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1. Introduction

1.1. Spectral projectors on general manifolds and tori

Given a Riemannian manifold with Laplace–Beltrami operator ∆, consider the spectral projector
Pλ,δ on (perhaps generalized) eigenfunctions with eigenvalues within O(δ) of λ. It is defined
through functional calculus by the formula

Pλ,δ = Pχ

λ,δ =χ
(p−∆−λ

δ

)
,

where χ is a cutoff function, which is irrelevant for our purposes.
An interesting question is to determine the operator norm from L2 to Lp , with p > 2, of this

operator. A theorem of Sogge [5] gives an optimal answer for any Riemannian manifold if δ= 1∥∥Pλ,1
∥∥

L2 →Lp ≲λ
d−1

2 − d
p +λ

d−1
2

(
1
2 − 1

p

)
.
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While this completely answers the question if δ > 1, the case δ < 1 is still widely open. Under-
standing the case δ < 1 requires a global analysis on the Riemannian manifold, which makes it
very delicate.

In the case of the rational torus Rd /Zd , Lp bounds on eigenfunctions attracted a lot of
attention; this corresponds to the choice δ = 1/λ, since the distance between two consecutive
eigenvalues is ∼ 1

λ . The best result in this direction is due to Bourgain and Demeter [3]. More
recently, the authors of the present paper [4] considered the problem for general values of λ and
δ, conjectured the bound for general tori∥∥Pλ,δ

∥∥
L2→Lp ≲λ

d−1
2 − d

p δ1/2 + (λδ)
(d−1)

2

(
1
2 − 1

p

)
for δ> 1/λ,

and were able to establish this bound for a range of the parameters δ,λ, p.
A full proof of this conjecture seems very challenging in every dimension d . Restricting to the

case d = 2, consider the case (R/Z)×R = T×R instead of T2. The conjecture remains identical,
but a short proof, relying on ℓ2 decoupling, can be provided; this is the main observation of the
present paper. Generalizations to higher dimensions are certainly possible.

1.2. The Euclidean cylinder

OnT×R= (R/Z)×R, we choose coordinates (x, y), with x ∈ [0,1] and y ∈R. The Laplacian operator
is given by

∆= ∂2
x +∂2

y .

A function f on T×R can be expanded through Fourier series in x and Fourier transform in y :

f (x) = ∑
k ∈Z

∫
R

f̂ (k,η)e2πi(kx+ηy) dη.

The spectral projector can then be expressed as

Pλ,δ f (x) = ∑
k ∈Z

∫
R
χ

(√
k2 +η2 −λ

δ

)
f̂ (k,η)e2πi(kx+ηy) dη.

Theorem 1 (Main theorem). If λ> 1 and δ< 1,∥∥Pλ,δ
∥∥

L2 →Lp ≲ϵ λ
ϵδ−ϵ

[
λ

1
2 − 2

p δ
1
2 + (λδ)

1
4 − 1

2p

]
Furthermore, this estimate is optimal, up to the subpolynomial factor λϵδ−ϵ and the multiplicative
constant.

1.3. Strichartz estimates

It is interesting to draw a parallel with Strichartz estimates in dimension 2 for the Schrödinger
equation, in which case the critical exponent equals 4. It was proved in the foundational paper of
Bourgain [2] that ∥∥∥e i t∆ f

∥∥∥
L4([0,1]×T2)

≲s
∥∥ f

∥∥
H s (T2) for s > 0.

Takaoka and Tzvetkov [6] proved that the above inequality fails for s = 0, but that, on T×R,∥∥∥e i t∆ f
∥∥∥

L4([0,1]×T×R)
≲

∥∥ f
∥∥

L2(T×R) .

Finally, Barron, Christ and Pausader [1] determined the correct global (in time) estimate, for
which a further summation index is needed. These examples suggest that optimal estimates
might differ by subpolynomial factors between T2 and T×R.
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2. Proof of the Theorem 1 (main theorem)

Proof. By Plancherel’s theorem, it suffices to prove∥∥ f
∥∥

Lp ≲ϵ λ
ϵδ−ϵ

[
λ

1
2 − 2

p δ
1
2 + (λδ)

1
4 − 1

2p

]∥∥ f
∥∥

L2 (1)

for f a function whose Fourier transform is localized in the corona Cλ,δ of radius λ and with
thickness δ/λ:

Cλ,δ =
{

(k,η) such thatλ−δ<
√

k2 +η2 <λ+δ
}

.

By symmetry, one can furthermore assume that f̂ (k,η) is localized in the first quadrant k,η≥ 0.
The function f can be split into two pieces, which will correspond to the two terms on the

right-hand side of (1).

f (x) =
 ∑
|k−λ|≤ 1

δ

+ ∑
|k−λ|> 1

δ

∫
R

f̂
(
k,η

)
e2πi(kx+ηy) dη= f1(x)+ f2(x).

The Case |k −λ| ≤ 1
δ . The Fourier support of f1 is made up of a collection of segments. We will

see in Lemma 2 below that the added length of these segments can be bounded by∣∣Supp f̂1
∣∣≲p

λδ.

Therefore, by the Cauchy–Schwartz inequality,∥∥ f1
∥∥

L∞ ≤ ∣∣Supp f̂1
∣∣1/2 ·∥∥ f̂1

∥∥1/2
L2 ≲ (λδ)1/4 ∥∥ f1

∥∥
L2 .

Interpolating with L2, this gives ∥∥ f1
∥∥

Lp ≲ (λδ)
1
4 − 1

2p
∥∥ f

∥∥
L2 .

The Case |k −λ| > 1
δ . We start by choosing a function φ ∈ S which is > 1/2 on [−1,1], and has

Fourier support in [−1,1]. We use periodicity in the x variable to expand the range of x from
x ∈ [0,1] to x < δ−1, so that

∥∥ f2
∥∥

Lp (T×R) ≲ δ1/p

∥∥∥∥∥∥φ (δx)
∑

|k−λ|> 1
δ

∫
R

f̂ (k,η)e2πi(kx+ηy) dη

∥∥∥∥∥∥
Lp (R2)

.

We now change variables as follows: X =λx, Y =λy , K = k/λ, H = η/λ,

f2(x, y) =λF (X ,Y ), F (X ,Y ) =φ
(
δX

λ

) ∑
K ∈Z/λ

|K−1|> 1
δλ

∫
R

f̂ (λK ,λH)e2πi (K X+HY ) d H

to obtain ∥∥ f2
∥∥

Lp (T×R) ≲ δ1/pλ
1− 2

p ∥F∥Lp (R2) .

The effect of this change of variables is that the function of (X ,Y ) whose Lp norm we want to
evaluate has Fourier transform supported in the corona C1,3δ/λ of radius 1 and width δ/λ, and
also in the first quadrant X ,Y ≥ 0. This enables us to apply the ℓ2 decoupling theorem of Bourgain
and Demeter [3]: for a smooth partition of unity (χθ) corresponding to a suitable almost disjoint

covering of C1,3δ/λ by caps (θ) of size ∼ δ
λ ×

√
δ
λ ,

∥∥ f2
∥∥

Lp (T×R) ≲ δ
1
p λ

1− 2
p (δ/λ)−

1
4 + 3

2p −ϵ
(∑
θ

∥∥χθ(D)F
∥∥2

Lp (R2)

)1/2

,

where χθ(D) is the Fourier multiplier with symbol χθ .
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We now apply the inequality ∥g∥Lp (Rd ) ≲ ∥g∥L2 |Supp ĝ | 1
2 − 1

p (if p ≥ 2), which follows by apply-
ing in turn the Hausdorff–Young and Hölder inequalities, and then the Plancherel theorem. Since
by Lemma 2 below ∣∣∣Supp áχθ(D)F

∣∣∣= ∣∣SuppχθF̂
∣∣≲ δ5/2λ−3/2,

it follows that

∥∥ f2
∥∥

Lp (T×R) ≲ δ
1
p λ

1− 2
p (δ/λ)−

1
4 + 3

2p −ϵ (
δ5/2λ−3/2) 1

2 − 1
p

(∑
θ

∥∥χθ(D)F
∥∥2

L2(R2)

)1/2

.

By almost orthogonality, this becomes∥∥ f2
∥∥

Lp (T×R) ≲ δ
1
p λ

1− 2
p (δ/λ)−

1
4 + 3

2p −ϵ (
δ5/2λ−3/2) 1

2 − 1
p ∥F∥L2(R2) .

Finally, undoing the change of variables and using once again periodicity in the x variable gives∥∥ f2
∥∥

Lp (T×R) ≲ δ
1
p λ

1− 2
p (δ/λ)−

1
4 + 3

2p −ϵ (
δ5/2λ−3/2) 1

2 − 1
p δ−1/2 ∥∥ f

∥∥
L2

≲λ
1
2 − 2

p δ1/2

Optimality. The optimality of the statement of the theorem is proved through two examples.
The first one is an analog of the Knapp example: assume λ ∈N, and consider the function g given
by its Fourier transform

ĝ (k,η) = 1λ(k)χ

(
ηp
λδ

)
.

Here, 1λ is the indicator function of {λ} and χ is a cutoff function with a sufficiently small support,
so that Supp ĝ ⊂Cλ,δ. In physical space,

g (x, y) =
p
λδe2πiλx χ̂

(p
λδy

)
.

It has Lp norm ∼ (λδ)
1
2 − 1

2p , so that

∥g∥Lp

∥g∥L2
∼ (λδ)

1
4 − 1

2p .

We now consider the function h given by its Fourier transform

ĥ(k,η) = 1Cλ,δ (k,η)1[0,λ/2](k);

here, 1Cλ,δ is the indicator function of the annulus, and 1[0,λ/2] the indicator function of the
interval. It is easy to check that |Supp ĥ| ∼λδ, so that ∥h∥L∞ ∼λδ and ∥h∥L2 ∼

p
λδ, and finally

∥h∥L∞

∥h∥L2
∼
p
λδ.

By the Bernstein inequality,

∥h∥Lp

∥h∥L2
≳λ−2/p ∥h∥L∞

∥h∥L2
∼λ 1

2 − 2
p δ1/2.

The examples g and h show that the statement of the Theorem 1 is optimal, up to subpolynomial
losses. □
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3. Bounds for the Fourier support

Lemma 2 (Bound on the size of Fourier support). With the notations of the proof of Theorem 1,

(i) The function f1 is a function on T×R. As such, its Fourier transform is supported on a
union of lines, and has one-dimensional measure∣∣Supp f̂1

∣∣≲p
λδ.

(ii) The function χθ(D)F is a function on R2. Its Fourier transform is defined on R2, and has
two-dimensional measure ∣∣SuppχθF̂

∣∣≲ δ5/2λ−3/2.

Proof.
(i) Consider f as in the proof of Theorem 1, namely with Fourier support in Cλ,δ. Since (k,η) range
in Z×Rwith k,η≥ 0, the Fourier support of f is contained in ∪k ∈Z{k}×Eλ

k , where

Eλ
k =


; (k ≥ k+) ,(
0,

√
k2+−k2

)
(|k −λ| < δ) ,(√

(λ−δ)2 −k2,
√

k2+−k2
)

(0 ≤ k ≤λ−δ) .

Recalling that f̂ 1 is just f̂ restricted to |k −λ| ≤ 1
δ , one can then add up these pieces to get the

bound ∣∣Supp f̂1
∣∣≲ ∑

max
{
0,λ− 1

δ

}≤k <k+

|Ek |≲
p
λδ+ ∑

k ≥0
1
δ
≥λ−k>δ

δλp
λ(λ−x)

and as y 7→ 1/
p

y is decreasing this is

≤ 2
p
λδ+

∫ min
{
λ, 1

δ

}
δ

δλ√
λy

d y ≤ 4
p
λδ.

(ii) Turning to F , it has Fourier support in

⋃
k ∈Z

|k−λ|> 1
δ

[
k

λ
− 2δ

λ
,

k

λ
+ 2δ

λ

]
×Dλ

k , Dλ
k =

H , 1− δ

λ
<

√
k2

λ2 +H 2 < 1+ δ

λ

 . (2)

Consider χθ(D)F , for a cap θ with dimensions

∼ δ

λ
×

√
δ

λ

adapted to the corona C1,3δ/λ. Given such a cap, there is j ∈N with 2 j > 1
δ such that every point

in the intersection of θ with the set (2) satisfies |λ−k| ∼ 2 j .
There are around

p
δ2 j /2 such values of k for which the vertical strip [ k

λ − 2δ
λ , k

λ + 2δ
λ ] intersects

the cap θ. For each such k, the size of Dλ
k is ∼ δλ−1/22− j /2. Hence, adding up the contributions

in (2), ∣∣Suppχθ(D)F
∣∣≲p

δ2 j /2 ·δλ−1 ·δλ−1/22− j /2 = δ5/2λ−3/2. □
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