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Notation
F(f() € Z[X]R are R lin. indep. forms in n variables of degree d > 2.
o We set NAP) =#{xX€Z": f(X) =0, |x| < P}. -
e f(X) is nonsingular if the Jacobian matrix (0f;(X)/0x;));; has rank R
at every complex solution X € C" \ {0} to f(x) = 0.
Theorem (Birch, Proc. R. Soc. Lond. A 1962)
If f is nonsingular and n > no(d,% R) where

no(d%R@) 1)2¢91R(R+1) + R (1)

then NAP) = (o + o(1))P" R as P — oo for some real constant
o > 0. If f(X) = 0 has solutions in R"\ {0} and Q5 \ {0} then o > 0.

Birch actually allows inhomogeneous f if fldl is the degree d part he has
no(f) = (d — 1)2971R(R + 1) + 1 4 dim V/(f), (1)

with V C C" defined by rank((‘)f/.[d](i)/(‘)xj))y < R. The zeroes of f in R",Qp must be
nonsingular. Best lower bound for o in general: van Ittersum (Acta Arith. 2020).
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e f(X) € Z[X]R are R lin. indep. forms in n variables of degree d > 2.

o Weset NAP) =#{xecZ": f(x) =0, || < P}. m /d / \)
- / "
e f(X) is nonsingular if the Jacobian matrix (0f;(X)/0x;)); has rank R @ )
at every complex solution x € C"\ {0} to f(x) = 0.

Theorem (Birch, Proc. R. Soc. Lond. A 1962)
If f is nonsingular and n > no(d,% R) where /

no(d RP = (d - 12 'R(R+1) + R (1)

then NAP) = (o + o(1))P"~ as P — oo for some real constant
o > 0. If f(x) = 0 has solutions in R"\ {0} and Q5 \ {0} then o > 0.

Want to improve (1) in the cas

Munshi (Compos. Math. '15): d = R =2,n = 11.



A theorem of Birch

Notation

e 7(X) € Z[x]R are R lin. indep. forms in n variables of degree d > 2.
o We set NAP) = #{X € Z": f(X) =0, || < P}.

e f(X) is nonsingular if the Jacobian matrix (0f;j(X)/0x;));j has rank R
at every complex solution X € C"\ {0} to f(X) = 0.

Theorem (Birch, Proc. R. Soc. Lond. A 1962)
If fis nonsingular and n > no(d,% R) where

no(d JR) = (d —1)2'R(R+1) + R (1)

then Nf{P_)) ((73L o(1))P"=9R a5 P — oo for some real constant
0

o > 0. If f(X) = 0 has solutions in R"\ {0} and Q5 \ {0} then o > 0.

Want to improve (1) in the case R > 1.

Munshi (Compos. Math. '15): d = R =2,n = 11. Some Fwith

Browning-Munshi (Compos. Math. '13, Forum Math. '15), Heath-Brown
& Pierce (Crelle '15), Pierce-Schindler-Wood (Proc. LMS '16).



A theorem of Birch

Notation

e 7(X) € Z[x]R are R lin. indep. forms in n variables of degree d > 2.
o We set Ni(P) = #{x € Z": f(x) = 0, [X| < P}.

o

e f(X) is nonsingular if the Jacobian matrix (0fi(x)/0x;));j has rank R

—

at every complex solution X € C"\ {0} to f(X) = 0.

Theorem (Birch, Proc. R. Soc. Lond. A 1962)

If f is nonsingular and n > no(d.@, R) where
no(d,@i R@) = (d —1)2°'R(R+ 1)+ R (1)
then NAP) = (o + o(1))P"~R as P — oo for some real constant
o > 0. If f(xX) = 0 has solutions in R\ {0} and Q5 \ {0} then o > 0.
Want to improve (1) in the case R > 1.

Miiller (J. Théor. Nombres Bordeaux 2005): d = 2,/n > QR}or
|
nonsingular irrational systems of forms over R. Based on Bentkus-Gotze

\‘_x—
(Acta Arth. 1997, Ann. of Math. 1999).



A theorem of Birch

Notation

e 7(X) € Z[X]R are R lin. indep. forms in n variables of degree d > 2.
o We set NA(P) = #{x € Z": f(X) =0, |x| < P}.

—

e f(X) is nonsingular if the Jacobian matrix (9f;(X)/0x;))ij has rank R at every
complex solution X € C" \ {0} to f(x) = 0.

Theorem (Birch, Proc. R. Soc. Lond. A 1962)
If f is nonsingular and n > no(d, R) where

n=(d-12"'R(R+1)+R (1)
then NF(P2 = (0 +0(1))P""9R as P — oo for some real constant
o > 0. If f(X) = 0 has solutions in R" \ {0} and Q5 \ {0} then o > 0.
Theorem (SLRM 2021)
We can replace (1) with

no = d2R + R. (2)

Slightly more already known if d < 4. For R > max{6 — d, 2} this beats

(1).



A theorem of Birch

Notation

e 7(X) € Z[x]R are R lin. indep. forms in n variables of degree d > 2.

o We set NAP) = #{x € Z": f(x) =0, |x| < P}.

e f(X) is nonsingular if the Jacobian matrix (9f;(x)/dx;)); has rank R
at every complex solution X € C"\ {0} to f(x) = 0.

Theorem (Dietmann 2015, Schindler 2015)

If f is nonsingular and

n>(d—1)2"R(R+1)+ sup dimsingA(3-f) (1")
a3cZR\ {0}
then NAP) = (o + o(1))P"~9R as P — oo for some real constant
o > 0. If f(X) = 0 has solutions in R"\ {0} and Q5 \ {0} then o > 0.

Want to improve (1) in the case R > 1, at least for fairly typical f
Munshi (Compos. Math. '15): d = R = 2,n = 11.
Dietmann (Q. J. Math. 2015), Schindler (Adv. Th. Num. 2015).



A theorem of Birch

Notation

e f(X) € Z[x]R are R lin. indep. forms in n variables of degree d > 2.
o We set NA(P) = #{x € Z": f(x) =0, || < P}.

—

e f(X) is nonsingular if the Jacobian matrix (0f;(X)/0x;)); has rank R
at every complex solution x € C"\ {0} to f(x) = 0.

Theorem (Dietmann 2015, Schindler 2015)

If f is nonsingular and

n>(d—1)2'R(R+1)+ sup dim{Vg[a f(x)] =0} (1")
3cZR\{0}

then NAP)

—

= (0 +0(1))P"=9R as P — oo for some real constant
c>0 Iff(X)=0

has solutions in R™ \ {6} and Q7 \ {6} then o > 0.
Want to improve (1) in the case R > 1, at least for fairly typical f.
Munshi (Compos. Math. '15): d = R =2,n = 11.

Dietmann (Q. J. Math. 2015), Schindler (Adv. Th. Num. 2015).



The circle method: setup é% % C)’/

Notation

f(X) € Z[X]R are R lin. indep. forms in n variables of degree d > 2.

We set NAP) = #{x € Z" : f(x) =0, |%| < P?

We overuse dot products throughout, e.g. @ - f = Z _qoif;.

The exponential sum S(a - f) = ¥ e(a@ - f(x)), where @ € RR,

e(t) = e®™'* and the sum is over X € Z" with |_>’?|_’<_f_

major arcs M(Q) = {a@ € [0,1]F : |a — a| < qu (g < Q,3ezZR))}.
L——\ [

minor arcs m(Q) = [0, 1]7 \ M(Q).

The function Nz(P) which we want to estimate satisfies

—

NAP) = / S(a-f)da = / S(a-f) dd’—i—/ S(a-f)da.
Jo,r Jom(ps) Jm(Ps)

e P ——
We need to show: if n is large then for some v,6 > 0, as P — oo,

/ S(a- f)da ~ oP" R, / 1S(a@- f)| da < P"—9R=9,
JOM(PV) Jm(PV) -

N.B. M(Q) is only truly the “major arcs” if Q is small.

= ¢

h
R(x/)

—_ —_—
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The circle method: a framework [5[; %ﬁ) ( - P
Notation
o f(X) € Z[X]R are R lin. indep. forms in n variables of degree d > 2. ft <L B mﬂﬂ%
o We set NA(P) = #{x € Z": f(x) =0, |x| < P}. ZA“ - Q(EJ
e We overuse dot products throughout, e.g. & - f= Zf:l a;f;. 1 Ql =
e The exponential sum S(a - f) = Y e(a - (X)), where @ € RR, E C
e(t) = e®™' and the sum is over X € Z" with |x| < P. p ) p - i@}
How might we try to improve on Birch's result? To explore this question ‘ / JQ = K
| want to break his argument up into four pieces. This is the first one: - J // N /
Lemma A (level-set formulation of Birch, after Bentkus-Gotze) C P ,’P( ¢-1)a R
Suppose c € (0,1), C > 1, and that for each k € [0,dR/c) we have }g_ 6 R ’/

4
meas{a € [0, 1]R |S(a - f)| > P”—k+f} 4@ : L/_,
P “on M easure

There is 6(c,d, R, n) > 0 with Nf—(P) — gPn—dR OFc C(Pn—dR_5+€)_

That is, to run the argument we only need the measure of these level sets.
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Notation

f(X) € Z[<]R are R lin. indep. forms in n variables of degree d > 21
We set NAP) = #{x € Z": f(x) = 0, |X| < P}.
We overuse dot products throughout, e.g. a - f = Z;L «;f;.

The exponential sum S(@- f) = 3 e(@ - f(X)), where @ € RR,
e(t) = e?™ and the sum is over X € Z" with |X| < P.

—

How might we try to improve on Birch's result? To explore this question
| want to break his argument up into four pieces. This is the first one:

Lemma A (level-set formulation of Birch, after Bentkus-Gotze)
Suppose c € (0,1), C > 1, and that for each k € [0, dR/c) we have

meas{@ € [0,1]R : |S(@ - f)| > P"ktc} < cpek—aR,
~—0 - -
There is 6(c, d, R, n) > 0 with NAP) = oP"~ R 4+ Oz _ (P~ dR=o%c),

That is, to run the argument we only need the measure of these level sets.



The circle method: a framework

Notation m ( 'l/)

e The exponential sum S(@-f) =Y e(a- f(x)), where @ € RR,

e(t) = e®™'t and the sum is over X € Z" with |x| < P. T 2 g §[O/

e major arcs M(Q) = {@ € [0,1]F : |@ — g\ < q% (g < Q,3€ZR)}.

e minor arcs m(Q) = [0, 1] \ M(Q) P =2" 0‘ mlp )
Lemma A (level-set formulation of Birch, after Bentkus-Gotze) L f 4 [ﬁ [ o 6*)(
Suppose ¢ € (0,1), C > 1, and that for each k € [0,dR/c) we have k€ R ) th}{

meas{a@ € [0,1]% : |S(@ - f)| > P"~k+<} < cpk—dR,

There is 6(c,d, R, n) > 0 with NAP) = o P"~ 9 4 OF’C,C(Pn—dR—6+5).
Want v, 1 with [ (P¥) : f) da <z _ . pn—dR—d; .
-t
i) Dietmann/Schindler: sup,cp(pry |S| <7 P"~%" as f; are lin. indep.
”) fm(P") < ZP“EZ‘“./(Z&)I/ Pn_k meas{d’ - [0’ ]_]R : ‘S| > Pn—k+6}



The circle method: a framework

Notation
e The exponential sum S(a - f) = 3 e(a - f(X)), where @ € RR,
e(t) = e®™' and the sum is over X € Z" with |)?| < P.

e major arcs M(Q) = {a € [0,1]% : |a — a\ < qu (g < Q,3€ZR)}.

e minor arcs m(Q) = [0, 1] \ M(Q)
If meas{d € [0,1]% : [S(a - )| > P"~*+<} < CPk—9R for k € [0,dR/c),
it holds for k > 0. Want v, §; with _fm(PU) S(a- f) dd <7 . pn—dR—51 .
i) Dietmann/Schindler: sup,cm(pr) S| <7 PA—5o¥ 5 £ are lin, indep.
1) fo(pry << 2oprenz kb0 P"~kmeas{a € [0,1]% : |S| > P"—K*<}
< C ) prea? k>dov pr—dR-(1=c)k  pn—dR=d,

Also want /n; - 5@. F) da = gP"9R 4 ;. C(Pn—dR—5+e) :

-
) = B 5 e(3-7(B) [ (5 f(@) dir+OfPr142)

b(q) IJisl



The circle method: a framework

Want v, §; with jm(Pl (&-f)da <p, o PT9R4

i) Dietmann/Schindler: sup,cmpry |S| <7 P"—%Y as f; are lin. indep.
”) lm(pu) < ZP“EZ‘.kZ(’;OV Pn_k meas{(i' € [0q ]_]R : ‘S’ > Pn—k+€}
71 S C¥perpzsg PRI < prodRmiL e

Also want 9 with / S(a- H) da = gP"9R OﬁCQC(Pn—dR—(H-e) :

JM(PY)
S 4
( )) dU+OF(Pn 1+2I/)

&
dvy _ygondRé).

S

<P a(q) b(q)
M(PV) .
~— N J5RF) NG
iii) By choosing P = e®1/7, o o ¢

/ } /e(:/'-F(J))dJ - /'f};”;;,’;”d,m pP-1H2HRY « - O,

e<|5[<2¢ |i]<1 m(Pv)




The circle method: a framework

Notation L; c/

o Let S, 0= 5, e(Z-F(b)) and I(7) = [z (5 - F(@)) did

i) Birch showed S((2 + AR ;? - ’;_;’Saiq/(fy) + OAP—1+2), 5’_“

pa
i) and hence / > B Saa / 1(7) d7 + O Pn—dR=9),
m(Pv) q<Pv a(q) Iv*lls%{.\
iii) By choosing P = ed!/", e
/ [1(7)d7 <¢ / J%;—df;n dB + P~1H2HRY « o %,

o<|5|<20 m(P")

*

iv) In asimilar way )
Q<9205 (@)

v) (ii)-(iv) give = Z P dRSaq / ) d¥ + Oz _ (P~ 9R=0%F¢).
4N 3 (q)
‘JJI(P') |7|ERR

———

1 »
g Saql < Q7%



The circle method: a framework

Notation

o Let Sag =5, e(2- (b)) and I(7) = [i7<,6(7- F()) did
e The exponential sum S(a@-f) =Y e(a- f(X)), where @ € RR, e(t) = €™ and
the sum is over X € Z" with |x| < P.

e major arcs M(Q) = {a € [0,1]7 : |d — 2| < q—gg (g < Q,3 € ZR)}.

e minor arcs m(Q) = [0, 1]% \ M(Q) Z

Also want ¢ with / S(a- F) da = op"—dR 4 O7. C(Pn—dR—6+g) :
. gﬁ(pu) 3G

i) [...] hence / = > ¥ %ndRSa,q 1(7) d7 + O;(P”_dR_‘S).
‘.7)?(.PU) a<Pv a(q)

iii) By choosing P = e®'/?,
/ [I(V)|d7 <7 / BN gf + P~I+CHRY o 0,

P<|7]<20 m(Pv) (/

g -
iv) In asimilarway > > #53.q| < Q7 %,
Q<q<2Q 7 (q)

v) (i)-(iv) give [ = 3 SE%s, / I(7) d7 + O o(Pr=R=5+e).

c qgeN 3
m(Pv) (@)

S < PV
17I<%5

|7|ERR



The circle method: a framework

Notation
o Let S, 4= Zb(q) e(" f(b)) and I(7) = f|~|<1e(’y' f(a))da
e The exponential sum S(&@- f) = 3. e(@ - (X)), where @ € RR, e(t) = ™'t and
the sum is over X € Z" with [X| < P.
e major arcs M(Q) = {@ € [0,1]% : |a — ol < fa
e minor arcs m(Q) = [0, 1]% \DJT(Q)
i) [...] hence [ = % z — 1(7) d7 + OA P—dR=9),
- q<P¥ 3(q)
W(P) |w*|s"7
iii) By choosing P = e®1/7,

/ [I(V)dY <7 /'fa(nﬁff? df + P~1HHRY < &%,

>< |7 <20 m(Pv)

iv) In a similar way ) Z = LS.ql < Q7.
Q<q<2Qa(q)

q< Q,aezZR)}.

M C . n— dR - . B -
v) (ii)-(iv) give =3 Z pr—% - Saq / I(3) d7 + Oz _ o(Pn—R=0+<),
' qeN 3 (q)
M(Pv) |Y|ERR
Lemma A (level-set formulation of Birch, after Bentkus-Gotze) [/—

S If meas{@ € [0,1]R : |S(& - f)| > P"—k+€} < CPk—dR for some c < 1, all
k € [0,dR/c), then NAP) = cP"—dR 4 Q. (Pn—dR=d(c.d:Rin)+e) (=












