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Abstract

Tuberculosis (TB) kills over one million people annually, ranking it the leading
cause of death from a single infectious agent. Generally a pulmonary infection, the
primary route of transmission for the disease is respiratory. After being deposited in
the lungs, Mycobacterium tuberculosis (Mtb) are met by the host’s first line of defence:
the alveolar macrophage. The early interaction between the macrophages and the
bacteria set the stage for how the disease develops in the lungs. Understanding these
dynamics is a crucial step in understanding the variety of host responses observed,
ranging from early clearance, to latent infection, to active disease. This thesis
explores the development of mathematical models of these early interactions, and
identifies key mechanisms contributing to the proliferation of the bacteria.

A literature search was used to identify the current biological and mathematical
understanding of the processes and interactions involved in Mtb infections. This
was followed by the development of a range of iterative mathematical models. The
models were parameterised using maximum likelihood methods on a rich data set,
which tracks, at the individual cell level, the interactions between macrophages and
bacteria. A mechanistic approach was used during the model development process,
with a focus on balancing biological realism with mathematical complexity. Each
iteration of the model developed and built upon the previous, which resulted in a
robust model that was able to capture the dynamics of macrophages and bacteria
over the 200 hours tracked in the experiments.

Using sensitivity analysis and a range of computational experiments, the mecha-
nisms involved in the system were analysed to identify factors contributing to the
proliferation of bacteria. Naturally, the bacteria growth rate was the most dominant.
While investigating the methods of control available to the macrophages, it was
shown that a small reduction to the intracellular growth rate for all macrophages
results in a more beneficial outcome than complete inhibition of growth in only
some macrophages. It was further demonstrated that an increase to the rate of
phagocytosis has a beneficial effect, but only up to a point, after which it becomes
detrimental.
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Chapter 1

Introduction

Tuberculosis (TB) is a globally endemic disease, the causative agent of which is

Mycobacterium tuberculosis (Mtb). Approximately 1.7 billion people are infected

with Mtb and are thus at risk of becoming one of 10 million people that develop

active TB annually [1]. TB is one of the top 10 causes of death worldwide as

of 2016 [2]. The only infectious diseases that rank higher fall under the umbrella

terms ‘lower respiratory infections’ and ‘diarrhoeal diseases’ [2]. It has been the

leading cause of death from a single infectious agent since 2007 [2]. While there is no

broadly efficacious vaccine, almost 100 years after its initial development, the Bacillus

Calmette–Guérin (BCG) vaccine still provides an approximate 50% reduction of risk

of vaccinated adults developing active TB [3]. Treatment of the disease requires a

regimen of antibiotic and chemotherapeutic drugs over a period of at least 6 months

due to the ability of a population of Mtb to exhibit varying phenotypic resistance

through adapting their metabolic functions [4].

The classical view of TB infection has been a dichotomy of infectious states: latent

or active [5]. Those with latent TB infection (LTBI) are neither symptomatic nor

infectious and may go their entire lives without knowing they are infected. Individuals

with LTBI have a roughly 1 in 10 chance of developing active disease later in life,

but this process can take decades [6]. In contrast to this view, TB can be thought

of as a spectrum of disease outcomes ranging from natural clearance of the bacteria

by the innate immune response to active TB disease [7] with LTBI being a dynamic

process.

The predominant route of infection for humans is the inhalation of droplets contain-
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ing minute numbers of bacilli which have been exhaled by infected and infectious

individuals [8]. Upon entering the lungs, the bacilli are engulfed by innate alveolar

macrophages whose role it is to eliminate the invading organism and begin the sig-

nalling process for the adaptive immune response [9]. The Mtb bacteria however,

have a repertoire of defence mechanisms to enable their survival [10].

1.1 Global epidemiology
The Global TB report 2019 [1] recorded the estimated incidence of TB per 100,000

population by country in 2018 and found almost every country in the world to be

affected. In fact, only 7 countries had an estimated incidence of 0, the sum of whose

populations totalled less than 250,000. At the other end of the spectrum, the 5

countries with the highest burden account for 55% of the global burden of TB, while

accounting for 45% of the global population, as shown in figure 1.1.

Figure 1.2 (top) shows the estimated burden of TB per 100,000 population. It is

clear that the distribution of cases is not evenly spread globally and that developing

countries are more strongly affected, in particular South-East Asia and sub-Saharan

Africa. Of note is the evident relationship between TB and the Human Immunodefi-

ciency Virus (HIV), shown by the strong correlation of incidence for the two diseases

(see figure 1.2 bottom). HIV is a serious risk factor for developing TB, with an

approximate 20 fold increase over those who are HIV negative [11]. Additional risk

factors include air pollution, smoking, malnutrition and immunosuppressive drugs

[11].

In low incidence countries, import of infection is a more significant factor than

community transmission, for example rates of TB in the UK are approximately 14

times higher for people born outside of the UK [1] compared to those born within

the UK. Conversely in high incidence countries, the role of super spreaders remains

a critical issue for the design of intervention strategies [13]. Handel et al. [14] assume

duration of cough as a proxy for infectious duration and demonstrate that 20% of
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1.1 Global epidemiology

Figure 1.1: The distribution of the estimated global incidence of TB (left) com-

pared to the distribution of the global population (right) as reported

in the Global Tuberculosis Report 2019 [1]. The 5 countries with the

highest absolute incidence account for roughly 55% of the the global in-

cidence, while only accounting for 45% of the human population. The

incidence is estimated per 100,000 population, predominantly from

case notification data combined with either expert opinion or stan-

dard adjustment. With the exception of China, all of these countries

are significantly over-represented for burden of TB demonstrating the

imbalance in how the disease is managed globally.

patients over 6 cohorts from China, Peru, The Gambia, and Uganda contributed to

50% of the total cough days.
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Figure 1.2: The estimated incidence of TB is not uniformly distributed globally.

South East Asia and sub Saharan Africa demonstrate the highest levels

of active disease (top) [1]. As coinfection with HIV is a significant

risk factor, the global incidence of HIV per 100,000 population is also

shown (bottom) [12]. This risk is particularly evident in southern

Africa where HIV prevalence in new and relapsed TB cases can exceed

50% [1]. Figures produced using data from references [1, 12].
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1.2 Understanding the within-host dynamics
Developing the understanding of the within-host dynamics of a disease is a crucial

step in developing the understanding of the disease as a whole [15]. Two natural

goals for within-host modelling of disease are firstly, to understand the mechanisms

involved in sustaining the infection and how to control them, and secondly to predict

the bacterial load and therefore infer the transmission potential of the host. By

developing mechanistic models of the in vitro interactions of immune cells and

bacteria, this thesis will explore the former.

The within-host dynamics of TB infection roughly follows three stages, shown in

figure 1.3. The first stage is the initial infection, during which time the immune

response is non-specific. The infected individual has inhaled air-borne droplets

containing minute numbers of bacilli, and the bacilli have been deposited in the

lungs [8, 16]. Despite providing an effective initial barrier against most bacterial

infections, the innate alveolar macrophages are the primary target of Mtb, which is

able to reside within them and proliferate [9, 17, 18].

The second stage is the formation of the granuloma. At this point, the adaptive

immune response has been initiated and the hallmark granuloma forms to contain

the infection. If the individual is immunocompromised, the infection will typically

result in active disease characterised by uncontrolled growth of bacteria within the

lungs and potentially other organs. For immunocompetent hosts, the granuloma will

contain the infection and prevent further growth of the bacteria, but it is often not

able to fully clear the infection. This stage is commonly referred to as latent TB

infection (LTBI) and the likelihood of developing active disease is roughly 5 to 10%

with half of the risk being concentrated in the first two years of infection [5].

The third and final stage is reactivation of the infection. The host immune response

is no longer able to contain the infection and secondary active disease is established.

There are a number of risk factors related to reactivation, highest among them being

coinfection with HIV and administration of immunosuppressive drugs such as for

organ-transplantation recipients [22].
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Since the classical dichotomy of active vs latent TB is being reconsidered in favour of a

spectrum of disease [7], the three stages described above can be thought of as having

blurred boundaries with LTBI being a dynamic process of constant endogenous

reinfection and control [23]. As a dynamic process, LTBI can be thought of as a

quasi-steady state, opening an interesting direction of research in model construction.
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Figure 1.3: (On previous page) TB exhibits a wide variety of responses in the

host, as well as heterogeneity in its route from exposure to active

infection. The exposure process can be broadly categorised into three

stages: natural clearance, adaptive immune control, and active disease

(top). An interferon-γ release assay (IGRA) test is able to differentiate

between innate clearers and adaptive clearers [19] however an exposed

individual that does not manage to clear the infection can progress to

active disease either directly (primary TB infection) or after containing

the infection for a period as LTBI (secondary TB infection) (bottom).

Figure adapted from references [5, 20, 21].
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1.3 Importance of early dynamics
It is often stated that the early dynamics of TB infection is instrumental to the

outcome of the disease [24–29], whether the host is able to clear the infection, or

becomes either latently or actively infected. In a study of TB case contacts by

Verrall et al. [19], early clearers were defined as testing persistently negative over the

three month follow up, compared to converters whose test converted from negative

to positive. The test used is the interferon-γ release assay (IGRA) which is a

blood test to measure the immune response to the TB bacteria. Comparing the

immune response in the two groups to alternative bacterial stimuli showed that early

clearers had in an increased production of pro-inflammatory cytokine production.

This demonstrates a critical difference in outcome as a result of heterogeneous host

response.

Alveolar macrophages play an important role in the establishment of infection and the

initial growth of bacteria. Leemans et al. [30] show that, since the bacteria depend

on infiltrating the host cells, it is possible for a depletion of macrophages to carry

some protective effects for the host. However, the effects of activated macrophages

are still shown to be beneficial [31] demonstrating the dual harmful and protective

role of macrophages.

1.4 Disease progression
The progression of infection varies dramatically from person to person. For the

majority of people, infection will result in LTBI which can remain undetected for

years [32]. For the roughly 10% of people that go on to develop active disease,

TB initially presents most commonly as a persistent cough [21]. If left untreated,

the infection continues to develop which can lead to coughing blood and extensive

scarring in the lungs [33]. As the bacteria continue to degrade the lung tissue,

the space fills with liquid, resulting in a wet, hacking cough [34]. The afflicted is

now highly contagious and also severely weakened, opening the doors for additional
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pathogenic infections. As more and more liquid fills the lungs, oxygen levels drop

and they will eventually succumb to respiratory failure [35].

1.5 Description of experiment
The work presented in this thesis has been developed in collaboration with experiment.

Initially a small trial data set was collected to which an initial mathematical model

was fitted. Through an iterative process of model construction, additional complexity

was built into the models. In turn, additional data was required to parametrise these

new mechanics, thus informing the experimentalists which data were required to be

collected.

All experiments were performed by Chiara Toniolo at the École polytechnique fédérale

de Lausanne. The primary focus of the experiments was to investigate the hetero-

geneity of the response exhibited by a homogeneous population of macrophages to

the Mtb bacteria. The models presented in the subsequent chapters of this work

are a secondary outcome of the experiments, although additional data was collected

as a result of this work. The experimental data allows detailed models of the early

interaction between these two cellular populations to be fitted using data entirely

collected from a single set of experiments, reducing the reliance on parameter es-

timation and qualitative evaluation. The available data was used to inform how

the models developed, fitting mechanisms as they were observed in the data, and

introducing additional mechanisms as that data became available.

The macrophages used were bone marrow derived macrophages (BMDMs) from

C57BL/6 mice. While BMDMs are distinct from alveolar macrophages, they infiltrate

most tissue types and contribute to the maintenance of the macrophage population

there [36, 37]. BMDMs are also observed to settle and persist in the lungs during

disease [38]. There are important differences between mouse and human cells [39]. In

the experiments mouse cells were used as they are significantly easier to work with.

This means that while the qualitative findings are important, the precise quantitative

findings may not directly translate into within-human models.
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1.5 Description of experiment

Figure 1.4: A snapshot of some macrophages, one of which contains intracellular

bacteria (circled in red). The level of bacteria is measured as area of

fluorescence since individual bacteria cannot be visually resolved.

The bacteria used were a green fluorescence protein (GFP) expressing Mtb Erdman

strain. This strain is a highly virulent strain of Mtb and is widely used as a standard

virulent laboratory strain. The GFP protein allows for easier discrimination between

bacteria and macrophage and has no other effect on the host [40].

Macrophages and bacteria were cultured independently and allowed to develop. A

total of 104 healthy macrophages were left to adhere to a micro-dish for 24 hours.

Bacteria were filtered to eliminate aggregates and ensure single cell suspensions.

These were then used to infect the macrophages with a multiplicity of infection (MOI)

1:1 and left over a period of four hours to become infected. Infected macrophages

were washed to eliminate extracellular bacteria prior to time lapse imaging.

Samples were photographically imaged through a microscope and were taken every

two hours. These images were then filtered with a green fluorescence protein high

quality (GFP HQ) dichroic filter which selectively passes light in a specific frequency

range, allowing for easy identification of bacteria. Figure 1.4 shows the resultant

image to be processed into tabular data. The images were then manually segmented

and analysed using ImageJ software by Chiara Toniolo. Manual thresholding of

11
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Healthy Macrophage Infected Macrophage BacteriaDead Macrophage

Figure 1.5: Macrophages and bacteria are introduced on a Petri dish and the inter-

actions between them are tracked. Of particular interest is the infection

of macrophages, intracellular growth of bacteria, and eventual release

of bacteria back into the extracellular space.

fluorescence intensity was applied to discriminate pixels corresponding to the bacteria

from the background. The area of fluorescence was measured as a proxy for the

bacterial load. Figure 1.5 shows a schematic representing the stages through the

experiment.

The experiments yielded a rich data set tracking individual macrophages from healthy,

to infected, to division, to death. Table 1.1 shows an example of a few rows of the

data. Movie numbers refer to a set of time lapse images localised to the same area of

the dish with each movie being taken independently of the others. Cells are named

numerically, with daughter cells appending either a 0 or 1 to the name of the parent

cell. Thus when cell ‘1’ divides, two new cells are formed: ‘10’ and ‘11’. Cells that

were not infected were not tracked in the initial experiments, however in subsequent

experiments they were included in the data. The data was tracked hourly, thus for

each cell the time of birth, death or division, and time of infection is recorded. This

time is measured relative to the experiment, not the the cells, thus a time of birth

of 40 represents a cell that was born 40 hours after the start of the experiment. The

fate of the macrophage defines whether the cell divided (D), or was killed (K). Lastly,

the ‘infected from’ column denotes the time at which a macrophage became infected.

12



1.5 Description of experiment

Movie Cell Born Dead / Div Infected from Fate

0 02 1 0 28 0 D

1 02 10 29 68 29 D

2 02 100 69 79 69 K

3 10 21 57 78 67 D

4 10 210 79 92 79 D

5 10 211 79 123 79 D

Table 1.1: An individual experiment is recorded as a series of snapshots of the Petri

dish stitched together to produce a movie of the interactions between

the macrophages and the bacteria. The bacteria are genetically tagged

with a green phosphorescent gene, and the images are passed through a

green light filter in order to enhance the experimenters ability to identify

bacteria. Over the course of the experiment individual macrophages are

tracked and the time of important events is noted, as well as whether the

macrophage died or divided. When a macrophage divides, its daughter

cells are tracked under new names, which are defined as the name of the

parent cell with a ‘0’ or a ‘1’ concatenated to the end.

If the cell remained healthy throughout the experiment this value will remain empty.

If the macrophage was infected from birth, this value will equal the value for ‘born’.

In addition to tracking macrophages at the individual level, there are time series

data of the intracellular bacterial fluorescence within a macrophage, measured as

area of fluorescence (see table 1.2). When an infected macrophage divides, it is

possible to explore the division of the intracellular load by considering the initial

loads of the two daughter cells. One consideration for this analysis is that the sum

of the fluorescence of the daughter cells does not necessarily equal the load of the

parent cell immediately before division due to fluctuations in fluorescence captured

and the bacteria population shapes pre and post division.

Some experiments demonstrated extracellular bacteria in isolation of macrophages,
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Movie Cell Time fluorescence

0 25 17 24 1.479

1 25 17 32 1.479

2 25 17 40 1.584

3 25 17 48 4.542

4 25 17 56 5.809

5 25 17 64 7.077

6 25 17 72 10.563

Table 1.2: Example data showing the time series of the intracellular load for a single

cell in a single experiment.

measuring the population growth free from macrophage interactions. Since bacteria

are tracked at the macro population level, individual births and deaths of bacteria

are not specifically recorded. The data do however note the starting number of

bacteria and corresponding fluorescence making it easier to estimate the numbers

of bacteria from the total fluorescence. Figure 1.5 shows a schematic representing

the stages through the experiment, and figure 1.4 shows a snapshot taken directly

from the experiment. The maximum duration of the movies is roughly 140 hours

for earlier experiments and extended to 200 hours for subsequent experiments. The

limit on time owes to the increase in population of bacteria making it difficult to

continue processing images beyond this point.

1.6 Methodology
As mentioned in the previous section, the development of the models presented in

this thesis grew predominantly based on the observable mechanisms in the data.

This section will outline the various methodologies used to design, parametrise, and

evaluate each model.
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1.6.1 Mechanistic modelling

Mechanistic models make the assumption that a complex system can be understood

by examining the workings of individual parts, and how they are coupled. A mech-

anistic model can lie anywhere on the “continuum between mechanism sketch and

ideally complete description of the mechanism” [41]. Since mechanistic plausibility

must also be taken into consideration, it is not sufficient to simply reproduce the data.

Mechanistic model construction should have a basis in the real-world understanding

of how a system evolves and there should be a clear relationship between observations,

assumptions and equations. Throughout this thesis a series of models of increasing

complexity are presented. The models were developed organically through discussion

with biological experimentalists and evaluating how well they are able to capture

the dynamics of an experimentally observed biological system.

1.6.2 Ordinary differential equations

Ordinary differential equations (ODEs) form the foundation for a wide variety of

mathematical models and are especially well used in population dynamics [42]. A

wealth of research in numerical methods has resulted in very efficient and accurate

algorithms for solving ODEs [43]. Combined with only requiring a single integration

due to their determinism, this makes exploring large parameter spaces very compu-

tationally simple. Further, ODEs are often mathematically tractable and thus some

analytical analysis can be performed prior to computational.

There are some drawbacks to the use of ODEs however. When modelling small

populations, ODEs may suffer what is known as the “atto-fox” problem, whereby

the model predicts that a population reduces then recovers from numbers that, in

reality, would render the species extinct as a result of chance fluctuations in the

discrete number of individuals [44]. Due to this, ODEs are often more suited to large

populations, where stochastic effects are dampened due to the law of large numbers.

Since ODEs very quickly become non-analytically solvable, evaluating systems of

ODEs will be performed through numerical integration. Numerically evaluating a
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system of ODEs involves discretising the time element of the model then iterating

through time to estimate the state of the system. An initial value problem is defined

by some function f : [t0,∞)× Rd → Rd and an initial condition y0 ∈ Rd such that

y′(t) = f(t, y(t)), y(t0) = y0. (1.1)

The simplest method of numerically solving this system is the Euler method. The

derivative y′ can be approximated by

y′(t) ≈ y(t+ h)− y(t)
h

. (1.2)

Rearranging this gives

y(t+ h) ≈ y(t) + hy′(t) = y(t) + hf(t, y(t)). (1.3)

Thus the sequence tn = t0 +nh can be used to create a sequence yn which numerically

approximates y(tn).

The Euler method is an example of a explicit method, since the numerical sequence

can be evaluated immediately. An example of an implicit method is the backwards

Euler method, where the approximation of y′ is defined as

y′(t) ≈ y(t)− t(t− h)
h

. (1.4)

Which results in

yn+1 = yn + hf(tn+1, yn+1). (1.5)

In order to define the sequence (yn), one must solve an equation for yn+1. The implicit

methods may be more computationally expensive than the explicit method, however

it can also be more stable when considering stiff equations. Intuitively, stability is

the rate at which the error |yn − y(tn)| grows, thus the increase in stability allows

for a larger time step h to be used while maintaining the same level of accuracy.

A larger value of h results in fewer calculations and thus higher computational

efficiency. Adaptive time stepping allows a numerical integrator to estimate the

expected error from a given time step and then adjust the size of the time step to
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maximise computational efficiency within the constraint of a given tolerance on the

error.

The implementation of these solvers that will be used in this thesis is provided in

SciPy package [45] and uses the VODE integrator [46] which itself implements the

Adams methods. This method uses polynomials to approximate yn+1. For a detailed

construction of the multistep method see [47] .

1.6.3 Agent based modelling

When modelling small populations, it is often more suitable to use a stochastic

model, so that the effects of variance can be measured [48]. Agent-based models

(ABMs) provide a flexible framework within which it is possible to simulate highly

complex and potentially heterogeneous interactions between elements of the system.

Since the models are inherently stateful, it is trivial to apply ad hoc rules to the

different agents and track how this affects the evolution of the system. It is for these

reasons that an ABM was developed when transitioning to a stochastic framework.

An important feature of ABMs is the ability to investigate low-probability events

which might have a large effect to the system as a whole.

The most common method of evaluating these models is an implementation of the

Gillespie algorithm [49] which makes use of the Poisson distribution to determine

which events occur when. Suppose there are two possible events in a system, event A

and eventB, each modelled by a Poisson process with rates α and β respectively which

depend only on the current state of the system. In order to sample which event occurs

next, one could sample two times tA ∼ Expon
(

1/α
)
and tB ∼ Expon

(
1/β
)
. If tA < tB

then event A is enacted, the system is updated and the process repeats. However as

the number of events increases, this process becomes very computationally inefficient.

Instead, two uniform random numbers are drawn r1, r2 ∼ Uniform [0, 1]. The first

is used to select the event based on the rates α, β, thus if r1 < α/α+β then event A

is enacted. The second random number r2 is used to define the time step. Since

each event is occurring at rate α and β respectively, the rate of any event occurring
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is α + β. Thus inverting the cumulative distribution function of the exponential

distribution gives the time step as −log(r2)/(α+β). The system can now be updated

and the process repeated until an end condition is met. With this construction, no

matter how many events are being modelled individually, each update to the system

will always only require the generation of two random numbers.

The simple model described above is an example of a continuous time Markov chain

(CTMC). Consider the event A to be toggling a switch SA between states {0, 1},

and event B toggles the switch SB between states {0, 1}. This describes a four state

process on S = {0, 1}2 with the transition matrix

Q =



−α− β β α 0

β −α− β 0 α

α 0 −α− β β

0 α β −α− β


. (1.6)

A CTMC [50] is defined by a finite or countable state space S and a tranisition

matrix Q with dimension equal to S. The elements of Q = (qi,j) are such that for

i 6= j, qi,j ≥ 0 and qi,i = −∑i 6=j qi,j. qi,j defines the rate at which the state changes

from state i to state j.

1.6.4 Parameter inference

Parameter inference is the process of determining the most likely set of parameters (θ)

for a given model and a given set of data (D). Three common methods of parameter

inference are maximum likelihood estimate (MLE), maximum a posteriori (MAP),

and Bayesian inference. MLE maximises the likelihood function L(D|θ) and results

in a point estimate for the parameters. It is possible to then use the likelihood

function to approximate the uncertainty of this estimate.

MAP is a Bayesian approach that still results in a point estimate rather than a

full distribution of θ and is sometimes called the ‘Poor Man’s Bayes’. In order to

determine the posterior distribution of θ, a prior distribution P (θ = x) is updated

with the likelihood function P (D|θ = x) according to P (θ = x|D) = P (D|θ=x)P (θ=x)
P (D) .

18



1.6 Methodology

Here P (D) is simply a normalising constant, and since it is independent of θ can

be ignored for the purpose of finding the mode of the posterior distribution. The

MAP is then the set of parameters θ that maximise the posterior distribution. When

nothing is known about the distribution of θ, or when avoiding adding bias to the

model, a uniform distribution on θ can be used. This is called a flat prior. Using

a flat prior for MAP will reduce the posterior to the likelihood function and thus

MLE is a special case of MAP.

Bayesian inference results in the full posterior distribution P (θ = x|D) as defined

for MAP but requires the calculation of P (D) such that P (θ = x|D) integrates to 1.

Again, with a flat prior on the distribution of θ, the posterior distribution reduces

to the normalised likelihood function.

The literature search presented in section 1.7 has identified a range of analogous

parameters along with a range of estimates. These could be used to define prior

distributions for the models developed throughout this thesis, however doing so may

add bias into the parameter inference. Since differing experimental design naturally

results in differing dynamics, for this study no prior distribution will be defined and

thus parameters will be inferred using MLE.

1.6.5 Sobol sensitivity analysis

Through the process of perturbing the values of input parameters to a model and

observing the effect on the output, it is possible to numerically quantify the uncer-

tainty of the output of a model with respect to its input parameters. As a variance

based method, Sobol sensitivity analysis decomposes the variance of the output to

be divided into fractions which can be attributed to individual parameters or sets

of parameters [51]. Sobol sensitivity analysis is suitable for both continuous and

stochastic models where non-monotonous relationships are expected between the

input parameters and the output measure [52], making it a good choice for this work.

The fundamental assumption of the Sobol method is that a model f with n input

19



Chapter 1 Introduction

parameters X can itself be decomposed in the following way,

f(X) = f0 +
n∑
i=1

fi(xi) +
n∑
i<j

fi,j(xi, xj) + · · ·+ f1,2,...,n(x1, x2, . . . , xn). (1.7)

When these functional decompositions are orthogonal, and f is suitably integrable,

then since orthogonal functions are uncorrelated, the variance of the model f can

be written as

D = Var(f) =
∫
f 2(X) dX− f 2

0

=
n∑
s=1

n∑
i1<···<is

∫
f 2
i1...is dxi1 . . . dxis =

n∑
s=1

n∑
i1<···<is

Di1...is . (1.8)

Finally the sensitivity index for each parameter and each set of parameters can be

defined

Si1,...,is = Di1,...,is

D
. (1.9)

In practice these indices are calculated numerically, predominantly being limited

to the first order indices (Si) and the second order indices (Si,j). Saltelli [53, 54]

presents a robust and efficient algorithm for estimating first, second and total order

sensitivity index. In particular, an efficient method of sampling high-dimensional

parameter spaces is defined: the Saltelli sampler. This quasi-random low-discrepancy

sequence results in a smaller number of parameter sets needing to be evaluated while

still allowing the sensitivity indices to converge. A heuristic definition of a low-

discrepency sequence (xn) is that it should fill the parameter space, minimising

holes, and that projections to lower dimensions should also leave few holes. Formally,

discrepency of a set P = {x1, . . . , xN} with respect to the interval [a, b] is defined as

sup
a≤c≤d≤b

∣∣∣∣∣A(P ; [c, d])
N

− d− c
b− a

∣∣∣∣∣ (1.10)

where A(P ; [c, d]) is the number of points in P that are contained in [c, d]. A low-

discrepency sequence is therefore a sequence for which the discrepency is low. A

sample of uniformly random distributed points does not qualify, as when projecting

to lower dimensions, many points will overlap.

Figure 1.6 shows the process of creating this sequence of parameters for a model

with two parameters (without loss of generality they can be assumed to be contained

20



1.6 Methodology

with the unit hypercube). Each additional frame shows how the next iteration of the

sequence introduces more parameters. The final two frames show the comparison of

the Saltelli sampler with the Latin-Hypercube sampler.

To generate N samples with the Latin-Hypercube sampler, the parameter space is

divided into M = 2m < N even hypercubes, and each sample is uniformly chosen

from within these smaller spaces. For example, given a parameter space of the unit

square [0, 1]2, to generate 4 samples, the parameter space is first divided into the

four quadrants [0, 0.5]× [0, 0.5], [0, 0.5]× [0.5, 1], [0.5, 1]× [0, 0.5], and [0.5, 1]× [0.5, 1].

Each sample is then drawn from each subset of the parameters space independently.

This is an improvement over purely sampling the parameter space uniformly as it

ensures equal dispersion throughout the parameter space without resorting to the

regularity of a grid.

The classic example function for demonstrating global sensitivity analyses is the

Ishigami function,

f(X) = sin(x1) + a sin2(x2) + bx4
3 sin(x1), (1.11)

where a = 7 and b = 0.1. This is because it is a smooth function which exhibits

strong non-linearity and non-monotonicity. The input parameters are each bound

by the intervals [−π, π]. Figure 1.7 shows the sampled parameter space of the three

parameters in the top three frames, and how they each relate to the model output

in the bottom three frames.

Using Python package SALib [55] to perform the numerical analysis of the Ishigami

function results in the sensitivity indices shown in figure 1.8. While parameter x1

has the largest effect on the model output, some of this effect is dependent on the

value of x3, whose only effect on the output is via x1. Parameter x2 is completely

independent of the other two, but has a slightly contribution on the variation of the

output than that of x1.
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New
Old
LHS

Figure 1.6: Progressive iterations of the Saltelli sampler fill in the parameter space

with the goal of covering as much of the space as possible with as

few parameter sets as possible, allowing the calculation of the global

sensitivity indices to converge quickly. Shown is the coverage of the

parameter space for a two parameter model. The last two frames (bot-

tom middle and bottom right) show how the Saltelli sampler compares

with the Latin Hypercube sampler.
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Figure 1.7: Sampling the hypercube [−π, π]3 using the Saltelli sampler and evalu-

ating the Ishigami function over the resultant samples. The displayed

output is passed to the Sobol sensitivity analysis along with the out-

put parameters to determine the sensitivity of the model to each of

the parameters. (Top) The Saltelli sampler evenly samples all three

dimensions with good coverage even when projecting on to lower dimen-

sions. (Bottom) The Ishigami function displays strong non-linearity

and non-monotonicity with respect to the input parameters.
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Figure 1.8: Sobol sensitivity indices calculated for the Ishigami function. Parameter

x1 has the most effect on the model output. Parameter x2 is naturally

independent of x1 and x3. Parameter x3 only affects the model output

in conjunction with x1.
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1.6.6 Goodness of fit

Goodness of fit is a method of quantitatively analysing how well a statistical model

fits a set of observations. Two commonly used methods for evaluating goodness of

fit are the Kolmogorov-Smirnov (KS) test [56] and the K-sample Anderson-Darling

(AD) test [57]. Both methods are used to determine whether two sample sets are

drawn from the same distribution, the null hypothesis being that they are drawn

from the same distribution. Both tests are non-parametric and use the empirical

distribution defined by the given set of observations to calculate their respective test

statistics.

For a given set of n independent and identically distributed observations (X1, . . . , Xn)

the empirical distribution function is defined as

F (x) = 1
n

n∑
i=1

1Xi<x (1.12)

where 1XA
is the indicator of event A.

Given two sets of observations (X1, . . . , Xn) and (Y1, . . . , Ym) with two corresponding

empirical distributions F (x) and G(y), the KS test quantifies the distance between

these two empirical distributions by finding the maximum distance between them.

Thus the KS test statistic is defined as

DKS = sup
z

∣∣F (z)−G(z)
∣∣ . (1.13)

For a given significance level α, the null hypothesis can be rejected at level α when

DKS >

√
− ln

(
α

2

)
n+m

2nm . (1.14)

The KS test provides an intuitive measure for determining how similar two sets of

observations are, however since it only looks for the largest difference between the

two distributions, it can often fail to capture the tail of the distribution.

The AD test extends the KS test by calculating not just the largest difference but the

sum of the squares of the differences. Then by weighting those differences by weights

inversely proportional to the uncertainty of the empirical distribution, the tail of the
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distribution can be accounted for. Extending the above definitions to include H(z),

the empirical distribution of (X1, . . . , Xn, Y1, . . . , Ym), the test statistic for the AD

test is given by

DAD = n+m

nm

∫ ∞
−∞

(
F (z)−G(z)

)2
H(z)(1−H(z)) dH(z). (1.15)

For a given significance level α, the null hypothesis can be rejected at level α when

DAD > t(α) = b0 + b1 + b2. (1.16)

where b0, b1 and b2 can be found in table 2 of [57].

The implementations for both hypothesis tests are available in Python’s SciPy pack-

age [45]. These will be used in chapter 5 to investigate how well the model captures

the data.

1.6.7 Identifiability

When fitting mathematical models to experimental data, the goodness of fits tests

outlined above are not sufficient to prove the model was chosen correctly. For example

if the experimental data has only a small number of observations, it is possible that

a large change in parameter values do not significantly influence the goodness of

fit. Analysing the identifiability of the model can help to address this issue. A

model that results in the same outcome for different sets of parameters is said to be

structurally unidentifiable [58]. That is, for a given model M = {M(θ) : θ ∈ Θ},

M is identifiable if and only if M(θ1) = M(θ2) =⇒ θ1 = θ2. Since a modelM can

often be highly complex and mathematically intractable, proving this statement is

often not feasible. Instead, identifiability can be demonstrated through computation

[59].

As discussed in section 1.6.4, the method of parameter inference that will be used

is maximum likelihood. Thus, the definition of identifiability can be translated to

the framework of maximum likelihood. Given a modelM = {M(θ) : θ ∈ Θ} with

likelihood function L(θ|X), thenM is said to be non-identifiable if L does not have

a unique maximum over the parameter space Θ [60].
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1.7 Literature review
There are two aspects to developing a model of complex biological systems: the

current understanding of the biological mechanisms involved, developed through

experimentation in vitro and in vivo; and the current methodologies and practices

involved in modelling such a system. In this section, the literature is reviewed

and summarised to understand firstly, the biology and pathogenesis of tuberculosis

infections, and secondly the range of modelling methodologies being used.

Initial literature sources were identified using a systematic approach by searching

Google Scholar and PubMed using the search term ((‘within-host’ OR ‘macrophage’)

AND ‘tuberculosis’ AND (‘mathematical’ OR ‘model’)). Results were divided into

biological and mathematical groups. The biological results were filtered to results

containing descriptions, experiments, or data of mechanisms involved in Mtb inter-

actions. Mathematical results were grouped by whether they modelled the innate or

adaptive immune response, and whether or not the model is multiscale. A number of

reviews were identified during this search which were used to identify further sources.

1.7.1 Biology and pathogenesis of tuberculosis infections

Mycobacterium tuberculosis (Mtb) infections are highly complex and heterogeneous

resulting in a large range of observable mechanisms employed by both host and

pathogen. The scope of this thesis is the initial interactions of Mtb with innate

alveolar macrophages. Since these interactions are being measured in vitro, it is

natural to prioritise those studies focussing on the times prior to the influence of

the adaptive immune response. As such, while there is a wide range of literature

detailing the more complicated interactions of the adaptive immune response and

granuloma formation, this review will focus on the subset pertaining to the early

dynamics, where early dynamics is considered to be the time prior to the adaptive

immune response.
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Ref Growth rate (hour−1)

James, Williams, and Marsh [65] 0.0289 – 0.0472

Cox [66] 0.0289

Lipsitch and Levin [67] (data from [68]) 0.0083

North and Izzo [69] 0.0111

Sershen, Plimpton, and May [70] (data from [71]) 0.00095 – 0.06

Lin et al. [72] 0.0132 – 0.0182

Ref Death rate (hour−1)

Lipsitch and Levin [67] (data from [68]) 0.0063

Sershen, Plimpton, and May [70] (data from [71]) 0.0001 – 0.0009

Table 1.3: Estimated growth and death rates of Mtb measured experimentally from

the biological literature.

Life cycle of Mycobacterium tuberculosis

Experiments investigating the life cycle of Mtb often result in varied results. This

is due to varying strains of the bacteria as well as gene expression variability under

different conditions. The two most studied strains are the H37Rv and the Mtb

Erdman strains [61, 62]. H37Rv was first isolated in the early 1900’s and has since

been maintained in a range of different laboratories around the world [63]. It has

been shown that these strains derived from H37Rv have evolved differently and it is

noted that the “notion of H37Rv as a standard reference strain should be used with

some caution” [64]. In comparison to H37Rv, the Mtb Erdman strain used in the

experiments described in section 1.5 is used as a standard virulent strain as it has a

slightly higher doubling time than H37Rv [62]. Through various studies involving

experimentation, the literature demonstrates a wide range of growth rates of Mtb

as shown in table 1.3.

At the higher end of the spectrum for extracellular growth rates, the H37Rv strain of

Mtb used by James, Williams, and Marsh [65] retained their infectious capabilities,
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demonstrating a correlation between growth rate and virulence. Cox [66] agrees

with the faster replication rate, demonstrated using Mycobacterium bovis, and even

hypothesises that Mtb could divide much faster depending on which genes are being

expressed by the bacterium. At the lower end of the growth rates, Lipsitch and Levin

[67] and Sershen, Plimpton, and May [70] (using data from [68] and [71] respectively)

both provide similar estimates of bacteria growth rates which are several times lower

than the other sources. The impact of this range will be investigated later in this

work (see section 2.4.2).

North and Izzo [69] demonstrate that despite its ability to disseminate around the

body, Mtb only grows progressively in the lungs, suggesting the lungs are the crucial

site of resistance against infection. Since this study aims to model the interactions

between bacteria and alveolar macrophages, of particular interest is the specific

measurement of extracellular bacteria growth within pulmonary lesions, performed

by Lin et al. [72]. While the growth rate fell substantially over the experiment, the

rate during the first few days, during which initial interactions would occur, was

between 0.0132 and 0.0182.

Phenotypic heterogeneity in a genetically homogeneous population describes the

variation that exists between individual cells [73] and can be beneficial for a favourable

outcome for the bacteria, especially over long term and persistent infections such as

TB [74]. It is well known that populations of Mtb are able to exhibit phenotypic

heterogeneity under stress conditions [75], in particular they are able to adapt their

metabolic functions to slow growth [76]. A significant result of this heterogeneity is

phenotypic resistance to drugs, which rely on metabolic functions, in an otherwise

sensitive population [77, 78]. Separate is the growth of genotypic resistance, in

the form of multi-drug resistant TB (MDR-TB) and extensively drug resitant TB

(XDR-TB) [79, 80].

Investigating the relationship between virulence and several other characteristics of

various strains of Mtb, Ordway et al. [81] identified a lack of correlation between

virulence and growth or drug-resistance rates in vitro. Since it is generally accepted
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that more virulent strains have higher growth rates in vivo, this could imply that

growth rates in vitro do not correlate with growth rates in vivo.

Mtb is well regarded as a highly infectious pathogen, for which the minimum infec-

tious dose is very low. The Center for Disease Control and Prevention (CDC) state

a 50% infectious dose of less than 10 [82, 83], implying the minimum infectious dose

to be lower. To investigate the minimum infectious dose of TB, Walsh et al. [84]

inoculated two cynomolgus macaques, shown to closely resemble human infection

[85], with doses of 10 colony forming units (CFUs)1. They found that, despite not

exhibiting symptoms of disease, both monkeys exhibited immunological and culture

evidence of Mtb suggesting dose may correlate with disease progression and outcome.

In a similar study, by infecting calves with a range of doses, Dean et al. [87] demon-

strated that 1 CFU is sufficient to result in pulmonary pathology typical of bovine

tuberculosis. And in a murine model of Mtb, Plumlee et al. [88] demonstrated that

ultra low doses of 1 to 3 CFUs recapitulated key features of human TB.

Life cycle of alveolar macrophages

The alveolar macrophage is the first line of defence against foreign particles and

pathogens. It is a long lived cell that resides within the alveolar sacs of the lung.

The population of macrophages in the lungs is maintained by two mechanisms:

recruitment of new cells from circulation, and production of new cells by cellular

division within the lungs [89–92]. Although Van Furth, Diesselhoff-den Dulk, and

Mattie [93] show that the predominant method is through recruitment rather than

local proliferation.

Macrophage recruitment is predominantly governed by two mechanisms [94]. Firstly,

pathogen-associated molecular patterns excite a receptor found on macrophages

known as a toll-like receptor, attracting the macrophages along the concentration

gradient. Secondly, macrophages themselves release chemokines to which additional

1A CFU is the unit of viable bacteria in microbiology, where it is assumed that each colony of

bacteria is separate and founded by a single cell [86, p. 18].
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macrophages are attracted. Cambier et al. [94] demonstrate the manipulation of

these recruitment pathways by the Mtb bacteria to result in preferential conditions

for the bacteria.

The average life span of the alveolar macrophage is said to be 81 days [95], however

more recent studies have shown it to be much longer. Murphy et al. [96] found

negligible replacement of alveolar macrophages after eight months in healthy mice.

Joshi, Walter, and Misharin [97] remark that “While it is certain that alveolar

macrophages are long-lived, current fate mapping studies do not cover the entire

lifespan of the animal.”

In a model of the interactions between pathogenic yeast and macrophages it is

suggested that resident macrophages are induced into mitosis in reaction to the

presence of a pathogen [98, 99]. Dühring et al. [100] use this to categorically

estimate the division rate of mammalian alveolar macrophages to be 0.0176 per

hour. Mtb infection models often ignore explicit macrophage division in favour of

recruitment, as recruitment is the more dominant form of macrophage population

maintenance. Antony et al. [101] demonstrate the host’s quick response to a drop

in macrophage population with increased recruitment of more cells to the site of

infection. This work will investigate the role macrophage division has in limiting the

population of bacteria.

Process of phagocytosis

Phagocytosis is the process of internalising foreign particles and pathogens by host

immune cells with the goal of eliminating them and thus avoiding any harm they

could cause to the host. The resident alveolar macrophage population present in the

lungs at the time of infection is orders of magnitude larger than that of the invading

pathogen. Macrophages are highly specialised phagocytic immune cells [102] thus

phagocytosis is almost an inevitable occurrence. Some pathogens, including Mtb,

have adapted to survive and even depend on the process [103].
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The mechanisms of phagocytosis are extensive and complex, to the extent that it

is possible that the exact route of phagocytic entry into the macrophage may have

a major impact on the survival chance of Mtb [104]. For a detailed review of the

mechanisms see Aderem and Underhill [105]. For the scope of this work it is sufficient

to understand that a healthy macrophage that is unaffected by external interferences

will immediately internalise a bacteria that it comes into contact with.

Interferon-γ (IFNγ) is a critical messaging protein for the innate and adaptive

immune response, released by macrophages during phagocytosis. Its exact function

during early Mtb infections is clouded by heterogeneity. Macrophages’ core function

is to internalise foreign particulates, however without the presence of IFNγ, tumor

necrosis factor (TNF), and other cytokines, macrophages lack the ability to fully kill

off the Mtb bacteria [106–109]. In the presence of IFNγ, macrophages may transition

from their current ‘resting’ state into an ‘activated’ state, enhancing their ability

to kill pathogens. When studying Mtb specifically however, studies of the effect

of IFNγ range from its being inhibitory [110] to enhancing [111, 112] of resultant

mycobacterial growth.

Macrophages are freely able to ingest bacteria they come in to contact with, although

there is some evidence showing that only a limited number of macrophages have the

capacity to phagocytose viable mycobacteria [113]. Innate resting macrophages pre-

activation have very low to no chance to kill bacteria [20]. Infected macrophages may

undergo phenotypic changes diminishing its phagocytic capabilities [114] and there

is evidence of phenotypic heterogeneity within the healthy macrophage population

regarding their phagocytic abilities and their reactions to cytokine cues [115].

Macrophages have a unique roll in the infectious process, serving as the primary

effector cell against Mtb, but also providing a safe environment within which the

bacilli can replicate [116]. If a macrophage does not eliminate the bacilli, there is a

chance it can inhibit the intracellular growth through exposure to IFNγ [117]. While

not eliminating the bacteria this can serve to control the infection for a long time, a

precursor to LTBI.
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Ref Growth rate (hour−1)

Paul, Laochumroonvorapong, and Kaplan [118] 0.0037 – 0.0144

Silver, Li, and Ellner [119] 0.0191

Zhang et al. [120] 0.0181 – 0.0211

Table 1.4: Estimated growth rates of intracellular Mtb measured experimentally

from the biological literature.

Intracellular processeses

One of the core effector functions for eliminating the Mtb bacteria is autophagy [121].

This is the process of phagolysosome fusion [122]. By targeting regulatory lipids

and enzymes of the host macrophage [123], Mtb is able to interrupt this process and

consequently survive and grow within the macrophage [10, 18, 124].

Macrophages infected with Mtb may also attempt to undergo apoptosis (cell death)

to eliminate the possibility of providing a safe environment for the bacilli to grow

[29, 125]. Apoptotic macrophages are then engulfed by uninfected macrophages to

eliminate the bacteria in a process called efferocytosis [121]. Evidence that this

apoptosis is beneficial to the host is difficult to obtain, but it is supported by the

observation that many bacteria have evolved mechanisms to facilitate survival within

macrophages [126]. Intracellular Mtb modify the life cycle of macrophages, either

limiting apoptosis [127] or in favourable conditions promoting it [128, 129]. Virulence

of Mtb strain correlates with the ability of the pathogen to suppress apoptosis of

infected cells [130]. When Mtb inhibits apoptosis of macrophages, the result is

necrosis, a preferable environment for the bacilli [131], while successful apoptosis of

the macrophage results in reduced viability of the surviving bacilli [132].

Once Mtb has gained entry to the macrophage it must establish residence therein.

Mtb has evolved a host of specific mechanisms for acquiring the material required

for growth and out-competing the host cell from sequestering resources to interfering
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with cell mechanisms [133]. See [121] for an in depth review of the mechanisms Mtb

has at its disposal to interfere with effector functions of macrophages.

Similar to experiments involving extracellular bacteria, results for intracellular bac-

teria growth vary. Paul, Laochumroonvorapong, and Kaplan [118] measured the

intracellular growth rate between 0.0037 and 0.0144 per hour. An alternative ex-

periment involving the same H37Rv strain of bacteria measured a growth rate of

0.0191 per hour [119]. Zhang et al. [120] found the intracellular growth rate of seven

isolates to be bimodal between 0.0181 and 0.0211 per hour with a mean of 0.0203.

This shows heterogeneity of interactions between macrophages and Mtb as well as

the potential sensitivity of the system to environmental factors.

Paul, Laochumroonvorapong, and Kaplan [118] also measure the number of intracel-

lular bacteria over several days of infection of in vitro macrophages. The distribution

of intracellular bacteria after six days drops sharply beyond 128 cells, suggesting

a maximum intracellular load. Similar estimations from Hirsch et al. [134] yields

a maximum load of about 50 cells after seven days of infection, and from Repasy

et al. [135] yield 40 cells after eight weeks. These studies demonstrate the need for

modelling work to consider a maximum intracellular load.

Later processes and granuloma formation

A side effect of using macrophages as a safe haven for bacterial growth is that

infections have a tendency to remain local to the original deposition and it is here

that the granuloma will form [136]. It has been demonstrated in a macaques model

that the majority of granulomas begin with a single bacterium [72].

The rate at which the adaptive immune response is initiated is critical to the ultimate

success of the response [137]. T Cells are a type of white blood cell and form an

important part of the adaptive immune response and require antigen presentation

from macrophages to become activated [138, p. 1309]. This process occurs first

within the draining lymph nodes once dendritic cells have transported bacilli there

34



1.7 Literature review

[139] and has been shown to take up to two weeks in mice [140]. In macaques it was

shown that granuloma formation begins at the earliest two weeks post infection [85].

The hallmark of TB infection is the formation of the granuloma in the lungs. The

granuloma is a complex structure facilitated by the host’s adaptive immune response

which contains the initial infection, however the fight between host immunity and

bacterial survival is controlled by the latter allowing the bacilli to persist, contributing

to early Mtb proliferation and dissemination [141–143].

1.7.2 Mathematical modelling of tuberculosis infections

There is a continuum of time scales and complexity for modelling the immune

response to tuberculosis. Broadly, modelling can be divided into two categories,

pre-adaptive immune response and post-adaptive immune response. The latter can

be further divided by whether or not the model is multiscale. Since the scope of this

thesis is the innate immune response as considered in vitro, without the influence of

an adaptive immune response, the literature of mathematical models will be divided

to mirror this focus: firstly, models that only consider the innate response, secondly,

models that consider the adaptive response.

Innate immune response models

The importance of the initial innate immune response to tuberculosis infections

is somewhat overlooked in the modelling literature, however heterogeneity in the

host immune response at this early stage can have a large impact on the resultant

outcome of the infection [19]. An important aspect of the innate immune response

is the rate at which foreign particulates and organisms are phagocytosed by the

alveolar macrophages. Tran, Jones, and Donaldson [144] present a non-TB specific

mathematical model of phagocytosis of particles post inhalations. A key element is

the use of mass action for the rate at which monocytes interact with foreign particles.

This is a simple construction for both ODE models and stochastic models. Some

experimentation has shown phagocytic rates to follow Michaelis-Menten dynamics
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[145], demonstrating a saturation in the rate of phagocytosis dependent on the level

of extracellular bacteria.

Models of this stage of infection often take the form of either ordinary or partial

differential equations, however Carvalho et al. [146] take a systems biology approach

and implement a petri net (PN) model. This results in a high level of abstraction

and allows the authors to focus on the mechanisms involved. It is important to note

that one level of abstraction is the removal of time dependence in the model.

Marino et al. [147] parametrise an ODE model to a set of novel mice experiments

in order to investigate the impact of the age of the host on the infection outcome.

Fitting the full model to a single set of experiments is unusual in the realm of

within-host TB modelling as the majority of models use parameters taken from a

range of sources and use sensitivity analysis to understand the effects. For example

Gammack, Doering, and Kirschner [148] extend other models in the literature [144,

149] and make use of parameters therein.

Adaptive immune response models

A significant proportion of the modelling literature regrading the adaptive immune

response to TB has been produced by the Kirschner Lab [150], implementing a range

of model structures and increasing complexity. Since the biology of the adaptive

immune response is so complicated, the detail of the modelling quickly rises, making

it infeasible to investigate everything with a single model. As such, each model seeks

to understand the impact of a specific mechanism or type of cell.

The earlier modelling efforts constitute ODE formulations involving varying numbers

of cellular populations. Initially Wigginton and Kirschner [149] present a system

of nonlinear ODEs modelling two bacterial populations, six cellular populations

and four cytokines. This model is then extended to a two compartment model,

incorporating the need to transport bacilli to the lymph nodes before a TB specific

immune response can be mounted [151–154]. A parallel extension of the Wigginton
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model extends the populations of macrophages and T-cells [155] and later the effect

of TNF [156] culminating to a model of 32 equations and 210 parameters [147]. These

variations and extensions are used to investigate a range of hypotheses, such as the

cost of achieving latency and the specific role of the lymph nodes.

Two common limitations of ODE models are capturing heterogeneity and modelling

small populations. To evaluate these while investigating the interplay between

mechanisms, Pienaar and Lerm [157] develop a Markov-chain model.

Separate to the Kirschner group, Hao, Schlesinger, and Friedman [158] develop a

partial differential equation (PDE) model similar to the multiscale models discussed

in the next section from Gammack, Doering, and Kirschner [148] and Gammack et al.

[159]. Integrating the PDEs over time and space, Hao, Schlesinger, and Friedman

[158] demonstrate how the radius of the granuloma develops over time.

Multiscale models

Although this thesis is not directly concerned with the adaptive immune response

present in all the multiscale models, the literature provides detailed mechanistic

constructions and parameter estimation useful for the model construction process

discussed later. Multiscale models of TB infection almost unanimously take the

same form: an ABM at the tissue scale with cytokines and sometimes bacteria being

modelled continuously with either ODEs or PDEs. The ABM may be in a continuous

space, or a lattice, and may also be either two or three dimensional. Since these

models require significant computational power, there is also literature specific to

the optimisation of model fitting and validation [160]. Once again the majority of

the models are from the Kirschner Lab and present either a precursor to, or an

implementation of GranSim, the modelling software used to implement multiscale

models.

The modelling framework begins with Segovia-Juarez, Ganguli, and Kirschner [136]

who present a novel ABM on a lattice representing a small section of lung space.
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The model consists of macrophage and T-cell agents interacting with bacteria and

continuous chemokines. Many of the parameters within the model are estimated from

biological literature and the rest are explored using latin hypercube sampling (LHS)

and partial rank correlation coefficient (PRCC). This is a theme which continues

throughout the development of later models. Gammack et al. [159] demonstrate

the need for a range of approaches from continuos deterministic models to discrete

stochastic ones to fully understand the underlying biology. As GranSim increases in

complexity, the individual pieces of literature begin exploring specific mechanisms

within the infection process, such as the effect of TNF [161, 162] and interleukin-10

(IL-10) [163] or how the ratio of macrophage states can be predictive of the outcome

of the granuloma [164].

In parallel to the GranSim modelling, Warrender, Forrest, and Koster [26] developed

and used an early version of the simulator CyCells [165]. The model presented is also

an ABM, however it is in a continuous three dimensional space. The authors conclude

that the processes and heterogeneity involved in the formation of granulomas are

crucial to the eventual outcome of the infection. It is therefore important to properly

characterise the early dynamics such as these.

Explicitly including the effects of oxygen levels in the within host environment,

Sershen, Plimpton, and May [70] demonstrated high correlation between these levels

and the level of bacteria at the end of the simulation. Bowness et al. [166] combine

these effects with the differentiated bacterial populations presented by Pienaar and

Lerm [157] to demonstrate that when bacteria are deposited further away from blood

vessels in the lungs, less favourable outcomes for the host are more likely.

In a unique modelling framework, Pitcher et al. [167] develop a network based

meta-population model of the whole lung and associated lymph system incorporating

oxygen availability as well as adaptive immune responses mechanisms. All parameters

of the model are taken from the Kirschner group. The model demonstrates the large

effect heterogeneity can have, even within simple models and with small heterogeneity.
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This will also be explored in this study through sensitivity analyses and computational

experimentation.

1.8 Thesis Summary
In this thesis, a series of iterative models of the in vitro interactions between

macrophages and Mycobacterium tuberculosis (Mtb) has been developed based on

current understanding of the biological literature and observable mechanisms in a rich

experimental data set. The models were then analysed to investigate the dominant

mechanisms affecting how the system evolves.

The model structure presented in this body of work has been built mechanistically

from first principles based on the underlying biology and has been developed in-

dependently within this thesis. A novel experimental dataset which tracked the

interactions between macrophages and Mtb was used to inform on and parametrise

the included mechanisms. During the model development, limitations of the available

data were identified and fed back to the experimentalist. This lead to additional

data being captured in subsequent experiments enriching the data and allowing for

more detailed modelling to be undertaken.

The key results of this study are firstly that a simple, novel, and robust model, which

is able to capture the dynamics of a complex biological system, has been developed.

Through mathematical, computational, and sensitivity analyses, the key mechanisms

driving the system trajectory have been investigated. It has been shown that the

dominant factor in the proliferation of bacteria is the bacteria growth rate, both

extracellularly and intracellularly. While investigating the possible mechanisms of

macrophage control, two methods were contrasted. First, each macrophage had a

small probability to completely inhibit the intracellular growth of bacteria. Second,

all macrophages reduced the intracellular growth rate, but did not inhibit it com-

pletely. It was demonstrated that the latter had a larger impact on reducing the

resultant number of extracellular bacteria compared to the former. It was also shown
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that while increasing the rate of phagocytosis by a small amount had a protective

effect in delaying the bacteria growth, increasing it further reversed this effect.

Chapters 2 to 5 present the development of each iteration of the model, the data

they are parametrised with, and their analyses. A discussion of the results and the

limitations of this study is presented in chapter 6.
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Model 1: Differential Equations With

Implicit Intracellular Bacteria

In this chapter, a simple ordinary differential equation (ODE) model will be fitted

to a small ‘proof of concept’ data set. The model will consider the interactions of

extracellular bacteria and macrophages, with intracellular bacteria being modelled

implicitly through the role of infected macrophages. Parameters will be fitted using

maximum likelihood methods, the likelihood function of which will be used to define

confidence intervals on those parameters. These ranges will then be used to explore

the sensitivity of the model to each parameter. Finally, by investigating the method

of implicitly modelling intracellular bacteria, the model will show that explicitly

modelling intracellular bacteria is necessary to fully capture the system dynamics.

2.1 Model description
In this section the various components and mechanisms that make up this preliminary

model will be described. The purpose of this model is to capture the basic life cycles

of the two types of cells as observed in the in vitro experiments. The two cells to

be modelled are the innate alveolar macrophages and Mycobacterium tuberculosis

(Mtb), as well as a simple version of their interactions; bacteria uptake, macrophage

death, and bacteria release.
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2.1.1 Mechanisms

There are four fundamental parts to the model presented in this chapter, each of

which has their own complex biology. Throughout this thesis this biology will be

considerably simplified in order to give a high level overview of the cellular population

dynamics. Macrophages and bacteria will follow simple birth death processes and

interaction will be limited to the taking up and release of bacteria by macrophages.

Macrophages

The macrophages used in the experiment described in section 1.5 are murine cells,

thus it is difficult to draw direct conclusions in how the system would react within a

human host. Aston et al. [168] demonstrate a “clear difference between murine and

human responses.” Direct comparison of murine and human macrophage models is

difficult because of a range of factors such differences in experimental design, varying

strains of bacteria, and alternative multiplicities of infection. The focus of this study

is to model and understand the system that was observed in 1.5, and thus conclusions

will not be directly drawn about the effect on human cells.

In order to replicate the experimental results, macrophage growth is incorporated

into the model. Growth is observed in the data at the individual level, measuring

the time of birth and the time of division of individual cells. Macrophage death is

also directly observed and tracked, so macrophage death can be explicitly modelled,

independent of growth. Deaths are observed analogously with individual birth and

death times recorded.

Bacteria

The observations of bacteria are at the population level, rather than the single cell

level, so it is not possible to directly observe division and death events of the bacteria.

Since each experiment demonstrates exponential growth of the bacteria population,

a simple exponential model can be fitted to the observations. The growth of bacteria
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is measured as the total area within an image demonstrating the green fluorescence

of the green fluorescence protein (GFP), which itself grows exponentially. Since the

parameter of interest is the rate of growth, this area can be used as a proxy value for

population count assuming that the number of bacteria is proportional to the area

of green fluorescence. There is a possibility that bacteria become stacked on top of

each other which would result in an underestimation of the growth rate, however

since the time scales and growth rates are small, the variance as a result of this is

likely to be smaller than the variance between experiments and so is ignored.

Phagocytosis

The role of the macrophage is to ingest foreign particulates and pathogens and

eliminate them from the system. Mtb are well adapted to survive this process and

remain alive intracellularly. The data measure the time at which healthy macrophages

become infected, however since the bacteria are not tracked at the single cell level,

there are no records of macrophages killing the bacteria. The time to infection

data are used to fit a force of infection model assuming homogeneous mixing of the

macrophages and the bacteria. If β is the rate of infection, then the force of infection

is proportional to β and the also the number of infective agents, i.e. the number of

bacteria [169].

In the biological literature macrophages are often classified into three groups, namely,

resting, activated, and suppressed [37]. For the purposes of this study the state of the

macrophages will largely be ignored. Macrophage activation often occurs through

interactions with chemical signals from additional immune cells, such as T and B

lymphocytes [110]. Since these cells are not present in the experimentation, the state

of the macrophage will be assumed to be resting. It is, however, noted that this

status can be thought of as having blurred boundaries [170]. Through computational

experiments, the role of macrophage suppression will be explored in later chapters by

considering the impact of reducing the macrophages ability to internalise bacteria.
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Infected macrophage division

When an infected macrophage divides, there are two possibilities for the infection

status of the daughter cells, either they are both infected, or one is infected and the

other healthy. This process is observed in the data through either 1 or 2 infected

daughter cells being recorded post division.

2.1.2 Model definition

As a preliminary model, the construction presented in this chapter will be a simple

ODE model wherein the interactions of entities will follow the law of mass action: the

Figure 2.1: Schematic of the model showing the mechanisms included and the pos-

sible interactions between cell types. Healthy macrophages get infected

by bacteria and become infected macrophages. Macrophages follow a

birth (division) death cycle, while bacteria grow exponentially. Infected

macrophages divide to produce both infected and healthy macrophages.

And finally, when infected macrophages die, they release their intracel-

lular load back into the extracellular space.
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rate of interaction is directly proportional to the product of the size of the populations.

The structure of the resultant model is a non-linear system of three ODEs, which

tracks the populations of extracellular bacteria (E), healthy macrophages (MH)

and infected macrophages (MI). Since the data capturing bacteria growth is 1

dimensional, bacteria death is incorporated into the parameter αE and not modelled

explicitly. Note that the only non-linear term in the equations describes the infection

of a macrophage by a bacteria. The goal of this preliminary model was to be as

simple as possible, and so most terms were kept linear. The interactions of the

macrophages and bacteria are reminiscent of predator-prey dynamics [157] and so

an adaptation of the Lotka–Volterra equations [171] was used. A schematic of the

model is shown in figure 2.1. The equations are defined as follows:

dE
dt = αEE − βEMH + dINMI (2.1)

dMH

dt = gHMH + gI(1− p)MI − βEMH − dHMH (2.2)
dMI

dt = gIpMI + βEMH − dIMI (2.3)

Extracellular bacteria grow exponentially and are internalised by healthy macrophages

at a per capita rate proportional to the populations of bacteria and healthy macrophages,

resulting in an infected macrophage. The units of β in equation 2.1 are (bacteria× day)−1

however in equations 2.2 and 2.3 the units of β are (macrophage× day)−1. It is as-

sumed that a single bacteria interacts with a single healthy macrophage to form a

single infected macrophage and thus the magnitude of β is the same in all 3 equations.

Both healthy and infected macrophages also replicate exponentially, however when an

infected macrophages replicates it results in both healthy and infected macrophages

according to some proportion, seen in the gIp and gI(1− p) terms in equations 2.2

and 2.3. This is a result of the intracellular load either being divided between both

daughter cells, or all of the load being passed to a single daughter cell.

Healthy and infected macrophages both have an exponential death rate. The death
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Symbol Description Unit

E Extracellular bacteria cells

MH Healthy macrophages cells

MI Infected macrophages cells

αE Extracellular growth rate hour−1

N Average number of intracellular bacteria cells

gH Healthy macrophage growth rate hour−1

dH Healthy macrophage death rate hour−1

gI Infected macrophage growth rate hour−1

dI Infected macrophage death rate hour−1

p Probability an infected macrophage divides into 2 in-

fected macrophages

scalar

β Infection rate of healthy macrophage by extracellular

bacteria

cell−1hour−1

Table 2.1: Variable and parameter symbols and their descriptions for equations 2.1

to 2.3.

of an infected macrophage results in its intracellular load (N) being returned to the

extracellular population, seen in the dINMI term in equation 2.1.

By setting dE
dt = dMH

dt = dMI

dt = 0, the steady state of the system can be analysed.

Eliminating the βEMH term from equations 2.1 and 2.3 results in

0 = αEE +
[
(N − 1) dI + gIp

]
MI . (2.4)

Since E ≥ 0, MI ≥ 0 and
[
(N − 1) dI + gIp

]
> 0 for N > 1, it is trivial to conclude

that the only steady state is E = MI = MH = 0. The assumption that N > 1

implies that the intracellular population of an infected macrophage at the time it

dies is always greater than 1. Since the macrophages involved are not activated, it

is a reasonable assumption that intracellular growth occurs within all macrophages

that become infected.
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Computing the Jacobian matrix for the system at the steady state results in the

matrix

J =


αE 0 dIN

0 gh − dh gI(1− p)

0 0 dI(p− 1)

 (2.5)

for which the eigenvalues are λ1 = αE > 0, λ2 = gh − dh, and λ3 = dI(p − 1) > 0.

Since 2 eigenvalues are strictly positive, the fixed point of the system is not stable. If

gH < dH then the fixed point would be a saddle, potentially resulting in fluctuations

in the cellular populations.

2.2 Data
Here, the data to be used in this chapter will be briefly described. First, the data

relating to the extracellular bacteria growth is shown in its raw state in figure 2.2.

Note the log scale on the y-axis. It is clear from this figure that the time series

data here is non-stationary with a constant trend in the log-plot, thus the data are

growing exponentially.

The remaining data are captured at the individual level and thus can be summarised

as a population. Table 2.2 shows the summary statistics for these data. By far

the most observed event in the data is the division of a healthy macrophage and

overall approximately 150 more healthy macrophages are observed than infected

macrophages. The time to death for both populations has a similar mean, however

the time to death for infected macrophages has much higher variance. The same is

true for division, however infected macrophages also have a longer average time to

division.
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Figure 2.2: Raw data of extracellular bacteria growth. Note the log scale on the

y-axis. Clearly these data are non-stationary and the constant trend

in the log scale demonstrates exponential growth.

Mechanism Count Min (hours) Mean (hours) Max (hours) Std (hours)

Healthy death 67 2.0000 22.0000 82.0000 15.2236

Healthy division 240 6.0000 18.9333 53.0000 6.9868

Infected death 65 1.0000 24.9385 126.0000 23.5524

Infected division 93 6.0000 23.3978 59.0000 13.7597

Infection 13 1.0000 17.7692 45.0000 11.4029

Table 2.2: Descriptive statistics for data used in this chapter. The values used here

are the wait times, thus the time from when a macrophage was born to

when it either divided or died.
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2.3 Parameter Fitting
In this section the process of fitting parameters to the data will be described. The

data is structured by experiment and macrophage. Key information is measured,

such as time of division, time of infection as described in section 1.5. This structure

of data lends itself to extracting distributions describing each mechanism, to which

the parameter governing that mechanism can be fitted.

2.3.1 Macrophage division

Figure 2.3 shows the time from birth to division data for macrophages. The data is

divided by the infection status of the macrophage at the time of division. The raw

data is recorded at the cell level measuring the time of birth, the time of division

(for those cells that divided) and the infection status of the cell. Data was captured

over 11 experiments involving 47 macrophages. Healthy macrophages demonstrate

a clear delay followed by a peak, whereas the infected macrophages seem to exhibit

a flatter distribution. Exponential growth is a commonly used functional form for

modelling populations [172], thus has been fitted here. While it is clear that neither

of these are distributed according to an exponential distribution, since this chapter

is presenting as simple a model as possible, exponential growth will continue to be

assumed, allowing the ODEs to remain three dimensional. In future chapters more

appropriate distributions will be considered.

The fitted distribution is an exponential distribution. Figure 2.3 shows the optimally

fitted exponential distribution to each data set and the 95% confidence intervals for

the fitted growth parameter. The optimal parameters were inferred using maximum

likelihood estimate (MLE).
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Figure 2.3: Division wait times for both healthy and infected macrophages are

recorded, and demonstrate distinct distributions. Despite a poor fit,

for simplicity of the model an exponential distribution is assumed and

fitted using maximum likelihood and shown against the data along

with its 95% confidence interval. Better fitting distributions will be

investigated in future chapters.

2.3.2 Macrophage death

The available data for macrophage deaths is similar to that of macrophage division:

birth and death times at the individual level. Plotting the data shows a clear

exponential disappearance rate as shown in figure 2.4. Since birth rates are being

modelled independently for both healthy and infected macrophages, the distributions

for death times are also fitted independently. The fitted distributions are also shown

in figure 2.4 along with the 95% confidence intervals.

On average, the time to death is very close to the time to division within each type

of cell (infected or healthy), however the time to death has higher variance. This

can be seen by the similar rate values that are fitted compared to the difference in

maximum wait times - no division events occur over 60 hours post birth whereas

there are death events observed up to 100 hours post birth. In subsequent chapters

the model for macrophage division will be improved to account for these differences.
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Figure 2.4: Birth to death wait times for both healthy and infected macrophages

are recorded, and demonstrate similar distributions. Exponential distri-

butions fit the data well. Since birth rates are distinct for both healthy

and infected macrophages, death times will be kept distinct.

2.3.3 Bacteria growth

The available data for fitting the extracellular bacteria growth rate is a one-dimensional

time series of the total area of fluorescence. There are five experiments available

in which the extracellular bacteria are observed to grow without interaction with

macrophages, these will be used to determine the model of growth for extracellular

bacteria. Plotting the data (figure 2.5 (left)) shows that the level of fluorescence

grows exponentially in time, thus a simple exponential growth model will be as-

sumed. Assuming that the level of fluorescence is proportional to the total bacteria

population, the exponential growth parameter governing the rate of growth of the

fluorescence will be the same as that governing the growth of the bacteria.

Since the data is only available at the population level it is not possible to fit

separate growth and death models for the bacteria, instead the exponential growth

parameter will define the difference in growth rate and death rate. While additional

experiments could have been performed with the purpose of separately measuring

the independent rates of growth and death of extracellular bacteria, it is ultimately
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Figure 2.5: Data show exponential growth of extracellular bacteria, to which an

exponential growth curve can be fitted. Averaging over the fitted ex-

ponential growth rates weighted by their errors results in the kernel

density estimate. This distribution is used to find the optimal value

for the extracellular growth rate.

the resultant growth rate of the difference between the two that is of interest. The

model of growth used to fit the data is

E(t) = E0 exp (αEt) . (2.6)

Allowing for uncertainty in the initial number of bacteria, both E0 and αE are

estimated for each experiment. Figure 2.5 (left) shows the raw data as well as

the fitted growth curves. For each exponential curve from the data, the fitting

process yields a MLE as well as a standard error. Assuming a normal distribution

on the errors, these can be used to define Gaussian kernels, N(µi, σ2
i )1, which can

be summed resulting in figure 2.5 (right). The MLE of the resultant distribution is

used to define the value of αE used in the model.

1µi represents the MLE for the growth rate, and σ2
i represents the normal distributed errors on

the fitted growth curves.
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2.3.4 Infection

In order to fit the rate of infection, the time of birth and the time of infection

of macrophages is used. The movement of bacteria from the extracellular space

to the intracellular space is not directly observed and is instead inferred from the

observation of a healthy macrophage becoming infected. It is therefore not possible

to distinguish between the intracellular load increasing due to intracellular growth

and infected macrophages internalising additional bacteria. For this reason the model

will assume only healthy macrophages internalise bacteria, and for simplicity only

one bacteria is internalised at a time. This second assumption will be explored more

in chapter 5. The force of infection, the rate at which healthy macrophages become

infected, is assumed to be proportional to the population of extracellular bacteria,

however this value is not tracked in parallel to infection times.

The experimental set up described in section 1.5 states that macrophages were

washed to remove extracellular bacteria, thus it should be assumed that there are

no extracellular bacteria at the beginning of the experiment. However, there are

records of macrophages becoming infected prior to observing an infected macrophage

dying, implying the existence of extracellular bacteria. This is likely a result of the

camera that was used in the experiments not capturing the entire petri dish, thus

it is possible for the death event to have occurred out of frame. The assumption

of a bacteria population of zero result in the likelihood function evaluating to zero

when including data that exhibits an infection event before an infected macrophage

death event. Since the number of observed infection events is already limited, for

the purpose of fitting the rate of infection, it will be assumed that there is a single

extracellular bacteria at the start of the experiment. The bacteria population is

then assumed to grow exponentially using the exponential growth rate already fitted

in this chapter. The possible implications of this assumption are that the fitted

infection rate will be too low, since the simulated macrophages are experiencing a

higher force of infection than reality, but becoming infected in the same amount of

time. The impact of this will be investigated in the sensitivity analysis.
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At any given time the force of infection on a healthy macrophage is dependent on

the infection rate β and the number of extracellular bacteria E(t). Interactions are

modelled using mass action, and so the probability of observing a healthy macrophage

born at time t0 which remains healthy until time t1 can be written as

P
[
MH(t0)→MH(t1)

]
= exp

(
−
∫ t1

t0
βE(s) ds

)
. (2.7)

The data is recorded hourly, so when a macrophage is recorded as having changed

state from healthy to infected, the infection event must have occurred sometime in

the previous hour. Thus, the probability that a healthy macrophage born at time t0
becomes infected between times t1 − 1 and t1 can be written as

P
[
MH(t0)→MI(t1)

]
= P

[
MH(t0)→MH(t1 − 1)

] (
1− P

[
MH(t1 − 1)→MH(t1)

])
.

(2.8)

By iterating over the instances of a healthy macrophage becoming infected and

evaluating the probability of each event according to the product of the above

equations, the log of these probabilities can be summed to define a log-likelihood

function of the parameter β. Since the level of extracellular bacteria is not recorded

for these data, E(s) = E0 exp (αEs) is assumed to be exponential growth with the

growth rate fitted in section 2.3.3. For macrophages that are observed to become

infected (not including those that were born infected) the time of birth is subtracted

from the time of infection to give the wait time. Figure 2.6 shows the distribution of

times from birth to infection and figure 2.7 shows the likelihood function of β along

with its MLE and 95% confidence interval.
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Figure 2.6: Distribution of time to infection wait times for healthy macrophages

that were observed to become infected. Time to infection is the time of

infection subtract time of birth. Macrophages that were born infected

are not included.
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Figure 2.7: Likelihood function of the rate of infection β given birth and infection

times of macrophages.
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2.3.5 Infected macrophage division

When an infected macrophage divides there are two possible outcomes for the in-

tracellular bacteria. Either the macrophage divides into an infected-healthy (IH)

macrophage pair, or the macrophage divides into an infected-infected macrophage

pair. The frequency of each outcome is shown in figure 2.8. Clearly the infected-

healthy pair is the more likely outcome with a ratio of approximately 2:1. However

it may be possible that the type of division a cell undergoes is influenced by the

type of division its parent underwent, that is, the infected daughter resulting from

an IH type division, may be more likely to divide into one infected and one healthy

macrophage. By performing a Fishers exact test, the hypothesis of there being a

correlation can be statistically evaluated. The contingency table is shown in table 2.3.

The result of this test (χ = 0.5962) is that the forms of division are not significantly

dependent. Since there is no correlation in division type from one generation to the

next, for simplicity in the model, a Bernoulli parameter (p = 0.3) is calculated using

p = Number of infected-infected division events
Total number of division events . (2.9)

p is then used to determine which form of division takes place at the time of division

(see figure 2.9).

Self IH Self II Total

Parent IH 7 2 9

Parent HH 4 3 7

Total 11 5 16

Table 2.3: Contingency table for division of infected macrophages, investigating

the relationship between the form of a cells division and that of their

parents. Fishers exact test results is χ = 0.5962 and thus not significant.
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Figure 2.8: Frequency of infected cell division which results in 1 or 2 infected

daughter cells.
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Figure 2.9: Likelihood and 95% confidence interval for probability of infected-

infected division.
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2.3.6 Parameter values

The fitted values and related confidence intervals are shown in table 2.4. The

parameter N denotes the number of intracellular bacteria that are released when an

infected macrophage dies. Since this value is not measured in the data, it cannot be

fitted. A common value used in the literature for the maximal intracellular load is

N = 50 [151, 157, 173]. To begin with, this value will be used in this model, but the

effect of N will be analysed in section 2.4.1.

The majority of mathematical and biological literature focus on recruitment as the

method of macrophage population replenishment. Studies investigating the interac-

tions of macrophages and bacteria cells in vitro, without concern for recruitment [9,

174] do not explicitly measure the growth rate of the macrophages being studied. It

is therefore not possible to compare the values regarding macrophage growth fitted

here with the literature. The rate of growth of bacteria is very close to that of

the literature (see table 1.3). Finally, the rate of infection of healthy macrophage

features the most uncertainty, both here and in the literature. Pienaar and Lerm

state an uptake range of between 0.0083 to 1.1667 bacteria per hour, and settle on

0.3333 [157], while Marino and Kirschner use a lower 0.01667 [151].
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Parameter Value Confidence Interval Unit

αE 0.0290 (0.0168, 0.0328) hour−1

gH 0.0458 (0.0401, 0.0521) hour−1

dH 0.0453 (0.0332, 0.0601) hour−1

gI 0.0365 (0.0271, 0.0472) hour−1

dI 0.0375 (0.0252, 0.0532) hour−1

p 0.3000 (0.1361, 0.5095) scalar

β 0.0056 (0.0031, 0.0094) cell−1hour−1

N 50 cells

Table 2.4: Table of parameter values and confidence intervals. Parameter N was

taken from literature [151] so no confidence interval is calculated. Note

that since the values of gH and dH (respectively gI and dI) are close, the

population of macrophages will remain approximately constant.

2.4 Model results
In this section the output of the model will be analysed. Since the model is a simple

ODE model, it is computationally cheap to simulate. First the model is run with the

parameters fitted in the previous section. The sensitivity of the model to these pa-

rameters will then be analysed, before investigating the direct relationships between

parameters and what these relationships say about the system being modelled.

2.4.1 Model output

The model described in this section is simulated using an implementation of the

VODE [46] integrator in the Scipy.integrate Python package [45]. First, parameter

values are assumed to be their MLE values defined in the previous sections, then

the parameters are allowed to vary within their 95% confidence intervals using Latin

Hyper-Cube [175] sampling to efficiently cover the parameter space. The model

output in figure 2.10 shows the simulated output of the model. After 140 hours the

population of extracellular bacteria are growing exponentially, while the population
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Figure 2.10: Integration of equations 2.1 to 2.3. Solid lines represent parameters

set to their MLEs, while the shaded area is created by varying the

parameters within their confidence intervals. Parameter sets were

created using latin hypercube sampling (LHS) with 2000 sets of pa-

rameters chosen. The initial conditions for the model are MH = 9,

MI = 1 and E = 1, this is in contrast to the experimental initial

conditions in which macrophages were infected with a multiplicity of

infection of 1.

of healthy macrophages has long been depleted due to the force of infection applied by

the significantly larger population of bacteria. The fitted growth rate of the infected

macrophages (gI) is greater than the fitted death rate (dI). Thus, the population of

infected macrophages is able to persist. When the infected macrophages divided, a

portion of them are born healthy, however due to the high force of infection from the

large population of extracellular bacteria, these healthy macrophages are immediately

converted back to infected macrophages.
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Figure 2.11: Left Base model as seen in figure 2.10 without the confidence intervals.

CentreModel output without intracellular growth: N = 1 and p = 1.

Right Model output without extracellular growth: αE = 0.

The output of the model in the absence of extracellular growth shows

the overwhelming effect that the implicit intracellular growth has on

the model.

There is a very large overestimation of the number of extracellular bacteria. This

is due to the assumption that the number of bacteria released when an infected

macrophages dies is the average number of intracellular bacteria: N = 50 [151].

Since the model is an ODE it can be thought of as a mean field approximation of

the true stochastic events. An infected macrophage dying with a high load would

be a low probability event, however in the ODE construction, there is a constant

positive pressure on the population of extracellular bacteria. This in turn increases

the rate at which healthy macrophages are becoming infected resulting in a positive

feedback loop that pushes the extracellular population up. To investigate the effect

of the value of N , the model is run

1. In the absence of intracellular growth: set N = 1 and p = 1

2. In the absence of extracellular growth: set αE = 0.
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In the absence of extracellular growth, the extracellular population grows approxi-

mately linearly. This is a result of the first two terms of equation 2.1 being zero (the

healthy macrophage population is immediately depleted and does not recover) and

the population of infected macrophages approximately constant. By reducing the

value of N , the output of the model begins to look more reasonable and more com-

parable to what would be expected given the data. Under the naive assumption that

intracellular bacteria grow at the same rate as extracellular bacteria, as roughly seen

in the literature review (see tables 1.3 and 1.4) then at the end of the 140 hours, the

total expected number of bacteria in the system will be E0 exp (0.0290× 140) ≈ 116.

Figure 2.12 shows the output of the model, with the parameter N changed to 2.

The assumption that N = 2 implies that when the average infected macrophage dies,

it contained two intracellular bacteria. This is significantly below the values used in

the mathematical literature. Since the model being presented here is such a simple

model, there is only one mechanism promoting cellular death: the macrophage birth

death cycle. This is in contrast to, for example, Marino and Kirschner [151] in which

there are a host of factors from the adaptive immune response resulting in the death

of infected macrophages. Thus despite the intracellular load being limited by N ,

there will often be intracellular loads significantly smaller than N at the time of the

host cell’s death. Another contributing factor is the higher than usual rate of division

observed in the cells used in this experiment. While the mathematical literature

generally assumes that macrophage populations are maintained by recruitment [93]

experimentation does demonstrate macrophage division [92], as observed in this

data set. The process of infected macrophage cell division increases the infected

macrophage population by p at a rate of gI , thus the intracellular population grows

by pN at a rate of gI . When N = 50 this is significantly higher than is realistic. If,

instead, the macrophage population was maintained by recruitment, the population

of intracellular bacteria would no longer grow with the macrophage population. For

the rest of this section, N will be assumed to be 2.

While it is not possible to write down an analytical solution to equations 2.1 to
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Figure 2.12: As in figure 2.10, integration of equations 2.1 to 2.3. Solid lines

represent parameters set to their MLEs, while the shaded area is

created by varying the parameters within their confidence intervals.

Parameter sets were created using LHS with 2000 sets of parameters

chosen. The initial conditions for the model are MH = 9, MI = 1 and

E = 1. The parameter N has been updated to the value of 2, which

yields the most qualitatively realistic model output.

2.3, the late time dynamics seen in 2.12 can be investigated. Assuming that E is

large and MH is small, some terms from equations 2.1 can be ignored. Since E is

significantly larger than MH andMI , the growth of E is dominated by the first term.

dE
dt = αEE − βEMH + dINMI ≈ αEE. (2.10)

Similarly since the population of healthy macrophages MH has been depleted, the

rate of change of MH becomes

dMH

dt = gHMH + gI(1− p)MI − βEMH − dH (2.11)
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≈ gI(1− p)MI − βEMH .

Here the βEMH term cannot be ignored as while MH is small, E is large, thus how

the product EMH acts depends on how fast E is diverging to infinity and MH is

converging to zero. By adding equation 2.3 to 2.11 an approximation for the total

macrophage population (M = MH +MI) can be determined.

dM
dt = dMH

dt + dMI

dt (2.12)

≈ gI(1− p)MI − βEMH + (gIp− dI)MI + βEMH

= (gI − dI)MI .

Thus whether the population of macrophages ultimately dies out is dependent on

the sign of gI − dI .

One artefact of this model seen in figure 2.12 is the upper boundary on the 95%

confidence interval of infected macrophages continuously increasing. This results

from areas in the parameter space where gI > dI and the lack of stable equilibrium

away from zero, however it is not a result that would translate from in vitro to in

vivo. Once the infection gets out of the control of the innate macrophages, additional

factors will come into play, such as necrosis [119], requiring the adaptive immune

response to counter [107]. This overestimate of the 95% confidence intervals for the

birth death process of the macrophages is likely a result of the small amounts of

data used in this study. This problem will be rectified in later chapters as the in

vitro experimentation progress from its preliminary stages.

2.4.2 Sensitivity

Performing a Sobol sensitivity analysis as described in section 1.6.5 yields the sen-

sitivity indices shown in figure 2.13. Variation in the total population of each type

of cell is measured at uniformly sampled times of every 5 hours and attributed to

variation in the input parameters. A limit of 140 hours was chosen as this was the

limit of the original experiments. Later chapters will extend this limit to 200 hours.

The system progresses through three stages, initially the system is driven by healthy
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macrophages internalising extracellular bacteria and becoming infected. Once the

healthy macrophage population has been depleted, the system is driven by infected

macrophages dying and releasing their intracellular loads back into the extracellular

space. Finally, once the extracellular bacteria population has grown sufficiently large,

the exponential growth of the bacteria dominates the system for the remaining time.

The dynamics of the extracellular bacteria are dominated by the death rate of infected

macrophage (dI) and the extracellular growth rate (αE). However, initially there is a

significant contribution from the rate of infection (β). This contribution is sustained

only as long as there are no infected macrophages in the system. Once the population

of infected macrophages begins to increase, the rate of death of infected macrophages

quickly suppresses the effects of infection of the extracellular population. This is

due to the rate of death of infected macrophages being significantly higher than the

rate of infection. After approximately 75 hours, the extracellular population has

grown large enough that the exponential growth governed by αE overtakes dI as the

dominant parameter and the system enters its final stage of exponential and self

sustained extracellular bacteria growth.

There is a larger amount of uncertainty in the value fitted for the healthy macrophage

death rate (dH) than the healthy macrophage growth rate (gH). The consequence

of this uncertainty is the larger contribution to the variance in the macrophage

population resulting from variance in dH . As the population of infected macrophages

grows, the number of healthy macrophages being born as a result of infected-healthy

division events steadily increases. This can be seen in the steady increase in the

significance of the death rate of infected macrophages dI .

Naturally, the initial parameter contributing to the population of infected macrophages

is the rate of infection (β). The significant effect of the rate of death of healthy

macrophages (dH) on the healthy macrophage population has a knock on effect

onto the infected macrophage population. As the extracellular population grows

large, healthy macrophage are converted to infected macrophage almost immediately.

Thus a larger death rate for healthy macrophages will result in a lower population of
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infected macrophages. As the population of healthy macrophages begins to die out,

the death rate of infected macrophages (dI) takes over as the dominant parameter.

Throughout the simulation, the effect of the growth rate of infected macrophage

(gI) steadily increases, however this is more of a result of the impacts of β and dH
reducing rather than those of gI growing. Similarly, the impact of gH steadily grows,

until the healthy macrophages die out. This relationship stems back to infection,

when there are more healthy macrophages to infect, there will be more healthy

macrophages converting to infected macrophages.

In order for there to be a reduction in the number of extracellular bacteria (dE
dt < 0)

immediately post infection (MI ≈ 0),MH must be greater than αE/β. The immediate

effect of this is the reduction in the number of healthy macrophages and the increase

in number of infected macrophages, in turn increasing the number of extracellular

bacteria. Eventually, E will be sufficiently large and MH sufficiently small that
dE
dt > 0. In figure 2.12 the initial conditions include an initially infected macrophage,

so this process is not observed. Measuring the time taken until dE
dt switches sign

from negative to positive, figure 2.14 shows how variation in the parameters affects

this value.

In order of size of contribution, the infection rate β, the infected macrophage death

rate dI , and the extracellular growth rate αE tell the story of which mechanisms are

involved in limiting or increasing the growth of extracellular bacteria. By increasing

the rate at which macrophages internalise bacteria, the extracellular population is

diminished, halting its growth. Conversely, an increase in the death rate of infected

macrophages and of the extracellular growth rates, push bacteria back into the

extracellular space and allow them to grow faster than they can be internalised,

resulting in the rapid switch back to dE
dt > 0.
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Figure 2.13: Sobol sensitivity analysis measuring how much variance in the model

populations can be attributed to variance in the model parameters.

Populations are sampled at evenly spaced time points to investigate

the sensitivity to parameters throughout the whole time course.
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Figure 2.14: Sobol sensitivity analysis bounding the parameters within their 95%

confidence intervals. Measured is the fraction of the variance in the

value of the time at which dE
dt switches sign from negative to positive,

which can be attributed to variance in the given parameter.

2.4.3 Identifiability

Analysing the identifiability as described in section 1.6.7 amounts to determin-

ing whether the MLEs are unique for each mechanism. Macrophage growth and

macrophage death are simple one parameter probability distributions fitted to data,

thus it is trivially true that the MLEs are unique. For the kernel densitiy estimate

(KDE) defined for the extracellular growth, the likelihood function is plotted in figure

2.5 and shows a unique maximum. The same is true of the infection rate in figure

2.7 and the fraction of infected-infected divisions in figure 2.8. Thus, since all MLEs

are unique it can be concluded that the model is identifiable.

2.5 Conclusions
The goal of this chapter was to explore the possibilities for which mechanisms could be

modelled and reasonably fitted using data collected from the experiment described

in section 1.5. To that end, a range of simple mechanisms for macrophage and
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bacterial growth and their interactions have been fitted, and a simple three equation

ODE model was developed. A sensitivity analysis was performed evaluating how

variance in the model parameters affects variance in the state of the system. In the

first 70 hours of simulation the model is more sensitive to the macrophage dynamics

and the rate of infection, however as the bacteria population grows, the bacteria

growth rate takes over as the dominant mechanism. A second analysis was performed

measuring the time until the rate of change of extracellular bacteria is positive, for

which the rate of infection was the dominant mechanism. Delaying the growth of the

extracellular bacteria would give a host system more time to develop any required

adaptive response, demonstrating the importance of early capture. Finally a steady

state analysis showed there are no non-zero steady states in the model, and the long

term dynamics of the model depend on the ratio of gI to dI .

Intracellular bacteria are not explicitly modelled, instead the parameter N was used

to define the number of bacteria that is released when an infected macrophage dies.

The interaction of this parameter with the birth death process of the macrophages

highlighted the importance of explicitly modelling intracellular bacteria. This is a

similar approach taken to that of Wood, Egan, and Hall [176]. The model presented

in [176] is a model of Francisella tularensis wherein intracellular bacteria are also

modelled implicitly and a fixed number of bacteria are released at cell death, this

number being the solution to the expected number of intracellular bacteria at the

expected time of rupture. There are two key differences between the models. Firstly,

the population of healthy phagocytes in [176] is infinite, an assumption of the

within-host setting of the model where phagocytes vastly outnumber the bacteria.

This contrasts to the finite population of macrophages modelled here where by the

population of healthy macrophages gets depleted and the bacteria are able to persist

within the infected macrophage population. Secondly, the phagocytes in [176] are

readily able to kill the bacteria with a death rate significantly higher than the bacteria

survival rate. The base model developed here does not include any mechanism to kill

the bacteria, and this process is only explored through computational simulation.
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Chapter 2 Implicit intracellular bacteria

The model presented here will be improved over the following chapters. First and

foremost, the intracellular bacteria will be modelled explicitly, and the macrophage

division process will be modelled using a more suitable distribution than exponential.

Fundamentally, the model presented in this chapter performed as expected. As a

simple ODE model with only 1 non-linear term and no non-trivial steady states,

the resulting dynamics are simple to deduce from the model definition. However

there is value in the development process as those parameters that are fitted and can

be compared to the literature, such as the rate of infection, are in line with other

estimates [100, 118–120, 144].
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Chapter 3

Model 2: Differential Equations With

Explicit Intracellular Bacteria and

Erlang Growth

In this chapter the model from chapter 2 will be further developed and extended.

Most notably intracellular bacteria will be modelled explicitly. Additionally the

macrophage birth death process will be improved from simple exponential growth.

While exponential growth is often a good choice for modelling population growth, it

may not be appropriate at the individual level. Since the population of macrophages

is small, it is important to accurately capture the individual dynamics.

Traditionally the log-normal distribution has been used to model the cell cycle

[177, 178], however more recently the Erlang distribution has been introduced as an

effective model for cell cycle times [179, 180] and it has been shown to accurately

capture human cell cycle dynamics [181]. Since the Erlang distribution can be

thought of as a series of exponential distributions, it fits well mechanistically with the

current biological understanding of the cell cycle: cells move through a series of stages

before undergoing cell division. Additionally, its relationship to the exponential

distribution makes the Erlang distribution a convenient model for implementing in

both ordinary differential equations (ODEs) and agent-based models (ABMs). For

these reasons the Erlang distribution will be used over the log-normal.
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3.1 Erlang growth
The Erlang distribution is a two parameter family of distributions over the positive

real numbers, whose parameters are a positive integer k and a positive real number λ.

It is a special case of the Gamma distribution: having the same functional form with

the restriction that k is an integer. When k = 1 the Erlang distribution is simply the

Exponential distribution, and for k > 1, it is the sum of k Exponential distributions

each with mean 1/λ [182, p. 152]. A Poisson process describes events that occur

independently at some fixed rate, the classic example being buses arriving at a bus

stop. The Exponential distribution is used to describe the wait times between events

being modelled by a Poisson process [182, p. 339], thus the Erlang distribution can

be used to describe wait times between k occurrences of these events. By considering

a macrophage to have a series of stages of life which it must pass through in order

to divide, and by assuming that the rate at which the macrophage traverses these

stages is fixed and the same, then the time from birth to division will be an Erlang

distributed random variable.

The validity of the above assumptions is founded in the biological literature. The

cell cycle is described in biological literature as a series of four consecutive stages:

cell growth (G1), DNA synthesis (S), interphase (G2), and mitotic phase (M) [181,

183], however the transition rates between these stages is not necessarily be the

same. Despite this, the whole process can be well approximated using the Erlang

distribution. Figure 3.1 shows how an Erlang distribution can be used to model

a here-named inhomogeneous Erlang process, with the assumption that while the

rates between the four stages may not be the same, they are fixed. Testing the

goodness of fit of the 100,000 samples of the inhomogeneous Erlang process against

the homogeneous Erlang process using the Kolmogorov-Smirnov test, as described

in section 1.6.6, results in no rejection of the hypothesis that they are the same

distribution.
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3.1 Erlang growth

Figure 3.1: A non-homogeneous Erlang process can be well approximated by a

homogeneous Erlang process. (Top) A four stage process consisting

of varied transition rates. (Centre) Wait times to progress through

all four stages are sampled and plotted. These wait times are used to

fit a homogeneous process. (Bottom) The three stage process with

homogeneous transition rates is a good approximation for the four stage

process.
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3.2 Model description
In this section, the additional mechanisms integrated into the model will be ex-

plained, along with how they affect the mathematical construction of the model.

Fundamentally, the model remains a system of ODEs implementing mass action

mixing for modelling the interaction between cells. A notable difference will be the

variable number of equations in the system, which will be driven by the number

of Erlang stages the macrophages must pass through and the maximum number of

intracellular bacteria.

3.2.1 Mechanisms

The additional mechanisms included in this chapter are explicit intracellular growth,

and Erlang growth for the macrophages. Both of these processes can be fitted to

data directly observed in the experiments.

Macrophage birth death process

Both healthy and infected macrophages are observed to undergo division in the exper-

iments. For healthy macrophages, this results in an additional healthy macrophage

being added to the system. For infected macrophages, there is a chance that the

new macrophage will be either healthy or infected. As modelled in the previous

chapter, it will be assumed that a fixed proportion of infected cells divide to form

two infected daughter cells. Additionally, since intracellular bacteria are now being

modelled explicitly, when an infected macrophage divides into two infected daughter

cells, the number of intracellular bacteria will be divided between the two new cells

evenly.

Intracellular bacteria growth

Intracellular bacteria are observed in the data through fluorescence levels over time

in an infected macrophage. They are observed to grow intracellularly according to
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exponential growth. While the literature suggests there is a limit to the number of

bacteria that are able to remain contained within a single macrophage [118, 134, 135,

184], the data do not show any sign of logistic growth. This suggests that the bacteria

continue to grow until the macrophage cannot contain them any longer, at which

point it bursts. The exact cause of death of the macrophage is difficult to determine

with the methodologies used in the experiment, since this is not the target of the

study. In some experiments it is observed that the bacteria continue to proliferate on

the remains of the dead macrophage. Since macrophage apoptosis is considered to

be a defence mechanism [127], the survival and proliferation of the bacteria supports

the assumption that the macrophage dies as a result of the intracellular bacteria

growth.

3.2.2 Model definition

The structure of the model is a non-linear system of ODEs. The model tracks the

populations of extracellular bacteria (E) and macrophages (M i
k) where k denotes the

number of intracellular bacteria the macrophage contains, and i denotes the Erlang

stage of life the macrophage is at. The equations are defined as follows:

dE
dt = αEE − βE

NH∑
i=0

M i
0 + dI

NI∑
i=0

N∑
k=1

kM i
k + αIN

2
NI∑
i=0

M i
N (3.1)

dM0
0

dt = 2gHMNH
o + gIM

NI
1 + (1− p)gI

N∑
k=2

MNI
k − βEM0

0 − dHM0
0 − gHM0

0 (3.2)

dM i
0

dt = gHM
i−1
0 − βEM i

0 − dHM i
0 − gHM i

0 (3.3)

dM0
1

dt = pgI
(
2MNI

2 +MNI
3

)
+ gIM

NI
1 + βE

NH∑
i=0

M i
0

− dIM0
1 − gIM0

1 − αIM0
1 (3.4)

dM0
k

dt = pgI
(
MNI

2k−1 + 2MNI
2k +MNI

2k+1

)
+ (1− p)gIMNI

k + αI(k − 1)M0
k−1

− dIM0
k − gIM0

k − αIkM0
k (3.5)

dM i
k

dt = gIM
i−1
k + αI(k − 1)M i

k−1 − dIM i
k − gIM i

k − αIkM i
k (3.6)

i ∈ {1, . . . , NH} if k = 0

i ∈ {1, . . . , NI} if k ∈ {1, . . . , N}
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Symbol Unit Description

E cells Extracellular bacteria

M i
k cells Macrophages with k intracellular bacteria and in stage

i of life

αE hour−1 Extracellular growth rate

αI hour−1 Intracellular growth rate

N cells Maximum number of intracellular bacteria

gH hour−1 Healthy macrophage Erlang growth rate

NH scalar Healthy macrophage Erlang growth stages

dH hour−1 Healthy macrophage death rate

gI hour−1 Infected macrophage Erlang growth rate

NI scalar Infected macrophage Erlang growth stages

dI hour−1 Infected macrophage death rate

β cell−1hour−1 Infection rate of healthy macrophage by extracellular

bacteria

p scalar Proportion of infected macrophages that divide to

produce two infected daughter cells. The intracellular

bacteria are assumed to divide evenly between the

daughter cells.

Table 3.1: Variable and parameter symbols and their descriptions for equations 3.1

to 3.6.

There are eight individual mechanisms being modelled in equations 3.1 to 3.6. In

Appendix A each of these mechanisms have been colour coded and the relevant terms

have been coloured to match the mechanisms. Table 3.1 defines the variables and

parameters used.

Extracellular growth The extracellular bacteria remain being modelled by expo-

nential growth. The αEE term in equation 3.1 controls this growth.
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Infection Infection events occur between healthy macrophages and extracellular

bacteria. Any healthy macrophage can become infected, regardless of what stage of

Erlang growth they are at. The number of Erlang stages is not the same between

healthy and infected macrophages, thus it is not well defined which class a healthy

macrophage should move to post infection. For simplicity in the model, when a

healthy macrophage does become infected it is always moved to the M0
1 class of

macrophage. The effect of this assumption is investigated in section 3.5.4. Healthy

macrophages and extracellular bacteria interact at a density dependent rate under a

homogeneous mixing assumption. The rate parameter β is assumed to be the same

for all equations despite having different units, as in the previous chapter.

Healthy macrophage growth Healthy macrophages grow by transitioning at a

fixed rate (gH) through a fixed number (NH) of Erlang growth stages before dividing.

When a healthy macrophage MNH
0 divides it is removed from the system and two

new macrophages M0
0 are added.

Healthy macrophage death Healthy macrophages die at a fixed rate dH . This

rate is independent of the age of the macrophage, as there was not enough evidence

in the data to support modelling the death rate as age dependent.

Infected macrophage growth Infected macrophages also grow by transitioning at

a fixed rate (gI) through a fixed number of Erlang growth stages (NI) before dividing.

When an infected macrophage MNI
k divides it is removed from the system and two

new macrophageM0
k1 andM0

k2 are added. k1 and k2 are chosen such that k1 +k2 = k.

To understand how k1 and k2 are chosen it is easiest to understand by breaking the

possibilities into cases.

Case 1 When k = 1 there is only one option for the two daughter cell. The first is

healthy M0
0 and the second has a single intracellular bacteria M0

1 . This case refers

to the gIMNI
1 terms in equations 3.2 and 3.4.
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Case 2 When k > 1, with rate 1 − p, the division process results in one healthy

macrophage M0
0 and one infected macrophage M0

k . This can be seen in the terms

involving (1− p) in equations 3.2 and 3.5.

Case 3 When k > 1, with rate p, the division process results in two infected

macrophages. If k = 2l + 1 is odd, then the division is as even as possible such that

k1 = l and k2 = l + 1. Otherwise if k = 2l is even then the division is perfectly even

such that k1 = k2 = l. This can be seen in the first term of equations 3.5, where new

cells are produced from three different parent compartments, corresponding to the

three possible initial loads for daughter cells.

The assumption that the intracellular load divides either perfectly symmetric or

perfectly asymmetric is for simplicity within this chapter. Future chapters will

investigate allowing the division to vary.

Infected macrophage death When an infected macrophage dies, it releases its

intracellular load back in to the extracellular space, thus the rate at which the

extracellular population grows due to macrophage death is proportional to the num-

ber of infected macrophages and the load of those macrophages, as seen in the

dI
∑NI
i=0

∑N
k=1 kM

i
k term in equation 3.1.

Intracellular growth The intracellular bacteria growth is modelled as exponential

growth with rate parameter αI . When an intracellular bacteria divides, its host

macrophage transitions from classM i
k to classM i

k+1. The maximum intracellular load

for a macrophage is N , so when an intracellular bacteria divides within a macrophage

of class M i
N , the macrophage bursts and the intracellular bacteria are released back

in to the extracellular population. This can be seen in the αIN2∑NI
i=0 M

i
N term in

equation 3.1. The N2 term is a result of the intracellular growth being proportional

to the number of intracellular bacteria N , and the number of intracellular bacteria

being released back to the intracellular space being N .
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3.2 Model description

Figure 3.2: Illustrative example of the macrophage compartments M i
k where k is

the number of intracellular bacteria and i is the Erlang stage of life.

As the macrophages progress through Erlang stages of life towards

division, they progress through compartments M i
k →M i+1

k . Similarly,

as the intracellular bacteria grow, the macrophages progress through

compartments M i
k → M i

k+1. When a macrophage divides, it will be

removed from the system and two new daughter cells are born in its

place, each with an Erlang age of zero. If the parent cell was infected,

the intracellular load is divided between the daughter cells as described

in section 3.4.4

Figure 3.2 shows the structure of the model compartment M i
k. As the macrophage

progresses through stages of Erlang growth, it will progress through the compartments

M i
k → M i+1

k . As the intracellular bacteria grow, the macrophage will progress

through the compartments M i
k →M i

k+1.
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Figure 3.3: Raw intracellular growth time series data. Note the log scale on the

y-axis. There are very few data points to consider for the intracellular

growth, so all will be included.

3.3 Data
The only change in data used for this chapter compared to the previous chapter

is the inclusion of the intracellular growth. There are relatively few data points

available for this, however this is greatly improved in the subsequent chapters. Since

there are so few data points, they will all be considered for this chapter. Similar

to the exponential growth in the previous chapter, most of the data exhibit strong

non-stationarity as well as clear exponential growth shown in figure 3.3.

3.4 Parameter Fitting
The model presented in this chapter is fitted to the same data as used in chapter

2. Therefore, only the parameters that are affected by the changes to how mecha-

nisms are being modelled require fitting or refitting. Those parameters govern the
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macrophage birth-death process, the intracellular growth rate, and how intracellular

bacteria are divided when an infected macrophage divides.

3.4.1 Macrophage birth death process

The model explicitly measures the number of intracellular bacteria, as well as applying

an Erlang growth model to the macrophages. An infected macrophage is represented

byM i
k where k denotes the number of intracellular bacteria and i denotes the stage in

the Erlang growth the macrophage is at. The rate at which the macrophage progresses

through growth stages is dependent on the infection status of the macrophage. When

k = 0 the macrophage is healthy and has growth parameters g = gH and N = NH .

When k > 0, the macrophage is infected and has growth parameters g = gI and

N = NI . The macrophage progresses through these stages at the fixed rate g until

it reaches the final stage MN
k . From stage N the macrophage divides at a constant

rate resulting in two new macrophages both in stage 0 of life.

The data available for fitting the birth death process is the time that a macrophage

was born and the time that the macrophage divided. The time to division is defined

as the difference between these two times, this distributions for which are shown

in figure 3.4. Maximum likelihood estimate (MLE) is used to identify the optimal

parameters as well as the 95% confidence intervals, where the likelihood function is

simply the sum of the probability density function over the data point for a given

set of parameters. These are plotted over the data in figure 3.4. Since the Erlang

distribution is a two parameter distribution, with one of those parameters being an

integer, the 95% confidence interval is actually a set of intervals, each representing

a range of values of g for a given value of N . These ranges are shown in table 3.3.
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Figure 3.4: Time to division data for both healthy and infected macrophages. Er-

lang distributions are fitted and 95% confidence intervals are calculated.

The plotted confidence interval is obtained by evaluating the maximum

and minimum probability for each division time over all parameters

within the 95% confidence interval.

3.4.2 Intracellular bacteria growth

Intracellular bacteria are observed to grow exponentially, analogously to their ex-

tracellular counterparts. Despite the space within a macrophage being limited and

potentially limiting the growth of the bacteria, there is no observation of logistic

growth. It is assumed that the bacteria continue to grow until the macrophage can

no longer sustain the intracellular load, at which point the macrophage bursts, and

the bacteria are deposited back into the extracellular space.

The data available for fitting the intracellular growth rate is repeated experiments

measuring the total fluorescence of a single population of intracellular bacteria, each

experiment resulting in a time series for that population. In order to calculate the

intracellular growth rate, each population’s time series is fitted individually with an

exponential curve. This curve fitting process results in a MLE as well as an error.

By assuming Normally distributed errors, these can be summed in a Gaussian kernel,

resulting in the final distribution of the intracellular growth rate. From this, the
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Figure 3.5: Data show exponential growth of intracellular bacteria, to which an

exponential growth curve can be fitted using non-linear least squares

(left). Averaging over the fitted exponential growth rates weighted by

their errors results in the kernel density estimate. This distribution

is used to find the optimal value for the intracellular growth rate (αI)

(right). Note, the orange experiment could be considered an outlier,

since the observed growth rate is considerably lower than the others,

however, since the data set it small, it will not be removed. The effect

of αI on the outcome of the model will be explored in section 3.5.2.

MLE is used. This is shown in figure 3.5. The orange experiment shown could be

considered an outlier, as its fitted growth rate is almost zero, however since the data

set is so small it will not be removed. The effect of the intracellular growth rate will

be explored in section 3.5.2.

To model the number of intracellular bacteria, macrophages are divided into com-

ponents M i
k where k denotes the number of intracellular bacteria. As the bacteria

grow, the macrophages move through components M i
k → M i

k+1 at a constant rate

αIk.

Contrasting against the extracellular growth rate shown in figure 2.5, the distribution
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Chapter 3 Intracellular bacteria and Erlang growth

of intercellular growth rates shown in figure 3.5 has higher variance. The intracellular

growth rate also also results in a higher MLE than that of the extracellular growth

rate.

3.4.3 Infection

There is no change in this model to how the rate of infection would be calculated,

however it is possible that the best fitting number of Erlang stages differs between

infected macrophages and healthy macrophages. This complicates the compartment

choice a macrophage should move to upon becoming infected, as there may not

be a one-to-one mapping. In the interest of simplicity, a healthy macrophage (M i
0)

which becomes infected always moves to compartment M0
1 . It will be demonstrated

in section 3.5.2 that the choice of compartment has very little effect on the overall

outcome of the system.

3.4.4 Infected macrophage division

The information in the current data set is insufficient to identify how the intracellular

bacteria are divided between daughter cells post division, however as the detail in

the data improves, this will be possible as seen in chapter 5. For this chapter, as

done previously, the model will assume that there is some chance that a macrophage

divides to create either one or two infected daughter cells. Since the intracellular load

is now being measured explicitly, it is assumed that when an infected macrophage

divides into two infected daughter cells, the intracellular load of the parent is divided

equally between the two daughters. Since the intracellular load is required to be an

integer, if the initial load is an odd integer 2k + 1, the daughter cells are of equal

proportion k and k + 1.

3.5 Model results
In this section the underlying ODEs of the model will be solved computationally

and the output will be analysed. The final model parameters along with their
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Parameter Value 95% CI Unit

αE 0.0290 (0.0168, 0.0328) hour−1

αI 0.0407 (−0.0045, 0.0514) hour−1

N 50 cells

gH 0.2748 hour−1

NH 6 cells

dH 0.0453 (0.0332, 0.0601) hour−1

gI 0.0730 hour−1

NI 2 cells

dI 0.0375 (0.0252, 0.0532) hour−1

β 0.0056 (0.0031, 0.0094) cell−1hour−1

p 0.3000 (0.1361, 0.5095) scalar

Table 3.2: Model parameters, their MLE values, and 95% confidence intervals. Note

confidence intervals for parameters governing Erlang growth of healthy

and infected macrophages are shown separately as parameters spaces in

table 3.3.

N gH min gH max N gI min gI max

4.0 0.174514 0.192557 2.0 0.054229 0.094324

5.0 0.200576 0.258714 3.0 0.082295 0.140433

6.0 0.240671 0.312843 4.0 0.120386 0.176519

7.0 0.282771 0.360957 5.0 0.174514 0.190552

8.0 0.330886 0.405062

9.0 0.385014 0.441148

Table 3.3: (Left) 95% confidence intervals for Erlang growth parameters for healthy

macrophages. (Right) 95% confidence intervals for Erlang growth pa-

rameters for infected macrophages.
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confidence intervals are shown in tables 3.2 and 3.3. A sensitivity analysis will be

performed identifying the dominant factors in the outcome of the model. Finally,

some computational experiments will be performed investigating the relationships

between key mechanisms.

3.5.1 Model output

The system of ODEs is integrated over 140 hours with all parameters set at their

MLEs. Then the parameters are allowed to vary within their 95% confidence intervals

and the model is integrated multiple times in order to capture the variation in

model output as a result of variation in the parameters. This is shown in figure

3.6. Stochasticity can be a major driving force of the resultant dynamics within a

system. It is generally agreed that ODE models should be reserved for modelling

large populations, as the stochastic effects of the individual have a smaller effect as

the population size grows. Despite this, the ODE model presented here will continue

to be studied before studying the effects of stochasticity in later chapters. This is

discussed further in section 3.6.

Compared to the previous model, the resultant growth of extracellular bacteria is

much slower and more closely resembles the original experiments, while maintaining

the maximum intracellular load of N = 50 from the literature. An interesting feature

is the ratio of intra to extracellular bacteria. In this system, extracellular bacteria

are far more prevalent, despite a growth rate of almost half of their intracellular

counterparts. Similarly to the previous model in chapter 2, this is due to the ability

of bacteria to continue growing intracellularly before being released back in to the

extracellular space. In fact the extracellular population can be completely sustained

by only intracellular growth.

In order to investigate how much of an effect intracellular growth has, figure 3.7

shows the result of the model with all parameters at their MLEs other than αE,

which is set to zero. Despite only being able to grow intracellularly, the population

of extracellular bacteria continues to grow, albeit at a significantly reduced rate:
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Figure 3.6: Integration of equations 3.1 to 3.6. Solid lines represent parameters

set to their MLEs, while the shaded area is created by varying the pa-

rameters within their confidence intervals. Parameter sets were created

using latin hypercube sampling (LHS) with 2000 sets of parameters

chosen.

the final number of extracellular bacteria is an order of magnitude lower than in

figure 3.6. This demonstrates that despite the intracellular growth rate being double

that of extracellular bacteria, it is the combined ability to grow within and without

macrophages that benefits the bacteria.

The mechanism by which intracellular bacteria are released back into the the extra-

cellular space is the death of their host macrophage. There are two routes for this

to occur in the model: the natural death of the macrophage which occurs at rate dI
for all macrophages M i

k>0; and the rupture of a cell which has reached its carrying

capacity which occurs at rate αIN for macrophages with N intracellular bacteria

M i
N . Naturally, the rate of infected macrophage death (dI) will affect the total
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Figure 3.7: Despite the extracellular growth rate being zero, the population of ex-

tracellular bacteria can still be maintained through intracellular growth.

The resultant population however is an order of magnitude lower than

when the bacteria are able to grow extracellularly.

population of bacteria. Since the intracellular growth rate (αI) is higher than the

extracellular growth rate, a lower value of dI will result in a higher total population

of bacteria. This preference for a lower value of dI is in line with a noted ability of

the Mycobacterium tuberculosis (Mtb) bacteria described in section 1.7.1. Mtb are

able to delay apoptosis of the macrophages when it is preferable for the bacteria to

remain intracellular.

3.5.2 Sensitivity

Now that the intracellular bacteria are being explicitly modelled, it is clear from

the sensitivity analysis shown in figure 3.8 that the dynamics of both intra and

extracellular bacteria are important contributors to the total extracellular bacteria
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Figure 3.8: Sobol sensitivity analysis measuring how much variance in the model

populations can be attributed to variance in the model parameters.

Populations are sampled at evenly spaced time points to investigate

the sensitivity to parameters throughout the whole time course.
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population. As in the previous model, at the start of the simulation, variance in

the extracellular bacteria population is dominated by the rate of infection (β). This

rapidly drops away however, as the bacteria establish both extra and intracellular

populations. As the majority of bacteria are initially intracellular, and the intracellu-

lar growth rate (αI) has larger uncertainty than that of the extracellular growth rate

(αE), for the rest of the 140 simulated hours the dominant contributing parameter

to the extracellular bacteria population is the intracellular growth rate followed by

the extracellular growth rate. However towards the end of the simulation, once the

extracellular population has had time to grow and the number of macrophage hosts

is beginning to be depleted, this relationship is trending towards a reversal. One

significant difference to the previous model is the reduction in dependence on the

death rate of infected macrophages (dI). While there is some dependence initially,

this is quickly dwarfed by the intracellular growth rate. This can be explained by

comparing the last two terms of equation 3.1. Initially, the population of infected

macrophages is small for all populations of intracellular bacteria, thus the significant

difference between these terms will come from comparing dI and αIN , of which

clearly αIN is much larger.

The dynamics of the healthy macrophages is almost entirely driven by their own

birth death process. Parameters such as the the rate of infection β cannot be

seen as they did not provide a significant contribution to the variation observed in

the macrophages population. The only additional parameter seen belongs to the

growth rate of infected macrophages. This is a result of the possibility of infected

macrophages dividing to produce one healthy and one infected macrophage.

Initially the major parameters contributing to variation in the infected macrophage

population are the rate of infection (β) and the rate of death of infected macrophage

(dI). β drives the rate at which healthy macrophages are becoming infected increas-

ing the infected macrophage population, while dI does the opposite and brings it

back down. The infected macrophage birth death process mirrors that of the healthy

macrophages, with the death rate initially having a larger impact, but as the popu-
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lation becomes more dispersed across the Erlang age stages, the growth rate (gI , NI)

becomes more significant. After the initial stage of the model being dominated by

infection, the majority of variance observed in the infection macrophage population

is a result of variance in the growth rate of healthy macrophages. At this point

in the simulation, the healthy macrophage population is still larger than that of

the infected macrophages, thus the availability of healthy macrophages to become

infected will be a major driver of the infected macrophage population, compared to

its own sustaining growth process.

Adjusting the measure of the model output from the populations over time to the time

taken until dE/dt > 0 allows the model to identify which mechanisms are involved in

delaying the advance of infection. Figure 3.9 shows the resulting sensitivity analysis

for this measure. As in the previous chapter, the dominant parameter is the rate of

infection (β): quickly internalising the extracellular bacteria will naturally delay any

extracellular growth. The next most dominant parameter is dI : once the bacteria are

internalised, a decreased rate of infected macrophage death will result in the bacteria

remaining intracellular for longer, thus further delaying the growth of extracellular

bacteria. The role of β will be analysed in more detail in section 3.5.5.
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Figure 3.9: Sobol sensitivity analysis bounding the parameters within their 95%

confidence intervals. Measured is the fraction of the variance in the

value of the time at which dE
dt switches sign from negative to positive,

which can be attributed to variance in the given parameter.

3.5.3 Identifiability

The additional parameters can once again be analysed for identifiability according

to 1.6.7. As in chapter 2, the parameters governing the birth death process are the

MLEs of simple distributions, thus are trivially identifiable. The likelihood function

for the intracellular growth is shown in figure 3.5, demonstrating a unique maximum

and this is identifiable. The other parameters remain fitted as in chapter 2 thus the

model is identifiable.

3.5.4 Compartment choice post infection

The model presented in this chapter assumes that when a healthy macrophage

(M i
0) becomes infected, it will transition to the first Erlang component of infected

macrophages (M0
1 ). Figure 3.10 shows the effect of modifying the model so that

when a macrophage becomes infected, it is distributed evenly across all Erlang

compartments. Since the birth-death process of healthy and infected macrophages

are modelled independently, they do not necessarily have the same number of Erlang
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stages, thus a simple one-to-one mapping is not possible. The results in figure 3.10

demonstrate the modification to the model results in only a small effect on the overall

result, especially on the resultant number of extracellular bacteria, a key measure

of the model. There is, however, a small increase in the population of infected

macrophages. This is a result of the length of time until division being reduced for

newly infected macrophage in the alternative model. Despite this, the base model

will continue to be used as it is a simpler model and does not significantly alter the

model outcome.

While the assumption that all macrophages move to classM0
1 after becoming infected

only has small impact on the outcome of the model, this modelling hypothesis could

be investigated experimentally. Begin with a population of healthy macrophages

for which the time since division is known, then infect these macrophages with

multiplicity of infection (MOI) 1. By observing the dynamics of the resultant infected

macrophages, the effects of the age of the macrophage at the time it was infected

could be investigated. If there is no correlation between the age of the healthy

macrophage and at time of infection, and the time between infection and subsequent

division of the infected macrophage, then it could be concluded the tha assumption

of the model is valid.
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Figure 3.10: The two models simulated are: a) the base model: healthy

macrophages that become infected always move to the first Erlang com-

partment of infected macrophages, b) the alternative model: healthy

macrophages that become infected are equally distributed across Er-

lang compartments. The change in model has a negligible effect on

the extracellular population, but results in a small increase in the

population of infected macrophages. In the base model, the time until

division for newly infected macrophages is longer than for those in the

alternative model, which results in the observed increase in population

of infected macrophages.
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3.5.5 Predictions

Two computational experiments are used to investigate the following: firstly, the role

of the most significant mechanism in delaying exponential growth of extracellular

bacteria as shown in section 3.5.2; and secondly, the hypothetical potential of actively

removing bacteria from the system.

The role of phagocytosis

Since this model has no way in which to reduce the bacteria population, a method

of control may be to delay the extracellular growth, allowing the host’s adaptive

immune response time to respond. The rate of phagocytosis is the macrophages’ only

weapon in this system, so the time until the rate of extracellular growth becomes

positive is measured against the rate of internalisation of bacteria. In a similar way

to the previous version of the model, if the number of healthy macrophages is less

than αE/β, then the rate of change of extracellular bacteria will always be positive.

This explains the initially flat part of the curve shown in figure 3.11. Once the scales

are tipped in favour of the macrophages there is a rapid increase in the amount of

time it takes for the extracellular bacteria to recover, however an interesting feature

of this experiment is that there is a point at which increasing the infection rate, β,

further has a negative effect. The traditional view of macrophages is that they play

a dual role [31] in protecting against Mtb infection: by internalising the bacteria

they inhibit their spread, however the bacteria find themselves a safe haven to grow

in their host macrophages. The optimal rate of phagocytosis here demonstrates the

balance of inhibition and protection.

At their MLE values, the intracellular bacteria have a higher growth rate than the

extracellular bacteria, so by continuing to increase β, the bacteria are forced to

grow predominantly intracellularly. In tandem, the increase to the rate of infection

increases the rate at which the healthy macrophage population is depleted. The

resulting situation is a large number of infected macrophages, each with a large

number of intracellular bacteria. Once these bacteria begin to be released back into
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Figure 3.11: Evaluating the time taken for dE
dt to change sign from negative to

positive for a range of infection rates (β).

the extracellular space, the extracellular bacteria population will have a sudden in-

crease. Further increasing β compounds this effect. The sooner extracellular bacteria

become intracellular, the sooner they are released back to being extracellular with

a depleted healthy macrophage population, thus the sooner a growing extracellular

population is established.

There is a natural delay between the initial infection of a host and the onset of

the adaptive immune response. Increasing the time before exponential extracellular

growth will result in a smaller extracellular population at the time of the arrival of

the adaptive immune response. Identifying an optimal value for the value of β in

maximising the delay for extracellular growth speaks to the duality of the role of the

macrophage in protecting the host and enabling the protected intracellular growth

of Mtb.

Critical kill rate vs intracellular growth rate

The explicit process of successfully killing bacteria and removing them from the

system is not directly observable in the biological experiments. This is due to
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the bacteria being observed at the macro-population level, rather than distinct

individuals. Further, this killing of bacteria is usually the realm of macrophages that

have been activated through the interaction with T cells and the adaptive immune

response. Activated macrophages can kill phagocytosed bacteria by transferring

them to the destructive environment of the lysosome [104]. While this is not thought

to be an ability possessed by the non-activated macrophages, there is some evidence

[19, 24] that they can kill Mtb resulting in early clearance. This process is explored

in relation to the intracellular growth rate as a proxy for bacteria virulence.

Figure 3.12 shows a contour plot measuring the change in the number of extracellular

population after simulating the system for 140 hours. This change is a result of

ranging the parameters controlling intracellular growth (αI) and the probability that

a macrophage kills an extracellular bacteria (pkill). When this occurs, the healthy

macrophage is assumed to remain healthy, although in reality there would be a delay

immediately after killing a bacteria before a macrophage would be able to perform

the same action. The mechanism of killing a bacteria is modelled by including a

parameter pkill in equations 3.2, 3.3, and 3.4 as follows:

dM0
0

dt = · · · − (1− pkill)βEM0
0 + . . . (3.7)

dM i
0

dt = · · · − (1− pkill)βEM i
0 + . . . (3.8)

dM0
1

dt = · · ·+ (1− pkill)βE
NH∑
i=0

M i
0 + . . . . (3.9)

The rate of uptake of extracellular bacteria by healthy macrophages remains the same

at βE∑NH
i=0 M

i
0, however the rate at which healthy macrophages become infected after

phagocytosis is reduced by a constant 1−pkill representing the fraction of interactions

that result in the bacteria being killed.

The colour bar in figure 3.12 represents the ratio of the number of extracellular

bacteria at the end of the simulation compared to the base model: pkill = 0, αI =

0.0407. The simulation is run for 140 hours, replicating the amount of time the

experiments were run for. Note the scale is a composite of two linear scales, centered

at 1. The wider central contour level shown in the main figure represents the
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set of parameters for which the outcome of the model does not change. As the

probability for a macrophage to kill a bacteria increases from zero, this contour

remains reasonably vertical. It is only once pkill exceeds approximately 0.8 that

a dramatic change occurs, forcing the infection to remain lower despite increasing

intracellular growth rates.

Naturally, as the rate of intracellular growth decreases towards zero, macrophages

are far more able to keep the infection under control, even with limited ability to

kill the bacteria. However, as the rate of intracellular growth increases, the infection

very quickly becomes unmanageable, even with a high probability for a macrophage

to kill a bacteria. This is a result of the population of healthy macrophages being

reduced before the bacteria population is fully eliminated, allowing the few remaining

intracellular bacteria to grow exponentially before bursting their host macrophages

and returning to the extracellular space.

This demonstrates the significant advantage Mtb has against the innate alveolar

macrophage. However environmental stochasticity that results in a lower intracellular

growth rate, and a higher chance for innate macrophages to kill bacteria, makes it

possible for the host to contain the bacteria before the adaptive immune response

kicks in. In order to investigate the variation in outcome as a result of stochasticity

in the system, a stochastic framework is required. This will be developed in the next

chapter.
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Figure 3.12: By ranging the parameters controlling intracellular growth (αI) and

the probability a macrophage kills an extracellular bacteria, the effect

on the resultant population of extracellular bacteria can be measured.

Shown is the ratio of bacteria in the alternative model compared to the

base model. Note that the colour bar scale is a composite of two linear

scales, centered at 1. The value 1 represents that the outcome of the

model is the same as the base model. < 1 represents an improvement,

and > 1 represents a deterioration in outcome.

3.6 Conclusions
In this chapter the ODE model has been extended to explicitly include the intracel-

lular bacteria and an improved model for the growth and division of macrophages.

Through sensitivity analysis the key mechanisms driving extracellular proliferation

were identified as bacteria growth rates, and the infection and death of macrophages.

By demonstrating the importance of explicitly modelling the intracellular bacteria,

feedback to the experimentalist prompted additional data to be collected, explicitly

measuring the intracellular growth.

Through simulation of the model equations, increasing the rate at which macrophages
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internalise bacteria was found to have a protective effect up to a maximum, after

which increasing β further reduced the effectiveness. The measure of effectiveness

was defined as the time until the rate of change of extracellular population is greater

than zero. To begin with, the value of β is too low to counter the extracellular growth.

After passing a critical value, the macrophages are able to internalise bacteria quickly

enough that the extracellular growth of bacteria is delayed. Increasing the value of

β further still continues to add to this delay up to a maximum. After this point, the

population of healthy macrophages is depleted too quickly, resulting in extracellular

growth once more, thus reducing the delay.

In order to investigate the possibility of bacteria control by the macrophages, a

theoretical mechanism was added to the system whereby macrophages have some

probability that instead of becoming infected, they are able to kill the bacteria.

Through computational analysis, it was shown that a small increase in the virulence

of the bacteria, here assumed to correlate with intracellular growth rate, requires

a significant increase in the probability for a macrophage to kill in order for the

response of the system to remain unchanged. This demonstrates the advantage the

bacteria have over the macrophages. The significantly higher growth rate of the

bacteria overwhelms the macrophages in the absence of recruitment.

Despite being a more realistic birth death process, some failings of the model are

acknowledged. By considering the disease free system, there is no non-zero steady

state for healthy macrophages.

dM1
0

dt = −(gH + dH)M1
0 + gHM

NH
0 (3.10)

dM i
0

dt = gHM
i−1
0 − (gH + dH)M i

0 (3.11)

i ∈ {2, . . . , NH}

They will either grow exponentially or decay to zero according to the eigenvalue

λ = NH
√

2gh − gh − dh. The work presented here is focused on the very early

dynamics of the interactions between Mtb and alveolar macrophages. As discussed

in 1.7.1, the long term macrophage population in the lungs is maintained primarily

through recruitment from the blood stream. A simple way to achieve a non-zero

100



3.6 Conclusions

steady state for the macrophage population in the model presented here would

be to add a constant to the rate of change of the macrophage population. This

would represent recruitment, however since the data being modelled is an in vitro

experiment, recruitment is not observed and thus is left out of the model. Hence the

absence of a non-zero steady state for healthy macrophages does not pose a problem.

Further, the deterministic framework of the model is often considered inappropriate

for modelling small populations, such as the macrophage population which rarely

exceeds ten in the modelled scenario. In populations of this size, the effects of

stochasticity should not be ignored as they are significant in comparison to the unit

nature of the agents being modelled. Additionally, by modelling in integer units,

the possibility for population extinction arises, whereas in ODE models, such as the

one presented in this chapter, a population can always bounce back no matter how

small it gets, a phenomenon known as the Atto-Fox problem [44]. To address these

shortcomings, in the next chapter the model mechanisms will be restructured as a

stochastic agent-based model.
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Chapter 4

Model 3: Stochastic Agent Based

Model

In this chapter the models which were developed in previous chapters are adapted to

a stochastic framework. Since the populations of both bacteria and macrophages are

small in the system being modelled, stochastic variation in the event times will have

a significant effect on the outcome of the model. Additionally, this will allow the

populations to be modelled as integers rather than continuous values, which presents

the opportunity for populations to become extinct during the simulation.

4.1 From continuous to discrete populations
In this chapter, many of the mechanisms presented in previous chapters will continue

to be implemented, however the model being presented is now a discrete population

model being updated stochastically. To describe this process the case study of the

classic infectious disease SIR model will be used. The model describes an infection

spreading through a population that is initially susceptible S, becomes infected I,

then eventually recovers and is immune R.

dS
dt = −βSI

N
(4.1)

dI
dt = β

SI

N
− γI (4.2)

dR
dt = γI (4.3)

where N = S + I + R. A commonly investigated output of this model is the basic

reproduction number R0 which describes the average number of secondary cases in
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an entirely susceptible population. It can be found by analysing the sign of odIt at

the start of the epidemic, when the entire population is susceptible: S ≈ N thus
dI
dt ≈ (β − γ) I, hence if R0 := β/γ > 1 then disease will be able to propagate through

the population.

The continuos and deterministic model above can be described by a continuous time

Markov chain (CTMC) as follows. The state space for the model is (S, I, R) ∈

{0, . . . , N}3. The transition matrix is simple to construct, however due to the high

dimension of the state space, it is not useful to write down. Instead it can be defined

by a series of rules:

• For all states with S > 0, and I > 0 there is a transition from (S, I, R) to

(S − 1, I + 1, R) with rate βSI/N,

• For all states with I > 0, there is a transition from (S, I, R) to (S, I − 1, R+ 1

with rate γI,

• All other states are absorbing states and thus no more changes occur.

Once again the basic reproduction number can be defined R0, and it can be demon-

strated to have the same value as in the deterministic model R0 = β/γ. Consider

the population is entirely susceptible, that is S ≈ N and I > 0. There are therefore

two possible events that can occur: an infection event with rate βSI/N ≈ βI, and

a recovery event with rate γI. R0 is defined as the average number of secondary

cases produced from the average infected individual (I = 1) in a totally susceptible

population (S ≈ N). Recovery occurs at rate γ so the average infected individual

will recover after 1/γ. Infections occur at rate approximately β. It is assumed that a

single infection doesn’t significantly reduce the population of susceptibles, thus in

time 1/γ, the infected individual will infect on average β/γ = R0 susceptibles.

Finally it can be demonstrated that the continuous deterministic model is the mean

field approximation of the discrete stochastic model, that is the mean solution

to the discrete model approaches the continuous model as the number of samples

approaches infinity. Consider a two state system S with states S = A and S = B.
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The transition from state A to B occurs at rate δ. The time for a transition event to

occur is distributed by the exponential distribution Exp(δ), thus the probability that

the system is in state A at time t has the same distribution. This can be written as

A(t) = P[S = A|t] = δe−δt. Therefore dA
dt = −δA. Thus the mean field of this system

is the differential equation dA
dt = −δA. This logic can be applied to each state of the

SIR model, resulting a differential equation for each state. Since the deterministic

model considers populations, these differential equations can be summed to result

in the same set of equations. The final part of the proof is omitted as it is simple

but extensive algebra.

4.2 Data
The data used to parametrise the model presented in this chapter is an extension of

the previous data set. In addition to simply being a larger data set, both in terms

of the number of experiments performed, and the total duration of the experiment

(increased from 140 hours to 200 hours), particular attention was paid to the intra-

cellular growth rate and the infection times of macrophages, both measures that

had very few data points in the previous iteration. Table 4.1 shows some simple

descriptive statistics of the data relating to the bacteria growth rates. There is

a significantly increased quantity of data relating to the intracellular growth rates,

while the extracellular growth data remains limited. This will be corrected in chapter

5. The range of values shows the larger rate of growth observed for the extracellular

bacteria as compared to the intracellular bacteria.

Table 4.2 shows the additional data relating to the macrophages. Particular attention

has been paid to the time to infection, and there is now a large number of data

points. There are examples of wait times in the data that extend to the entire

duration of the experiment. To be classed as an infection event, the macrophage

must be observed to be healthy at least once before being observed to be infected,

meaning the minimum possible infection time is two hours (due to the sample rate

being once every two hours). Similarly if a healthy macrophage survives from the
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Bacteria Intracellular Extracellular

Experiment count 131.0000 9.0000

Average starting fluorescence 3.3600 8.2027

Average fluorescence 10.6452 44.5201

Average ending fluorescence 28.9964 126.8290

Average number of data points per experiment 41.5649 36.1111

Table 4.1: Summary of the data relating to intra- and extracellular bacteria growth.

There is significantly more data relating to the growth of intracellu-

lar bacteria, however the central tendency of the extracellular bacteria

suggests a higher growth rate over the intracellular.

beginning of the experiment only to become infected in the last time period, it will

have the maximum infection time of 190 hours. This is what is observed in the data,

showing the high variance in the macrophage data. Similarly high variances are

observed for the time to death and the time to division for infected macrophages,

however these variances are slightly reduced for healthy macrophages. How the

additional data affects each parameter directly will be discussed at the beginning of

the relevant sections throughout this chapter.
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Infection status Healthy

Count Min Mean Max Std

Time to division 108.0000 2.0000 64.3889 180.0000 38.7626

Time to death 52.0000 4.0000 65.8077 184.0000 49.1740

Infection status Infected

Count Min Mean Max Std

Time to division 25.0000 10.0000 71.2800 182.0000 49.5307

Time to infection 220.0000 2.0000 80.0091 190.0000 54.1914

Time to death 206.0000 0.0000 95.1456 194.0000 52.7545

Table 4.2: Summary of the data relating to the macrophages. Macrophages exhibit

very high variance for all three measures shown as well as ranges that

cover almost the full timespan of the experiments.

4.3 Extracellular growth
As a result of identifying the need for extracellular growth in the absence of macrophage

interaction, experiments tracking this are included in this data set. This results in

a good picture of how the bacteria grow under normal conditions. For each exper-

iment, the data records the time and the area of fluorescence. As time progresses

this area grows exponentially and an exponential curve is fitted to this to obtain

the exponential growth rate of extracellular bacteria. Growth curves are fitted using

non-linear least squares regression. Some experiments result in smaller errors and

therefore produce a more confident estimate of the growth rate. Assuming the errors

are distributed normally, these can be used to generate a Gaussian kernel densitiy

estimate (KDE) for the distribution of extracellular growth rate αE. These KDEs

can be summed to provide the total distribution of growth rates, from which the

maximum likelihood estimate (MLE) can be extracted as shown in figure 4.1.
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Figure 4.1: Data comprises of individual experiments which track the level of flu-

orescence from extracellular bacteria over time. Exponential growth

curves are fitted (left) to the distinct time series data. Each fitted

growth rate has an associated error. Taking the fitted value as the

mean, and the error as the variance on the mean, a Gaussian KDE can

be generated (right). The maximum of the KDE is taken as the MLE

for the growth rate.

4.4 Intracellular growth
Similarly to fitting the extracellular growth rate, the intracellular growth rates are

fitted and their errors are estimated. Intracellular death of the bacteria is not

considered for two reasons. Firstly, the innate alveolar macrophages being considered

in this study lack the ability to kill the intracellular Mycobacterium tuberculosis

(Mtb). Secondly, the available data is a one-dimensional time series of the total area

of fluorescence, to which an initial load and an exponential growth parameter are

fitted. The fitted exponential growth parameter is the resultant difference between

bacteria growth and bacteria death. Since bacteria death is not explicitly measured,

nor is the relationship between bacteria growth and bacteria death known, only the

difference can be established and will be known as the intracellular growth rate αI .

By taking the fitted value as the mean, and the error of the fitted values as a measure
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Figure 4.2: (left) Exponential growth curves fitted to time series data of fluores-

cence from intracellular bacteria. (right) Guassian KDE generated

from fitted intracellular growth rates and their associated variances.

The maximum of the KDE is taken as the MLE for the intracellular

growth rate.

of the variance, a distribution for each fitted growth rate can be estimated. These

distributions are summed over all experiments to find a kernel estimate of the total

intracellular growth rate distribution. Then the maximum is found for the maximum

likelihood estimate as shown in figure 4.2. The high variance in the distribution of

fitted intracellular growth rate αI speaks of the heterogeneity of the intracellular

growth rate within a homogeneous population of Mtb.

4.5 Infection rate
Over the range of repetitions of the experiment, 221 macrophages go through an

infection event. For these events, the time of birth of the macrophage, and the time

of infection are recorded. The likelihood function is defined similarly to the previ-

ous iterations of the model, however here the probability of observing an infection

event is conditioned on the event happening within the window of the experiment

(approximately 200 hours). The probability of observing a cell that is born at time
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Figure 4.3: Raw data of time from birth to infection for macrophages that become

infected during the window of experimentation.

t0 and becomes infected at time t1 given that the cell becomes infected during the

window of the experiment is given by

P
(
infected by t1 | infected by T ∩ not infected by t1 − 8

)
(4.4)

= P
(
N = 0 in (t0, t1 − 8) ∩ N 6= 0 in (t1 − 8, t1) | N 6= 0 in (t0, T )

)
(4.5)

=
exp

(
−
∫ t1−8
t0

β(s) ds
) [

1− exp
(
−
∫ t1
t1−8 β(s) ds

)]
[
1− exp

(
−
∫ T
t0
β(s) ds

)] . (4.6)

where β(s) = βE0 exp (αEs), N is the number of infection events and T is the

total length of the experiment. “Not infected by t1 − 8” is used as the data is now

captured in eight hour intervals and the model remains using hours for its unit of

time. Figure 4.3 shows the distribution of time to infection for healthy macrophages.

Since the range of times to infection is significantly larger than in the previous

chapters, the estimate for the rate of infection β will be pushed lower. This is a

result of the homogeneous mixing between all bacteria and the healthy macrophages.

The maximum likelihood estimation of β is β = 2.63× 10−4 as shown in figure 4.4.

Note that the increased range in time to infection is a result of the increase in the

total duration of the experiments. An observation that prompted conditioning the

likelihood function on observing the event within the window of the experiment.
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Figure 4.4: Likelihood function for the rate of infection β calculated using equation

4.6.

4.6 Macrophage birth death process
In the previous chapter, an Erlang distribution was fitted to the time of division data

and an exponential death rate was fitted to the time of death for both healthy and

infected macrophages. The resultant joint distribution modelling the birth death

process of a single macrophage does not accurately capture the observed distributions

in the data1 as shown in figure 4.5. This is due to a lack of consideration for the

conditional probability of a macrophage dying given that it does not divide. Hence

the model being fitted is not a true representation of the model being simulated.

To resolve this, the same heuristic model is fitted, however this time the birth and

death rates are fitted at the same time using a CTMC.

The CTMC is simply defined by a fixed number (Ng) of states representing the

1While figure 4.5 is presenting the model from chapter 3, it is being compared against the extended

data set used in this chapter.
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Figure 4.5: An Erlang distribution is fitted to division times and an exponential dis-

tribution to death times. Running a stochastic simulation to compare

the distribution of birth and death times of the model to the data shows

that the model fails to accurately capture death times observed. This

is due to the fitting process not considering the dependency between

the two mechanisms.
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Figure 4.6: A network representation of the CTMC governing the birth death

process of a single generation of macrophages. Growth is assumed to

follow an Erlang process while the death rate is constant across all

stages of life. Macrophages grow by moving through the Ng stages at

a fixed rate g and finally transitioning to state G. A cell that reaches

state G will divide removing itself from the system to be replaced by

two new cells in state 1. Macrophages die by moving from any stage of

life to state D. A cell that enters state D is removed from the system

and represents a dead cell.

Erlang growth stages, then two additional states, the first representing a macrophage

that has divided (G), the second representing a macrophage that has died (D).

Macrophages grow by moving through the Ng stages at a fixed rate g and finally

transitioning to state G. Macrophages die by moving from any stage of life to state

D. This processes is demonstrated in figure 4.6.

To find the optimal values for g, d and Ng, the wait times taken for cells to either

divide or die are extracted from the data. The probability of entering state G or D in

that time can then be calculated based on the CTMC. Given a healthy macrophage

was observed alive at time TD − 1 but dead at time TD, it can be concluded that

it died some time between TD − 1 and TD. The likelihood of observing this with

parameters Ng, g and d is

P
(
X(TD) = D|X(TD − 1) ∈ {1, . . . , N}

)
=

Ng∑
i=1

P
(
X(TD) = D|X(TD − 1) = i

)
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where

P
(
X(TD) = D|X(TD − 1) = i

)
= [Kvi]D ×

[
KTD−1v1

]
i

Here X(t) is the state a macrophage is in at time t, vi is the vector of zeros with

a 1 in the ith place, and [v]j denotes the jth element of the vector v, and K is the

transition rate matrix for the CTMC and is of the form

−g − d g 0 0 d

0 −g − d g 0 d

0 0 −g − d g d

0 0 0 0 0

0 0 0 0 0


The dimensions of the matrix K are dependent on the number of Erlang stages Ng.

[Kvi]D represents the likelihood of a macrophage transitioning from state i to state

D within one unit of time (1 hour).
[
KTD−1v1

]
i
represents the likelihood that a

macrophage began in stage 1 at time zero and after TD − 1 hours the macrophage

is still alive and in stage i. Summing this term over all values of i would represent

the likelihood that the macrophage has neither divided nor died after TD − 1 hours.

The equivalent equation can be written down for the macrophages that divide and

thus a likelihood function for the data given a set of parameters is defined and can

be maximised.

This construction still assumes an Erlang style growth and a fixed exponential death

time. The results of the fitting process are shown in figure 4.7. The model now

better captures the data and is able to demonstrate the longer death times, it is

clear that an exponential distribution is not appropriate, since the model is still

underestimating the death times.

To improve further, the model of time to death is extended to also be an Erlang style

distribution. Equation 4.7 shows the structure of the transition rate matrix used

for this extension while figure 4.8 shows the schematic of the model. As previously,
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4.6 Macrophage birth death process

Figure 4.7: Using a CTMC to capture the joint distribution of Erlang growth and

exponential death still fails to fully capture the distribution of death

times.
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macrophages move through the different stages of life at fixed rates g and d. When a

macrophage reaches stage G it is considered to divide, therefore the macrophages is

removed from the system and replaced by two new macrophages, both in state (1, 1).

If the macrophage was infected at the time of division, the intracellular bacteria are

split between the two daughter cells according to the model described in section

4.7. When the macrophage reaches stage D it is considered to have died and is

simple removed from a system. If the macrophage was infected at the time of death,

then the intracellular bacteria are released back into the extracellular space. I.e.

the number of intracellular bacteria is added to the total population of extracellular

bacteria.

K =



1, 1 1, 2 2, 1 2, 2 G D

1, 1 −g − d g d 0 0 0

1, 2 0 −g − d 0 d g 0

2, 1 0 0 −g − d g 0 d

2, 2 0 0 0 −g − d g d

G 0 0 0 0 0 0

D 0 0 0 0 0 0



(4.7)

Figure 4.9 shows the final model of the birth death process and how it compares to

the data. This is a good fit and the dual Erlang model will be used to model the

birth-death cycle of macrophages. Figure 4.10 shows the 95% confidence region for

the birth death process.

The parameters d and Nd for infected macrophages are fitted independently of the

intracellular load. It was hypothesised that the intracellular load has an effect on the

rate of death of the infected macrophages, however the data were not sufficient to

demonstrate a relationship between the intracellular load and the rate of death of the

infected macrophage. Two models of a load dependent death rate were investigated,

but were shown to be unidentifiable. This is shown in appendix C.1.
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1, 1 . . . 1, Ng

... . . . ...

Nd, 1 . . . Nd, Ng

G

D

g g

g
d d d

g

d d d

d
d

d

g g

g g

g

Figure 4.8: Schematic of the birth death process of macrophages. Macrophages di-

vision and death follow two Erlang processes in parallel with parameters

(g,Ng) and (d,Nd) for the birth and death processes respectively.
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Figure 4.9: Using a CTMC using Erlang distributions for both growth and death

results in a good fit to the data.
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4.6 Macrophage birth death process

Figure 4.10: 95% confidence regions for the parameters governing the birth death

processes of healthy and infected macrophages. The 95% confidence

regions are calculated by evaluating the likelihood function over a

wide range of parameters and identifying the set of parameters which

cover 95% of the total likelihood.
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4.7 Infected macrophage division
As in the previous models, when an infected macrophage divides, there is a chance

that it either produces two infected macrophages, or one infected macrophage and

one healthy macrophage. Figure 4.11 shows the resultant likelihood of fitting a simple

bernoulli process. The MLE is slightly reduced compared to the previous model as

a result of a new data set being used, although the difference is not significant and

both confidence intervals overlap; in the last chapter the 95% confidence interval was

(0.1361, 0.5095) while the 95% confidence interval in this chapter is (0.0661, 0.3844).

0.0 0.2 0.4 0.6 0.8 1.0
Probability of infected-infected pair

0

1

2

3

4

5

Li
ke

lih
oo

d 
of

 d
at

a

MLE = 0.1902
95% CI

Figure 4.11: Likelihood of observing a infected macrophage dividing into two in-

fected daughter cells.
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4.8 Model parameters

4.8 Model parameters
The parameters fitted in the previous section and to be used for the rest of this chapter

are shown in table 4.3. Comparing these values with those in the previous chapter,

the growth rates of bacteria both intracellular and extracellular are approximately

equal, however there is a significant change in the reduction in the birth death cycles

for both healthy and infected macrophages. In addition, the previous parameters

resulted in similar cycles for the two cell types, however in this chapter, the growth of

infected macrophages is significantly reduced compared to their healthy counterparts.

This is more in line with the literature, wherein the bacteria are said to modify the

cell cycle of their host macrophages [127, 128, 130], in order to benefit more from

the protective nature of being intracellular.

A further significant difference between the fitted parameters of the two models, is the

reduction in the rate at which bacteria are taken up by macrophages. This is a result

of the much larger range in the distribution of times between birth and infection for

macrophages. Since the model assumes homogeneous mixing between the healthy

macrophage and an exponentially growing population of bacteria, increasing the

range of times to infection will exponentially increase the force of infection being felt

by the macrophage, thus exponentially reducing the value of β.
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4.9 Model

4.9 Model
The model presented in this chapter is a non-spatial agent-based model (ABM)

with two distinct populations: the extracellular bacteria and the macrophages. As

described in section 1.6.3, to simulate the model, events will be assumed to follow a

Poisson point process whose rates depend on the current state of the system, and

the system will be evolved through time using the Gillespie algorithm [49]. Thus the

definition of the model will be a set of events which occur at a given rate and result

in a given action. The event names, rates of occurrence, and resultant actions are

depicted in figure 4.12 and are summarised in table 4.4. Further, appendix B shows

the python code used to define the model.

The first population modelled is the extracellular bacteria. This population does

not require the agent based framework as it is a single value and can be thought

of as an environmental variable. The total population of extracellular bacteria E

grows exponentially with fixed exponential growth parameter αE, thus the total rate

at which extracellular bacteria are added to the system as a result of extracellular

bacteria growth is αEE.

The second population modelled is the macrophage population. Each macrophage is

considered as a distinct agent within the system and relies on two internal variables:

the age of the macrophage, and the intracellular load of the macrophage. The age

of the macrophage is itself defined by two variables given by the two parallel Erlang

models fitted in section 4.6 while the intracellular load is simply a count of the number

of intracellular bacteria currently residing within the given macrophage. Some events

affecting the macrophage will have rates that depend on the current intracellular

load; when the intracellular load is zero the macrophage is considered healthy and

parameters will be denoted with a H, when the intracellular load is greater than

zero the macrophage is considered infected and parameters will be denoted with a I.

The macrophage birth death process is dependent on the infection status (H, I)

of the macrophage and is governed by four parameters: gH,I , Ng(H,I), dH,I , Nd(H,I).

With rate gH,I the macrophage will progress towards division until its division age
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Chapter 4 Stochastic agent based model

reaches Ng(H,I), at which point the macrophage will divide. The division process

involves removing the parent macrophage from the system and adding two new

daughter macrophages to the system. If the parent macrophage was infected at the

time of division, with probability p both daughters will be born infected, otherwise

one daughter will be born with all of the parents intracellular load while the other

daughter cell is born healthy. In the case of an infected macrophage dividing to

produce two new infected daughter cells, the intracellular load of the parent cell is

divided evenly between the daughters. If the intracellular load is an odd number of

cells, one daughter will be initialised with one extra bacteria. With rate dH,I the

macrophages progress towards death, when a macrophages death age reaches Nd(H,I)

the macrophage will die. When a macrophage dies it is simply removed from the

system. If that macrophage was infected at the time of death, its intracellular load

is added to the extracellular population before the macrophage is removed.

Infected macrophages have a maximum load for the intracellular bacteria. The intra-

cellular bacteria grow exponentially in a similar fashion to the extracellular bacteria.

Thus for each infected macrophage Mi intracellular growth events occur at rate αIIi
where Ii is the intracellular load of macrophage Mi. When the intracellular load

reaches the maximum load N , the macrophage ruptures releasing the intracellular

bacteria back to the extracellular space. Thus the macrophage is removed from the

system and its intracellular load is added to the extracellular population.

Finally, healthy macrophages interact directly with the extracellular bacteria through

mass action in order to internalise the bacteria. This event occurs with rate parameter

β and simulates phagocytosis of the bacteria. Thus for each healthy macrophage Mi,

with rate βE one extracellular bacteria is removed from the extracellular space and

added to the intracellular load of macrophage Mi, causing it to now be classed as

infected. As in previous chapters, when a healthy macrophage becomes infected, its

age is reset.
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4.9 Model

Event Rate Action

Extracellular growth αEE E → E + 1

Macrophage growth gH,I , ∀MH,I(ag < Ng(H,I)) M(ag)→M(ag + 1)

dH,I , ∀MH,I(ad < Nd(H,I)) M(ad)→M(ad + 1)

Healthy division gH , ∀MH(ag = NgH) MH → ∅

∅ → 2MH

Infected division pgI , ∀MI(ag = NgI) MI(I)→ ∅

∅ → 2MI

(
I/2
)

Infected-healthy division (1− p)gI , ∀MI MI(I)→ ∅

∅ →MH +MI(I)

Healthy death dH , ∀MH(ad = NdH) MH → ∅

Infected death dI , ∀MI(ad = NdI) MI(I)→ ∅

E → E + I

Intracellular growth αII, ∀MI(I) MI(I)→MI(I + 1)

Macrophage rupture αIN , ∀MI(I = N) MI(I = N)→ ∅

E → E +N

Infection βE, ∀MH E → E − 1

MH →MI(ag = ad = 1, I = 1)

Table 4.4: List of possible events within the model. Each event has a rate at which

it occurs, and a resultant action if it occurs. E → E + 1 denotes the

extracellular bacteria population increasing by 1. M(ag) represents a

macrophage with Erlang division parameter ag. MI(I) represents an

infected macrophage with I intracellular bacteria.
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Figure 4.12: The core mechanisms modelled in this chapter are depicted in this

schematic.

4.10 Model results
In this section the general output of the model will be analysed before performing

a sensitivity analysis. The results of the sensitivity analysis will then inform the

construction of the computational experiments described in section 4.11.

4.10.1 Model output

Figure 4.13 shows the results of running multiple simulations with parameters set to

the MLE values. The solid lines represent the average of the simulations while the

shaded area shows the standard deviation of the samples. A total of 1000 samples

were generated through repeated simulation, stopping at 1000 as after this point

variation in the average and the standard deviation was not noticeable.

The model is initialised with ten macrophages and one bacterium. The bacterium is

initialised extracellularly for 50% of the simulations and intracellularly for the other

50%. Comparing this to the model output from the previous chapter in figure 3.6,

there are some notable differences. In the stochastic model the bacteria population,
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Figure 4.13: 1000 repetitions of the stochastic model with initial conditions of ten

macrophages and one bacteria which is initialised intracellularly for

50% of the runs and extracellularly for the other 50%.

both extracellular and intracellular, are each an order of magnitude larger than the

deterministic model. Since the intracellular growth rate for the stochastic model is

approximately half that of the deterministic model, the effect of the small increase

in the extracellular growth rate is dominating the bacteria growth in both states.

In chapter 3 the population of healthy macrophages rapidly dies out before the

end of the 140 hour simulation. Comparatively, after the same amount of time in

the stochastic framework, the healthy macrophages have just reached their peak.

With the population of extracellular bacteria now growing exponentially the rate

at which macrophages are becoming infected is beginning to overwhelm the rate of

macrophage division.

Figure 4.14 shows the results of inserting the parameters fitted in this chapter into

the model developed in chapter 3. The major change in the parameter values is the

increase in both the extracellular bacteria growth rate and the intracellular bacteria

growth rate. The rapidly growing extracellular population applies a high force of

infection on the healthy macrophages, resulting in their population quickly depleting.

The healthy macrophages die out after approximately 75 hours, compared to not
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Figure 4.14: Result of running the model presented in chapter 3 with the parame-

ters identified within this chapter.

dying out in the stochastic model, and surviving to 100 hours in the previous chapter.

Shortly after the healthy macrophages go extinct, so do the infected macrophages,

as a result of internal pressure from their intracellular loads. After approximately

150 hours the only population left is the extracellular bacteria which are growing

exponentially.

Putting the parameters from this chapter into the deterministic model from the last

chapter demonstrates the need for the model to be stochastic. Since the populations

are small, stochastic fluctuations in the number of individual cells will have a larger

relative impact on the system than if the population was larger. These fluctuations

cannot be captured by the deterministic model.
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4.10.2 Sensitivity analysis

In this section a sensitivity analysis will be performed on the model using the Sobol

sensitivity analysis method, as described in section 1.6.5. Given the model presented

here is a stochastic model, it is not computationally feasible to run the analysis on

the same number of parameters as in previous chapters. Additionally, each parameter

set needs to be run multiple times in order to smooth out the effects of stochasticity.

This results in larger uncertainty on the estimated sensitivity indices. Hence, a

balance needs to be found between exploration of parameter space, and repetitions

of simulations [185].

Figure 4.15 shows the results of the Sobol sensitivity analysis when measuring

the total population of extracellular bacteria, healthy macrophages, and infected

macrophages over the 200 simulated hours. Each population is sampled at regular

time intervals of 5 hours to observe how the model sensitivity evolves over time. As

described in section 1.6.5, the sensitivity indices measure the contribution of each

parameter to the variation in the model output.

As in the previous models the variance observed in the extracellular bacteria popula-

tion is dominated by variance in the extracellular growth (αE) and the intracellular

growth (αI). In fact no other parameters demonstrate a significant effect on the

extracellular population.

Variance in the healthy macrophage population predominantly originates from vari-

ance in the birth (gH) and death (dH) rates, however as the extracellular bacteria

population grows, the extracellular growth rate (αE) takes overs as the dominant

parameter. As the extracellular bacteria population grows larger, fluctuations αE
rate will have an increasing impact on the total number of extracellular bacteria,

hence will also have an increasing impact on the force of infection felt by the healthy

macrophages. This relationship can be directly observed in the infected macrophages,

as towards the end of the simulation, the extracellular growth rate is the largest

contributor here too. The probability of healthy-infected division events also has a
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Figure 4.15: Sobol sensitivity analysis measuring the fraction of the variance in the

modelled populations over time that can be attributed to variance in

the given parameters.
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significant effect on the healthy macrophage population, stemming from division in

the infected macrophage population.

As seen in figure 4.13, after around 100 hours of simulation is when the infected

macrophage population begins to take off. This is just after the sensitivity to the

extracellular growth rate has a steep increase to become the dominant parameter for

infected macrophages. As alluded to already, this dependence on the extracellular

growth rate for the infected macrophages is a result of the force of infection felt by the

larger population of healthy macrophages. A pressure which in turn converts these

healthy macrophages into infected macrophages. While the extracellular growth rate

contributes to the majority of the observed variance, the intracellular growth rate

(αI) and the birth-death process for both populations of macrophages also contribute.

In previous chapters, a second sensitivity analysis was performed measuring the time

until dE
dt > 0. This is not possible in this scenario, as the model is now stochastic.

Instead, figure 4.16 shows the sensitivity analysis measuring the time until the

extracellular population exceeds ten. While in previous models, this construction

has demonstrated sensitivity to the infection rate and the macrophage birth death

process, in the stochastic construction presented here, the variation in model output

is dominated by variation the the extracellular growth rate αE. This is due to the

low MLE value of β resulting from the homogeneous mixing assumption between

extracellular bacteria and healthy macrophages.

The results of the sensitivity analysis show that the dominant mechanism affecting

the level of free bacteria during the early interactions is the extracellular growth

rate. Since innate alveolar macrophages have no control over this mechanism, it is

not natural to apply controls here. Instead, since a common feature of activated

macrophages is to inhibit the intracellular growth, and since the data demonstrate a

wide range in intracellular growth rates as shown in figure 4.2, this mechanism will

be focused on in the next section using computational experiments.
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Figure 4.16: Sobol sensitivity analysis measuring the time taken for the extracel-

lular bacteria population to exceed ten. Since stochastic variation

will add noise, the time until the gradient of extracellular growth is

positive cannot be used. An extracellular population of 10 is large

enough that the chance of being significantly reduced is negligible,

while being small enough that the simulation is quick, thus a large

number of parameters can be sampled.

4.11 Computational experiments
In this section, two computational experiments will be performed, analysing the

effect of intracellular growth inhibition as a method of control on the extracellular

bacteria population.

4.11.1 Effect of intracellular growth rate

By allowing the rate of intracellular growth to vary from its MLE value of αI = 0.0206

to within the interval (0.0, 0.1), the relationship between this parameter and the

132



4.11 Computational experiments

0.000 0.025 0.050 0.075 0.100
Intracellular growth rate (hour 1)

0

5000

10000

15000

20000

25000

30000

35000

40000
Ex

tra
ce

llu
la

r p
op

ul
at

io
n 

af
te

r 2
00

 s
im

ul
at

ed
 h

ou
rs Average of simulations

E(T) 102.93 × exp(58.56 × I)

0.000 0.025 0.050 0.075 0.100
Intracellular growth rate (hour 1)

10
2

10
3

10
4

Figure 4.17: The relationship between the resultant extracellular bacteria popula-

tion and the intracellular growth rate is approximately exponential.

For each value of αI , the simulation was run 100 times. The displayed

points are the average of those simulations.

resultant population of extracellular bacteria can be observed. The population of

extracellular bacteria after 200 simulated hours is being used as a proxy for bacterial

virulance, as a larger population prior to adaptive immunity being engaged will

naturally be more difficult to control.

Figure 4.17 shows the approximate exponential relationship between the resultant

extracellular population and the intracellular growth rate. While not very surprising,

the nature of such an exponential relationship demonstrates how a small increase in

the intracellular growth rate can lead to a large increase in total bacteria.

If grown in the absence of macrophages, the expected number of extracellular bacteria

after 200 hours is approximately 900. Figure 4.17 shows that for sufficiently low values

133



Chapter 4 Stochastic agent based model

0.00 0.02 0.04 0.06 0.08 0.10
Intracellular growth rate (hour 1)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
to

 in
hi

bi
t i

nt
ra

ce
llu

la
r g

ro
w

th

0.9000

0.9250

0.9500

0.9750

1.0333

1.1333

1.2333

1.3333

Lo
g 

ra
tio

 o
f f

in
al

 E
 c

om
pa

re
d 

to
 b

as
e 

m
od

el
Figure 4.18: A small increase in the intracellular growth rate requires a large in-

crease in the probability to inhibit intracellular growth in order for

the outcome not to change. Note the non-linear colour bar centered

at 1.

of αI , the population of extracellular bacteria is well below this limit, demonstrating

the potential ability for macrophages to limit the extracellular population.

4.11.2 Effect of probability of growth inhibition

While increasing the intracellular growth rate results in a large increase in the

bacteria, due to the exponential nature of the relationship, reducing the intracellular

growth rate only results in a small reduction. Including a probabilistic ability for

macrophages to completely inhibit intracellular growth is a further mechanism to

control the infection. Figure 4.18 shows a heat map of the relationship between
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intracellular growth rate and the probability to inhibit growth. The measure used is

log
(
E (200;αI , pinhib)

)
log

(
E (200;αI = 0.0206, pinhib = 0)

) . (4.8)

This measure was chosen as it approximately linearises the values of the exponentially

growing bacteria population, and allows the reader to quickly identify the boundary

between the two parameter sets: those that result in a larger and faster growing

extracellular population compared to those that result in a smaller and slower growing

extracellular population.

For more virulent strains, demonstrated here with an increased intracellular growth

rate, the macrophages must respond with a large increase in the probability to inhibit

intracellular growth in order to maintain the same level of extracellular bacteria at

the end of the simulation.

The ability for macrophages to inhibit intracellular growth does not provide a benefit,

as can be seen by the vertical stratas for αI close to and below the MLE. The ability

for macrophages to inhibit intracellular growth provides a small benefit in the system,

as can be seen by the near vertical strata for αI close to and below the MLE. The

magnitude of the benefit improves as αI increases, as this ability allows macrophages

to limit the rate at which the infection gets out of control.

4.12 Conclusions
In this chapter, a stochastic agent-based model has been developed and fitted to

an extended set of experimental data. By moving to a stochastic framework, small

population effects are able to be modelled more accurately and allow for probabilistic

extinction events of the macrophages. In addition the macrophage birth-death

process has been improved, such that the distributions of wait times for division

and death events from the model more closely resemble the equivalent distributions

in the data. Through sensitivity analysis it was shown that both extracellular

bacteria and the infected macrophages are highly dependent on the extracellular

growth rate, almost to the exclusion of all other mechanisms. This is a result of the
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homogeneous mixing between healthy macrophages and extracellular bacteria. Due

to the homogeneous mixing of macrophages with the total extracellular population,

the fitting process pushed the rate of infection very low, limiting the amount of

interaction between the two cell types.

Through computational experimentation, the intracellular growth rate of bacteria

was targeted as a candidate for bacteria control. Two experiments were carried

out. The first investigated the relationship between the intracellular growth rate

and the extracellular population. This was shown to be approximately exponen-

tial demonstrating the importance of intracellular growth on the proliferation of

extracellular bacteria. The second experiment introduced a theoretical mechanism

whereby the macrophages inhibit the intracellular growth of the bacteria. This is

similar to the previous chapter, but was deemed a more realistic mechanism. The

experiment simulated the response in the extracellular bacteria population when

changing the probability to inhibit intracellular growth and when changing the av-

erage intracellular growth rate. This experiment demonstrated that reducing the

average intracellular growth rate by a small amount for all macrophages has a larger

impact on the resultant extracellular than completely reducing the growth rate to

zero for some macrophages.

The model presented in this chapter has some conceptual similarities with two Fran-

cisella tularensis models [184, 186], whereby infected phagocytes are initialised with

a single bacteria and the bacteria are able to grow intracellularly. Similar to the

comparison between chapter 2 and Wood, Egan, and Hall [176] there are some sig-

nificant differences in the model formulations. Firstly, healthy macrophages and

macrophage division play key roles in the overall dynamics of the system presented

here, most importantly natural death of the macrophage. A core focus of the Fran-

cisella tularensis is the expected wait times to cell rupture, however natural death

is not included. As shown in appendix C.1, with the data available it has not been

possible to differentiate the cause of death of the cell between rupture as a result of

load and natural death.
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Another model of interest from the literature is model of macrophage division and

death known as the cyton model [187, 188], whereby division and death events are

modelled by two distributions and the rate of division and the rate of death is simply

the integration of the respective distributions. This is a similar construction to the

model presented here where this model restricts the two distributions to Erlang

distributions rather than the arbitrary positive support distributions presented in

the cyton model. The cyton model is also extended to allow these distributions

to vary from generation to generation. While running the cyton model through a

wide model selection process to pick the optimal distributions for division and death

wait times may have resulted in an improved quantitative fit to the data, fixing the

distributions to be Erlang as has been done here still allows for a lot of flexibility in

the resultant distribution while maintaining a connection to the underlying biology

that is driving the process.

The current model assumes macrophages are continuously mixing with all bacteria,

and can only take in single bacteria at a time. This has resulted in the MLE

for the rate of infection β being pushed low, limiting the number of interaction

between healthy macrophages and extracellular bacteria. In the following chapter

the structure of the extracellular bacteria will be modified to be distinct populations

known as aggregates. Macrophages will then interact with the aggregates at a density

dependent rate rather than the individual bacteria. With this modification in mind,

additional data was also collected by the experimentalist to explicitly measure the

growth rate within these distinct aggregates, and also to measure the quantity of

bacteria internalised. The latter being used to remove the constraint that only

individual bacteria are picked up by the macrophage.
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Chapter 5

Model 4: Stochastic Agent Based

Model With Aggregated Extracellular

Bacteria

In the previous chapter a stochastic agent-based model (ABM) was developed and

fitted to experimental data. A major component of this model was the homogenous

mixing of the macrophages with all available extracellular Mycobacterium tuberculosis

(Mtb) bacteria, and the mass action methodology for the rate of infection. In the

data, it was observed that some macrophages persist in the healthy state for the full

duration of the experiment. Since the extracellular bacteria are growing exponentially,

the force of infection also grows exponentially. The model of infection is based on

mass action, thus persistent healthy macrophages experiencing an exponentially

increasing force of infection will drive the rate of infection down.

In order to address the limitations resulting from the macrophages homogeneously

mixing with the entire bacteria population, in this chapter the extracellular bacteria

will be considered to exist as distinct aggregated populations. Each aggregate will

be assumed to be a distinct population of extracellular bacteria, which form as a

result of an infected macrophage releasing its internal load back into the extracellular

space. Interaction will occur between bacteria aggregates and macrophages. This

construction will maintain the modelling simplicity of homogeneous mixing and

not considering a spatial element. In order to parametrise this model, a range of
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Chapter 5 Stochastic model with aggregated extracellular bacteria

Bacteria Aggregate

Experiment count 46.0000

Average starting fluorescence 108.4471

Average fluorescence 183.9347

Average ending fluorescence 342.6384

Average number of data points per experiment 11.5870

Table 5.1: Summary of data relating to the aggregated bacteria growth. In total 46

populations of bacteria were independently tracked and the total area

of fluorescence was measured.

additional experiments were conducted by the experimentalist, specifically measuring

the growth rate of extracellular bacteria within distinct aggregates.

5.1 Data
The data that was recorded to enable this transition in the model is aggregate specific

fluorescence measurements within the experiments. This means that if multiple

aggregates are visible within the same frame, they are recorded as distinct bacteria

populations, rather than summed as a single population. Table 5.1 summarises the

new data.

5.2 Model description
The model construction in this chapter remains as for chapter 4, a stochastic ABM

with homogeneous mixing between agents. However, in addition to the macrophages

being modelled as agents, so are the extracellular bacteria. Each extracellular bac-

terium exists in one of several distinct populations of extracellular bacteria. These

populations will be called aggregates for the purposes of this study. A new aggregate

can only be formed when an infected macrophage dies releasing its intracellular

load back in to the extracellular space. When a healthy macrophage interacts with
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the extracellular bacteria, it will be at the macro scale of macrophages interacting

with aggregates rather than directly with individual bacteria. This iteration of the

model will act to reduce the effect of homogeneous mixing between all bacteria and

the macrophages which resulted in a very low rate of infection being fitted in the

previous chapter. Further, this will allow for the possibility of a macrophage to

internalise more than one bacteria at a time. Either the macrophage will internalise

the entire aggregate resulting in the aggregate being removed from the system and

all of the extracellular bacteria within the aggregate transitioning to intracellular

bacteria within the macrophage. Or the macrophage will only internalise a subset of

the aggregate, in a partial uptake event. This results in the aggregate remaining in

the system albeit now with fewer bacteria, and some of those bacteria transitioning

to intracellular bacteria within the macrophage. The basis for this mechanism is the

experimental observation that macrophages are able to either partially consume or

entirely consume an aggregate of bacteria.

5.2.1 Mechanisms

There are several additional mechanisms being introduced in this chapter, the ma-

jority of which revolve around the core change in the way extracellular bacteria are

modelled. Previously the model considered extracellular bacteria as a single popu-

lation which is homogeneously mixing with the individual macrophage agents. One

limitation of this construction is due to infections being modelled using mass action.

Since the population of bacteria is growing exponentially, the force of infection felt

by macrophages is also growing exponentially.

As already described, the infection process will now be based on mass action mixing

between macrophages and aggregated populations of extracellular bacteria. During

an infection event, there will be the possibility for the macrophage to fully consume

the aggregate, or only partially. If the macrophage only consumes a fraction of the

aggregate, this fraction will be modelled dependent on the current population of

bacteria within the aggregate. Immediately after the infection event the macrophage
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will be evaluated for how likely it is to survive, as some macrophages in the experi-

mental data are observed to internalise a large number of bacteria but not survive

the process.

In previous models, when an infected macrophage divides, the number of intracellular

bacteria is either split evenly between the two daughter cells or remains entirely in

a single daughter cell with the other daughter cell being a healthy macrophage. In

this chapter, the model will be extended to allow for a range of possibilities on the

division of bacteria between the two daughter cells. As shown in chapter 3, there is

insufficient data to be able to assume correlation between parent cells and daughter

cells. Therefore the model will remain memoryless in terms of whether a cells parent

divided to produce two infected cells, or one infected and one healthy cell. The

construction for this is discussed more in section 5.3.4

There is high variability observed in the distribution of intracellular growth rates.

The possibility for macrophages to inhibit the intracellular growth rate post infection

will therefore be investigated as in chapter 4.

5.3 Parameter Fitting
In this section the additional and altered mechanisms will be described mathe-

matically and have their parameters fitted. The newly fitted parameters and the

unchanged parameters from the previous chapter are summarised in table 5.2 at the

end of this section (page 156).

5.3.1 Aggregated extracellular growth

The experimental data was expanded to focus specifically on the bacteria as individual

aggregated populations instead of a single homogeneous population. Rather than

measuring the level of fluorescence over the whole frame, the measurements now

focus on specific aggregates within each experiment. The fitting process to model
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Figure 5.1: Exponential growth curves fitted to the aggregated extracellular growth

experiments.

the growth of extracellular bacteria remains unchanged and the outcome is shown

in figure 5.1.

5.3.2 Infection

Bacteria are now modelled as aggregates, therefore mass action mixing occurs be-

tween the aggregates and the macrophages rather than directly between the bacteria

and macrophages. Motivated through discussion with the experimentalist, it was

observed that when a macrophage interacts will a population of bacteria, it may

internalise the entire population or only part of it - here called partial uptake. While

it was observed in the experiments, it was not quantitatively measured in the data.

Bootstrapping is used to estimate the likelihood of parameters: the underlying pro-

cess determining the number of aggregates at any given time is repeatedly sampled

generating a probability distribution.
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As for previous chapters, the initial number of bacteria aggregates will be assumed

to be one. The parameter that is bootstrapped over will be the probability of a

macrophage consuming an entire aggregate. This probability will be assumed to be

independent of the size of the aggregate. When a death of an infected macrophage

occurs in the data, the number of aggregates will always be assumed to increase by

one, and when an infection of a healthy macrophage event occurs, the number of

aggregates will decrease by one with some fixed parameter to be determined. This is

in line with the observations in the data, as bacteria do not disperse post macrophage

apoptosis, and the observation within the data that the aggregates are not always

internalised fully is the foundation of this mechanism.

The underlying data for fitting the infection process is the same as in previous

chapters, and has simply been extended to include additional experiments. The time

of birth, infection and death for each infected macrophage is measured. Within a

single experiment, these are used to define a probability distribution of the number

of extracellular aggregates, since this data is not recorded.

Figure 5.2 shows the raw experimental data to be used for fitting the infection

process. Each line represents a single macrophage, while the colours represent

different experiments. Since four of the nine experiments exhibit a large amount

of activity relating to infection events, the space of possible aggregate time series

is prohibitively large. Instead, bootstrapping will be used to estimate the model

parameters. A set of time series of the number of aggregates will be generated

according to the observed infection and infected macrophage death events and the

probability of partial uptake, ppartial. A set of examples is shown in figure 5.3.

The likelihood function is defined as in the to previous chapter, by measuring the force

of infection felt by a macrophage between the time it was born to the time it became

infected. The force of infection is defined by the number of active aggregates at any

time, which is itself unknown and parameter dependent. The solution used here is to

first bootstrap the number of possible aggregates by assuming the simulation starts

with a single aggregate, then observe infection and infected macrophage death events
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5.3 Parameter Fitting

Figure 5.2: The individual experiments in the data set for this chapter show a lot

of activity regarding infection times of the macrophages. In this plot

each coloured group represents an experiment, and each line represents

a cell that becomes infected at some point during the experiment. Of

the ten experiments that tracked macrophages at the individual level,

there were 9 that observed infection events, four of which demonstrate a

lot more activity than the other five. Since macrophages move around

while infected, more infections early on the experiment will rapidly

increase the number of aggregates available, thus further increasing the

number of observed infection events.
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Figure 5.3: The number of aggregates in an experiment is not measured, so the infec-

tion rate is bootstrapped over the possible number of aggregates. When

a macrophage dies, a new aggregate is formed. When a macrophage be-

comes infected, there is a Bernoulli process which determines whether

the macrophage consumes the entire aggregate, resulting in the number

of aggregates going down, or the macrophage only partially consumes

the aggregate, resulting in no change to the number of aggregates. This

plot shows the an example experiment and how the possible number

of aggregates changes according to events within a single experiment.

Along the x axis an I represents a healthy macrophage internalises

either all or part of an aggregate, and a D represents the death of a

macrophage.
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Figure 5.4: Likelihood landscape for the rate of infection (β) and the probability of

a macrophage partially internalising an extracellular aggregate (ppartial).

to infer the current number of aggregates. These events affect the population in the

two ways. Firstly, when a macrophage interacts with an aggregate to become infected,

there is some probability that it will consume the whole aggregate, or only part of

it, resulting in the number of aggregates either staying the same, or reducing by one.

Secondly, when an infected macrophage dies, it will deposit its intracellular load into

the extracellular space creating a new aggregate, thus increasing the population of

aggregates by one. The likelihood landscape for the probability of partial uptake

(ppartial) and the rate of infection (β) is shown in figure 5.4. During a partial uptake,

the number of bacteria internalised is assumed to be uniformly distributed on the

number of bacteria available. This is explored further in appendix C.2.
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5.3.3 Post infection death rate

It was observed in the experiments that some macrophages that internalise a large

number of bacteria do not survive to the next sampled time period. Investigating

the data highlighted that the number of bacteria internalised correlated with the

probability of the macrophage not surviving. To address this mechanism, the prob-

ability of a given bacterial load (x) causing the macrophage to die will be defined

by

f(x) = x

a+ x
. (5.1)

Analogously the probability the macrophage survives will be given by 1− f(x). f

therefore defines a Bernoulli process for each possible load x. The value of a is

determined using least mean squares using the data of the initial bacteria load of a

newly infected macrophage, and whether the macrophage survived to the next time

sample in the experiment. The data and the fitted curve f are shown in figure 5.5.
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Figure 5.5: Scatter plot of the number of initially internalised bacteria compared to

whether that cell died within the next eight hours. The data is binned

into 21 bins of equal width order in better to visualise the trend. Using

least mean squared difference fitting results in an maximum likelihood

estimate (MLE) of a = 64.03.

5.3.4 Infected macrophage divisions process

In previous chapters, infected macrophages have been assumed to divide in one of

two ways, governed by a simple Bernoulli parameter. Either a macrophage divides

into an infected-healthy pair of daughter cells, in which case all the intracellular

bacteria will move to the infected cell, or the parent cell will divide into two infected

daughter cells, in which case the intracellular bacteria will be divided evenly between

the two new cells. In this section an extension to this model will be investigated,

allowing for more variation in the divisions of bacteria. The model will be an affine

sum of two binomial distributions, as follows:

p(i, j) = pratioBin
(
j, pclump

)
+ (1− pratio)Bin

(
j, pspread

)
. (5.2)
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p(i, j) defines the probability that an infected macrophage with i intracellular bacteria

divides to produce a daughter cell with j intracellular bacteria. The hypothesis of the

model, based on observations from the data, is that intracellular bacteria either reside

clumped together within their host cell, or spread throughout. Consequently, when

the host cell divides, in the case of clumped bacteria, the intracellular load will transfer

en masse to only one of the daughter cells. Conversely, bacteria that are dispersed will

be split between the two daughter cells. The structure of the intracellular population

- either clumped together or spread throughout - is controlled by the parameter

pratio. The remaining two parameters pclump and pspread define the probability of

each intracellular bacteria moving to each daughter macrophage, resulting in the

two binomial functions. Since there are two daughter cells produced during division∑j
i=0 p(i, j) = 2.

Figure 5.6 shows how the likelihood function responds to each of the three parameters.

The results mirror the results of previous chapters, with a slight increase in the

proportion of infected-healthy pairs, rising from a probability of 0.7 to 0.86. The

MLE values for pclump and pspread show there is very little middle ground, either the

division results entirely in infected-healthy pair, or the division is approximately in

half.
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Figure 5.6: The maximum log likelihood as a function of each of the parameters

governing the infected macrophage division process. pratio = 0.86 shows

that most division events will be of the clumped form. pclump = 0.008

shows that clumped divisions are dominated by completely infected-

healthy divisions. Finally, pspread = 0.4941 shows that spread divisions

divide the intracellular load on average equally between the daughter

cells.

5.3.5 Maximum number of intracellular bacteria

In the previous chapters the maximum number of intracellular bacteria was fixed at

N = 50. Figure 5.7 shows the relationship between the time a macrophage spent

infected and the level of intracellular load at the time of the cells death. This is also

contrasted between cells that were born infected vs those that became infected. Cells

that are born infected are more commonly born with a lower load and thus higher

loads are rarely observed in cells that are infected for shorter times, however cells

that become infected demonstrate some much higher loads with shorter infection

durations. In both cases, the level of intracellular load is significantly higher than

the previously assumed N = 50.

Figure 5.8 shows the model response to increasing the maximum number of intracel-

lular bacteria all the way to the observed 600, where the effect is being measured
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Figure 5.7: Data showing the relationship between the time spent infected and the

intracellular load at the time of the cells death. There are a significant

number of cells that contain more than the assumed maximum load.

Cells infected from birth tend to be born with a small number of bac-

teria, resulting in higher loads more commonly being observed in cells

that were infected for a long time. Cells that become infected have a

more dispersed distribution, many dying with a high load only shortly

after they became infected.
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as

log
(
E (200;N)

)
log

(
E (200; 50)

) . (5.3)

E (200;N) is the population of extracellular bacteria after simulating for 200 hours

with the maximum intracellular bacteria fixed at N . This measure is chosen to

demonstrate the proportional change in the response of the bacterial population to

varying parameters.

There is a slight decreasing trend of approximately 2%, as would be expected. In-

creasing the maximum allowed load further (to 106) shows this reduction plateaus.

The baseline for the comparison is calculated as the average of 5000 runs, while

the compared values while ranging the parameter N are averaged over 1000 runs

each. This reduction is due to computational limitations. The plateau suggests that

macrophages die naturally, before bursting can take effect. This is shown in figure

5.8 (right).
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Figure 5.8: Measuring the effect of the maximum intracellular load on the resultant

extracellular bacteria population (see equation 5.3). There is a very

small decrease of approximately 2% when increasing the maximum

intracellular load from the assumed 50 to the observed 600. The baseline

is calculated from the average of 5000 runs, while the compared values

are averaged from 1000 runs due to computational limitations. The

error bars are a bootstrapped 95% confidence interval and the fitted

line is a simple linear regression, again shown with bootstrapped 95%

confidence interval. (left) Linear x scale up to the observed 600. (right)

Log x scale increasing the limit beyond feasibility to observe change.
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Chapter 5 Stochastic model with aggregated extracellular bacteria

Table 5.2: (On previous page) Complete and final list of model parameters along

with descriptions, their fitted values, and 95% confidence intervals. All

fitted values are fitted using maximum likelihood methods, and 95%

confidence intervals are estimated using the likelihood surface generated.
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5.4 Model definition

5.4 Model definition
As in the previous chapter, the model is a stochastic ABM. Both macrophages Mi

and bacteria aggregates Ai are modelled as agents. The only variable modelled for

the aggregates is the total number of bacteria within the aggregate Ei. The variables

modelled for the macrophages are the two counters modelling the Erlang growth and

death gi, di and the current intracellular load of the macrophage Ii.

Extracellular bacteria grow exponentially at a fixed rate αE, thus for a given aggregate

Ai this rate is scaled by the number of bacteria in the aggregate to αEEi. The only

way for the number of bacteria within an aggregate to reduce is through interaction

with macrophages through infection. If the number of bacteria within an aggregate

reaches zero, it is considered dead and removed from the system.

The macrophage birth death process is modelled exactly as in the previous chapter.

The two Erlang ages gi and di are tracked. gi and di are incremented at rate gH,I
and dH,I respectively depending on whether the macrophage is healthy H or infected

I. If gi reaches Ng(H,I) then the macrophage will divide. Healthy macrophages are

simply removed from the system and replaced by two new healthy macrophages, each

with values gi = 1 and di = 1. When an infected macrophage undergoes division,

the intracellular load is divided between the two daughter cells according to the

distribution defined in equation 5.2. This can result in either two infected daughters,

or one infected daughter and one healthy daughter. If di reaches Nd(H,I) then the

macrophage dies, producing a new aggregate with their intracellular load.

Intracellular growth is again modelled as exponential growth. Thus for each macrophage

Mi with Ii intracellular bacteria, intracellular growth events occur at rate αIIi. When

the intracellular load reaches the maximum load of N , the macrophage bursts. Thus

this macrophage is flagged as dead and a new aggregate of extracellular bacteria is

added to the system. The aggregate is initialised with N bacteria.

Infection events occur between healthy macrophages and extracellular bacteria ag-

gregates according to mass action with rate parameter β. When an infection event

occurs between aggregate Ai (with Ei extracellular bacteria) and macrophage Mi,
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the entire aggregate is internalised with probability ppartial. Otherwise the number of

bacteria internalised by the macrophage is drawn from the uniform distribution as

such: I ∼ Uniform[1, Ei − 1]. Once the load to be internalised has been determined,

the probability that the macrophage will survive the infection event is evaluated

according to equation 5.1. If the macrophage survives then the bacteria are inter-

nalised, whereas if the macrophage does not survive then the bacteria remain in the

aggregate and the macrophage is flagged as dead.

By construction, each event and its associated rate of occurrence is now only de-

pendent on the current state of the system, thus the model is Markovian. With

the rates and events now defined, the model can be simulated using the Gillespie

algorithm. At each time step the system is evaluated and a list of events is compiled

with corresponding rates and functions to apply if that event occurs. This list is then

sampled in order to determine which event occurs next and at what time, resulting

in a continuous time Markov chain (CTMC).

5.5 Model results
In this section a collection of results generated from the model will be presented.

First the qualitative output of the model as a time series will be analysed, followed

by a range of distributions and how they compare with the analogous distributions in

the data. As in previous chapters, a Sobol sensitivity analysis will be performed and

used to inform which mechanisms to explore through computational experiments. Fi-

nally the computational experiments will be performed to establish the relationships

between methods of control of intracellular growth and the rate of phagocytosis.

5.5.1 Time series

The model is run for 200 simulated hours in line with the length of the experiments.

Initial conditions for the model are two macrophages and a single bacteria which

alternates between being initialised intracellularly and extracellularly. To mimic the

experimental design would be to initialise without extracellular bacteria, however
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there are results in which macrophage infection events occur prior to any infected

macrophage death events, thus extracellular bacteria must have been present.

Figure 5.9 shows the average of 6000 runs of the simulation with parameters fixed

at their MLE values. The standard deviation is also shown to demonstrate the

variability between runs. The macrophage population is in general able to sustain

itself, however it is unable to contain the infection, with the extracellular bacteria

growing exponentially, in relatively few distinct aggregates. This is due to the fitted

infection rate still being relatively low. For three macrophages and a single aggregate,

it is expected to take approximately 200 hours to observe a single infection event.

The core function of the macrophages is not to ultimately eradicate the invading

bacteria, but rather to delay their growth prior to the adaptive immune system

being activated. Section 5.5.4 investigates the way in which the varying mechanisms

contribute to delaying or enhancing the bacteria population growth.
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Figure 5.9: 6000 realisations of the model with parameters kept at their MLEs.

Solid lines show the mean of the simulations and the shaded regions

show the standard deviation. At 200 simulated hours, the healthy

macrophages have sustained their population, but are unable to control

the infection and extracellular bacteria are growing exponentially.

5.5.2 Validation

In this section a range of distributions will be taken from both the experimental

data and the simulated model. By comparing like-for-like distributions, it is possible

to evaluate how successfully the model is capturing the qualitative nature of the

real-world system. The statistics chosen broadly represent the key mechanisms being

modelled: the birth death process of macrophages; the infection process; and the

intracellular bacteria lifecycle.
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Figure 5.10: Comparison of distribution of wait times for macrophage birth death

processes between the model and the data. The division process fits

well, while the death process has a flatter distribution in the data

than the model, especially for infected macrophages.
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Macrophage birth death process

The model for the macrophage birth death process is a CTMC comprised of two

Erlang processes running in parallel, as described in section 4.6. Figure 4.9 showed

that this model fits the data well when considered in isolation from the other mech-

anisms involved in the full system. Figure 5.10 is the analogous plot showing the

distribution of wait times for birth and death events in the full model, and how they

compare to the data.

The model provides a good qualitative fit to the data, in particular for the division

processes. The infected death wait times have a flatter distribution in the data than

in the model, however the median of the distributions remain close to each other at

approximately 100 hours.

Infection wait times

The distribution of times from a macrophage being born to a macrophage becoming

infected are shown in figure 5.11 for both the model and the data. The model is

underestimating the distribution of ages at which macrophages become infected.

This is a symptom of the model being homogeneously mixed. From the start of the

simulation, all macrophages are interacting with all possible aggregates, however in

the experiments macrophages move around to seek out bacteria. Thus there is a

delay, and hence older macrophages are observed to become infected in the data, but

not in the model. Reducing the infection rate does not correct for this however, as it

merely changes the observed number of infection events, rather than the distribution

of ages at which macrophages become infected.

Intracellular loads

The data measuring intracellular load at the time of death of the macrophage is

not used to fit the maximum intracellular load used in the model. This parameter

has been defined based on values in the literature. This is because there is a large
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Figure 5.11: Distribution of wait times from a macrophage being born to that

macrophage becoming infected. The model skews to the left when

compared to the flatter distribution observed in the data. This is

likely a result of the homogeneous mixing assumption of a non-spatial

modelling. Since all agents are always able to interact, interactions

are modelled as a Poisson process thus having exponential wait times.

discrepency between the value observed in the data (up to 600) compared to the

maximum value found in the biological literature (approximately 120 [118]) and the

maximum value used in the modelling literature (approximately 100 [157]). Section

5.3.5 demonstrated that changing the maximum load used in the model has only a

small effect on the outcome. Thus, here the maximum intracellular load is extended

to 600 to allow the distribution of intracellular loads generated by the model to

be compared to those observed in the data. Figure 5.12 shows the distribution

of intracellular loads at the time of infection and the time of death of infected

macrophages, comparing the model to the data. The load at infection fits the data

well, only slightly underestimating the initial load. Similar to the distribution of

infection times, this is likely due to the homogeneous mixing and hence premature

interaction between macrophages and aggregates.

The distribution of the load at the time of death of the infected macrophages does

163



Chapter 5 Stochastic model with aggregated extracellular bacteria

0 200 400 600
Intracellular bacteria

0.000

0.005

0.010

0.015

0.020

D
en

si
tiy

Load at infection

0 200 400 600
Intracellular bacteria

Load at death

Data
Model

Figure 5.12: The intracellular load at the time of infection and the time of death

is measured and compared. (left) The distribution of loads at the

time of infection are close, with the model slightly underestimating,

but still able to capture the tail. (right) The distribution of the

intracellular load at the time of death is significantly heavier in the

tail than the data.

not fit well, the loads are significantly underestimated compared to the data. This

implies that infected macrophages in the model are dying prematurely. The biological

literature refers to a process whereby bacteria are able to delay apoptosis of the

infected host cell [127, 128, 130]. Allowing for separate death rates between healthy

and infected macrophages was intended to capture this, however the MLE for the

two groups was very similar and it was not possible to fit a load dependent death to

the data (see appendix C.1).

Goodness of fit tests

Table 5.3 shows the results of the goodness of fit tests outlined in section 1.6.6 applied

to the distributions presented in the previous 3 sections. Both the Kolmogorov-

Smirnov (KS) and the Anderson-Darling (AD) tests are applied to each distribution
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Kolmogorov-Smirnov Anderson-Darling

t-stat c(5%) t-stat c(5%)

Healthy division 0.1884 0.1320 5.8831 1.9610

Healthy death 0.2241 0.1905 8.0976 1.9610

Infected division 0.2788 0.2770 2.2709 1.9610

Infected death 0.1598 0.1049 14.5264 1.9610

Infection wait times 0.4060 0.0937 142.2180 1.9610

Load at infection 0.3383 0.1310 78.8970 1.9610

Load at death 0.6245 0.1071 267.8059 1.9610

Table 5.3: Test statistics and the corresponding critical values at the 5% significance

level for the KS test and the AD test for the range of distributions

presented in this section.

with the null hypothesis that the results from the model and the observed data are

drawn from the same distribution. The only result for which the test statistic is close

to the critical value is the wait times on division of infected macrophages. Despite

the KS test statistic being only slightly higher than the critical value, the p-value

for this test was 0.0382 < 0.05 thus the null hypothesis can still be rejected.

While the goodness of fit tests demonstrate that the extracted distributions from

the model are not quantitatively the same as the observed data, the qualitative

behaviour of the system remains in line with the experiments. The model presented

is a mechanistic model and has been developed based on current understanding of

the biological dynamics. While a statistical model may have performed better in

the goodness of fit tests, the qualitative similarities of the mechanistic model to the

data provide a greater understanding of the underlying processes.

5.5.3 Sensitivity analysis

As for previous chapters, two versions of the Sobol sensitivity analysis are applied.

Firstly, variation is measured in the total populations of extracellular bacteria,
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Figure 5.13: Sobol sensitivity analysis measuring the fraction of the variance in the

modelled populations over time that can be attributed to variance in

the given parameters.
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healthy macrophages, and infected macrophages, sampled every 5 hours up to a

maximum of for 200 hours. This is shown in figure 5.13. Secondly, variation in the

time taken for the extracellular population to reach 1000 cells is measured, shown in

figure 5.14. The initial conditions for the sensitivity analysis are ten macrophages

and a single bacteria which alternates between beginning intracellularly and extra-

cellular. The parameters are allowed to vary within their 95% confidence intervals

shown in table 5.2. For the 12 parameters, 1000 parameter sets are sampled using

the Saltelli sampler, as described in section 1.6.5. Since the model is stochastic,

each set of parameters is evaluated over a large number of model simulations, using

convergence of the mean to determine when to stop simulating.

The majority of variance in the population of extracellular bacteria is a result of

variance in the extracellular growth rates (αE) and the intracellular growth rate (αI).

Initially, αE dominates, however at around 100 hours, the αI begins to increase. This

is in line with the growth of intracellular bacteria as seen in figure 5.9. However,

this relationship does not last long, and the extracellular growth takes over again

as the extracellular bacteria are free to grow exponentially and not constrained by

remaining intracellular.

Healthy macrophages are again driven predominantly by their own birth death

process, however two parameters of the infected macrophage division process are

also present, showing that the production of healthy macrophages from healthy-

infected division events is not insignificant in the system.

The initial stage of the model sees the infected macrophage population being con-

trolled mostly by the rate of infection (β). However as the intracellular population

is allowed time to grow, the driver changes to the intracellular growth rate. This

demonstrates the effect of the intracellular pressure rupturing infected macrophages

on the macrophage population.

As in previous chapters, the time until extracellular bacteria form the majority of

the system is also investigated. The sensitivity analysis is shown in figure 5.14.

Intracellular growth rate has a clear relationship to the extracellular population, as
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Figure 5.14: Sobol sensitivity analysis tracking the variation in the number of sim-

ulated hours required for the extracellular population to exceed 1000

cells. The vast majority of variation is attributed to the extracellu-

lar growth rate, with the intracellular growth rate and the infected

macrophage death rate having the next highest contributions.

the faster bacteria can grow intracellularly, the more the extracellular population

will increase by when the host macrophage dies. In this iteration of the model, the

extracellular bacteria growth rate is approximately double that of the intracellular

rate, therefore increasing the rate at which infected macrophages die will result in

bacteria spending a higher proportion of time extracellularly, and thus able to grow

faster. Increasing the rate at which healthy macrophages die will reduce the number

of macrophages available to internalise bacteria. Similarly, reducing the infection

rate reduces the number of infection events, both resulting in bacteria spending more

time extracellularly and growing faster.

5.5.4 Experiments

In this section two computational experiments will be performed, analysing the

response of the model to variation in parameters governing key mechanisms. First

the intracellular growth rate will be varied against the infection rate demonstrating a
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non-linear relationship, presenting an advantage to the bacteria over the macrophages.

Second, an additional mechanism will be considered, the possibility for macrophages

to inhibit intracellular growth. The probability of growth inhibition will again be

considered against the varied infection rate showing that a large increase in this

probability is required to achieve the same result as a smaller increase in the infection

rate.

Intracellular growth rate against rate of infection

Two key mechanisms affecting the macrophages’ ability to control the bacteria pop-

ulation are the intracellular growth rate (αI) and the rate of phagocytosis (β). As

shown in the sensitivity analysis, the intracellular growth rate (αI) and the rate of

infection (β) are significant parameters in the development of the system. Figure

5.15 shows the proportional change in log (E) compared to the unmodified model:

log
(
E(200;αI , β

)
log

(
E(200;α?I , β?

) . (5.4)

E(200;αI , β) is the population of extracellular bacteria after 200 hours given param-

eters αI and β. α?I and β? are the previously calculated MLE values. For each pair of

(αI , β), the model is run multiple times and the measure of interest, in this case the

population of extracellular bacteria after 200 hours, is averaged across realisations.

The parameters were allowed to vary within limits proportional the their MLE values:

approximately ±50%.

It is not a surprising result that as the rate of infection increases and the intracellular

growth rate decreases, the resultant population of bacteria is reduced. This is due

to bacteria spending more time intracellularly with a slower growth rate. There

is however a non linear relationship between the two parameters. As the rate of

intracellular growth increases, a larger proportional increase in the infection rate

is required to offset the resultant increase in total bacteria. This demonstrates the

inherent advantage the bacteria have over the macrophages.
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Figure 5.15: The intracellular growth rate and the rate of infection are allowed to

vary within approximately ±50% of their MLE values. The resultant

extracellular population after 200 simulated hours is compared to the

base model as a ratio of logs (see equation 5.4). An increase to the

intracellular growth rate requires a larger proportional increase in the

rate of infection to offset the increased rate of bacteria growth.

Probabiliy of inhibiting intracellular growth against rate of infection

The biological literature references the ability for activated macrophages to inhibit the

growth of intracellular bacteria [104]. While it was not possible to fit this mechanism

to the data despite observing varied intracellular growth rates, this mechanism can

be investigated with the model. An additional parameter is included: pinhib. When

a healthy macrophage interacts with an extracellular aggregate, either all or some

fraction of the bacteria are internalised. The macrophage then has some probability
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(pinhib) that it will inhibit the growth of these bacteria. This status will remain until

the macrophage dies and releases the bacteria back into the extracellular space.

Figure 5.16 shows the response from the model when allowing this parameter to

range fully between 0 and 1, against the rate of infection. The rate of infection, β,

is once again allowed to vary within ±50% of its MLE. Note the y-axis is flipped to

mirror figure 5.15. The effect of a minority of macrophages being able to completely

stop intracellular growth compared to all macrophages having a reduced intracellular

growth is drastically reduced. The vertical nature of the heat-map shows that the

rate of infection holds significantly more power in affecting the outcome of the model

compared to the probability of growth inhibition, especially given that β is only

allowed to range with a limited domain, whereas pinhib is permitted to vary across

its entire domain.
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Figure 5.16: A new mechanism is introduced to allow macrophages to inhibit any

intracellular growth according to a fixed probability. This probability

and the rate of infection are allowed to vary: the probability of growth

inhibition varies completely between 0 and 1, while the rate of infection

varies within ±50% of its MLE. Note the y-axis is flipped to mirror

figure 5.15.

5.6 Conclusions
In this chapter the model has been undergone a fundamental change in the way

extracellular bacteria are modelled. It has transitioned from a single population

bacteria all of which are interacting with macrophages, to distinct populations of

bacteria (aggregates) which interact with macrophages at the macro-scale. Additional

mechanisms were included, such as the probabilistic division of intracellular loads

during infected macrophage division events and the probabilistic uptake of aggregated

bacteria. The parameters for these new mechanisms were fitted using maximum

likelihood methods, demonstrating smooth likelihood surfaces to be optimised over.
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5.6 Conclusions

The model presented in this chapter is the final model to be developed in this

thesis. Through an iterative process of model design and evaluation against the

underlying dataset, a novel model has been constructed and parametrised. By

comparing biologically relevant distributions in the model and the data, the model

was validated both qualitatively and quantitatively. This process demonstrated the

trade off between model accuracy and model complexity. Since a key goal of this

thesis was to develop a simple model based on biologically relevant mechanisms,

model simplicity and explainability justified the drop in quantitative accuracy. For

example, while the birth death process of the macrophages replicate the data well,

the wait times on time to infection demonstrated a left skew. This is due to the

non-spatial aspect of the model. Macrophages do not move completely randomly

and therefore a fixed rate of interaction is not able to capture the dynamics of

macrophages actively moving towards aggregates.

Performing a sensitivity analysis identified the key mechanisms involved in the output

of the model. Naturally the bacteria growth rates contribute significantly to the

total population of bacteria, similarly to the previous model. However now that the

rate of infection is not tied to the total number of bacteria, rather the total number

of aggregates, the rate of infection also plays a significant role in the early stages of

the model evaluation. Since the extracellular growth rate is tied to the virulence of

the bacteria, it was not focused on for methods of control. Instead, the intracellular

growth rate and the rate of phagocytosis were investigated.

The first computational experiment compared the resultant population of extracellu-

lar bacteria when running the model with different combinations of parameters for

intracellular growth rate and the rate of infection. What this experiment revealed

was that a proportionally larger increase in the infection rate is required in order to

offset the effects of an increase in the rate of intracellular growth. This highlights

the advantage that the Mtb bacteria have over the innate macrophages. Naturally

the optimal result was achieved through high infection rates and low intracellular

growth rates, and the inverse produced the worst results.
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The second computational experiment performed measured again the resultant pop-

ulation of extracellular bacteria when allowing the rate of infection to vary alongside

the probability of growth inhibition. The near vertical strata in the results of this

experiment demonstrate the much higher affinity for the rate of infection to have an

effect than the probability of growth inhibition. Thus an overall reduction in the

intracellular growth rate is a significantly better method of bacteria control than the

complete inhibition of intracellular growth in a subset of macrophages.

Further developments of the modelling work presented in this thesis should include

the addition of a spatial element. By modelling macrophage movement as well as a

potential proxy of the chemical signalling by macrophages, the distribution of wait

times of time to infection will more accurately represent those observed in the data.

In the following chapter a full discussion of the work presented here will be presented

as well as a summary of the thesis outcomes.
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Discussion

The core goal of this thesis was to develop a mathematical model of the in vitro

interaction between innate alveolar macrophages and Mycobacterium tuberculosis

(Mtb) bacteria. The model development process was an organic and iterative progres-

sion whereby additional data and additional mechanisms were incorporated in each

chapter. The iterative nature of the model development and the regular collabora-

tion with the experimentalist has meant that feedback from the model development

process was used to inform on additional data of interest and resulted in additional

data being collected. A particular focus was to maintain biological explainability

of the modelled mechanisms and the mathematical structure used. The subsequent

goals of the thesis were to use the models to identify the dominant mechanisms

affecting the outcome of the system, and to investigate methods of controlling the

bacteria population through computational experiment. Dominant mechanisms were

identified through a combination of mathematical and sensitivity analysis. These

were then investigated and theoretical scenarios were explored through simulation

and computational experiments.

The initial model presented in chapter 2 was a continuous and deterministic ordinary

differential equation (ODE) model. Intracellular bacteria were included implicitly in

the infected macrophage (MI) class. It was shown that the assumption of an average

number of intracellular bacteria was not sufficient and skewed the population of

extracellular bacteria through the rate of death of infected macrophages term. In

the second model, presented in chapter 3, the intracellular bacteria were modelled

explicitly through additional compartments in the model. Additionally, the birth
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death process of the macrophages was extended to include the Erlang distribution

for the growth rates. This was shown to be a better fit to the data, as well as with

the current biological understanding of the cell life cycle. The next stage of the

model development process, presented in chapter 4, transitioned the model from the

continuous and deterministic ODE framework to a discrete and stochastic agent-

based model (ABM) framework, as ABMs are better able to model more complex

mechanisms, such as the infected macrophage division process. The macrophage

birth death process was further extended to improve the qualitative fit to the available

data by modelling death rates with an Erlang distribution. In the final iteration of

the model, presented in chapter 5, the extracellular bacteria underwent a paradigm

shift, each population of extracellular bacteria now being considered as distinct

agents, named here as aggregates. As an ABM, it was possible to include additional

mechanisms such as the partial uptake of an aggregate by a healthy macrophage,

and the division of intracellular bacteria according to the affine sum of two binomial

distributions.

Sensitivity analysis of the developed models demonstrated that the macrophage

dynamics dominate the system early on, however in the later stages it is the growth

rates of the bacteria that drive the state of the system. The measure used in the

sensitivity analysis was the total population of each cell type throughout the duration

of the model simulation. An alternative measure was also used, measuring how much

time was required before the rate of change of the population of extracellular bacteria

was positive or until the extracellular bacteria population exceeded a defined limit.

This second measure showed the rate of infection to be the dominant mechanism,

however the relationship was shown to be non-monotonic. That is, there is an

optimal value for the rate of infection at which the delay on extracellular bacteria

growth is maximal. Increasing the rate of infection beyond this optimal value worked

to reduce the delay. This delay is of interest as it is hypothesised that maximising

the time until extracellular bacteria are able to grow freely may have a beneficial

impact on disease progression for the host. The result presented here could be tested

experimentally. Since the rate of infection amounts to the rate at which moving
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macrophages locate a population of bacteria, this could be controlled by measuring

the initial distance between the macrophage and the extracellular bacteria. The

hypothesis would then be that the relationship between this distance and the total

extracellular bacteria after a fixed amount of time is non-monotonic.

Mechanisms of bacteria control were investigated through computational experiments.

The rate of infection and the rate of intracellular growth were frequently measured as

significant parameters by the sensitivity analyses and since both of these mechanisms

involve both bacteria and macrophages, these were targeted for investigation. A

theoretical mechanism was introduced, whereby macrophages have the opportunity

to inhibit intracellular growth, and this was compared to a universal reduction in

intracellular growth rate for all macrophages. It was shown that the smaller reduction

across all macrophages had a larger impact on reducing the final population of

bacteria than the complete inhibition of intracellular growth in a smaller population

of macrophages. As for the previous result, a possible experiment to test this result

is as follows. Two populations of macrophages must be cultivated, one of resting

macrophages, the other of activated macrophages. Then a series of experiments

can be performed with varying ratios of cells from each population, signifying the

modelled probability of a macrophage inhibiting intracellular growth. The ratio of

activated to resting macrophages can then be compared to the resultant bacteria

population with the hypothesis of their being a correlation.

6.1 Literature review
A literature review of both the biological and the mathematical literature provided

a foundation of concepts, mechanisms, and methodologies relevant to developing

mathematical models of Mtb. While the development of the model was primarily

driven by observations within the data, the literature provided motivating examples

and supplemented this process. The approach used to identify resources was based

on the method of systematic review, whereby a specified search term is used to

identify a large quantity of literature. Through a series of inclusion criteria, this
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body of literature was reduced to identify relevant materials. Finally, additional

sources were found through review articles identified within the primary search.

As described in section 1.7, the literature search was focused on resources specific to

Mtb, for which a large subset was focused on the processes based around granulomas.

Since Mtb is a widely studied disease, the large number of materials from a range of

journals provided a good foundation of knowledge of the biology and mathematical

modelling of Mtb infection and the immune response to date. The study of within-

host bacterial infections, either in vitro or in vivo, is a vast and ever growing area

for which each bacterial species will have specific mechanisms necessitating specific

models. For this reason the literature review remained focused on Mtb, although

work on other bacteria such as Francisella tularensis demonstrates some similarities

[176, 184, 186].

6.2 Non spatial model
The literature examined focuses in the majority on the formation of granulomas

and the interactions relating to the adaptive immune response, often considering

the variability in outcome and how that corresponds to the strong heterogeneity in

host responses to Mtb exposure. Since the granuloma is inherently a spatial object,

this results in most models in the literature having some form of spatial element,

whether that is agents being modelled on a lattice, or a spatial dependency in a set

of partial differential equations (PDEs) [136, 148, 149, 151, 153, 157, 166]. The focus

of this study was the in vitro innate immune response, with a goal of minimising

complexity while allowing key mechanisms to be identified. For simplicity it was

decided to not include a spatial element, thus assuming homogeneous mixing between

macrophages and bacteria and modelling the infection process using mass action.

Additionally, the data used to parametrise the model does not contain sufficient

detail to fit the movement of macrophages. In multiscale systems, macrophages are

often modelled to follow cytokine concentrations released by other macrophages that

have encountered bacteria such as interferon-γ (IFNγ) and interleukin-10 (IL-10).
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This process would have to be estimated using parameters from the literature. The

biggest impact of not including a spatial element was on the infection process. The

assumption of homogeneous mixing resulted in elevating the force of infection, thus

overestimating the rate at which macrophages become infected. This is discussed

more in the following section. The benefit of parametrising a non-spatial model is

the vast reduction in the number of parameters that are required and, consequently,

the number of assumptions that must be made about how particles in the system are

moving. The resultant model is demonstrated to capture the qualitative dynamics

well and the reduced complexity of the model results allows for a larger number

of computational experiments to be run, increasing the confidence in the resulting

outcome of the computational experiment. Despite not being the primary focus

of the experiments, the raw image data that was captured during the experiments

could, in the future, be used to analyse the movements of macrophages and fit a

spatial model, whilst being cautious of the assumptions that doing so would require.

By including a spatial element, the distribution of wait times in the infection process

can be flattened and will have a better qualitative fit to the distribution of wait

times shown in figure 5.2.

6.3 Infection process
There are three core points of discussion for the infection process. Firstly, the

extracellular population during infection events is inferred using the previously fitted

extracellular growth rate. Secondly, as discussed in the previous section, the model

assumes homogeneous mixing between macrophages and bacteria. And finally, in

chapter 5, the probability for a macrophage to partially consume a bacterial aggregate

is inferred using a bootstrapping process.

The infection process is fitted to the measured time of birth and time of infection

of macrophages. The assumption of the model is that the force of infection felt

by the macrophage during this time is proportional to the level of extracellular

bacteria. Under a mass action assumption the rate of infection events is proportional
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to the population of healthy macrophages and the population of bacteria, βMHE.

Therefore the force of infection felt by the healthy macrophages is βE. In chapters

2, 3 and 4 this is the total extracellular population, while in chapter 5 this is the

number of distinct aggregates. The bacteria population during infection events is

not tracked, thus these populations are estimated using the fitted growth rate of the

extracellular bacteria and the assumption that the system is initialised with a single

extracellular bacteria. In the experimental design, it is stated that the macrophages

are infected with a multiplicity of infection of 1:1, and are washed prior to initialising

the experiment to remove any extracellular bacteria. This implies that the model

should assume no extracellular bacteria at the start of the experiment. However,

there are observations within the data demonstrating macrophages that become

infected prior to the release of any intracellular bacteria. The release of intracellular

bacteria is assumed to occur only after the death of an infected macrophage; bacteria

are assumed to not be able to escape a still living macrophage. Since the model

assumes the rate of infection is proportional to the number of extracellular bacteria,

these infection events are evaluated as having a likelihood of zero for all possible

parameters. This is resolved by assuming an initial population of extracellular

bacteria. A consequence is that the population of extracellular bacteria is being

overestimated, which would result in a higher force of infection being modelled than

is observed, resulting in a lower than expected rate of infection.

Whilst validating the model, it was shown that the infection process underestimates

the time at which macrophages become infected; that is, macrophages become in-

fected earlier in the model than observed in the data. The initial conclusion is that

the infection rate is being fitted too high, which contrasts against the argument that

assuming an initial extracellular population would result in a lower than expected

rate of infection. However, adjusting the rate of infection either up or down does

not affect the resultant distribution of infection times. The source of the problem

is the assumption of homogeneous mixing. The core assumption of mass action and

homogeneous mixing is that particles move randomly, and thus interact at a constant

and fixed rate. However, macrophages are known to follow chemical signals released
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by other macrophages that have encountered bacteria such as IFNγ and IL-10, and

thus the interactions are not an entirely random process. This causes the under-

estimate of infection times, as macrophages permanently feel a force of infection,

which grows exponentially over the course of the simulation. Thus, the observation

of a macrophage that exists for a long time prior to becoming infected drives the

infection rate parameter down, as a high rate of infection would evaluate to very low

likelihood. Future work should investigate alternative methods for modelling the

infection process, such as a delay mechanic or using a Michaelis-Menten model. The

impact of fitting a spatial model is discussed in the previous section.

Finally, the process of macrophages only partially consuming bacteria aggregates is a

mechanism that is observed in the image data of the experiment, however the process

was not quantitatively measured, as it was not a focus of the experiment. Thus the

process was parametrised by bootstrapping the possible aggregate populations and

evaluating a likelihood function. Evaluating the likelihood function required large

number of repetitions due to the variation in the model output, and the resultant

likelihood plane was not very steep, meaning uncertainty in the model parameters

is high. Additionally, the sensitivity analysis demonstrated low sensitivity to the

parameter governing the probability of partial uptake. This shows that the impact

of this mechanism is low and will not change the overall conclusions of the model.

In summary, firstly, the extracellular bacteria was assumed to exist from the start

of the simulation, and inferred using the previously fitted extracellular growth rate.

The impact of this is an overestimate of the extracellular population and thus an

underestimate of the rate of infection. However, in the model, macrophages become

infected earlier than in the data. Future work could explicitly track the extracellular

population in order to limit the error resulting from the assumed population levels.

Secondly, the model is non-spatial and assumes mass action mixing in order to

minimise complexity in the model and reduce the number of parameters that require

fitting. This is the cause of the underestimation of the infection times. Future

work should investigate the possibility of fitting a spatial model, and how it affects
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the infection process. Finally, the probability of partial uptake is inferred using a

bootstrapping process. The likelihood function for this parameter, and the results

of the sensitivity analysis demonstrate that it has a small impact on the outcome of

the model. In order to investigate the role of uptake, data should be collected which

quantitatively measure this.

6.4 Macrophage division
Macrophage division is not a process that is included in models in the mathemati-

cal literature. Instead, macrophage populations are assumed to be maintained by

recruitment of new cells. This is a result of the majority of mathematical litera-

ture constructing in vivo models directly. While biological literature does suggest

macrophage populations are maintained through proliferation in addition to recruit-

ment [89–92], it is also shown that during infection the recruitment is the dominant

form [101]. Macrophage division was included in this study as it was observed

commonly within the data set, and the purpose of this study was to recreate the

dynamics observed within this data set. Should future work consider translating this

model from in vitro to in vivo, it should be noted that the macrophage division will

not translate well, as it will be dominated by recruitment.

Related to macrophage division is the process governing intracellular bacteria when

their host macrophage divides. Observations from the biological experiments show

infected macrophages dividing to produce either two infected daughter cells, or one

infected daughter and one healthy daughter. As a result of multiple observations

within the data, this mechanism was included in the model, despite not appearing

in either the biological or mathematical literature. As for macrophage division, it

should be noted that this mechanism will not translate to an in vivo model.

Despite not translating well to an in vivo model, it was important to include these

mechanisms in the modelling framework, as a core goal of the work presented here was

to develop a mathematical model that is able to capture and replicate the observed

dynamics, before extending those and exploring hypothetical scenarios. Through
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sensitivity analyses it was often shown that the birth death process of macrophages

was a significant driver of the simulated system, further supporting its inclusion in

the model.

6.5 Data
The models presented in this study are intrinsically related the data from which they

are parametrised. Discussed here is the duration of the experiments, the format of

the data that was shared, and the fact that the model presented in this study was

fitted to a single data source.

The length of the experiments is capped at 140 and 200 hours. This is a result of the

bacteria population growing to a point at which it is difficult to continue analysing

the images. Since the adaptive immune response requires approximately two weeks

[85, 140], it is not unreasonable to continue modelling the interactions of the adap-

tive immune response for the full duration of the experiment. The innate immune

response does include macrophage activation, which is not included in the model

fitting process due to no data being available for this process. Proxy mechanisms rep-

resenting activated macrophages are, however, investigated through computational

experiments. A result of these limitations is that, were the experiments to last longer

than 200 hours, there would not be much additional information to gain without

first increasing the focus of the experiments to include additional data relating to

the activation of the macrophages.

While there was exposure of the raw image data, as shown in section 1.5, the full

data set was shared as numerical tabulated data of event times and population sizes.

Additionally all data regarding macrophages is at the individual level, so while the

model considers a population of macrophages, there is no macrophage population

data to compare against. This is a result of the small frame that was required to

measure the bacteria. Due to this format of the data, all mechanisms had to be

fitted independently. As discussed above, a beneficial next step for this work would
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be to develop the model as a spatial model, using the raw image data to parametrise

the movement of macrophages.

Lastly, each model presented in this thesis is fitted to a set of experiments originating

from a single laboratory, with a single experimental design. This is unusual compared

to the literature, in which the majority of models are parametrised using a range

of experiments from differing sources [136, 148, 149, 151, 153, 157, 166]. This is

necessary in larger scale models as it would not be feasible to measure everything in

a single experiment. However, a drawback of this is that parameters from different

sources may not be compatible within the same model. The benefit of fitting entirely

to a single experiment is that parameters being fitted to different mechanisms will be

reliably comparable to each other. Future work should validate the models presented

in this study against a similar but alternative source of data to corroborate the

findings.

6.6 Model fitting
Maximum likelihood methods are used throughout this thesis to parametrise the

mechanisms being modelled. As mentioned in the previous section, the structure of

the data means that mechanisms are fitted in isolation from each other. While there is

a strong benefit in this process, in that at most three parameters are being optimised

at any one time, there is the drawback that the interplay between mechanisms is

not well captured. For example, the intracellular growth rate is fitted independently

of the infected macrophage death rate. While fitting a load dependent death rate

was investigated, it was not possible to identify the relationship between these two

mechanisms from the data available.

During the validation process in chapter 5, a series of distributions were extracted

from the data and the model in order to make a comparison between the two. An

interesting future direction of research would be to develop a optimisation technique

to parametrise all or most of the parameters in parallel, by comparing statistics gen-

erated by the model to statistics in the data. This would require the optimisation of
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several objective functions while searching a high dimensional parameter space. The

result, however, would be a model that is inherently designed to capture the interplay

between mechanisms which, as has been shown in this thesis, is an important part

of the system.
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Chapter 7

Conclusions

The primary goal of this body of work was to develop a mathematical model of the in

vitro interactions between innate alveolar macrophage and invading Mycobacterium

tuberculosis (Mtb) as observed in a novel experimental data set. The secondary

goal was to use these models to investigate the dominant mechanisms which affect

the outcome of the system and to investigate methods of controlling the bacteria

population. The models were parametrised using a novel data set collected in a

single study described in section 1.5.

A range of novel mathematical models have been fitted to a novel data set. The

models capture the in vitro interactions between macrophages and Mtb over a

period of approximately 200 hours. This covers the period of time immediately after

inoculation, prior to the adaptive immune response kicking in. It has been shown that

fitting distinct mechanisms independently, using relatively simple techniques such as

maximum likelihood estimation, results in a robust model with which computational

experiments can be performed.

Each chapter builds on the knowledge gained in the previous chapter, and each

model accounts for the limitations of the previous model. Preliminarily, a simple

ordinary differential equation (ODE) model was fitted to sample data as a proof of

concept. This model showed that early capture of extracellular bacteria was key to

reducing the resultant load, however it also demonstrated that explicitly modelling

intracellular macrophages was required. This was due to populations of bacteria

being overestimated as a result of the assumed value of intracellular load. It was

also demonstrated that exponential wait times are not an appropriate model for
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modelling macrophage division. These drawbacks were addressed in the following

chapter.

Fitting the macrophage growth rate with an Erlang distribution improved the qual-

itative fit. Modelling this distribution in ODEs resulted in a variable number of

equations, to account for the parametric number of growth stages for the cells. In

addition, the intracellular bacteria were modelled compartmentally, further adding to

the variability in the dimension of the system. The introduction of these mechanisms

resulted in a more qualitatively accurate model in which the maximum intracellular

load, the only parameter taken from the literature, no longer adversely affected the

output. Using this model it was shown that while increasing the infection rate has a

protective effect, this is only true up to a point, after which it becomes detrimental

again. This demonstrates the dual role that macrophages play in Mtb infections.

While they are initially protective for the host, eventually they will succumb, and

become protective for the bacteria. When modelling populations in the single digits,

finite size fluctuations play an important role. Migrating the model to a stochastic

framework enabled investigation of these effects.

Along with migrating to a stochastic framework, the data set being worked with

was improved through the addition of extra experiments and measurements. This

improved the confidence in parameter fitting, and highlighted the observed inconsis-

tencies in the macrophage birth death process. This was remedied by modelling the

process as a continuous time Markov chain (CTMC), which parametrised both parts

of the birth death process in parallel. Through sensitivity analysis, it was shown

that the bacteria growth rate is the dominant factor in the outcome of the system.

The homogeneous mixing assumption between healthy macrophages and the entire

extracellular bacteria population resulted in a very low maximum likelihood estimate

(MLE) for the rate of infection, thus infection events were rare at the beginning of

simulations. In reality, bacteria exist in distinct populations. By reformulating

the extracellular bacteria to be modelled as agents of aggregated populations, the
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mass action mixing terms increase and infection events are observed earlier in the

simulation.

The final version of the model re-evaluated the model of bacteria from a single

population to individual populations (aggregates). This reduced the effect of ho-

mogeneous mixing on the rate of infection, however was not able to fully resolve

the issue, as shown while validating the model using distributions extracted from

both the model and the data. The model showed that a small reduction in the

intracellular growth rate across all macrophages provided a more protective effect

than completely inhibiting growth in a minority of macrophages.

Through sensitivity analysis and computational experiments it was shown that the

major predictor for the outcome of the initial interactions of macrophages and Mtb

is the virulence of the bacteria, demonstrated by higher growth rates. While investi-

gating the role of macrophages in limiting the infection, it was shown that it is more

beneficial to partially limit the rate of intracellular growth within all macrophages,

rather than fully limit the intracellular growth within a few macrophages. The next

most significant mechanism was the rate of phagocytosis. While the growth rate of

bacteria and the death rate of macrophages had a monotonic relationship with the

outcome, this is not the case for phagocytosis. The core effector at the macrophages’

disposable is how rapidly they can internalise the bacteria. It was shown that the

rate of phagocytosis can be increased up to an optimum, after which increasing

further is detrimental.

This thesis has explored, through an iterative process of novel model development,

the complexities of the interactions between macrophages and Mycobacterium tu-

berculosis. It has been shown that a mechanistic model construction, parametrised

with maximum likelihood estimation, results in a simple yet robust model which

can be used to investigate the processes within a complex biological system. Finally

the model was used to identify key mechanisms contributing to the outcome of the

system, and through computation experiments, a range of control scenarios were

tested.
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Model 2: Colour coded equations
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Color Mechanism

Maroon Extracellular growth

Blue Infection

Red Infected macrophage death

Green Intracellular growth

Orange Healthy macrophage growth

Pink Infected macrophage growth

Grey Healthy macrophage death

Table A.1: Each colour in equations A.1 to A.6 refers to a separate mechanism

being modelled in chapter 3.
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Model code for chapter 4

1 class constant:
2 def __init__(self):
3 # model parameters
4 # bacteria growth
5 self.aE = 0.0339
6 self.aI = 0.0206
7

8 # macrophage birth death process
9 self.gh = 0.0230

10 self.ghN = 2
11 self.dh = 0.0146
12 self.dhN = 2
13 self.gi = 0.0054
14 self.giN = 2
15 self.di = 0.0193
16 self.diN = 2
17

18 # infection
19 self.beta = 2.629e-4
20

21 # maximum intracellular load
22 self.N = 50
23

24 # probability of infected-infected division
25 self.p_div = 0.1902
26

27 # simulation parameters
28 self.t0 = 0.0
29 self.maxT = 200.0
30 self.num_cells = 10
31 self.e0 = 1
32 self.inf_start = True
33

34

35 class Macrophage:
36 def __init__(
37 self,
38 born=0,
39 age_g=1,
40 age_d=1,
41 load=0,
42 divided=False,
43 died=False,
44 alive=True,
45 ):
46 self.born = born
47 self.inf_start = load > 0
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48 self.age_g = age_g
49 self.age_d = age_d
50 self.load = load
51 self.divided = divided
52 self.died = died
53 self.alive = alive
54

55

56 class Experiment:
57 def __init__(
58 self,
59 t=0,
60 con=constant(),
61 ):
62 self.con = con
63 self.t = self.con.t0
64

65 # initialise macrophage population
66 self.macrophages = [Macrophage() for _ in range(self.con.num_cells)]
67 # initialise bacteria population
68 self.bacteria = self.con.e0
69

70 # does the bacteria begin extra-
71 # or intra-cellularly
72 if self.con.inf_start:
73 self.infect()
74

75 def healthy_macrophages(self):
76 """return list of all healthy macrophages"""
77 return [
78 mac for mac in self.macrophages if mac.load == 0 and mac.alive
79 ]
80

81 def infected_macrophages(self):
82 """return list of all infected macrophage"""
83 return [mac for mac in self.macrophages if mac.load > 0 and mac.alive]
84

85 def infect(self):
86 """infect a random healthy macrophage with 1 extracellular bacteria"""
87 if self.bacteria > 0:
88 mac = np.random.choice(self.healthy_macrophages())
89 mac.load += 1
90 mac.age_g = 1
91 mac.age_d = 1
92 self.bacteria -= 1
93

94 def bacteria_grow(self):
95 """grow the extracellular bacteria population by 1"""
96 self.bacteria += 1
97

98 def healthy_grow(self):
99 """progress a random healthy macrophage towards division. If it

100 reaches division flag it as divided and create two new macrophages"""
101 mac = np.random.choice(self.healthy_macrophages())
102

103 if mac.age_g == self.con.ghN:
104 mac.divided = self.t
105 mac.alive = False
106 self.macrophages.append(Macrophage(born=self.t))
107 self.macrophages.append(Macrophage(born=self.t))
108 else:
109 mac.age_g += 1
110
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111 def healthy_death(self):
112 """progress a random healthy macrophage towards death. If it
113 reaches death flag it as dead."""
114 mac = np.random.choice(self.healthy_macrophages())
115 if mac.age_d == self.con.dhN:
116 mac.died = self.t
117 mac.alive = False
118 else:
119 mac.age_d += 1
120

121 def infected_grow(self):
122 """progress a random infected macrophage towards division. If
123 it reaches division, flag it as divided and create two new
124 macrophages. Determine the division of intracellular load
125 according to the probability p_div"""
126 mac = np.random.choice(self.infected_macrophages())
127 if mac.age_g == self.con.giN:
128 mac.divided = self.t
129 mac.alive = False
130 if np.random.rand() < self.con.p_div:
131 self.macrophages.append(
132 Macrophage(born=self.t, load=mac.load // 2)
133 )
134 self.macrophages.append(
135 Macrophage(born=self.t, load=mac.load - mac.load // 2)
136 )
137

138 else:
139 self.macrophages.append(
140 Macrophage(born=self.t, load=mac.load)
141 )
142 self.macrophages.append(Macrophage(born=self.t, load=0))
143 else:
144 mac.age_g += 1
145

146 def infected_death(self):
147 """progress a random infected macrophage towards death. If
148 it reaches death, flag it as dead"""
149 mac = np.random.choice(self.infected_macrophages())
150 if mac.age_d == self.con.diN:
151 mac.died = self.t
152 mac.alive = False
153 self.bacteria += mac.load
154 else:
155 mac.age_d += 1
156

157 def mac_loads(self):
158 """return a list of intracellular loads of infected macrophages"""
159 return [mac.load for mac in self.infected_macrophages()]
160

161 def intra_grow(self):
162 """increase the intracellular load of a random infected macrophage
163 by 1. The probability of choosing an infected macrophage is weighted
164 by its current intracellular load"""
165 load_weights = np.array(self.mac_loads())
166 load_weights = load_weights / np.sum(load_weights)
167 mac = np.random.choice(self.infected_macrophages(), p=load_weights)
168 if mac.load == self.con.N:
169 mac.died = self.t
170 mac.alive = False
171 self.bacteria += mac.load
172 else:
173 mac.load += 1
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174

175 def generate_rates(self):
176 """For each possible event in the model define the rate at which
177 it occurs and the function to carry out if it does happened."""
178 num_healthy = len(self.healthy_macrophages())
179 num_infected = len(self.infected_macrophages())
180 num_bac, bac_g_rate = split_bac_pop(self.bacteria, self.con.aE)
181

182 rates = []
183

184 # healthy growth
185 rates.append((num_healthy * self.con.gh, self.healthy_grow))
186 # healthy death
187 rates.append((num_healthy * self.con.dh, self.healthy_death))
188 # infected growth
189 rates.append((num_infected * self.con.gi, self.infected_grow))
190 # infected death
191 rates.append((num_infected * self.con.di, self.infected_death))
192 # infection
193 rates.append((num_bac * num_healthy * self.con.beta, self.infect))
194 # intra growth
195 rates.append(
196 (np.sum(self.mac_loads()) * self.con.aI, self.intra_grow)
197 )
198 # extra growth
199 rates.append((bac_g_rate, self.bacteria_grow))
200

201 return rates
202

203

204 def run_sim(con=None):
205 """Run the simulation using the Gillespie algorithm"""
206 if con is None:
207 con = constant()
208

209 env = Experiment(con=con)
210

211 while env.t < env.con.maxT:
212

213 rates = env.generate_rates()
214 sum_rates = np.sum([rate[0] for rate in rates])
215

216 # end simulation if no possible events remaining
217 if sum_rates == 0:
218 break
219

220 cum_rates = [0] + list(
221 np.cumsum([rate[0] / sum_rates for rate in rates])
222 )
223

224 r1 = np.random.rand()
225 r2 = np.random.rand()
226

227 for event, (p1, p2) in enumerate(zip(cum_rates, cum_rates[1:])):
228 if p1 < r1 <= p2:
229 rates[event][1]()
230

231 env.t += -np.log(r2) / sum_rates
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Additionally considered mechanisms

Throughout the model development process, a range of additional mechanisms were

hypothesised and considered against the data that was available. In this appendix a

selection of these additional mechanisms are presented and discussed.

C.1 Load dependent death rate
The death rate of macrophages is modelled as a constant rate, with differing rates

for healthy and infected macrophages. Here it is investigated whether the death rate

of infected macrophages can be fitted such that it is dependent on the intracellular

load.

To modify the current death rate to be dependent on load, the Erlang death rate d

is modified to be a function of the intracellular load I.

d(I) =


d0 I = 0

da exp
(
db log

(
I (t)

))
+ dl I > 0

This equation is based on the Gompertz model of mortality. The Gompertz model

gives a death rate dependent on age, but this model requires a death rate dependent

on load. Since the intracellular bacteria grow exponentially in time, the log of the

intracellular bacteria is used in the place of age in the Gompertz model. With the

addition of two more parameters, the optimisation process is very computationally

intensive. The computed likelihood surface is very flat, showing that there is an

issue with model identifiability.
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Figure C.1: The result of fitting da, dl and g when db is fixed to some value between

0 and 1.

C.1.1 Investigating the relationship of da and db
In all runs of the optimisation the value of the Erlang parameter N optimises to

two, so for the rest of this section N will be assumed to be two in order to reduce

the execution time of the optimisation. It is clear that the likelihood surface is

non-trivial, so in order to investigate the shape of it, the value of db is fixed to some

value between 0 and 1, then the optimisation is rerun to find the values of da, dl, and

g. This also results in a value of the likelihood for this parameter set and thus four

plots can be generated: each of the three fitted parameters against the range of db,

and db against the resultant likelihood. Ideally these four plots would demonstrate

clear minima, demonstrating the optimal parameter choices. This is not what is

observed (see figure C.1).

For the values of dl and g there is a clear line through the middle (highlighted

in red) showing that these two parameters are likely independent of db. The plot

of da against db shows that as db gets large, da gets small making the death rate

approximate a constant. Finally the likelihood plot shows no clear minimum as

the bottom boundary of the data is completely flat and no optimal value can be

determined.
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C.1 Load dependent death rate

Figure C.2: Result of multiple optimisations forcing db = 1, i.e the death rate is

linearly dependent on I(t).

Figure C.3: Fitting Gompertz model with db < 0.01.

By simplifying the model to be a linear function of the intracellular load and ranging

the value of da, the likelihood is minimised as da → 0, that is the death rate is

constant (see figure C.2).

Figure C.1 shows that for db > 0.01, da optimises to zero, making the function d(I)

approximate a constant. For this reason, the procedure is run again focusing on

values of db < 0.01. Figure C.3 shows that when db < 0.01 the optimisation yields a

very irregular likelihood surface, and the most likely value of da is still regularly 0.
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The conclusion for this model of load dependent death rates for macrophages is that

the model is not identifiable based on the current data and therefore shall not be

used.

C.1.2 Weibull

Since the Gompertz model was not identifiable, a Weibull model of mortality is

investigated as well, where d(I) = da log(I)db + dl. Two runs of the optimisation

with the Weibull mortality yields that da and dl should be both be zero. This makes

d(I) ≡ 0. Running the optimisation procedure over a range of db values gives the

optimisation shown in figure C.4. There is a large range in the likelihood of values

of db, while da consistently optimises to zero.

Setting the death rate to be constant d(I) = dl and running the optimisation results

in consistent convergence of the optimal value. Plotting a range of values yields the

plot in figure C.5. The likelihood function is a smooth function of dl, demonstrating

identifiability. It is thus concluded that the death rate should remain fixed and

independent of the intracellular load.

In conclusion two models of load dependent death were considered, however both

were not identifiable using the available data, and analysing the response of the

Figure C.4: Fitting Weibull over a range of values for db.
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C.1 Load dependent death rate

Figure C.5: Output of the optimisation for a range of values of dl where the death

rate d(I) = dl is a constant.

optimisation procedures demonstrated the tendency towards the constant model.

Thus the model will remain as a fixed death rate for infected macrophages.
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C.2 Infection uptake distribution
In chapter 5 the number of bacteria internalised during an infection event is allowed

to vary away from one. In this section a range of models will be considered to

evaluate how many are internalised.

C.2.1 Binomial distribution

There are 221 data points consisting of an estimate of the number of extracellular

bacteria, and the number of bacteria internalised. To get a range of values for how

many bacteria a macrophage picks up, a binomial distribution is fitted to the data

using maximum likelihood. This results in p = 0.2371. However plotting the scatter

plot of the data, and example values from a binomial distribution shows that this

model is clearly unsuccessful, since the binomial distribution does not have enough

variance as shown in figure C.6.
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Figure C.6: Scatter plot of the data compared to example samples data drawn

from a binomial distribution with p = 0.2371. Data is shown in blue,

the proposed model is shown in red.
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C.2 Infection uptake distribution

C.2.2 Uniform distribution

Since the binomial distribution is not a good fit, so an alternative distribution is

required. Typically a negative binomial is used when more variance is required,

however this has the problem that k can be larger than n, and sampling from this

distribution will return a lot of zeros. In order to force it to fit the data well, the

variance would need to be increased very high and the distribution would need to be

truncated at n. This however results in an approximation of the uniform distribution.

Thus, in the interest of simplicity of the model, and speed of the simulation, the

uniform distribution of integers between 1 and n will be used. The result is shown

in figure C.7.

For small number of extracellular bacteria this fits well, however as the number of

extracellular bacteria gets larger than about 1000, the model begins to overestimate

the number of bacteria phagocytosed.
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Figure C.7: The uniform distribution overestimates the number of bacteria inter-

nalised when the extracellular population gets large.
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C.2.3 Truncated uniform distribution

Finally, a truncated uniform distribution is investigated, by truncating the uniform

distribution, so that when n is below some value Ntrunc, the uniform distribution

from 1 to n is used, however if n is larger that Ntrunc then the uniform distribution

on 1 to Ntrunc is used.

Despite appearing to fit the data better, this model does not have a mechanistic

justification. Therefore it was decided that a flat uniform distribution will more

realistically reflect the real-world system being modelled. Additionally, since the

total population of extracellular bacteria only reaches such large numbers towards the

end of the model simulations, the decision not to include the truncation parameter

in the final model will not affect the output of the model in a significant way.
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Figure C.8: The truncated uniform distribution provides a better qualitative fit to

the data than the uniform distribution.
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Abbreviations

ABM: agent-based model

AD: Anderson-Darling

BAL: bronchoalveolar lavage

BCG: Bacillus Calmette–Guérin

BMDM: bone marrow derived macrophage

CDC: Center for Disease Control and Prevention

CFU: colony forming unit

CI: confidence interval

CTMC: continuous time Markov chain

GFP: green fluorescence protein

GFP HQ: green fluorescence protein high quality

HIV: Human Immunodeficiency Virus

IFNγ: interferon-γ

IGRA: interferon-γ release assay

IL-10: interleukin-10

KDE: kernel densitiy estimate

KS: Kolmogorov-Smirnov

LHS: latin hypercube sampling
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Abbreviations

LTBI: latent TB infection

MAP: maximum a posteriori

MCMC: Monte Carlo Markov Chain

MDR-TB: multi-drug resistant TB

MLE: maximum likelihood estimate

MOI: multiplicity of infection

Mtb: Mycobacterium tuberculosis

NHP: non human primate

ODE: ordinary differential equation

PDE: partial differential equation

PN: petri net

PRCC: partial rank correlation coefficient

TB: tuberculosis

TNF: tumor necrosis factor

TNF-α: tumor necrosis factor alpha

TST: tuberculin skin test

WHO: World Health Organisation

XDR-TB: extensively drug resitant TB
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