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In this article, we construct and analyse an explicit numerical splitting method for a 
class of semi-linear stochastic differential equations (SDEs) with additive noise, where 
the drift is allowed to grow polynomially and satisfies a global one-sided Lipschitz 
condition. The method is proved to be mean-square convergent of order 1 and to preserve 
important structural properties of the SDE. First, it is hypoelliptic in every iteration step. 
Second, it is geometrically ergodic and has an asymptotically bounded second moment. 
Third, it preserves oscillatory dynamics, such as amplitudes, frequencies and phases of 
oscillations, even for large time steps. Our results are illustrated on the stochastic FitzHugh-
Nagumo model and compared with known mean-square convergent tamed/truncated 
variants of the Euler-Maruyama method. The capability of the proposed splitting method to 
preserve the aforementioned properties may make it applicable within different statistical 
inference procedures. In contrast, known Euler-Maruyama type methods commonly fail 
in preserving such properties, yielding ill-conditioned likelihood-based estimation tools or 
computationally infeasible simulation-based inference algorithms.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The aim of this article is to construct and analyse a splitting method for semi-linear stochastic differential equations 
(SDEs) of additive noise type

dX(t) = F (X(t))dt + �dW (t) := [
A X(t) + N(X(t))

]
dt + �dW (t), X(0) = X0, (1)

where the diffusion matrix � may be degenerate and the drift F satisfies a global one-sided Lipschitz condition and is 
allowed to grow polynomially. Coefficients with these properties appear in many applications [28], ranging from physics 
[45,51] over population growth problems [31,36] to neuroscience [20,26,54] and others. As an illustrative equation from this 
class of SDEs, we discuss the stochastic FitzHugh-Nagumo (FHN) model [6,8,41], a well-known neuronal model describing 
the generation of spikes of single neurons at the intracellular level. This model is given by the 2-dimensional SDE
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where σ1 may be zero. The V -component of the system describes the evolution of the membrane voltage of the neuron and 
the U -component is a recovery variable. Our aim is to construct a numerical method for (1), and (2) in particular, which is 
easy to implement and also applicable across different disciplines in the broad field of statistical inference. This implies that 
the method needs to meet several requirements:

• Statistical applications require strong approximations of SDEs. Thus, we focus on the concept of mean-square convergence
[37,50,67]. Since it was shown in [29] that the standard Euler-Maruyama method does not converge in the mean-square 
sense under the above assumptions on the drift F , the development of mean-square convergent variants of this method 
has received much attention. In particular, tamed [30,61,67,73] and truncated [22,28,43,44] Euler-Maruyama methods 
have been proposed. They all aim to control the unbounded growth arising from the non-globally Lipschitz drift by 
enforcing a rescaling modification to the drift and/or diffusion coefficients.

• Simulation-based statistical methods require to generate paths of SDEs as computationally efficient as possible, see, e.g., 
[12]. Using explicit numerical methods is a first step to achieve sufficiently low computational cost. While the aforemen-
tioned mean-square convergent variants of the Euler-Maruyama method are explicit, they commonly fail in preserving 
important structural properties of the SDE. The major key to computational efficiency, however, is to construct explicit 
methods which are capable to preserve the underlying properties for time steps as large as possible. This leads to the 
next point.

• An important issue in the field of (stochastic) numerical analysis is the preservation of structural properties of the con-
sidered SDE by the numerical method used to approximate it. Geometric Numerical Integration is a well-established 
framework in this context [23]. Here, we discuss the preservation of hypoellipticity, geometric ergodicity and oscillatory 
dynamics such as amplitudes, frequencies and phases of oscillations:

– The diffusion matrix � of SDE (1) may be of full rank or degenerate, where in the latter case the SDE may be 
hypoelliptic, depending on the drift F . The case of degenerate noise naturally occurs in many applications [2,19,39,
41,45,51], with the hypoelliptic property ensuring that the solution of the SDE admits a smooth transition density 
[55]. This means that the noise is propagated through the whole system via the drift of the SDE, even though it 
does not directly act on all components. In many inference approaches using discrete approximations of SDEs, it is 
necessary that a discrete analogue of the hypoelliptic property holds at each iteration step. In particular, considering 
a discretised time interval with equidistant time steps � = ti − ti−1, the distribution of the numerical solution X̃(ti)

of (1) at time ti given the previous value X̃(ti−1) must admit a smooth density, a property that we term 1-step 
hypoellipticity. It is known that Euler-Maruyama type methods do not satisfy this if the SDE is not elliptic but 
only hypoelliptic. Thus, they yield ill conditioned likelihood-based inference methods [19,47,57]. Higher-order Taylor 
approximation methods [37] may be 1-step hypoelliptic [19]. However, since such methods may neither be mean-
square convergent in the case of superlinearly growing coefficients [29], nor preserve other structural properties, 
they may lead again to ill-posed statistical problems.

– The analysis of the asymptotic behaviour of the process is of further crucial interest. In particular, if SDE (1) possesses 
an underlying Lyapunov structure, it may be geometrically ergodic [45]. This property ensures that the distribution 
of the process converges exponentially fast to a unique limit for any starting value X0, and has two important 
statistical implications. First, the choice of the initial value X0 is negligible since its impact on the distribution of 
the process decreases exponentially fast. This is relevant, especially when the process is only partially observed, 
since X0 is usually not known. Second, there is a correspondence of “time averages along trajectories” and “space 
averages across trajectories” of geometrically ergodic systems, see, e.g., [2,17]. This means that quantities related to 
the distribution of the process can be estimated from a single path simulated over a sufficiently large time horizon 
instead of relying on repeated simulations of trajectories. For the importance of this feature in statistical inference 
algorithms, we refer, e.g., to [12]. Euler-Maruyama type methods may not provide these features as they tend to lose 
the Lyapunov structure of the SDE [2,45]. In particular, here we illustrate that they react sensitively to the initial 
condition X0, and that they may yield poor approximations of the underlying invariant density of the process.

– The last structural properties we are focusing on are features linked to oscillatory dynamics such as amplitudes, 
frequencies and phases of oscillations. Already in the deterministic scenario it has been observed that Euler type 
methods may not preserve amplitudes and frequencies of oscillations, see, e.g., [13,23]. Similar findings have been 
made for Euler-Maruyama type methods in the stochastic case. For example, it has been proved that the Euler-
Maruyama method does not preserve the growth rate of the second moment of linear stochastic harmonic oscillators, 
overshooting the amplitudes of the underlying oscillations, even for arbitrarily small time steps � [66]. Similar 
non-preserving results of oscillation amplitudes have been observed for non-linear, ergodic and higher-dimensional 
stochastic oscillators [2,14,16]. Taming/truncating perturbations do not improve this behaviour. Even worse, taming 
perturbations may also lead to a non-preservation of frequencies of oscillations [33,34]. This lack of amplitude and 
frequency preservation is also confirmed by our numerical experiments on the FHN model (2). Moreover, we find 
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that Euler-Maruyama type methods may also not preserve phases of oscillations. This poor behaviour is linked to 
the non-preservation of geometric ergodicity.

Here, we propose to apply the splitting technique, an approach that addresses all previously listed issues. The general idea 
of this method is to split the SDE of interest into exactly solvable subequations, to derive their solutions, and to compose 
them in a suitable way. We refer to [7,46] for a thorough discussion of splitting methods for ordinary differential equations 
(ODEs) and to [1–3,9,11,14,39,49,52,56,62] for articles considering extensions to SDEs. Note that it is often possible to split 
the differential equation under consideration into different sets of subequations, the choice of the most useful set depending 
on the problem to be solved. For the class of SDEs with additive noise, where the drift F consists of a linear and a non-
linear term, i.e., F (X(t)) = A X(t) + N(X(t)), as in Equation (1), the idea is to exclude the nonlinear term N(X(t)) into a 
deterministic differential subequation and to treat the remaining linear term A X(t) via a stochastic differential subequation. 
In this article, we exploit properties of the exact solutions of both subequations, as illustrated on the FHN model (2). When 
N is globally Lipschitz continuous and uniformly bounded, this idea has been applied to the Jansen and Rit neural mass 
model in [2], and for locally Lipschitz N it has been applied to the Allen-Cahn equation in [11].

We illustrate that splitting methods may be able to deal with mean-square convergence issues arising from superlin-
early growing coefficients. In particular, in Lemma 2, we prove the boundedness of the moments of the proposed splitting 
method. This result is the key to establish its mean-square convergence. In Theorem 2, we use Tretyakov’s and Zhang’s “Fun-
damental mean-square convergence theorem for SDEs with locally Lipschitz coefficients” [67] to prove that the splitting 
method converges with mean-square order 1. This is in agreement with the convergence rate of comparable known split-
ting methods in the globally Lipschitz scenario [2,3,49], and with standard methods such as the Euler-Maruyama method in 
the case of additive noise [37]. Moreover, we address the fact that splitting methods may also be able to tackle the problems 
arising from degenerate noise structures. In particular, in Theorem 3, we show that the proposed splitting method is 1-step 
hypoelliptic and yields non-degenerate multivariate normal transition distributions for any time step �, provided that the 
stochastic subequation of the splitting framework is chosen to be hypoelliptic. This may be beneficial for likelihood-based 
inference. Furthermore, in Theorem 4, we prove that the constructed method satisfies a discrete Lyapunov condition, and 
is thus geometrically ergodic, for any time step �. This result requires an assumption on the solution of the deterministic 
subequation defined via N(X(t)) and that 

∥∥e A�
∥∥< 1, where the matrix norm is induced by the Euclidean norm. Moreover, 

in Corollary 1, we show that the second moment of the splitting method is asymptotically bounded by a constant which 
is independent of the time step size � and the number of time steps i. This result holds if, in addition, the logarithmic 
norm [63,65] of the matrix A is strictly negative. In the one-dimensional case, some of the involved expressions simplify 
such that, in Corollary 2, we obtain a precise closed-form (asymptotic) bound of the second moment of the proposed splitting 
method. This bound is illustrated on a cubic one-dimensional model problem with drift given by F (X(t)) = −X3(t) [29,45]. 
In addition, we illustrate the proposed splitting method on the stochastic FHN model (2) and show through a variety of 
numerical experiments that it preserves the qualitative dynamics of neuronal spiking, in particular, amplitudes, frequencies
and phases of the underlying oscillations even for large time steps �.

The article is organised as follows. In Section 2, we introduce necessary mathematical preliminaries and notations, and 
we discuss equations of interest and relevant properties. In Section 3, we present the proposed splitting method. In Sec-
tion 4, we establish its mean-square convergence. In Section 5, we prove its 1-step hypoellipticity, establish its geometric 
ergodicity, derive an (asymptotic) second moment bound and illustrate these results on a one-dimensional cubic model 
problem. In Section 6, we apply the proposed splitting approach to the stochastic FHN model (2). In Section 7, we provide a 
variety of numerical experiments, illustrating the theoretical results and reporting comparisons with different tamed/trun-
cated variants of the Euler-Maruyama method. Conclusions are given in Section 8.

2. Model and properties

Throughout, the following notations are used.

Notation. Let x, y ∈ Rd be two generic vectors. Then xl denotes the l-th entry of x, x� denotes the transpose of x,
‖x‖ = (x2

1 + . . . + x2
d)1/2 the Euclidean norm of x and (x, y) = x1 y1 + . . . + xd yd the scalar product of x and y. 

Further, let A, B ∈Rd×d be two generic matrices. Then alj denotes the component in the l-th row and j-th column of A, A�
the transpose of A, 0d the d-dimensional zero vector and Id the d × d-dimensional identity matrix. Moreover, we denote 
by ‖A‖ =√

λmax(A� A) the matrix norm which is induced by the Euclidean norm, where λmax(A) is the largest eigenvalue 
of A, and with μ(A) = λmax((A + A�)/2) the real-valued logarithmic norm which results from the Euclidean norm and its 
induced matrix norm.

Let (	, F , P ) be a complete probability space with filtration (F(t))t∈[0,T ] . Further, let (W (t))t∈[0,T ] be a m-dimensional 
Wiener process defined on that space and adapted to (F(t))t∈[0,T ] . We consider the d-dimensional autonomous SDE of 
additive noise type (1)

dX(t) = F (X(t))dt + �dW (t) := [
A X(t) + N(X(t))

]
dt + �dW (t), X(0) = X0,
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where t ∈ [0, T ], T > 0, A ∈ Rd×d , � ∈ Rd×m , F : Rd → Rd and N : Rd → Rd are locally Lipschitz continuous. The ini-
tial value X0 is an F(0)-measurable Rd-valued random variable which is independent of (W (t))t∈[0,T ] and such that 
E 
[‖X0‖2p

]
< ∞ for all p ≥ 1.

Conditions required to ensure the existence of a unique strong solution of SDE (1), which is regular in the sense of [35], 
i.e., it is defined on the entire interval [0, T ] such that sample paths do not blow up to infinity in finite time, are, e.g., 
discussed in [4,35,38,42]. Here, we follow the setting in [30,33,67] and suppose that the drift satisfies a global one-sided 
Lipschitz condition and is allowed to grow polynomially at infinity. It suffices to place these conditions on N:

Assumption 1.

(A1) The function N is globally one-sided Lipschitz continuous, i.e., there exists a constant c1 > 0 such that

(x − y, N(x) − N(y)) ≤ c1 ‖x − y‖2 , ∀ x, y ∈Rd.

(A2) The function N grows at most polynomially, i.e., there exist constants c2 > 0 and χ ≥ 1 such that

‖N(x) − N(y)‖2 ≤ c2(1 + ‖x‖2χ−2 + ‖y‖2χ−2)||x − y||2, ∀ x, y ∈ Rd.

Assumption 1 also ensures the finiteness of the moments of the solution of (1) [25,35,67,73]. In particular, there exists a 
constant K (T , p) > 0 such that

E

[
sup

0≤t≤T
‖X(t)‖2p

]
≤ K (T , p)

(
1 +E

[
‖X0‖2p

])
. (3)

Moreover, the process (X(t))t∈[0,T ] is a Markov process. Denoting B(Rd) the Borel sigma-algebra on Rd , its transition 
probability is defined as

Pt(A, x) := P (X(t) ∈ A|X(0) = x) , (4)

where A ∈ B(Rd). This corresponds to the probability that the process reaches a Borel set A ⊂ Rd at time t , provided that 
it started in x ∈Rd at time 0 < t .

2.1. Noise structure: ellipticity and hypoellipticity

Depending on the noise structure, two classes of models are obtained. The first class is called elliptic and corresponds 
to SDEs with a non-degenerate diffusion matrix, i.e., ��� is of full rank. In particular, we consider the case d = m and a 
diagonal matrix � = diag[σ1, . . . , σd] with entries σ j > 0 for j = 1, . . . , d.

The second class corresponds to SDEs with degenerate diffusion matrix, as it naturally occurs in many application models. 
Following the notion in [19], we consider m = d − 1 and � given by

� :=
(

0�
d−1
�

)
, (5)

where � = diag[σ1, . . . , σd−1] ∈ R(d−1)×(d−1) is a diagonal matrix with entries σ j > 0 for j = 1, . . . ,d − 1. The first com-
ponent of the solution (X(t))t∈[0,T ] is called smooth, since it is not directly affected by the noise. The remaining d − 1
components are called rough, because the noise acts directly on them. In this scenario, SDE (1) is often hypoelliptic. It 
means that the transition probability (4) admits a smooth density, even though ��� is not of full rank. This is the case 
when the SDE satisfies the weak Hörmander condition, based on the concept of Lie-brackets [55]. In [19], it was shown 
that a necessary and sufficient condition for the SDE to meet the weak Hörmander condition is that at least one of the 
rough coordinates of the process (X(t))t∈[0,T ] appears in the first component F1(X(t)) of the drift. That is, there exists 
j ∈ {1, . . . , d − 1} such that(

∂r F1(x),σ j
)

�= 0, ∀x ∈Rd, (6)

where σ j denotes the j-th column vector of � and ∂r F1(x) := (∂x2 F1(x), . . . , ∂xd F1(x))� is the vector of partial derivatives 
of the first entry of the drift with respect to the rough components. This setting can be extended to multiple smooth 
coordinates by requiring that at least one of the rough coordinates enters those components of the drift, where noise does 
not directly act upon.
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2.2. Lyapunov structure: geometric ergodicity

Here, a particular interest lies in SDEs of type (1) where the drift F (X(t)) satisfies the following dissipativity condition

(F (x), x) ≤ α − δ ‖x‖2 , ∀ x ∈Rd, (7)

where α, δ > 0. Condition (7) ensures that the function L :Rd → [1, ∞) defined by L(x) := 1 + ‖x‖2 is a Lyapunov function 
for (1), see [45]. That is L(x) → ∞ as ‖x‖ → ∞, and there exist constants ρ, η > 0 such that

L{L(x)} ≤ −ρL(x) + η, (8)

where L is the generator of the SDE given by

L{g(x)} =
d∑

l=1

Fl(x)
∂ g

∂xl
(x) + 1

2

d∑
l, j=1

[
���]

l j

∂2 g

∂xl∂x j
(x),

for sufficiently smooth functions g : Rd → R. The existence of a Lyapunov function satisfying (8) is the key to establish 
the geometric ergodicity of the solution of (1). This property means that the distribution of the Markov process (X(t))t∈[0,T ]
converges exponentially fast to a unique invariant distribution π , satisfying

π(A) =
∫
Rd

Pt(A, x)π(dx), ∀ A ∈ B(Rd), t ∈ [0, T ].

In particular, if SDE (1) is elliptic, the existence of a Lyapunov function meeting Condition (8) suffices to establish the 
geometric ergodicity of (X(t))t∈[0,T ] . If SDE (1) is not elliptic, the process is geometrically ergodic, if, in addition to fulfilling 
Condition (8), it is hypoelliptic and satisfies the irreducibility condition Pt(A, x) > 0 for all open sets A ∈ B(Rd) and 
x ∈ Rd . The reader is referred to [45] and the references therein for further details.

3. Splitting method

Consider a discretised time interval [0, T ] with equidistant time steps � = ti − ti−1 ∈ (0, �0], �0 ∈ (0, 1), i = 1, . . . , n, 
where t0 = 0 and tn = T . Throughout, we denote by ( X̃(ti))i=0,...,n a numerical solution of SDE (1), approximating the 
process (X(t))t∈[0,T ] at ti , where X̃(0) := X0.

A numerical splitting solution is obtained based on the following three steps [7,46]:

(i) Split the equation of interest into exactly solvable subequations, which may consist of deterministic and/or stochastic 
dynamical systems;

(ii) Derive the exact solutions of these subequations;
(iii) Compose the derived solutions in a proper way.

In this section, the following splitting strategy is proposed for SDEs of type (1).

Step (i): Choice of the subequations. To make use of the treatable underlying stochastic linear dynamics, we propose to split 
Equation (1) into the following two subequations

dX [1](t) = A X [1](t)dt + �dW (t), X [1](0) = X [1]
0 , t ∈ [0, T ], (9)

dX [2](t) = N(X [2](t))dt, X [2](0) = X [2]
0 , t ∈ [0, T ]. (10)

This splitting strategy is an extension of the method presented in [2], where the authors consider a globally Lipschitz Hamil-
tonian type equation with uniformly bounded non-linear terms. Our method considers a more general class of coefficients 
N(X(t)), including functions which are allowed to grow polynomially at infinity according to Assumption 1.

Step (ii): Exact solution of the subequations. In the following, we discuss the subequations (9) and (10), and denote by 
ϕ[k]

t (X0), k = 1, 2, their exact solutions (flows) at time t and starting from X0. The first subequation (9) is a linear SDE. 
It can be solved exactly, even when the dimension d is large and independent of whether the equation has an elliptic or 
hypoelliptic noise structure [5,42]. In particular, the exact solution of (9) is given by

X [1](t) = e At X [1]
0 +

t∫
e A(t−s)� dW (s). (11)
0
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The Itô integral in (11) is normally distributed with mean 0d . Moreover, using Itô’s isometry and the fact that the compo-
nents of the Wiener process are independent, its d × d-dimensional covariance matrix is given by

C(t) =
t∫

0

e A(t−s)���(e A(t−s))� ds. (12)

Hence, paths of (9) can be simulated exactly at the discrete time points ti . In particular,

ϕ[1]
� (X [1](ti−1)) := X [1](ti) = e A� X [1](ti−1) + ξi−1, i = 1, . . . ,n, (13)

where the ξi−1 are independent and identically distributed d-dimensional Gaussian vectors with mean 0d and covariance 
matrix C(�) given by (12).

Due to (A1) of Assumption 1, the global solution of the second subequation (10) exists, i.e., it is defined on the entire 
interval [0, T ] such that it does not blow up to infinity in finite time [27]. At the discrete time points ti , we have

ϕ[2]
� (X [2](ti−1)) := X [2](ti) = f (X [2](ti−1);�), i = 1, . . . ,n, (14)

where f :Rd →Rd denotes the exact solution of Equation (10).

Remark 1. To establish the boundedness of the moments (Lemma 2), the Lyapunov condition (Theorem 4) and the asymp-
totic second moment bound (Corollary 1 and 2), we exploit properties of the exact solution f of Equation (10). These will 
be illustrated on a cubic model problem and the FHN model (2) in Section 5 and Section 6, respectively. However, note that 
some of the results presented in the following are formulated with conditions not involving f directly (see Lemma 1 on 
the mean-square consistency and Theorem 3 on the 1-step hypoellipticity). Therefore, these results would also hold when a 
numerical method to approximate the solution of Equation (10) is used. We refer to [24,27] for an exhaustive discussion of 
numerical methods for locally Lipschitz ODEs.

Step (iii): Composition of the exact solutions. To finally obtain a numerical solution of SDE (1), the exact solutions (13) and 
(14) of the subequations (9) and (10) are composed in every iteration step. In particular, we investigate the following explicit 
method

X̃LT(ti) =
(
ϕ[1]

� ◦ ϕ[2]
�

)(
X̃LT(ti−1)

)= e A� f ( X̃LT(ti−1);�) + ξi−1, (15)

which is based on the Lie-Trotter (LT) composition approach [68].

Remark 2. The matrix exponential e A� and the covariance matrix C(�) required in (15) have to be precomputed only 
once for a given time step �. Moreover, one can simulate the ξi−1, i = 1, . . . , n, by sampling from a multivariate normal 
distribution, using a Cholesky decomposition of the covariance matrix C(�). For simulation methods, which provide a path 
coherent with the corresponding path of the underlying Wiener process, we refer to [18].

4. Mean-square convergence

In this section, mean-square convergence of order 1 is proved for the constructed splitting method. It has been observed 
in the globally Lipschitz case that splitting methods have the same convergence order as the standard Euler-Maruyama 
method, i.e., order 1 in the case of additive noise, see, e.g., [2,3,49]. We extend this result to the one-sided Lipschitz case.

Throughout this section, K denotes a generic constant, which may depend on T , p and �0, but is independent of �
and i.

4.1. Required background

To establish mean-square convergence, we rely on Theorem 2.1 of [67], which provides an extension of Milstein’s funda-
mental theorem on the mean-square order of convergence for globally Lipschitz coefficients [48] (see also Theorem 1.1 in 
[50]) to the considered setting specified in Assumption 1. To facilitate the illustration of our results, we recall this statement 
in Theorem 1 below, after defining the required ingredients of mean-square consistency and boundedness of moments.

Let Xti−1,x(ti) denote the true solution at time ti starting from x at time ti−1, i.e., X(ti−1) = x, and X̃ti−1,x(ti) the one-
step approximation used to construct a numerical solution X̃(ti). In particular, the one-step approximation of the numerical 
method discussed in the previous section is defined by (15), where X̃LT(ti−1) is replaced by x.

Definition 1. The one-step approximation X̃ti−1,x(ti) of a numerical solution X̃(ti) of SDE (1) is mean-square consistent of 
order q2 − 1/2, if for some p ≥ 1, there exist α ≥ 1, �0 > 0 and K > 0 such that for arbitrary ti , i = 1, . . . , n, x ∈Rd , and all 
� ∈ (0, �0], it holds that
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∥∥E [Xti−1,x(ti) − X̃ti−1,x(ti)
]∥∥≤ K

(
1 + ‖x‖2α

)1/2
�q1 ,(

E
[∥∥Xti−1,x(ti) − X̃ti−1,x(ti)

∥∥2p
])1/(2p) ≤ K

(
1 + ‖x‖2αp

)1/(2p)

�q2 ,

with q2 ≥ 1/2 and q1 ≥ q2 + 1/2.

Besides mean-square consistency, the boundedness of the moments of the numerical solution has to be proved. In the 
globally Lipschitz case, this is guaranteed by the linear growth bounds of the coefficients.

Definition 2. A numerical solution X̃(ti) of SDE (1) has bounded moments, if for any p ≥ 1, there exist �0 > 0 and K > 0
such that for all � ∈ (0, �0] and i = 0, . . . , n, it holds that

E
[∥∥ X̃(ti)

∥∥2p
]

≤ K
(

1 +E
[
‖X0‖2p

])
.

Based on the above defined ingredients, the following theorem guarantees mean-square convergence.

Theorem 1 (Theorem 2.1 in Tretyakov and Zhang (2013) [67]). Let ̃X(ti) denote a numerical solution of SDE (1) at time ti starting at 
X0 , constructed using the one-step approximation ̃Xti−1,x(ti). Further, let Assumption 1 hold. If

(i) The one-step approximation ̃Xti−1,x(ti) is mean-square consistent of order q2 − 1/2 in the sense of Definition 1.
(ii) The numerical method ̃X(ti) has bounded moments in the sense of Definition 2.

Then, the numerical method ̃X(ti) is mean-square convergent of order q2 −1/2, i.e., for any n and i = 0, . . . , n, the following inequality 
holds: (

E
[∥∥X(ti) − X̃(ti)

∥∥2p
])1/(2p) ≤ K

(
1 +E

[
‖X0‖2pc

])1/(2p)

�q2−1/2,

where K > 0 and c ≥ 1.

4.2. Mean-square convergence of the splitting method

In the following, we prove the required Conditions (i) and (ii) of Theorem 1 for the constructed splitting method.
Condition (i) can be proved in a similar fashion as Lemma 2.1 in [49] (globally Lipschitz case) and Lemma 3.2 in [67,73]

(locally Lipschitz case). These proofs rely on the mean-square consistency of the Euler-Maruyama method, which is given 
by

X̃EM(ti) = X̃EM(ti−1) + F ( X̃EM(ti−1))� + �
√

�ψi−1, (16)

where the ψi−1 ∼ N (0m, Im), i = 1, . . . , n, are independent and identically distributed m-dimensional standard Gaussian 
vectors [37,50].

Lemma 1 (Mean-square consistency). Let ̃XLT
ti−1,x(ti) be the one-step approximation of the splitting method defined through (15) and 

let Assumption 1 hold. Further, assume that the drift F (x) has continuous first and second order derivatives in x which satisfy a 
polynomial growth condition of the form (A2). Then, X̃LT

ti−1,x(ti) is mean-square consistent of order 1 in the sense of Definition 1. In 
particular, q1 = 2 and q2 = 3/2.

Proof. Consider first the one-step approximation

X̃EM
ti−1,x(ti) = x + F (x)� + �

√
�ψi−1 (17)

of the Euler-Maruyama method (16) applied to SDE (1). Since we consider the case of additive noise and (A2) holds for 
the drift F (x) = Ax + N(x) by assumption of Lemma 1, it follows from the proof of Lemma 3.2 in [73] that (17) satisfies 
Definition 1 with q1 = 2, q2 = 3/2. Thus, it suffices to compare the splitting and Euler-Maruyama methods.

Since the drift of the stochastic subequation (9) of the splitting framework grows linearly, using again Lemma 3.2 in [73]
(see also Section 1.1.5 in [50]), its solution can be expressed as

ϕ[1]
� (x) = x + Ax� + �

√
�ψi−1 + rs(x,�), (18)

where rs(x, �) satisfies the inequalities of Definition 1 for α = 1, q1 = 2 and q2 = 3/2. In particular, we have that
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‖E [rs(x,�)]‖ ≤ K
(

1 + ‖x‖2
)1/2

�2,(
E
[
‖rs(x,�)‖2p

])1/(2p) ≤ K
(

1 + ‖x‖2p
)1/(2p)

�3/2.

(19)

Similarly, since N(x) satisfies (A2), the solution of the deterministic subequation (10) of the splitting framework can be 
expressed as

ϕ[2]
� (x) = x + N(x)� + rd(x,�), (20)

where

‖rd(x,�)‖ ≤ K
(

1 + ‖x‖2α
)1/2

�2, (21)

for some α ≥ 1. The one-step approximation of the Lie-Trotter splitting method is then obtained by composing the above 
expressions (18) and (20), yielding

X̃LT
ti−1,x(ti) = (ϕ[1]

� ◦ ϕ[2]
� )(x) = x + N(x)� + rd(x,�) + Ax� + AN(x)�2 + Ard(x,�)�

+�
√

�ψi−1 + rs
(
x + N(x) + rd(x,�),�

)
.

Thus, the difference between the splitting and Euler-Maruyama methods becomes

rLT(x,�) := X̃LT
ti−1,x(ti) − X̃EM

ti−1,x(ti)

= rd(x,�) + AN(x)�2 + Ard(x,�)� + rs
(
x + N(x) + rd(x,�),�

)
.

Using (A2) and the inequalities (19) and (21), it follows that rLT(x, �) also satisfies the inequalities in Definition 1 for q1 = 2, 
q2 = 3/2 and some α ≥ 1. This concludes the proof. �

Now, we establish the boundedness of the moments of the splitting method. Intuitively, this is guaranteed by the use 
of the global exact solution of the locally Lipschitz ODE (10), which is defined on the entire interval [0, T ] without any 
explosion occurring in finite time. Thus, the iterative composition of this function with the solution of the linear SDE via 
the Lie-Trotter method (15) does not cause an explosion of the moments in finite time either. The formal proof of this result, 
provided in Lemma 2, is done in the spirit of the proof of Proposition 3 in [11].

Lemma 2 (Boundedness of moments). Let ̃XLT(ti) be the splitting method defined through (15) and let Assumption 1 hold. Then, ̃XLT(ti)

has bounded moments in the sense of Definition 2.

Proof. Consider the linear SDE

dZ(t) = A Z(t)dt + �dW (t), Z(0) = Z0 = 0d.

Its exact solution is given by

Z(t) =
t∫

0

e A(t−s)�dW (s),

where Z(t) is normally distributed with mean vector 0d and covariance matrix C(t) as defined in (12). Consequently, the 
moments of Z(t) are bounded, i.e., for any p ≥ 1 there exists K Z (T , p) > 0 such that

E

[
sup

0≤t≤T
‖Z(t)‖2p

]
≤ K Z (T , p). (22)

Now, define the process R(ti) := X̃LT(ti) − Z(ti). It suffices to prove the boundedness of the moments of R(ti). Note that 
in a discretised regime we have that Z(ti) = e A� Z(ti−1) + ξi−1. Thus,

‖R(ti)‖ =
∥∥∥e A�

(
f ( X̃LT(ti−1);�) − Z(ti−1)

)∥∥∥
=
∥∥∥e A�

(
f (R(ti−1) + Z(ti−1);�) − f (Z(ti−1);�) + f (Z(ti−1);�) − Z(ti−1)

)∥∥∥ .

Using that 
∥∥e A�x

∥∥≤ ∥∥e A�
∥∥‖x‖ ≤ eμ(A)� ‖x‖ for all x ∈Rd , we obtain

‖R(ti)‖ ≤ eμ(A)� ‖ f (R(ti−1) + Z(ti−1);�) − f (Z(ti−1);�)‖ + eμ(A)� ‖ f (Z(ti−1);�) − Z(ti−1)‖ .
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Since the function N : Rd → Rd satisfies (A1), using the continuous Gronwall Lemma, the function f : Rd → Rd fulfils 
the following global Lipschitz condition

‖ f (x;�) − f (y;�)‖ ≤ ec1� ‖x − y‖ , ∀ x, y ∈Rd,

where the constant c1 is the same as in Assumption (A1), see, e.g., Theorem 1.2.17 in [27]. Moreover, using the Taylor series 
expansion (20) f (x; �) = x + N(x)� + rd(x, �), and applying (A2) and (21), we obtain

‖ f (x;�) − x‖ = ‖�N(x) + rd(x,�)‖ ≤ �‖N(x)‖ + ‖rd(x,�)‖ ≤ c̄(1 + ‖x‖ĉ)�,

where c̄ and ĉ are positive constants. Thus, defining c̃ := max{|μ(A)|, c1} > 0, we get that

‖R(ti)‖ ≤ ec̃� ‖R(ti−1)‖ + ec̃��c̄
(
1 + ‖Z(ti−1)‖ĉ).

Now, we can perform back iteration, obtaining

‖R(ti)‖ ≤ ec̃ti ‖R0‖ + c̄�
i∑

k=1

ec̃k�
(

1 + ∥∥Z(ti−k)
∥∥ĉ
)

≤ ec̃T ‖X0‖ + c̄
(

1 + sup
0≤l≤i−1

‖Z(tl)‖ĉ
)
�

i∑
k=1

ec̃k�,

where we used that R0 = X0, since Z0 = 0d . Using that

�

i∑
k=1

ec̃k� = (ec̃ti − 1)
�ec̃�

ec̃� − 1
≤ (ec̃T − 1)

�0ec̃�0

ec̃�0 − 1
, ∀ � ∈ (0,�0],

we get that

‖R(ti)‖ ≤ ec̃T ‖X0‖ + c̄(ec̃T − 1)
�0ec̃�0

ec̃�0 − 1

(
1 + sup

0≤l≤i−1
‖Z(tl)‖ĉ

)
.

Thus, there exists a constant K (T , �0) > 0 such that

‖R(ti)‖ ≤ K (T ,�0)
(

1 + ‖X0‖ + sup
0≤l≤i−1

‖Z(tl)‖ĉ
)
.

Considering the 2p-th moments and using (22) concludes the proof. �
Based on the above results, we establish the mean-square convergence of the splitting method in the following theorem.

Theorem 2 (Mean-square convergence). Let ̃XLT(ti) be the splitting method defined through (15) and let the assumptions of Theorem 1, 
Lemma 1 and Lemma 2 hold. Then, ̃XLT(ti) is mean-square convergent of order 1.

Proof. The result is a direct consequence of Theorem 1, Lemma 1 and Lemma 2. �
Note that, in contrast to ODEs [23], the mean-square convergence order of splitting methods for SDEs cannot be increased 

by using compositions based on fractional steps. Indeed, to achieve this in the stochastic scenario, higher-order stochastic 
integrals would be required [49]. Thus, the splitting method

X̃S(ti) =
(
ϕ[2]

�/2 ◦ ϕ[1]
� ◦ ϕ[2]

�/2

)(
X̃S(ti−1)

)= f
(

e A� f
(

X̃S(ti−1);�/2
)+ ξi−1;�/2

)
, (23)

which is based on the Strang (S) composition approach [64], is expected to also have mean-square order 1. Nevertheless, 
it has been observed that Strang methods may perform better than Lie-Trotter methods in numerical experiments, possibly 
due to the symmetry of this composition method, see, e.g., [2,13,14,69]. Thus, the Strang method (23) is also considered in 
the numerical experiments reported in Section 7.

5. Structure preservation

The mean-square convergence discussed in the previous section is a limit result for the time discretisation step � going 
to zero over a finite interval. This result does not carry any information about the quality of the numerical method under 
the use of strictly positive time steps �, as always required when implementing any numerical method. In the following, 
we discuss the preservation of important structural properties, focusing on hypoellipticity and ergodicity.
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5.1. Preservation of noise structure and 1-step hypoellipticity

To obtain a discrete analogue of the transition probability (4) introduced in Section 2, we define the k-step transition 
probability of a numerical solution X̃(ti) of SDE (1) as follows

P̃tk (A, x) := P ( X̃(tk) ∈ A| X̃(0) = x), (24)

where A ∈ B(Rd) and x ∈ Rd . Now, assume that SDE (1) is hypoelliptic, i.e., its transition probability (4) has a smooth 
density even though ��� is not of full rank, see Section 2.1. We introduce a discrete version of this property in the 
subsequent definition.

Definition 3 (k-step hypoellipticity). Let X̃(ti) be a numerical solution of (1) and k ∈ N be the smallest k such that its 
transition probability (24) has a smooth density. Then, X̃(ti) is called k-step hypoelliptic.

This means that the numerical method propagates the noise into the smooth component after k iteration steps. The preser-
vation of this property is not an issue when using the numerical method to simulate paths of the SDE over a large enough 
time horizon, as standard methods usually satisfy it for some k. For example, the Euler-Maruyama method has been ob-
served to be 2-step hypoelliptic, see, e.g., Corollary 7.4 in [45].

However, the case k = 1, where we also use the notation

P̃�(A, x) := P ( X̃(ti) ∈ A| X̃(ti−1) = x), (25)

is of crucial relevance when using the numerical method within statistical applications. For example, in the field of 
likelihood-based parameter estimation, explicit numerical methods are used to approximate transition densities [19,47,57]. 
In this regard, a particular interest lies in situations where (25) corresponds to a non-degenerate multivariate normal distri-
bution, i.e., X̃(ti) given X̃(ti−1) is normally distributed with a covariance matrix that reflects the propagation of the noise 
to the smooth components. This is not the case for the Euler-Maruyama method (16), as it yields a degenerate multivariate 
normal transition distribution with conditional covariance matrix given by

Cov( X̃EM(ti)| X̃EM(ti−1)) = ����.

Note that the same degenerate covariance matrix is obtained by tamed/truncated variants of the Euler-Maruyama method 
(see Section 7.1).

In contrast, the conditional covariance matrix of the Lie-Trotter splitting (15) coincides with C(�), as defined in (12). 
Thus, if the stochastic linear subequation (9) of the splitting framework is hypoelliptic, the proposed splitting method yields 
a non-degenerate multivariate normal transition distribution.

Assumption 2. The matrix A is such that SDE (9) is hypoelliptic.

Theorem 3 (1-step hypoellipticity). Let ̃XLT(ti) be the splitting method defined through (15) and let Assumption 2 hold. Then, ̃XLT(ti)

is 1-step hypoelliptic according to Definition 3. Moreover, X̃LT(ti) given X̃LT(ti−1) admits a non-degenerate normal distribution with 
mean vector and covariance matrix given by

E
[

X̃LT(ti)| X̃LT(ti−1)
]

= e A� f ( X̃LT(ti−1);�), Cov( X̃LT(ti)| X̃LT(ti−1)) = C(�),

respectively, where C(�) is defined in (12).

Proof. The fact that X̃LT(ti) given X̃LT(ti−1) is normally distributed with the corresponding mean vector and covariance 
matrix is an immediate consequence of formula (15), recalling that the ξi are Gaussian random vectors with null mean 
and covariance matrix C(�). Moreover, the linear SDE (9) is hypoelliptic by assumption. Thus, its solution (X [1](t))t∈[0,T ]
has conditional covariance matrix C(t) = Cov(X [1](t)|X [1]

0 ) (12) which is of full rank. Since the covariance matrix of the Lie-
Trotter splitting equals C(�), this method is 1-step hypoelliptic according to Definition 3, and thus the normal distribution 
is non-degenerate. �
Remark 3. Note that the 1-step hypoellipticity of the Lie-Trotter splitting (15) and the fact that this method yields a non-
degenerate normal transition distribution according to Theorem 3 hold without requiring any conditions on the nonlinearity 
of SDE (1). Moreover, even though the transition distribution of the Strang splitting (23) is not explicitly available in general, 
this numerical method is expected to be 1-step hypoelliptic too, since it also benefits from the covariance matrix C(�) (12).
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5.2. Preservation of Lyapunov structure and geometric ergodicity

We now assume that SDE (1) is geometrically ergodic. The main task to establish the geometric ergodicity of a numerical 
solution of (1) is to prove a discrete analogue of the Lyapunov condition (8) introduced in Section 2.2.

Definition 4 (Discrete Lyapunov condition). Let L be a Lyapunov function for SDE (1). A numerical solution X̃(ti) of (1) satisfies 
the discrete Lyapunov condition if there exist ρ̃ ∈ (0, 1) and η̃ ≥ 0 such that

E
[
L( X̃(ti))| X̃(ti−1)

]≤ ρ̃L( X̃(ti−1)) + η̃, ∀ i ∈N.

Analogously to the continuous case, this condition implies geometric ergodicity of the numerical method if SDE (1) is 
elliptic. If the equation is not elliptic, in addition to the discrete Lyapunov condition, k-step hypoellipticity and a discrete 
irreducibility condition are required. For further details, the reader is referred to [2,45].

Euler-Maruyama type methods do not preserve this property, especially when the drift of SDE (1) is only locally Lipschitz 
continuous. In particular, the problem does not lie in the preservation of hypoellipticity and irreducibility, but in preserving 
the Lyapunov structure [45]. Consider, for example, the cubic one-dimensional SDE

dX(t) = −X3(t)dt + σdW (t), X(0) = X0. (26)

Since F (x)x = −x4 ≤ 1 − x4 ≤ 2 − 2x2, this SDE satisfies the dissipativity condition (7). Thus, L(x) = 1 + x2 is a Lyapunov 
function satisfying (8) and the process (X(t))t∈[0,T ] is geometrically ergodic. However, it is shown in Lemma 6.3 of [45] that, 
if E[X2

0] ≥ 2/�, the second moment of the Euler-Maruyama method goes to infinity as the time ti grows, since

E

[(
X̃EM(ti)

)2
]

≥E[X2
0] + ti .

Thus, for any fixed time step � > 0 (even when it is chosen to be arbitrarily small), one can find a starting value X0 such 
that the Euler-Maruyama method does not converge to a unique invariant distribution. This also means that for any � > 0
and X0, there is a positive probability of blow-up, as discussed in [27].

In contrast, splitting methods may preserve the Lyapunov structure [2,10,40]. This is also proved for the proposed split-
ting method and the Lyapunov function L(x) = 1 +‖x‖2, under an additional Assumption on the function f and the matrix A, 
respectively.

Assumption 3. There exists a constant c3 ≥ 0 such that for any x ∈Rd , it holds that

‖ f (x;�)‖2 ≤ ‖x‖2 + c3�, ∀� ∈ (0,�0].

Assumption 4. The matrix A is such that 
∥∥e A�

∥∥< 1 for all � ∈ (0, �0].

Theorem 4 (Discrete Lyapunov condition). Let ̃XLT(ti) be the splitting method defined through (15), and let Assumptions 3 and 4 hold. 
Then, ̃XLT(ti) satisfies the discrete Lyapunov condition of Definition 4 with Lyapunov function L(x) = 1 + ‖x‖2 .

Proof. We have that∥∥∥ X̃LT(ti)

∥∥∥2 =
∥∥∥e A� f ( X̃LT(ti−1);�) + ξi−1

∥∥∥2

= f ( X̃LT(ti−1);�)�(e A�)�(e A�) f ( X̃LT(ti−1);�)

+ f ( X̃LT(ti−1);�)�(e A�)�ξi−1 + ξ�
i−1e A� f ( X̃LT(ti−1);�) + ξ�

i−1ξi−1.

Denoting the diagonal entries of the covariance matrix C(�) (12) by c jj(�), taking the expectation, using the fact that 
X̃LT(ti−1) and ξi−1 are independent, that E[ξi−1] = 0d , that E[ξ�

i−1] = 0�
d and that

C̄(�) :=
d∑

j=1

c jj(�) = E[ξ�
i−1ξi−1],

we get that

E

[∥∥∥ X̃LT(ti)

∥∥∥2
]

= E

[∥∥∥e A� f ( X̃LT(ti−1);�)

∥∥∥2
]

+ C̄(�). (27)
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Considering

L( X̃LT(ti)) = 1 +
∥∥∥ X̃LT(ti)

∥∥∥2
,

and using (27) and Assumption 3, we get that

E
[

L( X̃LT(ti))| X̃LT(ti−1)
]

= 1 +
∥∥∥e A� f ( X̃LT(ti−1);�)

∥∥∥2 + C̄(�)

≤ 1 +
∥∥∥e A�

∥∥∥2
(∥∥∥ X̃LT(ti−1)

∥∥∥2 + c3�

)
+ C̄(�) +

∥∥∥e A�
∥∥∥2

=
∥∥∥e A�

∥∥∥2
L( X̃LT(ti−1)) + 1 +

∥∥∥e A�
∥∥∥2

c3� + C̄(�),

where we added 
∥∥e A�

∥∥2
in the inequality. Thus, applying Assumption 4, the discrete Lyapunov condition of Definition 4 is 

satisfied for

ρ̃ =
∥∥∥e A�

∥∥∥2
< 1 and η̃ = 1 +

∥∥∥e A�
∥∥∥2

c3� + C̄(�) > 0,

which proves the result. �
In the following corollary of Theorem 4, we show that the second moment of the splitting method is asymptotically 

bounded by a constant which is independent of T , � and i. In particular, this bound is reached exponentially fast, indepen-
dently of the choice of X0, in agreement with the geometric ergodicity of the splitting method. Moreover, the supremum 
over all ti ∈ [0, ∞) of the second moment of the splitting method X̃LT(ti) is smaller or equal to the maximum of this bound 
and E[‖X0‖2]. These results also require Assumption 3 and an assumption related to the matrix A.

Assumption 5. The matrix A is such that the logarithmic norm μ(A) < 0.

Note that Assumption 5 implies Assumption 4, since 
∥∥e A�

∥∥ ≤ eμ(A)� [65]. However, the converse is not true in general. 
Assumption 5 is, e.g., satisfied for normal matrices, where all eigenvalues have strictly negative real part [63]. Matrices 
contained in this class are, e.g., diagonal ones with strictly negative diagonal entries.

Corollary 1 (Asymptotic second moment bound). Let ̃XLT(ti) be the splitting method defined through (15), and let Assumptions 3 and 
5 hold. Then, there exists a constant K LT∞ > 0, which is independent of T , � and i, such that

lim
ti→∞E

[∥∥∥ X̃LT(ti)

∥∥∥2
]

≤ K LT∞, sup
0≤ti<∞

E

[∥∥∥ X̃LT(ti)

∥∥∥2
]

≤ max
{
E
[
‖X0‖2

]
, K LT∞

}
.

Proof. Recalling (27) from the proof of Theorem 4, and using Assumption 3 and the logarithmic norm, we further obtain

E

[∥∥∥ X̃LT(ti)

∥∥∥2
]

≤ e2μ(A)�

(
E

[∥∥∥ X̃LT(ti−1)

∥∥∥2
]

+ c3�

)
+ C̄(�).

Now, we can perform back iteration, yielding

E

[∥∥∥ X̃LT(ti)

∥∥∥2
]

≤ e2μ(A)tiE
[
‖X0‖2

]
+ c3�

i∑
k=1

e2μ(A)k� + C̄(�)

i−1∑
k=0

e2μ(A)k�.

Using that

i∑
k=1

e2μ(A)k� =
(

1 − e2μ(A)ti

) e2μ(A)�

1 − e2μ(A)�
,

i−1∑
k=0

e2μ(A)k� =
(

1 − e2μ(A)ti

) 1

1 − e2μ(A)�
,

we obtain

E

[∥∥∥ X̃LT(ti)

∥∥∥2
]

≤ e2μ(A)tiE
[
‖X0‖2

]
+
(

1 − e2μ(A)ti

)( c3�e2μ(A)�

1 − e2μ(A)�
+ C̄(�)

1 − e2μ(A)�

)
. (28)
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Applying Assumption 5, yields

lim
ti→∞E

[∥∥∥ X̃LT(ti)

∥∥∥2
]

≤ c3�e2μ(A)�

1 − e2μ(A)�
+ C̄(�)

1 − e2μ(A)�
.

Now, we have that

�e2μ(A)�

1 − e2μ(A)�
≤ − 1

2μ(A)
, ∀ � > 0 and

�

1 − e2μ(A)�
≤ �0

1 − e2μ(A)�0
, ∀ � ∈ (0,�0]. (29)

Moreover, recalling that e A� = Id + �A + O (�2), it follows from (12) that C̄(�) = O (�). This implies the first result.
Now, the inequality (28) can be written as

E

[∥∥∥ X̃LT(ti)

∥∥∥2
]

≤ e2μ(A)ti

(
E
[
‖X0‖2

]
− K LT∞

)
+ K LT∞. (30)

Consider two cases. Case 1: E 
[‖X0‖2] ≥ K LT∞ . Then, using Assumption 5, from (30) it follows that E 

[∥∥ X̃LT(ti)
∥∥2
]

≤
E 
[‖X0‖2]. Case 2: E 

[‖X0‖2]< K LT∞ . Then, similarly, it follows that E 
[∥∥ X̃LT(ti)

∥∥2
]

≤ K LT∞ . This implies the second result. �
Remark 4. Theorem 4 and Corollary 1 can be proved similarly for the Strang splitting method (23).

The one-dimensional case. Consider the case d = 1, � = σ > 0 and A = −a < 0. In this case, the solution of the linear SDE 
(9) corresponds to the Ornstein-Uhlenbeck process

X [1](t) = e−at X [1]
0 + σ

t∫
0

e−a(t−s)dW (s), (31)

with variance (12) given by

C(t) = σ 2

2a
(1 − e−2at). (32)

Thus, due to the specific form of (32), the previously derived bound can be expressed in closed-form for any time ti . In 
particular, the following (asymptotic) bound for the second moment of the splitting method (15) is obtained.

Corollary 2 (Closed-form (asymptotic) second moment bound). Let d = 1, � = σ > 0 and A = −a < 0. Further, let X̃LT(ti) be the 
splitting method defined through (15), and let Assumption 3 be satisfied. Then, it holds that

E
[
( X̃LT(ti))

2
]

≤ K LT(ti, X0) := e−2atiE
[

X2
0

]
+ (1 − e−2ati )

(
c3

2a
+ σ 2

2a

)
,

lim
ti→∞E

[
( X̃LT(ti))

2
]

≤ K LT∞ := c3

2a
+ σ 2

2a
, sup

0≤ti<∞
E
[
( X̃LT(ti))

2
]

≤ max
{
E[X2

0], K LT∞
}

.

Proof. Using (32) and noting that C̄(�) = C(�) and that μ(A) = −a < 0, the results are direct consequences of Corol-
lary 1. �

Note that, for ti = 0, the bound K LT(0, X0) in Corollary 2 coincides with E[X2
0]. Moreover, since a > 0, the distribution 

of (31) converges to a unique limit

X [1](t) D−−−→
t→∞ N

(
0,

σ 2

2a

)
. (33)

Intuitively, this fact, combined with Assumption 3, guarantees the geometric ergodicity of the splitting method obtained via 
Theorem 4, and thus the existence of the asymptotic bound for the second moment reported in Corollary 2.
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Fig. 1. Bound K LT(ti , X0) (grey solid line) as a function of time and asymptotic bound K LT∞ (blue dotted line) of Corollary 2 for SDE (26) (a = 1 and c3 = 1/2) 
with σ = 1/2 and X0 = 2 and X0 = 0 in the left and right panel, respectively. Estimate of E[X2(ti)] (red dashed line) obtained from 105 paths generated 
under the LT splitting. (For interpretation of the colours in the figures, the reader is referred to the web version of this article.)

Cubic model problem. For an illustration of the derived bound, consider again SDE (26). We propose to rewrite this equation 
as

dX(t) =
(
−X(t) + X(t) − X3(t)

)
dt + σdW (t),

and to choose

A = −1 < 0, N(X(t)) = X(t) − X3(t). (34)

The exact solution of the resulting linear SDE (9) is then given by (31) for a = 1, and that of ODE (10) is given by

X [2](t) = f (X [2]
0 ; t) = X [2]

0√
e−2t + (X [2]

0 )2(1 − e−2t)

. (35)

This choice guarantees that all required assumptions are satisfied.

Proposition 1. Let A, N and f be as in (34) and (35), respectively. Then, Assumptions 1–5 are satisfied.

Proof. The proof is given in Appendix A. �
Therefore, the proposed splitting method (15) applied to SDE (26) is not only mean-square convergent, but also geo-

metrically ergodic. In particular, while even for arbitrarily small � one can find X0 such that the second moment of the 
Euler-Maruyama method explodes (see the beginning of Section 5.2), the second moment of the splitting method is bounded 
by K LT(ti, X0), which converges to the constant K LT∞ = 1/4 + σ 2/2 exponentially fast and for any choice of the initial value 
X0, see Corollary 2.

In Fig. 1, we illustrate the derived second moment bound K LT(ti, X0) (grey solid line) of Corollary 2 for SDE (26) as a 
function of the time ti , in comparison with E[X2(ti)] (red dashed line), for X0 = 2 and X0 = 0 in the left and right panel, 
respectively. The latter is estimated based on 105 paths generated under the Lie-Trotter splitting (15). The asymptotic bound 
K LT∞ of Corollary 2 is indicated by the blue dotted line.

Remark 5. For SDE (26), an immediate choice of the subequations of the splitting framework would also be A = 0 and 
N(X(t)) = −X3(t). For this choice, Assumption 1 related to the locally Lipschitz function N is satisfied, and thus the resulting 
splitting method (15) is mean-square convergent. Also, Assumptions 2 and 3 are satisfied. However, since e A� = 1 and 
μ(A) = 0, Assumptions 4 and 5 do not hold, asymptotic bounds cannot be derived, and the preservation of ergodicity 
remains an open question. In particular, in contrast to the proposed approach (see formulas (31) and (33)), the distribution 
of the solution X [1](t) = X [1]

0 + σ W (t) of the resulting linear SDE (9) does not converge to a unique limit as t tends to 
infinity.

6. Stochastic FitzHugh-Nagumo model

In this section, the proposed splitting strategy is illustrated on the stochastic FHN model, a widely used neuronal model. 
It is given by the 2-dimensional SDE (2) with solution X(t) := (V (t), U (t))� for t ∈ [0, T ]. This equation has been used to 
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model the firing activity of single neurons [20,54]. If the membrane voltage of the neuron is sufficiently high, it releases 
an action potential, also called spike. The first component (V (t))t∈[0,T ] describes the membrane voltage of the neuron at 
time t , while the second component (U (t))t∈[0,T ] corresponds to a recovery variable modelling the channel kinetics. The 
parameter ε > 0 corresponds to the time scale separation of the two components and β ≥ 0 and γ > 0 are position and 
duration parameters of an excitation, respectively.

6.1. Properties of the FHN model

If both noise intensities σ1 and σ2 are strictly positive, the model is elliptic. If σ1 = 0, the diffusion term becomes 
�dW (t) = (0, σ2)

�dW2(t), corresponding to the notation in (5). In this case, due to the U -component entering the first 
entry of the drift F (X(t)), the model is hypoelliptic. This is confirmed by the fact that

∂u F1(x)σ2 = −σ2

ε
�= 0, (36)

guaranteeing Condition (6). We refer to [6,8,34,53] and to [19,41] for the consideration of the elliptic and hypoelliptic FHN 
model, respectively, and to [15] for an investigation of both cases.

Moreover, it has been proved that the FHN model is ergodic, see, e.g., [8,41]. Here, we study this property under a 
restricted parameter space, for which SDE (2) satisfies the dissipativity condition (7) such that the function L(x) = 1 + ‖x‖2

is a Lyapunov function meeting Condition (8).

Proposition 2 (Dissipativity of the FHN model). Let∣∣∣∣γ − 1

ε

∣∣∣∣< 2 min

{
1

ε
,1 − τ

}
,

for some arbitrarily small τ ∈ (0, 1). Then, the drift F of the FHN model (2) satisfies the dissipativity condition (7).

Proof. We have that

(F (x), x) =
(( 1

ε (v − v3 − u)

γ v − u + β

)
,

(
v
u

))
= 1

ε
(v2 − v4) + vu(γ − 1

ε
) − u2 + βu.

Defining c := |γ − 1/ε|, using 2vu ≤ v2 + u2 and v2 − v4 ≤ 1 − v2, applying Young’s inequality βu ≤ u2τ̄ /2 + β2/2τ̄ , for 
some arbitrarily small τ̄ > 0, and setting τ = τ̄ /2, we obtain

(F (x), x) ≤ 1

ε
(1 − v2) + c

2
(v2 + u2) − u2 + τu2 + β2

2τ̄

= −v2(
1

ε
− c

2
) − u2(1 − τ − c

2
) + 1

ε
+ β2

2τ̄
.

Since

1

ε
− c

2
> 0 and 1 − τ − c

2
> 0,

by assumption, it follows that

(F (x), x) ≤ α − δ ‖x‖2 ,

where α = 1/ε + β2/2τ̄ > 0 and δ = min{1/ε − c/2, 1 − τ − c/2} > 0. �
Note that the condition on the model parameters in Proposition 2 is satisfied for parameter settings which may be relevant 
in applications, see Section 7. For example, it is met when γ = 1/ε .

6.2. Splitting method for the FHN model

The FHN model (2) is a semi-linear SDE of type (1). The choice of the matrix A and the function N(X(t)) is not unique. 
While the locally Lipschitz term −V 3(t)/ε and the constant β have to enter into N(X(t)), the goal is to allocate the 
remaining terms such that as many of the introduced assumptions as possible are satisfied. For the splitting method to 
satisfy Assumption 2, and thus to be 1-step hypoelliptic, the term −U (t)/ε of the first component of the drift must enter 
into A X(t). Moreover, shifting the term γ V (t) to A X(t) leads to a decoupling of the resulting ODE (10) such that its 
global solution can be derived exactly and proved to satisfy Assumption 3. Thus, there are four strategies left, depending 
on whether the remaining terms V (t)/ε and −U (t) enter into A X(t) or N(X(t)). The only case where the matrix A meets 
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Assumption 4 (under a restricted parameter space) is when −U (t) appears in A X(t) and V (t)/ε in N(X(t)). Similar to the 
proposed splitting of SDE (26), the resulting linear SDE (9) is then geometrically ergodic. In particular, it corresponds to a 
version of the well-studied damped stochastic harmonic oscillator whose matrix exponential e At and covariance matrix C(t)
have manageable expressions. Therefore, we propose to choose the matrix A and the function N as follows

A =
(

0 − 1
ε

γ −1

)
, N(X(t)) =

(
1
ε

(
V (t) − V 3(t)

)
β

)
. (37)

The resulting linear damped stochastic harmonic oscillator (9) with A as in (37) is weakly-, critically- or over-damped, 
depending on whether

κ := 4γ

ε
− 1 (38)

is positive, zero or negative, respectively. This terminology, along with the choice of κ , is linked to the roots of the charac-
teristic function of the underlying deterministic equation, see, e.g., Chapter 5 in [72]. In particular, the sign of κ determines 
the shape of the exponential of the matrix A. If κ = 0,

e At = e− t
2

(
1 + t

2 − t
ε

εt
4 1 − t

2

)
.

If κ > 0,

e At = e− t
2

(
cos( 1

2

√
κt) + 1√

κ
sin( 1

2

√
κt) − 2

ε
√

κ
sin( 1

2

√
κt)

2γ√
κ

sin( 1
2

√
κt) cos( 1

2

√
κt) − 1√

κ
sin( 1

2

√
κt)

)
.

If κ < 0, the sine and cosine terms of the above expressions can be rearranged using the relations

cos

(
1

2

√
κt

)
= cosh

(
1

2

√−κt

)
and

1√
κ

sin

(
1

2

√
κt

)
= 1√−κ

sinh

(
1

2

√−κt

)
. (39)

Moreover, the covariance matrix C(t) (12) also depends on the sign of κ and is given as follows. If κ = 0,

c11(t) = e−t

4ε2

(
4σ 2

2

(−2 + 2et − t(2 + t)
)+ ε2σ 2

1

(−10 + 10et − t(6 + t)
))

,

c12(t) = c21(t) = e−t

8ε

(
−4σ 2

2 t2 + ε2σ 2
1

(
4et − (2 + t)2

))
,

c22(t) = e−t

16

(
4σ 2

2

(−2 + 2et − (t − 2)t
)+ ε2σ 2

1

(−2 + 2et − t(2 + t)
))

.

If κ > 0,

c11(t) = εe−t

2γ κ

(
−4γ

ε2
(σ 2

1 γ + σ 2
2

1

ε
) + κet(σ 2

1 (1 + γ

ε
) + σ 2

2
1

ε2
)

+
(
σ 2

1 (1 − 3γ

ε
) + σ 2

2
1

ε2

)
cos(

√
κt) − √

κ(σ 2
1 (1 − γ

ε
) + σ 2

2
1

ε2
) sin(

√
κt)

)
,

c12(t) = c21(t) = εe−t

2κ

(
σ 2

1 κet − 2

ε
(σ 2

1 γ + σ 2
2

1

ε
) +

(
σ 2

1 (1 − 2γ

ε
) + 2σ 2

2
1

ε2

)
cos(

√
κt) − σ 2

1

√
κ sin(

√
κt)

)
,

c22(t) = εe−t

2κ

(
(σ 2

2
1

ε
+ σ 2

1 γ )
(

cos(
√

κt) − 4γ

ε
+ κet

)
+ (σ 2

2
1

ε
− σ 2

1 γ )
√

κ sin(
√

κt)

)
.

If κ < 0, the relations (39) can again be used to rewrite the above expressions accordingly. Note that parameter configura-
tions typically considered in the literature fulfil κ > 0, see, e.g., [15,19,41]. This is in agreement with the fact that, under 
κ > 0, SDE (9) models a weakly damped system which describes oscillatory dynamics.

The exact solution of the resulting ODE (10) with N(X(t)) as in (37) reads as

X [2](t) = f (X [2]
0 ; t) =

⎛⎜⎜⎝
V [2]

0√
e− 2t

ε +(V [2]
0 )2

(
1−e− 2t

ε

)
βt + U [2]

0

⎞⎟⎟⎠ . (40)

The corresponding Lie-Trotter splitting method for the FHN model (2) is then given by (15), where the matrix exponential 
e A� , the covariance matrix C(�) and the function f are as reported above.
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6.3. Properties of the splitting method for the FHN model

In the following proposition, we verify Assumptions 1–4.

Proposition 3. Let A, N and f be as in (37) and (40), respectively. Then, the following statements hold.

(i) N satisfies Assumption 1.
(ii) A satisfies Assumption 2.

(iii) If β = 0, then f satisfies Assumption 3.
(iv) If γ = 1/ε , then A satisfies Assumption 4.

Proof. The proof is given in Appendix B. �
Therefore, the proposed splitting method (15) applied to the FHN model (2) is mean-square convergent of order 1, according 
to Theorem 2.

Applying Theorem 3, the method is also 1-step hypoelliptic and yields a non-degenerate Gaussian distribution with 
covariance matrix C(�) reported above. This matrix is thus of full rank, even if σ1 = 0 and independently of the value of κ .

Moreover, for β = 0 and γ = 1/ε , L(x) = 1 +‖x‖2 is a Lyapunov function for the FHN model (2) according to Proposition 2
and the method satisfies a discrete Lyapunov condition via Theorem 4. Combined with the 1-step hypoellipticity and a 
discrete irreducibility condition, which can be proved in the same way as done, e.g., in [2,14,45], the splitting method is 
geometrically ergodic. Intuitively, the Lyapunov structure of the FHN model is kept by the numerical solution, since the linear 
SDE (9) determined by the matrix A in (37) is geometrically ergodic, implying that the process (X [1](t))t∈[0,T ] converges to 
a unique invariant distribution given by

X [1](t) D−−−→
t→∞ N

((0
0

)
,

(
5
2σ 2

1 + 2
ε2 σ 2

2
ε
2σ 2

1
ε
2σ 2

1
ε2

8 σ 2
1 + 1

2σ 2
2

))
,

for κ = 0, and

X [1](t) D−−−→
t→∞ N

((0
0

)
,

(
ε

2γ (σ 2
1 + γ

ε σ 2
1 + 1

ε2 σ 2
2 ) ε

2σ 2
1

ε
2σ 2

1
1
2 (εγ σ 2

1 + σ 2
2 )

))
,

for κ �= 0. Since this fact holds without any restrictions of the parameters, it is expected that the splitting method preserves 
this property for any values of γ > 0 and ε > 0. This is confirmed by our numerical experiments (see Section 7).

Note also that, under γ = 1/ε , the logarithmic norm μ(A) = 0. Thus, Assumption 5 is not fulfilled and the asymptotic 
bound of Corollary 1 cannot be derived.

Remark 6. Another plausible choice of the subequations is

A =
(

0 − 1
ε

γ 0

)
, N(X(t)) =

(
1
ε

(
V (t) − V 3(t)

)
−U (t) + β

)
.

For this choice, Assumption 1 related to the locally Lipschitz function N is satisfied, and the splitting method is mean-
square convergent. In addition, since the term −U (t)/ε still enters into A X(t), Assumption 2 holds, and the method is 
thus also 1-step hypoelliptic. Moreover, Assumption 3 would also hold under β = 0. However, in this case, the linear SDE 
(9) corresponds to a version of the simple (undamped) harmonic oscillator which is not ergodic. In particular, its matrix 
exponential is given by

e At =
⎛⎝ cos(

√
γ t√
ε

) − 1√
εγ sin(

√
γ t√
ε

)
√

εγ sin(
√

γ t√
ε

) cos(
√

γ t√
ε

)

⎞⎠ ,

with 
∥∥e A�

∥∥≥ 1 and 
∥∥e A�

∥∥= 1 for γ = 1/ε in particular.

7. Numerical experiments for the FHN model

We now illustrate the performance of the Lie-Trotter (15) and Strang (23) splitting methods in comparison with Euler-
Maruyama type methods through a variety of numerical experiments carried out on the FHN model (2). First, the proved 
mean-square convergence order 1 is illustrated numerically. Second, the ability of the different numerical methods to pre-
serve the qualitative dynamics of neuronal spiking is analysed, in particular their ability to reproduce the correct amplitudes 
and frequencies of the underlying oscillations when the time step � is increased. Third, the robustness of the numerical 
207



E. Buckwar, A. Samson, M. Tamborrino, I. Tubikanec Applied Numerical Mathematics 179 (2022) 191–220
methods to changes in the initial condition X0, and how the choice of X0 may influence the preservation of the phases 
of the underlying oscillations are analysed. All simulations are carried out in the computing environment R [60]. Before 
we present the simulation results, different Euler-Maruyama type comparison methods, proposed for superlinearly growing 
coefficients, are recalled.

7.1. Review of Euler-Maruyama type methods

In [29], it has been shown that the Euler-Maruyama method (16) is not mean-square convergent if at least one of the 
coefficients of the SDE grows superlinearly, as this results in unbounded moments of the iterates. Since then, several explicit 
variants of this method have been proposed, which aim to control this unbounded growth.

The first variant, designed for polynomially growing and one-sided Lipschitz drift and globally Lipschitz diffusion co-
efficients, has been introduced in [30]. It is based on a taming perturbation which avoids large values caused by the 
superlinearly growing drift. The method is defined through the iteration

X̃TEM(ti) = X̃TEM(ti−1) + F ( X̃TEM(ti−1))�

1 + ∥∥F ( X̃TEM(ti−1))
∥∥�

+ �
√

�ψi−1, (41)

and proved to be mean-square convergent of order 1/2 (order 1) for SDEs with multiplicative noise (additive noise), i.e., it 
yields the same convergence rate as achieved by the Euler-Maruyama method in the globally Lipschitz case [37].

Another variant, aiming to tame both the drift and the diffusion term, has been suggested in [67]. The method is defined 
via

X̃DTEM(ti) = X̃DTEM(ti−1) + F ( X̃DTEM(ti−1))� + �
√

�ψi−1

1 + ∥∥F ( X̃DTEM(ti−1))
∥∥� +

∥∥∥�√
�ψi−1

∥∥∥ , (42)

and is designed for the broader class of equations where also the diffusion coefficient is allowed to grow polynomially at 
infinity and satisfies a one-sided Lipschitz condition. It has been shown to converge with mean-square order 1/2 (also in 
the case of additive noise). For similar variants of the Euler-Maruyama method, see, e.g., [61,73].

The strong convergence (without order) of a different class of variants, based on space truncation techniques, has been 
discussed in [28]. In particular, we recall the two methods

X̃TrEM(ti) = X̃TrEM(ti−1) + F ( X̃TrEM(ti−1))�

max
{

1,
∥∥F ( X̃TrEM(ti−1))

∥∥�
} + �

√
�ψi−1, (43)

X̃DTrEM(ti) = X̃DTrEM(ti−1) + F ( X̃DTrEM(ti−1))� + �
√

�ψi−1

max
{

1,�

∥∥∥F ( X̃DTrEM(ti−1))� + �
√

�ψi−1

∥∥∥} , (44)

constructed to truncate the drift and the drift and diffusion term, respectively.
Another type of truncated Euler-Maruyama method, with mean-square convergent rate arbitrarily close to 1, has been 

proposed in [43,44]. Here, we recall the partially truncated variant discussed in [22]. This method assumes that the drift 
can be decomposed as

F (X(t)) = F1(X(t)) + F2(X(t)),

where F1 is globally Lipschitz continuous and F2 satisfies Assumption 1. It is given by

X̃PTrEM(ti) = X̃PTrEM(ti−1) +
(

F1( X̃PTrEM(ti−1)) + F �
2 ( X̃PTrEM(ti−1))

)
� + �

√
�ψi−1, (45)

where the function F �
2 is a truncated version of F2. In particular, it is given by

F �
2 (x) = F2

(
min{‖x‖ ,μ−1(h(�)

)} x

‖x‖
)

,

where μ :R+ →R+ such that μ(r) → ∞ as r → ∞ and

sup
‖x‖≤r

(
‖F2(x)‖

)
≤ μ(r), ∀ r ≥ 1,

and, for �∗ ∈ (0, 1], h : (0, �∗] → (0, ∞) such that

h(�∗) ≥ μ(1), lim h(�) = ∞ and �1/4h(�) ≤ 1, ∀� ∈ (0,1).

�→0
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Fig. 2. Illustration of the mean-square convergence order on the FHN model (2) via the RMSE (46). All model parameters are set to 1, X0 = (0, 0)� and 
T = 5.

Thus, the method is not uniquely defined and depends on the choice of μ(·) and h(·). Following [22], for the cubic model 
problem (26), we consider F1 ≡ 0, μ(r) = r3 and h(�) = �−1/5. For this choice, the above conditions on h are satisfied for 
�∗ = 1, since h(�∗) = μ(1) = 1. Moreover, it holds that μ−1(h(�)) = �−1/15. Numerical experiments for the cubic model 
problem are reported in Appendix C. For the FHN model (2), we consider

F1(X(t)) =
(

1
ε

(
V (t) − U (t)

)
γ V (t) − U (t) + β

)
, F2(X(t)) =

(− 1
ε V 3(t)

0

)
,

μ(r) = r3/ε and h(�) = �−1/5. For this choice, the conditions on h are satisfied for �∗ = 1/ε−5, since then it holds that 
h(�∗) = 1/ε = μ(1). Therefore, when ε is small, this method requires very small time steps �, and is thus highly inefficient 
(see the subsequent sections).

In the following, we denote by tamed (TEM), diffusion tamed (DTEM), truncated (TrEM), diffusion truncated (DTrEM) and 
partially truncated (PTrEM) Euler-Maruyama method, the schemes (41), (42), (43), (44) and (45), respectively.

7.2. Convergence order

The mean-square convergence order can be illustrated by approximating the left-hand side of the inequality in Theorem 1
(for a fixed time T and p = 1) with the root mean-squared error (RMSE) defined by

RMSE(�) :=
(

1

M

M∑
l=1

∥∥∥Xl(T ) − X̃l
�(T )

∥∥∥2
)1/2

, (46)

where Xl(T ) and X̃l
�(T ) denote the l-th simulated path at a fixed time T of the true process and the approximated process, 

respectively, for l = 1, . . . , M .
In Fig. 2, we report the RMSEs of the different numerical methods in log2 scale as a function of the time step � used to 

simulate X̃l
�(T ). Since the true process is not known, the reference values Xl(T ) are simulated with the TEM method (41)

using the small time step � = 2−14. We verified that using a different scheme for the simulation of the reference paths 
does not affect the results of the experiments. The approximated trajectories X̃l

�(T ) are generated with the LT (15), S (23), 
TEM (41), DTEM (42), TrEM (43), DTrEM (44) and PTrEM (45) method, respectively, under different choices of the time step, 
namely � = 2−k , k = 6, . . . , 12. We consider T = 5, M = 104, X0 = (0, 0)� and set all model parameters to 1. All RMSEs 
are also reported in Table 1. The theoretical convergence order 1, established in Theorem 2, is confirmed numerically. The 
S splitting yields the smallest RMSEs among all considered numerical methods. The RMSEs of the LT method lie slightly 
above those obtained under the TrEM and DTrEM methods, which are identical (up to the reported precision). The RMSEs 
of the tamed Euler-Maruyama methods are larger than those obtained under the splitting, TrEM and DTrEM methods. For 
the DTEM method we only observe a convergence of order 1/2, in agreement with the observations in [34,67]. The PTrEM 
method yields the largest RMSEs. However, we observe that for smaller values of σi , i = 1, 2, the method improves (see also 
Appendix C, where the impact of the noise intensity on the performance of that method is discussed).
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Table 1
RMSE (46) for different values of �. All model parameters are set to 1, X0 = (0, 0)� and 
T = 5.

� S LT TEM DTEM TrEM DTrEM PTrEM

2−6 0.01320 0.01751 0.03628 0.27208 0.01667 0.01667 2.23688
2−7 0.00659 0.00871 0.01795 0.20075 0.00824 0.00824 1.41733
2−8 0.00323 0.00431 0.00889 0.14726 0.00410 0.00410 0.83296
2−9 0.00161 0.00213 0.00438 0.10639 0.00204 0.00204 0.45305
2−10 0.00079 0.00106 0.00213 0.07664 0.00101 0.00101 0.22307
2−11 0.00039 0.00053 0.00099 0.05446 0.00050 0.00050 0.10771
2−12 0.00020 0.00027 0.00043 0.03877 0.00027 0.00027 0.05273

7.3. Preservation of neuronal spiking dynamics: amplitudes and frequencies

In the following, we analyse the ability of the considered methods to preserve the qualitative neuronal spiking dynamics 
of the FHN model. In particular, we investigate whether the amplitudes and frequencies of the neuronal oscillations are 
kept when increasing the time step �. Throughout this and the next section, we omit the DTEM method (42) as it yields 
a performance comparable to that of the TEM method (41). Moreover, we set β = σ1 = 0.1 and σ2 = 0.2, and consider 
different values for γ and ε . These parameters are of particular interest, because they regulate the spiking intensity of the 
neuron and separate the time scale of the two model components, respectively. When ε is small, both variables evolve 
on different time scales. This situation is often referred to as “stiff” case, while larger values of ε refer to the “nonstiff” 
case, see, e.g., [13]. Furthermore, these parameters determine the value of 

∥∥e A�
∥∥, and thus the validity of Theorem 4. 

Since the true process is not available, all reference paths are obtained under the TEM method (41), using the small time 
step � = 2 · 10−5. Also in this case, the choice of the scheme used to simulate the reference paths does not affect the 
results of the experiments. Moreover, note that all paths are generated using the same set of pseudo random numbers in 
each example.

In the following, the focus lies on the V -component of the process solving SDE (2), modelling the membrane voltage, 
which can be experimentally recorded with intracellular measurements. Similar results are obtained for the U -component.

In Fig. 3, we report paths of the V -component of the FHN model generated under different values of the time step �. 
An increase in γ leads to an increase in the frequency of the oscillations, and thus in the number of released spikes. Both 
splitting methods yield almost overlapping paths as � increases, preserving thus the qualitative dynamics of the model, 
independently of the choice of the intensity parameter γ . In contrast, the TEM method underestimates the frequency and 
overestimates the amplitude of the neuronal oscillations as � increases, for both values of γ under consideration. For similar 
observations regarding tamed methods, we refer to [33,34]. Note also that the paths obtained under the TEM method already 
start deviating from the reference paths for � = 2 · 10−3, performing thus worse than the TrEM and DTrEM methods. Since 
ε = 0.05, the quantity �∗ required for the PTrEM method (see Section 7.1) equals 1/ε−5 = 3.125 · 10−7. We then observe 
that this method produces the desired paths only for very small time steps (� = 2 · 10−8 in Fig. 3) and fails for the other 
values of � under consideration.

For a deeper investigation of the neuronal spiking dynamics, we consider the spectral density of the V -component, 
which takes into account its autocovariance, and thus the dependence of the membrane voltage on previous epochs. It is 
given by

S V (ν) = F {rV } (ν) =
∞∫

−∞
rV (τ )e−i2πντ dτ , (47)

where F denotes the Fourier transformation, rV the autocovariance function of (V (t))t∈[0,T ] and the frequency ν can be 
interpreted as the number of oscillations in one time unit. We estimate the spectral density S V (ν) with a smoothed pe-
riodogram estimator, see, e.g., [12,59], based on paths generated over the time interval [0, 103]. We use the R-function
spectrum and set the required smoothing parameter to span= 0.3T .

The estimated spectral densities obtained under different values of γ and different choices of the time step � are 
reported in Fig. 4. As desired, for a fixed γ , all spectral densities estimated from the paths generated under the splitting 
schemes are almost overlapping as � increases. In contrast, the frequency ν estimated under the Euler-Maruyama type 
methods decreases as � increases, and the height of the peaks, carrying information about the amplitude of the neuronal 
oscillations, increases with �. Their performance deteriorates as γ increases, the TrEM and DTrEM methods yielding better 
results than the TEM method. For the considered values of �, the spectral densities based on the PTrEM method cannot 
be derived, because this method produces “NaN” values. This is indicated by the horizontal lines in the bottom left panels. 
Note also that the estimated frequencies are in agreement with those deduced from Fig. 3.

Moreover, the Euler-Maruyama type methods perform even worse in terms of second moment (amplitude) preservation 
when the parameter ε is increased, while the splitting methods preserve the qualitative behaviour of the model. This is 
illustrated in Fig. 5, where we increase ε to 1 (the quantity �∗ introduced for the PTrEM method in Section 7.1 thus equals 
1), fix γ = 20 and report phase portraits of the system obtained under the different numerical methods for � = 2 · 10−4
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Fig. 3. Paths of the V -component of the FHN model (2) simulated under the considered numerical methods for X0 = (−1, 0)� , β = σ1 = 0.1, σ2 = 0.2, 
ε = 0.05, two different values of γ and increasing time step �. Paths of the PTrEM method are also generated under a smaller time step than used for the 
other methods, i.e., � = 2 · 10−8. All paths correspond to the same random realisation.

and � = 2 · 10−2. Again, the splitting methods preserve the behaviour of the process (X(t))t∈[0,T ] as � increases, while the 
Euler-Maruyama type methods produce larger orbits, overshooting the second moment of the process.

In addition, we investigate the ability of the considered numerical methods to approximate the underlying invariant 
density of the process (X(t))t∈[0,T ] . In particular, we estimate the marginal invariant density of the V -component of the 
FHN model with a standard kernel density estimator given by

πV (v) = 1

nH

n∑
i=1

K
(

v − Ṽ (ti)

H

)
, (48)

where H is a smoothing bandwidth and K a kernel function [58]. Taking advantage of the ergodicity of the FHN model, the 
sample Ṽ (ti), i = 1, . . . , n, in (48) is obtained from a long-time simulation of a single path. We use the R-function density, 
a kernel estimator as described in (48).

In Fig. 6, we report the marginal invariant densities of the process (V (t))t∈[0,T ] estimated via (48) based on paths gen-
erated over the time interval [0, 104], for ε = 1, γ = 20 and different values of �. Both splitting methods yield reliable 
estimates for all values of � under consideration. In contrast, the densities obtained under the Euler-Maruyama type meth-
ods already deviate from the desired ones for � = 2 · 10−3, and suggest a transition from a unimodal to a bimodal density 
when � is further increased to 2 · 10−2. It is again visible that the Euler-Maruyama type methods overestimate the second 
moment, and thus the amplitudes of the process. Similar results are also obtained for the U -component.

7.4. Impact of the initial condition: preservation of phases

Finally, we compare the considered numerical methods regarding their sensitivity to changes in the initial condition X0. 
In particular, we illustrate that, when V 0 is large, i.e., when the process starts far away from the mean of the invariant 
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Fig. 4. Estimates of the spectral density (47) of the V -component of the FHN model (2) obtained under the considered numerical methods for X0 = (0, 0)� , 
β = σ1 = 0.1, σ2 = 0.2, ε = 0.05, two different values of γ and increasing time step �.

distribution, the considered Euler-Maruyama type methods do not correctly reproduce the phases of the underlying oscilla-
tions, even when the time step � is very small. In contrast, the splitting methods are less sensitive to changes in the initial 
condition. Similar observations are made when U0 is large (figures not shown).

The impact of V 0 on the performance of the different numerical methods is shown in Fig. 7 and Fig. 8, where we report 
paths of the V -component, simulated under � = 2 · 10−4, U0 = 0 and different values of V 0. The grey reference path is 
simulated under � = 2 · 10−7 using the TEM method (41). As before, the results are not influenced by the choice of the 
numerical method used to generate the reference paths. The underlying parameter values are the same as in Section 7.3, 
choosing γ = 5 and ε = 0.05 in Fig. 7, and γ = 20 and ε = 1 in Fig. 8. As desired, the splitting methods are barely influenced 
by V 0, even when it is very large, with paths overlapping with the reference paths for all t under consideration. In contrast, 
when V 0 is large, the Euler-Maruyama type methods introduce a delay in when the generated paths reach the oscillatory 
dynamics, this behaviour deteriorating as V 0 increases. Moreover, they also do not preserve the phases of the oscillations, 
introducing a shift. In Fig. 7, the DTrEM method reaches the correct oscillatory dynamics, though shifted, almost as fast as 
the splitting methods for V 0 = 104, but fails to reach the invariant regime for V 0 = 103. In Fig. 8, it does not enter the 
invariant regime for both V 0 = 103 and V 0 = 104. Moreover, spurious oscillations produced by the DTrEM method were 
obtained for other parameter combinations, as also observed in [34,67]. For ε = 0.05 (see Fig. 7), the PTrEM method does 
not produce the desired paths, even when V 0 is close to the invariant mean. For ε = 1 (see Fig. 8), it yields the correct 
path when V 0 = 1, a path which initially deviates from the others when V 0 = 3, and produces high-amplitude oscillations, 
not entering the invariant regime, when V 0 = 103 and V 0 = 104. Therefore, the PTrEM method reacts very sensitively to the 
choice of X0, this undesired behaviour being also observed for the cubic model problem (26) introduced in Section 5, see 
Appendix C.

Remark 7. Note that the only considered combination of γ and ε in this section for which Assumption 4, and thus Theo-
rem 4 holds is γ = 1/ε = 20. However, we do not observe a difference in the quality of the splitting methods depending on 
the combination of these parameters. Intuitively, this is because the underlying linear SDE (9) with matrix A as in (37), i.e., 
the damped stochastic oscillator, is geometrically ergodic for all γ > 0 and ε > 0.
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Fig. 5. Phase portraits of the FHN model (2) simulated under the considered numerical methods for X0 = (0, 0)� , β = σ1 = 0.1, σ2 = 0.2, ε = 1, γ = 20 and 
increasing time step �. All paths correspond to the same random realisation.

8. Conclusion and discussion

We propose a splitting strategy to approximate the solutions of semi-linear SDEs with additive noise and globally one-
sided Lipschitz continuous drift coefficients which are allowed to grow polynomially. We prove that the resulting explicit 
Lie-Trotter splitting method is mean-square convergent of order 1. In contrast to existing explicit mean-square convergent 
Euler-Maruyama type methods, which may also achieve a convergence rate of order 1, the constructed method preserves 
important structural properties of the model.

First, it provides a more accurate approximation of the noise structure of the SDE through the covariance matrix of the 
exact solution of the stochastic subequation. In particular, while the conditional covariance matrix of Euler-Maruyama type 
methods only contains the information of the diffusion matrix �, the splitting method also relies on the matrix A in the 
semi-linear drift. This is particularly beneficial when the SDE is hypoelliptic. Indeed, while the conditional covariance matrix 
of the existing methods is degenerate in that case, we establish the desired 1-step hypoellipticity of the constructed splitting 
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Fig. 6. Estimates of the invariant density (48) of the V -component of the FHN model (2) obtained under the considered numerical methods for X0 = (0, 0)� , 
β = σ1 = 0.1, σ2 = 0.2, ε = 1, γ = 20 and increasing time step �.

Fig. 7. Paths of the V -component of the FHN model (2) simulated under the considered numerical methods for different values of V 0 (U0 = 0), � = 2 ·10−4, 
β = σ1 = 0.1, σ2 = 0.2, γ = 5 and ε = 0.05. The grey reference paths are obtained under � = 2 · 10−7 using the TEM method (41). All paths correspond to 
the same random realisation.

method, meaning that it admits a smooth transition density in every iteration step. In particular, the method yields non-
degenerate Gaussian transition densities, a feature which is advantageous within likelihood-based estimation techniques, 
where the existing numerical methods cannot be applied [19,47,57].

Second, Euler-Maruyama type methods do not preserve the geometric ergodicity of the process. As a consequence, they 
are not robust to changes in the initial condition, yield poor approximations of the underlying invariant distribution, or do 
not preserve the moments of the process. In contrast, the proposed splitting method is proved to preserve the Lyapunov 
structure of the SDE, as long as an assumption on the solution f of the deterministic subequation is satisfied and it holds 
that 

∥∥e A�
∥∥< 1 for all � ∈ (0, �0]. If, in addition, the logarithmic norm μ(A) < 0, the method is proved to have an asymp-

totically bounded second moment. In the one-dimensional case, a precise bound of the second moment of the splitting 
method is derived in closed-form and illustrated on a cubic model problem. We also consider the FHN model, a well known 
equation used to describe the firing activity of single neurons. The geometric ergodicity of the proposed splitting method 
applied to this equation is established under a restricted parameter space.
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Fig. 8. Paths of the V -component of the FHN model (2) simulated under the considered numerical methods for different values of V 0 (U0 = 0), � = 2 ·10−4, 
β = σ1 = 0.1, σ2 = 0.2, γ = 20 and ε = 1. The grey reference paths are obtained under � = 2 · 10−7 using the TEM method (41). All paths correspond to 
the same random realisation.

Third, we illustrate on the FHN model that, in contrast to Euler-Maruyama type methods, the proposed splitting method 
preserves the amplitudes, frequencies and phases of neuronal oscillations, even for large time steps. This may make the 
method particularly beneficial when used, e.g., to simulate large networks of neurons, or when embedded within simulation-
based inference procedures. Besides the Lie-Trotter splitting method, we also consider a method which is based on a Strang 
composition in our numerical experiments. Both splitting methods perform comparably good throughout, the Strang splitting 
behaving slightly better in some scenarios. As the considered Euler-Maruyama type methods do converge, their lack of 
structure preservation becomes less visible when using very small time steps. However, the use of significantly smaller 
time steps results in drastically higher computational costs, making these methods highly inefficient and, consequently, 
computationally infeasible within simulation-based inference algorithms, as previously illustrated in [12].

Several generalisations of the considered approach are possible. The proposed splitting strategy can be, e.g., applied to the 
stochastic Van der Pol oscillator [70,71], whose investigation leads to similar numerical results. The presented approach may 
be also applied to SDEs (1) with other types of nonlinearity. In particular, as long as the ODE determined by the function N
is exactly solvable (see [32] for diverse solution methods) and satisfies some useful conditions, the method presented in this 
article may be used. Moreover, the proposed method may be extended to SDEs with multiplicative noise, e.g., to �(X(t)) =
σ X(t), σ > 0, where the stochastic subequation of the splitting framework corresponds to the geometric Brownian motion. 
This may be relevant, e.g., for the stochastic Ginzburg-Landau equation arising from the theory of superconductivity [21,29]. 
Furthermore, the investigation of conditions under which the presented results are still valid when the solution of ODE (10)
is not available exactly, constitutes another topic for future research.
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Appendix A. Proof of Proposition 1

Proof. Assumption 1: We start with Assumption (A1) and have that(
N(x) − N(y)

)
(x − y) = (x − y)2

(
1 − (x2 + xy + y2)

)
≤ (x − y)2.

Thus, the assumption holds for c1 = 1, see also Example 1.2.16 in [27].
Now, consider Assumption (A2). We have that(

N(x) − N(y)
)2 ≤ 2(x − y)2 + 2(y3 − x3)2 = 2(x − y)2 + 2(x − y)2(y2 + xy + x2)2

≤ 2(x − y)2 + 9(x − y)2(x4 + y4),

where we used that 2xy ≤ x2 + y2 and that (3x2/2 + 3y2/2)2 ≤ 9(x4 + y4)/2 in the last inequality. Thus, we obtain that
215



E. Buckwar, A. Samson, M. Tamborrino, I. Tubikanec Applied Numerical Mathematics 179 (2022) 191–220
(
N(x) − N(y)

)2 ≤ 9(x − y)2
(

1 + x4 + y4
)
,

which proves that the assumption holds for c2 = 9 and χ = 3.
Assumption 2: Since d = 1, this is clear.
Assumption 3: We prove the statement for c3 = 1/2. Setting y = x2, it has to be shown that

f 2(x; t) = g(y; t) := y

e−2t + y(1 − e−2t)
≤ y + 1

2
t =: h(y; t), ∀t ∈ (0,�0].

Since g(y; 0) = h(y; 0) = y, it suffices to prove that for any y ∈R+
0 it holds that

g′(y; t) = − 2e2t(y − 1)y(
1 + (e2t − 1)y

)2
≤ 1

2
= h′(y; t), ∀t ∈ (0,�0],

where ′ denotes the derivative with respect to t . Consider two cases. First, let y /∈ (0, 1). Then it holds that g′(y; t) ≤ 0 for 
all t ≥ 0. Second, let y ∈ (0, 1). To prove that g′(y; t) ≤ 1/2, we determine the global maximum of g′(y; t) with respect to 
t . Solving g′′(y; t) = 0 with respect to t , gives that

tmax = 1

2
log

(
1

y
− 1

)
.

Noting that tmax exists and that g′(y; tmax) = 1/2 for any y ∈ (0, 1) proves the result.

Remark 8. If y ∈ (0, 1), it also holds that

g′(y; t) ≤ 2e2t y(1 − y) ≤ 1

2
e2t ≤ e2�0

2
.

Thus, a simpler argument suffices to prove the statement for c3(�0) = e2�0

2 > 1
2 .

Assumptions 4 and 5: These statements are satisfied because A = −1, and thus the matrix norm 
∥∥e A�

∥∥= e−� < 1 and 
the logarithmic norm μ(A) = −1 < 0. �
Appendix B. Proof of Proposition 3

Proof. Assumption 1: Denote x = (v1, u1)
� and y = (v2, u2)

� . We start with Assumption (A1) and have that

(N(x) − N(y), x − y) = 1

ε
(v1 − v2)

2
(

1 − (v2
1 + v1 v2 + v2

2)
)

≤ 1

ε
(v1 − v2)

2 ≤ 1

ε
‖x − y‖2 .

Thus, the assumption holds for c1 = 1/ε .
Now, consider Assumption (A2). Applying similar arguments as in Appendix A, we have that

‖N(x) − N(y)‖2 =
(

1

ε
(v1 − v2) + 1

ε
(v3

2 − v3
1)

)2

≤ 2

ε2
(v1 − v2)

2 + 9

ε2
(v1 − v2)

2(v4
1 + v4

2).

Using that (v1 − v2)
2 ≤ ‖x − y‖2 and that v4

1 + v4
2 ≤ ‖x‖4 + ‖y‖4, we finally obtain that

‖N(x) − N(y)‖2 ≤ 9

ε2
‖x − y‖2

(
1 + ‖x‖4 + ‖y‖4

)
.

Thus, the assumption holds for c2 = 9/ε2 and χ = 3.
Assumption 2: Condition (6) holds for the linear SDE (9), since

∂u(Ax)1σ2 = −σ2

ε
�= 0.

Thus, the equation is hypoelliptic.
Assumption 3: We have that

f (x;�) = ( f1(v;�), f2(u;�))�.

Consider the V -component. The fact that, for any v ∈R it holds that

f 2
1 (v;�) ≤ v2 + 1

� ∀ � ≥ 0,

2ε
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can be proved in the same way as in Appendix A. Regarding the U -component, by assumption, we have that

f 2
2 (u;�) = u2.

Thus,

‖ f (x;�)‖2 = f 2
1 (v;�) + f 2

2 (v;�) ≤ v2 + u2 + 1

2ε
� = ‖x‖2 + 1

2ε
�,

which proves the statement for c3 = 1/(2ε).
Assumption 4: Recall that∥∥∥e A�

∥∥∥=
√

λmax
(
(e A�)�(e A�)

)
,

and define B := (e A�)�(e A�). It suffices to prove that λmax (B) < 1 for all � ∈ (0, �0].
Since by assumption γ = 1/ε , κ defined in (38) becomes κ = 4γ 2 − 1. When κ = 0, this condition is equivalent to 

γ = 1/2. In this case, the eigenvalues of B are given by

λ1(�) = 1

2
e−�

(
2 + �2 −

√
�2(4 + �2)

)
≤ λ2(�) = 1

2
e−�

(
2 + �2 +

√
�2(4 + �2)

)
.

It holds that λ′
2(�) < 0 for all � > 0, where ′ denotes the derivative with respect to �. Thus, λ2(�) is strictly decreasing in 

�. Noting that λ2(0) = 1 implies the statement.
When κ < 0, γ < 1/2. In this case, the eigenvalues of B are given by

λ1(�,γ ) = e−�

κ

(
4γ 2 − cosh(

√−κ�) −
√

2
[
1 − 8γ 2 + cosh(

√−κ�)
]

sinh2(
√−κ�/2)

)
,

λ2(�,γ ) = e−�

κ

(
4γ 2 − cosh(

√−κ�) +
√

2
[
1 − 8γ 2 + cosh(

√−κ�)
]

sinh2(
√−κ�)/2

)
,

where λ1(�, γ ) ≤ λ2(�, γ ) for all � > 0 and γ < 1/2. For γ < 1/2 arbitrary, but fixed, the partial derivative of λ2(�, γ )

with respect to � exists and satisfies

∂

∂�
λ2(�,γ ) < 0, ∀ � ∈ (0,�0].

Thus, the function λ2(�, γ ) is strictly decreasing in �. Moreover, we have that λ2(0, γ ) = 1 for any γ , which implies the 
statement.

When κ > 0, γ > 1/2. In this case, the eigenvalues of B are given by

λ1(�,γ ) = e−�

κ

(
4γ 2 − cos(

√
κ�) −

√
2
[−1 + 8γ 2 − cos(

√
κ�)

]
sin2(

√
κ�/2)

)
,

λ2(�,γ ) = e−�

κ

(
4γ 2 − cos(

√
κ�) +

√
−1 + 8γ 2 − 8γ 2 cos(

√
κ�) + cos2(

√
κ�)

)
.

Again, we observe that λ1(�, γ ) ≤ λ2(�, γ ) for all � > 0 and γ > 1/2. Consider γ > 1/2 arbitrary, but fixed. Moreover, 
define I� := {2π l/

√
κ, l ∈N}. Since cos(2π l) = 1 and sin(π l) = 0, we have that

λ1(γ ,�) = λ2(γ ,�) = e−� < 1, ∀ � ∈ I�.

Let now � ∈ (0, ∞)\I� . For those values of �, the partial derivative of λ2(�, γ ) with respect to � exists. In particular, we 
have that

∂

∂�
λ2(�,γ ) < 0, ∀ � ∈ (0,∞)\I�.

Thus, for a fixed γ , the function λ2(�, γ ) is strictly decreasing in �. Noting that λ2(0, γ ) = 1 for any γ implies the 
statement. �
Appendix C. Numerical experiments for the cubic model problem

Consider the cubic model problem (26) introduced in Section 5. We now illustrate how the choice of X0 influences the 
behaviour of paths of the ergodic process X(t) simulated under the different numerical methods. If X0 is large compared 
to the invariant mean, the standard Euler-Maruyama method (16) produces paths which are computationally pushed to 
+/− infinity within a few iteration steps, even for very small values of �. This is not the case for the tamed/truncated 
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Fig. C.9. Paths of SDE (26) simulated under the considered numerical methods for different values of X0, � = 10−4 and σ = 1/2. The grey reference paths 
are obtained under � = 10−7 using the TEM method (41). All paths correspond to the same random realisation.

Fig. C.10. Paths of SDE (26) simulated under the LT and PTrEM methods for X0 = 0, � = 10−4 and different values of σ . The grey reference paths are 
obtained under � = 10−7 using the TEM method (41). All paths correspond to the same random realisation.

variants of this method. However, they may also react sensitively to X0, even for small �. This is illustrated in Fig. C.9, 
where we report paths of SDE (26) generated for different values of X0, using � = 10−4 and σ = 1/2. The grey reference 
paths are simulated under � = 10−7 using the TEM method (41). The choice of the reference method does not change the 
reported results, and all paths are generated under the same underlying pseudo random numbers. Note that, the DTEM 
method (42) is not reported in Fig. C.9, because it shows a performance comparable to that of the TEM method (41). As 
desired, the paths obtained under the splitting methods (15) and (23) are not deterred by large values of X0, and overlap 
with the reference path for all values of X0 under consideration. In contrast, for large values of X0, the Euler-Maruyama 
type methods introduce a delay in when the respective paths reach the reference path. This behaviour deteriorates as X0
increases. The path obtained under the PTrEM method (45) initially deviates from the desired one, even when X0 = 5, not 
reaching the reference path for the values of t under consideration for X0 = 104 and X0 = 3 · 104. Note also that, for some 
values of X0, we observe that the DTrEM method (44) may produce spurious oscillations (figures not shown). See [34,67], 
where such a behaviour has also been observed.

In addition, we observe that the PTrEM method (45) may also produce paths which deviate from the desired ones 
for larger values of the noise parameter σ . This is illustrated in Fig. C.10, where we report paths of SDE (26) generated 
under X0 = 0, � = 10−4 and different values of σ . While the paths obtained under the LT splitting (15) (the same is 
observed for all other schemes except for the PTrEM method) overlap with the reference paths for both values of σ under 
consideration, the PTrEM method produces a path which deviates from the desired one when σ = 4 (right panel). This 
behaviour deteriorates as σ increases.
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