid corresponding to 𝑥𝑗 as well as 𝑥𝑙 respectively, the

uncentered effect of these feature pair can be calculated by:

ℎ̂{𝑗,𝑙},𝐴𝐿𝐸
(

𝑥𝑗 , 𝑥𝑙
)

=
𝑘𝑗
(

𝑥𝑗
)

∑

𝑘=1

𝑘𝑙(𝑥𝑙)
∑

𝑚=1

1
𝑛 {𝑗, 𝑙} (𝑘, 𝑚)

×
∑

(𝑖)

△{𝑗,𝑙}
𝑓

(

𝐾, 𝑘, 𝑚; 𝑥(𝑖){𝑗,𝑙}
)

(6)

𝑖∶ 𝑥{𝑗,𝑙}∈𝑁{𝑗,𝑙}(𝑘,𝑚)
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Fig. 4. The structure of RF-based regression model with interpretability.
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inally, this ALE second-order effect could be centered by Apley and
hu (2020):
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.3. Feature interaction

As the feature parameters within battery manufacturing chain
resent interactivity, the influence of these parameters on the man-
factured battery properties would become not simply cumulative,
ut more complex. After well-establishing the RF-based regression
odel, an effective solution named H-statistic could be derived to

nalyze and quantify the strength of feature interaction (Kern, 2020).
athematically, the interaction between the 𝑗th feature and the 𝑘th

eature through using the H-statistic tool can be calculated by:
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here 𝑃𝐷𝑗𝑘 represents the two-way partial dependence function (PDF)
f the 𝑗th and the 𝑘th features. Here 𝑃𝐷𝑗𝑘

(
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, and 𝑃𝐷𝑗 as well as 𝑃𝐷𝑘 are PDFs of the 𝑗th feature and the
𝑘th feature, respectively. Then the H-statistic of 𝑗th feature interacting
with any other features can be calculated by:
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here the prediction function 𝑓 (𝑥) represents the function that sums
ll PDFs, 𝑃𝐷−𝑗

(

𝑥−𝑗
)

stands for the PDF relying on all other features
xcept the 𝑗th feature.
6

3.4. Designed interpretable machine learning framework

For a battery cell, its capacities would be highly affected by its
coating properties within a production chain. To well predict the
cell capacities and effectively analyze the coating feature parameters
through using interpretable machine learning, an RF-based regression
model structure with enhanced interpretability is derived, as shown
in Fig. 4. Specifically, the inputs of this model structure are three
coating property parameters of interest including the coating mass
(g∕m2), coating thickness (um) and coating porosity (%), while three
different cell capacities including the cell capacity (Cap) with the unit
of mAh, gravimetric capacity (GCap) with the unit of mAh∕g, and the
volumetric capacity (VCap) with the unit of mAh∕cm3 are utilized as the
output of the model structure, respectively. Besides, through combining
the powerful interpretable tools including ALE and H-statistic, how
coating features affect the predicted capacity results and the level of
feature interaction among these three coating parameters can be also
obtained. In this study, to independently explore how the variation of
coating parameters would dynamically affect the predictions of three
different battery capacity types, three different RF models are trained to
individually predict each of the three outputs. The detailed framework
through designing the RF-based interpretable framework to predict
three various cell capacities and analyze how these three coating
parameters affect the produced cell capacities is illustrated in Fig. 5.
This framework mainly contains four parts and can be summarized as
follows

(1) Data curation and preprocess: after collecting battery coating
parameters data and related battery performance data, a data curation
and preprocess step is carried out. Specifically, the obvious outliers
from data and the vectors that own the missing data points are first
removed. Then the suitable data matrix that could well reflect the
inputs and output pair of the RF-based regression model (as illustrated
in Fig. 4) will be constructed. In this study, model inputs are always
the three coating property parameters of interest (mass, thickness and
porosity). The samples of Cap, GCap and VCap corresponding to these
coating parameters are respectively selected as the model output, fi-
nally formulating three data matrices for model training and parameter
analysis.

(2) RF-based regression model construction: after constructing
suitable input–output matrices, RF-based regression model can be
trained to capture the underlying mappings among inputs–output ob-
servations by following the steps from Workflow 1. It should be known
that the RF model is user-friendly with only a few hyperparameters
need to be set. These hyperparameters include the number of DTs (𝐷)
and the number of features for each node split (𝑛). In theory, more DTs
would increase the prediction accuracy and generalization of RF, but
too many DTs will also inevitably increase RF’s computational burden.
For the number of features to split node within a DT, a larger 𝑛 would
benefit the strength of each DT but also results in the correlations
of DTs increase. According to Biau and Scornet (2016), 𝐷 = 100 is
enough for the small-scale observations like this case, while setting
𝑛 = 2𝑁∕3 = 2 is a recommended choice for the regression applications.
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Fig. 5. Detailed interpretable ML framework through using RF-based regression model to predict cell capacities and analyze coating parameters.
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(3) Capacities prediction results visualization: after well estab-
ishing the RF-based regression model, three types of cell capacities
Cap, GCap, VCap) would be predicted for new coating parameter
bservations. Then the cell capacities prediction results can be visu-
lized through using effective tool such as scatter plot and predicted
ersus actual plot. To well quantify the prediction performance of
esigned RF-based model, performance indicators should be adopted.
upposing 𝑀 is the total number of observations, 𝑦𝑖 and 𝑦̃𝑖 represent

the real capacities and the predicted capacities respectively (here 𝑖 =
1, 2,… ,𝑀), 𝑦 is the mean value of all response capacities, then three
widely-used indicators including the maximum absolute error (MAE),
the root mean square error (RMSE) and the 𝑅2 value (Niri, et al., 2021)
re adopted to evaluate the capacity prediction results in this study and
an be calculated as follows:

𝑀𝐴𝐸 = 𝑚𝑎𝑥
1 ≤ 𝑖 ≤ 𝑀

|

|

𝑦𝑖 − 𝑦̃𝑖||

𝑅𝑀𝑆𝐸 =

√

∑𝑀
𝑖=1

(

𝑦𝑖 − 𝑦̃𝑖
)2

𝑀

𝑅2 = 1 −
𝑀
∑

𝑖=1

(

𝑦𝑖 − 𝑦̃𝑖
)2 ∕

𝑀
∑

𝑖=1

(

𝑦𝑖 − 𝑦
)2

(11)

bviously, MAE could reflect the maximum absolute difference be-
ween the prediction results and the real capacity values, while RMSE
nd 𝑅2 value are able to reflect the overall prediction performance. The
arger the MAE, the bigger the prediction deviation is. The smaller the
MSE, the better the prediction accuracy is. The 𝑅2 would get close to
when the prediction capacities are close to the real test values.

(4) Coating parameters analysis: in this part, to analyze coating
eature parameters of interest, two interpretable machine learning tools
re designed based on the well-trained RF regression model. Specifi-
ally, the ALE plots are given to explain how coating parameters affect
he produced cell capacities, while H-statistic is used to quantify the
eature interactions of these coating parameters. According to Eqs. (5)
nd (8), the values of ALE for both single coating feature parameters
mass, thickness, porosity) and corresponding feature pairs can be
btained, respectively. Then the 2D ALE plots and ALE matrix plots can
e visualized to reflect how single coating feature and coating feature
airs affect the predicted capacity values of produced cell. For the
 r

7

eature interactions, according to Eqs. (9) and (10), two types of feature
nteraction including the total interaction of each coating parameter
nd the interaction of corresponding coating parameter pairs can be
uantified respectively. In theory, larger interaction values indicate
here exist stronger interactions between the coating parameter pairs
f interest.

Following these steps, a flexible interpretable machine learning
ramework based on the RF regression model can be built to not only
ell predict various types of battery cell capacities, but also quantify

he feature interactions of interested coating parameters as well as
xplain how these parameters dynamically affect the produced cell
apacities. In this way, more information especially for how coating
arameters specifically affect battery performance could be explored
n-depth.

. Results and discussions

In this section, to predict cell capacities, analyze how coating pa-
ameters dynamically affect the capacity results, and quantify the re-
ated feature interaction, the designed interpretable machine learning
ramework is first adopted to predict three various types of cell capaci-
ies, followed by the detailed analysis of dynamic effects and interaction
f involved coating parameters.

.1. Capacities prediction results

According to the structure as illustrated in Fig. 4, three coating pa-
ameters including coating mass, coating thickness, and coating poros-
ty are utilized as inputs, while three different battery capacities (Cap,
Cap, and VCap) are utilized as the output of derived model, respec-

ively. To evaluate the prediction performance of RF-based regression
odels, all three capacity prediction cases are carried out by using

he five fold cross-validation. Fig. 6 and Table 2 show the battery
ell capacities prediction results and related performance indicators,
espectively.

From the prediction results of Cap case in Fig. 6(a), it is evident that
early all real observations match well with the predicted outputs from

elevant RF-based regression model. Besides, according to its predicted
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Fig. 6. Capacities prediction results. (a): Cap case, (b): GCap case, (c): VCap case, (d): Predicted versus actual plots for Cap, (e): Predicted versus actual plots for GCap, (f):
redicted versus actual plots for VCap.
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Table 2
Prediction performance indicators for three battery capacity types through using derived
regression models.

Capacity types Cap [mAh] GCap [mAh/g] VCap [mAh/cm3]

MAE 0.036 1.412 16.912
RMSE 0.046 1.539 4.820
𝑅2 0.998 0.994 0.98

versus actual plots (PVAPs) in Fig. 6(d), all observations well cluster
around the perfect prediction line with the MAE of only 0.036 mAh.
All these results can indicate that using three coating parameters (mass,
thickness, porosity) could well determine the cell capacity values. For
GCap and VCap, according to Fig. 6(b) and Fig. 6(c), the prediction
results become worse as the difference between the predicted obser-
vations and real observations increases for both these two prediction
cases. This is reasonable as GCap involves new element of 𝑤𝑒𝑖𝑔ℎ𝑡 while

Cap involves new element of 𝑣𝑜𝑙𝑢𝑚𝑒. However, according to Fig. 6(e)
nd Fig. 6(f), all the predicted observations are still clustered around
heir perfect prediction lines without large outliers. Based upon the
esults of five fold cross-validation, the corresponding 𝑅2 values of all
attery capacity cases are larger than 0.98. These indicate that through
nputting these three coating parameters into the proposed RF-based
odels, satisfactory accuracy and generalization capabilities could be

btained for the early-stage prediction cases of all these types of battery
apacity.

.2. Capacity case study

After predicting all types of battery energy capacity based on the
F regression model, the explanation of how the interested coating
arameters affect these predictions is then carried out. For the battery
apacity (Cap) case, the related ALE plots to reflect how single feature
mass, thickness, and porosity) as well as feature pair (mass-thickness,
ass-porosity, and thickness-porosity) affect battery Cap prediction
erformance are illustrated in Fig. 7.
 f

8

From Fig. 7, all these three coating parameters present the strong
ffects on the cell capacity prediction. For coating mass and thick-
ess, it is interesting to note that the ALE values of Cap present a
onotonically increasing relationship with both these two cases, as

llustrated in Figs. 7(a) and 7(b). That is, the larger the coating mass
nd thickness, the higher the cell capacity is obtained. For coating
orosity, the overall probability of obtaining high values of cell ca-
acity will be decreased as the value of coating porosity increases.
igs. 7(d), 7(e) and 7(f) illustrate the three two-dimensional ALE plots
or feature pairs: mass-thickness, mass-porosity and thickness-porosity,
espectively. These three subplots could reflect the second-order effects
f these feature pairs on the prediction performance of cell capacity.
ere, the second-order effect represents additional interaction effects
f two parameters without containing their main effects. Light and dark
hades indicate the above and below average predictions, respectively.
or instance, Fig. 7(d) reveals the interaction effect between coating
ass and coating thickness: for the coating products with higher mass

nd thickness, an additional positive effect on the cell capacity predic-
ion is shown. Figs. 7(e) and 7(f) indicate that low coating mass and
orosity, high coating thickness and low porosity give the additional
ositive effects to the battery cell capacity prediction.

Next, after using H-statistic solution, the total interactions as well
s feature pair interactions for battery cell capacity case are quantified
nd illustrated in Fig. 8. Quantitatively, coating thickness provides
he largest total interaction value, which is 7.7% larger than that of
oating mass. In contrary, coating porosity shows the smallest total
nteraction value (nearly 16.1% less than that of coating thickness).
hese results are reasonable and can be explained as in this case
he interaction value of thickness-mass feature pair is largest, while
ass-porosity pair gives the smallest feature pair interaction value, as

llustrated in Fig. 8(b). This finding signifies that among these three
oating parameters, thickness has the largest interactions with other
wo parameters for battery cell capacity prediction. Porosity is the
eature term with smallest interaction.
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Fig. 7. ALE results for Cap case study. (a): ALE versus Mass, (b): ALE versus Thickness, (c): ALE versus Porosity, (d): Two-dimensional ALE plots for Mass and Thickness, (e):
Two-dimensional ALE plots for Mass and Porosity, (f): Two-dimensional ALE plots for Thickness and Porosity.
Fig. 8. Feature interactions for Cap case study. (a): Total interactions, (b): Feature pair interactions.
Fig. 9. ALE results for GCap case study. (a): ALE versus Mass, (b): ALE versus Thickness, (c): ALE versus Porosity, (d): Two-dimensional ALE plots for Mass and Thickness, (e):
Two-dimensional ALE plots for Mass and Porosity, (f): Two-dimensional ALE plots for Thickness and Porosity.
A
m

4.3. Gravimetric capacity case study

Next, the case study of analyzing battery gravimetric capacity is
carried out. Through using the designed interpretable machine learning
framework, the ALE results for the dynamic effects of these three
coating parameters (mass, thickness, and porosity) on the predicted
probability of battery GCap are shown in Fig. 9. For coating mass,
the probability of increasing battery GCap would become larger as the
 t

9

value of mass increases. After coating mass goes beyond 0.035 g∕m2,
this probability would not change much. Coating porosity also presents
a positive effect on the increase of battery gravimetric capacity. In
contrary, the probability of increasing battery GCap would first increase
and then keep constant as the coating thickness goes up to 58um.

fter this thickness point, the ALE value of GCap would present a
onotonically decreasing relationship with the increase of coating

hickness. According to the two-dimensional ALE plots as shown in
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Fig. 10. Feature interactions for GCap case study. (a): Total interactions, (b): Feature pair interactions.
Fig. 11. ALE results for VCap case study. (a): ALE versus Mass, (b): ALE versus Thickness, (c): ALE versus Porosity, (d): Two-dimensional ALE plots for Mass and Thickness, (e):
Two-dimensional ALE plots for Mass and Porosity, (f): Two-dimensional ALE plots for Thickness and Porosity.
Figs 9(d), 9(e) and 9(f), high coating mass and thickness, high coating
mass and low porosity, high coating thickness and low porosity would
give the additional positive effects to the battery gravimetric capacity
prediction.

Fig. 10 illustrates the total interactions and feature pair interactions
for the case study of battery GCap. It can be seen that the total interac-
tion of coating mass is relatively strongest with 0.12, which is 14% and
52% larger than that from coating thickness and porosity, respectively.
According to the two-way feature pair interactions in Fig. 10(b), as
expected, the interactions of coating mass and thickness are larger than
other pairs. This indicates that coating mass and thickness provide more
interactions with other parameters for battery gravimetric capacity
prediction case.

4.4. Volumetric capacity case study

Finally, the dynamic effects and interactions of three coating param-
eters on the battery volumetric capacity are analyzed. Fig. 11 illustrates
the ALE plots estimated for coating mass, thickness and porosity on
the predicted probability of battery VCap. Again, the large dynamic
effects of these three coating parameters on the VCap prediction are
reflected. For coating mass, the probability of increasing battery VCap
becomes larger as the value of this parameter increases. Coating thick-
ness provides a general negative effect. That is, the larger the coating
thickness, the higher probability the VCap would be decreased. There
exists a more complicated relation for coating porosity. Specifically,
ALE value of VCap would be first reduced to −22 as the porosity
value increases to 37%. After that, this ALE value would increase as
coating porosity continues increasing, followed by a fluctuation during
40%–45% range. For the dynamic effects of coating parameter pairs
10
on battery volumetric capacity, as illustrated in Figs. 11(d), 11(e) and
11(f), low coating mas and thickness, low coating mass and porosity, as
well as high coating thickness but low porosity would generate larger
values of two-dimensional ALE, further providing additional positive
influence on the increase of battery volumetric capacity.

Then the feature interactions of all three coating parameters by
using H-statistic for battery volumetric capacity case are reported in
Fig. 12. Quantitatively, the interaction strength for coating thickness
is relatively strongest with 0.197 (21.6% larger than that of coating
mass), while coating porosity achieves the weakest interaction with
other parameters with a value of only 0.142. Furthermore, according to
the two-way interactions for all these coating parameters in Fig. 12(b),
coating thickness all reflect greater interaction strength with mass and
porosity, while coating porosity provides lower interaction strength
with other parameters. These indicate that coating thickness and mass
present the first and second order interactions for battery volumetric
capacity case. These interpretable outputs are very useful as the ob-
tained results are consistent with the experiences and conclusions from
related experimental works, but this study demonstrates that how the
proposed interpretable machine learning framework is able to explain
the dynamic effects as well as interaction levels of coating parameters
of interest, further helping engineers to obtain critical insights to
understand the underlying complicated non-linear battery material and
manufacturing behavior during battery manufacturing.

4.5. Comparisons and discussion

In this subsection, three case studies are designed to explore the
hyperparameters searching of proposed RF regression models, the com-

parisons with other benchmarks and the illustration of importance
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Fig. 12. Feature interactions for VCap case study. (a): Total interactions, (b): Feature pair interactions.
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Table 3
Results of hyperparameter searching.

Hyperparameter
search space

Cap (MCVA)
[mAh]

GCap (MCVA)
[mAh/g]

VCap (MCVA)
[mAh/cm3]

𝐷 = 60, 𝑛 = 2 0.049 1.618 18.323
𝐷 = 80, 𝑛 = 2 0.042 1.507 17.278
𝐷 = 100, 𝑛 = 2 0.036 1.412 16.912
𝐷 = 120, 𝑛 = 2 0.036 1.410 16.920
𝐷 = 140, 𝑛 = 2 0.038 1.433 16.916
𝐷 = 60, 𝑛 = 3 0.051 1.617 18.572
𝐷 = 80, 𝑛 = 3 0.044 1.532 17.231
𝐷 = 100, 𝑛 = 3 0.039 1.441 17.013
𝐷 = 120, 𝑛 = 3 0.040 1.438 17.002
𝐷 = 140, 𝑛 = 3 0.040 1.440 16.989

Table 4
Performance indicators for VCap predictions through using different benchmarks.

Benchmarks LR SVM AdaBoost model Designed model

MAE [mAh/cm3] 41.323 31.029 17.013 16.912
RMSE [mAh/cm3] 11.742 7.535 4.812 4.820
𝑅2 0.71 0.88 0.98 0.98

ranking from RF, followed by the further discussion of battery man-
ufacturing database creation and the motivation of regressor selection.

4.5.1. Hyperparameters searching
As mentioned in Section 3.4, two hyperparameters 𝐷 and 𝑛 are

rucial to determine the performance of RF regression model. To per-
orm a more thorough search, a randomized search strategy (Bergstra &
engio, 2012) that sets up the random combination for model training
nd scores a classical performance indicator named the mean cross-
alidated accuracy (MCVA) is adopted here to determine the proper 𝐷
nd 𝑛 for Cap, GCap and VCap prediction cases. To widen the domain
f hyperparameters, the search space of 𝐷 is set as: space(60,140,20),
hile the candidate of 𝑛 is set as: [2,3], respectively. According to Ta-
le 3 that shows the prediction performance of all capacity types with
ifferent combinations of hyperparameters, it can be noted that both
ap and VCap obtain the best prediction results under the condition of
= 100, 𝑛 = 2. Here the MCVAs for them are 0.036 [mAh] and 16.912

mAh∕cm3], respectively. For GCap case, the best result is achieved
ith the MCVA of 1.410 [mAh∕g] under the condition of 𝐷 = 100, 𝑛 = 3,
hich is slightly 0.15% better than that of 𝐷 = 100, 𝑛 = 2. In this

ontext, 𝐷 = 100, 𝑛 = 2 is able to provide the satisfactory prediction
erformance for all three capacity types of manufactured battery.

.5.2. Comparisons with other benchmarks
To further investigate the effectiveness of the designed regression

odel, another three simple and state-of-the-art benchmarks includ-
ng the linear regression (LR) model, the support vector machine
SVM)-based model and also the AdaBoost-based boosting model are
tilized for comparison purpose. Specifically, LR model belongs to
linear method to fit the underlying mapping between input variables
nd a response. SVM is a kernel-based approach to transfer the inputs

11
nto a high dimensional space for regression. AdaBoost-based boosting
odel is a classical boosting-based ensemble learning solution for

egression (Liu, Peng, Li, & Chen, 2022). The VCap case is adopted
s an illustration here as it achieves the worst prediction results
rom the designed RF model. Without the loss of generality, all these
omparisons are carried out by using the Matlab 2021 statistics and
achine learning toolbox with a 2.40 GHz Intel Pentium 4 CPU. Fig. 13

nd Table 4 show the VCap prediction results and related performance
ndicators of all these methods after five folds cross-validation, respec-
ively. It can be noted that LR model provides the worst prediction
esults as many observations are far away from the perfect prediction
ine. This further indicates that the underlying mapping between the
oating parameters (mass, thickness, porosity) and the VCap presents
highly nonlinear relation. In contrast, through using the SVM model,

he VCap prediction performance can be improved with a 𝑅2 of 0.88,
hich is 23.9% larger than that of LR model. Here both the AdaBoost
odel and the designed RF model present good prediction results for
Cap with 0.98 𝑅2, while the AdaBoost model achieves a slightly better
MSE value (0.17% decrease). Therefore, the designed RF model and
daBoost-based boosting model are capable of presenting competent
erformance in the capacity prediction application of manufactured
attery products.

.5.3. Importance ranking from RF
It should be known that RF also has the capability to directly

uantify the importance value of all input variables (Liu, et al., 2021).
o reflect this type of input importance, the importance rankings of
oating parameters from RF based on the aggregated Gini index are
lso given here. Fig. 14 illustrates the normalized importance weights
f coating mass, thickness and porosity for all three battery capacity
ypes obtained from RF models. It can be seen that although the
ormalized importance values between Cap and VCap are different,
he trends of their importance rankings are the same for all three
oating parameters. Obviously, coating thickness achieves the highest
mportance weight, indicating that this parameter is the most important
ne for the prediction of battery Cap and VCap. Here the coating mass
nd porosity present the second and third importance weights. For the
Cap case, coating mass becomes the most important parameter, while

he coating porosity still contributes the least to the prediction. This
esult is expected as the coating mass has strong and direct relations
ith the active material property, further significantly affecting the
ravimetric capacity of the battery product. Furthermore, it can be
oted that the quantified input importance from RF is a constant value,
hich is actually different from the interpretable results from ALE.
pecifically, the former belongs to a type of statical importance, while
he latter is able to reflect how the variation of input variables would
ynamically affect the prediction results.

.5.4. Discussion
(1) Database creation To build the data-driven model in real

attery manufacturing applications, both the ways of creating own
atabase and sharing data can work in different cases. From the ex-
erience, for the collaborated UK battery manufacturing industries

https://en.wikipedia.org/wiki/Linearity
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Fig. 13. VCap prediction results of different benchmarks. (a): LR model, (b): SVM model, (c): AdaBoost model, (d): Predicted versus actual plots for LR model, (e): Predicted
versus actual plots for SVM model, (f): Predicted versus actual plots for AdaBoost model.
Fig. 14. Normalized importance weights for all three capacity types of battery products
obtained from RF models. (a): Cap case, (b): GCap case, (c): VCap case.

such as UKBIC and Britishvolt, due to the sensitivity and confiden-
tiality of manufacturing data, each manufacturer expects to create
its own database. However, as supported in Aykol et al. (2020), in
more academic research, the manufacturing databases are worth being
shared through outsourcing battery manufacturing to central facilities
12
for constructing a more robust and generic model. Due to the supe-
riority in terms of model interpretability and data-driven nature, the
proposed machine learning framework could be conveniently extended
to analyze other manufacturing databases, which has been proven by
the stakeholders of the Nextrode project. On the other hand, to generate
available battery manufacturing database with low costs, the ‘design of
experiments’ solution, which defines the ranges of database by experts
and ensures enough brake points are also given in between each of the
control variables, is suggested (Niri, et al., 2022). It could make full use
of battery manufacturing resources and significantly benefits the costs
associated with the construction of battery manufacturing database for
data-driven model development, which has been adopted by many UK
battery manufacturers to generate modeling databases.

(2) Regressor selection For the selection of a deterministic regres-
sor, different battery applications present different requirements and
priorities for machine learning tools. For example, for the capacity
degradation prediction in battery operation stage, as the uncertainty
quantification around the predicted future time-series capacities is
crucial for battery users to make reasonable decisions for avoiding
unexpected operating failures and losses, the machine learning tools
with the probabilistic forecast ability are highly required in this appli-
cation (Liu, Shang, Ouyang, & Widanage, 2020; Liu, Tang, Teodorescu,
Gao, & Meng, 2021). In contrast, for the battery manufacturing data
analysis application, as battery manufacturing line contains a number
of chemical, mechanical as well as electrical operations and would gen-
erate strongly-coupled parameters or variables that affect the perfor-
mance of the manufactured battery, the interpretable machine learning
tools to effectively analyze the manufacturing parameters and better
quantify their interactions or effects during battery manufacturing are
urgently required with higher priority.

5. Conclusion

Battery manufacturing plays a direct and pivotal role in deter
mining the manufactured battery performance. However, it is diffi-
cult to analyze the strong-coupled parameters within a complicated
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battery production chain and predict battery properties at the early-
manufacturing stage. In this study, as suggested and highly required
by UK battery manufacturers, an interpretable machine learning frame-
work through combining the benefits of three effective and user-
friendly AI tools is proposed to predict battery capacities and explain
the dynamic effects as well as interactions of manufacturing parameters
of interest. It should be noted that this is significantly important
for battery manufacturers to better understand their manufacturing
line and make reasonable battery property predictions at the early-
manufacturing stage, which presents the recognized practical value to
the corresponding industrial practitioners. Specifically, the framework
is derived by integrating ALE and H-statistic with the RF-based regres-
sion model, which takes three key coating parameters (mass, thickness
and porosity) as inputs to predict Cap, GCap and VCap of battery
products, while their underlying parameter dynamical dependencies
as well as interactions are also analyzed. The proposed framework
is validated based on a reliable manufacturing dataset from a real
battery manufacturing chain. Some conclusions can be made as: (1)
After establishing RF-based regression models, all capacity types (Cap,
GCap and VCap) of battery product can be accurately predicted with 𝑅2

alues over 0.98 by using coating mass, thickness and porosity as inputs
t the early-stage production cases. (2) The ALE values of Cap, GCap
nd VCap all present a monotonically increasing relationship with the
ncrease of coating mass, indicating that coating mass loading provides

positive effect on increasing all these three battery capacity types.
3) The interaction values of mass and thickness are always larger than
orosity, implying that coating mass and thickness would provide more
nteractions with other parameters for all these three battery capacity
rediction cases. To the best knowledge, this is the first known appli-
ation that derives the interpretable RF-based regression framework to
redict and analyze the dynamic effects of coating parameters on the
roperties of battery products. It makes the RF-based model become
ore interpretable and offers a convenient and smart alternative for
arameter analyzes and product property predictions, especially in
he cases of battery production chain where strong-coupled chemical,
echanical and electrical parameters are existed. This research also
ighlights the potential of interpretable machine learning to effectively
redict and automatically obtain insights for the battery production
hain. The future work would focus on the development of more
nterpretable machine learning tools for smarter control of battery
anufacturing.
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