Comptes Rendus

Mathématique

Pierre Germain and Simon Myerson

Bounds for spectral projectors on the Euclidean cylinder

Volume 360 (2022), p. 1257-1262
Published online: 8 December 2022
https: //doi.org/10.5802/crmath. 378
(c) BY \quad This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

Bounds for spectral projectors on the Euclidean cylinder

Pierre Germain ${ }^{\bullet}$ *, a and Simon Myerson ${ }^{\bullet} b$

${ }^{a}$ Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, N.Y. 10012-1185, USA
${ }^{b}$ Mathematics Institute, University of Warwick, Zeeman Building, Coventry, CV4 7AL, United Kingdom
E-mails: pmg7@nyu.edu (P. Germain), Simon.Rydin-Myerson@warwick.ac.uk (P. Myerson)

Abstract

We prove essentially optimal bounds for norms of spectral projectors on thin spherical shells for the Laplacian on the cylinder $(\mathbb{R} / \mathbb{Z}) \times \mathbb{R}$. In contrast to previous investigations into spectral projectors on tori, having one unbounded dimension available permits a compact self-contained proof.

Funding. PG was supported by the Simons collaborative grant on weak turbulence. SLRM was supported by a Leverhulme Early Career Fellowship. Manuscript received 29 March 2022, accepted 14 May 2022.

1. Introduction

1.1. Spectral projectors on general manifolds and tori

Given a Riemannian manifold with Laplace-Beltrami operator Δ, consider the spectral projector $P_{\lambda, \delta}$ on (perhaps generalized) eigenfunctions with eigenvalues within $O(\delta)$ of λ. It is defined through functional calculus by the formula

$$
P_{\lambda, \delta}=P_{\lambda, \delta}^{\chi}=\chi\left(\frac{\sqrt{-\Delta}-\lambda}{\delta}\right)
$$

where χ is a cutoff function, which is irrelevant for our purposes.
An interesting question is to determine the operator norm from L^{2} to L^{p}, with $p>2$, of this operator. A theorem of Sogge [5] gives an optimal answer for any Riemannian manifold if $\delta=1$

$$
\left\|P_{\lambda, 1}\right\|_{L^{2} \rightarrow L^{p}} \lesssim \lambda^{\frac{d-1}{2}-\frac{d}{p}}+\lambda^{\frac{d-1}{2}\left(\frac{1}{2}-\frac{1}{p}\right)}
$$

[^0]While this completely answers the question if $\delta>1$, the case $\delta<1$ is still widely open. Understanding the case $\delta<1$ requires a global analysis on the Riemannian manifold, which makes it very delicate.

In the case of the rational torus $\mathbb{R}^{d} / \mathbb{Z}^{d}, L^{p}$ bounds on eigenfunctions attracted a lot of attention; this corresponds to the choice $\delta=1 / \lambda$, since the distance between two consecutive eigenvalues is $\sim \frac{1}{\lambda}$. The best result in this direction is due to Bourgain and Demeter [3]. More recently, the authors of the present paper [4] considered the problem for general values of λ and δ, conjectured the bound for general tori

$$
\left\|P_{\lambda, \delta}\right\|_{L^{2} \rightarrow L^{p}} \lesssim \lambda^{\frac{d-1}{2}-\frac{d}{p}} \delta^{1 / 2}+(\lambda \delta)^{\frac{(d-1)}{2}\left(\frac{1}{2}-\frac{1}{p}\right)} \quad \text { for } \delta>1 / \lambda,
$$

and were able to establish this bound for a range of the parameters δ, λ, p.
A full proof of this conjecture seems very challenging in every dimension d. Restricting to the case $d=2$, consider the case $(\mathbb{R} / \mathbb{Z}) \times \mathbb{R}=\mathbb{T} \times \mathbb{R}$ instead of \mathbb{T}^{2}. The conjecture remains identical, but a short proof, relying on ℓ^{2} decoupling, can be provided; this is the main observation of the present paper. Generalizations to higher dimensions are certainly possible.

1.2. The Euclidean cylinder

On $\mathbb{T} \times \mathbb{R}=(\mathbb{R} / \mathbb{Z}) \times \mathbb{R}$, we choose coordinates (x, y), with $x \in[0,1]$ and $y \in \mathbb{R}$. The Laplacian operator is given by

$$
\Delta=\partial_{x}^{2}+\partial_{y}^{2} .
$$

A function f on $\mathbb{T} \times \mathbb{R}$ can be expanded through Fourier series in x and Fourier transform in y :

$$
f(x)=\sum_{k \in \mathbb{Z}} \int_{\mathbb{R}} \widehat{f}(k, \eta) e^{2 \pi i(k x+\eta y)} d \eta .
$$

The spectral projector can then be expressed as

$$
P_{\lambda, \delta} f(x)=\sum_{k \in \mathbb{Z}} \int_{\mathbb{R}} \chi\left(\frac{\sqrt{k^{2}+\eta^{2}}-\lambda}{\delta}\right) \widehat{f}(k, \eta) e^{2 \pi i(k x+\eta y)} d \eta .
$$

Theorem 1 (Main theorem). If $\lambda>1$ and $\delta<1$,

$$
\left\|P_{\lambda, \delta}\right\|_{L^{2} \rightarrow L^{p}} \lesssim_{\epsilon} \lambda^{\epsilon} \delta^{-\epsilon}\left[\lambda^{\frac{1}{2}-\frac{2}{p}} \delta^{\frac{1}{2}}+(\lambda \delta)^{\frac{1}{4}-\frac{1}{2 p}}\right]
$$

Furthermore, this estimate is optimal, up to the subpolynomial factor $\lambda^{\epsilon} \delta^{-\epsilon}$ and the multiplicative constant.

1.3. Strichartz estimates

It is interesting to draw a parallel with Strichartz estimates in dimension 2 for the Schrödinger equation, in which case the critical exponent equals 4 . It was proved in the foundational paper of Bourgain [2] that

$$
\left\|e^{i t \Delta} f\right\|_{L^{4}\left([0,1] \times \mathbb{T}^{2}\right)} \lesssim s\|f\|_{H^{s}\left(\mathbb{T}^{2}\right)} \quad \text { for } s>0 .
$$

Takaoka and Tzvetkov [6] proved that the above inequality fails for $s=0$, but that, on $\mathbb{T} \times \mathbb{R}$,

$$
\left\|e^{i t \Delta} f\right\|_{L^{4}([0,1] \times \mathbb{T} \times \mathbb{R})} \lesssim\|f\|_{L^{2}(\mathbb{T} \times \mathbb{R})} .
$$

Finally, Barron, Christ and Pausader [1] determined the correct global (in time) estimate, for which a further summation index is needed. These examples suggest that optimal estimates might differ by subpolynomial factors between \mathbb{T}^{2} and $\mathbb{T} \times \mathbb{R}$.

2. Proof of the Theorem 1 (main theorem)

Proof. By Plancherel's theorem, it suffices to prove

$$
\begin{equation*}
\|f\|_{L^{p}} \lesssim_{\epsilon} \lambda^{\epsilon} \delta^{-\epsilon}\left[\lambda^{\frac{1}{2}-\frac{2}{p}} \delta^{\frac{1}{2}}+(\lambda \delta)^{\frac{1}{4}-\frac{1}{2 p}}\right]\|f\|_{L^{2}} \tag{1}
\end{equation*}
$$

for f a function whose Fourier transform is localized in the corona $\mathscr{C}_{\lambda, \delta}$ of radius λ and with thickness δ / λ :

$$
\mathscr{C}_{\lambda, \delta}=\left\{(k, \eta) \text { such that } \lambda-\delta<\sqrt{k^{2}+\eta^{2}}<\lambda+\delta\right\}
$$

By symmetry, one can furthermore assume that $\widehat{f}(k, \eta)$ is localized in the first quadrant $k, \eta \geq 0$.
The function f can be split into two pieces, which will correspond to the two terms on the right-hand side of (1).

$$
f(x)=\left[\sum_{|k-\lambda| \leq \frac{1}{\delta}}+\sum_{|k-\lambda|>\frac{1}{\delta}}\right] \int_{\mathbb{R}} \widehat{f}(k, \eta) e^{2 \pi i(k x+\eta y)} d \eta=f_{1}(x)+f_{2}(x) .
$$

The Case $|k-\lambda| \leq \frac{1}{\delta}$. The Fourier support of f_{1} is made up of a collection of segments. We will see in Lemma 2 below that the added length of these segments can be bounded by

$$
\left|\operatorname{Supp} \widehat{f}_{1}\right| \lesssim \sqrt{\lambda \delta} .
$$

Therefore, by the Cauchy-Schwartz inequality,

$$
\left\|f_{1}\right\|_{L^{\infty}} \leq\left|\operatorname{Supp} \widehat{f}_{1}\right|^{1 / 2} \cdot\left\|\widehat{f}_{1}\right\|_{L^{2}}^{1 / 2} \lesssim(\lambda \delta)^{1 / 4}\left\|f_{1}\right\|_{L^{2}}
$$

Interpolating with L^{2}, this gives

$$
\left\|f_{1}\right\|_{L^{p}} \lesssim(\lambda \delta)^{\frac{1}{4}-\frac{1}{2 p}}\|f\|_{L^{2}}
$$

The Case $|k-\lambda|>\frac{1}{\delta}$. We start by choosing a function $\phi \in \mathscr{S}$ which is $>1 / 2$ on $[-1,1]$, and has Fourier support in $[-1,1]$. We use periodicity in the x variable to expand the range of x from $x \in[0,1]$ to $x<\delta^{-1}$, so that

$$
\left\|f_{2}\right\|_{L^{p}(\mathbb{T} \times \mathbb{R})} \lesssim \delta^{1 / p}\left\|\phi(\delta x) \sum_{|k-\lambda|>\frac{1}{\delta}} \int_{\mathbb{R}} \widehat{f}(k, \eta) e^{2 \pi i(k x+\eta y)} d \eta\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}
$$

We now change variables as follows: $X=\lambda x, Y=\lambda y, K=k / \lambda, H=\eta / \lambda$,

$$
f_{2}(x, y)=\lambda F(X, Y), \quad F(X, Y)=\phi\left(\frac{\delta X}{\lambda}\right) \sum_{\substack{K \in \mathbb{Z} / \lambda \\|K-1|>\frac{1}{\delta \lambda}}} \int_{\mathbb{R}} \widehat{f}(\lambda K, \lambda H) e^{2 \pi i(K X+H Y)} d H
$$

to obtain

$$
\left\|f_{2}\right\|_{L^{p}(\mathbb{T} \times \mathbb{R})} \lesssim \delta^{1 / p} \lambda^{1-\frac{2}{p}}\|F\|_{L^{p}\left(\mathbb{R}^{2}\right)}
$$

The effect of this change of variables is that the function of (X, Y) whose L^{p} norm we want to evaluate has Fourier transform supported in the corona $\mathscr{C}_{1,3 \delta / \lambda}$ of radius 1 and width δ / λ, and also in the first quadrant $X, Y \geq 0$. This enables us to apply the ℓ^{2} decoupling theorem of Bourgain and Demeter [3]: for a smooth partition of unity $\left(\chi_{\theta}\right)$ corresponding to a suitable almost disjoint covering of $\mathscr{C}_{1,3 \delta / \lambda}$ by caps (θ) of size $\sim \frac{\delta}{\lambda} \times \sqrt{\frac{\delta}{\lambda}}$,

$$
\left\|f_{2}\right\|_{L^{p}(\mathbb{T} \times \mathbb{R})} \lesssim \delta^{\frac{1}{p}} \lambda^{1-\frac{2}{p}}(\delta / \lambda)^{-\frac{1}{4}+\frac{3}{2 p}-\epsilon}\left(\sum_{\theta}\left\|\chi_{\theta}(D) F\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}^{2}\right)^{1 / 2}
$$

where $\chi_{\theta}(D)$ is the Fourier multiplier with symbol χ_{θ}.

We now apply the inequality $\|g\|_{L^{p}\left(\mathbb{R}^{d}\right)} \lesssim\|g\|_{L^{2}}|\operatorname{Supp} \widehat{g}|^{\frac{1}{2}-\frac{1}{p}}$ (if $p \geq 2$), which follows by applying in turn the Hausdorff-Young and Hölder inequalities, and then the Plancherel theorem. Since by Lemma 2 below

$$
\left|\operatorname{Supp} \widehat{\chi_{\theta}(D) F}\right|=\left|\operatorname{Supp} \chi_{\theta} \widehat{F}\right| \lesssim \delta^{5 / 2} \lambda^{-3 / 2},
$$

it follows that

$$
\left\|f_{2}\right\|_{L^{p}(\mathbb{T} \times \mathbb{R})} \lesssim \delta^{\frac{1}{p}} \lambda^{1-\frac{2}{p}}(\delta / \lambda)^{-\frac{1}{4}+\frac{3}{2 p}-\epsilon}\left(\delta^{5 / 2} \lambda^{-3 / 2}\right)^{\frac{1}{2}-\frac{1}{p}}\left(\sum_{\theta}\left\|\chi_{\theta}(D) F\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}\right)^{1 / 2}
$$

By almost orthogonality, this becomes

$$
\left\|f_{2}\right\|_{L^{p}(\mathbb{T} \times \mathbb{R})} \lesssim \delta^{\frac{1}{p}} \lambda^{1-\frac{2}{p}}(\delta / \lambda)^{-\frac{1}{4}+\frac{3}{2 p}-\epsilon}\left(\delta^{5 / 2} \lambda^{-3 / 2}\right)^{\frac{1}{2}-\frac{1}{p}}\|F\|_{L^{2}\left(\mathbb{R}^{2}\right)} .
$$

Finally, undoing the change of variables and using once again periodicity in the x variable gives

$$
\begin{aligned}
\left\|f_{2}\right\|_{L^{p}(\pi \times \mathbb{R})} & \lesssim \delta^{\frac{1}{p}} \lambda^{1-\frac{2}{p}}(\delta / \lambda)^{-\frac{1}{4}+\frac{3}{2 p}-\epsilon}\left(\delta^{5 / 2} \lambda^{-3 / 2}\right)^{\frac{1}{2}-\frac{1}{p}} \delta^{-1 / 2}\|f\|_{L^{2}} \\
& \lesssim \lambda^{\frac{1}{2}-\frac{2}{p}} \delta^{1 / 2}
\end{aligned}
$$

Optimality. The optimality of the statement of the theorem is proved through two examples. The first one is an analog of the Knapp example: assume $\lambda \in \mathbb{N}$, and consider the function g given by its Fourier transform

$$
\widehat{g}(k, \eta)=\mathbf{1}_{\lambda}(k) \chi\left(\frac{\eta}{\sqrt{\lambda \delta}}\right)
$$

Here, $\mathbf{1}_{\lambda}$ is the indicator function of $\{\mathcal{\lambda}\}$ and χ is a cutoff function with a sufficiently small support, so that Supp $\widehat{g} \subset \mathscr{C}_{\lambda, \delta}$. In physical space,

$$
g(x, y)=\sqrt{\lambda \delta} e^{2 \pi i \lambda x} \widehat{\chi}(\sqrt{\lambda \delta} y)
$$

It has L^{p} norm $\sim(\lambda \delta)^{\frac{1}{2}-\frac{1}{2 p}}$, so that

$$
\frac{\|g\|_{L^{p}}}{\|g\|_{L^{2}}} \sim(\lambda \delta)^{\frac{1}{4}-\frac{1}{2 p}} .
$$

We now consider the function h given by its Fourier transform

$$
\widehat{h}(k, \eta)=\mathbf{1}_{\mathscr{C}_{\lambda, \delta}}(k, \eta) \mathbf{1}_{[0, \lambda / 2]}(k) ;
$$

here, $\mathbf{1}_{\mathscr{C}_{\lambda, \delta}}$ is the indicator function of the annulus, and $\mathbf{1}_{[0, \lambda / 2]}$ the indicator function of the interval. It is easy to check that $|\operatorname{Supp} \widehat{h}| \sim \lambda \delta$, so that $\|h\|_{L^{\infty}} \sim \lambda \delta$ and $\|h\|_{L^{2}} \sim \sqrt{\lambda \delta}$, and finally

$$
\frac{\|h\|_{L^{\infty}}}{\|h\|_{L^{2}}} \sim \sqrt{\lambda \delta}
$$

By the Bernstein inequality,

$$
\frac{\|h\|_{L^{p}}}{\|h\|_{L^{2}}} \gtrsim \lambda^{-2 / p} \frac{\|h\|_{L^{\infty}}}{\|h\|_{L^{2}}} \sim \lambda^{\frac{1}{2}-\frac{2}{p}} \delta^{1 / 2} .
$$

The examples g and h show that the statement of the Theorem 1 is optimal, up to subpolynomial losses.

3. Bounds for the Fourier support

Lemma 2 (Bound on the size of Fourier support). With the notations of the proof of Theorem 1,
(i) The function f_{1} is a function on $\mathbb{T} \times \mathbb{R}$. As such, its Fourier transform is supported on a union of lines, and has one-dimensional measure

$$
\left|\operatorname{Supp} \widehat{f}_{1}\right| \lesssim \sqrt{\lambda \delta} .
$$

(ii) The function $\chi_{\theta}(D) F$ is a function on \mathbb{R}^{2}. Its Fourier transform is defined on \mathbb{R}^{2}, and has two-dimensional measure

$$
\left|\operatorname{Supp} \chi_{\theta} \widehat{F}\right| \lesssim \delta^{5 / 2} \lambda^{-3 / 2} .
$$

Proof.

(i) Consider f as in the proof of Theorem 1, namely with Fourier support in $\mathscr{C}_{\lambda, \delta}$. Since (k, η) range in $\mathbb{Z} \times \mathbb{R}$ with $k, \eta \geq 0$, the Fourier support of f is contained in $\cup_{k \in \mathbb{Z}}\{k\} \times E_{k}^{\lambda}$, where

$$
E_{k}^{\lambda}= \begin{cases}\varnothing & \left(k \geq k_{+}\right) \\ \left(0, \sqrt{k_{+}^{2}-k^{2}}\right) & (|k-\lambda|<\delta), \\ \left(\sqrt{(\lambda-\delta)^{2}-k^{2}}, \sqrt{k_{+}^{2}-k^{2}}\right) & (0 \leq k \leq \lambda-\delta)\end{cases}
$$

Recalling that \widehat{f}_{1} is just \widehat{f} restricted to $|k-\lambda| \leq \frac{1}{\delta}$, one can then add up these pieces to get the bound

$$
\left|\operatorname{Supp} \widehat{f}_{1}\right| \lesssim \sum_{\max \left\{0, \lambda-\frac{1}{\delta}\right\} \leq k<k_{+}}\left|E_{k}\right| \lesssim \sqrt{\lambda \delta}+\sum_{\substack{k>0 \\ \frac{1}{\delta} \geq \lambda-k>\delta}} \frac{\delta \lambda}{\sqrt{\lambda(\lambda-x)}}
$$

and as $y \mapsto 1 / \sqrt{y}$ is decreasing this is

$$
\leq 2 \sqrt{\lambda \delta}+\int_{\delta}^{\min \left\{\lambda, \frac{1}{\delta}\right\}} \frac{\delta \lambda}{\sqrt{\lambda y}} d y \leq 4 \sqrt{\lambda \delta}
$$

(ii) Turning to F, it has Fourier support in

$$
\begin{equation*}
\bigcup_{\substack{k \in \mathbb{Z} \\|k-\lambda|>\frac{1}{\delta}}}\left[\frac{k}{\lambda}-\frac{2 \delta}{\lambda}, \frac{k}{\lambda}+\frac{2 \delta}{\lambda}\right] \times D_{k}^{\lambda}, \quad D_{k}^{\lambda}=\left\{H, 1-\frac{\delta}{\lambda}<\sqrt{\frac{k^{2}}{\lambda^{2}}+H^{2}}<1+\frac{\delta}{\lambda}\right\} . \tag{2}
\end{equation*}
$$

Consider $\chi_{\theta}(D) F$, for a cap θ with dimensions

$$
\sim \frac{\delta}{\lambda} \times \sqrt{\frac{\delta}{\lambda}}
$$

adapted to the corona $\mathscr{C}_{1,38 / \lambda}$. Given such a cap, there is $j \in \mathbb{N}$ with $2^{j}>\frac{1}{\delta}$ such that every point in the intersection of θ with the set (2) satisfies $|\lambda-k| \sim 2^{j}$.

There are around $\sqrt{\delta} 2^{j / 2}$ such values of k for which the vertical strip $\left[\frac{k}{\lambda}-\frac{2 \delta}{\lambda}, \frac{k}{\lambda}+\frac{2 \delta}{\lambda}\right]$ intersects the cap θ. For each such k, the size of D_{k}^{λ} is $\sim \delta \lambda^{-1 / 2} 2^{-j / 2}$. Hence, adding up the contributions in (2),

$$
\left|\operatorname{Supp} \chi_{\theta}(D) F\right| \lesssim \sqrt{\delta} 2^{j / 2} \cdot \delta \lambda^{-1} \cdot \delta \lambda^{-1 / 2} 2^{-j / 2}=\delta^{5 / 2} \lambda^{-3 / 2}
$$

References

[1] A. Barron, M. Christ, B. Pausader, "Global endpoint strichartz estimates for Schrödinger equations on the cylinder $\mathbb{R} \times \mathbb{T}$ ", Nonlinear Anal., Theory Methods Appl. 206 (2021), article no. 112172.
[2] J. Bourgain, "Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II: The KdV-equation", Geom. Funct. Anal. 3 (1993), no. 3, p. 209-262.
[3] J. Bourgain, C. Demeter, "The proof of the l^{2} decoupling conjecture", Ann. Math. 182 (2015), no. 1, p. 351-389.
[4] P. Germain, S. L. R. Myerson, "Bounds for spectral projectors on tori", https://arxiv.org/abs/2104.13274vl, 2021.
[5] C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematic, vol. 105, Cambridge University Press, 1993.
[6] H. Takaoka, N. Tzvetkov, "On 2D nonlinear schrödinger equations with data on $\mathbb{R} \times \mathbb{T}$ ", J. Funct. Anal. 182 (2001), no. 2, p. 427-442.

[^0]: * Corresponding author.

