
warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/166182

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
mailto:wrap@warwick.ac.uk

Deciding atomicity of subword-closed languages

A. Atminas1 and V. Lozin2

1 Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, 111
Ren’ai Road, Suzhou 215123, China
Aistis.Atminas@xjtlu.edu.cn

2 Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
V.Lozin@warwick.ac.uk

Abstract. We study languages closed under non-contiguous (scattered)
subword containment order. Any subword-closed language L can be u-
niquely described by its anti-dictionary, i.e. the set of minimal words
that do not belong to L. A language L is said to be atomic if it cannot
be presented as the union of two subword-closed languages different from
L. In this work, we provide a decision procedure which, given a language
over a finite alphabet defined by its anti-dictionary, decides whether it
is atomic or not.

Keywords: Subword-closed language · Joint embedding property · De-
cidability

1 Introduction

Throughout this paper, A is a finite alphabet and A∗ is the set of all finite
words over A. A word α is a subword of a word β if α can be obtained from β by
erasing some (possibly none) letters. We say that a language L is subword-closed
if β ∈ L implies α ∈ L for every subword α of β. According to the celebrated
Higman’s lemma [6], the subword order is a well-quasi-order, and hence every
subword-closed language L over a finite alphabet can be uniquely described by
a finite set of minimal words not in L, called the anti-dictionary of L. We will
denote the language defined by an anti-dictionary D by Free(D) and call the
words in D the minimal forbidden words for L.

A subword-closed language L is said to be atomic if L cannot be expressed
as the union of two non-empty subword-closed languages different from L. It is
well-known that atomicity is equivalent to the joint embedding property (JEP),
which, in case of languages, can be defined as follows: for any two words α ∈ L
and β ∈ L there is a word γ ∈ L containing α and β as subwords. Atomicity, or
JEP, is a fundamental property, which frequently appears in the study of various
combinatorial structures, for instance, growth rates of permutation classes [11] or
hereditary classes of graphs, which are critical with respect to some parameters
[1].

The main problem we study in this paper is deciding whether a subword-
closed language given by its anti-dictionary is atomic or not. Decidability of

2 A. Atminas and V. Lozin

atomicity, or of JEP, is a question, which was addressed in various contexts.
In particular, in [3] Braunfeld has shown that this question is undecidable for
hereditary classes of graphs defined by finitely many forbidden induced sub-
graphs. One more undecidability result appeared in [2], where Bodirsky et al.
have shown that the joint embedding property is undecidable for the class of
all finite models of a given universal Horn sentence. On the other hand, sev-
eral positive results have been obtained by McDevitt and Ruškuc in [9], where
the authors studied classes of words and permutations closed under taking con-
secutive subwords, also known as factors, and consecutive subpermutations. In
both cases, atomicity of classes of words or permutations defined by finitely
many forbidden factors or consecutive subpermutations has been shown to be
decidable. We observe that every subword-closed language is also factor-closed.
However, for languages defined by finitely many forbidden factors or subwords
the two families are incomparable. There are languages defined by finitely many
forbidden factors that are not subword-closed, and there are subword-closed lan-
guages that are not defined by finitely many forbidden factors. For instance, for
the subword-closed language Free(101) the set of minimal forbidden factors is
infinite and contains all words of the form 10 . . . 01.

The main result of this paper, proved in Section 2, states that atomicity of
subword-closed languages is decidable. We discuss possible applications of this
result in Section 3.

2 Main result

We start with some notational remarks. For a word w ∈ A∗, we denote by |w| the
number of letters in the word. Also, to simplify the notation Free(D) we omit
curly brackets when listing the elements of D. The main result is the following.

Theorem 1. Let L = Free(w1, w2, . . . , wn) be a language. It is algorithmically
decidable whether L is atomic or not. In particular, there exists a decision pro-
cedure of complexity O(n×m2) where m = |w1|+ |w2|+ . . .+ |wn|.

The proof of this theorem will be given by induction on m = |w1| + |w2| +
. . . + |wn|, i.e. on the total number of letters in the forbidden words. If any of
the forbidden words consists of a single letter, then we claim that we can remove
this word from the anti-dictionary without changing atomicity, which is proved
in the following lemma.

Lemma 1. Let L = Free(w1, w2, . . . , wn) be a language. If |wi| = 1 for some
i, then L is atomic if and only if L′ = Free(w1, w2, . . . wi−1, wi+1, wi+2 . . . , wn)
is atomic.

Proof. Suppose wi is the word consisting of only one letter a ∈ A. As the set
of words defining the language is assumed to be minimal, we can see that letter
a does not appear in any of the words wj with j 6= i. Suppose first that L
is not atomic, i.e. L = L1 ∪ L2 for some non-empty languages L1 6= L and

Deciding atomicity of subword-closed languages 3

L2 6= L. Then clearly, L1 and L2 do not contain letter a, so they can be written
as Free(a, x1, x2 . . . , xk) and Free(a, y1, y2, . . . , yl) for some words xi and yi not
containing letter a. But then L′ = Free(x1, x2, . . . , xk) ∪ Free(y1, y2, . . . , yl),
and hence L′ is not atomic either. On the other hand, suppose that L is atomic.
Pick any two words x′, y′ ∈ L′. Let the words x and y be the subwords of x′ and
y′ obtained by deleting all letters a in x and y, respectively. Then x, y ∈ L and
since L is atomic, by JEP there exists z ∈ L such that z contains x and y. By
adding |x|+ |y| copies of letter a between any two consecutive letters of z as well
as in the prefix and suffix of z, we obtain a new word z′ ∈ L′, which contains x′

and y′. Hence L′ is atomic as well. This finishes the proof.

Let W = {w1, w2, . . . , wn} be a set of incomparable words over A each of
which has at least two letters, and let L = Free(w1, w2, . . . , wn) be the language
defined by forbidding the words in W . For each i ∈ {1, 2, . . . , n}, we denote by
wi1 the first letter of wi and by w′i ∈ A∗ the word obtained from wi by removing
wi1, i.e. wi = wi1w

′
i. Let

A′ = {wi1 : i = 1, 2, . . . , n} be the set of the first letters appearing in the words
w1, w2, . . . , wn.

We call the letters in A′ the leading letters. Also, we will say that a word w ∈ L
is leader-free if it contains no leading letters, and that w is an a-word if a ∈ A′
is the first (when reading from left to right) leading letter in w. For each letter
a ∈ A′, we denote by

Ia = {i ∈ N : wi1 = a} the set of indices of the words in W that start with
letter a,

Sa = {wi : i ∈ Ia} the subset of words from W that start with letter a,
S′a = {w′i : i ∈ Ia} the set of words obtained from the words in Sa by removing

the first letter a,
Wa = {w′i : i ∈ Ia} ∪ {wi : i /∈ Ia} the set of words obtained from the words in

W by removing the first appearance of letter a from all the words that start
with a,

La = {pws : p ∈ Free(A′), w ∈ {a, ∅}, s ∈ Free(Wa)}. Informally, La is the
subword closure of the set of a-words in L. We observe that all leader-free
words from L belong to La.

Clearly, each La is a subword-closed language and L = Free(w1, w2, . . . , wn) =
∪a∈A′La.

Lemma 2. L is atomic only if L = La for some a ∈ A′.

Proof. Assume that for each a ∈ A′ the language La is a proper sublanguage of
L. Then take the minimal set A′′ ⊆ A′ such that ∪a∈A′′La = L. Such a set exists
as ∪a∈A′La = L and has size |A′′| ≥ 2 as each La is a proper sublanguage of L.
Fixing any b ∈ A′′ we obtain two proper sublanguages Lb and ∪a∈A′′\{b}La of L
whose union is L. So L is not atomic. Hence, L can be atomic only if for some
a ∈ A′ we have L = La.

4 A. Atminas and V. Lozin

To be able to determine whether La = L we will determine the list of minimal
forbidden subwords for the language La. For that purpose, let us define a simple
binary relation ◦ : A × A∗ → A∗ as follows: for any letter a ∈ A and any word
w ∈ A∗ we define

a ◦ w =

{
w, if w starts with letter a,
aw, otherwise.

Given a letter b ∈ A′, we define Sb
a = {b ◦ w′i : i ∈ Ia} to be the set of words

obtained from the words in S′a by adding letter b in front of all words that do
not start with b.

Lemma 3. La = Free(W ∪b∈A′\{a} S
b
a).

Proof. We denote L′ = Free(W ∪b∈A′\{a} S
b
a) and show first that La is a subset

of L′, i.e. we show that every word which is forbidden for L′ is also forbidden
for La. Since La is a subset of L, every word from W is forbidden for La. Now
let b ∈ A′\{a} and assume, to the contrary, that a word bw ∈ Sb

a belongs to
La. Then, by definition, bw is contained in an a-word w′ ∈ La. But then w′

contains abw as a subword, which is impossible, because aw (if w ∈ S′a) or
abw (if bw ∈ S′a) belongs to W and hence is forbidden for words in La. This
contradiction proves that La ⊆ L′.

Conversely, consider a word w ∈ L′. Clearly, w belongs to L, since L′ ⊆ L. If
w is an a-word or leader-free, then it also belongs to La. Suppose w is a b-word
for a letter b ∈ A′\{a}. Then by inserting an a right before the leading b in w
we obtain a word w′, which still belongs to L, since otherwise a forbidden word
from Sb

a can be found in w. Therefore, w′ and hence w belong to La, proving
that L′ ⊆ La.

By the lemma above, to check whether La = L we only need to check whether
each element of ∪b∈A′\{a}S

b
a contains some of the words w1, w2, . . . , wn. If there is

an element w ∈ ∪b∈A′\{a}S
b
a which does not contain any of the words w1, . . . , wn,

then we can readily conclude that La 6= L, because in this case w ∈ L and w 6∈
La. The result below describes a procedure which makes the checking efficient.

Lemma 4. For every word w ∈ S′a perform the following procedure:

1. If the first letter of w is in A′\{a} then stop, La 6= L.
2. Otherwise, for every letter b ∈ A′\{a} do the following:

- Check whether there exists a word v ∈ S′b contained in w. If yes, proceed
to the next b, if no then stop, La 6= L.

If the algorithm has successfully run through all the words w ∈ S′a and did not
stop, then La = L. The algorithm has running time O(|S′a|nm) where m =
|w1|+ |w2|+ . . .+ |wn|.

Proof. Consider any word in w ∈ S′a. If the first letter of w is b, for some
b ∈ A′\{a}, then b ◦ w = w and by definition of Sb

a it follows that w ∈ Sb
a ⊆

Deciding atomicity of subword-closed languages 5

∪b∈A′\{a}S
b
a. As w = w′i ∈ S′a is a proper subword of some word wi ∈ Sa and

w1, w2, . . . , wn are incomparable, w cannot contain any word wj with j 6= i.
Therefore,

La ⊆ Free(w1, w2, . . . , wi−1, w
′
i, wi+1, . . . , wn) 6= L.

Next, consider the case when the first letter of w is not in A′\{a}. Pick
any b ∈ A′\{a}. Then b ◦ w = bw. Again, as bw ∈ Sb

a, L 6= La, unless bw
contains some element of {w1, w2, . . . , wn}. Clearly bw cannot contain a word
wj ∈ {w1, w2, . . . , wn}\Sb, since otherwise w = w′i contains wj , which is a con-
tradiction to the fact that wi and wj are incomparable for i 6= j. Therefore,
L = La only if bw contains a word wj ∈ Sb, i.e. only if w contains a word
v = w′j ∈ S′b. Note that this has to hold for each b ∈ A′\{a}, since otherwise we

obtain a word in Sb
a that does not contain any of w1, w2, . . . , wn, in which case

La is a proper sublanguage of L.
Finally, note that if the procedure runs through all the words w ∈ S′a without

deducing that L 6= La, then every word in S′a starts with a letter in A\A′ ∪ {a},
implying that for each letter b ∈ A′\{a}, every word in the set Sb

a = {b ◦w : w ∈
S′a} = {bw : w ∈ S′a} contains some word from the set {w1, w2, . . . , wn}. This
means that none of the words in ∪b∈A′\{a}S

b
a is minimal and hence

La = Free({w1, w2, . . . , wn} ∪b∈A′\{a} S
b
a) = Free({w1, w2, . . . , wn}) = L.

The main step of algorithm is checking whether a word w ∈ S′a contains a
word from the set {w′1, w′2, . . . , w′n}. To check whether w contains w′i, one can go
through the letters of w until the first appearance of the first letter of w′i in w is
found, then proceed to the first appearance of the second letter of w′i in w and
so on. It takes O(|w|) steps to check whether w contains w′i, and it is performed
for at most n different words w′is. Hence for each w ∈ S′a it takes O(|w|n) steps
and hence in total it takes O(|S′a||w|n) steps. Noting that |w| ≤ m, completes
the proof of the lemma.

By Lemma 2, L is atomic only if L = La for some a ∈ A′. Rather than
checking whether L = La for each a ∈ A′, one can, in fact, quickly determine
one specific letter a ∈ A′ for which it suffices to verify whether L = La. In the
lemma below, for two vectors of integers v = (v1, . . . , vn) and u = (u1, . . . , um)
we say that v majorizes u if either n ≤ m and vi = ui for all i = 1, . . . , n or
there exists a p such that vp > up and vi = ui for all i = 1, . . . , p− 1

Lemma 5. L is atomic only if L = La for a letter a ∈ A′ which can be found
using the following procedure:

– For each letter b ∈ A′, let (wb1, wb2, . . . , wbk) be the list of words in Sb ordered
so that |wb1| ≤ |wb2| ≤ . . . ≤ |wbk|. Define vector vb = (|wb1|, |wb2|, . . . , |wbk|).

– Find a letter b such that vb majorizes all vectors vc with c ∈ A′.
– Look at the second letter of each word in Sb, if any of these letters belong to
A′, say c ∈ A′, then choose a = c, otherwise choose a = b.

6 A. Atminas and V. Lozin

Proof. Suppose that vector vc does not majorize vb and assume, for contradic-
tion, L = Lc. We list the words of Sc as (wc1, wc2, . . . , wcl) with |wc1| ≤ |wc2| ≤
. . . ≤ |wcl| and the words of Sb as (wb1, wb2, . . . , wbk) with |wb1| ≤ |wb2| ≤ . . . ≤
|wbk|. Let w′ci and w′bi denote the words obtained from wci and wbi by removing
first letters c and b, respectively.

Since L = Lc, by Lemma 4, we have that each word w′cj for j = 1, 2, . . . , l
contains a word w′bi for some i = 1, 2, . . . , k. Then |wc1| = |wb1|, since otherwise
w′c1 is strictly shorter than any word in S′b, in which case it cannot contain a word
in S′b. Let p be the largest integer such that |wb1 | = |wb2| = . . . = |wbp|. Clearly,
as vc does not majorize vb, we must also have |wc1| = |wc2| = . . . = |wcp|. For
each i ≤ p and j > p, we have |w′ci| < |w′bj |. Therefore, for each i ≤ p the word
w′ci contains a word w′bj with j ≤ p, and since these words have the same length,
we conclude that the set of words w′ci for i = 1, 2, . . . p is just a permutation
of the set of words w′bj with j = 1, 2, . . . , p. Now, take a word wc(p+1), which
must exist, since vc does not majorize vb. If w′c(p+1) contains a word w′bj with

j ≤ p, then w′c(p+1) must contain a word w′ch with h ≤ p, which is not possible,
as the words in the set Sc are incomparable. This means, similarly as before,
that the words in S′c of length |w′c(p+1)| must form a permutation of words in S′b
of the same length. Continuing this way, we must conclude that Sc has the same
number of words as Sb and vc = vb, which is a contradiction to the assumption
that vc does not majorize vb.

Finally, consider the set A′′ = {b ∈ A′ : vb majorizes all vc with c ∈ A′}.
Then for any b, c ∈ A′′, we have vb = vc. Moreover, if for some letter a ∈ A′′ we
have L = La, then, by the arguments in the previous paragraph, for any letter
b ∈ A′′ we have S′b = S′a. Since for all letters b ∈ A′′ we have the same set S′b, the
second condition of Lemma 4, is either satisfied or not, regardless of the choice
of b ∈ A′′. We need to check the first condition of Lemma 4 by looking at the
first letter of each word in the set S′b. If such letter c belongs to A′, then the
only chance for L = La for some a ∈ A′′ is when a = c, since otherwise the first
condition of Lemma 4 is not satisfied. On the other hand, if none of the first
letters of S′b belongs to A′, then the first condition of Lemma 4 is satisfied for
all sets S′b with b ∈ A′′, and since all these sets are equal, we have that either
L = La holds for all a ∈ A′′ or for none of them, so it is enough to pick one of
them, say a = b to check whether La = L or not. This finishes the proof.

The final ingredient for our inductive argument is the following simple ob-
servation.

Lemma 6. La is atomic if and only if Free(Wa) is atomic.

Proof. We recall that La can be presented as

La = {pws : p ∈ Free(A′), w ∈ {a, ∅}, s ∈ Free(Wa)}.

Suppose first that Free(Wa) is atomic. Pick x, y ∈ La. Then x = pxwxsx and y =
pywysy with px, py ∈ Free(A′), wx, wy ∈ {a, ∅} and sx, sy ∈ Free(Wa). Since
Free(Wa) is atomic, by JEP we have that there exists a word sz ∈ Free(Wa)

Deciding atomicity of subword-closed languages 7

containing sx and sy. Letting pz = pxpy, we can define z = pzasz. Clearly z
contains both x and y and since pz ∈ Free(A′), sz ∈ Free(Wa) we also have
z ∈ La. So La satisfies JEP, and so it is atomic.

Now suppose La is atomic. Pick x, y ∈ Free(Wa). Then since the words ax
and ay both belong to La and La is atomic, by JEP there exists z ∈ La which
contains both ax and ay. Let us denote z = pws with p ∈ Free(A′), w ∈ {a, ∅}
and s ∈ Free(Wa). As ax is a subword of z, and a does not appear in p, we have
that ax is a subword of ws, and since w ∈ {a, ∅} we conclude that x is a subword
of s. For the same reason, we have y is a subword of s. Since s ∈ Free(Wa), we
see that Free(Wa) satisfies JEP, hence Free(Wa) is atomic. Thus we conclude
that La is atomic if and only if Free(Wa) is atomic.

We are now ready to prove the main result of the paper.

Proof of Theorem 1. Let L = Free(w1, w2, . . . , wn) be a given language with
w1, w2, . . . , wn ∈ A∗ incomparable words. If |wi| = 1 for some i = 1, 2, . . . , n,
then remove such a word, as by Lemma 1 this operation does not affect atomicity.
So assume, without loss of generality, that |wi| ≥ 2 for all i = 1, 2, . . . , n. Now
perform the procedure of Lemma 5 to find a letter a ∈ A′ such that L is atomic
only if L = La.

Then perform the procedure of Lemma 4 to check whether La = L. If not,
then we know that L is not atomic. Now consider the case when L = La. In
this case, by Lemma 6, La is atomic if and only if Free(Wa) is atomic, and to
determine whether Free(Wa) is atomic we can proceed inductively, as the total
number of letters in the set Wa is smaller than in the original set of forbidden
words.

Note that the most expensive step in terms of algorithmic complexity is the
application of the procedure in Lemma 4, which takes O(|S′a|nm) steps. After
completing the induction step we have a set of forbidden words with |S′a| fewer
letters than the original set of forbidden words. Since the removal of |S′a| letters
takes O(|S′a|nm) steps to complete, to finish the procedure, i.e. to remove all
m letters, we will have the computational complexity of order O(m × nm) =
O(nm2). This finishes the proof.

We finish this section with a couple of corollaries that follow from the proof of
the main theorem. The first corollary gives a simple representation of all atomic
subword-closed languages. Following the algorithm of the main theorem, one can
efficiently move between this representation and the representation of the atomic
language given by forbidden subwords.

Corollary 1. Let L be a subword-closed language over a finite alphabet A. Then
L is atomic if and only if there exists a sequence of subsets Ai ⊆ A for i =
1, 2, . . . ,m+ 1 and letters ai ∈ Ai for i = 1, 2, . . . ,m, such that

L = {w1a
′
1w2a

′
2 . . . wma

′
mwm+1 : a′i ∈ {ai, ∅} for all i ∈ {1, 2, . . . ,m} and

wi ∈ Free(Ai) for all i ∈ {1, 2, . . . ,m+ 1}}.

8 A. Atminas and V. Lozin

The second corollary gives a simple description of all atomic languages defined
by one or two forbidden subwords.

Corollary 2. Let w,w1, w2 ∈ A∗ be some words over a finite alphabet A with
w1 and w2 incomparable. Then

– Free(w) is atomic.
– Free(w1, w2) is atomic if and only if w1 = pw′s, w2 = pw′′s for some words
p, s ∈ A∗ and some words w′, w′′ ∈ A∗ such that either |w′| = 1 or |w′′| = 1.

Proof. Applying the algorithm for deciding atomicity to the language Free(w)
with w = x1x2 . . . xk, for some x1, x2, . . . , xk ∈ A, we see that Free(w) is atomic,
if and only if Free(x2x3 . . . xk) is atomic, if and only if Free(x3 . . . xk) is atomic,
. . ., if and only if Free(xk) is atomic. Clearly, Free(xk) is atomic and hence
Free(w) is atomic. Moreover, we can represent this language as

{w1x
′
1w2x

′
2 . . . wk−1x

′
k−1wk : x′i ∈ {xi, ∅} for all i = {1, 2, . . . , k − 1} and

wi ∈ Free(xi) for all i = {1, 2, . . . , k}}.

Let us now write w1 = pw′s and w2 = pw′′s, where p and s are the longest
common prefix and the longest common suffix of w1 and w2, respectively. Note
that w′ 6= ∅ and w′′ 6= ∅, as otherwise one of w1 and w2 would be a subword of the
other, which is not allowed. Following the algorithm we see that Free(w1, w2)
is atomic if and only if Free(w′s, w′′s) is atomic. Suppose that |w′′| ≥ |w′|. Let
w′ = x1x2 . . . xk and w′′ = y1y2 . . . yl with l ≥ k. Then, if l > k the algorithm
removes the letter from w′′ and checks whether y2y3 . . . yls contains x2 . . . xks,
which happens if and only if y2y3 . . . yl contains x2 . . . xk. If it does, then the
length of y2y3 . . . yl is still bigger than of w′, in which case it removes one more
letter and checks whether y3y4 . . . yl contains x2 . . . xk. The process continues
until the length of the words yl−k+2yl−k+3 . . . yl and x2 . . . xk are the same, in
which case to contain one another means to be equal. Now, if k ≥ 2, this means
xk = yl and this contradicts the fact that s is the longest suffix. Thus if k ≥ 2
the two words cannot contain each other, and we conclude that the language
is not atomic. On the other hand, if k = 1, then clearly all containments are
satisfied trivially and algorithm proceeds without stopping, thus showing that
for k = 1 the language is atomic. This finishes the proof.

3 Concluding remarks and open problems

In this paper we have proved that atomicity, or equivalently the joint embedding
property, is algorithmically decidable for subword-closed languages. However, the
question of computing a decomposition of a non-atomic language into two proper
subword-closed sublanguages remains open.

The decidability procedure developed in this paper implies, in particular,
that atomicity is decidable for hereditary subclasses of threshold graphs [8],
since there is a bijection between threshold graphs on n vertices and binary
words of length n − 1. Note that for general hereditary classes this question is
undecidable [3].

Deciding atomicity of subword-closed languages 9

Threshold graphs constitute a prominent example of graphs of bounded let-
tericity [10] and we conjecture that our result implies decidability of atomicity
for all hereditary classes in this family.

Clique-width [4] is a notion which is more general than lettericity in the sense
that bounded lettericity implies bounded clique-width but not necessarily vice
versa. Graphs of bounded clique-width can be described by words (algebraic
expressions) over a finite alphabet, and we believe that decidability of atomicity
can be extended to graphs of bounded clique-width.

The main result of this paper also implies that atomicity is decidable for
classes of linear read-once Boolean functions closed under renaming variables
and erasing variables from linear read-once expressions defining the functions,
because, similarly to threshold graphs, linear read-once Boolean functions can be
uniquely (up to renaming variables) described by binary words. Linear read-once
functions appeared in the literature under various other names such as nested
canalyzing functions, unate cascade functions [7], 1-decision lists [5], and we
conjecture that decidability of atomicity can be extended to classes of d-decision
lists for any fixed d. To support this conjecture, we observe that the main result of
this paper is valid for subword-closed languages over infinite alphabets, provided
that the set of minimal forbidden words is finite.

References

1. B. Alecu, V. Lozin, D. de Werra, The micro-world of cographs, Discrete App.
Math., accepted. https://doi.org/10.1016/j.dam.2021.11.004

2. M. Bodirsky, J. Rydval, A. Schrottenloher, Universal Horn sentences and the joint
embedding property, preprint available at arXiv:2104.11123v3.

3. S. Braunfeld, The undecidability of joint embedding and joint homomorphism for
hereditary graph classes. Discrete Math. Theor. Comput. Sci. 21 (2019), no. 2,
Paper No. 9, 17 pp.

4. B. Courcelle, J. Engelfriet, G. Rozenberg, Handle-rewriting hypergraph grammars,
J. Computer and System Sci. 46 (2) (1993) 218–270.

5. T. Eiter, T. Ibaraki, K. Makino. Decision lists and related Boolean functions.
Theoretical Computer Science, 270(1) (2002) 493–524.

6. G. Higman, Ordering by divisibility in abstract algebras, Proceedings of the London
Mathematical Society, (3) 2 (1952) 326–336.

7. A. S. Jarrah, B. Raposa, and R. Laubenbacher. Nested canalyzing, unate cascade,
and polynomial functions. Physica D: Nonlinear Phenomena, 233(2) (2007) 167–
174.

8. N. V. R. Mahadev, U. N. Peled, Threshold graphs and related topics. Annals
of Discrete Mathematics, 56. North-Holland Publishing Co., Amsterdam, 1995.
xiv+543 pp.

9. M. McDevitt, N. Ruškuc, N. Atomicity and well quasi-order for consecutive or-
derings on words and permutations. SIAM J. Discrete Math. 35 (2021), no. 1,
495–520.

10. M. Petkovšek, Letter graphs and well-quasi-order by induced subgraphs. Discrete
Math. 244 (2002), 375–388.

11. V. Vatter, Growth rates of permutation classes: from countable to uncountable.
Proc. Lond. Math. Soc. (3) 119 (2019), no. 4, 960–997.

	Deciding atomicity
	maths-150622-wrap-change--atomicity-conference-revision

