Crystallization Behavior of CaF$_2$-TiO$_2$ Fluxes Geared Towards High Heat Input Submerged Arc Welding

Zhanjun Wanga,b,c, Xiaorui Zhenga,b, Ming Zhonga,b, Zushu Lid, Cong Wanga,b*

a. Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, Liaoning, China
b. School of Metallurgy, Northeastern University, Shenyang 110819, China
c. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
d. WMG, University of Warwick, Coventry, CV4 7AL, United Kingdom

* Corresponding author: wangc@smm.neu.edu.cn (Cong Wang)

Tel.: +86 15702435155 Fax: +86 24 23906316

Abstract:

Crystallization behaviors of CaF$_2$-TiO$_2$ fluxes with varying TiO$_2$ contents from 10 to 40 wt.% for high heat input submerged arc welding application have been systematically investigated by using single hot thermocouple technique (SHTT), field emission scanning electron microscopy (SEM), and X-ray diffraction (XRD). It is demonstrated that, as a function of the TiO$_2$ content, the crystallization temperature initially decreases (from 10 to 30 wt.%) but increases afterwards (>30 wt.%), while the incubation time follows an opposite trend. It has been confirmed that CaTiO$_3$ and CaF$_2$ are the two dominant precipitated phases. It is further shown that the growth of CaTiO$_3$
crystals follows a three-dimensional pattern while that of CaF$_2$ a two-dimensional one. The effective activation energy is the highest when the TiO$_2$ content is 30 wt.%, indicating the greatest barrier to crystallize and the highest capability to achieve the most desired production of amorphous welding fluxes for high heat input applications.

Keywords: High heat input; Submerged arc welding; Flux; Crystallization; CaF$_2$-TiO$_2$

1. Introduction

Possessing an array of prominent properties, including high specific strength, superior low-temperature impact toughness, suitable weldability, and excellent corrosion resistance, low carbon low alloy steel grades have been extensively employed in shipbuilding and offshore engineering settings [1-4]. With the imminent application of high heat input welding, an ever-evolving challenge is how to ensure the soundness of the weld joints, which may subject to premature failure inherent from the prolonged cooling and deteriorated microstructure [5-9].

In recent years, to further improve the overall mechanical performance of the weld metal under high heat input welding conditions, TiO$_2$-bearing welding fluxes have been designed and applied [10, 11]. It is generally believed that O content is a key parameter determining the microstructure and mechanical properties of weld joints, and welding flux is the main source of O supply in submerged arc welding [12]. The underlying philosophy is to, through fine-tuned transfer of Ti and O elements from the molten flux to the weld metal, promote the formation of Ti-containing inclusions, which may likely act as suitable intragranular nucleation sites for the formation of acicular ferrites,
thereby enhancing the mechanical responses via the interlocking nature [10]. Paniagua-Mercado et al. [13] found that increasing TiO$_2$ content in the welding flux could enhance the percentage of acicular ferrite that plays a significant role in heterogeneous nucleation and reduce the size of acicular ferrite. Roy et al. [14] observed that as the content of TiO$_2$ added to commercial welding fluxes increased from 2.5 wt.% to 12.5 wt.%, the average grain sizes of ferrite and pearlite decreased, while the percentage of ferrites in the weld metal increased at the expense of diminishing pearlites. Zhang et al. [10] and Kohno et al. [15] clarified that TiO$_2$ could promote the transfer of Ti and O elements to the weld metal, which could induce the formation of inclusions and increase the nucleation rate of acicular ferrite, thereby improving the strength and toughness of the weld metal.

According to Paniagua-Mercado et al. [16], Zhang et al. [11, 17] and Kim et al. [2, 7, 18], physicochemical properties of the welding flux, especially the crystallization features, could directly control alloying element transfer behaviors, affect the slag-metal reaction and the detachability (discrete separation of the flux from the metal after welding), and ultimately determine the quality of welding. Multiple studies suggested that the presence of [Cr,Mn,Mg][Cr,Mn,Al]$_2$O$_4$ spinel, or cordierite (Mg$_2$Al$_4$Si$_5$O$_{18}$) type structure, or Cr$_2$TiO$_5$ and FeTiO$_5$ phases were generally not conducive to slag detachability [19, 20]. Moreover, a higher crystallization temperature of the welding flux could narrow the temperature range of slag-metal reaction and influence alloying element transfer, and is not conducive to obtaining an amorphous flux with uniform composition that is beneficial for welding. CaF$_2$ has been widely employed for the
design of welding flux to improve the basicity and minimize the O potential [21, 22]. However, it needs to be pointed out that investigations focusing on the crystallization behavior of TiO₂-bearing welding fluxes have yet to be fully conducted to minimize unnecessary defects closely associated with alloying element transfer behaviors and slag-metal reactions in the weld zone. In this regard, considering the extensive application of TiO₂-bearing fluxes in the actual welding process, the present study is undertaken to explore the influence of TiO₂ content on the crystallization behaviors of the CaF₂-TiO₂ flux system. Furthermore, the kinetics and effective activation energy of the crystallization process will be fully investigated to facilitate the understanding and advance the design for TiO₂-bearing welding flux systems.

2. Experimental

2.1. Sample preparation

Table 1 Pre- and post-experimental compositions of CaF₂-TiO₂ fluxes (wt.%).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pre-experimental composition</th>
<th>Post-experimental composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TiO₂</td>
<td>CaF₂</td>
</tr>
<tr>
<td>F10</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>F20</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>F30</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>F40</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

All experimental samples for CaF₂-TiO₂ fluxes were prepared using reagent grade powders of CaF₂ (>98.5 wt.%) and TiO₂ (>99 wt.%). The chemical compositions of the designed fluxes are provided in Table 1. Approximately 50 g samples were uniformly
mixed and premelted at 1550 °C in a molybdenum crucible with a matching lid under 0.3 L/min of Ar (> 99.999 %) flow. After 30 minutes, the premelted fluxes were rapidly quenched by cold water and crushed and ground into powders with the size less than 200 mesh. The chemical compositions of the premelted fluxes were confirmed by X-ray fluorescence (XRF, ZXS Priums II, Rigaku, Japan) and ethylene diamine tetraacetic acid (EDTA) titration method, as shown in Table 1, where the measured values showed negligible differences comparing with the weighed ones.

2.2. SHTT, XRD and SEM analysis

Single hot thermocouple technique (SHTT) was employed to investigate the crystallization behavior of CaF$_2$-TiO$_2$ welding fluxes, and detailed descriptions of the technique can be found elsewhere [23, 24]. Approximately 0.01 g of the flux was placed on the tip of a B-type thermocouple (0.5 mm in diameter, Pt-30%Rh) with a controlled temperature program. The temperature of the thermocouple was calibrated in advance with pure K$_2$SO$_4$ with a constant melting point, where the calibration procedure was repeated 3 times to ensure ±1 °C temperature accuracy. The relationship between the temperature, time and precipitated crystals was simultaneously recorded by a microscope equipped with a video camera, where the SHTT images of primary phase can be used to construct continuous-cooling-transformation (CCT) and time-temperature-transformation (TTT) curves. It should be noted that the crystallization temperature and incubation time detected from the observed SHTT images were the average values from 3 parallel trials.
After SHTT experiment, fluxes solidified on the tip of the thermocouple were carefully mounted, polished, and carbon-coated for scanning electron microscopy (SEM, MIRA3, TESCAN, Czech) analysis to determine the morphology and composition of the crystalline fluxes. Crystalline phases of the fluxes were confirmed by X-ray diffraction (XRD, D8 Advance, Bruker, Germany) analysis using Cu Kα radiation at a voltage of 40 kV and a current of 30 mA with the 2-theta scanning range between 10° and 80° at a scanning rate of 2°/min and an increment of 0.02°. It should be noted that the amount of the flux after each single SHTT experiment was not adequate for XRD characterization. Therefore, 10 experiments under identical conditions were repeated to collect sufficient amount of flux samples for XRD (minimum requirement 0.1 g).

2.3. Analysis of kinetics and effective activation energy of the crystallization process

The non-isothermal crystallization kinetics involving nucleation and growth kinetics can be described by the modified Johnson-Mehl-Avrami (JMA) model [25], as shown in equation (1):

\[
\ln(-\ln(1 - X)) = n\ln t + \beta \ln Z_c
\]

where \(X\) is the relative degree of crystallinity, \(\beta\) (°C/s) is the cooling rate, \(Z_c\) (s\(^{n/\circ C}\)) is the modified crystallization rate constant, \(t\) (s) is the crystallization time, and \(n\) is Avrami constant, respectively. The calculated method of relative degree of crystallinity \((X)\) can be found elsewhere [24]. The value of \(n\) can be obtained from the slope of the straight line by plotting \(\ln(-\ln(1-X))\) vs. \(\ln t\).
The differential iso-conversional method proposed by Friedman [26] was used to calculate the dependence of effective activation energy on crystallinity, which is expressed as follows,

$$\ln \left(\frac{dX}{dt} \right)_X = -\frac{E_x}{RT_x} + C \tag{2}$$

where \((dX/dt)_X\) is the instantaneous crystallization rate at a given relative crystallinity, \(T_x\) (K) is the temperature related to the given relative crystallinity at different cooling rates, \(R\) (J·mol\(^{-1}\)·K\(^{-1}\)) is the gas constant, and \(E_x\) (kJ/mol) is the effective activation energy for crystallization at a given relative degree of crystallinity, respectively. The effective activation energy can be determined from the slope of the fitted line between natural logarithm of instantaneous crystallization rate \(\ln(dX/dt)_X\) vs. reciprocal temperature \((1/T_x)\).

3. Results and discussion

3.1. CCT and TTT diagrams

Fig. 1 CCT diagram of CaF\(_2\)-TiO\(_2\) fluxes with different TiO\(_2\) contents.
Using the initial crystallization images from the SHTT experiments, the CCT and TTT diagrams could be constructed for CaF$_2$-TiO$_2$ fluxes. The CCT diagrams of CaF$_2$-TiO$_2$ fluxes with different TiO$_2$ contents are shown in Fig. 1 for cooling rates of 2 °C/s, 3 °C/s, 5 °C/s, 10 °C/s and 20 °C/s starting from 1550 °C. It can be observed that the crystallization temperature initially decreases with increasing TiO$_2$ content from 10 wt.% to 30 wt.%, and then increases with further addition of TiO$_2$ content up to 40 wt.%, which may be caused by the generation of significant amount of crystalline phases with high melting points.[27] In addition, as the cooling rate increases, the initial crystallization temperature of CaF$_2$-TiO$_2$ fluxes shift towards lower temperature, which can be attributed to the competing factors of: a) accelerated nucleation and growth of crystals under higher degree of undercooling, and b) inhibited growth of the crystals due to increased viscosity and concurrently lowered diffusivity.[28, 29].

![TTT Diagram](image)

Fig. 2 TTT diagram of CaF$_2$-TiO$_2$ fluxes with different TiO$_2$ contents.

Fig. 2 shows the TTT diagrams of CaF$_2$-TiO$_2$ fluxes with different TiO$_2$ contents. The TTT curves of all fluxes exhibit a half “C”-shape, indicating that a single crystal
phase has been formed during the isothermal crystallization process. The incubation
time obtained from TTT curves is an important parameter to characterize the
crystallization properties of different fluxes, where a longer incubation time generally
indicates an inhibited crystallization process [30]. It can be seen that under the same
isothermal crystallization condition, with the increase of TiO$_2$ content from 10 to 30
wt.% the crystallization incubation time is prolonged; with further addition of TiO$_2$
content to 40 wt.%, the incubation time becomes shorter, implying the inhibition and
acceleration of the crystallization process, respectively. For the same flux, as the
isothermal temperature decreases, the undercooling of the flux increases, resulting in a
greater driving force for nucleation, which is manifested in the reduced incubation time
and accelerated crystallization [28, 31]. Thus, it can be concluded that when the TiO$_2$
content is 30 wt.%, the crystallization capacity of CaF$_2$-TiO$_2$ fluxes is inhibited the most,
which correlates well with the crystallization temperature shown in CCT curves and the
incubation time shown in TTT diagrams. In addition, it is noteworthy that as the
isothermal temperature decreases, the crystallization incubation time gradually
decreases to close to 0 seconds, indicating that the critical cooling rate of respective
CaF$_2$-TiO$_2$ flux is extremely high, which is not beneficial to obtain amorphous welding
flux, and may require further adjustment [29, 32].
3.2. Determination of crystalline phases

<table>
<thead>
<tr>
<th>Cooling rate</th>
<th>Sample</th>
<th>2 °C/s</th>
<th>5 °C/s</th>
<th>20 °C/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10</td>
<td>TiO₂=10 wt.%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1486 °C</td>
<td>1470 °C</td>
<td>1419 °C</td>
</tr>
<tr>
<td>F20</td>
<td>TiO₂=20 wt.%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1452 °C</td>
<td>1427 °C</td>
<td>1390 °C</td>
</tr>
<tr>
<td>F30</td>
<td>TiO₂=30 wt.%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1436 °C</td>
<td>1388 °C</td>
<td>1335 °C</td>
</tr>
<tr>
<td>F40</td>
<td>TiO₂=40 wt.%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1451 °C</td>
<td>1404 °C</td>
<td>1345 °C</td>
</tr>
</tbody>
</table>

Fig. 3 Typical SHTT images of CaF₂-TiO₂ fluxes with different TiO₂ contents at different cooling rates.

Fig. 3 shows typical SHTT images for CaF₂-TiO₂ fluxes continuously cooled at the constant rates of 2 °C/s, 5 °C/s, and 20 °C/s, respectively. It can be seen that when the cooling rate is fixed at 2 °C/s, dendritic crystals initially grow along the edge of the thermocouple and continue to grow towards the center of the liquid phase. According to the theory of heterogeneous nucleation, when a new phase nucleates on the surface of the existing solid particles, the energy required for nucleation is significantly reduced.
[33, 34]. With the increase of cooling rate, nucleation features change, where dendritic and cloud-like crystals begin to appear in the center of certain fluxes with high TiO$_2$ contents. However, it appears that, for fluxes with high TiO$_2$ contents, the relatively high crystallization rate renders it difficult to capture subtle crystalline characteristics. In addition, in the actual welding process, it is essential to avoid the excessively rapid crystallization process, which may delay or even inhibit the transfer of alloying elements incurred by slag-metal reactions [21, 22, 35].

![Fig. 4 XRD patterns of CaF$_2$-TiO$_2$ fluxes with different TiO$_2$ contents at cooling rates of 2 °C/s, 5 °C/s and 20 °C/s. (a) F10, TiO$_2$=10 wt.%, (b) F20, TiO$_2$=20 wt.%, (c) F30, TiO$_2$=30 wt.%, (d) F40, TiO$_2$=40 wt.%.](image)

Fig. 4 displays the XRD patterns of CaF$_2$-TiO$_2$ fluxes under different cooling rates.
It can be seen that CaF$_2$ and CaTiO$_3$ can be detected for fluxes with TiO$_2$ contents of 10 wt.% and 20 wt.% under cooling rates of 2 °C/s, 5 °C/s and 20 °C/s. When the TiO$_2$ content is increased further to 30 wt.% and 40 wt.%, TiO$_2$ peaks appear and are more obvious at higher cooling rates.

Fig. 5 Typical SEM image of sample F30 after SHTT measurement at the cooling rate of 2 °C/s and corresponding EDS results. Inset figure is the enlarged region of the interested area denoted by the dashed square.

<table>
<thead>
<tr>
<th>Point</th>
<th>Ca</th>
<th>F</th>
<th>Ti</th>
<th>O</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>F30-1</td>
<td>21.8(±0.67)</td>
<td>0</td>
<td>22.8(±0.95)</td>
<td>55.4(±2.07)</td>
<td>CaTiO$_3$</td>
</tr>
<tr>
<td>F30-2</td>
<td>33.2(±1.27)</td>
<td>66.8(±1.29)</td>
<td>0</td>
<td>0</td>
<td>CaF$_2$</td>
</tr>
<tr>
<td>F30-3</td>
<td>22.8(±1.42)</td>
<td>39.6(±1.74)</td>
<td>11.4(±1.22)</td>
<td>26.2(±1.60)</td>
<td>Matrix</td>
</tr>
</tbody>
</table>

Fig. 5 shows the typical SEM image and corresponding EDS point analysis results of the CaF$_2$-TiO$_2$ flux continuously cooled at 2 °C/s. It can be seen that, from a semi-quantitative perspective, salient regions can be categorized as CaTiO$_3$ (F30-1), CaF$_2$ (F30-2) and the amorphous matrix (F30-3), respectively, coinciding well with XRD results.

Based on the results above, it can be concluded that the addition of TiO$_2$ can
According to Hao et al. [36], the presence of CaTiO$_3$ could effectively increase the heat flux of the welding flux, thereby promoting the heat to diffuse outside the welding flux shell and to prevent the heat from accumulating in the weld metal, which may likely lead to the formation of coarse grains deteriorating low-temperature impact toughness of the weld metal. In addition, the formation of CaTiO$_3$ with a strong directional dendritic morphology can facilitate the separation of the slag shell from the weld metal [37].

3.3. Nucleation and growth of different crystalline phases

Fig. 6 Plots of ln(-ln(1-X)) vs. ln t for non-isothermal crystallization of CaF$_2$-TiO$_2$ fluxes at different cooling rates. (a) F10, TiO$_2$=10 wt.%, (b) F20, TiO$_2$=20 wt.%, (c) F30, TiO$_2$=30 wt.%, (d) F40, TiO$_2$=40 wt.%.

13
The relative crystallinity as a function of temperature at different cooling rates is presented in Supplemental Materials Fig. S1. Based on this, Fig. 6 is established to display the relationship between ln(-ln(1-X)) and ln t at different cooling rates, aiming to analyze the kinetics of the non-isothermal crystallization process. It can be observed that, for the 10 wt.% TiO$_2$ flux (Fig. 6(a)), all fitted lines are approximately straight without noticeable inflection points. However, nearly all fitted lines of other fluxes can be divided into two distinctive portions separated by outstanding inflection points, which indicate the precipitation of different crystalline phases. According to Zhou et al. [38] and Zheng et al. [39], these phases can be identified as CaTiO$_3$ and CaF$_2$, respectively. It should be noted that the flux composition with 30 wt.% TiO$_2$ is located at the eutectic point of CaF$_2$-TiO$_2$ phase diagram [40, 41]. When the cooling rate is 10 °C/s, the crystallization process of the flux with 30 wt.% TiO$_2$ is extremely fast and can be completed within 1.5 seconds, which is difficult to obtain the two different crystallization stages from the fitted line of ln(-ln(1-X)) vs. ln t due to limited data. Thus, the fitted lines of welding flux with 10 wt.% TiO$_2$ at all cooling rates and the fitted line of welding flux with 30 wt.% TiO$_2$ at the cooling rate of 10 °C/s is not used for such analysis.
The values of the Avrami constant \((n)\) can be estimated from the slope of the fitted lines, as summarized in Table 2. It is generally accepted that the nucleation and growth mechanism of crystallization is related to the Avrami constant, as shown in Equation (3) [42],

\[
n = a + bc
\]

where “\(a\)” is a constant associated with the nucleation rate \((0 < a < 1)\) means a decreasing nucleation rate with holding time, \(a = 1\) means a constant nucleation rate, and \(a > 1\) means an increasing nucleation rate with holding time), “\(b\)” is a constant related to the growth dimension of the crystals \((b = 1)\) means one-dimensional growth, \(b = 2\) means two-dimensional growth, and \(b = 3\) means three-dimensional growth), and “\(c\)” is a
constant related to the growth rate of the crystals ($c = 1$ means interface-controlled
growth and $c = 0.5$ means diffusion-controlled growth). According to Li et al. [42], the
growth of CaTiO$_3$ shows typical three-dimensional growth pattern, *i.e.*, b can be
considered as 3. According to Lou et al. [43], the growth of CaTiO$_3$ is diffusion-
controlled, *i.e.*, c equals to 0.5. Thus, combining the value of Avrami constant in the
crystallization primary stage shown in Table 2, it can be estimated that a is less than 1,
suggesting the nucleation rate of CaTiO$_3$ decreases with holding time. In addition,
according to Shi et al. [44], the growth of CaF$_2$ follows a two-dimensional growth
pathway, *i.e.*, b equals to 2. Combining all the Avrami constants of CaF$_2$ crystals less
than 2, it can be interpreted that c is 0.5 and a is less than 1, indicating that the
crystallization of CaF$_2$ occurs through diffusion-controlled mechanism and the
nucleation rate of CaF$_2$ decreases with holding time. The presence of CaTiO$_3$ is
beneficial for welding flux detachability [37]. However, considering the significance of
the amorphous state for the uniformity of the flux composition and rapid crystallization
of CaTiO$_3$ goes against obtaining the amorphous welding flux, the viscosity of the
welding fluxes and the nucleation rate of CaTiO$_3$ should be further optimized in the
future.
3.4. Effective activation energies for non-isothermal crystallization

Fig. 7 The effective activation energy in non-isothermal crystallization at different relative crystallinity.

Fig. 7 shows the effective activation energy in non-isothermal crystallization of CaF$_2$-TiO$_2$ fluxes as a function of the whole relative crystallinity. The effective activation energy of flux with 30 wt.% TiO$_2$ during the entire crystallization process is higher than that of other fluxes. It has been reported that higher activation energy means a greater barrier to orderly structure formation [45]. Thus, it can be deduced that the flux with 30 wt.% TiO$_2$ has the lowest crystallization tendency, which is consistent with the lowest crystallization temperature and the longest incubation time in the CCT and TTT diagrams. In addition, it can be observed that as the relative crystallinity increases, the effective activation energy of flux with 10 wt.% TiO$_2$ gradually increases, whereas the effective activation energies of fluxes with TiO$_2$ contents of 20 wt.%, 30 wt.% and 40 wt.% gradually decrease. The temperature decreases as the relative crystallinity
increases. According to the classical nucleation theory [46], the thermodynamic barrier decreases and the undercooling increases with decreasing temperature. Thus, as the relative crystallinity increases, the effective activation energies of fluxes with TiO$_2$ contents of 20 wt.%, 30 wt.% and 40 wt.% gradually decrease. However, for the flux containing 10 wt.% TiO$_2$, it is likely that as the temperature decreases, the driving force for diffusion is depreciated, which, in turn, leads to an increase in the effective activation energy.

Furthermore, it should be mentioned that for CaF$_2$-TiO$_2$ flux with TiO$_2$ content of 30 wt.%, the Ti content in the weld metal reaches the maximum value during the actual welding process, which can induce the formation of Ti-bearing inclusions to facilitate the formation of acicular ferrite in appreciable quantities, thereby improving mechanical properties of the weld metal.[22, 47] Thus, CaF$_2$-TiO$_2$-based fluxes with the CaF$_2$/TiO$_2$ mass ratio of 7:3 should be encouraged for designing and optimizing the welding flux.

4. Conclusions

This study focuses on the influence of TiO$_2$ content on the crystallization behavior of CaF$_2$-TiO$_2$ fluxes. The main conclusions can be summarized as follows:

(1) With increasing TiO$_2$ content, the crystallization temperature initially decreases with increasing TiO$_2$ content from 10 to 30 wt.% and subsequently increases with further addition of TiO$_2$ content up to 40 wt.%, whereas the incubation time follows an opposite trend.
(2) The addition of TiO$_2$ can promote the formation of CaTiO$_3$ with dendritic morphology. The nucleation rate of CaTiO$_3$ decreases with holding time and the growth of CaTiO$_3$ crystals follows a three-dimensional diffusion-controlled pattern.

(3) The effective activation energy of the flux containing 30 wt.% TiO$_2$ during the entire crystallization process is higher than that of other fluxes, indicating that the flux with 30 wt.% TiO$_2$ has the lowest crystallization capacity.

Acknowledgment

The authors sincerely thank the National Natural Science Foundation of China (Grant Nos. 52104295, U20A20277, 52050410341, 52011530180, 52150610494), Royal Academy of Engineering (Grant No. TSPC1070), Royal Society (Grant No. IEC/NSFC/191318), Research Fund for Central Universities (Grant Nos. N2025025, N2125016). This work is also funded by the Regional Innovation Joint Fund of Liaoning Province (Grant No. 2020-YKLH-39) and the Open Foundation of State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing (Grant No. KF21-02).

Credit authorship contribution statement

Zhanjun Wang: Data curation, Formal analysis, Methodology, Writing - review & editing; **Xiaorui Zheng**: Data curation, Writing - original draft; **Ming Zhong**: Writing - review; **Zushu Li**: Writing - review; **Cong Wang**: Supervision, Resources, Writing - review & editing, Funding acquisition.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplemental material

The online version of this article contains Supplemental Materials, which is available to authorized users.

References

formation and microstructure refinement in Fe-CO-Ti alloys, JOM, 73 (2021) 1110-1117.

T. Eagar, Sources of weld metal oxygen contamination during submerged arc welding, Weld. J., 57 (1978) 76-80.

H. Wang, R. Qin, G. He, SiO$_2$ and CaF$_2$ behavior during shielded metal arc welding and their effect on slag detachability of the CaO-CaF$_2$-SiO$_2$ type

[28] J. Yang, J. Zhang, O. Ostrovski, C. Zhang, D. Cai, Effects of B$_2$O$_3$ on
crystallization, structure, and heat transfer of CaO-Al2O3-based mold fluxes,

Table and Figure captions:

Table 1 Pre- and post-experimental compositions of CaF$_2$-TiO$_2$ fluxes (wt.%).

Table 2 The values of Avrami constant (n) of CaF$_2$-TiO$_2$ fluxes at different cooling rates.

Fig. 1 CCT diagram of CaF$_2$-TiO$_2$ fluxes with different TiO$_2$ contents.

Fig. 2 TTT diagram of CaF$_2$-TiO$_2$ fluxes with different TiO$_2$ contents.

Fig. 3 Typical SHTT images of CaF$_2$-TiO$_2$ fluxes with different TiO$_2$ contents at different cooling rates.

Fig. 4 XRD patterns of CaF$_2$-TiO$_2$ fluxes with different TiO$_2$ contents at cooling rates of 2 °C/s, 5 °C/s and 20 °C/s. (a) F10, TiO$_2$=10 wt.%, (b) F20, TiO$_2$=20 wt.%, (c) F30, TiO$_2$=30 wt.%, (d) F40, TiO$_2$=40 wt.%.

Fig. 5 Typical SEM image of sample F30 after SHTT measurement at the cooling rate of 2 °C/s and corresponding EDS results. Inset figure is the enlarged region of the interested area denoted by the dashed square.

Fig. 6 Plots of ln(-ln(1-X)) vs. lnt for non-isothermal crystallization of CaF$_2$-TiO$_2$ fluxes
at different cooling rates. (a) F10, TiO$_2$=10 wt.%, (b) F20, TiO$_2$=20 wt.%, (c) F30, TiO$_2$=30 wt.%, (d) F40, TiO$_2$=40 wt.%

Fig. 7 The effective activation energy in non-isothermal crystallization at different relative crystallinity.