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Abstract
We approximate functions defined on smooth bounded
domains by elements of the eigenspaces of the Lapla-
cian or the Stokes operator in such a way that the
approximations are bounded and converge in both
Sobolev and Lebesgue spaces. We prove an abstract
result referred to fractional power spaces of positive, self-
adjoint, compact-inverse operators on Hilbert spaces,
and then obtain our main result by using the explicit
form of these fractional power spaces for the Dirichlet
Laplacian and Stokes operators. As a simple applica-
tion, we prove that all weak solutions of the convective
Brinkman–Forchheimer equations posed on a bounded
domain in ℝ3 satisfy the energy equality.

MSC 2020
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1 INTRODUCTION

In this paper, we describe amethod that allows one to use truncated (but weighted) eigenfunction
expansions in order to obtain smooth approximations of functions defined on bounded domains
in a way that behaves well with respect to both Lebesgue spaces and (primarily 𝐿2-based) Sobolev
spaces, and that also respects the ‘side conditions’ that often occur in boundary value problems
(for example, Dirichlet boundary data or a divergence-free condition).
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If 𝑢 ∈ 𝐿2(𝕋𝑑) with

𝑢 =
∑
𝑘∈ℤ𝑑

�̂�𝑘e
i𝑘⋅𝑥 (1.1)

and we set

𝑢𝑛 ∶=
∑

𝑘∈ℤ𝑑∶ |𝑘|⩽𝑛 �̂�𝑘e
i𝑘⋅𝑥,

where |𝑘| is the Euclidean length of 𝑘, then this truncation behaves well in 𝐿2-based spaces:
‖𝑢𝑛 − 𝑢‖𝑋 → 0 and ‖𝑢𝑛‖𝑋 ⩽ ‖𝑢‖𝑋

for 𝑋 = 𝐿2(𝕋𝑑) or𝐻𝑠(𝕋𝑑).
However, the same is not true in 𝐿𝑝(𝕋𝑑) for 𝑝 ≠ 2 if 𝑑 ≠ 1: there is no constant 𝐶 such that

‖𝑢𝑛‖𝐿𝑝 ⩽ 𝐶‖𝑢‖𝐿𝑝 for every 𝑢 ∈ 𝐿𝑝(𝕋3).

This follows from the result of Fefferman [6] concerning the ball multiplier for the Fourier trans-
form; standard ‘transference’ results (see, for example, Grafakos [13]) then yield the result for
Fourier series.
In the periodic setting, these problems can be overcome by considering the component-wise

truncation over ‘cubes’ rather than ‘spheres’ of Fourier modes. If for 𝑢 as in (1.1), we define

𝑢[𝑛] ∶=
∑

|𝑘𝑗|⩽𝑛 �̂�𝑘e
i𝑘⋅𝑥, where 𝑘 = (𝑘1, … , 𝑘𝑑),

then it follows from good properties of the truncation in 1D and the product structure of the
Fourier expansion that

‖𝑢[𝑛] − 𝑢‖𝐿𝑝 → 0 and ‖𝑢[𝑛]‖𝐿𝑝 ⩽ 𝐶𝑝‖𝑢‖𝐿𝑝 for every 𝑢 ∈ 𝐿𝑝(𝕋𝑑)

(see, for example, [19]). Hajduk and Robinson [15] used this approach to prove that all weak
solutions of the convective Brinkman–Forchheimer (CBF) equations

𝜕𝑡𝑢 − Δ𝑢 + (𝑢 ⋅∇)𝑢 + |𝑢|2𝑢 + ∇𝑝 = 0, ∇ ⋅ 𝑢 = 0 (1.2)

on 𝕋3 satisfy the energy equality (for more details see Section 5).
There is no known corresponding ‘good’ selection of eigenfunctions in bounded domains that

will produce truncations that are bounded in 𝐿𝑝. To circumvent this, we suggest two possible
approximation schemes in this paper: for one scheme, we use the linear semigroup arising from
an appropriate differential operator (the Laplacian or Stokes operator); for the second,we combine
this with a truncated eigenfunction expansion.
We discuss thesemethods in the abstract setting of fractional power spaces (that is, the domains

of fractional powers of some linear operator) in Section 2. In Section 3, we recall the explicit form
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of these fractional power spaces for the Dirichlet Laplacian and Stokes operators, and derive some
additional properties required in what follows.We combine these two sections to give our approx-
imation theorems in Section 4, and then use our eigenspace-approximation method to prove the
validity of the energy equality for weak solutions of the CBF equations (1.2) on bounded domains
in Section 5.

2 APPROXIMATION IN FRACTIONAL POWER SPACES

Wewant to investigate simultaneous approximation in fractional power spaces and a second space
, which in our applicationswill be one of the spaces𝐿𝑝(Ω) [potentiallywith side conditionswhen
treating divergence-free vector-valued functions].

2.1 Fractional power spaces

We suppose that𝐻 is a separable Hilbert space, with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖, and that
𝐴 is a positive, self-adjoint operator on𝐻 with compact inverse. In this case,𝐴 has a complete set
of orthonormal eigenfunctions {𝑤𝑛} with corresponding eigenvalues 𝜆𝑛 > 0, which we order so
that 𝜆𝑛+1 ⩾ 𝜆𝑛.
Recall that for any 𝛼 ⩾ 0, we can define 𝐷(𝐴𝛼) as the following subspace of𝐻,

𝐷(𝐴𝛼) ∶=

{
𝑢 =

∞∑
𝑗=1

�̂�𝑗𝑤𝑗 ∶

∞∑
𝑗=1

𝜆2𝛼
𝑗
|�̂�𝑗|2 < ∞

}
. (2.1)

For 𝛼 < 0, we can take this space to be the dual of 𝐷(𝐴−𝛼); the expression in (2.1) can then be
understood as an element in the completion of the space of finite sums with respect to the 𝐷(𝐴𝛼)

norm defined below in (2.2). For all 𝛼 ∈ ℝ, the space𝐷(𝐴𝛼) is a Hilbert space with inner product

⟨𝑢, 𝑣⟩𝐷(𝐴𝛼) ∶=

∞∑
𝑗=1

𝜆2𝛼
𝑗
�̂�𝑗𝑣𝑗

when 𝑢 =
∑∞

𝑗=1 �̂�𝑗𝑤𝑗 and 𝑣 =
∑∞

𝑗=1 𝑣𝑗𝑤𝑗 , corresponding norm

‖𝑢‖2
𝐷(𝐴𝛼)

∶=

∞∑
𝑗=1

𝜆2𝛼
𝑗
|�̂�𝑗|2 (2.2)

[note that 𝐷(𝐴0) coincides with𝐻]. We can define 𝐴𝛼 ∶ 𝐷(𝐴𝛼) → 𝐻 as the mapping

∞∑
𝑗=1

�̂�𝑗𝑤𝑗 ↦

∞∑
𝑗=1

𝜆𝛼
𝑗
�̂�𝑗𝑤𝑗,

and then ‖𝑢‖𝐷(𝐴𝛼) = ‖𝐴𝛼𝑢‖. Note that𝐴𝛼 alsomakes sense as amapping from𝐷(𝐴𝛽) → 𝐷(𝐴𝛽−𝛼)

for any 𝛽 ∈ ℝ, and that for 𝛽 ⩾ 𝛼 ⩾ 0 we have

𝐷(𝐴𝛽) = {𝑢 ∈ 𝐷(𝐴𝛽−𝛼) ∶ 𝐴𝛽−𝛼𝑢 ∈ 𝐷(𝐴𝛼)}. (2.3)
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We can define a semigroup e−𝜃𝐴 ∶ 𝐻 → 𝐻 by setting

e−𝜃𝐴𝑢 ∶=

∞∑
𝑗=1

e−𝜃𝜆𝑗⟨𝑢,𝑤𝑗⟩𝑤𝑗, 𝜃 ⩾ 0; (2.4)

this extends naturally to𝐷(𝐴𝛼) for any𝛼 > 0, and for𝛼 < 0we can interpret ⟨𝑢,𝑤𝑗⟩ via the natural
pairing between 𝐷(𝐴𝛼) and 𝐷(𝐴−𝛼) (or, alternatively, as �̂�𝑗 in the definition (2.1)). Then for all
𝑢 ∈ 𝐷(𝐴𝛼), we have

‖e−𝜃𝐴𝑢‖𝐷(𝐴𝛽) ⩽

{
𝐶𝛽−𝛼𝜃

−(𝛽−𝛼)‖𝑢‖𝐷(𝐴𝛼) 𝛽 ⩾ 𝛼,

e−𝜆1𝜃𝜆
𝛽−𝛼

1
‖𝑢‖𝐷(𝐴𝛼) 𝛽 < 𝛼,

(2.5)

where we can take 𝐶𝛾 = sup𝜆⩾0 𝜆
𝛾e−𝜆 (the exact form of the constant is unimportant, but note

𝐶𝛾 < ∞ for every 𝛾 ⩾ 0) and

‖‖‖𝑒−𝜃𝐴𝑢 − 𝑢
‖‖‖𝐷(𝐴𝛼)

→ 0 as 𝜃 → 0+. (2.6)

In particular, (2.6) means that e−𝜃𝐴 is a strongly continuous semigroup on𝐷(𝐴𝛼) for every 𝛼 ∈ ℝ.
Now suppose that we have a Banach space  such that:

(-i) for some 𝛾1 ⩽ 𝛾2

𝐷(𝐴𝛾2) ⊂  ⊂ 𝐷(𝐴𝛾1), (2.7)

and
(-ii) e−𝜃𝐴 is a uniformly bounded operator on  for 𝜃 ⩾ 0, that is, there exists a constant 𝐶 > 0

such that

‖‖‖e−𝜃𝐴𝑢‖‖‖ ⩽ 𝐶‖𝑢‖ for 𝜃 ⩾ 0, (2.8)

and e−𝜃𝐴 is a strongly continuous semigroup on , that is, for each 𝑢 ∈ 
‖‖‖e−𝜃𝐴𝑢 − 𝑢

‖‖‖ → 0 as 𝜃 → 0+. (2.9)

We assume that the inclusions in (-i) are continuous so that, for example,  ⊂ 𝐷(𝐴𝛾1)

means that we also have ‖𝑢‖𝐷(𝐴𝛾1 ) ⩽ 𝐶→𝛾1
‖𝑢‖ for some constant 𝐶→𝛾1

[there is an implicit
abbreviation in the subscript, where we write 𝛾1 for 𝐷(𝐴𝛾1)].
Note that the embedding ⊂ 𝐷(𝐴𝛾1) from (2.7) ensures that the definition of the semigroup in

(2.4) makes sense for 𝑢 ∈ .

2.2 Approximation using the semigroup

Using the semigroup e−𝜃𝐴, we can easily approximate any 𝑢 ∈ 𝐷(𝐴𝛼) ∩  in a ‘good way’ in both
𝐷(𝐴𝛼) and . The following lemma simply combines the facts above to make this more explicit.
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Lemma2.1. Suppose that (-i) and (-ii) hold. If𝑢 ∈ 𝐷(𝐴𝛼) ∩  for some𝛼 ∈ ℝand𝑢𝜃 ∶= e−𝜃𝐴𝑢,
then:

(i) 𝑢𝜃 ∈ 𝐷(𝐴𝛽) for every 𝛽 ∈ ℝ when 𝜃 > 0;
(ii) ‖𝑢𝜃‖𝐷(𝐴𝛼) ⩽ ‖𝑢‖𝐷(𝐴𝛼) for all 𝜃 > 0;
(iii) ‖𝑢𝜃‖ ⩽ 𝐶‖𝑢‖ for all 𝜃 > 0; and
(iv) 𝑢𝜃 → 𝑢 in  and in 𝐷(𝐴𝛼) as 𝜃 → 0+.

Note that if 𝑢 ∈  and (-i) holds, then we can always find a value of 𝛼 ∈ ℝ so that 𝑢 ∈
𝐷(𝐴𝛼) ∩ : if we have (2.7), then 𝑢 ∈  ∩ 𝐷(𝐴𝛾1). If we want to apply the lemma as stated assum-
ing explicitly only that 𝑢 ∈ 𝐷(𝐴𝛼), then to ensure that we also have 𝑢 ∈ we need to have 𝛼 ⩾ 𝛾2.
Nevertheless, we always have (i), (ii), and (iv) for 𝑢 ∈ 𝐷(𝐴𝛼) for any 𝛼 ∈ ℝ.

Proof. Parts (i) and (ii) both follow from (2.5), (iii) is (2.8), and (iv) combines (2.6) and (2.9). □

Use of the semigroup like this can provide a natural way to produce a smooth approximation
that is well tailored to the particular problem under consideration; see [22] for one example in the
context of the Navier–Stokes equations, namely a straightforward proof of local well-posedness in
𝐿2(ℝ3) ∩ 𝐿3(ℝ3).

2.3 Approximation using eigenspaces

We now want to obtain a similar approximation result, but for a set of approximations that lie in
finite-dimensional spaces spanned by eigenfunctions of an operator 𝐴 satisfying the conditions
above. This is the key abstract result of this paper; as with Lemma 2.1 its use in applications relies
on the explicit identification of the fractional power spaces of certain common operators that we
will recall in Section 3.
The approximation operator Π𝜃 introduced in (2.10) below is related to the Bochner–Riesz

means

𝑆
𝛾

𝑁
𝑢 ∶=

𝑁∑
𝑛=1

(
1 −

𝜆𝑛
𝜆𝑁

)𝛾⟨𝑢,𝑤𝑛⟩𝑤𝑛,

which satisfy 𝑆𝛾
𝑁
𝑢 → 𝑢 in 𝐿𝑝 as 𝑁 → ∞ provided that 𝛾 is sufficiently large (see [2] or [5]). One

could viewΠ𝜃 as a Bochner–Riesz mean of ‘exponential order’, the exponential factor in the defi-
nition allowing for a much simpler proof of convergence than for 𝑆𝛾

𝑁
and with one operator that

works for every 𝐿𝑝.

Proposition 2.2. Suppose that (-i) and (-ii) hold. For 𝜃 > 0, set

Π𝜃𝑢 ∶=
∑

𝜆𝑛<𝜃
−2

e−𝜃𝜆𝑛⟨𝑢,𝑤𝑛⟩𝑤𝑛. (2.10)

Then

(i) the range of Π𝜃 is the linear span of a finite number of eigenfunctions of 𝐴, so in particular
Π𝜃𝑢 ∈ 𝐷(𝐴𝛼) for every 𝛼 ∈ ℝ; and
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(ii) if 𝑋 =  or 𝐷(𝐴𝛼) for any 𝛼 ∈ ℝ, then:
(a) Π𝜃 is a bounded operator on 𝑋, uniformly for 𝜃 > 0; and
(b) for any 𝑢 ∈ 𝑋 we haveΠ𝜃𝑢 → 𝑢 in 𝑋 as 𝜃 → 0+.

Proof. Property (i) is immediate from the definition of Π𝜃.
For (ii), we start with an auxiliary estimate for 𝑢 ∈ 𝐷(𝐴𝛽), 𝛽 ⩽ 𝛼. If

𝑢 =

∞∑
𝑛=1

⟨𝑢,𝑤𝑛⟩𝑤𝑛,

then for every 𝜃 > 0 we have

‖‖‖Π𝜃𝑢 − e−𝜃𝐴𝑢
‖‖‖2𝐷(𝐴𝛼)

=
∑

𝜆𝑛⩾𝜃
−2

𝜆2𝛼𝑛 e−2𝜆𝑛𝜃||⟨𝑢,𝑤𝑛⟩||2
⩽

∑
𝜆𝑛⩾𝜃

−2

𝜆2𝛼𝑛 e−2𝜆𝑛
1∕2 ||⟨𝑢,𝑤𝑛⟩||2

⩽
∑

𝜆𝑛⩾𝜃
−2

𝜆
2(𝛼−𝛽)
𝑛 e−2𝜆𝑛

1∕2
𝜆
2𝛽
𝑛
||⟨𝑢,𝑤𝑛⟩||2

⩽

(
sup
𝜆⩾𝜃−2

𝜆2(𝛼−𝛽)e−2𝜆
1∕2

)‖𝑢‖2
𝐷(𝐴𝛽)

.

If for each 𝜅 ∈ ℝ, we set

Φ(𝜃, 𝜅) ∶= sup
𝜆⩾𝜃−2

𝜆𝜅e−𝜆
1∕2
,

then we have

‖‖‖Π𝜃𝑢 − e−𝜃𝐴𝑢
‖‖‖𝐷(𝐴𝛼)

⩽ Φ(𝜃, 𝛼 − 𝛽)‖𝑢‖𝐷(𝐴𝛽) for 𝛽 ⩽ 𝛼. (2.11)

Since

Φ(𝜃, 𝜅) =

{
𝜃−2𝜅e−1∕𝜃 𝜅 < 0 or 𝜅 ⩾ 0, 𝜃 ⩽ (2𝜅)−1,

(2𝜅)2𝜅e−2𝜅 𝜅 ⩾ 0, 𝜃 > (2𝜅)−1,

we have Φ(𝜃, 𝜅) ⩽ 𝑀𝜅 for every 𝜃 > 0 and

Φ(𝜃, 𝜅) → 0 as 𝜃 → 0+ for every 𝜅 ⩾ 0. (2.12)

It is immediate that Π𝜃 is bounded on 𝐷(𝐴𝛼) given that Π𝜃 only decreases the modulus of the
Fourier coefficients:

‖‖Π𝜃𝑢
‖‖𝐷(𝐴𝛼) ⩽ ‖𝑢‖𝐷(𝐴𝛼).
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The convergence ‖Π𝜃𝑢 − 𝑢‖𝐷(𝐴𝛼) → 0 as 𝜃 → 0+, follows from (2.11) and (2.12) with 𝛽 = 𝛼 and
the fact that e−𝜃𝐴𝑢 → 𝑢 in 𝐷(𝐴𝛼) as 𝜃 → 0+; we have

‖‖Π𝜃𝑢 − 𝑢‖‖𝐷(𝐴𝛼) ⩽
‖‖‖Π𝜃𝑢 − e−𝜃𝐴𝑢

‖‖‖𝐷(𝐴𝛼)
+
‖‖‖e−𝜃𝐴𝑢 − 𝑢

‖‖‖𝐷(𝐴𝛼)
→ 0

as 𝜃 → 0+.
Now suppose that 𝑢 ∈ . Since (2.11) shows thatΠ𝜃𝑢 − e−𝜃𝐴𝑢 ∈ 𝐷(𝐴𝛾2)whenever 𝑢 ∈ 𝐷(𝐴𝛾1),

we have

‖‖Π𝜃𝑢
‖‖ =

‖‖‖(Π𝜃𝑢 − e−𝜃𝐴𝑢) + e−𝜃𝐴𝑢
‖‖‖

⩽ 𝐶𝛾2→‖‖‖Π𝜃𝑢 − e−𝜃𝐴𝑢
‖‖‖𝐷(𝐴𝛾2 )

+
‖‖‖e−𝜃𝐴𝑢‖‖‖

⩽ 𝐶𝛾2→Φ(𝜃, 𝛾2 − 𝛾1)‖𝑢‖𝐷(𝐴𝛾1 ) + 𝐶‖𝑢‖
⩽

[
𝐶𝛾2→𝐶→𝛾1

Φ(𝜃, 𝛾2 − 𝛾1) + 𝐶
]‖𝑢‖,

using (2.7), (2.8), and (2.11). It follows, since Φ(𝜃, 𝛾) ⩽ 𝑀𝛾 independent of 𝜃, that

‖‖Π𝜃𝑢
‖‖ ⩽ 𝐾‖𝑢‖,

so Π𝜃 ∶  →  is bounded. Convergence of Π𝜃𝑢 to 𝑢 as 𝜃 → 0+ follows similarly, since

‖‖Π𝜃𝑢 − 𝑢‖‖ ⩽
‖‖‖Π𝜃𝑢 − e−𝜃𝐴𝑢

‖‖‖ + ‖‖‖e−𝜃𝐴𝑢 − 𝑢
‖‖‖

⩽ 𝐶𝛾2→‖‖‖Π𝜃𝑢 − e−𝜃𝐴𝑢
‖‖‖𝐷(𝐴𝛾2 )

+
‖‖‖e−𝜃𝐴𝑢 − 𝑢

‖‖‖
⩽ 𝐶𝛾2→Φ(𝜃, 𝛾2 − 𝛾1)‖𝑢‖𝐷(𝐴𝛾1 ) +

‖‖‖e−𝜃𝐴𝑢 − 𝑢
‖‖‖

⩽ 𝐶𝛾2→𝐶→𝛾1
Φ(𝜃, 𝛾2 − 𝛾1)‖𝑢‖ + ‖𝑒−𝜃𝐴𝑢 − 𝑢‖

and both terms tend to zero as 𝜃 → 0+. □

2.4 Further results via interpolation

We note here for use later that it is possible to obtain additional results from either Lemma 2.1 or
Proposition 2.2 via interpolation. If 𝑌 ⊂ 𝑋 and Π𝜃 is a bounded operator on both 𝑋 and 𝑌, then
Π𝜃 is bounded on any intermediate (real or complex) interpolation space 𝑍 = [𝑋,𝑌]𝜙.
Now suppose in addition that ‖Π𝜃𝑢 − 𝑢‖𝑌 → 0 as 𝜃 → 0+ for every 𝑢 ∈ 𝑌. Then, since 𝑌 is

dense in 𝑍 (see [3, Theorem 3.4.2] for real interpolation, and [3, Theorem 4.2.2] for complex
interpolation), we can show that

‖Π𝜃𝑢 − 𝑢‖𝑍 → 0 as 𝜃 → 0+ for every 𝑢 ∈ 𝑍.
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Take 𝑢 ∈ 𝑍 and 𝑣 ∈ 𝑌, then

‖Π𝜃𝑢 − 𝑢‖𝑍 = ‖Π𝜃𝑢 − Π𝜃𝑣 + Π𝜃𝑣 − 𝑣 + 𝑣 − 𝑢‖𝑍
⩽ 𝐶‖𝑢 − 𝑣‖𝑍 + ‖Π𝜃𝑣 − 𝑣‖𝑍 + ‖𝑢 − 𝑣‖𝑍;

given 𝜀 > 0 choose 𝑣 ∈ 𝑌 such that ‖𝑢 − 𝑣‖𝑍 < 𝜀∕2(1 + 𝐶) and then 𝜃 small enough that

‖Π𝜃𝑣 − 𝑣‖𝑍 ⩽ 𝐶‖Π𝜃𝑣 − 𝑣‖1−𝜙
𝑋

‖Π𝜃𝑣 − 𝑣‖𝜙
𝑌
< 𝜀∕2.

3 FRACTIONAL POWER SPACES OF THE LAPALACIAN AND
STOKES OPERATORS

In this section, we recall the explicit characterization of the fractional power spaces of the negative
Dirichlet Laplacian and Stokes operator on a sufficiently smooth bounded domain Ω.

Theorem 3.1. When 𝐴 is the negative Dirichlet Laplacian onΩ ⊂ ℝ𝑑, 𝑑 ⩾ 2, we have

𝐷(𝐴𝜃) =

⎧⎪⎪⎨⎪⎪⎩

𝐻2𝜃(Ω), 0 < 𝜃 < 1∕4,

𝐻
1∕2

00
(Ω), 𝜃 = 1∕4,

𝐻2𝜃
0
(Ω), 1∕4 < 𝜃 ⩽ 1∕2,

𝐻2𝜃(Ω) ∩ 𝐻1
0
(Ω), 1∕2 < 𝜃 ⩽ 1,

where𝐻1∕2

00
(Ω) consists of all 𝑢 ∈ 𝐻1∕2(Ω) such that

∫Ω 𝜌(𝑥)
−1|𝑢(𝑥)|2 d𝑥 < ∞,

with 𝜌(𝑥) any 𝐶∞ function comparable to dist(𝑥, 𝜕Ω). If𝐴 is the Stokes operator onΩwith Dirichlet
boundary conditions, then the domains of the fractional powers of 𝐴 are as above, except that all
spaces are intersected with

𝐻𝜎 ∶= completion of {𝜙 ∈ [𝐶∞𝑐 (Ω)]
𝑑 ∶ ∇ ⋅ 𝜙 = 0} in the norm of 𝐿2(Ω).

The characterization of the domains of the Dirichlet Laplacian can be found in the papers by
Grisvard [14], Fujiwara [8], and Seeley [23]. Note that Fujiwara’s statement is not correct for 𝜃 =
3∕4, and that Seeley also gives the corresponding characterization for the operators in 𝐿𝑝-based
spaces. For the Stokes operator, Giga [12] and Fujita and Morimoto [7] both show that 𝐷() =
𝐷(𝐴) ∩ 𝐻𝜎; the former in the greater generality of 𝐿𝑝-based spaces.
To guarantee that our approximating functions are smooth we will also need to consider𝐷(𝐴𝜃)

for 𝜃 > 1; here an inclusion will be sufficient.

Corollary 3.2. If 𝐴 is the negative Dirichlet Laplacian onΩ, then for 𝜃 ⩾ 1

𝐷(𝐴𝜃) ⊂ 𝐻2𝜃(Ω) ∩ 𝐻1
0(Ω), with ‖𝑢‖𝐻2𝜃 ⩽ 𝐶𝐷(𝐴𝜃)→𝐻2𝜃‖𝐴𝜃𝑢‖

for every 𝑢 ∈ 𝐷(𝐴𝜃).
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Proof. First we note that 𝐷(𝐴𝜃) ⊆ 𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1
0
(Ω) for every 𝜃 ⩾ 1; in particular, 𝐷(𝐴𝜃) ⊂

𝐻1
0
(Ω), so we only need to show that

𝐷(𝐴𝜃) ⊂ 𝐻2𝜃(Ω), with ‖𝑢‖𝐻2𝜃 ⩽ 𝐶𝐷(𝐴𝜃)→𝐻2𝜃‖𝐴𝜃𝑢‖ (3.1)

for every 𝑢 ∈ 𝐷(𝐴𝜃). Theorem 3.1 shows that this holds for all 0 < 𝜃 ⩽ 1.
We now use (2.3) and induction. Suppose that (3.1) holds for all 0 < 𝜃 ⩽ 𝑘 for some 𝑘 ∈ ℕ; then

for 𝛼 = 𝑘 + 𝑟 with 0 < 𝑟 ⩽ 1, we have

𝐷(𝐴𝛼) = 𝐷(𝐴𝑘+𝑟)

= {𝑢 ∶ 𝐴𝑢 ∈ 𝐷(𝐴𝑘−1+𝑟)}

= {𝑢 ∶ −Δ𝑢 ∈ 𝐷(𝐴𝑘−1+𝑟)},

noting that since 𝑢 ∈ 𝐷(𝐴𝛼) and 𝛼 ⩾ 1, we have 𝑢 ∈ 𝐷(𝐴), which guarantees that 𝐴𝑢 = −Δ𝑢.
It follows that any 𝑢 ∈ 𝐷(𝐴𝛼) solves the Dirichlet problem

−Δ𝑢 = 𝑓, 𝑢|𝜕Ω = 0, (3.2)

for some𝑓 ∈ 𝐷(𝐴𝑘−1+𝑟) ⊂ 𝐻2(𝑘−1+𝑟)(Ω) using our inductive hypothesis. Elliptic regularity results
for (3.2) (see, for example, [17, Theorem II.5.4]) now guarantee that 𝑢 ∈ 𝐻2(𝑘+𝑟)(Ω) with

‖𝑢‖𝐻2(𝑘+𝑟) ⩽ 𝑐‖𝑓‖𝐻2(𝑘−1+𝑟) = 𝑐‖Δ𝑢‖𝐻2(𝑘−1+𝑟)

= 𝑐‖𝐴𝑢‖𝐻2(𝑘−1+𝑟) ⩽ 𝑐‖𝐴𝑘+𝑟𝑢‖,
due to our inductive hypothesis. □

4 SIMULTANEOUS APPROXIMATION IN LEBESGUE AND
SOBOLEV SPACES

We can now combine the abstract approximation results from Section 2 with the characterization
of fractional power spaces from the previous section to give some more explicit approximation
results. In all that follows, we letΩ be a smooth bounded domain in ℝ𝑛, and by ‘smooth function
on Ω’ we mean that a function is an element of 𝐶∞(Ω).

4.1 Approximation respecting Dirichlet boundary conditions

In the abstract setting of Section 2 we take𝐻 = 𝐿2(Ω), let𝐴 = −Δ, where Δ is the Laplacian onΩ
with Dirichlet boundary conditions, and take  = 𝐿𝑝(Ω) for some 𝑝 ∈ (1,∞) with 𝑝 ≠ 2.
We need to check the assumptions (-i) and (-ii) from Section 2.1 on the relationship between

the spaces  and 𝐷(𝐴𝛼).
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(-i) If we take  = 𝐿𝑝(Ω) with 𝑝 ∈ (2,∞), then since we are on a bounded domain, we have

 = 𝐿𝑝(Ω) ⊂ 𝐿2(Ω),

and we can choose 𝛾 ⩾ 𝑛(𝑝 − 2)∕4𝑝 so that

𝐷(𝐴𝛾) ⊂ 𝐻2𝛾(Ω) ⊂ 𝐿𝑝(Ω) = .
In this case, (2.7) holds. If = 𝐿𝑞(Ω) for some 1 < 𝑞 < 2, we have 𝐿2(Ω) ⊂ 𝐿𝑞(Ω), and since
𝐿𝑞(Ω) is the dual space of some 𝐿𝑝(Ω) with 𝑝 > 2, we have

𝐿𝑞 ≃ (𝐿𝑝)∗ ⊂ 𝐷(𝐴𝛾)∗ = 𝐷(𝐴−𝛾),

where 𝛾 ⩾ 𝑛(2 − 𝑞)∕4𝑞.
(-ii) That e−𝜃𝐴 is bounded on 𝐿𝑝(Ω) for each 1 < 𝑝 < ∞ follows from the analysis in Section 7.3

of Pazy [20], as does the fact that e−𝜃𝐴 is a strongly continuous semigroup on 𝐿𝑝(Ω).

Our first approximation result uses the semigroup arising from the Dirichlet Laplacian, and is
a corollary of Lemma 2.1.

Theorem 4.1. If 𝑢 ∈ 𝐿2(Ω), then, for every 𝜃 > 0, 𝑢𝜃 ∶= e−𝜃𝐴𝑢 is smooth and zero on 𝜕Ω. If in
addition 𝑢 ∈ 𝑋, then

‖𝑢𝜃‖𝑋 ⩽ 𝐶𝑋‖𝑢‖𝑋, and ‖𝑢𝜃 − 𝑢‖𝑋 → 0 as 𝜃 → 0+,

where we can take 𝑋 to be𝐻𝑠(Ω) for 0 < 𝑠 < 1∕2,𝐻1∕2

00
(Ω),𝐻𝑠

0
(Ω) for 1∕2 < 𝑠 ⩽ 1,𝐻𝑠(Ω) ∩ 𝐻1

0
(Ω)

for 1 < 𝑠 ⩽ 2, or 𝐿𝑝(Ω) for any 𝑝 ∈ (1,∞).

Proof. By part (i) of Lemma 2.1, we have 𝑢𝜃 ∈ 𝐷(𝐴𝑟) for every 𝑟 ⩾ 0. In particular, 𝑢𝜃 ∈ 𝐷(𝐴) =

𝐻2 ∩ 𝐻1
0
, so 𝑢𝜃 is zero on 𝜕Ω. Since 𝐷(𝐴𝑟) ⊂ 𝐻2𝑟(Ω) (Corollary 3.2), it also follows that 𝑢𝜃 ∈

𝐶∞(Ω).
The boundedness in Sobolev spaces follows from part (ii) of Lemma 2.1 using the charac-

terization of 𝐷(𝐴𝛼) in Theorem 3.1, and the convergence in Sobolev spaces from part (iv) with
𝑋 = 𝐷(𝐴𝛼). The boundedness and convergence in 𝐿𝑝 follows from parts (iii) and (iv) of the same
lemma. □

Proposition 2.2 yields a corresponding result on approximation that combines the semigroup
with a truncated eigenfunction expansion.

Theorem 4.2. Let (𝑤𝑗) denote the 𝐿2-orthonormal eigenfunctions of the Dirichlet Laplacian on Ω
with corresponding eigenvalues (𝜆𝑗), ordered so that 𝜆𝑗+1 ⩾ 𝜆𝑗 . For any 𝑢 ∈ 𝐿2(Ω), set

𝑢𝜃 ∶= Π𝜃𝑢 =
∑

𝜆𝑛<𝜃
−2

e−𝜃𝜆𝑛⟨𝑢,𝑤𝑛⟩𝑤𝑛. (4.1)

Then 𝑢𝜃 has all the properties given in Theorem 4.1, and lies in the linear span of a finite number of
eigenfunctions of 𝐴 for every 𝜃 > 0.
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4.2 Approximation respecting Dirichlet boundary data and zero
divergence

To deal with functions that have zero divergence, we take  to be the Stokes operator, and set
𝐻 = 𝐿2𝜎(Ω) and  = 𝐿

𝑝
𝜎(Ω) for some 𝑝 ∈ (1,∞), 𝑝 ≠ 2, where

𝐿
𝑝
𝜎(Ω) ∶= completion of {𝜙 ∈ 𝐶∞𝑐 (Ω) ∶ ∇ ⋅ 𝜙 = 0} in the 𝐿𝑝(Ω)-norm.

Property (-i) from Section 2.1 is checked as before, using the facts that (𝐿𝑝𝜎)∗ ≃ 𝐿
𝑞
𝜎 when (𝑝, 𝑞) are

conjugate (see Theorem 2 part (2) in [9]) and that we have a continuous inclusion𝐷(𝛾) ⊂ 𝐷(𝐴𝛾).
The properties in (-ii) for the semigroup e−𝑡 on 𝐿𝑝𝜎(Ω) can be found as Theorem 2.1 in [18] or
[11].

Theorem 4.3. Assume thatΩ ⊂ ℝ𝑑 with 𝑑 ⩽ 4. Take 𝑢 ∈ 𝐿2(Ω) and for every 𝜃 > 0 let

𝑢𝜃 ∶= e−𝜃𝑢 or 𝑢𝜃 ∶= Π𝜃𝑢,

whereΠ𝜃 is defined as in (4.1), but now (𝑤𝑗) are the eigenfunctions of. Then 𝑢𝜃 is smooth, zero on
𝜕Ω, and divergence free. If in addition 𝑢 ∈ 𝑋, then

‖𝑢𝜃‖𝑋 ⩽ 𝐶𝑋‖𝑢‖𝑋, and ‖𝑢𝜃 − 𝑢‖𝑋 → 0 as 𝜃 → 0+,

where we can take 𝑋 to be 𝐻𝑠(Ω) ∩ 𝐿2𝜎(Ω) for 0 < 𝑠 < 1∕2, 𝐻1∕2

00
(Ω) ∩ 𝐿2𝜎(Ω), 𝐻

𝑠
0
(Ω) ∩ 𝐿2𝜎(Ω) for

1∕2 < 𝑠 ⩽ 1,𝐻𝑠(Ω) ∩ 𝐻1
0
(Ω) ∩ 𝐿2𝜎(Ω) for 1 < 𝑠 ⩽ 2, or 𝐿𝑝𝜎(Ω) for any 𝑝 ∈ (1,∞).

As before, this result follows by combining Lemma 2.1, Proposition 2.2, and the identification
of the fractional power spaces of the Stokes operator in Theorem 3.1. The restriction to 𝑑 ⩽ 4 is to
ensure that𝐷() ⊂ 𝐻2 ⊂ 𝐿𝑝 for every 𝑝 ∈ (1,∞). Without restriction on the dimension, we then
have to restrict to 1 < 𝑝 ⩽ 2𝑑∕(𝑑 − 4).

4.3 Complex interpolation and approximation in𝑾𝒌,𝒑(𝛀)

We can also use Lemma 2.1 or Proposition 2.2 to obtain approximation results in 𝑊𝑘,𝑝(Ω) by
interpolation, provided we can verify that the approximation holds in the ‘endpoint’ spaces 𝐿𝑝(Ω)
and 𝐷(𝐴𝑝), where 𝐴𝑝 is the 𝐿𝑝-Laplacian. We restrict to dimension 𝑑 ⩽ 4 for simplicity.
From Theorem 4.2 (Laplacian case), we know that for any 𝑢 ∈ 𝐿𝑝

‖Π𝜃𝑢‖𝐿𝑝 ⩽ 𝐶‖𝑢‖𝐿𝑝 and ‖Π𝜃𝑢 − 𝑢‖𝐿𝑝 → 0 as 𝜃 → 0+.

The domain of the 𝐿𝑝-Laplacian is 𝐷(𝐴𝑝) ∶= 𝑊2,𝑝(Ω) ∩𝑊
1,𝑝

0
(Ω). For 𝑝 > 2,

𝐻
2+𝑑

(
1
2
− 1
𝑝

)
(Ω) ∩ 𝐻1

0(Ω) ⊂ 𝑊2,𝑝(Ω) ∩𝑊
1,𝑝

0
(Ω) ⊂ 𝐻2(Ω) ∩ 𝐻1

0(Ω),

so

𝐷(𝐴
1+[𝑑

(
1

2
− 1

𝑝

)
]∕2
) ⊂ 𝐷(𝐴𝑝) ⊂ 𝐷(𝐴);
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while for 𝑝 < 2

𝐻2(Ω) ∩ 𝐻1
0(Ω) ⊂ 𝑊2,𝑝 ∩𝑊

1,𝑝

0
⊂ 𝐻

2−𝑑
(
1
𝑝
− 1
2

)
(Ω) ∩ 𝐻1

0(Ω),

so

𝐷(𝐴) ⊂ 𝐷(𝐴𝑝) ⊂ 𝐷(𝐴
1−𝑑

2

(
1

𝑝
− 1

2

)
).

These give (-i) for the case  = 𝐷(𝐴𝑝), and (-ii) follows easily from the fact that the heat
semigroup is continuous in 𝐿𝑝: given any 𝑢 ∈ 𝐷(𝐴𝑝), we have

‖e−𝜃𝐴𝑝𝐴𝑝𝑢 − 𝐴𝑝𝑢‖𝐿𝑝 = ‖𝐴𝑝(e
−𝜃𝐴𝑝𝑢 − 𝑢)‖𝐿𝑝 → 0

(since e−𝜃𝐴𝑝 and 𝐴𝑝 commute) and the norm in 𝐷(𝐴𝑝) is the graph norm [‖𝑢‖𝐿𝑝 + ‖𝐴𝑝𝑢‖𝐿𝑝 ].
Hence, from Proposition 2.2, for all 𝑢 ∈ 𝐷(𝐴𝑝), we have

‖Π𝜃𝑢‖𝐷(𝐴𝑝) ⩽ 𝐶‖𝑢‖𝐷(𝐴𝑝) and ‖Π𝜃𝑢 − 𝑢‖𝐷(𝐴𝑝) → 0 as 𝜃 → 0+.

Since the linear operator Π𝜃 is bounded on 𝐿𝑝 and 𝐷(𝐴𝑝), for any interpolation space 𝑋𝛼 ∶=

[𝐿𝑝, 𝐷(𝐴𝑝)]𝛼 with norm ‖ ⋅ ‖𝛼, we also have
‖Π𝜃𝑢‖𝛼 ⩽ 𝐶‖𝑢‖𝛼, (4.2)

where 𝐶 can be chosen uniformly for all 𝜃 > 0.
Since 𝐷(𝐴𝑝) is dense in 𝑋𝛼 [3, Theorem 4.2.2] and Π𝜃 is uniformly bounded on 𝑋𝛼 as in (4.2),

we can guarantee convergence of Π𝜃𝑢 to 𝑢 in 𝑋𝛼: given 𝑢 ∈ 𝑋𝛼 and 𝑣 ∈ 𝐷(𝐴𝑝), we can write

‖Π𝜃𝑢 − 𝑢‖𝛼 = ‖Π𝜃𝑢 − Π𝜃𝑣 + Π𝜃𝑣 − 𝑣 + 𝑣 − 𝑢‖𝛼
⩽ 𝐶‖𝑢 − 𝑣‖𝛼 + ‖Π𝜃𝑣 − 𝑣‖𝛼 + ‖𝑢 − 𝑣‖𝛼;

given 𝜀 > 0 choose 𝑣 ∈ 𝐷(𝐴𝑝) such that ‖𝑢 − 𝑣‖𝛼 < 𝜀∕2(1 + 𝐶) and then 𝜃 small enough that

‖Π𝜃𝑣 − 𝑣‖𝛼 ⩽ 𝐶‖Π𝜃𝑣 − 𝑣‖1−𝛼
𝐿𝑝

‖Π𝜃𝑣 − 𝑣‖𝛼
𝐷(𝐴𝑝)

< 𝜀∕2.

Identification of the interpolation spaces 𝑋𝛼 is much more delicate in the non-Hilbertian case,
and it is preferable to use complex interpolationmethods. The generalization of the results for the
Laplacian to the case 𝑝 ≠ 2 are given by Seeley [23]:

[𝐿𝑝, 𝐷(𝐴𝑝)]𝛼 =

⎧⎪⎪⎨⎪⎪⎩

𝑊2𝛼,𝑝(Ω), 0 < 𝛼 < 1∕2𝑝,

𝑊
1∕𝑝,𝑝

00
(Ω), 𝛼 = 1∕2𝑝,

𝑊
2𝛼,𝑝

0
(Ω), 1∕2𝑝 < 𝛼 ⩽ 1∕2,

𝑊2𝛼,𝑝(Ω) ∩𝑊
1,𝑝

0
(Ω), 1∕2 < 𝛼 < 1,
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where𝑊1∕𝑝,𝑝

00
(Ω) consists of all 𝑢 ∈ 𝑊1∕𝑝,𝑝(Ω) such that

∫Ω 𝜌(𝑥)
−1|𝑢(𝑥)|𝑝 d𝑥 < ∞,

with 𝜌 as in the statement of Theorem 3.1. Results for the Stokes operator in 𝐿𝑝 can be found in
Giga [12].

5 APPLICATION: THE ENERGY EQUALITY FOR THE CBF
EQUATIONS

In this section, we will apply the eigenspace-approximation result of Theorem 4.3 to prove energy
conservation for the 3D convective Brinkman–Forchheimer (CBF) equations

𝜕𝑡𝑢 − 𝜇Δ𝑢 + (𝑢 ⋅∇)𝑢 + ∇𝑝 + 𝛽|𝑢|𝑟𝑢 = 0, ∇ ⋅ 𝑢 = 0 (5.1)

in the critical case 𝑟 = 2, when posed on a smooth bounded domain Ω ⊂ ℝ3 equipped with
Dirichlet boundary conditions 𝑢|𝜕Ω = 0. Here 𝑢(𝑥, 𝑡) ∈ ℝ3 is the velocity field and the scalar
function 𝑝(𝑥, 𝑡) is the pressure. The constant 𝜇 denotes the positive Brinkman coefficient (effec-
tive viscosity) and 𝛽 ⩾ 0 denotes the Forchheimer coefficient (proportional to the porosity of the
material).
While these equations can be physicallymotivated, our interest in themhere is primarilymath-

ematical, as a version of the Navier–Stokes equations with an additional dissipative term+𝛽|𝑢|𝑟𝑢.
Unlike the Navier–Stokes equations themselves, for which known results are a long way from
providing the global existence of regular solutions, for the CBF equations strong solutions

𝑢 ∈ 𝐿∞(0, 𝑇;𝐻1
0) ∩ 𝐿

2(0, 𝑇;𝐻2)

are known to exist for all time for every 𝑟 > 2 ([16]; see also [15] for a simpler proof in the absence
of boundaries and when 𝑟 = 2 and 4𝜇𝛽 ⩾ 1).
We do not give full details of the argument that guarantees the validity of the energy equality

for weak solutions, since it follows that in [15] extremely closely. Instead we define weak solutions
precisely and then give a sketch of the proof, showing how Theorem 4.3 allows the argument to
be extended to the CBF equations on bounded domains.

5.1 Weak solutions of the CBF equations

We use the standard notation for the vector-valued function spaces which often appear in the
theory of fluid dynamics. For an arbitrary domain Ω ⊆ ℝ𝑛, we define

𝜎(Ω) ∶=
{
𝜑 ∈ 𝐶∞𝑐 (Ω) ∶ div 𝜑 = 0

}
and

𝐻 ∶= closure of𝜎(Ω) in 𝐿2(Ω).
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The space of divergence-free test functions in the space–time domain is denoted by

𝜎(Ω𝑇) ∶=
{
𝜑 ∈ 𝐶∞𝑐 (Ω𝑇) ∶ div 𝜑(⋅, 𝑡) = 0

}
,

where Ω𝑇 ∶= Ω × [0, 𝑇) for 𝑇 > 0. Note that 𝜑(𝑥, 𝑇) = 0 for all 𝜑 ∈ 𝜎(Ω𝑇). We set 𝜎(Ω∞) =

∪𝑇>0𝜎(Ω𝑇).
We equip the space 𝐻 with the inner product induced by 𝐿2(Ω); we denote it by ⟨⋅, ⋅⟩, and the

corresponding norm by ‖⋅‖.
We will use the following definition of a weak solution (cf. the corresponding definition of a

weak solution for the Navier–Stokes equations in [21]).

Definition 5.1. Wewill say that the function 𝑢 is a weak solution on the time interval [0, 𝑇) of the
critical convective Brinkman–Forchheimer equations [(5.1) with 𝑟 = 2] with the initial condition
𝑢0 ∈ 𝐻, if

𝑢 ∈ 𝐿∞(0, 𝑇;𝐻) ∩ 𝐿4(0, 𝑇; 𝐿4) ∩ 𝐿2(0, 𝑇;𝐻1
0),

and

−∫
𝑡

0

⟨𝑢(𝑠), 𝜕𝑡𝜑(𝑠)⟩ + 𝜇 ∫
𝑡

0

⟨∇𝑢(𝑠), ∇𝜑(𝑠)⟩ + ∫
𝑡

0

⟨(𝑢(𝑠) ⋅∇)𝑢(𝑠), 𝜑(𝑠)⟩
+ 𝛽 ∫

𝑡

0

⟨|𝑢(𝑠)|2𝑢(𝑠), 𝜑(𝑠)⟩ = −⟨𝑢(𝑡), 𝜑(𝑡)⟩ + ⟨𝑢(0), 𝜑(0)⟩ (5.2)

for almost every 𝑡 ∈ (0, 𝑇) and all test functions 𝜑 ∈ 𝜎(Ω𝑇).
A function 𝑢 is a global weak solution if it is a weak solution on [0, 𝑇) for every 𝑇 > 0.

Note that this definition coincides with the definition of a weak solution of the Navier–Stokes
equations in the case 𝛽 = 0 if we drop the requirement that 𝑢 ∈ 𝐿4(0, 𝑇; 𝐿4).
Just as with the conventional Navier–Stokes equations, it is possible to replace the space of test

functions 𝜎 in the weak formulation (5.2) with a number of other collections of functions. In
order to use our eigenspace approximation for this model, we will want to replace 𝜎 with the
space ̃𝜎 consisting of finite combinations of eigenfunctions of the Stokes operator. We therefore
define

̃𝜎(Ω∞) ∶=

{
𝜑 ∶ 𝜑 =

𝑁∑
𝑘=1

𝛼𝑘(𝑡)𝑤𝑘(𝑥), 𝛼𝑘 ∈ 𝐶10([0,∞)), for some 𝑁 ∈ ℕ

}
,

where (𝑤𝑘) are the eigenfunctions of the Stokes operator as in Theorem 4.3.
The functions in the space ̃𝜎 are less regular in time than those in 𝜎; they also do not have

compact support within the spatial domainΩ. However, they have the advantage that their depen-
dence on the space and time variables is separated, and— crucial for our application here— that
they are directly connected with the Stokes operator. We only state the following lemma here,
since its proof follows that of Lemma 3.11 in [21] or Lemma 2.3 [10] extremely closely.
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Lemma 5.2. If 𝑢 ∈ 𝐿∞(0, 𝑇;𝐻) ∩ 𝐿4(0, 𝑇; 𝐿4) ∩ 𝐿2(0, 𝑇;𝐻1
0
) for all 𝑇 > 0, then 𝑢 satisfies (5.2) for

every 𝜑 ∈ 𝜎(Ω∞) if and only if it satisfies (5.2) for every 𝜑 ∈ ̃𝜎(Ω∞).

Weak solutions that satisfy the energy inequality exist for the CBF equations just as they do for
the Navier–Stokes equations.

Definition 5.3. A Leray–Hopf weak solution of the critical convective Brinkman–Forchheimer
equations (5.1) [𝑟 = 2] with the initial condition 𝑢0 ∈ 𝐻 is a weak solution satisfying the following
strong energy inequality:

‖‖𝑢(𝑡1)‖‖2 + 2𝜇 ∫
𝑡1

𝑡0

‖‖∇𝑢(𝑠)‖‖2 d𝑠 + 2𝛽 ∫
𝑡1

𝑡0

‖‖𝑢(𝑠)‖‖4𝐿4(Ω) d𝑠 ⩽ ‖‖𝑢(𝑡0)‖‖2 (5.3)

for almost all initial times 𝑡0 ∈ [0, 𝑇), including zero, and all 𝑡1 ∈ (𝑡0, 𝑇).

It is known that for every 𝑢0 ∈ 𝐻 there exists at least one global Leray–Hopf weak solution of
(5.1), see [1]. A proof of the corresponding result for the 3D Navier–Stokes equations (that is, (5.1)
with 𝛽 = 0) can be found in many places, for example, in [10] or [21]. However, it is not known if
all weak solutions of the Navier–Stokes equations have to satisfy the energy inequality (5.3) (with
𝛽 = 0). [The recent result in [4] shows that solutions in the sense of distributions need not satisfy
the energy inequality, thereby proving also the non-uniqueness of such solutions.] The problem
of proving equality in (5.3) for weak solutions of the Navier–Stokes equations is also open; there
are only partial results in this direction, but it is known that the energy equality is satisfied by
any weak solution 𝑢 ∈ 𝐿4(0, 𝑇; 𝐿4) (Serrin [24]). Since weak solutions of the CBF equations auto-
matically satisfy this condition, one might expect that they satisfy the energy equality. This was
shown by Hajduk & Robinson in the periodic setting [15]; the purpose of this section is to show
how the argument there can be adapted to the case of a smooth bounded domain by using the
eigenspace-based approximation from Theorem 4.3.

5.2 Proof of the energy equality

In this section, we sketch a proof of the following theorem.

Theorem 5.4. When 𝑟 = 2 every weak solution of (5.1) with initial condition 𝑢0 ∈ 𝐻 satisfies the
energy equality:

‖‖𝑢(𝑡1)‖‖2 + 2𝜇 ∫
𝑡1

𝑡0

‖‖∇𝑢(𝑠)‖‖2 d𝑠 + 2𝛽 ∫
𝑡1

𝑡0

‖‖𝑢(𝑠)‖‖4𝐿4(Ω) d𝑠 = ‖‖𝑢(𝑡0)‖‖2
for all 0 ⩽ 𝑡0 < 𝑡1 < 𝑇. Hence, all weak solutions are continuous functions into the phase space 𝐿2,
that is, 𝑢 ∈ 𝐶([0, 𝑇];𝐻).

Note that to prove this result we require the more refined result of Proposition 2.2, which
enables an approximation that uses only finite-dimensional eigenspaces of the Stokes operator.
This approximation is not compactly supported but Lemma 5.2 allows us to use it as a test func-
tion in the weak formulation (5.2). The ‘approximation by semigroup’ result of Lemma 2.1 is not



16 FEFFERMAN et al.

sufficient since we do not have a version of Lemma 5.2 for the functions arising from this kind
of approximation.

Proof (Sketch). We only sketch the proof, which follows that from [15], which in turn is based on
the argument presented in [10].
We approximate 𝑢(𝑡) for each 𝑡 ∈ [0, 𝑇] in such a way that:

(i) 𝑢𝑛(𝑡) ∈ ̃𝜎(Ω);
(ii) 𝑢𝑛(𝑡) → 𝑢(𝑡) in𝐻1

0
(Ω) with ‖𝑢𝑛(𝑡)‖𝐻1 ⩽ 𝐶‖𝑢(𝑡)‖𝐻1 ;

(iii) 𝑢𝑛(𝑡) → 𝑢(𝑡) in 𝐿4(Ω) with ‖𝑢𝑛(𝑡)‖𝐿4 ⩽ 𝐶‖𝑢(𝑡)‖𝐿4 ; and
(iv) 𝑢𝑛(𝑡) is divergence free and zero on 𝜕Ω;

with (ii)–(iv) holding for almost every 𝑡 ∈ [0, 𝑇]. In (i), we want 𝑢𝑛(𝑡) to be in the finite-
dimensional space spanned by the first 𝑛 eigenfunctions of the Stokes operator; we can obtain
such an approximation using Theorem 4.3 by setting

𝑢𝑛(𝑡) ∶= Π1∕𝑛𝑢(𝑡) =
∑
𝜆𝑗<𝑛

2

e−𝜆𝑗∕𝑛⟨𝑢(𝑡), 𝑤𝑗⟩𝑤𝑗

for each 𝑡 ∈ [0, 𝑇].
In the proof, we will need the fact that

‖𝑢𝑛 − 𝑢‖𝐿4(0,𝑇;𝐿4) → 0 as 𝑛 → ∞, (5.4)

which follows from (iii): since 𝑢 ∈ 𝐿4(0, 𝑇; 𝐿4) and ‖𝑢𝑛(𝑡) − 𝑢(𝑡)‖𝐿4 → 0 for almost every 𝑡 ∈
[0, 𝑇], we can obtain (5.4) by an application of the Dominated Convergence Theorem (with
dominating function (1 + 𝐶)‖𝑢(𝑡)‖𝐿4). A similar argument (using (ii)) shows that

‖𝑢𝑛 − 𝑢‖𝐿2(0,𝑇;𝐻1) → 0 as 𝑛 → ∞.

To prove the energy equality for some time 𝑡1 > 0, we set

𝑢ℎ𝑛(𝑡) ∶= ∫
𝑡1

0

𝜂ℎ(𝑡 − 𝑠)𝑢𝑛(𝑠) d𝑠,

where 𝜂ℎ is an even mollifier. Since 𝑢ℎ𝑛 ∈ ̃𝜎(Ω𝑇), we can use it as a test function in (5.2):

−∫
𝑡

0

⟨𝑢(𝑠), 𝜕𝑡𝑢ℎ𝑛(𝑠)⟩ + 𝜇 ∫
𝑡

0

⟨∇𝑢(𝑠), ∇𝑢ℎ𝑛(𝑠)⟩ + ∫
𝑡

0

⟨(𝑢(𝑠) ⋅∇)𝑢(𝑠), 𝑢ℎ𝑛(𝑠)⟩
+ 𝛽 ∫

𝑡

0

⟨|𝑢(𝑠)|2𝑢(𝑠), 𝑢ℎ𝑛(𝑠)⟩ = −⟨𝑢(𝑡), 𝑢ℎ𝑛(𝑡)⟩ + ⟨𝑢(0), 𝑢ℎ𝑛(0)⟩.
We first take the limit as 𝑛 → ∞. The limits in the linear terms are relatively straightforward.

In the Navier–Stokes nonlinearity, we can use

||||∫ 𝑡1

0

⟨(𝑢(𝑠) ⋅∇)𝑢ℎ𝑛(𝑠), 𝑢(𝑠)⟩ d𝑠 − ∫
𝑡1

0

⟨(𝑢(𝑠) ⋅∇)𝑢ℎ(𝑠), 𝑢(𝑠)⟩ d𝑠||||
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⩽ ∫
𝑡1

0

‖𝑢(𝑠)‖2
𝐿4
‖∇𝑢ℎ𝑛(𝑠) − ∇𝑢ℎ(𝑠)‖ d𝑠

⩽ ‖𝑢‖2
𝐿4(0,𝑇;𝐿4)

‖𝑢ℎ𝑛 − 𝑢ℎ‖𝐿2(0,𝑇;𝐻1
0
).

In the Forchheimer term |𝑢|2𝑢, we have
||||∫ 𝑡1

0

⟨||𝑢(𝑠)||2𝑢(𝑠), 𝑢ℎ𝑛(𝑠)⟩ d𝑠 − ∫
𝑡1

0

⟨||𝑢(𝑠)||2𝑢(𝑠), 𝑢ℎ(𝑠)⟩ d𝑠||||
⩽ ∫

𝑡1

0

‖‖𝑢(𝑠)‖‖3𝐿4‖𝑢ℎ𝑛(𝑠) − 𝑢ℎ(𝑠)‖𝐿4 d𝑠
⩽ ‖𝑢‖3

𝐿4(0,𝑇;𝐿4)
‖𝑢ℎ𝑛 − 𝑢ℎ‖𝐿4(0,𝑇;𝐿4).

By our choice of 𝑢ℎ, we have

∫
𝑡1

0

⟨𝑢, 𝜕𝑡𝑢ℎ⟩ d𝑠 = ∫
𝑡1

0 ∫
𝑡1

0

�̇�ℎ(𝑡 − 𝑠)⟨𝑢(𝑡), 𝑢(𝑠)⟩ d𝑡 d𝑠 = 0,

and so

𝜇 ∫
𝑡1

0

⟨∇𝑢,∇𝑢ℎ⟩ + ∫
𝑡1

0

⟨(𝑢 ⋅∇)𝑢, 𝑢ℎ⟩ + 𝛽 ∫
𝑡1

0

⟨|𝑢|2𝑢, 𝑢ℎ⟩
= −⟨𝑢(𝑡1), 𝑢ℎ(𝑡1)⟩ + ⟨𝑢(0), 𝑢ℎ(0)⟩.

Next we let ℎ → 0, for which the argument is similar; we use the facts that the mollifier 𝜂ℎ inte-
grates to 1∕2 on the positive real axis and that 𝑢 is weakly continuous into 𝐿2 to show that the
right-hand side tends to

−
1

2
‖𝑢(𝑡1)‖2 + 1

2
‖𝑢(𝑡0)‖2.

The continuity of 𝑢 into 𝐿2 now follows by combining the weak continuity into 𝐿2 and the
continuity of 𝑡 ↦ ‖𝑢(𝑡)‖, which is a consequence of the energy equality. □

6 CONCLUSION

Returning to the issues discussed in the introduction, recall that while the ‘spherical’ truncation
of a Fourier expansion

𝑢𝑛 ∶=
∑
|𝑘|⩽𝑛 �̂�𝑘e

i𝑘⋅𝑥

does not behave well in terms of boundedness/convergence in 𝐿𝑝 spaces, the ‘cubic’ component-
by-component truncation

𝑢[𝑛] ∶=
∑

|𝑘𝑗|⩽𝑛 �̂�𝑘e
i𝑘⋅𝑥, 𝑘 = (𝑘1, … , 𝑘𝑑),

does.
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One can expect (cf. [2]) that there are similar problems in using a straightforward truncation of
an expansion in terms of an orthonormal family of eigenfunctions

𝑃𝜆𝑢 ∶=
∑
𝜆𝑛⩽𝜆

⟨𝑢,𝑤𝑛⟩𝑤𝑛,

(where𝐴𝑤𝑛 = 𝜆𝑛𝑤𝑛). It is natural to ask if there is a ‘good’ choice of eigenfunctions such that the
truncations

𝑃𝑛𝑢 ∶=
∑
𝑤∈𝐸𝑛

⟨𝑢,𝑤⟩𝑤,
where 𝐸𝑛 is some collection of eigenfunctions, is well behaved with respect to the 𝐿𝑝 spaces.
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