Repulsion: A how-to guide (part I)

Simon L. Rydin Myerson March 2021

Warwick University

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \ge 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \leq P\}.$
- $\vec{f}(\vec{x})$ is nonsingular if the Jacobian matrix $(\partial f_i(\vec{x})/\partial x_j))_{ij}$ has rank R at every complex solution $\vec{x} \in \mathbb{C}^n \setminus \{\vec{0}\}$ to $\vec{f}(\vec{x}) = \vec{0}$.

Theorem (Birch, Proc. R. Soc. Lond. A 1962)

If \vec{f} is nonsingular and $n \ge n_0(d, \mathbb{R})$ where

$$n_0(dR) = (d-1)2^{d-1}R(R+1) + R$$
 (1)

then $N_{\vec{f}}(P) = (\sigma + o(1))P^{n-dR}$ as $P \to \infty$ for some real constant $\sigma \ge 0$. If $\vec{f}(\vec{x}) = \vec{0}$ has solutions in $\mathbb{R}^n \setminus \{\vec{0}\}$ and $\mathbb{Q}_p^n \setminus \{\vec{0}\}$ then $\sigma > 0$.

Birch actually allows inhomogeneous \vec{f} ; if $\vec{f}^{[d]}$ is the degree d part he has

$$n_0(\vec{f}) = (d-1)2^{d-1}R(R+1) + 1 + \dim V(\vec{f}),$$
 (1')

with $V \subset \mathbb{C}^n$ defined by $\operatorname{rank}(\partial f_i^{[d]}(\vec{x})/\partial x_j))_{ij} < R$. The zeroes of \vec{f} in \mathbb{R}^n , \mathbb{Q}_p^n must be nonsingular. Best lower bound for σ in general: van Ittersum (Acta Arith. 2020).

 $\vec{g}(\vec{x}) = (\vec{\theta}_l(x_l, x_l), x_l)$ $\dots, \vec{\theta}_l(x_l, x_l)$

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \geq 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \leq P\}.$
- $\vec{f}(\vec{x})$ is nonsingular if the Jacobian matrix $(\partial f_i(\vec{x})/\partial x_j))_{ij}$ has rank R at every complex solution $\vec{x} \in \mathbb{C}^n \setminus \{\vec{0}\}$ to $\vec{f}(\vec{x}) = \vec{0}$.

Theorem (Birch, Proc. R. Soc. Lond. A 1962)

If \vec{f} is nonsingular and $n \geq n_0(d, \mathbb{Z}, R)$ where

$$n_0(d, \mathbb{R}) = (d-1)2^{d-1}R(R+1) + R$$
 (1)

then $N_{\vec{f}}(P) = (\sigma + o(1))P^{n-dR}$ as $P \to \infty$ for some real constant $\sigma \ge 0$. If $\vec{f}(\vec{x}) = \vec{0}$ has solutions in $\mathbb{R}^n \setminus \{\vec{0}\}$ and $\mathbb{Q}_p^n \setminus \{\vec{0}\}$ then $\sigma > 0$.

Want to improve (1) in the case R > 1.

Munshi (Compos. Math. '15): d = R = 2, n = 11.

 $n_{o}(d,R)$ $n_{o}(d,l)$

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \geq 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \leq P\}.$
- $\vec{f}(\vec{x})$ is nonsingular if the Jacobian matrix $(\partial f_i(\vec{x})/\partial x_j))_{ij}$ has rank R at every complex solution $\vec{x} \in \mathbb{C}^n \setminus \{\vec{0}\}$ to $\vec{f}(\vec{x}) = \vec{0}$.

Theorem (Birch, Proc. R. Soc. Lond. A 1962)

If \vec{f} is nonsingular and $n \geq n_0(d, \mathbf{k}, R)$ where

$$n_0(d, \mathbb{R}(R)) = (d-1)2^{d-1}R(R+1) + R$$
 (1)

then $N_{\vec{f}}(P) = (\sigma + o(1))P^{n-dR}$ as $P \to \infty$ for some real constant $\sigma \ge 0$. If $\vec{f}(\vec{x}) = \vec{0}$ has solutions in $\mathbb{R}^n \setminus \{\vec{0}\}$ and $\mathbb{Q}_p^n \setminus \{\vec{0}\}$ then $\sigma > 0$.

Want to improve (1) in the case R > 1.

Munshi (Compos. Math. '15): d=R=2, n=11. Some \vec{f} with $R \leq 3$: Browning-Munshi (Compos. Math. '13, Forum Math. '15), Heath-Brown & Pierce (Crelle '15), Pierce-Schindler-Wood (Proc. LMS '16).

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \geq 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \leq P\}.$
- $\vec{f}(\vec{x})$ is nonsingular if the Jacobian matrix $(\partial f_i(\vec{x})/\partial x_j))_{ij}$ has rank R at every complex solution $\vec{x} \in \mathbb{C}^n \setminus \{\vec{0}\}$ to $\vec{f}(\vec{x}) = \vec{0}$.

Theorem (Birch, Proc. R. Soc. Lond. A 1962)

If \vec{f} is nonsingular and $n \geq n_0(d, \vec{j}, R)$ where

$$n_0(d, \mathbb{R}, R) = (d-1)2^{d-1}R(R+1) + R$$
 (1)

then $N_{\vec{f}}(P) = (\sigma + o(1))P^{n-dR}$ as $P \to \infty$ for some real constant $\sigma \ge 0$. If $\vec{f}(\vec{x}) = \vec{0}$ has solutions in $\mathbb{R}^n \setminus \{\vec{0}\}$ and $\mathbb{Q}_p^n \setminus \{\vec{0}\}$ then $\sigma > 0$.

Want to improve (1) in the case R > 1.

Müller (J. Théor. Nombres Bordeaux 2005): $\underline{d} = 2$, $\underline{n} \ge 9R$ for nonsingular *irrational* systems of forms over \mathbb{R} . Based on Bentkus-Götze (Acta Arth. 1997, Ann. of Math. 1999).

1 3 (50) < 1

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \geq 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \le P\}.$
- $\vec{f}(\vec{x})$ is nonsingular if the Jacobian matrix $(\partial f_i(\vec{x})/\partial x_j))_{ij}$ has rank R at every complex solution $\vec{x} \in \mathbb{C}^n \setminus \{\vec{0}\}$ to $\vec{f}(\vec{x}) = \vec{0}$.

Theorem (Birch, Proc. R. Soc. Lond. A 1962)

If \vec{f} is nonsingular and $n \geq n_0(d, R)$ where

$$n_0 = (d-1)2^{d-1}R(R+1) + R \tag{1}$$

then $N_{\vec{f}}(P) = (\sigma + o(1))P^{n-dR}$ as $P \to \infty$ for some real constant $\sigma \ge 0$. If $\vec{f}(\vec{x}) = \vec{0}$ has solutions in $\mathbb{R}^n \setminus \{\vec{0}\}$ and $\mathbb{Q}_p^n \setminus \{\vec{0}\}$ then $\sigma > 0$.

Theorem (SLRM 2021)

We can replace (1) with

$$n_0 = d2^d R + R. (2)$$

Slightly more already known if d < 4. For $R \ge \max\{6 - d, 2\}$ this beats (1).

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \geq 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \leq P\}.$
- $\vec{f}(\vec{x})$ is nonsingular if the Jacobian matrix $(\partial f_i(\vec{x})/\partial x_j))_{ij}$ has rank R at every complex solution $\vec{x} \in \mathbb{C}^n \setminus \{\vec{0}\}$ to $\vec{f}(\vec{x}) = \vec{0}$.

Theorem (Dietmann 2015, Schindler 2015)

If \vec{f} is nonsingular and

$$n > (d-1)2^{d-1}R(R+1) + \sup_{\vec{a} \in \mathbb{Z}^R \setminus \{\vec{0}\}} \dim \operatorname{sing} A(\vec{a} \cdot \vec{f})$$
 (1")

then $N_{\vec{f}}(P) = (\sigma + o(1))P^{n-dR}$ as $P \to \infty$ for some real constant $\sigma \ge 0$. If $\vec{f}(\vec{x}) = \vec{0}$ has solutions in $\mathbb{R}^n \setminus \{\vec{0}\}$ and $\mathbb{Q}_p^n \setminus \{\vec{0}\}$ then $\sigma > 0$.

Want to improve (1) in the case R > 1, at least for fairly typical \vec{f} .

Munshi (Compos. Math. '15): d = R = 2, n = 11.

Dietmann (Q. J. Math. 2015), Schindler (Adv. Th. Num. 2015).

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \geq 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \le P\}.$
- $\vec{f}(\vec{x})$ is nonsingular if the Jacobian matrix $(\partial f_i(\vec{x})/\partial x_j))_{ij}$ has rank R at every complex solution $\vec{x} \in \mathbb{C}^n \setminus \{\vec{0}\}$ to $\vec{f}(\vec{x}) = \vec{0}$.

Theorem (Dietmann 2015, Schindler 2015)

If \vec{f} is nonsingular and

$$n > (d-1)2^{d-1}R(R+1) + \sup_{\vec{a} \in \mathbb{Z}^R \setminus \{\vec{0}\}} \dim\{\vec{\nabla}_{\vec{x}}[\vec{a} \cdot \vec{f}(\vec{x})] = \vec{0}\}$$
 (1")

then $N_{\vec{f}}(P) = (\sigma + o(1))P^{n-dR}$ as $P \to \infty$ for some real constant $\sigma \ge 0$. If $\vec{f}(\vec{x}) = \vec{0}$ has solutions in $\mathbb{R}^n \setminus \{\vec{0}\}$ and $\mathbb{Q}_p^n \setminus \{\vec{0}\}$ then $\sigma > 0$.

Want to improve (1) in the case R > 1, at least for fairly typical \vec{f} .

Munshi (Compos. Math. '15): d = R = 2, n = 11.

Dietmann (Q. J. Math. 2015), Schindler (Adv. Th. Num. 2015).

The circle method: setup

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \geq 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \le P\}$.
- !• We overuse dot products throughout, e.g. $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$.
- The exponential sum $S(\vec{\alpha} \cdot \vec{f}) = \sum e(\vec{\alpha} \cdot \vec{f}(\vec{x}))$, where $\vec{\alpha} \in \mathbb{R}^R$, $e(t) = e^{2\pi i t}$ and the sum is over $\vec{x} \in \mathbb{Z}^n$ with $|\vec{x}| \leq P$.
- major arcs $\mathfrak{M}(Q) = \{\vec{\alpha} \in [0,1]^R : |\vec{\alpha} \frac{\vec{a}}{q}| \leq \frac{Q}{qP^d} \ (q \leq Q, \vec{a} \in \mathbb{Z}^R)\}.$
- minor arcs $\mathfrak{m}(Q) = [0,1]^R \setminus \mathfrak{M}(Q)$.
- The function $N_{\vec{f}}(P)$ which we want to estimate satisfies

$$N_{\vec{f}}(P) = \int_{[0,1]^R} S(\vec{\alpha} \cdot \vec{f}) \, d\vec{\alpha} = \int_{\mathfrak{M}(P^{\delta})} S(\vec{\alpha} \cdot \vec{f}) \, d\vec{\alpha} + \int_{\mathfrak{m}(P^{\delta})} S(\vec{\alpha} \cdot \vec{f}) \, d\vec{\alpha}.$$

• We need to show: if n is large then for some $\nu, \delta > 0$, as $P \to \infty$,

$$\int_{\mathfrak{M}(P^{\nu})} S(\vec{\alpha} \cdot \vec{f}) \, d\vec{\alpha} \sim \sigma P^{n-dR}, \qquad \int_{\mathfrak{m}(P^{\nu})} |S(\vec{\alpha} \cdot \vec{f})| \, d\vec{\alpha} \ll P^{n-dR-\delta}.$$

• N.B. $\mathfrak{M}(Q)$ is only truly the "major arcs" if Q is small.

2 (3) (2) = 0 [h / R (2) 7 = 2 3 Sm 15(2,3) 1 dà >> Ph-ER BAD

The circle method: a framework

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \geq 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \leq P\}.$
- We overuse dot products throughout, e.g. $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$.
- The exponential sum $S(\vec{\alpha} \cdot \vec{f}) = \sum e(\vec{\alpha} \cdot \vec{f}(\vec{x}))$, where $\vec{\alpha} \in \mathbb{R}^R$, $e(t) = e^{2\pi i t}$ and the sum is over $\vec{x} \in \mathbb{Z}^n$ with $|\vec{x}| \leq P$.

How might we try to improve on Birch's result? To explore this question I want to break his argument up into four pieces. This is the first one:

Lemma A (level-set formulation of Birch, after Bentkus-Götze)

Suppose $c \in (0,1)$, C > 1, and that for each $k \in [0, dR/c)$ we have

$$\mathsf{meas}\{\vec{\alpha} \in [0,1]^R : |S(\vec{\alpha} \cdot \vec{f})| > P^{n-k+\epsilon}\} \leq CP^{ck-dR}.$$

There is $\delta(c, d, R, n) > 0$ with $N_{\vec{f}}(P) = \sigma P^{n-dR} + O_{\vec{f}, c, C}(P^{n-dR-\delta+\epsilon})$.

That is, to run the argument we only need the measure of these level sets.

15(ā.f.) (< ph

NB- probably this formulation is 15(08)/

The circle method: a framework

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ are R lin. indep. forms in n variables of degree $d \ge 2$.
- We set $N_{\vec{f}}(P) = \#\{\vec{x} \in \mathbb{Z}^n : \vec{f}(\vec{x}) = \vec{0}, |\vec{x}| \le P\}.$
- We overuse dot products throughout, e.g. $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$.
- The exponential sum $S(\vec{\alpha} \cdot \vec{f}) = \sum e(\vec{\alpha} \cdot \vec{f}(\vec{x}))$, where $\vec{\alpha} \in \mathbb{R}^R$, $e(t) = e^{2\pi it}$ and the sum is over $\vec{x} \in \mathbb{Z}^n$ with $|\vec{x}| \leq P$.

How might we try to improve on Birch's result? To explore this question I want to break his argument up into four pieces. This is the first one:

Lemma A (level-set formulation of Birch, after Bentkus-Götze)

Suppose $c \in (0,1)$, C > 1, and that for each $k \in [0, dR/c)$ we have

$$\operatorname{meas}\{\vec{\alpha} \in [0,1]^R : |S(\vec{\alpha} \cdot \vec{f})| > P^{n-k+\epsilon}\} \leq CP^{ck-dR}.$$

There is
$$\delta(c, d, R, n) > 0$$
 with $N_{\vec{f}}(P) = \sigma P^{n-dR} + O_{\vec{f}, c, C}(P^{n-dR-\delta+\epsilon})$.

That is, to run the argument we only need the measure of these level sets.

Notation

- The exponential sum $S(\vec{\alpha} \cdot \vec{f}) = \sum e(\vec{\alpha} \cdot \vec{f}(\vec{x}))$, where $\vec{\alpha} \in \mathbb{R}^R$, $e(t) = e^{2\pi i t}$ and the sum is over $\vec{x} \in \mathbb{Z}^n$ with $|\vec{x}| \leq P$.
- major arcs $\mathfrak{M}(Q) = \{\vec{\alpha} \in [0,1]^R : |\vec{\alpha} \frac{\vec{a}}{q}| \leq \frac{Q}{qP^d} \ (q \leq Q, \vec{a} \in \mathbb{Z}^R)\}.$
- minor arcs $\mathfrak{m}(Q) = [0,1]^R \setminus \mathfrak{M}(Q)$

Lemma A (level-set formulation of Birch, after Bentkus-Götze)

Suppose $c \in (0,1)$, C > 1, and that for each $k \in [0, dR/c)$ we have

$$\mathsf{meas}\{\vec{\alpha} \in [0,1]^R : |S(\vec{\alpha} \cdot \vec{f})| > P^{n-k+\epsilon}\} \leq CP^{ck-dR}.$$

There is $\delta(c, d, R, n) > 0$ with $N_{\vec{f}}(P) = \sigma P^{n-dR} + O_{\vec{f}, c, C}(P^{n-dR-\delta+\epsilon})$.

Want ν, δ_1 with $\int_{\mathfrak{m}(P^{\nu})} S(\vec{\alpha} \cdot \vec{f}) d\vec{\alpha} \ll_{\vec{f},c,C} P^{n-dR-\delta_1}$:

- i) Dietmann/Schindler: $\sup_{\alpha \in \mathfrak{m}(P^{\nu})} |S| \ll_{\vec{f}} P^{n-\delta_0 \nu}$ as f_i are lin. indep.
- $\underbrace{ \int_{\mathfrak{m}(P^{\nu})} \ll \sum_{P^{k} \in 2^{\mathbb{Z}}, k \geq \delta_{0}\nu} P^{n-k} \operatorname{meas}\{\vec{\alpha} \in [0, 1]^{R} : |S| > P^{n-k+\epsilon}\} }_{ \leq C \sum_{P^{k} \in 2^{\mathbb{Z}}, k \geq \delta_{0}\nu} P^{n-dR-(1-c)k} \ll P^{n-dR-\delta_{1}}$

 $\int |S(\bar{a}-\bar{b})| d\bar{a}$ $\int |S(\bar{a}-\bar{b})| d\bar{a}$

Notation

- The exponential sum $S(\vec{\alpha} \cdot \vec{f}) = \sum e(\vec{\alpha} \cdot \vec{f}(\vec{x}))$, where $\vec{\alpha} \in \mathbb{R}^R$, $e(t) = e^{2\pi i t}$ and the sum is over $\vec{x} \in \mathbb{Z}^n$ with $|\vec{x}| \leq P$.
- major arcs $\mathfrak{M}(Q) = \{\vec{\alpha} \in [0,1]^R : |\vec{\alpha} \frac{\vec{a}}{q}| \leq \frac{Q}{qP^d} \ (q \leq Q, \vec{a} \in \mathbb{Z}^R)\}.$
- minor arcs $\mathfrak{m}(Q) = [0,1]^R \setminus \mathfrak{M}(Q)$

If meas $\{\vec{\alpha} \in [0,1]^R : |S(\vec{\alpha} \cdot \vec{f})| > P^{n-k+\epsilon}\} \le CP^{ck-dR}$ for $k \in [0, dR/c)$, it holds for $k \ge 0$. Want ν, δ_1 with $\int_{\mathfrak{m}(P^{\nu})} S(\vec{\alpha} \cdot \vec{f}) d\vec{\alpha} \ll_{\vec{f},c,C} P^{n-dR-\delta_1}$:

- i) Dietmann/Schindler: $\sup_{\alpha \in \mathfrak{m}(P^{\nu})} |S| \ll_{\vec{f}} P^{n-\delta_0 \nu}$ as f_i are lin. indep.
- ii) $\int_{\mathfrak{m}(P^{\nu})} \ll \sum_{P^{k} \in 2^{\mathbb{Z}}, k \geq \delta_{0}\nu} P^{n-k} \operatorname{meas}\{\vec{\alpha} \in [0, 1]^{R} : |S| > P^{n-k+\epsilon}\}\$ $\leq C \sum_{P^{k} \in 2^{\mathbb{Z}}, k > \delta_{0}\nu} P^{n-dR-(1-c)k} \ll P^{n-dR-\delta_{1}}.$

Also want
$$\int_{\mathfrak{M}(P^{\nu})} S(\vec{\alpha} \cdot \vec{f}) d\vec{\alpha} = \sigma P^{n-dR} + O_{\vec{f},c,C}(P^{n-dR-\delta+\epsilon}) :$$

i)
$$S\left(\left(\frac{\vec{a}}{q} + \frac{\vec{\gamma}}{P^d}\right) \cdot \vec{f}\right) = \frac{P^n}{q^n} \sum_{\vec{b} \ (q)} e\left(\frac{\vec{a}}{q} \cdot \vec{f}(\vec{b})\right) \int_{|\vec{u}| \le 1} e(\vec{\gamma} \cdot \vec{f}(\vec{u})) d\vec{u} + O_{\vec{f}}(P^{n-1+2\nu}).$$

Want ν, δ_1 with $\int_{\mathfrak{m}(P^{\nu})} S(\vec{\alpha} \cdot \vec{f}) d\vec{\alpha} \ll_{\vec{f},c,C} P^{n-dR-\delta_1}$:

i) Dietmann/Schindler: $\sup_{\alpha \in \mathfrak{m}(P^{\nu})} |S| \ll_{\vec{f}} P^{n-\delta_0 \nu}$ as f_i are lin. indep.

ii)
$$\int_{\mathfrak{m}(P^{\nu})} \ll \sum_{P^{k} \in 2^{\mathbb{Z}}, k \geq \delta_{0}\nu} P^{n-k} \operatorname{meas}\{\vec{\alpha} \in [0, 1]^{R} : |S| > P^{n-k+\epsilon}\}$$
$$\leq C \sum_{P^{k} \in 2^{\mathbb{Z}}, k \geq \delta_{0}\nu} P^{n-dR-(1-c)k} \ll P^{n-dR-\delta_{1}}.$$

Also want
$$\delta$$
 with $\int_{\mathfrak{M}(P^{\nu})} S(\vec{\alpha} \cdot \vec{f}) d\vec{\alpha} = \sigma P^{n-dR} + O_{\vec{f},c,C}(P^{n-dR-\delta+\epsilon})$:

i)
$$S\left(\left(\frac{\vec{a}}{q} + \frac{\vec{\gamma}}{P^d}\right) \cdot \vec{f}\right) = \frac{P^n}{q^n} \sum_{\vec{b} \ (q)} e\left(\frac{\vec{a}}{q} \cdot \vec{f}(\vec{b})\right) \int_{|\vec{u}| \le 1} e(\vec{\gamma} \cdot \vec{f}(\vec{u})) d\vec{u} + O_{\vec{f}}(P^{n-1+2\nu}).$$

iii) By choosing
$$P = \epsilon \Phi^{1/\nu}$$
,
$$\int \int \int d\vec{r} d\vec{r}$$

By choosing
$$P = \epsilon \Phi^{1/\nu}$$
,
$$\int \int e(\vec{\gamma} \cdot \vec{f}(\vec{u})) d\vec{u} d\vec{\gamma} \ll_{\vec{f}} \int \frac{|S(\vec{\beta} \cdot \vec{f})|}{P^{n-dR}} d\vec{\beta} + P^{-1+(2+R)\nu} \ll_{C,c} \Phi^{-\delta_2}.$$

$$\Phi \leq |\vec{\gamma}| \leq 2\Phi |\vec{u}| \leq 1$$

$$\mathfrak{m}(P^{\nu})$$

Notation

i) Birch showed
$$S\left(\left(\frac{\vec{a}}{q} + \frac{\vec{\gamma}}{P^d}\right) \cdot \vec{f}\right) = \frac{P^n}{q^n} S_{a,q} I(\vec{\gamma}) + O_{\vec{f}}(P^{n-1+2\nu}),$$

ii) and hence
$$\int_{\mathfrak{M}(P^{\nu})} = \sum_{q \leq P^{\nu}} \sum_{\vec{a}'(q)}^{*} \frac{P^{n-dR}}{q^{n}} S_{a,q} \int_{|\vec{\gamma}| \leq \frac{hV}{|\vec{\gamma}|}} \underline{I(\vec{\gamma})} \, d\vec{\gamma} + O_{\vec{f}}(P^{n-dR-\delta}).$$

iii) By choosing
$$P = \epsilon \Phi^{1/\nu}$$
,
$$\int\limits_{\Phi \leq |\vec{\gamma}| \leq 2\Phi} |I(\vec{\gamma})| d\vec{\gamma} \ll_{\vec{f}} \int\limits_{\mathfrak{m}(P^{\nu})} \frac{|S(\vec{\beta} \cdot \vec{f})|}{P^{n-dR}} d\vec{\beta} + P^{-1+(2+R)\nu} \ll_{C,c} \Phi^{-\delta_{2}}.$$

iv) In a similar way
$$\sum\limits_{Q\leq q\leq 2Q}\sum\limits_{\vec{a}'(q)}^{*}|rac{1}{q^n}S_{a,q}|\ll Q^{-\delta_3}.$$

v) (ii)-(iv) give
$$\int_{\mathfrak{M}(P^{\nu})} = \sum_{q \in \mathbb{N}} \sum_{\vec{a}(q)}^{*} \frac{P^{n-dR}}{q^{n}} S_{\mathbf{a},q} \int_{|\vec{\gamma}| \in \mathbb{R}^{R}} I(\vec{\gamma}) d\vec{\gamma} + O_{\vec{f},c,C}(P^{n-dR-\delta+\epsilon}).$$

Notation

- Let $S_{a,q} = \sum_{\vec{b}\;(q)} e(\frac{\vec{a}}{q} \cdot \vec{f}(\vec{b}))$ and $I(\vec{\gamma}) = \int_{|\vec{u}| < 1} e(\vec{\gamma} \cdot \vec{f}(\vec{u})) d\vec{u}$
- The exponential sum $S(\vec{\alpha} \cdot \vec{f}) = \sum e(\vec{\alpha} \cdot \vec{f}(\vec{x}))$, where $\vec{\alpha} \in \mathbb{R}^R$, $e(t) = e^{2\pi i t}$ and the sum is over $\vec{x} \in \mathbb{Z}^n$ with $|\vec{x}| \leq P$.
- major arcs $\mathfrak{M}(Q) = \{\vec{\alpha} \in [0,1]^R : |\vec{\alpha} \frac{\vec{a}}{q}| \leq \frac{Q}{qP^d} \ (q \leq Q, \vec{a} \in \mathbb{Z}^R)\}.$
- minor arcs $\mathfrak{m}(Q) = [0,1]^R \setminus \mathfrak{M}(Q)$

Also want δ with $\int_{\mathfrak{M}(P^{\nu})} S(\vec{\alpha} \cdot \vec{f}) d\vec{\alpha} = \sigma P^{n-dR} + O_{\vec{f},c,C}(P^{n-dR-\delta+\epsilon})$:

- ii) [...] hence $\int_{\mathfrak{M}(P^{\nu})} = \sum_{q \leq P^{\nu}} \sum_{\vec{a} \neq q}^{*} \frac{P^{n-dR}}{q^{n}} S_{a,q} \int_{|\vec{\gamma}| \leq \frac{P^{\nu}}{q}} I(\vec{\gamma}) d\vec{\gamma} + O_{\vec{f}}(P^{n-dR-\delta}).$
- iii) By choosing $P = \epsilon \Phi^{1/\nu}$,

$$\int\limits_{\Phi\leq |\vec{\gamma}|\leq 2\Phi} |I(\vec{\gamma})| d\vec{\gamma} \ll_{\vec{f}} \int\limits_{\mathfrak{m}(P^{\nu})} \frac{|S(\vec{\beta}\cdot\vec{f})|}{P^{n-dR}} d\vec{\beta} + P^{-1+(2+R)\nu} \ll_{C,c} \Phi^{-\delta_{2}}.$$

iv) In a similar way $\sum_{Q \leq q \leq 2Q} \sum_{\vec{a}'(q)}^* \left| \frac{1}{q^n} S_{a,q} \right| \ll Q^{-\delta_3}$.

v) (ii)-(iv) give
$$\int_{\mathfrak{M}(P^{\nu})}^{\mathfrak{q}=\sum_{q\in\mathbb{N}}\sum_{\vec{a}(q)}^{*}P^{n-dR}} S_{\mathbf{a},q} \int_{|\vec{\gamma}|\in\mathbb{R}^{R}} I(\vec{\gamma}) d\vec{\gamma} + O_{\vec{f},c,C}(P^{n-dR-\delta+\epsilon}).$$

Notation

- Let $S_{a,q} = \sum_{\vec{b}\;(q)} e(\frac{\vec{a}}{q} \cdot \vec{f}(\vec{b}))$ and $I(\vec{\gamma}) = \int_{|\vec{u}| \leq 1} e(\vec{\gamma} \cdot \vec{f}(\vec{u})) d\vec{u}$
- The exponential sum $S(\vec{\alpha} \cdot \vec{f}) = \sum e(\vec{\alpha} \cdot \vec{f}(\vec{x}))$, where $\vec{\alpha} \in \mathbb{R}^R$, $e(t) = e^{2\pi i t}$ and the sum is over $\vec{x} \in \mathbb{Z}^n$ with $|\vec{x}| \leq P$.
- major arcs $\mathfrak{M}(Q) = \{\vec{\alpha} \in [0,1]^R : |\vec{\alpha} \frac{\vec{a}}{q}| \leq \frac{Q}{qP^d} \ (q \leq Q, \vec{a} \in \mathbb{Z}^R)\}.$
- minor arcs $\mathfrak{m}(Q) = [0,1]^R \setminus \mathfrak{M}(Q)$

ii) [...] hence
$$\int_{\mathfrak{M}(P^{\nu})} = \sum_{q \leq P^{\nu}} \sum_{\vec{a} \ (q)}^{*} \frac{P^{n-dR}}{q^{n}} S_{a,q} \int_{|\vec{\gamma}| \leq \frac{P^{\nu}}{q}} I(\vec{\gamma}) d\vec{\gamma} + O_{\vec{f}}(P^{n-dR-\delta}).$$

iii) By choosing $P=\epsilon\Phi^{1/
u}$,

$$\int\limits_{\Phi\leq |\vec{\gamma}|\leq 2\Phi} |I(\vec{\gamma})| d\vec{\gamma} \ll_{\vec{f}} \int\limits_{\mathfrak{m}(P^{\nu})} \frac{|S(\vec{\beta}\cdot\vec{f})|}{P^{n-dR}} d\vec{\beta} + P^{-1+(2+R)\nu} \ll_{C,c} \Phi^{-\delta_{2}}.$$

iv) In a similar way $\sum\limits_{Q\leq q\leq 2Q}\sum\limits_{\vec{a}\,(q)}^{\hat{\tau}}|rac{1}{q^n}S_{a,q}|\ll Q^{-\delta_3}.$

v) (ii)-(iv) give
$$\int\limits_{\mathfrak{M}(P^{\nu})} = \sum\limits_{q \in \mathbb{N}} \sum\limits_{\vec{a} \ (q)}^{*} \frac{P^{n-dR}}{q^{n}} S_{a,q} \int\limits_{|\vec{\gamma}| \in \mathbb{R}^{R}} I(\vec{\gamma}) \, d\vec{\gamma} + O_{\vec{f},c,C}(P^{n-dR-\delta+\epsilon}).$$

Lemma A (level-set formulation of Birch, after Bentkus-Götze)

If meas
$$\{\vec{\alpha} \in [0,1]^R : |S(\vec{\alpha} \cdot \vec{f})| > P^{n-k+\epsilon}\} \le CP^{ck-dR}$$
 for some $c < 1$, all $k \in [0,dR/c)$, then $N_{\vec{f}}(P) = \sigma P^{n-dR} + O_{\vec{f},c,C}(P^{n-dR-\delta(c,d,R,n)+\epsilon})$.

