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Abstract  

Context: Obesity-associated inflammation is a contributory factor in the pathogenesis of type 

2 diabetes mellitus (T2DM); the mechanisms underlying the progression to T2DM are 

unclear. The adipokine resistin has demonstrated pro-inflammatory properties in relation to 

obesity and T2DM. 

Objective: To characterize resistin expression in human obesity and address the role of 

resistin in the innate immune pathway. Furthermore, examine the influence of 

lipopolysaccharide, recombinant human resistin (rhResistin), insulin and rosiglitazone in 

human adipocytes. Finally, analyze the effect of rhResistin on the expression of components 

of the NF-κB pathway and insulin signaling cascade.  

Methods: Abdominal subcutaneous adipose tissue was obtained from patients undergoing 

elective liposuction surgery (n = 35, aged: 36-49 yr; BMI: 26.5 ± 5.9 kg/m2). Isolated 

adipocytes were cultured with rhResistin (10-50 ng/ml). The level of cytokine secretion 

from isolated adipocytes was examined by ELISA. The effect of rhResistin on protein 

expression of components of the innate immune pathway was examined by Western blot.  

Results: In-vitro studies demonstrated that antigenic stimuli increase resistin secretion (P < 

0.001) from isolated adipocytes. Pro-inflammatory cytokine levels were increased in response 

to rhResistin (P < 0.001); this was attenuated by rosiglitazone (P < 0.01). When examining 

components of the innate immune pathway, rhResistin stimulated Toll-like receptor-2 protein 

expression. Similarly, mediators of the insulin signaling pathway, phosphospecific JNK1 and 

JNK2, were upregulated in response to rhResistin. 

Conclusion: Resistin may participate in more than one mechanism to influence pro-

inflammatory cytokine release from human adipocytes; potentially via the integration of NF-

κB and JNK signaling pathways.  
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Introduction 

The association between central obesity, insulin resistance and T2DM is established; 

however, the underlying mechanisms of this association remain unclear. Besides its 

metabolic functions, increased adipose tissue (AT) mass is recognised to have immunological 

characteristics, primarily through the secretion of adipokines, such as leptin, TNF-α and IL-6 

(1). Within this context, AT is considered to integrate metabolic and immune functions. This 

duality of function may represent a conserved evolutionary mechanism, as suggested by 

observations examining the ‘fat body’ in Drosophila fruitfly; in which a single cell-type 

serves as a primary integrator for both pathogen and nutrient-sensing pathways (2).    

         It is acknowledged that with increasing adiposity there is profound macrophage 

infiltration into AT; macrophages may thus represent the site of an innate immune response. 

Alternatively, macrophage recruitment may arise from phenotypic change of pre-adipocytes 

(3, 4). Nevertheless, studies indicate interrelationships between excess AT mass, 

inflammation, insulin resistance and T2DM.  

         The adipokine resistin was originally described as a molecular link between obesity and 

insulin resistance in rodents; this has remained somewhat controversial in humans (5). 

Resistin is expressed primarily in adipocytes in rodents and employs a more metabolic role, 

by impairing glucose tolerance and inducing liver-specific antagonism of insulin sensitivity 

(6). In humans however, a more ‘pro-inflammatory’ function for resistin has been defined (7, 

8). Although resistin gene expression is largely confined to macrophages (9, 10), recent 

studies have reported resistin protein expression and secretion from human adipocytes (11-

14).  

         Serum profiles have highlighted increased circulating levels of resistin in obesity and 

T2DM; which further correlate with C-Reactive Protein (CRP) (13), a marker of 

inflammation and an established predictor of cardiovascular disease (15). Such a correlation 
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has been identified by subsequent studies on pre-diabetic, T2DM subjects (16) and 

individuals with acute rheumatoid arthritis (8). Circulating levels of resistin are associated 

with TNF-α receptor-2 (TNF-R2) and are predictive of coronary atherosclerosis, independent 

of CRP (17). Endotoxemia increases serum resistin levels, concurrently with soluble TNF-R2 

levels in T2DM patients (18). Although the majority of studies report associations between 

resistin and inflammatory conditions, the precise mechanistic action of resistin in 

inflammation, particularly in concordance with components of the innate immune pathway, is 

unclear. 

         The innate immune system is a candidate for the production of elevated levels of 

cytokines in obesity and T2DM. The innate immune pathway is activated when specific 

receptors, the Toll-like receptors (TLRs), bind certain antigens. For instance, TLR-4 binds the 

bacterial antigen lipopolysaccharide (LPS), through its co-receptor, CD14; alternatively, 

TLR-2 binds the fungal antigen, zymosan. Activation of TLR-4 by LPS can induce TLR-2 

expression in 3T3-L1 adipocytes (19). TLR activation initiates an intracellular signaling 

cascade, causing NF-κB to initiate the production of inflammatory factors, such as IL-6 and 

TNF-α. Several serine/threonine kinases are activated during the innate immune response that 

influence insulin signaling (20). IκB kinase (IKK)-β mediates activation of NF-κB; whereas 

c-Jun N-terminal kinase (JNK), a central metabolic regulator, contributes to the development 

of insulin resistance in obesity (20). Activation of JNK and IKK-β within innate immunity 

highlights crosstalk between metabolic and immune pathways.          

         An integration of metabolic and immune systems may reflect the mode of resistin action 

within adipocytes and immune cells; exerting metabolic and immune functions in both cell-

types. Resistin impairs insulin signaling via ‘suppressor of cytokine signaling-3’ (21) and 

inhibits glucose transport (22) in 3T3-L1 adipocytes; additionally, resistin promotes glucose-

dependent lipogenesis and lipid accumulation in human macrophages (23). On the other 
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hand, the pro-inflammatory functions of resistin in human macrophages (7) and 3T3-L1 

adipocytes (22) have also been described. Resistin may thus function in adipocytes to 

influence both metabolic and pro-inflammatory changes, suggesting that the effects of resistin 

are to some extent linked. Such a duality in function for resistin may be a consequence of the 

crosslink initially proposed between metabolic and inflammatory pathways in adipocytes and 

immune cells (3, 4). Where resistin may influence key factors in the sequential stages from 

one signal transduction pathway; this may consequently alter components from another. 

          The aims of this study were therefore to (1) establish the association between 

increasing adiposity and expression of resistin in human Abdominal Subcutaneous (Abd Sc) 

adipocytes and AT; (2) determine whether resistin levels are influenced by antigenic stimuli 

and inflammatory cytokines within adipocytes (3) examine the effect of rhResistin on the 

expression of components of the innate immune pathway and insulin signaling cascade within 

adipocytes (4) evaluate the combined effects of rhResistin, insulin and rosiglitazone (RSG) 

on the pro-inflammatory response (5) finally, examine the effects of NF-κB inhibitor and 

JNK inhibitor on the level of resistin secretion from adipocytes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 5



Subjects and Methods 

Subjects  

    Abd Sc AT was obtained from a human non-diabetic population (n = 35, aged 36-49 yr; 

BMI: 26.5 ± 5.9 kg/m2) undergoing elective liposuction surgery. Patients receiving endocrine 

therapy (steroids, hormone replacement therapy or thyroxine), anti-inflammatory therapy 

(aspirin, cyclooxygenase-2 inhibitors), statins, TZDs or any antihypertensive therapy were 

excluded. Studies were performed with the approval of the local ethics committee with 

informed consent being obtained from all subjects prior to enrolment.  

 

Isolation of mature adipocytes  

    Abd Sc AT was digested in collagenase (2 mg/ml; Worthington Biochemical, USA) to 

isolate adipocytes, as previously described (13). Adipocytes were re-suspended in either 4% 

SDS or RIPA buffer (150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 

0.1% SDS and 50 mM Tris) for extraction of protein. Cells were maintained in phenol red-

free DMEM:F-12 medium containing 15 mM glucose, penicillin (100 U/ml) and 

streptomycin (100 µg/ml). 

 

Treatment of isolated adipocytes  

   For antigenic stimuli studies, adipocytes were treated (14 h) with either bacterial endotoxin, 

LPS (100 ng/ml; Sigma-Aldrich Company Ltd., Poole, UK) or fungal antigen, zymosan (30 

µg/ml; Sigma-Aldrich Company Ltd., Poole, UK). Dose and time-responses for LPS and 

zymosan were previously established (LPS: 1-100 ng/ml; 14, 24 and 48 h; zymosan: 1-100 

µg/ml; 14, 24 and 48 h) (data not shown). Cytokine secretion studies involved treatment of 

adipocytes with rhResistin (30 ng/ml, 48 h; Phoenix Pharmaceuticals, Belmont, CA, USA) 

(endotoxin concentration below 0.1 ng/µg, at final concentrations of 10-50 ng/ml). Isolated 
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adipocytes were also treated with insulin alone (10 nM Sigma-Aldrich Company Ltd., Poole, 

UK) or combined with RSG (10-8 M; GlaxoSmithKline, Harlow, UK). rhResistin, insulin and 

RSG concentrations and time-points were chosen based on data previously described (13). 

Adipocytes were further treated with rhTNF-α (10, 50, 100 ng/ml; Biosource Europe, S. A., 

Belgium) or rhIL-6 (10, 50, 100 ng/ml; Sigma-Aldrich). For inhibitor studies, adipocytes 

were treated with NF-κB inhibitor (SN50, CalBiochem, Nottingham, UK) (50 µg/ml; 24 h). 

Dose and time-course studies were performed to assess resistin secretion at 14, 24, and 48 h 

with control and NF-κB-treated adipocytes (10, 25, 50 and 100 µg/ml). Adipocytes were also 

treated with JNK inhibitor (SP600125, A. G. Scientific, Inc., San Diego, USA) (10 µM/ml); 

conditions based on previous data (24). For protein expression analysis, adipocytes were 

treated with increasing concentrations of rhResistin, using previously established time-points 

(10, 30, 50 ng/ml; 48 h). Adipocytes maintained in untreated media were used as controls. A 

trypan blue dye exclusion method was used to assess the viability of the adipocytes, as 

previously documented (Sigma-Aldrich) (13). Following treatment, conditioned media were 

removed and stored at -80ºC. Adipocyte protein was extracted as previously described (13) 

then stored at -80ºC. 

 

Protein determination & Western blot analysis 

    Human AT and isolated adipocytes were re-suspended in 4% SDS or RIPA buffer, as 

previously detailed (13). Protein concentrations were determined using the Bio-Rad DC 

(Detergent Compatible) protein assay kit (25). Western blot analysis was performed using a 

method previously described (14). Human resistin polyclonal antibody (1:3000, Linco 

Research, Inc., Missouri, USA) was used to assess resistin expression. rhResistin (1 µg/ml; 

Phoenix Pharmaceuticals, Belmont, CA, USA) was used to confirm the specificity of the 

primary antibody (data not shown). Resistin was developed using an anti-guinea-pig 
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horseradish-peroxidase (HRP) secondary antibody (Biogenesis Ltd., Poole, UK). Human 

TLR-2 monoclonal and TLR-4 polyclonal antibodies were utilized (1:500 and 1:1000, 

respectively; Insight Biotechnology Ltd., Wembley, UK). Polyclonal anti-JNK1 & 2 SAPK 

phosphospecific and MyD88 antibodies (1:1,750; Biosource UK, Belgium and 1:250; TCS 

Cellworks, UK respectively) were utilized. Protein expression of NF-κB, (1:250, TCS 

Cellworks, UK), IKK-β (1:500, TCS Cellworks, UK) and IKK-α (1:500, Abcam, UK) was 

assessed using mouse monoclonal antibodies. Equal protein loading was confirmed by 

examining α-tubulin (1:5000) (The Binding Site, Birmingham, UK) protein expression. No 

statistical difference was observed in α-tubulin expression for all samples analyzed. For 

reducing conditions, samples were mixed in a 1:2 ratio with sample buffer containing 20% β-

mercaptoethanol. A chemiluminescent detection system ECL/ECL+ (Amersham Pharmacia 

Biotech, Little Chalfont, UK) enabled visualization of bands, whilst intensity was determined 

using densitometry (Genesnap, Syngene, UK). 

 

RNA extraction and quantitative RT-PCR 

   RNA was extracted from AT using the RNeasy Lipid Tissue Mini Kit (Qiagen, UK). RNA 

extraction was followed by a DNase digestion step to remove any contaminating genomic 

DNA. 1 µg of RNA was reverse transcribed using RevertAid H Minus M-MuLV reverse 

transcriptase (Helena Biosciences Europe, Sunderland, UK) and random hexamers in 20 µl 

reaction volumes, according to the manufacturers’ instructions. Messenger RNA levels were 

determined using an ABI 7500 real time PCR Sequence Detection system. The reactions were 

performed in 25 µl volumes in reaction buffer containing TaqMan Universal PCR Master 

Mix, 150 nmol TaqMan probe, 900 nmol primers and 50 ng cDNA (for CD45 expression) or 

115 ng cDNA (for resistin expression). Previously determined quantitative primer and probe 

sequences for the resistin and CD45 genes were used (14). All reactions were multiplexed 
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with the housekeeping gene 18S, provided as a pre-optimized control probe (Applera, 

Cheshire, UK), enabling data to be expressed as delta cycle threshold (Ct) values (ΔCt = Ct 

of 18S subtracted from Ct of gene of interest) in order to correct for differences in the 

efficiency of reverse transcription. Measurements were carried out on at least three occasions 

for each sample.  

 

Resistin secretion from treated adipocytes  

   Conditioned media from adipocytes treated with LPS or zymosan was assayed using a 

human resistin ELISA (Phoenix Europe GmbH, Germany). Conditioned media from rhTNF-

α or rhIL-6 treated adipocytes was assessed using the human resistin ELISA from R&D 

Systems, UK. The R&D Systems human resistin ELISA (resistin range: 0-10 ng/ml) was 

further validated for recovery of resistin and cross-reactivity with resistin-like molecules 

(RELMs). Known concentrations of rhResistin (1, 5 and 10 ng/ml; R&D Systems, UK) were 

added to pooled serum (10.5 ng/ml). The recovery of spiked resistin was above 80% 

efficiency. Known concentrations of RELM-α or RELM-β partial-peptides (1, 2.5, and 5 

ng/ml; Alpha Diagnostics, Eastleigh, UK) and rhResistin (5 ng/ml) were co-incubated with 

pooled serum (10.5 ng/ml), an aqueous solution or serum matrix containing rhResistin (5 

ng/ml). The addition of RELMs to treatments did not interfere with the resistin assay or alter 

known and expected serum resistin concentrations. The human resistin ELISA previously 

validated (Phoenix Europe GmbH, Germany) was used in this study (13). 

 

IL-6 and TNF-α secretion from treated adipocytes  

    Conditioned media from adipocytes treated with rhResistin, insulin, or insulin in 

combination with RSG was assayed for IL-6 and TNF-α (QuantiGlo ELISA, R&D Systems, 
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Abingdon, UK) (IL-6, intra-assay CV 3.1%, inter-assay CV 2.7%; TNF-α, intra-assay CV 

6.7%, inter-assay CV 11.0%).  

 

Statistics  

    Protein expression data between control and treatments were compared using an unpaired 

t-test. Data are presented as mean ± SEM. Analyses were carried out using SPSS (SPSS Inc. 

12.0, Woking, UK) software. The threshold for significance was P < 0.05. Correlation 

analyses were calculated using a Pearsons Correlation Coefficient test. 
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Results 

Resistin expression in AT  

Results demonstrated that resistin gene expression positively correlates with increasing BMI 

in AT (ΔCT range, 25.0-30.7; r2 = 0.461; P < 0.001) (BMI: 19.2-37.0 kg/m2; n = 24). 

Analysis of CD45 expression with increasing adiposity showed a similar but weaker 

correlation (ΔCT range, 20.0-23.6; r2 = 0.226; P < 0.02) (Fig. 1). Resistin protein data 

confirmed the mRNA data, as resistin protein expression was 1.5-fold higher in obese AT 

(BMI: 33.9 ± 4.6 kg/m2, n = 8) compared with lean AT (BMI: 21.2 ± 1.4 kg/m2, n = 8) (P < 

0.001) (Fig. 2A). Furthermore, in adipocytes, a 2.2-fold higher level of resistin protein 

expression was observed in overweight subjects (BMI: 28.3 ± 2.7 kg/m2, n = 4) in 

comparison with lean subjects (BMI: 23.2 ± 1.6 kg/m2, n = 4; P < 0.001; Fig. 2B).  

 

Effect of antigenic stimuli on the level of resistin secretion from adipocytes    

LPS was shown to stimulate a 2.2-fold increase in resistin secretion (control: 1.24 ± 0.2 

ng/ml; LPS: 2.75 ± 0.4 ng/ml; P < 0.001; n = 8) (Fig. 3). Similarly, zymosan stimulated a 2.5-

fold increase in resistin secretion from adipocytes compared to control (control: 1.24 ± 0.2 

ng/ml; zymosan: 3.1 ± 0.3 ng/ml; P < 0.001; n = 8) (Fig. 3). 

    

Regulation of TNF-α and IL-6 secretion: effects of rhResistin, insulin & RSG  

rhResistin alone, and in combination with insulin, significantly increases the level of TNF-α 

secretion from adipocytes (control: 74 ± 10 pg/ml; rhResistin: 435 ± 36.5 pg/ml; P < 0.001). 

Furthermore, RSG significantly reduces this resistin-stimulated increase in TNF-α secretion 

from adipocytes (P < 0.001). Following this reduction, TNF-α secretion levels remain higher 

than the control (P < 0.01) (Fig. 4A). Similarly, rhResistin and insulin significantly increase 

IL-6 secretion (control: 1962 ± 130 pg/ml; rhResistin: 2906.4 ± 297.0 pg/ml; P < 0.01); RSG 
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further reduces this resistin-induced increase in IL-6 secretion from adipocytes (Fig. 4B). 

Further analysis of cytokine secretion demonstrated that anti-resistin (10 µg/ml) antibody 

reduces the level of TNF-α (rhResistin: 89.2 ± 4.6 pg/ml; anti-resistin antibody (10 µg/ml): 

71.5 ± 5.9 pg/ml; P = 0.039) and IL-6 (rhResistin: 1115.5 ± 40.6 pg/ml; anti-resistin antibody 

(10 µg/ml): 351.5 ± 55.9 pg/ml; P < 0.01) secretion from adipocytes.  

 

Effect of rhTNF-α and rhIL-6 on the level of resistin secretion  

To establish whether a cytokine feedback mechanism exists within adipocytes, we examined 

the level of resistin secretion from rhTNF-α and rhIL-6 treated adipocytes. Resistin secretion 

was unaffected by rhTNF-α, at any concentration up to 100 ng/ml (control: 135 ± 19 pg/ml; 

10 ng/ml rhTNF-α: 129 ± 15 pg/ml; 50 ng/ml rhTNF-α: 141 ± 11 pg/ml; 100 ng/ml rhTNF-α: 

116 ± 11 pg/ml; n = 12). Furthermore, rhIL-6 also had no significant effect on the level of 

resistin secretion (control: 129 ± 12 pg/ml; 10 ng/ml rhIL-6: 135 ± 13 pg/ml; 50 ng/ml rhIL-

6: 123 ± 10 pg/ml; 100 ng/ml rhIL-6: 125 ± 12 pg/ml; n = 8). 

 

Effect of rhResistin on TLR-2 and TLR-4 protein expression in adipocytes    

For protein expression studies, rhResistin stimulated TLR-2 expression in adipocytes 

(control: 1.00 ± 0.11; TLR-2: 1.28 ± 0.10; P < 0.001, n = 6; BMI: 23.5 ± 3.8) (Fig. 5A). No 

significant change in TLR-4 protein expression was observed when compared with control 

(data not shown); this was expected, due to the known constitutive expression of TLR-4 in 

other tissues. 

   

Effect of rhResistin on the insulin signaling and NF-κB pathway 

rhResistin stimulated MyD88 expression in adipocytes (control: 1.00 ± 0.13; MyD88 50 ng: 

1.80 ± 0.04; ↑P < 0.01, n = 6) (Fig. 5B). rhResistin further upregulated the expression of 
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phosphospecific JNK1 (control: 1.00 ± 0.03; JNK1-P 50 ng: 1.29 ± 0.05; ↑P < 0.05, n = 6) 

and phosphospecific JNK2 (control: 1.00 ± 0.08; JNK2-P 50 ng: 1.53 ± 0.03; ↑P < 0.001, n 

= 6) (Fig. 5B). Similarly, NF-κB (control: 1.00 ± 0.04; NF-κB 50 ng: 1.37 ± 0.02; ↑P < 

0.05, n = 4) expression was increased in response to rhResistin (Fig. 5B). Additionally, IKK-

β and IKK-α were upregulated in response to rhResistin (control: 1.00 ± 0.04; IKK-β 50 ng: 

1.17 ± 0.03 ↑P < 0.01, n = 4) (control: 1.00 ± 0.06; IKK-α 50 ng: 1.50 ± 0.02 ↑P < 0.01, n = 

4) (Fig. 5C). 

 

Effects of JNK or NF-κB inhibitor on resistin secretion  

The level of resistin secretion from adipocytes was significantly reduced with NF-κB 

inhibitor treatment (control: 83.1 ± 20.5 pg/ml; NF-κB inhibitor: 61.6 ± 16.6 pg/ml; n = 7, P 

< 0.05) (Fig. 6A). However, no significant difference in resistin secretion was observed for 

JNK inhibitor treated adipocytes (control: 101.5 ± 29.3 pg/ml; JNK inhibitor: 77.0 ± 17.2 

pg/ml; n = 4, P = N.S) (data not shown). 
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Discussion 

Our study demonstrates the pro-inflammatory actions of resistin in human AT. We further 

establish that resistin can influence the secretion of pro-inflammatory cytokines from human 

adipocytes; this induction of cytokine secretion is attenuated by RSG. Furthermore, 

rhResistin stimulates the expression of TLR-2 and two central metabolic and inflammatory 

kinases, JNK and IKK-β respectively. Our findings implicate resistin in the stimulation of 

pro-inflammatory cytokine release from human adipocytes. 

          Whilst a more pro-inflammatory role for resistin is emerging in humans, the metabolic 

actions of resistin remain uncertain. Rodent studies implicate the liver as the major 

physiological target of resistin action; as exogenous resistin impairs glucose tolerance and 

hepatic insulin resistance (26). Similarly, adenovirus mediated hyper-resistinemia abrogates 

hepatic and peripheral insulin action (27). Conversely, resistin null mice exhibit low fasted 

blood glucose levels, due to reduced hepatic glucose production (28). In vitro adipocyte 

studies highlight that resistin impairs insulin-stimulated glucose uptake (21) and the insulin 

signaling cascade itself (29). Recent reports further highlight that human resistin has 

properties similar to its murine counterpart; whereby mouse and human resistin impair 

glucose transport (29). Here, we demonstrate the pro-inflammatory actions of resistin in 

human adipocytes. Collectively, these studies suggest an overlap between metabolic and 

immune functions for human resistin.  

          mRNA studies demonstrate that resistin is predominantly expressed in human 

macrophages (9, 10). Our initial and current studies demonstrate resistin protein expression 

and secretion from human adipocytes; this has been affirmed by recent observations (11, 12). 

Such quantitative differences in mRNA expression and circulating resistin levels have 

previously been highlighted (1, 30). The adipocyte may thus be an undervalued contributor to 

the circulating levels of resistin in obesity. 
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          We also show that LPS increases resistin secretion from isolated adipocytes. This 

coincides with recent studies, demonstrating that endotoxemia induces circulating resistin 

levels in healthy subjects (18); highlighting antigenic stimuli can increase resistin levels in 

vivo. We further demonstrate that resistin increases the level of TNF-α and IL-6 secretion 

from adipocytes; consistent with recent reports, whereby human resistin increases TNF-α and 

IL-12 secretion from macrophages (7). It is acknowledged that circulating levels of TNF-α 

and IL-6 are elevated in obesity (31). We further demonstrate that treatment with anti-resistin 

antibodies reduces the level of cytokine secretion; suggesting that resistin may directly 

contribute to an altered pro-inflammatory cytokine status by promoting inflammation. 

Additionally, we observed that LPS can directly stimulate TNF-α and IL-6 secretion from 

human adipocytes (32). 

          We additionally examined whether rhResistin influences the expression of key 

components of the innate immune pathway and observed that resistin upregulates the 

expression of TLR-2, MyD88 and NF-κB in adipocytes. When examining the key 

intermediate activating NF-κB, the IKK complex, rhResistin further increases the expression 

of the catalytic subunits IKK-β and IKK-α. Interestingly, JNK expression is upregulated in 

response to rhResistin, suggesting NF-κB activation may overlap into a JNK-mediated 

pathway. Such an overlap between JNK and NF-κB has been identified in macrophages and 

alveolar epithelial cells (33, 34); consistent with crosstalk between metabolic and 

inflammatory pathways. Alternatively, elevated TNF-α and IL-6 levels induced by resistin 

may activate JNK and NF-κB systems, rather than via a direct effect of resistin. To further 

examine the significance of NF-κB and JNK signaling on resistin action in human adipocytes, 

we treated cells with NF-κB or JNK inhibitors. Whilst NF-κB inhibition appeared to reduce 

resistin secretion, no affect was observed with JNK inhibitor. Although an overlap of JNK 

and NF-κB systems has been suggested, resistin may have more prominent effects on the NF-
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κB pathway; the importance of the NF-κB pathway for resistin-induced inflammation has 

been highlighted (8). 

          Hyper-restinemia is known to contribute to an inflammatory response (22). rhResistin 

was shown to alter the level of cytokine release when compared to control. Insulin was 

utilized to observe the effects of RSG in this system; as such we demonstrated that the 

peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, RSG, attenuates resistin-

induced secretion of TNF-α and IL-6. Although the mechanisms for this are unclear, the 

resistin gene promoter contains a PPAR-γ binding site (10), through which RSG may 

coordinate the recruitment of transcriptional co-repressors (35), thereby suppressing resistin 

expression at the genetic level. However, this does not appear to be the mechanism through 

which our observations are being mediated, as we used exogenous resistin to stimulate 

cytokine production. This suggests that RSG may act downstream of the resistin promoter to 

mitigate resistin-mediated TNF-α and IL-6 stimulation, potentially via NF-κB.  

          Visceral adiposity, in addition to BMI, confers a high risk of insulin resistance and 

T2DM. Moreover, levels of resistin, interleukins and TNF-α differ between visceral and 

subcutaneous AT (36, 37). Whilst rodent studies have highlighted an increase in resistin 

expression in visceral AT (38), limited analysis has addressed this in humans.  We previously 

reported higher levels of resistin expression in abdominal depots in comparison to thigh (14), 

consistent with a role for resistin in obesity-related insulin resistance. Further examination of 

resistin levels in human AT depots, particularly the pro-inflammatory actions of resistin in 

visceral AT in comparison to subcutaneous AT, may shed further light on the nature of 

resistin action in humans.  

           In conclusion, our study suggests that adipocytes may be a contributory source of 

resistin in human obesity. Furthermore, resistin responds to LPS treatment and can influence 

the secretion of inflammatory cytokines from human adipocytes. The intracellular mechanism 
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for such mediation of resistin on cytokine release appears to act primarily via the NF-κB 

pathway. Elevated levels of cytokines, induced by resistin, may thus contribute to the pro-

inflammatory milieu proposed in obesity-related insulin resistance. 
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	   For antigenic stimuli studies, adipocytes were treated (14 h) with either bacterial endotoxin, LPS (100 ng/ml; Sigma-Aldrich Company Ltd., Poole, UK) or fungal antigen, zymosan (30 µg/ml; Sigma-Aldrich Company Ltd., Poole, UK). Dose and time-responses for LPS and zymosan were previously established (LPS: 1-100 ng/ml; 14, 24 and 48 h; zymosan: 1-100 µg/ml; 14, 24 and 48 h) (data not shown). Cytokine secretion studies involved treatment of adipocytes with rhResistin (30 ng/ml, 48 h; Phoenix Pharmaceuticals, Belmont, CA, USA) (endotoxin concentration below 0.1 ng/µg, at final concentrations of 10-50 ng/ml). Isolated adipocytes were also treated with insulin alone (10 nM Sigma-Aldrich Company Ltd., Poole, UK) or combined with RSG (10-8 M; GlaxoSmithKline, Harlow, UK). rhResistin, insulin and RSG concentrations and time-points were chosen based on data previously described (13). Adipocytes were further treated with rhTNF-α (10, 50, 100 ng/ml; Biosource Europe, S. A., Belgium) or rhIL-6 (10, 50, 100 ng/ml; Sigma-Aldrich). For inhibitor studies, adipocytes were treated with NF-κB inhibitor (SN50, CalBiochem, Nottingham, UK) (50 µg/ml; 24 h). Dose and time-course studies were performed to assess resistin secretion at 14, 24, and 48 h with control and NF-κB-treated adipocytes (10, 25, 50 and 100 µg/ml). Adipocytes were also treated with JNK inhibitor (SP600125, A. G. Scientific, Inc., San Diego, USA) (10 µM/ml); conditions based on previous data (24). For protein expression analysis, adipocytes were treated with increasing concentrations of rhResistin, using previously established time-points (10, 30, 50 ng/ml; 48 h). Adipocytes maintained in untreated media were used as controls. A trypan blue dye exclusion method was used to assess the viability of the adipocytes, as previously documented (Sigma-Aldrich) (13). Following treatment, conditioned media were removed and stored at -80ºC. Adipocyte protein was extracted as previously described (13) then stored at -80ºC.
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