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1. Introduction
1.1. Spectral projectors on general manifolds and tori

Given a Riemannian manifold with Laplace-Beltrami operator A, consider the spectral projector
P, s on (perhaps generalized) eigenfunctions with eigenvalues within O(6) of A. It is defined
through functional calculus by the formula

vV-A-1
PM:P%:X( 5 |

where y is a cutoff function, which is irrelevant for our purposes.
An interesting question is to determine the operator norm from L? to L?, with p > 2, of this
operator. A theorem of Sogge [5] gives an optimal answer for any Riemannian manifold if 6 =1
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While this completely answers the question if 6 > 1, the case § < 1 is still widely open. Under-
standing the case § < 1 requires a global analysis on the Riemannian manifold, which makes it
very delicate.

In the case of the rational torus R%/Z%, L” bounds on eigenfunctions attracted a lot of
attention; this corresponds to the choice § = 1/, since the distance between two consecutive
eigenvalues is ~ % The best result in this direction is due to Bourgain and Demeter [3]. More
recently, the authors of the present paper [4] considered the problem for general values of A and
6, conjectured the bound for general tori

da

1Paslepy AT 562 +00) T 73)  for 6> 111,

and were able to establish this bound for a range of the parameters 6§, A, p.

A full proof of this conjecture seems very challenging in every dimension d. Restricting to the
case d = 2, consider the case (R/Z) xR = T x R instead of T2. The conjecture remains identical,
but a short proof, relying on 2 decoupling, can be provided; this is the main observation of the
present paper. Generalizations to higher dimensions are certainly possible.

1.2. The Euclidean cylinder

On T xR = (R/Z) xR, we choose coordinates (x, y), with x € [0, 1] and y € R. The Laplacian operator
is given by
2 A2
A =07 +05.
A function f on T x R can be expanded through Fourier series in x and Fourier transform in y:
f(x) — Z ]’c‘(k,n)eZni(kxﬂw) dn-
kez/R

The spectral projector can then be expressed as

VE2+n2 -1\ - ;
P/‘l,@f(x) = Z Rx(T)f(k,n)eZHl(kx+le) dn

keZ
Theorem 1 (Main theorem). IfA>1andd <1,
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Furthermore, this estimate is optimal, up to the subpolynomial factor A°6=¢ and the multiplicative
constant.

1.3. Strichartz estimates
It is interesting to draw a parallel with Strichartz estimates in dimension 2 for the Schrédinger

equation, in which case the critical exponent equals 4. It was proved in the foundational paper of
Bourgain [2] that

itA
“e f [4(10,1] x T2) Sslflpszy  for s>o0.
Takaoka and Tzvetkov [6] proved that the above inequality fails for s = 0, but that, on T x R,
itA
”e Flisonxrem = 17z -

Finally, Barron, Christ and Pausader [1] determined the correct global (in time) estimate, for
which a further summation index is needed. These examples suggest that optimal estimates
might differ by subpolynomial factors between T2 and T x R.
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2. Proof of the Theorem 1 (main theorem)

Proof. By Plancherel’s theorem, it suffices to prove
1
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for f a function whose Fourier transform is localized in the corona %6 s of radius 1 and with

thickness 6/A:
Crs = {(k,n) such that A — 6 < 1/ k2 +n? </1+6}.

By symmetry, one can furthermore assume that f(k, ) is localized in the first quadrant k,n = 0.
The function f can be split into two pieces, which will correspond to the two terms on the
right-hand side of (1).

fx)=

Y o+ ¥ ]fRf(k,n)ez”"“‘“””dn=f1(x)+fz(x)-
1
5

lk-Al<}  Ik=Al>
The Case |k - 1| < %. The Fourier support of f; is made up of a collection of segments. We will
see in Lemma 2 below that the added length of these segments can be bounded by
|Supp fi| < V8.

Therefore, by the Cauchy-Schwartz inequality,

~ 172

[ fill = = |Supp A

Interpolating with L?, this gives

1/2
2

Al S A A -

1_1
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The Case |k — 1| > %. We start by choosing a function ¢ € ¥ which is > 1/2 on [-1,1], and has
Fourier support in [-1,1]. We use periodicity in the x variable to expand the range of x from
x€[0,1]1to x <& 1, so that

1ol o rmy S6V7 0060 X lfRf(k,n)ehi(any)dn

|k=A| >

5 17 ()

We now change variables as follows: X =Ax, Y =1y, K=k/A, H=n/A,

X —~ .
L, y)=AF(X,)Y), FX,Y)=¢ (5—) Y FOAK,AH) 2" KX+HY) g
A) ez Ir
IK-1]> 3¢

to obtain
1/p 1-2
||f2||Ll7('I]'><R) SEPAT P AFl e ey -
The effect of this change of variables is that the function of (X,Y) whose L” norm we want to
evaluate has Fourier transform supported in the corona %) 35, of radius 1 and width /1, and
also in the first quadrant X, Y = 0. This enables us to apply the #?> decoupling theorem of Bourgain

and Demeter [3]: for a smooth partition of unity (yg) corresponding to a suitable almost disjoint

covering of 6 35,1 by caps (0) of size ~ % x %,

1-2

1/2
1 _1,3
152l i vy SOPA P (B/0) 7% €(Z||X9(D)F”ip(R2)) ,
0

where yy (D) is the Fourier multiplier with symbol y.
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1_1
We now apply the inequality gl » ga) S Igll121Supp gl? 7 (if p = 2), which follows by apply-
ing in turn the Hausdorff-Young and Hoélder inequalities, and then the Plancherel theorem. Since
by Lemma 2 below

Supp e (D)F| = [Supp yo F| < 6%2173/2,
it follows that

1-2 1,3

1/2
1_1
”fZ”U’(Tx[R) 56%/1 p (5//1)_1+5—€ (55/2/1_3/2)2 p (Z “XB(D)F”iZ(RZ)) .
0

By almost orthogonality, this becomes

3 1_1
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Finally, undoing the change of variables and using once again periodicity in the x variable gives

”f2||LP(1T><[R) < 5%/11—% (6//1)_%+%_6 (55/2/1—3/2)5‘5 512 ||f”L2

< A%_%ﬁl/z

Optimality. The optimality of the statement of the theorem is proved through two examples.
The first one is an analog of the Knapp example: assume A € N, and consider the function g given
by its Fourier transform

5 n
gk,n) =1,(k)y (—) .
VAS
Here, 1, is the indicator function of {1} and y is a cutoff function with a sufficiently small support,
so that Supp g  6,,5. In physical space,

g(x,y) = \/ﬁez”mxi(\/ﬁy).

1 1
It has LP norm ~ (A§)2 2», so that

~(A8)17 .

lligllzr
g2

We now consider the function & given by its Fourier transform
h(k,n) = 1, , (k,) 10 2/2) (K);

here, 1¢, ; is the indicator function of the annulus, and 1/ 3/2) the indicator function of the
interval. It is easy to check that | Supp ﬁl ~ A8, so that || hllze ~ A0 and || hll;2 ~ VA0, and finally

LI
17l 2

By the Bernstein inequality,

D=
RSN

2l > 1-20p Al

1/2
Ikl ~ Al 2

The examples g and h show that the statement of the Theorem 1 is optimal, up to subpolynomial
losses. O
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3. Bounds for the Fourier support

Lemma 2 (Bound on the size of Fourier support). With the notations of the proof of Theorem 1,

(i) The function fi is a function on T x R. As such, its Fourier transform is supported on a
union of lines, and has one-dimensional measure

\Suppﬁ| gx/ﬁ

(ii) The function yg(D)F is a function on R2. Its Fourier transform is defined on R2, and has
two-dimensional measure

|Supr9ﬁ| 5 55/2&—3/2.

Proof.
(i) Consider f asin the proof of Theorem 1, namely with Fourier supportin €6 s. Since (k,n) range
in Z x R with k,n = 0, the Fourier support of f is contained in Ugcz{k} x E,’C‘, where

@ (k2k+))

Bl ={ (0.2 -1 (k=71 <6),
(V=07 -#, /2 k) ©0<ks<1-5).

Recalling that fl is just f restricted to |k — 1] < %, one can then add up these pieces to get the
bound

7 oA
|Supp fi| < > |Ex| SVAS+ Y ——
max{0,A- L} <k<k; | k=0 VAA=X)
52A-k>6
and as y — 1/,/y is decreasing this is
min{A, 1} SA
<2Vis+ [ S ay=avis.

& VAy

(ii) Turning to F, it has Fourier support in

kK 20k 200, pr prodpi-2c k—2+H2<1+§ @)
A AA A k’ LN R R (W A

Consider yg(D)F, for a cap 6 with dimensions

U

kez .
lk=Al> 5

0 0

A A

adapted to the corona € 35,1 . Given such a cap, there is ] e N with 2/ > % such that every point
in the intersection of 0 with the set (2) satisfies |A — k| ~ 2/.

There are around v/§2//? such values of k for which the vertical strip [% - %, % + %] intersects
the cap 6. For each such k, the size of Dé is ~ 6A~1/227J/2_ Hence, adding up the contributions
in (2),

|Supp xo(DYF| < V52772671 oA 71227012 = §512), 7312, O
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