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Abstract

This thesis attempts to quantify the problem of ancestral degeneracy of sequential Monte
Carlo samples, which is known to have a critical effect on the performance of the re-
sulting estimators. To facilitate comparisons between different algorithms, the induced
genealogical processes are analysed under an asymptotic regime in which the number of
particles tends to infinity. Simple conditions are derived under which these genealogical
processes converge weakly to Kingman’s well-studied n-coalescent, with a certain time
change. These sufficient conditions are verified for many of the most popular sequential
Monte Carlo algorithms, giving a novel insight into the large-sample behaviour of the
associated estimators. The asymptotic regime serves to unify these different algorithms
in one framework, the genealogical differences between the algorithms then being fully
captured by the respective time-change functions. The results also have implications in
theoretical population genetics, where the processes studied may be seen as population
models involving selection. Our main theorem then comprises a novel weak convergence
result for genealogies arising from non-neutral populations.
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Notation and Conventions

N the natural numbers starting from one, {1, 2, . . . }

N0 the natural numbers starting from zero, {0, 1, 2, . . . }

Pn the set of partitions of {1, . . . , n}

[a] the set {1, 2, . . . , a} where a ∈ N, or the empty set if a = 0

a : b the set {a, a + 1, . . . , b} where a ≤ b ∈ N, defined to be the empty set
when a > b

Sk the k-dimensional unit simplex {x1:k+1 ≥ 0 :
∑k+1

i=1 xi = 1}

xA the subvector consisting of the elements of x with index in set A ⊆ N

x−a the subvector xA where A = {1, 2, . . . , a−1, a+ 1, . . . n}, a ∈ {1, . . . , n},
and n is the length of x which should be clear from context

(a)b the falling factorial a(a − 1) · · · (a − b + 1) where a ∈ N0, b ∈ N, and
define (a)0 = 1(

a
b

)
binomial coefficient where a, b ∈ N0, defined to be 0 when a < b

a ∧ b the minimum of a and b∏
∅ the empty product is taken to be 1∑
∅ the empty sum is taken to be 0, while the sum over an index vector of

length zero is the identity operator

Ft the (backward) filtration generated by offspring counts up to time t

E expectation

Et filtered expectation E[· | Ft−1]

EP expectation with respect to a specific probability measure P

Var variance

Cov covariance
d
= equal in distribution

∼iid sampled i.i.d. from

1A indicator on event A

Ac the complement of set A

|A| the cardinality of set A

δab the Kronecker delta δab := 1{a=b}

O(·) standard asymptotic notation: f(x) = O(g(x)) if there exist M ∈
[0,∞), x0 ∈ R such that f(x) ≤Mg(x) for all x ≥ x0
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o(·) standard asymptotic notation: f(x) = o(g(x)) if for all ε > 0 there exists
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o(f(x))
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1 Introduction

I wonder why. I wonder why.
I wonder why I wonder.
I wonder why I wonder why
I wonder why I wonder!

Richard P. Feynman

Since their introduction in the 1990s, sequential Monte Carlo (SMC) methods, some-
times known as particle filters, have found applications in virtually every branch of science.
This is due to the ubiquity of the types of problems in which SMC is most powerful. As
more and more data are collected and scientific models made ever more complex, prac-
titioners are frequently reaching for numerical methods to solve problems. SMC is a
likely candidate whenever the aim is to make inferences from sequentially-observed data.
Moreover, SMC is used as a tool to speed up other numerical methods, by artificially
introducing some sequential structure, for instance: tempering to enable Monte Carlo
sampling from multimodal distributions; constructing nested sequences of events to en-
able rare event simulation; or sequentially decreasing the tolerance level in approximate
Bayesian computation.

Almost three decades of study have produced a menagerie of variations on the stan-
dard “bootstrap” SMC algorithm, along with a deeper understanding of their theoretical
underpinnings. Even so, the problems to which SMC is applied are inherently hard, so
there are still problems to overcome. One such unresolved issue, which is the primary
concern of the current work, is that of ancestral or path degeneracy, which is described in
Section 2.3.1. Although this problem was noted in the original article on SMC by Gordon,
Salmond, and Smith (1993), it still has not been adequately solved.

The current work makes no attempt to provide solutions to the problem of ancestral
degeneracy. The focus is instead on analysing and quantifying it, using a combination of
techniques from the SMC and population genetics literatures. The hope is that, equipped
with more information about this phenomenon, the practitioner will be able to make bet-
ter judgements about their choice of algorithm and tuning parameters, and how much
trust they should put in the resulting estimates.

The bulk of the thesis is divided into four chapters. Chapter 2 provides the relevant
background on sequential Monte Carlo and coalescent theory, and explains in more detail
the relevance of genealogies to the study of SMC algorithms. It also includes a detailed
comparison of the most important “resampling schemes” in the SMC literature, in terms
of various properties of interest. Most of the results included are well-known, but Sec-
tion 2.4.3 provides a more complete summary than can be found elsewhere in the literature.

Chapter 3 sets up the framework for the asymptotic analysis of genealogies, and presents

1



1 Introduction

the first result (Theorem 3.6), a sufficient condition for convergence of finite-dimensional
distributions to those of Kingman’s n-coalescent (Section 2.2.1). The proof of the theorem
builds on a related result of Koskela et al. (2018), which is reviewed in Section 3.2.

In Chapter 4 it is shown that under the same sufficient conditions, the processes un-
der consideration also converge weakly to the n-coalescent (Theorem 4.1), the first weak
convergence result for SMC genealogies. This is a stronger result than that of Chapter 3,
additionally requiring tightness of the processes.

Chapter 5 consists of a series of corollaries, each of which verifies the theorem conditions
for a particular class of SMC algorithms. This includes the majority of SMC algorithms
commonly used by practitioners.

2



2 Background

Anyone who considers arithmetical
methods of producing random digits is, of
course, in a state of sin.

John von Neumann

2.1 Sequential Monte Carlo

The idea of Monte Carlo is to use (pseudo-)random numbers to approximate expectations
under an intractable probability distribution of interest. Sequential Monte Carlo (SMC)
is a class of Monte Carlo algorithms which are implemented sequentially, allowing efficient
sampling from sequences of distributions. SMC was developed for inference in intractable
state space models (details in Section 2.1.1) and introduced to the statistics community
by Gordon, Salmond, and Smith (1993). The basic idea behind SMC is that of sequential
importance sampling, whereby the importance samples from one target distribution are
used to generate proposals for the next. A full derivation of the SMC recursions is beyond
the scope of this work, but the reader is referred to e.g. Chopin and Papaspiliopoulos
(2020) and Doucet and Johansen (2011) for more background. Here it suffices to provide
a motivation in the context of state space models (Section 2.1.1) and the formalism of
Feynman-Kac models (Section 2.1.3).

2.1.1 State space models

State space models, sometimes called hidden Markov models, are a flexible class of sta-
tistical models which are suitable in all sorts of applications where observations appear
sequentially. The general model has two components: a Markov process (Xt)t∈N0 repre-

Yt+1

Xt+1

Yt

Xt

Yt−1

Xt−1. . . . . .
Kt−1 Kt Kt+1 Kt+2

gt−1 gt gt+1

Figure 2.1: Conditional independence graph for a general state space model. (Xt) is a Markov
process with transition kernels (Kt) representing the underlying state of the system.
Yt is a noisy observation of Xt for each t.

3



2 Background

senting the unobservable underlying state of the system, and a sequence (Yt)t∈N0 of ob-
servations containing information about the underlying state. The model is characterised
by its conditional independence structure (Figure 2.1) along with an initial distribution
µ, the Markov transition kernels (Kt)t∈N and the emission distributions (gt)t∈N0 . Written
as a hierarchical model,

X0 ∼ µ(·)
Xt+1 | Xt ∼ Kt+1(·|Xt) for t = 0, 1, . . . (2.1)

Yt | Xt ∼ gt(·|Xt) for t = 0, 1, . . .

The index t will frequently be referred to as time, since in many applications the sequence
is indeed a time series, but it need not be.

Here X and/or Y may be multivariate and observation times need not be equally spaced.
Straightforward generalisations of the stated model can allow for situations in which obser-
vations are not available as often as the state is updated (up to and including the extreme
where the state is a continuous-time Markov process but the observations are available
only at discrete times) or on the other hand where observations are made more frequently
than the state is updated.

Applications include target tracking, where X is the true position of some object and
Y encodes some measurements from sensors e.g. radar; stochastic volatility models, where
X is the volatility and Y is the observed value e.g. the price of a stock; change-point
detection; and many other scenarios in which there is an observed time series from which
one would like to draw inferences or predictions.

The principal inferences of interest in state space models are:

filtering p(xt | y0:t): inferring the current state xt from the observations up to now y0:t

prediction p(xt+h | y0:t): inferring a future state xt+h from the observations up to now
y0:t

(complete) smoothing p(x0:t | y0:t): inferring the sequence of states up to now x0:t from
the observations up to now y0:t

fixed-lag smoothing p(xt−h:t | y0:t): inferring the last h states xt−h:t from the observa-
tions up to now y0:t

If the dynamics of the state space model are parametrised by some θ, i.e. gt and/or Kt

depend on θ, we may also be interested in parameter inference or computing the likelihood
p(y0:t) of the observed data for particular values of θ. Such a model is considered in
Section 2.5.1.

In certain cases, these inference problems may be solved analytically (Section 2.1.2),
but this is not typically the case. For intractable models we must resort to numerical
methods such as Monte Carlo. However, state space inference is problematic even with
Monte Carlo. The main difficulties are that the dimension of the target distributions may
increase along the sequence, and that there is strong dependence between consecutive
distributions. Markov chain Monte Carlo (MCMC), for instance, is known to struggle
with highly correlated targets and its performance drops drastically as dimension increases,
despite convergence rates that are independent of dimension.

As we will see in Section 2.1.4, sequential Monte Carlo somewhat overcomes these
problems, turning the problematic properties of the target distribution to its benefit.
Correlation between consecutive targets is exploited for sequential updating, which is

4



2.1 Sequential Monte Carlo

able to handle the incrementing dimensionality. The resulting linear-in-t computational
complexity also allows inference to be performed on-line, that is, updating the posterior
distribution(s) as observations arrive.

2.1.2 Inference in state space models

If the state space model has linear dynamics with Gaussian noise, the posterior distribu-
tions of interest are also Gaussian. The posterior means and covariances satisfy certain
recursions, implemented by the Kalman filter (Kalman 1960) and Rauch-Tung-Striebel
smoother (Rauch, Striebel, and Tung 1965). Recursions are also available for some other
conjugate models: see for example Kon Kam King, Papaspiliopoulos, and Ruggiero (2021)
and Vidoni (1999). Another analytic case occurs if the state space X is finite, in which
case any integrals become finite sums, and the forward-backward algorithm (Baum et al.
1970) yields the exact posteriors. However, if the state space becomes large, albeit finite,
exact computation becomes infeasible.

If the model is Gaussian but non-linear, the posterior filtering distributions can be
estimated using the extended Kalman filter (see for example Jazwinski 2007), which applies
a first-order approximation in order to make use of the Kalman filter. This method
performs well on models that are “almost linear”. The resulting predictor is only optimal
when the model is actually linear, in which case the extended Kalman filter coincides with
the Kalman filter.

For models that are high-dimensional or highly non-linear or for which gradients are
not readily available, the exact Kalman filter updates can be replaced by sample approx-
imations. The ensemble Kalman filter (Evensen 1994) uses a Monte Carlo sample from
the current time, propagates these points through the transition dynamics, and uses the
sample covariance as an estimator of the updated covariance matrix. The means, which
are cheaper to evaluate and more stable than the covariances, are still updated using the
Kalman filter recursion, based on the estimated covariance. The unscented Kalman filter
(Wan and Merwe 2000) uses a deterministic sample chosen via the unscented transfor-
mation, which is then propagated through the non-linear transition kernel to obtain a
characterisation of the distribution at the next time step. The sample consists of 2d + 1
points, where d is the dimension of the state space, and defines a Gaussian approximation
to the updated distribution. If the model is really linear-Gaussian then the sample points
are sufficient to recover the correct distribution.

In complex or high-dimensional models, exact inference is often infeasible, and we turn
instead to Monte Carlo methods. Markov chain Monte Carlo performs woefully on state
space models due to the high dimension of the parameter space and high correlation
between dimensions. But we can exploit the sequential nature of the underlying dynamics
to decompose the problem into a sequence of inferences of fixed dimension. This is the
motivation behind sequential Monte Carlo (SMC).

2.1.3 Feynman-Kac models

State space models are very natural and intuitive applications, but they do not do justice
to the scope of SMC algorithms, which is much wider. On the other hand, every SMC
algorithm is a Monte Carlo approximation of some Feynman-Kac model. Before formally
introducing SMC let us therefore define a generic Feynman-Kac model. For a more in-
depth study, the reader is directed to the exhaustive books by Del Moral (2004, 2013) or
the more accessible Chopin and Papaspiliopoulos (2020, Chapter 5).

5



2 Background

Define a state space X , which in this presentation we assume to be common for all
times: this is often not the case in practice, but the generalisation to a sequence of state
spaces is straightforward. The basic components of the Feynman-Kac model are a Markov
law, defined by an initial distribution M0 on X and transition kernels Mt : X 7→ X for
t ∈ N; and a sequence of potential functions G0 : X 7→ [0,∞) and Gt : X 2 7→ [0,∞) for
t ∈ N. From these we can construct, for any time horizon T , a sequence of Feynman-Kac
measures (Qt)t=0:T defined by the changes of measure

Qt(dx0:T ) =
1

Lt
G0(x0)M0(dx0)

{
t∏

s=1

Gs(xs−1, xs)

}{
T∏
s=1

Ms(xs−1, dxs)

}
, (2.2)

where Lt is the normalising constant required to make Qt a probability measure. Other
quantities such as Qt(dx0:t) can be obtained as marginals of (2.2), allowing us to treat
all of the inference problems described in Section 2.1.1 by approximating Qt and then
possibly marginalising.

The generic state space model defined in (2.1) may be described by a Feynman-Kac
model where:

M0 := µ

Mt(xt−1, dxt) := Kt(dxt | xt−1) for t = 1, 2, . . .

G0(x0) := g0(y0 | x0)

Gt(xt−1, xt) := gt(yt | xt) for t = 1, 2, . . . . (2.3)

This is not the only Feynman-Kac model for (2.1); this corresponds to the bootstrap SMC
algorithm, which is the simplest implementation. Abusing notation, gt now denotes the
density of the corresponding emission distribution; state space models in which these
densities do not exist can still be expressed as Feynman-Kac models, but not by this
bootstrap model. In practice the bootstrap SMC algorithm may be significantly outper-
formed by more involved algorithms such as auxiliary particle filters (Carpenter, Clifford,
and Fearnhead 1999; Pitt and Shephard 1999) and those using locally optimal proposals
(e.g. Doucet, Godsill, and Andrieu 2000) or lookahead methods (Lin, Chen, and Liu 2013).
Feynman-Kac formalisms for some of these variants are presented for example in Chopin
and Papaspiliopoulos (2020, Section 5.1.2).

It remains to demonstrate that the measures Qt arising from (2.3) are sufficient for all the
usual inference problems in the corresponding state space model (2.1). By construction,
the complete smoothing distribution is precisely

Qt(dx0:t) =
1

Lt
G0(x0)M0(dx0)

t∏
s=1

Gs(xs−1, xs)Ms(xs−1, dxs)

= g0(y0 | x0)µ(dx0)

t∏
s=1

gs(ys | xs)Ks(dxs | xs−1)

= p(dx0:t | y0:t).

The filtering, prediction and fixed-lag smoothing distributions are all also marginals of
some Qt(dx0:T ):

p(dxt | y0:t) = Qt(dxt)

p(dxt+h | y0:t) = Qt(dxt+h) (2.4)

p(dxt−h:t | y0:t) = Qt(dxt−h:t),

6



2.1 Sequential Monte Carlo

while the likelihood p(y0:t) = Lt. This means that Monte Carlo approximation of Qt(dx0:T )
is sufficient for inference on any of these distributions, since marginalisation of Monte Carlo
samples is trivial. The likelihood, on the other hand, is not obtained by marginalisation;
nevertheless, we will see that likelihood estimates can also be obtained “for free”. The
next section describes how we may obtain Monte Carlo samples from Qt(dx0:T ).

2.1.4 Sequential Monte Carlo for Feynman-Kac models

In order to implement the SMC algorithm corresponding to a given Feynman-Kac model,
we need to be able to sample from M0 and from Mt(x, ·) for all x, t; and evaluate Gt(x, y)
pointwise for each x, y, t. Under these conditions we may implement Algorithm 2.1, which
describes a generic SMC algorithm. The only free choices are the parameter N , which
dictates the number of particles used, and the resample procedure. However, remember
that given a particular state space model there is also a choice of possible Feynman-Kac
descriptions, and this choice can strongly affect performance.

Input: T,N,M0, (Mt)
T
t=1, (Gt)

T
t=0

for i ∈ {1, . . . , N} do Sample X
(i)
0 ∼M0(·)

for i ∈ {1, . . . , N} do w
(i)
0 ←

{∑N
j=1G0(X

(j)
0 )
}−1

G0(X
(i)
0 )

for t ∈ {1, . . . , T} do

Sample a
(1:N)
t−1 ∼ resample({1, . . . , N}, w(1:N)

t−1 )

for i ∈ {1, . . . , N} do Sample X
(i)
t ∼Mt(X

(a
(i)
t−1)

t−1 , ·)

for i ∈ {1, . . . , N} do w
(i)
t ←

{∑N
j=1Gt(X

(a
(j)
t−1)

t−1 , X
(j)
t )
}−1

Gt(X
(a

(i)
t−1)

t−1 , X
(i)
t )

end

Algorithm 2.1: Sequential Monte Carlo for a generic Feynman-Kac model

The choice of resample procedure can also have a profound effect on performance and
is discussed in detail in Section 2.4. Resampling is not necessary for the algorithm to be
valid, but it is important to ensure good performance. Its purpose is to periodically “reset”

the weights w
(1:N)
t , preventing weight degeneracy. This is the phenomenon that multiplying

importance weights over time causes the variance of the unnormalised weights to increase
exponentially, until after some iterations practically all of the weight is concentrated on
one particle, with the rest having weights very close to zero. This means that the Monte
Carlo sample (of size N) essentially consists of just one sample, so that the Monte Carlo
approximations have very high variance.

The idea of resampling is to make multiple copies of particles with high weights and

eliminate particles with low weights, then reset the weights to w
(1:N)
t = (1, . . . , 1)/N . Done

correctly, this procedure does not introduce any bias and, although it increases variance in
the short term by adding extra randomness, it improves stability in the long term. It also
prevents computational budget being “wasted” on simulating low-weight particles which
do not contribute much to the approximation.

For each i = 1, . . . , N , the resample procedure selects a parent, indexed by a
(i)
t−1 ∈

{1, . . . , N}, which copies its state to the ith particle in the next iteration. These copies
are then mutated independently and so the algorithm goes on. We define the offspring
counts for each i, t as

ν
(i)
t−1 := |{j : a

(j)
t−1 = i}|,
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2 Background

the number of copies in generation t of particle i from generation t − 1 appearing by

resampling. Notice that ν
(1:N)
t−1 is expressed as a non-injective function of a

(1:N)
t−1 , and

as such carries less information. To ensure Algorithm 2.1 is valid, we assume that the

resampling procedure is unbiased, that is, the expectation of ν
(i)
t−1 is proportional to w

(i)
t−1

for each i. This requirement is formalised in Definition 2.2.

...

...

...

...

X
(1:N)
t−1

w
(1:N)
t−1

a
(1:N)
t−1

ν
(1:N)
t−1

X
(1:N)
t

w
(1:N)
t

a
(1:N)
t

ν
(1:N)
t

X
(1:N)
t+1

w
(1:N)
t+1

a
(1:N)
t+1

ν
(1:N)
t+1

...

...

...

...

Figure 2.2: Part of the conditional dependence graph implied by Algorithm 2.1. The direction of
time is from left to right.

Figure 2.2 shows a section of the conditional dependence graph implied by Algorithm 2.1.
Because the algorithm proceeds sequentially, its computational cost is linear in the time
horizon T , assuming that the cost of evaluating Gt is O(1). Furthermore, the bootstrap
algorithm, where the Feynman-Kac model is (2.3), processes the data y0:T one observation
at a time via Gt(xt−1, xt) = gt(yt | xt), which means that it can be run on-line, incorpo-
rating each observation as it becomes available. This is in stark contrast to a standard
MCMC approach, for example, which would have to process all of the data at once up
to a fixed time horizon. Adding one more observation would require running the MCMC
algorithm from scratch on the extended target, making the computational cost at least
linear per time point and rendering on-line inference infeasible.

The output of Algorithm 2.1 is, for i = 1, . . . , N and t = 0, . . . , T , the states X
(i)
t ∈ X ,

the weights w
(i)
t ∈ [0, 1] and, for i = 1, . . . , N and t = 0, . . . , T − 1, the parental indices

a
(i)
t ∈ {1, . . . , N}. Depending on the application, one may wish to retain only a subset of

this output in order to reduce memory usage.
The output can be used to construct discrete approximations of the various probability

measures of interest, with which one may estimate integrals against test functions, i.e.
expectations. The measure Qt(dxt), corresponding to a filtering distribution in the state
space model example, is approximated by the empirical measure

N∑
i=1

w
(i)
t δX(i)

t
, (2.5)

where δx denotes a unit mass at x. Expectations of appropriate test functions ϕ : X 7→ R
are then approximated by their expectations with respect to the empirical measure,

EQt [ϕ(dxt)] '
N∑
i=1

w
(i)
t ϕ(X

(i)
t ).
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2.2 Coalescent theory

The precise meaning of approximation (or ') is clarified in Section 2.1.5. To approximate

Qt(dx0:t), we first define the trajectories X
(i)
t,0:t (for each i ∈ {1, . . . , N}) by setting X

(i)
t,t :=

X
(i)
t and tracing back through the ancestors via the recursion Xt,s(i) = X

(a
(i)
t )

t,s+1 for each
s ∈ {0, . . . , t}. We can then construct the approximation

N∑
i=1

w
(i)
t δX(i)

t,0:t

of Qt(dx0:t), corresponding to a smoothing distribution in a state space model, with which
we can calculate expectations as above. Similar approximations can be constructed for
the other measures in (2.4). We can also approximate the normalising constants, which
correspond to marginal likelihoods in a state space model, using the unnormalised weights:

Lt '
1

N

N∑
i=1

G0(X
(i)
0 )

T∏
t=1

1

N

N∑
i=1

Gt(X
a
(i)
t−1

t−1 , X
(i)
t ). (2.6)

The unnormalised weights could be output directly from Algorithm 2.1, or re-calculated
from the states as shown here.

2.1.5 Theoretical justification

It can be shown that SMC approximations of expectations of test functions possess various
desirable properties. For instance, it is quite easy to show that the approximations (2.5)
satisfy a law of large numbers:

N∑
i=1

w
(i)
t ϕ(X

(i)
t ) −→ Qt(ϕ),

almost surely and in the L2 sense, as N →∞, under some conditions (Crisan and Doucet
2002). Moreover, they satisfy a central limit theorem:

√
N

(
N∑
i=1

w
(i)
t ϕ(X

(i)
t )−Qt(ϕ)

)
−→ Normal(0, σt(ϕ))

in distribution, as N → ∞ (Chopin 2004; Del Moral and Guionnet 1999). The
√
N

scaling agrees with the standard convergence rate for Monte Carlo approximations. Under
additional conditions, the asymptotic variances σt(ϕ) are stable over t (e.g. Chopin and
Papaspiliopoulos 2020, Proposition 11.13), justifying the use of SMC filtering on-line. It
can also easily be shown that the likelihood estimates (2.6) are unbiased (see for example
Chopin and Papaspiliopoulos 2020, Proposition 16.3).

There are many other results concerning convergence, stability and error bounds for
SMC algorithms. A full exposition of these results and their conditions is beyond the
scope of this work, but Del Moral (2004, 2013) provides an exhaustive treatment, and
some of the key ideas and results are also developed in Chopin and Papaspiliopoulos (2020,
Chapter 11). Suffice it to say that SMC algorithms enjoy enough theoretical properties to
be useful in practice.

2.2 Coalescent theory

The current work draws on the literature around coalescent theory, primarily from popu-
lation genetics. This section summarises the relevant parts of that literature. We will see
in Section 2.3 how it applies to SMC.
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2 Background

Figure 2.3: A realisation of the n-coalescent with n = 50.

2.2.1 Kingman’s coalescent

The Kingman coalescent (Kingman 1982a,b,c) is a continuous-time Markov process on
the space of partitions of N. For our purposes we need only consider its restriction to
{1, . . . , n}, termed the n-coalescent (Definition 2.1), since we only ever consider finite
samples from a population.

Definition 2.1. Let Pn denote the set of partitions of {1, . . . , n}. The n-coalescent is
the homogeneous continuous-time Markov process on Pn with infinitesimal generator
Q having entries

qξ,η =


1 ξ ≺ η
−|ξ|(|ξ| − 1)/2 ξ = η

0 otherwise

(2.7)

for every ξ, η ∈ Pn, where |ξ| denotes the number of blocks in ξ, and ξ ≺ η means
that η is obtained from ξ by merging exactly one pair of blocks.

A particularly attractive feature of the n-coalescent is its tractability: its distribution and
those of many statistics of interest are available in closed form (Section 2.2.2). It turns out
also to be extremely useful as a limiting distribution in population genetics, including in its
domain of attraction the genealogies of a wide range of population models (Section 2.2.3).

2.2.2 Properties of Kingman’s coalescent

The simplicity of Q allows various properties of the n-coalescent to be studied analytically.
Starting with n blocks, exactly n−1 coalescences are required to reach the absorbing state
where all blocks have coalesced, known in population genetics as the most recent common
ancestor (MRCA).

Denote by t2, . . . , tn the waiting times between coalescent events, where ti is the amount
of time for which the coalescent has exactly i distinct lineages (see Figure 2.4). A conse-
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t5

t4

t3

t2

T5 = 0

T4

T3

T2

T1 = TMRCA

Figure 2.4: Definitions of ti, Ti in the n-coalescent.

quence of Definition 2.1 is that these waiting times are independent and have distributions

ti ∼ Exp

((
i

2

))
.

The partial sum Tk :=
∑n

i=k+1 ti gives the total time up to the (n−k)th coalescence event,
that is, the first time at which there are only k lineages remaining out of the initial n (see
Figure 2.4). The partial sums, being sums of independent Exponential random variables,
have HypoExponential distributions.

Another important property of the n-coalescent is exchangeability. That is, its law is
invariant under permutations of the branches. This can be seen from (2.7) since the merge
rate is equal for every pair of partitions ξ ≺ η.

Time to MRCA

Of particular interest is the tree height or time to the most recent common ancestor,
TMRCA := T1. With some algebra we find, for instance,

E[TMRCA] =

n∑
i=2

E[ti] =

n∑
i=2

2

i(i− 1)
= 2

n∑
i=2

{
1

i− 1
− 1

i

}
= 2

(
1− 1

n

)
and

Var[TMRCA] =
n∑
i=2

Var[ti] =
n∑
i=2

(
2

i(i− 1)

)2

.

The expected tree height converges to 2 as n→∞, and the variance converges to 4(π2 −
9)/3 ' 1.16. The somewhat surprising fact that the tree height does not diverge with n is
a result of the very high rate of coalescence close to the bottom of the tree. This rate is
large enough that the full Kingman coalescent (on N) comes down from infinity, that is,
despite starting with infinitely many blocks, after any positive amount of time these have
coalesced into finitely many blocks.

Total branch length

Another quantity of interest is the total branch length, L :=
∑n

i=2 iti. For instance

E[L] =
n∑
i=2

iE[ti] =
n∑
i=2

2

i− 1
=

n−1∑
i=1

2

i
' 2 ln(n− 1)

11



2 Background

and

Var[L] =
n∑
i=2

i2 Var[ti] =
n∑
i=2

4

(i− 1)2
=

n−1∑
i=1

4

i2
.

Note that although the mean total branch length diverges with n, the variance converges
to a constant, 4π2/6 ' 6.58.

Probability that sample MRCA is population MRCA

One other interesting quantity is the probability that the MRCA of k random lineages
coincides with the population MRCA (e.g. Durrett 2008, Theorem 1.7). Consider a random
subsample of size k among n lineages distributed according to the n-coalescent. Denote
by Sk,n the event that these k lineages have the same MRCA as all n lineages. The
probability of this event is calculated in Saunders, Tavaré, and Watterson (1984, Example
1) and again in Spouge (2014, Equation (3)), in both cases arising as a special case of
more general results. A direct proof is given below.

Consider the two subtrees produced by cutting the full population tree just below the
population MRCA. The k sampled lineages coalesce before the full-sample MRCA if and
only if all k sampled leaves lie in just one of these two subtrees. Let X be the number of
leaves in the left subtree, so X ∈ {1, . . . , n− 1}, and a consequence of the exchangeability
of the n-coalescent is that X is uniformly distributed on that set. Conditional on X we
have

P[Sck,n | X = x] =

[(
x

k

)
+

(
n− x
k

)](
n

k

)−1

.

Integrating against the distribution of X gives

P[Sk,n] = 1− 1

n− 1

(
n

k

)−1 n−1∑
x=1

[(
x

k

)
+

(
n− x
k

)]

= 1− 1

n− 1

(
n

k

)−1 [( n

k + 1

)
+

(
n

k + 1

)]
=
k − 1

k + 1

n+ 1

n− 1

using binomial identities and some algebra. In particular, when k = 2 we have

P[S2,n] =
n+ 1

3(n− 1)

as the probability that a randomly chosen pair of lineages does not coalesce until the
MRCA of all n lineages.

2.2.3 Models in population genetics

The Kingman coalescent is the limiting coalescent process (in the large population limit)
for a surprisingly wide range of population models. Some important examples of models
in this domain of attraction are introduced in this section. Common to all of these models
are the following assumptions:

• The population has constant size N

• Reproduction happens in discrete generations

12
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• The mechanism for assigning offspring to parents is identical at each generation, and
independent between generations

• The offspring distribution is exchangeable.

As in Section 2.1.4, we define offspring counts in terms of parental indices as νj := |{i : ai =
j}|. Since the assignment of offspring to parents is i.i.d. across generations, the distribution
of offspring counts does not depend on time, and we drop explicit dependence on t from
the notation. Also, under the assumption of exchangeability, it is sufficient to consider
only the offspring counts, rather than the parental indices (which generally carry more
information). These models are all neutral, that is exhibiting no natural selection, because
the offspring counts at each generation are independent, so there can be no preferential
propagation of certain “fitter” lineages.

Cannings model

The neutral Cannings model (Cannings 1974, 1975) is a general class which encompasses
some other important models as special cases.

The Cannings model does not specify a particular distribution for the offspring counts; it
just requires that the distribution is exchangeable, i.i.d. between generations, and preserves
the population size. In particular, the probability of observing offspring counts (v1, . . . , vN )
must be invariant under permutations of this vector.

Rescaled genealogies of the neutral Cannings model converge to the Kingman coalescent
as N →∞, under some conditions on the moments of the offspring distribution. For exam-
ple, one may apply the sufficient conditions of Kingman (1982b): if Var[ν1]→ σ2 ∈ (0,∞)
and E[νk1 ] is bounded for all k ∈ N then, under the time scaling Nσ−2, the genealogies of
the neutral Cannings model converge to the Kingman coalescent.

Wright-Fisher model

The neutral Wright-Fisher model (Fisher 1923, 1930; Wright 1931) is one of the most
studied models in population genetics. At each generation the existing population dies
and is replaced by N offspring. The offspring descend from parents (a1, . . . , aN ) which are
selected according to

ai
iid∼ Categorical({1, . . . , N}, (1/N, . . . , 1/N)).

The joint distribution of the offspring counts is therefore

(v1, . . . , vN ) ∼ Multinomial(N, (1/N, . . . , 1/N)).

Since the Multinomial distribution is exchangeable, the Wright-Fisher model is a special
case of the Cannings model.

Kingman (1982b) shows that the Wright-Fisher model satisfies his sufficient conditions,
and thus the resulting genealogies, appropriately rescaled, converge to the Kingman coa-
lescent as N →∞. The correct time scale in this instance is N , since

Var[ν1] = N
1

N

(
1− 1

N

)
=
N − 1

N
→ 1 =: σ2,

so Nσ−2 = N .
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Moran model

The neutral Moran model (Moran 1958), while perhaps less biologically relevant, is math-
ematically appealing because its simple dynamics make it particularly tractable.

At each generation, an ordered pair of individuals is selected uniformly at random. The
first individual in this pair dies (i.e. leaves no offspring in the next generation), while the
other reproduces (leaving two offspring). All of the other individuals leave exactly one
offspring. This is another special case of the neutral Cannings model, where the offspring
distribution is now uniform over all permutations of (0, 2, 1, 1, . . . , 1).

Under a suitable time-scaling, its genealogies converge to the Kingman coalescent, al-
though the sufficient conditions of Kingman (1982b) do not apply:

Var[ν1] = E[ν2
1 ]− E[ν1]2 = (0 + 1 · N − 2

N
+ 4 · 1

N
)− (0 + 1 · N − 2

N
+ 2 · 1

N
)2

=
N + 2

N
− 12 =

2

N
→ 0,

violating the condition that σ2 > 0. That condition turns out not to be necessary, and the
non-asymptotic variance gives us the correct time scale on which to recover the Kingman
coalescent: N(Var[ν1])−1 = N2/2. It is not surprising that the time scale is an order
bigger than in the Wright-Fisher model, because the Moran model has a reproduction
rate O(N) times lower than in the Wright-Fisher model: at each generation 2 individuals
are involved in reproduction, as opposed to N in the Wright-Fisher model.

2.2.4 Other convergence results

The original work of Kingman (1982b) provides sufficient conditions for the finite-dim-
ensional distributions of genealogies of Cannings models to converge to those of the King-
man coalescent. Möhle (1998) provides another set of sufficient conditions which apply
to the wider class of models in which the population size may vary deterministically, the
offspring distributions are independent but not identical across generations, and exchange-
ability is replaced by the weaker random assignment condition. For that class of models
under the same conditions, Möhle (1999) proves that the genealogies converge weakly as
well as in the sense of finite-dimensional distributions. Möhle (2000) gives a simpler con-
dition which is necessary and sufficient for convergence of Cannings genealogies to the
Kingman coalescent.

Meanwhile many similar results have been established for models in which the limiting
process is not the Kingman coalescent. Relaxing the conditions to allow multiple mergers
in the limit admits Λ-coalescents as limiting processes, with the Kingman coalescent as
a special case (Möhle and Sagitov 1998; Pitman 1999; Sagitov 1999). If simultaneous
mergers are also allowed, the limiting process belongs to the even more general class of
Ξ-coalescents (Möhle and Sagitov 2001), and this class encompasses all possible limiting
genealogies of Cannings models. On the other hand, Del Moral, Miclo, et al. (2009) do not
consider asymptotics in the population size, but instead prove some properties of neutral
models with fixed population N , particularly concerning the MRCA.

The focus of the current work is on systems that admit Kingman genealogies in the limit,
among a wider class of models where, like Möhle (1998, 1999), exchangeability is relaxed
to random assignment, and we also do not require independence between generations,
so our models are not neutral. We instead impose a particular conditional independence
structure which is based on the inherent structure of SMC algorithms (Figure 2.2) but also
serves as a natural description of the dependencies present in populations under selection.
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Our main condition for convergence to the Kingman coalescent, which is introduced in
Chapter 3, can be considered a non-exchangeable non-neutral analogue of the condition
presented in Möhle (2000).

2.2.5 Particle populations

Much of the population genetics framework transfers readily to the case of SMC. The
population is now a population of particles, with each iteration of the SMC algorithm
corresponding to a generation, and resampling playing the part of reproduction. In fact,
SMC populations are in some ways more suited to these population models than actual
biological populations. For example, the assumptions that the population has constant size
N and that reproduction occurs only at discrete generations are satisfied by construction.

However, we cannot assume independence between generations: as seen in Figure 2.2,
the offspring counts at subsequent iterations of an SMC algorithm are not independent
without some conditioning. This means that SMC populations are not neutral. In fact, af-
ter marginalising out the information about the positions of the particles, the genealogical
process is not even Markovian.

2.3 Sequential Monte Carlo genealogies

We have seen that genetic terminology applies quite naturally to SMC. The resampling
step induces parent-offspring relationships, each duplicate of particle i after resampling
being considered one of its offspring. Then follows the notion of offspring counts (also
known as family sizes), that is, the number of offspring assigned to each parent. Viewed
backwards in time, the parent-offspring relationships also imply a genealogy, obtained by
tracing the lineages from each terminal particle through its ancestor in each generation.
We will see in this section that these genealogies, induced by resampling, are not a mere
curiosity but in fact have important implications for the performance of SMC algorithms.

2.3.1 Ancestral degeneracy

Suppose we were using SMC to sample from the smoothing distribution of some state
space model. As described in Section 2.1.4, we run our chosen SMC algorithm forwards,

then output the N sampled trajectories X
(i)
t,0:t (for each i ∈ {1, . . . , N}). Each trajectory

was obtained by tracing back through the parent at each generation, starting from one of
the terminal particles. This means that if two terminal particles i and j share a common

ancestor at some generation s, then X
(i)
t,0:s will be exactly equal to X

(j)
t,0:s, because their

ancestries coincide from time s to 0.

At every resampling step, some parents may be assigned more than one offspring each,
so the further back in time you look, the more of the ancestries of the terminal particles will
have coalesced (see Figure 2.5a). The effect of this is that, instead of obtaining N separate
sampled trajectories, we actually obtain N sampled trajectories that coalesce backwards
in time, which means that the further back in time we look, the fewer distinct samples
we have from the corresponding component of the target distribution. Particularly if we
are interested in smoothing over a long time horizon, the variance of the SMC estimator
is going to blow up.

On the other hand, ancestral degeneracy actually improves the memory efficiency of
SMC. We do not need to store all of the particles generated at each time, at memory cost
O(NT ), but only those that are included in the resulting genealogy. Jacob, Murray, and
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(a) Multinomial resampling (b) Adaptive minimum-variance resampling

Figure 2.5: Illustration of ancestral degeneracy and the mitigating effect of low-variance and adap-
tive resampling. Each line is the lineage of one of the terminal particles, indicating the
index of its ancestor in each generation: (a) with multinomial resampling; (b) the same
system with adaptive systematic resampling.

Rubenthaler (2015) provide an algorithm for efficient storage of the genealogy, reducing
the asymptotic memory cost to O(N logN +T ). However, it is certainly still worth trying
to reduce ancestral degeneracy because to achieve a given level of error with a highly
degenerate system will require such a large N that any such memory gains are cancelled
out.

Mitigating ancestral degeneracy

There are a few possible approaches to mitigating ancestral degeneracy. Firstly, we could
try to limit the number of offspring assigned to any one parent during each resampling
step. We can only go so far, because we need the resampling procedure to remain unbiased
(as discussed in Section 2.1.4), but we can try to reduce the variance inherent in the
resampling procedure. This idea, known as low-variance resampling, is explored in detail
in Section 2.4.

Another idea is to resample less often. Recall that the reason for resampling is to prevent
weight degeneracy (that is, one of the weights tending to one while the others tend to zero).
Now we see that, while removing one type of degeneracy, resampling creates another.
The effect of ancestral degeneracy is essentially the same as that of weight degeneracy:
both drastically increase the variance of the resulting SMC estimators. We can therefore
consider a trade-off between the two, which is the idea behind adaptive resampling (Liu
and Chen 1995, Section 4). The trick is to apply the resampling step only at iterations
in which a certain criterion is met. The most commonly-used criterion, suggested by Liu
and Chen (1995, Equation (14)), is based on the effective sample size

ESS(t) :=

{
N∑
i=1

(w
(i)
t )2

}−1

,

which decreases as the weights degenerate. The resampling step is then applied only at
iterations t such that ESS(t) is less than some pre-specified threshold, typically N/2. If
adaptive resampling is used, some trivial changes must be made to the calculation of the
weights in Algorithm 2.1 to allow the importance weights to accumulate sequentially until
resampling is triggered; see for example Chopin and Papaspiliopoulos (2020, Section 10.2)
for details.
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2.3 Sequential Monte Carlo genealogies

As well as mitigating ancestral degeneracy, adaptive resampling has the virtue of saving
some computation (although the overall asymptotic complexity of the SMC algorithm
does not change). How effective adaptive resampling will be depends on the particular
application and choice of SMC algorithm. If the proposals (i.e. transition kernels) are not
very close to their targets then the weights will degenerate rapidly and the effective sample
size criterion (or similar) will not reduce the frequency of resampling very much.

Low-variance resampling is also less effective under poor proposals: the resulting high-
variance weights lead to high-variance offspring counts, even under minimum-variance
resampling schemes, because the resampling is required to be unbiased.

Adaptive resampling and low-variance resampling can be combined, and this is widely
considered to be the best practice when implementing SMC. Figure 2.5 compares a reali-
sation of ancestral degeneration under multinomial resampling (a relatively high variance
scheme) to the same under adaptive resampling with a minimum-variance resampling
scheme. The degeneration is much more severe in the former case.

There is one technique that completely solves the problem of ancestral degeneracy,
namely backward simulation (Godsill, Doucet, and West 2004). This involves running
an SMC algorithm as usual (the forward pass), and then sampling new ancestors for
each particle during an additional backward pass. The backward-simulated parents in
each generation are chosen among all N particles, making use of particles that were not
included in the forward-sampled trajectories. The effect on genealogies is striking: the
lineages are now sampled independently, so the coalescences caused by resampling do not
feature at all in the output genealogies.

Since this work concerns genealogies induced by resampling, we will not say much more
about backward simulation. There are many situations in which it is impossible to im-
plement and therefore the study of SMC genealogies is still of interest. Firstly, backward
simulation inherently requires a forward and backward pass through all of the data, so
it cannot be implemented on-line. Secondly, calculating the backward-simulation prob-
abilities requires the Markov kernels Mt of the corresponding Feynman-Kac model to
admit densities that can be evaluated pointwise. This is much stronger than the ability
to simulate from Mt, the requirement for applying standard SMC algorithms.

2.3.2 Asymptotic genealogies

If we had access to information about the behaviour of SMC genealogies a priori, i.e.
without having run the algorithm, we would be in a position to answer many questions of
interest. These include practical questions about tuning, for example:

• How many particles should I use in order to maintain (with high enough probability)
a given level of error over a time horizon T?

• With N particles, what is the largest lag over which fixed-lag smoothing produces
reasonable estimates?

• How many particles should I use within particle Gibbs to ensure that (with high
enough probability) at least two distinct trajectories survive each iteration?

This last question touches on a critical aspect of the performance of particle Gibbs algo-
rithms, which is discussed in Section 2.5. We could also consider theoretical questions,
such as:

• For a given class of models and algorithms, what is the effect of ancestral degeneracy
on how the estimators behave over time?
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• Which resampling schemes lead to the smallest amount of ancestral degeneracy?

• What is the effect on genealogies of adaptive resampling?

Many of these questions have already been partially addressed, without any explicit anal-
ysis of genealogies, by way of variance calculations and simulation experiments. But since
these are all genealogical questions by nature, it seems sensible to work directly with the
genealogies, if possible. The problem is that the genealogy of particles is a complex object,
it is random, and it can depend strongly on the particular choice of Feynman-Kac model
and SMC implementation.

It turns out that these problems can be somewhat overcome by considering the ge-
nealogies in an asymptotic regime where the number of particles N tends to infinity. In
this regime, many different particle systems exhibit genealogies of a common form, namely
Kingman’s n-coalescent under suitable time-scalings. The genealogical differences between
various algorithms is then encoded by their respective time-scale functions. This is still a
random object but is less complicated than the genealogy itself; namely a càdlàg function
as opposed to a labelled weighted tree.

In the context of SMC, these asymptotic genealogies were first analysed by Koskela
et al. (2018). The simulations therein suggest that such asymptotic results also transfer
to finite systems, making them practically useful. One of the contributions of the current
work is to demonstrate that Kingman-type genealogies arise from a wide variety of SMC
algorithms, including those most commonly used in practice. In principle this means, for
instance, that genealogies of different SMC algorithms could be compared by examining
their respective time-scale functions.

2.4 Resampling

As we have seen, resampling is necessary within SMC to reset the weights in order to
prevent weight degeneracy. Resampling is itself a Monte Carlo procedure: the discrete
offspring counts can be viewed as stochastic estimates of the continuous weights. In order
to obtain a valid SMC algorithm, these Monte Carlo samples must be unbiased; this
and other desirable properties are formalised in Definition 2.2. There is a huge range
of resampling procedures satisfying these properties, some of which perform better than
others. Some of the most popular resampling schemes are introduced in Section 2.4.2 and
their properties are explored in Section 2.4.3.

2.4.1 Definition

Definition 2.2. For our purposes, a valid resampling scheme is a stochastic func-

tion mapping weights w
(1:N)
t ∈ SN−1 to offspring counts ν

(1:N)
t ∈ {0, . . . , N}N and

satisfying the following conditions:

1. the population size is conserved:
∑N

i=1 ν
(i)
t = N

2. the weights are equal after resampling: w
(i)
t+ = 1/N for all i

3. the resampling is unbiased: E[ν
(i)
t | w

(i)
t ] = Nw

(i)
t for all i.

It is possible to design resampling schemes that violate these properties. Resampling
different numbers of particles in different iterations (violating condition 1) is of course
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2.4 Resampling

possible (see for example Crisan, Del Moral, and Lyons 1999), but we typically have
a fixed limit on computational resources, in which case it makes sense to simulate the
maximum feasible number of particles N at every iteration. There may be circumstances
under which it is beneficial to allow the number of particles to vary adaptively (Chau et al.
2012; Fox 2003; Lee and Whiteley 2018) or at random, but this is not commonly done in
practice.

Condition 2 is sensible because the whole point of resampling is to reset the weights.
However, there are several examples in the literature where the weights are only partially
reset, so that the variance of weights after resampling is not zero, but is lower than
before resampling. For example, a scheme of Liu and Chen (1998) uses the square roots
of the weights for resampling, then corrects by setting unequal weights after resampling
(violating conditions 2 and 3). Liu, Chen, and Logvinenko (2001, Section 3.1) generalise
this further, and suggest setting the resampling weights adaptively as a function of the

true weights w
(1:N)
t . Fearnhead and Clifford (2003) present an optimal resampling scheme

in the case that the state space is discrete, which similarly uses weights other than w
(1:N)
t

for resampling and corrects by giving the particles unequal weights after resampling. The
chopthin resampling algorithm of Gandy and Lau (2016) also violates condition 2.

Deterministic resampling schemes (which cannot generally be unbiased, violating con-
dition 3) have been used by some authors. One such scheme was proposed by Kitagawa
(1996) but is now generally implemented only in its randomised form (see systematic
resampling below). More recent examples include schemes based on optimal transport
(Corenflos et al. 2021; Myers et al. 2021; Reich 2013) and the importance support points
resampling of Huang, Joseph, and Mak (2020).

The mutation and weighting steps of SMC are embarrassingly parallel, but resampling is
not easy to parallelise, presenting a bottleneck to running SMC on parallel or distributed
computer architectures. Whiteley, Lee, and Heine (2016) show that it is possible to
construct resampling schemes that perform well whilst only requiring interaction of a few
particles at a time, suggesting that parallel resampling is possible, and further details
concerning implementation are provided in Lee and Whiteley (2016). The Metropolis
resampler of Murray, Lee, and Jacob (2016) resamples in parallel via a Metropolis MCMC
algorithm, but this introduces bias and thus violates condition 3. Murray, Lee, and Jacob
(2016) also propose rejection resampling, which is unbiased. This constitutes an alternative
method for multinomial resampling (see below) which offers speed-ups when computing
in parallel but requires that an upper bound on the weights is known. A variant that only
requires an “approximate” upper bound on the weights is also presented, but this does
not use the true weights for resampling, and so violates conditions 2 and 3.

The majority of resampling schemes in the literature fit within Definition 2.2, and it
is not usually advantageous to violate the properties 1–3. Definition 2.2 still allows a
great deal of flexibility in the choice of resampling scheme, and many such schemes have
been proposed, some performing better than others. Some important resampling schemes
satisfying these properties are reviewed in Section 2.4.2, and their performance is discussed
in detail in Section 2.4.3 and summarised in Table 2.3.

2.4.2 Examples

Multinomial resampling

Multinomial resampling (Efron and Tibshirani 1994; Gordon, Salmond, and Smith 1993;
Rubin 1987) is one of the simplest resampling schemes. The parental indices are chosen
independently from {1, . . . , N}, each with probability given by the weight of the corre-
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sponding particle w
(i)
t . That is,

a
(1:N)
t ∼iid Categorical({1, . . . , N}, w(1:N)

t ).

This implies that the joint distribution of the offspring counts is

ν
(1:N)
t

d
= Multinomial(N,w

(1:N)
t ).

It follows from properties of the Multinomial distribution that this resampling scheme is
unbiased.

A simple way to sample the parental indices is to use inversion sampling: partition the
unit interval into N subintervals each of which will correspond to a certain index i and

has length equal to the weight w
(i)
t ; then draw N samples Ui ∼ Uniform[0, 1] and classify

them according to which of these subintervals they fall in. Explicitly, the parental index
assigned to child i is the index ai satisfying

ai−1∑
j=1

w
(j)
t ≤ Ui ≤

ai∑
j=1

w
(j)
t . (2.8)

This is illustrated in Figure 2.6.
Fast implementations of multinomial resampling rely on U1, . . . , UN being pre-sorted,

which speeds up the search step (2.8). Sorting N numbers requires O(N logN) com-
putation, but this is not necessary since we can sample directly the order statistics of a
Uniform[0, 1] distribution, at O(N) cost. This can be done either by sampling Xi ∼ Exp(1)
independently for i = 1, . . . , N + 1 and outputting the normalised sums

Uk :=

∑k
i=1Xi∑N+1
i=1 Xi

for k = 1, . . . , N , or by sampling Xi ∼ Uniform[0, 1] independently for i = 1, . . . , N and
computing recursively

UN := X
1/N
N , Uk := X

1/k
k Uk+1;

see Devroye (1986, Chapter 5, Section 3.1). This allows multinomial resampling to be
implemented at O(N) cost. A side-effect is that the sampled ancestral indices will be
ordered and therefore cannot be Categorically distributed, although the offspring counts
still have the correct Multinomial distribution. For the purposes of resampling this isn’t
usually a problem, but the Categorical distribution can anyway be restored at O(N) cost
by applying a random permutation to the offspring indices.

Residual resampling

Residual resampling is described in Liu and Chen (1998) and also in Whitley (1994) where
it is called remainder stochastic sampling.

Each particle X
(i)
t is deterministically assigned bNw(i)

t c offspring, and the remaining

R :=
N∑
i=1

(Nw
(i)
t − bNw

(i)
t c) = N −

N∑
i=1

bNw(i)
t c

offspring are assigned stochastically according to the residual weights

r(i) := (Nw
(i)
t − bNw

(i)
t c)/R.
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0 1
w1 w2 w3 w4 w5 w6

multi

strat

syst

Figure 2.6: Inversion sampling interpretation of multinomial, stratified and systematic resampling.
In this example, N = 6, w(1:6) = (0.25, 0.05, 0.1, 0.35, 0.2, 0.05) and the uniform random
variables input to the resampling schemes are u1:6 = (0.78, 0.29, 0.27, 0.92, 0.54, 0.36).
The solid vertical lines show the partition of [0, 1] into subintervals with lengths w(1:6).
The dotted vertical lines show the partition of [0, 1] into subintervals of length 1/N ,
used for stratified and systematic resampling.
Top row (circles): in multinomial resampling, u1:6 are fed directly into the inversion
sampler. Which subinterval ui falls into determines the parent of offspring i. The
resulting offspring counts in this example are ν(1:6) = (0, 2, 1, 1, 2, 0).
Middle row (diamonds): in stratified resampling, u1:6 are transformed so that one
point lies in each subinterval of length 1/N . The resulting offspring counts are ν(1:6) =
(2, 0, 1, 1, 2, 0).
Bottom row (squares): in systematic resampling, only u1 is used, being transformed to
equally spaced points. The resulting offspring counts are ν(1:6) = (1, 1, 0, 2, 1, 1).

Notice that each r(i) lies in the interval [0, 1/R), and R ∈ {0, . . . , N − 1} with R = 0 only
if all weights are multiples of 1/N in which case all residual weights are zero.

The stochastic part can be implemented using any of the other basic resampling schemes
(e.g. multinomial, stratified, systematic). Most presentations focus on the case where
multinomial resampling is used for the residuals, which is by no means the most sensible
choice. We will explore several different options in what follows.

Stratified resampling

Stratified resampling was introduced by Kitagawa (1996). As in multinomial resampling,
inversion sampling is used sample the parental indices. However, the samples used for
inversion sampling are no longer i.i.d. Uniform[0, 1] samples. Instead, one number is
sampled independently from each subinterval of length 1/N ; that is,

Ui ∼ Uniform

[
i− 1

N
,
i

N

]
.

Alternatively, one may think of standard Uniform samples u1, . . . , uN ∼iid Uniform[0, 1]
with the transformation

Ui =
ui + i− 1

N
.

The parents are then assigned according to (2.8), as illustrated in Figure 2.6. The
offspring distribution is no longer Multinomial, since parental indices are not identically
distributed. Stratified resampling ensures that the samples are “well spread out”, which
reduces the probability of randomly losing high-weight particles or duplicating low-weight
particles.

It will be useful later on to have a better idea about the marginal distributions of

ν
(i)
t that are induced by stratified resampling. There are complex dependencies between
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(a) The overhang is less than 1/N and δL ∈ [0, δ]. The parent under consideration is automatically
assigned K offspring, plus up to two more.
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(b) The overhang is greater than 1/N (this case can only occur when K ≥ 1) and δL ∈ (δ, 1). The
parent under consideration is automatically assigned K − 1 offspring, plus up to two more.

Figure 2.7: Cases for stratified resampling with a fixed weight w = (K + δ)/N .

the offspring counts, but we can still find some constraints on the distribution of each

count conditional on the corresponding weight. Write the ith weight in the form w
(i)
t =

(K + δ)/N , where δ ∈ [0, 1) and K ∈ {0, . . . , N}. Considering the illustration Figure 2.6,

the distribution of ν
(i)
t depends not only on w

(i)
t but also on where the ith weight interval

falls with respect to the length-(1/N) intervals. Denote the left overhang by δL. There are
two cases to consider, which are illustrated in Figure 2.7. In Case (a) the total overhang
is less than 1/N and δL ∈ [0, δ]. In Case (b) the total overhang is greater than 1/N and
δL ∈ (δ, 1). Arrangements such that one or both ends have no overhang are special cases
of Case (a) where δL ∈ {0, δ}. Note that Case (b) cannot occur if K = 0.

In any case ν
(i)
t ∈ {K − 1,K,K + 1,K + 2} almost surely. To define a probability

distribution over these four values, we introduce the notation

pj := P[ν
(i)
t = bNw(i)

t c+ j | w(i)
t ],

for j = −1, 0, 1, 2. Since the sample within each interval of length 1/N is uniform over
that interval, we find the probabilities given in Table 2.1, in terms of δ and δL. The

probabilities do not depend on K, but of course the corresponding values of ν
(i)
t do.

Systematic resampling

Systematic resampling is described in Carpenter, Clifford, and Fearnhead (1999) and also
in Whitley (1994) where it is called stochastic universal sampling.

Like stratified resampling, it uses the inversion sampler of multinomial resampling but
starts with a more regular set of points in [0, 1]. In this scheme, only one standard
Uniform sample is drawn, u ∼ Uniform[0, 1], from which the N samples are generated via
the transformation

Ui =
u+ i− 1

N
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Case (a) Case (b) L.B. U.B.

p−1 0 δL(1 + δ − δL)− δ 0 1/4

p0 1− δ + δL(δ − δL) 1 + δ − 2δL(1 + δ − δL) (1− δ)/2 1− 3δ/4

p1 δ − 2δL(δ − δL) δL(1 + δ − δL) δ/2 (1 + δ)/2

p2 δL(δ − δL) 0 0 1/4

Table 2.1: Marginal probability distribution of ν
(i)
t conditional on w

(i)
t = (K + δ)/N , in terms of

δ and the left overhang δL, along with upper and lower bounds on these in terms of δ
only, which hold in both cases.

for i = 1, . . . , N . The parental indices are again selected according to (2.8), as illustrated
in Figure 2.6.

Kitagawa (1996) suggests a deterministic scheme in which the random u is replaced by
a fixed α ∈ [0, 1]; but, being deterministic, this scheme does not satisfy the unbiasedness
condition (Property 1 in Definition 2.2). Whitley (1994) employs a different description of
systematic resampling, where the interval [0, 1] is joined up into a circle, and the systematic
samples are evenly spaced pointers on an outer ring, which is spun around like a roulette
wheel (Figure 2.8). This comprises adding a random phase to each Ui, modulo one, and
is an exactly equivalent description of systematic resampling.

w1

w2

w3

w4

w5

w6

Figure 2.8: Whitley’s “roulette wheel” description of systematic resampling. The inner circle stays
fixed while the outer circle with its equally-spaced pointers is “spun” by a random
amount. The weights and phase pictured are the same as in Figure 2.6, with N = 6.
For systematic resampling, the two descriptions are equivalent.

Like stratified resampling, systematic resampling ensures the random numbers are “well
spread out”; the resulting samples are even more constrained than with stratified resam-
pling. Systematic resampling also has the advantage of being extremely easy to implement
and computationally efficient, requiring only one sample from a pseudo-random number
generator (PRNG) followed by O(N) elementary operations.

However, the systematic scheme is known to exhibit pathological behaviour in some
cases because its performance depends on the ordering of the weights. A simple example
of this phenomenon is presented in Douc, Cappé, and Moulines (2005). Such behaviour
can be avoided by randomly permuting the weights before resampling, and this is the
recommended practice.
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Star resampling

For the sake of comparison, we also construct a resampling scheme which is in some sense
the worst possible. Sample

a ∼ Categorical({1, . . . , N}, w(1:N)
t )

and set a
(i)
t = a for all i. The resulting offspring counts are all equal to zero except for

ν
(a)
t , which is equal to N . This resampling scheme is indeed unbiased, since each offspring

count has marginal distribution

ν
(i)
t =

{
0 w.p. 1− w(i)

t

N w.p. w
(i)
t

conditional on w
(1:N)
t . These offspring counts have the highest possible marginal variance

subject to E[ν
(i)
t | w

(i)
t ] = Nw

(i)
t and ν

(i)
t ∈ {0, . . . , N}.

We call this scheme star resampling because the parent-offspring relationships at each
iteration form a star graph.

Minimal variance branching

The minimal variance branching (MVB) algorithm of Crisan and Lyons (1999) provides
a framework for resampling that enforces the minimal variance. It requires that each

offspring count ν
(i)
t , conditionally on w

(i)
t , has marginal distribution

ν
(i)
t | w

(i)
t

d
= bNw(i)

t c+ Bernoulli(Nw
(i)
t − bNw

(i)
t c). (2.9)

We will see later on that this is exactly the framework of stochastic rounding.

The set-up of Crisan and Lyons (1999) does not require the number of particles to remain
constant from one generation to the next (Property 1 in Definition 2.2), so the MVB

algorithm could be implemented for instance by sampling each ν
(i)
t independently from

(2.9). The authors remark that enforcing strictly negative correlation between the offspring
counts can improve the rate of convergence, but they do not specify how this might
be achieved. Since we are not given a specific implementation, MVB resampling is not
discussed much in the remainder of the chapter, and is for instance omitted from Table 2.3
since many of the properties included there are not well-defined for MVB resampling.

Srinivasan sampling procedure

Gerber, Chopin, and Whiteley (2019) build on the work of Crisan and Lyons (1999) in that
they construct a resampling scheme for which the marginal offspring counts are distributed
as (2.9), but the number of particles is held constant and non-negative correlation of
offspring counts is enforced. The resulting scheme is termed Srinivasan sampling procedure
(SSP) resampling after Srinivasan (2001).

The implementation is somewhat complicated compared to the other schemes we have
seen (for full details see Gerber, Chopin, and Whiteley 2019, Algorithm 1) but a brief

description is given here. The offspring counts are initialised at Nw
(1:N)
t , then the algo-

rithm iterates through pairs of counts, rounding one of the pair up and the other down
by an amount such that at least one of the pair ends up an integer. After at most N such
adjustments, all of the counts are integers and can be returned. Each iteration adds and
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subtracts the same amount so that the sum of the counts is preserved, ensuring that the
number of particles remains constant. Which of the selected pair is increased/decreased
in each iteration is chosen at random with probabilities that guarantee the resampling is
unbiased.

As well as proposing this resampling scheme, Gerber, Chopin, and Whiteley (2019)
make several other contributions to the SMC resampling literature, some of which will be
discussed later.

Abbreviation Description

multi multinomial resampling

star star resampling

strat stratified resampling

syst systematic resampling

res-multi residual resampling with multinomial residuals

res-star residual resampling with star residuals

res-strat residual resampling with stratified residuals

res-syst residual resampling with systematic residuals

ssp Srinivasan sampling procedure resampling

Table 2.2: Abbreviations for resampling schemes

2.4.3 Properties

In this section we consider some important properties of resampling schemes, and see
how the example schemes of Section 2.4.2 compare in terms of these. The findings are
summarised in Table 2.3, with the exception of a few properties which depend on details of
the implementation or are applicable only to a subset of the resampling schemes considered.

Support of offspring numbers

Recall that the weights give an indication of how useful each particle is for the approxima-
tion. Killing a high-weight particle is likely to increase the variance of the SMC estimates,
while duplicating a low-weight particle wastes computational resources on propagating
particles that will not contribute much to reducing that variance. One way to assess the
performance of a given resampling scheme, then, is to consider the support of the marginal
offspring distributions, conditional on the weights. This tells us how many duplicates it
is possible to obtain from a particle with a given weight, and is therefore an indication of
performance, albeit a rather crude one.

Suppose that w
(i)
t ∈ [KN ,

K+1
N ). The value of K roughly determines how useful particle i

is. Conditional on K, we will determine the range of possible values ν
(i)
t can take, under

each of the resampling schemes described in Section 2.4.2.

Under multinomial resampling, it is possible for ν
(i)
t to take any value from 0 to N ,

although some values are of course more likely than others. Thus it is possible for a high-
weight particle to have zero offspring, or a low-weight particle to have many offspring,
simply by chance.
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Residual resampling ensures that every particle with above-average (i.e. > 1/N) weight
has at least one offspring, avoiding the loss of high-weight particles. If the residuals are
sampled using multinomial resampling then the duplication of low-weight particles is not

avoided, ν
(i)
t ∈ {K, . . . ,K + R} ⊆ {K, . . . , N}, but this can be addressed by using a

lower-variance scheme for the residual offspring. Various choices are included in Table 2.3.

Stratified resampling is more restrictive, ν
(i)
t ∈ {K − 1,K,K + 1,K + 2}, but allows the

possibility of a particle with above-average weight having no offspring. This is not quite as

good as the erroneous claim of Douc, Cappé, and Moulines (2005) that |ν(i)
t −Nw

(i)
t | ≤ 1 for

stratified resampling. Systematic resampling has the smallest support, ν
(i)
t ∈ {K,K + 1},

that is possible whilst maintaining unbiasedness, as do SSP and MVB resampling.

Another way to quantify this property is by considering the maximum amount by which

the offspring count ν
(i)
t can differ from its expected value Nw

(i)
t . This is also presented in

Table 2.3.

Degeneracy under equal weights

In the case where all of the weights are multiples of 1/N , low-variance schemes such as

residual and systematic resampling become fully deterministic. Since bNw(i)
t c = Nw

(i)
t

for each i, residual resampling will have R = 0, leaving no remainder to be assigned

stochastically. In systematic resampling exactly bNw(i)
t c = Nw

(i)
t samples will fall in the

ith interval. In particular, if w
(1:N)
t = (1, . . . , 1)/N then each parent is assigned exactly

one offspring deterministically, so there is effectively no resampling.

The same phenomenon occurs with stratified resampling, although not if one uses Whit-
ley’s roulette wheel description (Figure 2.8). The random phase shift introduced by “spin-
ning the wheel” prevents the inversion sampling intervals from lining up exactly with the
weight intervals, so the resampled offspring counts may vary from their means by one
either side. Whitley (1994) does not describe stratified resampling, but we see that un-
like with systematic resampling, in the case of stratified resampling the roulette wheel
description is not equivalent to the standard inversion sampling description. The roulette
wheel adds some unnecessary extra randomness, so the straightforward inversion sampler
is preferred.

When the state space is continuous, it is often the case that the event that all weights
are multiples of 1/N has zero measure. Even so, with non-zero probability we may get
arbitrarily close to this regime in which resampling becomes deterministic.

Marginal variance of offspring counts

Another indication of the performance of resampling is the variance of the resampled off-

spring counts. For instance we might ask what is the marginal variance of ν
(i)
t , conditional

on the corresponding weight w
(i)
t . We would like to keep this variance small, limiting the

additional randomness introduced to our Monte Carlo estimates by the resampling step.

In multinomial resampling, the marginal distributions are

ν
(i)
t | w

(i)
t

d
= Binomial(N,w

(i)
t )

so the variance in question is

Var[ν
(i)
t | w

(i)
t ] = Nw

(i)
t (1− w(i)

t ).
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Compare this to star resampling, where the marginal offspring counts

ν
(i)
t | w

(i)
t

d
= N Bernoulli(w

(i)
t )

have variance

Var[ν
(i)
t | w

(i)
t ] = N2w

(i)
t (1− w(i)

t ),

N times larger than in the multinomial case.

As pointed out in Crisan and Lyons (1999, p.557), their MVB process yields offspring
variance

Var[ν
(i)
t | w

(i)
t ] = (Nw

(i)
t − bNw

(i)
t c)(1−Nw

(i)
t + bNw(i)

t c) ≤
1

4
,

since the stochastic part of ν
(i)
t is a Bernoulli(Nw

(i)
t − bNw

(i)
t c) random variable (as seen

in (2.9)). The same marginal variance appears from systematic, residual-systematic and
SSP resampling, since these all share the same marginal offspring distributions. We will
see in Section 2.4.4 that all of these schemes fall within the stochastic rounding class, and
marginal offspring variance is a property shared by all stochastic roundings.

The marginal variance is harder to calculate for other schemes such as residual-multi-
nomial and stratified resampling because these were not defined in terms of marginal
distributions, nor are the offspring counts independent conditional on the weights. How-
ever, it is possible in some cases to find upper bounds on the variance, and some such
bounds are derived below.

In residual-multinomial resampling, ν
(i)
t depends on all of the other weights as well as

w
(i)
t , but only through the statistic R :=

∑
(Nw

(i)
t − bNw

(i)
t c). We have

ν
(i)
t | w

(i)
t , R

d
= bNw(i)

t c+ Binomial

(
R,

Nw
(i)
t − bNw

(i)
t c

R

)
.

Using the law of total variance,

Var[ν
(i)
t | w

(i)
t ] = E

[
Var[ν

(i)
t | w

(i)
t , R]

∣∣∣w(i)
t

]
+ Var

[
E[ν

(i)
t | w

(i)
t , R]

∣∣∣w(i)
t

]
= E

[
(Nw

(i)
t − bNw

(i)
t c)

(
1− Nw

(i)
t − bNw

(i)
t c

R

)∣∣∣∣∣w(i)
t

]
+ Var

[
Nw

(i)
t

∣∣∣w(i)
t

]
= Nw

(i)
t − bNw

(i)
t c − (Nw

(i)
t − bNw

(i)
t c)2 E[R−1 | w(i)

t ]

≤ Nw(i)
t − bNw

(i)
t c.

Here we have excluded the case R = 0, in which the variance is zero. Similarly, for residual
resampling with star residuals,

ν
(i)
t | w

(i)
t , R

d
= bNw(i)

t c+RBernoulli

(
Nw

(i)
t − bNw

(i)
t c

R

)
.
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and we find

Var[ν
(i)
t | w

(i)
t ] = E

[
Var[ν

(i)
t | w

(i)
t , R]

∣∣∣w(i)
t

]
+ Var

[
E[ν

(i)
t | w

(i)
t , R]

∣∣∣w(i)
t

]
= E

[
R(Nw

(i)
t − bNw

(i)
t c)

(
1− Nw

(i)
t − bNw

(i)
t c

R

)∣∣∣∣∣w(i)
t

]
+ Var

[
Nw

(i)
t

∣∣∣w(i)
t

]
= E

[
R(Nw

(i)
t − bNw

(i)
t c)

(
1− Nw

(i)
t − bNw

(i)
t c

R

)∣∣∣∣∣w(i)
t

]
= (Nw

(i)
t − bNw

(i)
t c)E[R | w(i)

t ]− (Nw
(i)
t − bNw

(i)
t c)2

≤ N(Nw
(i)
t − bNw

(i)
t c).

Again, if R = 0 then the variance is zero.

For stratified resampling, we can use the constraints on the marginal offspring distribu-

tion that were derived in Section 2.4.2. Recall that, conditional on w
(i)
t , ν

(i)
t = bNw(i)

t c+ j
with probability pj for j = −1, 0, 1, 2. We can use the expressions for p−1, p0, p1, p2 in the
two cases of Figure 2.7, as summarised in Table 2.1, to bound the variance. First write

Var[ν
(i)
t | w

(i)
t ] = Var

[
ν

(i)
t − bNw

(i)
t c
∣∣∣w(i)

t

]
= E

[
(ν

(i)
t − bNw

(i)
t c)2

∣∣∣w(i)
t

]
− E

[
ν

(i)
t − bNw

(i)
t c
∣∣∣w(i)

t

]2

= p−1 + p1 + 4p2 − (−p−1 + p1 + 2p2)2. (2.10)

Using the upper and lower bounds in Table 2.1 and then optimising over δ, we obtain the
bound

Var[ν
(i)
t | w

(i)
t ] ≤ 1

4
+

1 + δ

2
+ 1− (0 +

δ

2
+ 0)2 =

1

4
(7 + 2δ − δ2) ≤ 2.

Optimising the exact expressions in each case (first two columns in Table 2.1) does not
improve this overall bound.

Residual-stratified resampling has the further constraint that p−1 = 0 (i.e. Figure 2.7b
doesn’t occur) since the residual weights are between 0 and 1/R. Now the bounds in
Table 2.1 are too loose, so we bound the variance by using the exact expressions from
Table 2.1 in each case and optimising over δL, δ. Setting p−1 = 0 in (2.10), substituting
the expressions for Case (a) from Table 2.1, and maximising over δL and then δ yields

Var[ν
(i)
t | w

(i)
t ] = p1 + 4p2 − (p1 + 2p2)2 = δ − 2δL(δ − δL) + 4δL(δ − δL)− δ2

= δ − δ2 + 2δδL − 2δ2
L ≤ δ −

1

2
δ2 ≤ 1

2
,

since the maximum is achieved at δL = δ/2 and then at δ = 1.

Table 2.3 includes upper bounds on Var[ν
(i)
t ] for various resampling schemes, indepen-

dent of w
(i)
t . Those general bounds are derived from the results of this section, bounded

above independently of the weights. Some of the bounds may not be tight. We could also
try to bound this variance below, but for every resampling scheme the only lower bound

valid for all w
(i)
t is zero (consider the case w

(i)
t = 0) so this does not provide any useful

information.
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Contribution to the Monte Carlo variance

While the variance of the offspring counts goes some way towards providing a comparison
between resampling schemes, a more relevant property is the contribution of the resampling
step to the Monte Carlo variance. This quantifies directly the effect of a certain choice of
resampling scheme on the variance of the resulting Monte Carlo estimators.

Let (Gt)t≥0 be the filtration generated by the particle positions and weights up to and

including time t, so Gt is the σ-algebra generated by (X
(1:N)
0:t , w

(1:N)
0:t ). Consider the position

of the ith particle in generation t + 1 just after resampling but before mutating, that is

X
(a

(i)
t )

t . Define the one-step Monte Carlo variance induced by resampling as

σ(ϕ) := Var

[
1

N

N∑
i=1

ϕ(X
(a

(i)
t )

t )

∣∣∣∣∣Gt
]

(2.11)

where ϕ is an arbitrary test function.
Some results comparing this variance across different resampling schemes are proved in

Douc, Cappé, and Moulines (2005). Their results, plus some additional ones, are presented
in Proposition 2.3. It may be possible to derive similar results regarding residual-stratified
and SSP resampling, but such results are hard to obtain due to the strong dependence
between parental indices induced by these resampling schemes. This remains an interesting
open problem.

In the case of systematic (but not necessarily residual-systematic) resampling, no such
variance comparison can be made. Systematic resampling generally yields low variance in
practice, but it is possible to construct pathological cases in which it yields higher variance
than multinomial resampling (Douc, Cappé, and Moulines 2005, Section 3.4) and it lacks
theoretical support more generally (e.g. Gerber, Chopin, and Whiteley 2019, Section 3.3).

Proposition 2.3 (Variance of resampling schemes). Let σmulti etc. denote the vari-
ance (2.11) under the various resampling schemes, as abbreviated in Table 2.2. For
any square-integrable function ϕ,

(a) σmulti(ϕ) ≥ σres-multi(ϕ)

(b) σmulti(ϕ) ≥ σstrat(ϕ)

(c) σstar(ϕ) = Nσmulti(ϕ)

(d) σres-star(ϕ) ≥ σres-multi(ϕ) ≥ σres-strat(ϕ)

(e) σstar(ϕ) ≥ σres-star(ϕ)

The partial ordering suggested by Proposition 2.3 is depicted graphically in Figure 2.9.

star

multi

res-star

strat

res-multi

res-strat

Figure 2.9: Graphical depiction of the conditional variance inequalities stated in Proposition 2.3.
Conditional variance (2.11) is non-increasing along arrows.
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Proof. (a) See Douc, Cappé, and Moulines (2005, Section 3).
(b) See Douc, Cappé, and Moulines (2005, Section 3).
(c) The following expression is derived in Douc, Cappé, and Moulines (2005, Equation
(6)):

σmulti(ϕ) =
1

N

N∑
j=1

ϕ2(X
(j)
t )w

(j)
t −

1

N


N∑
j=1

ϕ(X
(j)
t )w

(j)
t


2

.

Under star resampling, all of the resampled indices are equal, say X
(a

(1)
t )

t = · · · = X
(a

(N)
t )

t =
X?
t , so

σstar(ϕ) = Var

[
1

N

N∑
i=1

ϕ(X
(a

(i)
t )

t )

∣∣∣∣∣Gt
]

= Var [ϕ(X?
t ) | Gt]

= E
[
ϕ2(X?

t ) | Gt
]
− E [ϕ(X?

t ) | Gt]2

=
N∑
j=1

ϕ2(X
(j)
t )P[X?

t = X
(j)
t | Gt]−


N∑
j=1

ϕ(X
(j)
t )P[X?

t = X
(j)
t | Gt]


2

=
N∑
j=1

ϕ2(X
(j)
t )w

(j)
t −


N∑
j=1

ϕ(X
(j)
t )w

(j)
t


2

(2.12)

= Nσmulti(ϕ)

as required.
(d) The second inequality follows from (b) and is stated in Gerber, Chopin, and Whiteley
(2019, p.9). For the first inequality, we use the following expression which is a slight
modification of Douc, Cappé, and Moulines (2005, Equation (8)):

σres-multi(ϕ) =
R

N2

N∑
j=1

ϕ2(X
(j)
t )r(j) − R

N2

 N∑
j=1

ϕ(X
(j)
t )r(j)

2

.

A derivation similar to theirs can also be used for residual-star resampling. First notice
that, conditional on Gt, the Monte Carlo estimate in (2.11) can be decomposed into a sum
of conditionally deterministic terms plus a sum of stochastic terms:

1

N

N∑
i=1

ϕ(X
(a

(i)
t )

t ) =
1

N

N∑
j=1

bNw(j)
t cϕ(X

(j)
t ) +

1

N

R∑
i=1

ϕ(X̂
(i)
t ),

where the terms in the second sum are all equal, say X̂
(1)
t = · · · = X̂

(R)
t = X?

t . The
first sum is conditionally deterministic and hence does not contribute to the Monte Carlo
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variance (2.11). We have

σres-star(ϕ) = Var

[
1

N

R∑
i=1

ϕ(X̂
(i)
t )

∣∣∣∣∣Gt
]

=
R2

N2
Var [ϕ(X?

t ) | Gt]

=
R2

N2
E
[
ϕ2(X?

t ) | Gt
]
− R2

N2
E [ϕ(X?

t ) | Gt]2

=
R2

N2

N∑
j=1

ϕ2(X
(j)
t )P[X?

t = X
(j)
t | Gt]−

R2

N2


N∑
j=1

ϕ(X
(j)
t )P[X?

t = X
(j)
t | Gt]


2

=
R2

N2

N∑
j=1

ϕ2(X
(j)
t )r(j) − R2

N2


N∑
j=1

ϕ(X
(j)
t )r(j)


2

(2.13)

= Rσres-multi(ϕ)

≥ σres-multi(ϕ)

whenever R ≥ 1. If R = 0 then all residual schemes have zero variance and (d) holds
trivially.
(e) We have from (2.12)

σstar(ϕ) =
N∑
j=1

ϕ2(X
(j)
t )w

(j)
t −


N∑
j=1

ϕ(X
(j)
t )w

(j)
t


2

and from (2.13), noting that r(j) := (Nw
(j)
t − bNw

(j)
t c)/R ≤ Nw

(j)
t /R,

σres-star(ϕ) =
R2

N2

N∑
j=1

ϕ2(X
(j)
t )r(j) − R2

N2


N∑
j=1

ϕ(X
(j)
t )r(j)


2

≤ R2

N2

N∑
j=1

ϕ2(X
(j)
t )

Nw
(j)
t

R
− R2

N2


N∑
j=1

ϕ(X
(j)
t )

Nw
(j)
t

R


2

=
R

N

N∑
j=1

ϕ2(X
(j)
t )w

(j)
t −


N∑
j=1

ϕ(X
(j)
t )w

(j)
t


2

≤ σstar(ϕ),

since R ≤ N − 1. �

Exchangeability of offspring

We say that a resampling scheme leaves the offspring exchangeable if the resulting dis-
tribution of parental indices is invariant under permutations of the offspring. To put it
another way, each child chooses its parent from the same marginal distribution.

It is clear that true multinomial resampling satisfies this property since the parental
indices are independent and distributed according to the same Categorical distribution.
The same goes for star resampling. However, as mentioned earlier, the efficient imple-
mentation of multinomial resampling that takes sorted inputs does not leave the offspring
exchangeable. Stratified and systematic resampling do not either since their inversion
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sampling points are sorted: for instance, child 1 is more likely to choose parent 1 than
child N is. Residual resampling schemes are also typically implemented in such a way
that the offspring are not exchangeable.

Whichever resampling scheme is used, exchangeability of offspring can easily be reintro-
duced, at O(N) cost, by applying a random permutation to the vector of parental indices
after sampling.

Operations in SMC that depend on the ancestral indices are typically independent of or-
dering, so sampling ancestral indices from a non-exchangeable distribution is not expected
to cause any problem. (A notable exception is conditional SMC, which is why some care is
needed when implementing conditional versions of non-exchangeable resampling schemes.)
However, the results of Chapters 3 and 4 rely on the random assignment assumption (A1)
which amounts to exchangeability of offspring, so to be sure that the current genealogical
study applies, a permutation should be appended to any non-exchangeable resampling
procedure.

Permutation-sensitivity and sorting

Some resampling schemes are sensitive to the order in which the weights are input. That is,
permuting the weight vector before resampling can affect the distribution of the resulting
offspring counts. Note that this is different to the permutations of offspring discussed in
the previous section; here it is the weights, i.e. the parents, that are permuted.

To give a concrete example, consider resampling schemes based on inversion sampling
(multinomial, stratified, systematic). Figure 2.10 shows two partitions of [0, 1] each con-
structed from a permutation of the weight vector w(1:6) = (0.25, 0.05, 0.1, 0.35, 0.2, 0.05).
Under multinomial resampling this does not affect the distribution of the offspring counts,
although it will affect the distribution of the parental indices if the fast implementation is
used.

On the other hand, under stratified or systematic resampling the distribution of offspring
counts is different for the two partitions. To see this, consider parents 2 and 6. When
the weights are sorted, the probability that both of these parents are assigned a non-
zero number of offspring is zero, because both of their subintervals lie within the same
subinterval of length 1/N , which gets exactly one inversion sampling point. When the
weights are in their natural order, as in the top row of Figure 2.10, it is possible under
stratified and systematic resampling for both parents 2 and 6 to be assigned one offspring.
Clearly, then, the distribution of offspring counts under these resampling schemes differs
between the two orderings of the weight vector pictured. This property is also pointed
out in Douc, Cappé, and Moulines (2005, p.66). Table 2.3 includes a summary of which
resampling schemes are permutation-sensitive or not.

Related to this phenomenon, Gerber, Chopin, and Whiteley (2019) prove some striking
theoretical results concerning the effects of pre-sorting the particles. They show that
sorting the particles in order of their states prior to resampling improves the rate of decay
of resampling error from the usual O(N−1) to O(N−1− 1

d ), where d is the dimension of the
state space. In dimension d = 1, this supports the numerical results of Kitagawa (1996),
who observed empirically that sorting improved the convergence rate from O(N−1) to
O(N−2) when working in one dimension.

In dimension d ≥ 2 things are more complicated because there is no full ordering of the
state space. Gerber, Chopin, and Whiteley (2019) get around this by mapping the state
space onto [0, 1]d and sorting by the Hilbert curve. The variance reduction from sorting
the particles diminishes as the dimension increases, so in practice this has to be weighed
up against the O(N logN) cost of sorting.
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sorted

Figure 2.10: An example in which permuting the weights can affect the conditional distribution
of offspring counts under certain resampling schemes. As in Figure 2.6, N = 6 and
w(1:6) = (0.25, 0.05, 0.1, 0.35, 0.2, 0.05). The top row shows the weighted subintervals
in the natural order, as in Figure 2.6. The bottom row shows the partition corre-
sponding to the same weights, but sorted in decreasing order. The dotted lines are
spaced 1/N apart. Under permutation-sensitive resampling schemes, the distribution
of offspring counts differs depending on which of these partitions is used.

Another remarkable result of Gerber, Chopin, and Whiteley (2019) is that, when the
particles are sorted by their states, systematic resampling admits some theoretical support
that was lacking in the unsorted case. Recall that the possibly pathological behaviour of
systematic resampling was related to “bad” orderings of the weight intervals; sorting the
particles evidently prevents this.

The intuition behind these results is that sorting particles by their states ensures that the
stratified and systematic resampling schemes select parents from a good range of locations
in state space. The sorting step prevents the sampled parents being concentrated in one
small part of the state space purely by a chance ordering of the weight intervals. Another
explanation (Li et al. 2020; Webber 2019) is based on the observation that, under stratified
or systematic resampling, the possible parents of a given offspring are always consecutive
in the order in which the weights are input. Sorting these weights in order of the particle
states ensures that these potential parents are “close” in state space, so that the state
after resampling does not differ drastically depending on which parent is selected.

These results are only relevant to resampling schemes based on inversion sampling with
fairly evenly-spaced points. Notably, multinomial resampling is not affected by sorting,
since it is invariant under permutations of the weight vector.

Computational complexity

All of the resampling algorithms discussed in Section 2.4.2 can be implemented in O(N) op-
erations. Considering the complexity of each operation, Hol, Schön, and Gustafsson (2006)
suggest that systematic resampling is fastest because it only requires one pseudo-random
number generation, and multinomial resampling is slower than stratified resampling be-
cause of the transformations required (although this may depend on which method is used
to sample the Uniform order statistics). Residual resampling is hard to compare directly
because a random fraction of the operations are deterministic, so the number of pseudo-
random numbers required is a random number between 0 and N − 1, but the authors’
simulation experiments place it between multinomial and stratified resampling.

However, the analysis of per-particle cost is sensitive to the particular implementation of
each resampling scheme, the system implementation of pseudo-random number generation
and arithmetic operations, and the hardware used, so it is not clear how robust such
comparisons are.
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Negative association

Following Gerber, Chopin, and Whiteley (2019), we use the definition of negative associ-
ation from Joag-Dev and Proschan (1983).

Definition 2.4. Let (Z1, . . . , Zn) be a collection of random variables. Z1:n are said
to be negatively associated if, for every disjoint pair of subsets I, J ⊆ {1, . . . , n}, for
all real-valued coordinatewise non-decreasing functions ϕ,ψ for which the covariance
is well defined,

Cov [ϕ(ZI), ψ(ZJ)] ≤ 0.

Gerber, Chopin, and Whiteley (2019) show that negative association of offspring counts
is a desirable property which may be used, along with some other machinery, to establish
certain weak convergence results for the resampled measures.

Multinomial counts are negatively associated (Joag-Dev and Proschan 1983, Section
3.1), which implies that residual-multinomial resampling also satisfies this property. Ger-
ber, Chopin, and Whiteley (2019) construct a counter-example to demonstrate that sys-
tematic resampling violates the negative association property. For residual-systematic
resampling, we can cook up a counterexample in the same spirit by taking ϕ(x) = ψ(x) =
1{x=1}, I = {1}, J = {3} and considering a weight vector say w(1:4) = 1

8(1, 1, 1, 5) for

N = 4. Then the residual weights are r(1:4) = 1
4(1, 1, 1, 1) with R = 2, so

Cov [ϕ(ZI), ψ(ZJ)] = E[ϕ(ZI)ψ(ZJ)]− E[ϕ(ZI)]E[ψ(ZJ)]

= P[ν(1) = 1, ν(3) = 1]− P[ν(1) = 1]P[ν(3) = 1]

=
1

2
− 1

2
× 1

2
=

1

4
> 0,

since the residual weight intervals corresponding to parents 1 and 3 both occupy the first
half of a length-(1/R) interval, hence {ν(1) = 1} and {ν(3) = 1} each have probability 1/2
and ν(3) = 1 if and only if ν(1) = 1. So residual-systematic resampling also violates the
negative association property.

Gerber, Chopin, and Whiteley (2019) also mention some resampling schemes that do
result in negatively associated counts: stratified resampling, and by implication residual-
stratified resampling; star resampling (see the remark at the end of Gerber, Chopin, and
Whiteley 2019, Section 3.2), and by implication residual-star resampling. The authors go
on to introduce the SSP resampling scheme, which yields negatively associated offspring
counts by construction. These results are summarised in Table 2.3.

Star discrepancy

The star discrepancy is a measure of the regularity of a given set of points u1:N in the
unit hypercube. For our purposes it is sufficient to define the star discrepancy in one
dimension, as in Kuipers and Niederreiter (1974, Definition 1.2):

D?(u1, . . . , uN ) := sup
u∈[0,1]

|d(u)| := sup
u∈[0,1]

∣∣∣∣∣u− 1

N

N∑
i=1

1{ui≤u}

∣∣∣∣∣ . (2.14)

The quantity inside the supremum is the difference between the empirical CDF of the
observed points u1:N and the CDF of the Uniform distribution on [0, 1]. Thus D? measures,
in a certain sense, how far the points are from being uniformly spaced.
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Figure 2.11: Plot of d(u) for four different point sets. The points u1:6 used are the same as in
Figure 2.6.
The solid black line corresponds to the regular grid, which achieves the minimal dis-
crepancy 1/(2N), but cannot be used for resampling. The star discrepancy of stratified
and systematic points varies between 1/(2N) and 1/N depending on the realisation.
In this example, the star discrepancy of the systematic points is 0.78/N and of the
stratified points is 0.92/N . The star discrepancy of standard multinomial resampling
(that is, i.i.d. Uniform points) can be arbitrarily close to 1 for “bad” realisations; in
this example it is 1.62/N .

Star discrepancy is used in quasi-Monte Carlo, where low-discrepancy points are used
in place of Uniform random numbers to decrease the variance of Monte Carlo estimates.
We have noted already that resampling can itself be viewed as a Monte Carlo procedure.
From this point-of-view, stratified and systematic resampling are quasi-Monte Carlo im-
plementations of multinomial resampling, since they provide “more regular” point sets to
be used in inversion sampling.

In one dimension, the lowest-discrepancy point set is the regular grid 1
2N (1, 3, . . . , 2N −

1), which has star discrepancy 1
2N (see for example Kuipers and Niederreiter 1974, Corol-

lary 1.2). However, resampling based on a deterministic point set cannot be unbiased since
the resulting parental indices are conditionally deterministic given the weights. Systematic
resampling amounts to a randomisation of the regular grid, shifting each grid point by
a random amount u ∼ Uniform[0, 1/N ], which corresponds to a randomised quasi-Monte
Carlo procedure. This yields star discrepancy D? = max{u, 1

N − u}, which is between
1/(2N) and 1/N almost surely. The point sets generated in stratified resampling also
have star discrepancy between 1/(2N) and 1/N , where the exact value depends on the
realisation. This certainly seems to improve on independent uniform points which can
have star discrepancy arbitrarily close to 1, the maximum possible value, albeit with di-
minishing probability as N increases. Figure 2.11 illustrates how the star discrepancy is
computed, and how it compares between these sampling methods.

Matrix resampling

Some resampling schemes render the parental indices a
(1:N)
t conditionally independent over

i given the weights w
(1:N)
t , and such schemes admit a matrix representation conditional

on the weights. These resampling matrices are of particular interest in distributed SMC
as they can be used to characterise the communication between particles required in the
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resampling step. The matrices have been defined differently by different authors (cf.
Webber 2019; Whiteley, Lee, and Heine 2016), but the general idea is the same. Following
most closely to the presentation of Li et al. (2020), we use the following definition.

Definition 2.5. A resampling matrix for weights w
(1:N)
t is a N × N matrix with

entries in [0, 1] such that:

1. each row sums to 1, and

2. the ith column sums to Nw
(i)
t , for each i ∈ {1, . . . , N}.

The ijth element of the resampling matrix represents the conditional probability of off-
spring i being resampled from parent j. Some resampling schemes that are expressible as
matrices are:

• no resampling, for which the resampling matrix is the identity matrix;

• multinomial resampling, for which each row of the resampling matrix is the vector
of weights;

• stratified resampling;

• residual-multinomial resampling;

• residual-stratified resampling.

Illustrations of the structure of the resampling matrix resulting from each of these schemes
can be found in Li et al. (2020, Figure 2), for example, although the residual resampling
matrices may differ depending on the implementation. All of the other resampling schemes
we have encountered have some conditional dependence between the parental indices (as
summarised in Table 2.3) and thus are not representable by matrices.

Within the matrix resampling class, Li et al. (2020) show that, in one dimension, strat-
ified resampling on the sorted particles is optimal in terms of the conditional variance
(2.11), where sorting is based on the test function ϕ applied to the states. They also prove
that this scheme is optimal in other senses. Webber (2019) proves a generalisation to mul-
tiple dimensions: stratified resampling with the particles sorted by a certain functional of
the states, based on ϕ, minimises the corresponding conditional variance. The optimal
functional by which to sort the particles cannot typically be computed, but the author
suggests alternative sorting rules that also significantly improve performance, including
the Hilbert curve sorting proposed by Gerber, Chopin, and Whiteley (2019). Webber
(2019) also uses the matrix representations to construct alternative proofs of several of
the results of Proposition 2.3.

For our purposes, however, this class is too restrictive, as it excludes several resampling
schemes that are prevalent in the literature and which perform comparably to, if not better
than, conditionally independent resampling schemes.
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2.4.4 Stochastic rounding

Some of the resampling schemes we have met can be classified as stochastic roundings. This
will be useful later on, as we will see (Section 5.3) that all members of this class admit
some common convergence results. The stochastic roundings class is a subclass of MVB
resampling (Section 2.4.2) additionally constrained to satisfy condition 1 of Definition 2.2.

Definition 2.6. Let X = (X1, . . . , XN ) be a RN+ -valued random variable. Then
Y = (Y1, . . . , YN ) ∈ NN is a stochastic rounding of X if each element Yi takes values

Yi | Xi =

{
bXic with probability 1−Xi + bXic
bXic+ 1 with probability Xi − bXic.

By construction, E[Yi] = Xi for each i. Taking X to be N times the vector of particle
weights, we can therefore use stochastic rounding to construct a valid resampling scheme,
under the further constraint that Y1+· · ·+YN = N . Several ways to enforce this constraint
on the joint distribution have been proposed, including systematic resampling, residual
resampling with systematic residuals, and SSP resampling.

Explicitly, the offspring counts are marginally distributed according to

ν
(i)
t | w

(i)
t

d
= bNw(i)

t c+ Bernoulli(Nw
(i)
t − bNw

(i)
t c).

Some of the properties discussed earlier are common to every stochastic rounding
scheme. Since all such schemes give offspring counts with the same marginal distribu-
tions, properties such as the marginal offspring variance are common to all stochastic
roundings. Indeed it is easy to see that the marginal variance of the offspring counts,

Var[ν
(i)
t | w

(i)
t ] is as small as possible under the constraint of unbiasedness, and as such

this is sometimes referred to as minimal-variance resampling. By definition, the support

of an offspring count ν
(i)
t given that the associated weight w

(i)
t lies in the interval [KN ,

K+1
N )

is {K,K+1}. All stochastic roundings are also degenerate when the weights are all equal,

i.e. w
(1:N)
t = (1, . . . , 1)/N implies ν

(1:N)
t = (1, . . . , 1) almost surely.

2.5 Conditional SMC

Andrieu, Doucet, and Holenstein (2010) propose a number of particle MCMC algorithms,
which combine SMC with Markov chain Monte Carlo (MCMC) in order to improve perfor-
mance in certain situations. One of their algorithms, the particle Gibbs sampler (Andrieu,
Doucet, and Holenstein 2010, Section 2.4.3), is of particular interest in the current work.
For one thing, genealogies are critical to its performance, and for another, the particle
update uses a variant SMC algorithm which alters the distribution of the induced genealo-
gies.

In this section, we first introduce the particle Gibbs algorithm and the conditional SMC
update, then discuss how ancestral degeneracy impacts the performance of particle Gibbs
and how ancestor sampling mitigates this.

2.5.1 Particle Gibbs

To motivate the particle Gibbs algorithm, we introduce a parametrised state space model
and explain how combining SMC updates with MCMC sampling allows us to tackle the
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2.5 Conditional SMC

related inferences effectively. The particle Gibbs algorithm can be applied much more
broadly, but this application is particularly intuitive and exhibits all the features of interest
to our genealogical study.

Consider a parametrised state space model of the form

θ ∼ p(·)
X0 ∼ µθ(·)

Xt+1 | Xt ∼ Kθ
t+1(· | Xt) for t = 0, . . . , T − 1

Yt | Xt ∼ gθt (· | Xt) for t = 0, . . . , T

exactly like (2.1) except that the specification is now parametrised by θ (which may be
multi-dimensional), and we place a prior distribution on θ. As usual, p, µθ, (Kθ

t ) and (gθt )
are part of the model and are assumed to be known but not necessarily tractable.

Suppose that, given some data y0:T , we wish to generate Monte Carlo samples from the
joint posterior distribution of X0:T and θ. (Even if we are only interested in inferring θ,
for instance, it is often more practical to target the joint posterior and then marginalise.)
Notice that we are now working with a finite time horizon T ∈ N. The inference of
interest here is not inherently sequential; we are building an MCMC algorithm to sample
from a single target distribution which happens to include some sequentially correlated
components.

The conditional dependence structure of the model invites the use of a Gibbs sam-
pler, sampling alternately from the conditional distributions p(θ | x0:T , y0:T ) and p(x0:T |
θ, y0:T ). The θ update,

p(dθ | x0:T , y0:T ) ∝ p(dθ)p(x0:T , y0:T | θ),

is often quite straightforward, if not analytically then by employing a Metropolis-Hastings
step based on the current sampled values of θ and x0:T . The X update, meanwhile, is
high-dimensional with strong sequential correlations: exactly the situation in which one
might use SMC. For the X update, we need a sample from

p(dx0:T | θ, y0:T ) ∝ µθ(dx0)gθ0(y0 | x0)
T∏
s=1

Kθ
s (dxs | xs−1)gθs(ys | xs), (2.15)

which can be approximately obtained by running an SMC smoother then sampling one
trajectory from its output in proportion to the associated weight.

However, the Markov chain associated to the procedure just described does not admit
p(x0:T , θ | y0:T ) as an invariant distribution. It approximately targets this distribution,
with some bias. A Gibbs sampler targeting p(x0:T , θ | y0:T ) exactly can be constructed by
replacing the SMC step with a conditional SMC step, which takes into account the value
of x0:T sampled at the previous iteration, as well as the observations and the current value
of θ.

A conditional SMC algorithm for this scenario is presented in Algorithm 2.2. In contrast
to Algorithm 2.1, the input now includes x?0:T and a?0:T , which encode the states and
parental indices, respectively, of the immortal trajectory (so called because it survives
the SMC run with probability one). Within a particle Gibbs algorithm, the immortal
trajectory is set to the trajectory sampled at the previous iteration. The resampling step
now assigns the immortal offspring to the immortal parent deterministically, and the state
of the immortal particle is also updated deterministically rather than via the Markov
kernel. As in standard SMC, there is a choice of resample procedures, but some care
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is needed to ensure the correct treatment of the immortal particle (for details see e.g.
Lee, Murray, and Johansen 2019). In the case of multinomial resampling, exchangeability
of the offspring means that conditioning on a?t−1 has no effect on the resampling of the
non-immortal particles.

Input: T,N, µθ, (Kθ
t ), (gθt ), y0:T , x

?
0:T , a

?
0:T

Set X
(a?0)
0 ← x?0

for i ∈ {1, . . . , N} \ a?0 do Sample X
(i)
0 ∼ µ(·)

for i ∈ {1, . . . , N} do w
(i)
0 ←

{∑N
j=1 g

θ
0(y0 | X(j)

0 )
}−1

gθ0(y0 | X(i)
0 )

for t ∈ {1, . . . , T} do

Set a
(a?t )
t−1 ← a?t−1, X

(a?t )
t ← x?t

Sample a
(1:N)
t−1 \ a?t−1 ∼ resample({1, . . . , N}, w(1:N)

t−1 | a?t−1)

for i ∈ {1, . . . , N} \ a?t do Sample X
(i)
t ∼ Kθ

t (· | X(a
(i)
t−1)

t−1 )

for i ∈ {1, . . . , N} do w
(i)
t ←

{∑N
j=1 g

θ
t (yt | X

(j)
t )
}−1

gθt (yt | X
(i)
t )

end

Algorithm 2.2: Conditional sequential Monte Carlo for a parametrised state space
model. The immortal particle at each generation has its new state and parental index
set deterministically according to the values of x?0:T and a?0:T given as input.

The complete particle Gibbs algorithm for this example then consists of alternately
sampling from the full conditional distribution of θ (perhaps using a Metropolis-Hastings
update) and sampling a trajectory (x0:T , a0:T ) from the output of a conditional SMC
update. See Andrieu, Doucet, and Holenstein (2010, Section 2.4.3) for more details.

2.5.2 Ancestral degeneracy in particle Gibbs

We have seen in Section 2.3 that the phenomenon of ancestral degeneracy can severely af-
fect the performance of SMC algorithms, particularly in smoothing applications. The SMC
update of particle Gibbs is a smoothing problem, however it requires only one sampled
trajectory from the smoothing distribution, so one might imagine that we are safe from
the curse of ancestral degeneracy. In fact, the loss of ancestors causes a different problem
for particle Gibbs: it prevents some components of the Markov chain being refreshed, so
that the chain mixes slowly.

To see this, consider the illustration in Figure 2.12, which shows the smoothing trajec-
tories generated by a conditional SMC update at some iteration r. The thick black line
is the immortal trajectory given as input, that is, the trajectory sampled by the condi-
tional SMC update at iteration r−1. Backwards in time, the sampled trajectories quickly
coalesce until at time 20 all of the trajectories have coalesced. The common trajectory
from time 0 to 20 must necessarily be part of the immortal trajectory. A new trajectory
(highlighted in purple) is then sampled among the N generated trajectories. Whichever
trajectory we sample, it will certainly overlap with the previously sampled trajectory at
least from time 0 to 20.

At the next iteration the newly sampled trajectories will again coalesce onto the im-
mortal trajectory, and this behaviour is repeated. If T is too large with respect to N , the
early part of the trajectory is rarely updated, so the corresponding states mix very slowly.
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2.5 Conditional SMC

Figure 2.12: Illustration of how ancestral degeneracy causes particle Gibbs to mix slowly on some
components. The thick black line is the immortal trajectory, i.e. the sampled trajec-
tory from the previous iteration. Other lines are all of the trajectories generated by
conditional SMC. One of these (highlighted in purple) is the sampled trajectory at the
current iteration. Due to ancestral degeneracy, the current sample (purple) coincides
with the previous sample (thick black) up to time 20, so the components x0:20 are not
updated in this iteration.

For further intuition on this phenomenon the reader is directed to Lindsten and Schön
(2013, Section 5.4).

The meaning of T “too large” here depends on the model and the type of SMC update
used, but typically T is determined by the application and N is limited by computational
resources, so we may not be able to control their relative size. The other brute-force
approach would be to increase the number of iterations of the MCMC algorithm, but this
too is infeasible on a limited computational budget. It is therefore worth investing some
effort to find an alternative solution to the problem of ancestral degeneracy within particle
Gibbs.

2.5.3 Ancestor sampling

An effective solution, where it is possible to implement it, is ancestor sampling, proposed
by Whiteley (2010). This consists of a simple modification to the resampling step within
the conditional SMC algorithm. In the basic algorithm with multinomial resampling,
at each time step the non-immortal particles are resampled by multinomial resampling
according to their weights, while the immortal offspring is deterministically assigned to
the immortal parent. That is, at time t, for each i ∈ {1, . . . , N},

P
[
a

(j)
t = i

∣∣∣X(1:N)
0:t , x?0:T , a

?
0:T

]
∝

{
w

(i)
t j non-immortal

1{i=a?t } j immortal.

Ancestor sampling combines the resampling step with a backward simulation step for
the immortal particle. Instead of deterministically inheriting the immortal parent, the
immortal particle samples its parent among all N possible parents. This is justified in
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the same way as backward simulation in general (Section 2.3.1), provided the ancestor
sampling probabilities are chosen correctly, although we now apply the backward simu-
lation step to the immortal trajectory only. Ancestor sampling can also be implemented
with other choices of resampling scheme, using the same backward simulation probabili-
ties (but different resampling probabilities for the non-immortal particles, possibly with
additional dependence between parental indices). For simplicity we here restrict ourselves
to multinomial resampling.

Input: T,N, µθ, (Kθ
t ), (qθt ), (g

θ
t ), y0:T , x

?
0:T , a

?
0:T

Set X
(a?0)
0 ← x?0

for i ∈ {1, . . . , N} \ a?0 do Sample X
(i)
0 ∼ µθ(·)

for i ∈ {1, . . . , N} do w
(i)
0 ←

{∑N
j=1 g

θ
0(y0 | X(j)

0 )
}−1

gθ0(y0 | X(i)
0 )

for t ∈ {1, . . . , T} do

Set X
(a?t )
t ← x?t

Sample a
(a?t )
t−1 ∼ Categorical

(
{1, . . . , N}, w(1:N)

t−1 qθt (x
?
t | X

(1:N)
t−1 )

)
Sample a

(1:N)
t−1 \ a

(a?t )
t−1 ∼ resample({1, . . . , N}, w(1:N)

t−1 | a(a?t )
t−1 )

for i ∈ {1, . . . , N} \ a?t do Sample X
(i)
t ∼ Kθ

t (· | X(a
(i)
t−1)

t−1 )

for i ∈ {1, . . . , N} do w
(i)
t ←

{∑N
j=1 g

θ
t (yt | X

(j)
t )
}−1

gθt (yt | X
(i)
t )

end

Algorithm 2.3: Conditional sequential Monte Carlo with ancestor sampling for a
parametrised state space model. The parent of the immortal particle is updated at
each iteration via an on-line backward simulation step. The transition kernels Kθ

t

are assumed to admit densities qθt . The second parameter of the Categorical variable
should be interpreted elementwise, and is given up to a normalisation constant.

Assume that the smoothing distributions admit densities, that is µθ(·) and Kθ
t (· | x)

admit densities for all x, t. Denote the density of Kθ
t by qθt , and let µθ also denote the

density of µθ. Define the trajectories X
(i)
t,0:t (for any t, i) as in Section 2.1.4, starting from

X
(i)
t,t := X

(i)
t and tracing back the states of the parents via Xt,s(i) = X

(a
(i)
t )

t,s+1 . Then the
correct resampling probabilities are, for each i,

P
[
a

(j)
t = i

∣∣∣X(1:N)
0:t , x?0:T , a

?
0:T

]
∝

w
(i)
t j non-immortal

w
(i)
t

p((X
(i)
t,0:t,x

?
t+1:T )|θ,y0:T )

p(X
(i)
t,0:t|θ,y0:t)

j immortal.
(2.16)

The ratio of densities can be interpreted as the conditional probability that the whole

trajectory is the concatenation of X
(i)
t,0:t with x?t+1:T , given that its first t + 1 states are

X
(i)
t,0:t. To simplify the ratio, use (2.15) to write

p(X
(i)
t,0:t | θ, y0:t) ∝ µθ(X(i)

t,0)gθ0(y0 | X(i)
t,0)

t∏
s=1

qθs(X
(i)
t,s | X

(i)
t,s−1)gθs(ys | X

(i)
t,s )
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and

p((X
(i)
t,0:t, x

?
t+1:T ) | θ, y0:T )

∝ µθ(X(i)
t,0)gθ0(y0 | X(i)

t,0)

{
t∏

s=1

qθs(X
(i)
t,s | X

(i)
t,s−1)gθs(ys | X

(i)
t,s )

}

× qθt+1(x?t+1 | X
(i)
t,t )gθt+1(yt+1 | x?t+1)

{
T∏

s=t+2

qθs(x
?
s | x?s−1)gθs(ys | x?s)

}
.

The ratio then becomes

p((X
(i)
t,0:t, x

?
t+1:T ) | θ, y0:T )

p(X
(i)
t,0:t | θ, y0:t)

∝ qθt+1(x?t+1 | X
(i)
t,t )gθt+1(yt+1 | x?t+1)

T∏
s=t+2

qθs(x
?
s | x?s−1)gθs(ys | x?s)

∝ qθt+1(x?t+1 | X
(i)
t,t ) = qθt+1(x?t+1 | X

(i)
t ).

The probabilities in (2.16) become

P
[
a

(j)
t = i

∣∣∣X(1:N)
0:t , x?0:T , a

?
0:T

]
∝

{
w

(i)
t j non-immortal

w
(i)
t q

θ
t+1(x?t+1 | X

(i)
t ) j immortal.

(2.17)

The conditional SMC algorithm with this adaptation is presented in Algorithm 2.3.
We see that, in order to do ancestor sampling, we need a stronger assumption on the

Markov kernels than was required to simply run the conditional SMC algorithm: we now
require that, for each t, Kθ

t admits a density qθt and that qθt (· | x) can be evaluated
pointwise for any x, whereas previously we only needed to draw samples from Kθ

t (· | x)
for any x. This additional requirement rules out ancestor sampling in some applications,
for instance when the transitions are discretisations of a stochastic differential equation.

Recall that the usual backward simulation procedure requires a full forward pass to
calculate the future states before the backward simulation probabilities can be computed.
Ancestor sampling, on the other hand, does not require a forward pass because it only
computes backward simulation probabilities for the immortal trajectory, for which all the
future states are known in advance. This means that the additional computational cost
of implementing ancestor sampling is negligible.

Why ancestor sampling works

We know that complete backward simulation eradicates ancestral degeneracy by sampling
each lineage independently (Section 2.3.1). But here we are only backward-simulating one
of the N particles, leaving the other N − 1 lineages to coalesce as usual. So how does this
help?

Recall that in particle Gibbs ancestral degeneracy is not itself a problem, because we
only require a single sample from the smoothing distribution. The problem is that the
consecutive samples are highly correlated, because of the repeated coalescence onto the
immortal lineage. The contribution of ancestor sampling is to break up the immortal
trajectory so that it no longer appears among the lineages; see Figure 2.13. While the
non-immortal trajectories may still coalesce, they no longer preferentially coalesce onto
the immortal trajectory. In turn, the sampled trajectory that is output does not overlap
unduly with the immortal trajectory that was the previous output, and this completely
solves the problem of the slow-mixing particle Gibbs chain.
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(a) without ancestor sampling

(b) with ancestor sampling

Figure 2.13: Illustration of how ancestor sampling prevents coalescence onto the immortal trajec-
tory. Immortal particles are highlighted in purple, along with their parent-offspring
edges (the given ones in (a) and the ancestor-sampled ones in (b)). The resulting
lineages of the terminal particles are highlighted in grey. In (a), the lineages of the
terminal particles coalesce onto the immortal trajectory. Imagine time stretching
further back: the lineages would continue to coincide with the immortal trajectory
forever. In (b), the lineages still coalesce, but not onto the immortal trajectory. The
immortal trajectory no longer exists as a lineage.
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3 Convergence of Finite-Dimensional
Distributions

To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.

William Blake

In this chapter we derive conditions under which genealogies induced by SMC algorithms
converge to the n-coalescent as the number of particles tends to infinity. Here we prove
only the convergence of finite-dimensional distributions; weak convergence is proved under
the same conditions in Chapter 4.

3.1 The genealogical process

Before we can analyse genealogies, we need a way to encode them. The encoding will only
include the information relevant to the sample genealogy, namely which lineages coalesce
at which times. Information about particle positions and “killed” particles is ignored.

Let Pn be the space of partitions on {1, . . . , n}. For convenience, we now label time in
reverse, so the terminal particles are at time 0, their parents are at time 1, and so on.
Consider a randomly chosen (uniformly, without replacement) sample of size n among the
N terminal particles, and label the sampled particles 1, . . . , n. The genealogical process

(G
(n,N)
t )t∈N0 for this sample is the Pn-valued stochastic process such that labels i and j

are in the same block of the partition G
(n,N)
t if and only if terminal particles i and j have

a common ancestor at time t (i.e. t generations back).

A formulation where G
(n,N)
t takes values in the space of equivalence relations from [n]

to [n] is sometimes used (e.g. Möhle 1999); interpreting partition blocks as equivalence
classes, this formulation is equivalent to ours.

The initial value of the process is the partition of singletons G
(n,N)
0 = {{1}, . . . , {n}},

since all of the terminal particles are in separate lineages. The only possible non-identity
transitions are those that merge some blocks of the partition, encoding the coalescence
of the corresponding lineages. The trivial partition {{1, . . . , n}} is therefore an absorbing
state, corresponding to all lineages in the sample having coalesced, that is, the MRCA
has been reached. The construction of the genealogical process from the resampling re-
lationships, encoded by the vector of parental indices at each generation, is illustrated in
Figure 3.1.

Under the assumption (A1) stated below, it is sufficient for our purposes to consider

only offspring counts ν
(1:N)
t = (ν

(1)
t , . . . , ν

(N)
t ), where ν

(i)
t = |{j : a

(j)
t = i}|, rather than
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3 Convergence of Finite-Dimensional Distributions

1

(a) Resampling relationships

1 2 3 4 5 6
G0 = {{1}, {2}, {3}, {4}, {5}, {6}}

G1 = {{1, 2, 3}, {4}, {5}, {6}}

G2 = {{1, 2, 3}, {4, 5}, {6}}

G3 = {{1, 2, 3}, {4, 5, 6}}

G4 = {{1, 2, 3, 4, 5, 6}}

(b) Genealogy of terminal particles

Figure 3.1: Illustration of how the sample genealogy is encoded. (a) Relationships induced by
resampling in a sample of n = 6 particles over four iterations. For clarity the pictured
example has n = N , but in general n � N . (b) The genealogy of these six particles,
labelled with the value of the genealogical process Gt at each time.

the parental indices a
(1:N)
t which are generally more informative.

(A1) The conditional distribution of parental indices a
(1:N)
t given offspring counts

ν
(1:N)
t is uniform over all assignments such that |{j : a

(j)
t = i}| = ν

(i)
t for all i.

As we saw in Section 2.2, the n-coalescent is exchangeable, so for instance the pair of
lineages merging at each event is chosen uniformly. Sometimes called the random assign-
ment condition, (A1) is a weaker condition than exchangeability of the particles within a
generation which is sufficient to admit an exchangeable process in the limit. Although the
resampling in SMC is not generally exchangeable, (A1) can easily be enforced upon any
SMC algorithm by applying a random permutation to the offspring indices immediately
after resampling.

3.1.1 Time scale

In order to have a well-defined limit for the genealogical process as N → ∞, we must
scale time by a suitable function τN (·). In the population genetics literature the time
scale function is typically deterministic (Section 2.2.3), but in our case τN depends on the
observed offspring counts and is therefore random. This allows any time-inhomogeneity
in the potentials to be absorbed by the time scale, making the results more general: for
example, admitting a state space model with an arbitrary sequence of observations. To
define the time scale we first define the pair merger rate

cN (t) :=
1

(N)2

N∑
i=1

(ν
(i)
t )2. (3.1)

This is the probability, conditional on ν
(1:N)
t , that a randomly chosen pair of lineages in

generation t merges exactly one generation back. The given expression for cN (t) is justified
by assumption (A1), as are the expressions for τN (t) and DN (t) below. To achieve a
limiting pair merger rate of 1, as in the n-coalescent, we rescale time by the generalised
inverse

τN (t) := inf

{
s ∈ N :

s∑
r=1

cN (r) ≥ t

}
. (3.2)
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3.1 The genealogical process

The function τN maps continuous to discrete time, providing the link between the discrete-
time SMC dynamics and the continuous-time limit. We will also need the following quan-
tity, which is an upper bound on the conditional probability of a multiple merger (three
or more lineages merging, or two or more simultaneous pairwise mergers):

DN (t) :=
1

N(N)2

N∑
i=1

(ν
(i)
t )2

ν(i)
t +

1

N

∑
j 6=i

(ν
(j)
t )2

 . (3.3)

This will be used to control the rate of multiple mergers, which must be dominated by the
pair-merger rate as N →∞ if we are to recover a Kingman limit (in which almost surely
the only non-identity transitions are pair mergers). Some basic properties of cN , DN and
τN are stated in Proposition 3.1.

Proposition 3.1. For all t ∈ N, t′ > s′ > 0,

(a) cN (t), DN (t) ∈ [0, 1]

(b) DN (t) ≤ cN (t)

(c) cN (t)2 ≤ cN (t)

(d) t′ ≤
τN (t′)∑
r=1

cN (r) ≤ t′ + 1.

(e) t′ − s′ − 1 ≤
τN (t′)∑

r=τN (s′)+1

cN (r) ≤ t′ − s′ + 1.

(f) τN (t′) ≥ t′.

Proof. (a) cN (t) and DN (t) are clearly non-negative. Both are maximised when one of
the offspring counts is equal to N and the rest are zero, in which case cN (t) = DN (t) = 1.
(b) As outlined in Koskela et al. (2018, p.10),

DN (t) :=
1

(N)2

N∑
i=1

(ν
(i)
t )2

1

N

ν(i)
t +

1

N

N∑
j 6=i

(ν
(j)
t )2


≤ 1

(N)2

N∑
i=1

(ν
(i)
t )2

1

N

ν(i)
t +

1

N

N∑
j 6=i

Nν
(j)
t


=

1

(N)2

N∑
i=1

(ν
(i)
t )2

1

N


N∑
j=1

ν
(j)
t

 =
1

(N)2

N∑
i=1

(ν
(i)
t )2 = cN (t).

(c) is immediate given (a).
(d) follows directly from the definition of τN in (3.2).
(e) Writing

τN (t′)∑
r=τN (s′)+1

cN (r) =

τN (t′)∑
r=1

cN (r)−
τN (s′)∑
r=1

cN (r),

the result follows by applying (d) to both sums.
(f) follows from (a) and the definition of τN in (3.2). �
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3 Convergence of Finite-Dimensional Distributions

Another useful property is the following, based on Koskela et al. (2018, Lemma 2).

There the special case f(ν
(1:N)
r ) ≡ cN (r) is proved, but the authors remark that the result

also holds for other choices of f . Here we state a more general version of the result.

Lemma 3.2. Fix t > 0. Let (Fr) be the backwards-in-time filtration generated by the

offspring counts ν
(1:N)
r at each generation r. Let f : [N ]N 7→ R be any deterministic

function such that for all ν there exists B <∞ for which 0 ≤ f(ν) ≤ B. Then

E

τN (t)∑
r=1

f(ν(1:N)
r )

 = E

τN (t)∑
r=1

E[f(ν(1:N)
r ) | Fr−1]

 .
The lemma holds more generally for any bounded function f (that does not need to be non-
negative) by decomposing into the positive and negative parts. However, the simplified
statement here is sufficient for our purposes since we will only apply the lemma to non-
negative functions.

Proof. Define

Ms :=

s∑
r=1

{
f(ν(1:N)

r )− E[f(ν(1:N)
r ) | Fr−1]

}
.

It is easy to establish that (Ms) is a martingale with respect to (Fs), and M0 = 0. Now
fix K ≥ 1 and note that τN (t) ∧K is a bounded Ft-stopping time. Hence we can apply
the optional stopping theorem:

E[MτN (t)∧K ] = E

τN (t)∧K∑
r=1

{
f(ν(1:N)

r )− E[f(ν(1:N)
r ) | Fr−1]

}
= E

τN (t)∧K∑
r=1

f(ν(1:N)
r )

− E

τN (t)∧K∑
r=1

E[f(ν(1:N)
r ) | Fr−1]

 = 0.

Since this holds for all K ≥ 1,

lim
K→∞

E

τN (t)∧K∑
r=1

f(ν(1:N)
r )

 = lim
K→∞

E

τN (t)∧K∑
r=1

E[f(ν(1:N)
r ) | Fr−1]

 .
The monotone convergence theorem allows the limit to pass inside the expectation on each
side (since increasing K can only increase each sum, by possibly adding some non-negative
terms). Hence

E

τN (t)∑
r=1

f(ν(1:N)
r )

 = E

 lim
K→∞

τN (t)∧K∑
r=1

f(ν(1:N)
r )

 = E

 lim
K→∞

τN (t)∧K∑
r=1

E[f(ν(1:N)
r ) | Fr−1]


= E

τN (t)∑
r=1

E[f(ν(1:N)
r ) | Fr−1]

 ,
which concludes the proof. �
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3.1 The genealogical process

3.1.2 Transition probabilities

Recall that Pn denotes the space of partitions of {1, . . . , n}. For any ξ, η ∈ Pn and t ∈ N,
let pξη(t) denote the conditional transition probabilities of the genealogical process given

ν
(1:N)
t . The transition probability pξη(t) can only be non-zero when η is obtained from ξ

by merging some blocks of ξ (i.e. some lineages coalescing). Ordering the blocks by their
least element, denote by bi the number of blocks of ξ that merge to form block i in η, for
each i ∈ {1, . . . , |η|}. Hence b1 + · · · + b|η| = |ξ|. Then the transition probability is given
by

pξη(t) :=
1

(N)|ξ|

N∑
i1,...,i|η|=1
all distinct

(ν
(i1)
t )b1 · · · (ν

(i|η|)
t )b|η| . (3.4)

This expression is again justified by (A1). We will only need to work directly with the
identity transition probabilities pξξ(t). Upper and lower bounds on these probabilities are
presented in Propositions 3.3 and 3.4.

Proposition 3.3. Let ξ ∈ Pn, N > 2. Then

pξξ(t) ≥ 1−
(
|ξ|
2

)
N |ξ|−2

(N − 2)|ξ|−2

[
cN (t) +B|ξ|DN (t)

]
where

B|ξ| = K(|ξ| − 1)!(|ξ| − 2) exp(2
√

2(|ξ| − 2))

for some K > 0 that does not depend on |ξ|.

Proof. We have the following expression for pξξ(t), by subtracting all possible non-identity
transitions. The sum over k counts all transitions from ξ to η such that k = |η| ≤ |ξ| − 1;
the omitted k = |ξ| term would count identity transitions.

pξξ(t) = 1− 1

(N)|ξ|

|ξ|−1∑
k=1

∑
b1≥...≥bk≥1
b1+...+bk=|ξ|

|ξ|!∏|ξ|
j=1(j!)κjκj !

N∑
i1,...,ik=1
all distinct

(ν
(i1)
t )b1 . . . (ν

(ik)
t )bk ,

where κi = |{j : bj = i}| is the multiplicity of mergers of size i (κ1 counts non-merger
events, and we have the identity κ1 + 2κ2 + · · · + |ξ|κ|ξ| = |ξ|). The combinatorial factor
is the number of partitions of a sequence of length |ξ| having κj subsequences of length j
for each j (Fu 2006, Equation (11)).

We separate the k = |ξ| − 1 term (which counts single pair mergers), for which
(b1, b2, . . . , b|ξ|−1) = (2, 1, . . . , 1) and

|ξ|!∏|ξ|
j=1(j!)κjκj !

=

(
|ξ|
2

)
.

For the remaining terms we use

|ξ|!∏|ξ|
j=1(j!)κjκj !

≤ |ξ|!.
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3 Convergence of Finite-Dimensional Distributions

Thus

pξξ(t) ≥ 1− 1

(N)|ξ|

(
|ξ|
2

) N∑
i1,...,i|ξ|−1=1

all distinct

(ν
(i1)
t )2ν

(i2)
t . . . ν

(i|ξ|−1)
t

− 1

(N)|ξ|

|ξ|−2∑
k=1

∑
b1≥...≥bk≥1
b1+...+bk=|ξ|

|ξ|!
N∑

i1,...,ik=1
all distinct

(ν
(i1)
t )b1 . . . (ν

(ik)
t )bk . (3.5)

Now, for the k = |ξ| − 1 term we use the bound

N∑
i1,...,i|ξ|−1=1

all distinct

(ν
(i1)
t )2ν

(i2)
t . . . ν

(i|ξ|−1)
t ≤ N |ξ|−2

N∑
i=1

(ν
(i)
t )2

while for the other terms we have

N∑
i1,...,ik=1
all distinct

(ν
(i1)
t )b1 . . . (ν

(ik)
t )bk

≤
N∑
i=1

(ν
(i)
t )2

{
N∑

j1,...,j|ξ|−2=1

ν
(j1)
t . . . ν

(j|ξ|−2)
t −

N∑
j1,...,j|ξ|−2=1

all distinct and 6=i

ν
(j1)
t . . . ν

(j|ξ|−2)
t

}

=

N∑
i=1

(ν
(i)
t )2

{(
N∑
j=1

ν
(j)
t

)|ξ|−2

−
N∑

j1,...,j|ξ|−2=1
all distinct and 6=i

ν
(j1)
t . . . ν

(j|ξ|−2)
t

}

=
N∑
i=1

(ν
(i)
t )2

{
N |ξ|−2 −

N∑
j1,...,j|ξ|−2=1

all distinct and 6=i

ν
(j1)
t . . . ν

(j|ξ|−2)
t

}

where we have subtracted all the terms except those which either have one of the indices
equal to i (in which case the largest merger consists of more than two lineages) or have
two of the indices equal to each other (in which case there is a simultaneous merger). This
leaves only those terms where k ≤ |ξ|−2, that is where there are multiple or simultaneous
mergers. It is an inequality rather than an equality because some of the cases are double-
counted.

The expression is further bounded by a reverse multinomial expansion, as in the proof
of Koskela et al. (2018, Lemma 1 Case 3), which is then simplified using that (N − x)b ≥
N b − bxN b−1 for x ≤ N , b ≥ 0, an application of the Bernoulli inequality:

N∑
i=1

(ν
(i)
t )2

{
N |ξ|−2 − (N − ν(i)

t )|ξ|−2 +

(
|ξ| − 2

2

)∑
j 6=i

(ν
(j)
t )2

(∑
k 6=i

ν
(k)
t

)|ξ|−4}

≤
N∑
i=1

(ν
(i)
t )2

{
(|ξ| − 2)ν

(i)
t N |ξ|−3 +

(
|ξ| − 2

2

)∑
j 6=i

(ν
(j)
t )2N |ξ|−4

}
.
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3.1 The genealogical process

Hence

pξξ(t) ≥ 1− 1

(N)|ξ|

(
|ξ|
2

)
N |ξ|−2

N∑
i=1

(ν
(i)
t )2

− N |ξ|−3

(N)|ξ|
|ξ|!
|ξ|−2∑
k=1

∑
b1≥...≥bk≥1
b1+...+bk=|ξ|

N∑
i=1

(ν
(i)
t )2

{
(|ξ| − 2)ν

(i)
t +

(
|ξ| − 2

2

)
1

N

∑
j 6=i

(ν
(j)
t )2

}
.

The summands in the last line are independent of k, b1, . . . , bk, and the number of terms
in the sums over k and b1, . . . , bk is bounded by γ|ξ|−2(|ξ| − 2), where γn is the number of

integer partitions of n. By Hardy and Ramanujan (1918, Section 2), γn < Ke2
√

2n/n for
a constant K > 0 independent of n. Thus, for |ξ| > 2,

pξξ(t) ≥ 1− N |ξ|−2

(N − 2)|ξ|−2

(
|ξ|
2

)
cN (t)

− N |ξ|−2

(N − 2)|ξ|−2
K exp(2

√
2(|ξ| − 2))|ξ|! 1

N(N)2

×
N∑
i=1

(ν
(i)
t )2

{
(|ξ| − 2)ν

(i)
t +

(
|ξ| − 2

2

)
1

N

∑
j 6=i

(ν
(j)
t )2

}
.

Notice that when |ξ| > 2, both (|ξ| − 2) and
(|ξ|−2

2

)
are less than or equal to

(|ξ|−1
2

)
. Thus

by definition of DN (t),

pξξ(t) ≥ 1− N |ξ|−2

(N − 2)|ξ|−2

(
|ξ|
2

)
cN (t)

− N |ξ|−2

(N − 2)|ξ|−2
K exp(2

√
2(|ξ| − 2))|ξ|!

(
|ξ| − 1

2

)
DN (t)

≥ 1− N |ξ|−2

(N − 2)|ξ|−2

(
|ξ|
2

)[
cN (t) +B|ξ|DN (t)

]
where

B|ξ| =

(
|ξ|
2

)−1

K exp(2
√

2(|ξ| − 2))|ξ|!
(
|ξ| − 1

2

)
= K(|ξ| − 1)!(|ξ| − 2) exp(2

√
2(|ξ| − 2)).

When |ξ| = 2, (3.5) becomes
pξξ(t) ≥ 1− cN (t)

and when |ξ| = 1, (3.5) becomes
pξξ(t) ≥ 1;

in both cases the result is immediate. �

Proposition 3.4. Let ξ ∈ Pn. Then, for N sufficiently large,

pξξ(t) ≤ 1−
(
|ξ|
2

)
{1 +O(N−1)}

[
cN (t)−B′|ξ|DN (t)

]
where B′|ξ| =

(|ξ|−1
2

)
.

A proof is given in Koskela et al. (2018, Lemma 1 Case 1).
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3.2 An existing limit theorem

Koskela et al. (2018) proved the following theorem which gives sufficient conditions under
which sampled genealogies of non-neutral interacting particle systems converge to the n-
coalescent as N →∞. Such a result can only be expected to hold for genealogies of finite
samples (n� N), and not for the entire genealogy of the N particles. For instance the ge-
nealogies arising in SMC algorithms are not restricted to single pair mergers only, although
within a sparse sample we may, under mild conditions, see only single pair mergers. That
is to say, there is not an extension of this result whereby the whole-population genealogy
converges to the Kingman coalescent as N → ∞, unless very restrictive conditions are
imposed.

Theorem 3.5 (Koskela et al. 2018). Fix n ≤ N as the observed number of particles
from the output of an interacting particle system with N particles which satisfies (A1).
Suppose that for any 0 ≤ s < t <∞, we have

lim
N→∞

E

[
τN (t)∑

r=τN (s)+1

DN (r)

]
= 0, (3.6)

lim
N→∞

E[cN (t)] = 0, (3.7)

lim
N→∞

E

[
τN (t)∑

r=τN (s)+1

cN (r)2

]
= 0, (3.8)

and E[τN (t)− τN (s)] ≤ Ct,sN, (3.9)

for some constant Ct,s > 0 that is independent of N . Then the finite-dimensional

distributions of (G
(n,N)
τN (t) )t≥0 converge to those of the n-coalescent as N →∞.

To ensure samples of size n have Kingman genealogies in the limit, with pair mergers
only, we require that multiple mergers (that is, where more than two lineages merge into
one, or where two or more mergers happen simultaneously) occur on a slower time scale
than pair mergers. This is the role of condition (3.6).

Conditions (3.7) and (3.8) ensure that the limiting process is continuous and has the
required unit pair merger rate. For (3.7) to fail to hold, the expected number of mergers
at some generation would have to be Ω(N2). This can only happen if the resampling
scheme is very bad (e.g. star resampling) or the weights are particularly badly-behaved.
The latter is ruled out in the corollaries of Chapter 5 by imposing bounds on the potential
functions; this is discussed further in Section 5.1.

Condition (3.9) specifies that the time scale must be O(N). As we saw in Section 2.2.3,
this is the correct time scale for the Wright-Fisher model, but for instance the Moran
model has time scale O(N2) and hence violates this condition. Since we know that the
neutral Moran model also has Kingman genealogies in the limit, condition (3.9) cannot be
necessary. The simplified statement in Theorem 3.6 does not impose any such condition
on the time scale.

The proof of Koskela et al. (2018) does not explicitly use (3.7) but rather the similar
condition

lim
N→∞

E[cN (τN (t))] = 0. (3.10)

However, as we will see in the next section (Lemmata 3.8 and 3.9), both (3.7) and (3.10)
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3.3 A new limit theorem

are implied by (3.6), so the theorem is correct. Such redundancies in the statement of
Theorem 3.5 are removed in Theorem 3.6.

The proof of Theorem 3.5 (i.e. Koskela et al. 2018, Theorem 1) proceeds in three parts.
The first is a vanishing upper bound on finite-dimensional distributions of the genealogical
process when the path of the process involves any multiple mergers. The second is showing
that, when the path of the genealogy consists of only single pair mergers, the finite-
dimensional distributions of the n-coalescent upper bound those of the genealogical process
in the limit N → ∞. The final piece is a similar lower bound, which together with the
upper bound establishes convergence of the finite-dimensional distributions.

3.3 A new limit theorem

We now present a related theorem, having the same conclusion but with conditions that
are more tractable and remove some redundancies in the statement of Theorem 3.5.

Theorem 3.6. Let ν
(1:N)
t denote the offspring numbers in an interacting particle

system satisfying (A1) such that, for any N sufficiently large, P[τN (t) = ∞] = 0
for all finite t. Suppose that there exists a deterministic sequence (bN )N≥1 such that
limN→∞bN = 0 and

1

(N)3

N∑
i=1

Et
[
(ν

(i)
t )3

]
≤ bN

1

(N)2

N∑
i=1

Et
[
(ν

(i)
t )2

]
(3.11)

almost surely for all N , uniformly in t ∈ N. Fix n ≤ N and consider a randomly
chosen sample of n terminal particles. Then the finite-dimensional distributions of the

resulting rescaled genealogical process (G
(n,N)
τN (t) )t≥0 converge to those of the n-coalescent

as N →∞.

On the right-hand side of (3.11) is the filtered expectation (Et[·] := E[·|Ft−1]) of cN (t),
i.e. the expected pair merger rate, and the left-hand side is the corresponding rate of
triple mergers. Intuitively, (3.11) says that pair mergers dominate triple mergers, the
expected rate of which vanishes as N →∞. As we will see, this implies that pair mergers
also dominate all other larger mergers, such as simultaneous pair mergers. The condition
(3.11) is a non-exchangeable, non-neutral adaptation of the well-known necessary and
sufficient condition for genealogies of Cannings models to converge to the n-coalescent,
namely

lim
N→∞

E[(ν(1))3]

NE[(ν(1))2]
= 0,

found for example in Möhle (2000, Equation (16)). Since Cannings models assume ex-
changeability, the expectations are expressed, without loss of generality, for individual 1,
and since offspring distributions are i.i.d. across generations there is no dependence on t
and no conditioning.

Our result improves on Theorem 3.5 by eliminating the restrictive condition (3.9), which
we know is unnecessary. This allows our result to apply to some models not previously
included; for example the neutral Moran model. Although we do not prove that Theo-
rem 3.6 is a true generalisation of Theorem 3.5, we know that in exchangeable neutral
models the analogue of (3.11) is both necessary and sufficient, suggesting that in general
this condition is not significantly stronger than (3.6)–(3.8) combined.
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3 Convergence of Finite-Dimensional Distributions

Our conditions are also significantly easier to verify than those of Theorem 3.5. Not
only are four conditions replaced with one, but the condition (3.11) only involves marginal
moments of the offspring counts, whereas (3.6) and (3.8) involve mixed moments. As we
will see in Chapter 4, once we move beyond conditionally independent resampling schemes
such as multinomial resampling, the joint distributions of offspring counts become complex
and it may only be feasible to calculate their moments marginally. As such, we are able
to verify the conditions of Theorem 3.6 in several cases, including for resampling schemes
that induce strong correlations between offspring counts, whereas Koskela et al. (2018)
apply their theorem only to multinomial resampling.

Our condition on the time scale, P[τN (t) =∞] = 0, is not very restrictive. Essentially,
it rules out systems in which coalescences occur at only finitely many generations. This
condition is not actually necessary for Theorem 3.6 to hold, as such, but if it is violated
then the limiting object is an n-coalescent under an infinite time-scaling, so that after
some finite time the process is frozen forever and there are no more coalescences. This
would constitute a qualitatively different result and one that is of little interest for SMC,
so we follow Möhle (1998) and others in excluding it.

3.3.1 Proof of theorem

First we prove that (3.10) and the assumptions (3.6)–(3.8) of Theorem 3.5 all follow
from (3.11). Figure 3.2 illustrates how the following Lemmata 3.7–3.10 fit together. The
argument differs slightly from that presented in Brown et al. (2021a) in that we will
here show (3.11) ⇒ (3.6) ⇒ (3.7) rather than (3.11) ⇒ (3.6) and (3.11) ⇒ (3.7). This
highlights the redundancy in Theorem 3.5, where condition (3.6) directly implies two of
the other stated conditions.

The second step in the proof is to show that condition (3.9) is not necessary. In par-
ticular, the parts of the proof of Koskela et al. (2018) which relied on (3.9) are rewritten
using Proposition 3.3 instead. Proposition 3.3 is a lower bound on the probability of an
identity transition, which holds in general without the need for further conditions, so we
really are removing condition (3.9) and not replacing it with a different condition.

(3.11) (3.6)

(3.8)

(3.10)

(3.7)

Lemma 3.10

Lemma 3.7

Lemma 3.9

Lemma 3.8

Brown
et al. 2021

Lemma
3.4

Figure 3.2: Dependencies between conditions of Theorems 3.5 and 3.6. Arrows represent logical
implication; labels on arrows indicate the lemma in which the implication is stated. In
Brown et al. (2021a, Lemma 3.4) the direct implication (3.11)⇒ (3.7) was proved, but
here we will instead show that (3.6) ⇒ (3.7).
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3.3 A new limit theorem

Lemma 3.7. If for all 0 ≤ s < t <∞

lim
N→∞

E

[
τN (t)∑

r=τN (s)+1

DN (r)

]
= 0

then for all 0 ≤ s < t <∞

lim
N→∞

E

[
τN (t)∑

r=τN (s)+1

cN (r)2

]
= 0.

Proof. We have

cN (t)2 =
1

N(N − 1)(N)2

N∑
i=1

(ν
(i)
t )2

{
ν

(i)
t (ν

(i)
t − 1) +

N∑
j=1
j 6=i

(ν
(j)
t )2

}

=
1

N(N)2

N∑
i=1

(ν
(i)
t )2

{
ν

(i)
t (ν

(i)
t − 1)

N − 1
+

1

N − 1

N∑
j=1
j 6=i

(ν
(j)
t )2

}

≤ 1

N(N)2

N∑
i=1

(ν
(i)
t )2

{
ν

(i)
t +

1

N − 1

N∑
j=1
j 6=i

(ν
(j)
t )2

}

≤ 1

N(N)2

N∑
i=1

(ν
(i)
t )2

{
ν

(i)
t +

N/(N − 1)

N

N∑
j=1
j 6=i

(ν
(j)
t )2

}

≤ N/(N − 1)

N(N)2

N∑
i=1

(ν
(i)
t )2

{
ν

(i)
t +

1

N

N∑
j=1
j 6=i

(ν
(j)
t )2

}
=

N

N − 1
DN (t)

which is sufficient for the result. �

Lemma 3.8. If for all 0 ≤ s < t <∞

lim
N→∞

E

[
τN (t)∑

r=τN (s)+1

DN (r)

]
= 0

then for all t ∈ N
lim
N→∞

E[cN (t)] = 0.

Proof. Fix ε > 0, and assume N > 2/ε. Following Möhle and Sagitov (2003), define the
events

Ai(t) := {ν(i)
t ≤ Nε}. (3.12)
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Then

cN (t) =
1

(N)2

N∑
i=1

(ν
(i)
t )2[1Ai(t) + 1Ai(t)c ]

≤ Nε

(N)2

N∑
i=1

ν
(i)
t +

N∑
i=1

1Ai(t)c

=
Nε

N − 1
+

N∑
i=1

1Ai(t)c .

Taking expectations and applying the generalised Markov inequality,

E[cN (t)] ≤ ε1N +
N∑
i=1

P[ν
(i)
t > Nε]

≤ ε1N +

N∑
i=1

E[(ν
(i)
t )3]

(Nε)3

≤ ε1N +
N(N)2

(Nε)3
E[DN (t)]

= ε1N + ε−31NE[DN (t)]

≤ ε1N + ε−31NE

[
t∑

r=1

DN (r)

]

≤ ε1N + ε−31NE

 τN (t)∑
r=τN (0)+1

DN (r)

 ,
where 1N is used as an asymptotic shorthand for a sequence that converges to 1 as N →∞;
for instance 1N can be thought of as 1 +O(N−1). The last inequality is a consequence of
τN (0) = 0 and τN (t) ≥ t (Proposition 3.1(f)). Taking limits,

lim
N→∞

E[cN (t)] ≤ ε.

Since ε was arbitrary this concludes the proof. �

Lemma 3.9. If for all 0 ≤ s < t <∞

lim
N→∞

E

[
τN (t)∑

r=τN (s)+1

DN (r)

]
= 0

then for all 0 < t <∞
lim
N→∞

E[cN (τN (t))] = 0.
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3.3 A new limit theorem

Proof. Analogously to the proof of Lemma 3.8, we find

E[cN (τN (t))] ≤ ε1N +
N∑
i=1

P[ν
(i)
τN (t) > Nε]

≤ ε1N + ε−31NE [DN (τN (t))]

≤ ε1N + ε−31NE

 τN (t)∑
r=τN (0)+1

DN (r)


−→
N→∞

ε

which concludes the proof since ε was arbitrary. �

Lemma 3.10. If there exists a deterministic sequence (bN )N≥1 such that
limN→∞bN = 0 and

1

(N)3

N∑
i=1

Et[(ν
(i)
t )3] ≤ bN

1

(N)2

N∑
i=1

Et[(ν
(i)
t )2]

for all N , uniformly in t ∈ N, then for all 0 ≤ s < t <∞

lim
N→∞

E

[
τN (t)∑

r=τN (s)+1

DN (r)

]
= 0.

Proof. We decompose DN (t) as the sum of two terms and consider their filtered expecta-
tions. The first is

1

N(N)2

N∑
i=1

Et[(ν
(i)
t )2ν

(i)
t ] =

1

N(N)2

N∑
i=1

Et[2(ν
(i)
t )2 + (ν

(i)
t )3]

≤ 2

N
Et[cN (t)] +

1

(N)3

N∑
i=1

Et[(ν
(i)
t )3]

≤

(
2

N
+ bN

)
Et[cN (t)]. (3.13)

The second is

1

N2(N)2

N∑
j=1

∑
i 6=j

Et[(ν
(i)
t )2(ν

(j)
t )2] =

1

N2(N)2

N∑
j=1

∑
i 6=j

Et[(ν
(i)
t )2(ν

(j)
t )2 + (ν

(i)
t )2ν

(j)
t ]

≤ 1

N2(N)2

N∑
j=1

∑
i 6=j

Et[(ν
(i)
t )2(ν

(j)
t )2] +

Et[cN (t)]

N
. (3.14)
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3 Convergence of Finite-Dimensional Distributions

Now, with the events Ai(t) defined as in (3.12),

N∑
j=1

∑
i 6=j

Et{(ν(i)
t )2(ν

(j)
t )2} =

N∑
j=1

∑
i 6=j

{
Et[(ν

(i)
t )2(ν

(j)
t )21Ai(t)] + Et[(ν

(i)
t )2(ν

(j)
t )21Ai(t)c ]

}

≤ Nε
N∑
j=1

∑
i 6=j

Et[ν
(i)
t (ν

(j)
t )21Ai(t)] +N3

N∑
j=1

∑
i 6=j

Et[ν
(j)
t 1Ai(t)c ]

≤ N2(N)2εEt[cN (t)] +N4
N∑
i=1

P[ν
(i)
t > Nε | Ft−1]. (3.15)

For N ≥ 3/ε, by the generalised Markov inequality,

N∑
i=1

P[ν
(i)
t > Nε | Ft−1] ≤ 1

(Nε)3

N∑
i=1

Et[(ν
(i)
t )3] =

1N
ε3(N)3

N∑
i=1

Et[(ν
(i)
t )3]

≤ 1N
bN
ε3

Et[cN (t)]. (3.16)

Substituting (3.16) into (3.15) gives

N∑
j=1

∑
i 6=j

Et[(ν
(i)
t )2(ν

(j)
t )2] ≤ N41N

(
ε+

bN
ε3

)
Et[cN (t)] (3.17)

and substituting (3.17) into (3.14) gives

1

N2(N)2

N∑
j=1

∑
i 6=j

Et[(ν
(i)
t )2(ν

(j)
t )2] ≤

[
1N

(
ε+

bN
ε3

)
+

1

N

]
Et[cN (t)]. (3.18)

Combining (3.13) and (3.18), we have that

Et[DN (t)] =

[
1N

(
ε+

bN
ε3

)
+

3

N
+ bN

]
Et[cN (t)].

Finally, invoking Lemma 3.2 twice gives

E

[
τN (t)∑

r=τN (s)+1

DN (r)

]
= E

[
τN (t)∑

r=τN (s)+1

Er[DN (r)]

]

≤
{

1N

(
ε+

bN
ε3

)
+

3

N
+ bN

}
E

[
τN (t)∑

r=τN (s)+1

cN (r)

]

≤

{
1N

(
ε+

bN
ε3

)
+

3

N
+ bN

}
(t− s+ 1)

−→
N→∞

ε(t− s+ 1),

and recalling that ε > 0 was arbitrary concludes the proof. �

To complete the proof of Theorem 3.6 it remains to show that condition (3.9) is unnec-
essary. We will show that Proposition 3.3 can be used instead of (3.9) to obtain the same
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3.3 A new limit theorem

result. The only part of Koskela et al. (2018, Proof of Theorem 1) making use of condition
(3.9) is the lower bound on finite-dimensional distributions of the genealogical process for
paths involving single pair mergers only (starting on p.15 therein). A slight modification
of the argument allows a similar lower bound to be obtained via Proposition 3.3 such that
as N →∞ the bound coincides with the corresponding finite-dimensional distributions of
the n-coalescent, as required. The modified section of the proof is presented below, using
the notation of Koskela et al. (2018) for ease of comparison.

Proof. Let χ?d be the conditional transition probability of a transition from state ηd−1

to state ηd at times τN (td−1) and τN (td) respectively, conditional on the offspring counts

between those times ν
(1:N)
τN (td−1)+1, . . . , ν

(1:N)
τN (td). This transition can happen via any valid path

of merger events, but we restrict to paths involving binary mergers only, and denote by
χd the conditional transition probability subject to this restriction. Compared to Koskela
et al. (2018, Proof of Theorem 1), the derivation of an upper bound on χd holds without
modification, while the first step in the derivation of a lower bound (Koskela et al. 2018,
bottom of p.15) involves the application of Koskela et al. (2018, Lemma 1 Case 1) to bound
χd from below and the subsequent application of (3.9). Instead, we apply Proposition 3.3
to obtain, for sufficiently large N ,

χd ≥
τN (td)∑

s1<...<sα
=τN (td−1)+1

(Q̃α)ηd−1ηd

(
α∏
r=1

1{cN (sr)>(n−2
2 )DN (sr)}

[
cN (sr)−

(
n− 2

2

)
1NDN (sr)

])

×
τN (td)∏

r=τN (td−1)+1
r/∈{s1,...,sα}

[
1− B̃n1NDN (r)−

(
|ηd−1| − |{i : si < r}|

2

)
1NcN (r)

]

× 1{cN (r)<(B̃n+(n2))−1}.

Here Q̃ is the matrix obtained from the generator Q of Kingman’s n-coalescent (see Defini-
tion 2.1) by setting the diagonal entries to 0. The number of pair-merger steps required to
transition from ηd−1 to ηd is α = |ηd−1| − |ηd|. The sequences s1, . . . , sα denote the times
at which these pair-mergers happen. At the remaining times r the partition is unchanged,
and the bound of Proposition 3.3 has been applied to the one-step transition probabilities
corresponding to these identity transitions. The constant is B̃n := Bn

(
n
2

)
where Bn is the

constant defined in Proposition 3.3, and we have replaced |ηd| by its upper bound n.

The rest of the proof proceeds as in Koskela et al. (2018, pp.16–18), albeit from this
modified initial lower bound. A multinomial expansion of the product on the second line,
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3 Convergence of Finite-Dimensional Distributions

noting that (1N )a = 1N for any a ∈ R, yields

χd ≥

 τN (td)∏
r=τN (td−1)+1

1{cN (r)>(n−2
2 )DN (r)}1{cN (r)<(B̃n+(n2))−1}


×
τN (td)−τN (td−1)−α∑

β=0

(Q̃α)ηd−1ηd

∑
(λ,µ)∈Π2([α+β]):

|λ|=α

1N

×
τN (td)∑

s1<...<sα+β
=τN (td−1)+1

(∏
r∈λ

[
cN (sr)−

(
n− 2

2

)
1NDN (sr)

])

×
∏
r∈µ

{
−
(
|ηd−1| − |{i ∈ λ : i < r}|

2

)
cN (sr)− B̃nDN (sr)

}

where Πi([n]) denotes the set of partitions of {1, . . . , n} into exactly i blocks. Expanding
the product over λ gives

χd ≥

 τN (td)∏
r=τN (td−1)+1

1{cN (r)>(n−2
2 )DN (r)}1{cN (r)<(B̃n+(n2))−1}


×
τN (td)−τN (td−1)−α∑

β=0

(Q̃α)ηd−1ηd

∑
(λ,µ,π)∈Π3([α+β]):

|µ|=β

(
n− 2

2

)|π|
(−1)|π| 1N

×
τN (td)∑

s1<...<sα+β
=τN (td−1)+1

{∏
r∈λ

cN (sr)

}{∏
r∈π

DN (sr)

}

×
∏
r∈µ

{
−
(
|ηd−1| − |{i ∈ λ ∪ π : i < r}|

2

)
cN (sr)− B̃nDN (sr)

}

and expanding the product over µ results in

χd ≥

 τN (td)∏
r=τN (td−1)+1

1{cN (r)>(n−2
2 )DN (r)}1{cN (r)<(B̃n+(n2))−1}


×
τN (td)−τN (td−1)−α∑

β=0

(Q̃α)ηd−1ηd

∑
(λ,µ,π,σ)∈Π4([α+β]):

|µ|+|σ|=β

B̃|σ|n

(
n− 2

2

)|π|
(−1)|π|+|σ|

× 1N

{∏
r∈µ
−
(
|ηd−1| − |{i ∈ λ ∪ π : i < r}|

2

)}

×
τN (td)∑

s1<...<sα+β
=τN (td−1)+1

{ ∏
r∈λ∪µ

cN (sr)

} ∏
r∈π∪σ

DN (sr).

Via a further multinomial expansion, the lower bound for the k-step transition probability
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can be written as

lim
N→∞

E

[
k∏
d=1

χd

]
≥ lim

N→∞
E

[ τN (tk)∏
r=τN (t0)+1

1{cN (r)>(n−2
2 )DN (r)}1{cN (r)<(B̃n+(n2))−1}


×
∞∑

β1=0

. . .
∞∑

βk=0

∑
(λ1,µ1,π1,σ1)∈Π4([α1+β1]):

|µ1|+|σ1|=β1

. . .
∑

(λk,µk,πk,σk)∈Π4([αk+βk]):
|µk|+|σk|=βk

B̃
∑k
d=1 |σd|

n

(
n− 2

2

)∑k
d=1 |πd|

(−1)
∑k
d=1 |πd|+|σd| 1N

×

{
k∏
d=1

(Q̃αd)ηd−1ηd

∏
r∈µd

−
(
|ηd−1| − |{i ∈ λd ∪ πd : i < r}|

2

)}

×
τN (t1)∑

s
(1)
1 <...<s

(1)
α1+β1

=τN (t0)+1

. . .

τN (tk)∑
s
(k)
1 <...<s

(k)
αk+βk

=τN (tk−1)+1

k∏
d=1

1{τN (td)−τN (td−1)≥αd+βd}

{ ∏
r∈λd∪µd

cN (s(d)
r )

} ∏
r∈πd∪σd

DN (s(d)
r )

]
.

An argument completely analogous to that in Koskela et al. (2018, p.24) shows that passing
the expectation and the limit through the infinite sums is justified, by Fubini’s theorem and
dominated convergence, whereupon the contribution of terms with

∑k
d=1(|πd|+ |σd|) > 0

vanishes. To see why, follow the argument used to show that the contribution of multiple
merger trajectories vanishes in the corresponding upper bound in Koskela et al. (2018,
p.10). That leaves

lim
N→∞

E

[
k∏
d=1

χd

]
≥

∞∑
β1=0

. . .

∞∑
βk=0

∑
(λ1,µ1)∈Π2([α1+β1]):

|µ1|=β1

. . .
∑

(λk,µk)∈Π2([αk+βk]):
|µk|=βk{

k∏
d=1

(Q̃αd)ηd−1ηd

∏
r∈µd

−
(
|ηd−1| − |{i ∈ λd ∪ πd : i < r}|

2

)}

× lim
N→∞

E

[ τN (td)∏
r=τN (td−1)+1

1{cN (r)>(n−2
2 )DN (r)}1{cN (r)<(B̃n+(n2))−1}


×

τN (t1)∑
s
(1)
1 <...<s

(1)
α1+β1

=τN (t0)+1

. . .

τN (tk)∑
s
(k)
1 <...<s

(k)
αk+βk

=τN (tk−1)+1

k∏
d=1

1{τN (td)−τN (td−1)≥αd+βd}

{ ∏
r∈λd∪µd

cN (s(d)
r )

}]
. (3.19)

We have, from Koskela et al. (2018, Equation (11)),∑
(λ,µ)∈Π2([α+β]):

|µ|=β

(Q̃α)ηd−1ηd

∏
r∈µ
−
(
|ηd−1| − |{i ∈ λ ∪ π : i < r}|

2

)
= (Qα+β)ηd−1ηd .
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Applying this k times in (3.19) yields

lim
N→∞

E

[
k∏
d=1

χd

]
≥

∞∑
β1=0

. . .
∞∑

βk=0

{
k∏
d=1

(Qαd+βd)ηd−1ηd

}

× lim
N→∞

E

{ τN (td)∏
r=τN (td−1)+1

1{cN (r)>(n−2
2 )DN (r)}1{cN (r)<(B̃n+(n2))−1}


×

(
k∏
d=1

1{τN (td)−τN (td−1)≥αd+βd}

)

×
τN (t1)∑

s
(1)
1 <...<s

(1)
α1+β1

=τN (t0)+1

. . .

τN (tk)∑
s
(k)
1 <...<s

(k)
αk+βk

=τN (tk−1)+1

k∏
d=1

∏
r∈λd∪µd

cN (s(d)
r )

}
.

We now apply equations (14) and (15), respectively, of Koskela et al. (2018), to those
terms with a negative (|β| odd) and positive (|β| even) sign, respectively, to obtain

lim
N→∞

E

[
k∏
d=1

χd

]
≥

∞∑
β1=0

. . .
∞∑

βk=0

{
k∏
d=1

(Qαd+βd)ηd−1ηd

(td − td−1)αd+βd

(αd + βd)!

}

× lim
N→∞

E

[ τN (td)∏
r=τN (td−1)+1

1{cN (r)>(n−2
2 )DN (r)}1{cN (r)<(B̃n+(n2))−1}


×

(
k∏
d=1

1{τN (td)−τN (td−1)≥αd+βd}

)]

≥
∞∑

β1=0

. . .
∞∑

βk=0

{
k∏
d=1

(Qαd+βd)ηd−1ηd

(td − td−1)αd+βd

(αd + βd)!

}

where the expectation of the indicators converges to 1 by a trivial modification of Koskela
et al. (2018, Lemma 4). �
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4 Weak Convergence

At the age of twenty-one he wrote a
treatise upon the Binomial Theorem, and
had, to all appearances, a most brilliant
career before him.

Sherlock Holmes

In this chapter we present a weak convergence result which is identical to Theorem 3.6
except that the mode of convergence is strengthened from convergence of the finite-
dimensional distributions to weak convergence. Weak convergence is desirable because
it implies convergence of a strictly larger class of functions of genealogies, granting access
to the distributions of statistics such as the time to the sample MRCA, the total branch
length, and the probability that the MRCA of a subsample is equal to the sample MRCA.

The extension from Theorem 3.6 to weak convergence requires an additional tightness
argument. The proof is rather long-winded since we do not have the strong assumptions on
the dynamics of the interacting particle system that are exploited for example in Möhle
(1999). The proof is broken down into a series of technical results which culminate in
Theorem 4.1. The overall structure of the proof is depicted graphically in Figure 4.1.

We start by defining a suitable metric space. Let Pn be the space of partitions of
{1, . . . , n}. Denote by D the set of all functions mapping [0,∞) to Pn that are right-

continuous with left limits. Our rescaled genealogical process (G(n,N)
τN (t) )t≥0 and our encoding

of the n-coalescent are piecewise-constant functions mapping time t ∈ [0,∞) to partitions,
and thus live in the space D. Finally, equip the space Pn with the discrete metric,

ρ(ξ, η) = 1− δξη :=

{
0 if ξ = η

1 otherwise

for any ξ, η ∈ Pn.

Theorem 4.1. Let ν
(1:N)
t denote the offspring numbers in an interacting particle

system satisfying (A1) and such that, for any N sufficiently large, for all finite t,
P[τN (t) = ∞] = 0. Suppose that there exists a deterministic sequence (bN )N∈N such
that limN→∞bN = 0 and

1

(N)3

N∑
i=1

Et
[
(ν

(i)
t )3

]
≤ bN

1

(N)2

N∑
i=1

Et
[
(ν

(i)
t )2

]
(4.1)

almost surely for all N , uniformly in t ≥ 1. Then, for any fixed n, the rescaled

genealogical process (G
(n,N)
τN (t) )t≥0 converges weakly in D to Kingman’s n-coalescent as

N →∞.

63



4 Weak Convergence

Proof of Theorem 4.1. The structure of the proof follows Möhle (1999), albeit with consid-
erable technical complication due to the dependence between generations (non-neutrality)
in our model. To make it digestible, the proof is broken down into a number of results
which are organised into sections; the relationships between these are shown in Figure 4.1.

Since we already have convergence of the finite-dimensional distributions (Theorem 3.6),
strengthening this to weak convergence requires relative compactness of the sequence of

processes {(G(n,N)
τN (t) )t≥0}N∈N.

Since Pn is finite and therefore complete and separable, and the sample paths of (G)t≥0

live in D, we can apply Ethier and Kurtz (1986, Chapter 3, Corollary 7.4) which states

that a sequence of processes {(G(n,N)
τN (t) )t≥0}N∈N is relatively compact if and only if the

following two conditions hold:

1. For every ε > 0, t ≥ 0 there exists a compact set Γ ⊆ Pn such that

lim inf
N→∞

P
[
G

(n,N)
τN (t) ∈ Γ

]
≥ 1− ε

2. For every ε > 0, t > 0 there exists δ > 0 such that

lim inf
N→∞

P
[
ω
(
G

(n,N)
τN (·) , δ, t

)
< ε
]
≥ 1− ε

where ω is the modified modulus of continuity:

ω
(
G

(n,N)
τN (·) , δ, t

)
:= inf max

i∈[K]
sup

u,v∈[Ti−1,Ti)
ρ
(
G

(n,N)
τN (u), G

(n,N)
τN (v)

)
with the infimum taken over all partitions of the form 0 = T0 < T1 < · · · < TK−1 <
t ≤ TK (for any K) such that mini∈[K](Ti − Ti−1) > δ.

In our case, Condition 1 is satisfied automatically with Γ = Pn, since Pn is finite and
hence compact. Intuitively, Condition 2 ensures that the jumps of the process are well-

separated. In our case where ρ is the discrete metric, we see that ρ(G
(n,N)
τN (u), G

(n,N)
τN (v)) is equal

to 1 if there is a jump between times u and v, and 0 otherwise. Taking the supremum and
maximum then indicates whether there is a jump inside any of the intervals of the given
partition; this can only be equal to zero if all of the jumps up to time t occur exactly at
the times T0, . . . , TK . The infimum over all allowed partitions, then, can only be equal to
zero if no two jumps occur less than δ (unscaled) time apart, because of the restriction
placed on these partitions.

The proof is concentrated on proving Condition 2. To do this, we use a coupling with
another process that contains all of the jumps of the genealogical process, with the addition
of some extra jumps. This process is constructed in such a way that it can be shown to
satisfy Condition 2, and hence so does the genealogical process.

Define pt := maxξ∈Pn{1 − pξξ(t)} = 1 − p∆∆(t), where ∆ denotes the trivial parti-
tion of singletons {{1}, . . . , {n}}. For a proof that the maximum is attained at ξ = ∆,
see Lemma 4.2. Following Möhle (1999), we now construct the two-dimensional Markov
process (Zt, St)t∈N0 on N0 × Pn with transition probabilities

P [Zt = j, St = η | Zt−1 = i, St−1 = ξ,F∞]

=


1− pt if j = i and η = ξ

pξξ(t) + pt − 1 if j = i+ 1 and η = ξ

pξη(t) if j = i+ 1 and η 6= ξ

0 otherwise

(4.2)
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and initial state Z0 = 0, S0 = ∆. Unlike the corresponding process in Möhle (1999), in
our case the transition probabilities depend on offspring counts, thus the process is only
Markovian conditional on F∞. It can be thought of as a time-inhomogeneous Markov
process in a random environment.

The construction is such that the marginal (St) has the same distribution as the ge-
nealogical process of interest, and (Zt) has jumps at all the times (St) does plus some extra
jumps. The definition of pt ensures that the probability in the second case of (4.2) is non-
negative, attaining the value zero when ξ = ∆. Furthermore, the transition probabilities
(and hence jump times) of (Zt) do not depend on the current state.

Denote by 0 = T
(N)
0 < T

(N)
1 < . . . the jump times of the rescaled process (ZτN (t))t≥0,

and by $
(N)
i := T

(N)
i − T (N)

i−1 the corresponding holding times.

Suppose that for some fixed $
(N)
1 , $

(N)
2 , . . . and t > 0, there exist m ∈ N and δ > 0

such that $
(N)
i > δ for all i ∈ {1, . . . ,m}, and T

(N)
m ≥ t. Then KN := min{i : T

(N)
i ≥ t} is

well-defined with 1 ≤ KN ≤ m, and T
(N)
1 , . . . , T

(N)
KN

form a partition of the form required

for Condition 2. Indeed (ZτN (·)) is constant on every interval [T
(N)
i−1 , T

(N)
i ) by construction,

so ω((ZτN (·)), δ, t) = 0. We therefore have that for each m ∈ N and δ > 0,

P
[
ω
(
(ZτN (·)), δ, t

)
< ε
]
≥ P

[
T (N)
m ≥ t,$(N)

i > δ ∀i ∈ {1, . . . ,m}
]
.

Thus a sufficient condition for Condition 2 is: for any ε > 0, t > 0, there exist m ∈ N,
δ > 0 such that

lim inf
N→∞

P
[
T (N)
m ≥ t,$(N)

i > δ ∀i ∈ {1, . . . ,m}
]
≥ 1− ε. (4.3)

Due to Lemma 4.3, the limiting distributions of $
(N)
i are i.i.d. Exp(αn), where αn :=

n(n− 1)/2, so

lim sup
N→∞

P
[
$

(N)
i ≤ δ

]
= 1− lim inf

N→∞
P
[
$

(N)
i > δ

]
= 1− e−αnδ

for each i, and

lim sup
N→∞

P
[
T (N)
m < t

]
= 1− lim inf

N→∞
P
[
T (N)
m ≥ t

]
= 1− lim inf

N→∞
P
[
$

(N)
1 + · · ·+$(N)

m ≥ t
]

= 1− e−αnt
m−1∑
i=0

(αnt)
i

i!
.

using the series expansion for the Erlang CDF (see for example Forbes et al. 2011, Chapter
15). Now

lim inf
N→∞

P
[
T (N)
m ≥ t,$(N)

i > δ ∀i ∈ {1, . . . ,m}
]

= 1− lim sup
N→∞

P

[
{T (N)

m < t} ∪
m⋃
i=1

{$(N)
i ≤ δ}

]

≥ 1− lim sup
N→∞

P
[
T (N)
m < t

]
−

m∑
i=1

lim sup
N→∞

P
[
$

(N)
i ≤ δ

]
= 1−

(
1− e−αnt

m−1∑
i=0

(αnt)
i

i!

)
−m(1− e−αnδ),
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4 Weak Convergence

which can be made ≥ 1 − ε by taking m sufficiently large and δ sufficiently small. Since
this argument applies for any ε and t, (4.3) and hence Condition 2 is satisfied, and the
proof is complete. �

Lemma 4.2. maxξ∈Pn{1− pξξ(t)} = 1− p∆∆(t).

Proof. Consider any ξ ∈ E consisting of k blocks (1 ≤ k ≤ n − 1), and any ξ′ ∈ E
consisting of k + 1 blocks. Setting η = ξ in (3.4),

pξξ(t) =
1

(N)k

N∑
i1,...,ik=1
all distinct

ν
(i1)
t · · · ν(ik)

t .

Similarly,

pξ′ξ′(t) =
1

(N)k+1

N∑
i1,...,ik+1=1
all distinct

ν
(i1)
t · · · ν(ik)

t ν
(ik+1)
t

=
1

(N)k(N − k)

N∑
i1,...,ik=1
all distinct

ν(i1)
t · · · ν(ik)

t

N∑
ik+1=1
/∈{i1,...,ik}

ν
(ik+1)
t

 .

Discarding the zero summands,

pξ′ξ′(t) =
1

(N)k(N − k)

N∑
i1,...,ik=1

all distinct:

ν
(i1)
t ,...,ν

(ik)
t >0

ν(i1)
t · · · ν(ik)

t

N∑
ik+1=1
/∈{i1,...,ik}

ν
(ik+1)
t

 .

The inner sum is

N∑
ik+1=1
/∈{i1,...,ik}

ν
(ik+1)
t =


N∑
i=1

ν
(i)
t −

∑
i∈{i1,...,ik}

ν
(i)
t

 ≤ N − k,
since ν

(i1)
t , . . . , ν

(ik)
t are all at least 1. Hence

pξ′ξ′(t) ≤
N − k

(N)k(N − k)

N∑
i1,...,ik=1

all distinct:

ν
(i1)
t ,...,ν

(ik)
t >0

ν
(i1)
t · · · ν(ik)

t = pξξ(t).

Thus pξξ(t) is decreasing in the number of blocks of ξ, and is therefore minimised by taking
ξ = ∆, which uniquely achieves the maximum n blocks. This choice in turn maximises
1− pξξ(t), as required. �
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Lemma 4.3. The finite-dimensional distributions of $
(N)
1 , $

(N)
2 , . . . converge as N →

∞ to those of $1, $2, . . . , where the $i are independent Exp(αn)-distributed random
variables.

Proof. There is a continuous bijection between the jump times T
(N)
1 , T

(N)
2 , . . . and the

holding times $
(N)
1 , $

(N)
2 , . . . , so convergence of the holding times to $1, $2, . . . is equiv-

alent to convergence of the jump times to T1, T2, . . . , where Ti := $1 + · · ·+$i. We will
work with the jump times, following the structure of Möhle (1999, Lemma 3.2).

The idea is to prove by induction that, for any k ∈ N and t1, . . . , tk > 0,

lim
N→∞

P
[
T

(N)
1 ≤ t1, . . . , T (N)

k ≤ tk
]

= P[T1 ≤ t1, . . . , Tk ≤ tk]. (4.4)

Take the basis case k = 1, for which

P[T1 ≤ t] = P[$1 ≤ t] = 1− e−αnt

and T
(N)
1 > t if and only if Z has no jumps up to time t:

P
[
T

(N)
1 > t

]
= E

[
P[T

(N)
1 > t | F∞]

]
= E

τN (t)∏
r=1

(1− pr)

 .
Lemma 4.7 shows that this probability converges to e−αnt as required.

For the induction step, assume that (4.4) holds for some k. We have the following
decomposition:

P
[
T

(N)
1 ≤ t1, . . . , T (N)

k+1 ≤ tk+1

]
= P

[
T

(N)
1 ≤ t1, . . . , T (N)

k ≤ tk
]

− P
[
T

(N)
1 ≤ t1, . . . , T (N)

k ≤ tk, T
(N)
k+1 > tk+1

]
.

The first term on the right-hand side converges to P[T1 ≤ t1, . . . , Tk ≤ tk] by the induction
hypothesis, and it remains to show that

lim
N→∞

P
[
T

(N)
1 ≤ t1, . . . , T (N)

k ≤ tk, T
(N)
k+1 > tk+1

]
= P[T1 ≤ t1, . . . , Tk ≤ tk, Tk+1 > tk+1].

As shown in Möhle (1999),

P[T1 ≤ t1, . . . , Tk ≤ tk, Tk+1 > tk+1] = αkne
−αnt

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
,

while the probability on the left-hand side can be written

P
[
T

(N)
1 ≤ t1, . . . , T (N)

k ≤ tk, T
(N)
k+1 > tk+1

]
= E

[
P[T

(N)
1 ≤ t1, . . . , T (N)

k ≤ tk, T
(N)
k+1 > tk+1 | F∞]

]

= E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)


 .
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4 Weak Convergence

That is, there are jumps at some times r1, . . . , rk and identity transitions at all other
times. A similar expression is derived in Möhle (1999), but here we have an additional
outer expectation because the probabilities pr depend on the offspring counts which are
random. Lemmata 4.8 and 4.9 show that this probability converges to the correct limit.
This completes the induction. �
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4 Weak Convergence

4.1 Bounds on sum-products

We start by proving some upper and lower bounds on sums of products of various quanti-
ties, which appear from our bounds on pr (Propositions 3.3 and 3.4). These sum-product
bounds will be applied multiple times in the lemmata of this chapter.

Lemma 4.4. Fix t > 0, l ∈ N.

(a)

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj) ≤ (t+ 1)l

(b) tl −

τN (t)∑
s=1

cN (s)2

( l
2

)
(t+ 1)l−2 ≤

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj) ≤ tl + cN (τN (t))(t+ 1)l

Proof. (a) Firstly, we have the inequality

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj) ≤

τN (t)∑
s=0

cN (s)

l

,

as can be seen by considering the multinomial expansion of the right-hand side. Applying
Proposition 3.1(d),

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj) ≤ (t+ 1)l.

(b) As pointed out in Koskela et al. (2018, Equation (8)),

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj) ≥

τN (t)∑
s=0

cN (s)

l

−
(
l

2

)τN (t)∑
s=0

cN (s)2

τN (t)∑
s=0

cN (s)

l−2

. (4.5)

Applying Proposition 3.1(d) on the right-hand side of (4.5) yields the lower bound.
For the upper bound we have

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj) ≤

τN (t)∑
s=0

cN (s)

l

≤

τN (t)−1∑
s=0

cN (s) + cN (τN (t))

l

≤ [t+ cN (τN (t))]l ,

using the definition of τN . A binomial expansion yields

[t+ cN (τN (t))]l = tl +

l−1∑
i=0

(
l

i

)
ticN (τN (t))l−i = tl + cN (τN (t))

l−1∑
i=0

(
l

i

)
ticN (τN (t))l−1−i,

then by Proposition 3.1(a),

l−1∑
i=0

(
l

i

)
ticN (τN (t))l−1−i ≤

l−1∑
i=0

(
l

i

)
ti ≤ (t+ 1)l.

Putting this together yields the upper bound. �
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4.1 Bounds on sum-products

Lemma 4.5. Fix t > 0, l ∈ N. Then, for any constant B > 0,

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[cN (sj) +BDN (sj)]

≤
τN (t)∑

s1,...,sl=1
all distinct

l∏
j=1

cN (sj) +

τN (t)∑
s=1

DN (s)

 (t+ 1)l−1(1 +B)l.

Proof. We start with a binomial expansion:

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[cN (sj) +BDN (sj)] =

τN (t)∑
s1,...,sl=1
all distinct

∑
I⊆[l]

Bl−|I|

(∏
i∈I

cN (si)

)∏
j /∈I

DN (sj)


=
∑
I⊆[l]

Bl−|I|
τN (t)∑

s1,...,sl=1
all distinct

(∏
i∈I

cN (si)

)∏
j /∈I

DN (sj)


(4.6)

where [l] := {1, . . . , l}. Since we are summing over all permutations of s1, . . . , sl, the
inner sum depends on I only through I := |I|. We may therefore replace the sum over
I ⊆ {1, . . . , l} with a sum over the size I of the subset and a binomial coefficient counting
the number of terms in which the subset is of size I:

∑
I⊆[l]

Bl−|I|
τN (t)∑

s1,...,sl=1
all distinct

(∏
i∈I

cN (si)

)∏
j /∈I

DN (sj)


=

l∑
I=0

(
l

I

)
Bl−I

τN (t)∑
s1,...,sl=1
all distinct

(
I∏
i=1

cN (si)

) l∏
j=I+1

DN (sj)

 .

Separating the term I = l,

l∑
I=0

(
l

I

)
Bl−I

τN (t)∑
s1,...,sl=1
all distinct

(
I∏
i=1

cN (si)

) l∏
j=I+1

DN (sj)


=

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj) +

l−1∑
I=0

(
l

I

)
Bl−I

τN (t)∑
s1,...,sl=1
all distinct

(
I∏
i=1

cN (si)

) l∏
j=I+1

DN (sj)

 .

(4.7)

In the second term on the right-hand side, there is always at least one DN term, so using
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4 Weak Convergence

that cN (s) ≥ DN (s) (Proposition 3.1(b)) we can write

l−1∑
I=0

(
l

I

)
Bl−I

τN (t)∑
s1,...,sl=1
all distinct

(
I∏
i=1

cN (si)

) l∏
j=I+1

DN (sj)


≤

l−1∑
I=0

(
l

I

)
Bl−I

τN (t)∑
s1,...,sl=1
all distinct

(
l−1∏
i=1

cN (si)

)
DN (sl)

≤
l−1∑
I=0

(
l

I

)
Bl−I

 τN (t)∑
s1,...,sl−1=1
all distinct

l−1∏
i=1

cN (si)

 τN (t)∑
sl=1

DN (sl)

≤
l−1∑
I=0

(
l

I

)
Bl−I(t+ 1)l−1

τN (t)∑
s=1

DN (s) (4.8)

using Lemma 4.4(a). Finally, by the Binomial Theorem,

l−1∑
I=0

(
l

I

)
Bl−I(t+ 1)l−1

τN (t)∑
s=1

DN (s) ≤

τN (t)∑
s=1

DN (s)

 (t+ 1)l−1(1 +B)l, (4.9)

which, together with (4.7), concludes the proof. �

Lemma 4.6. Fix t > 0, l ∈ N. Then, for any constant B > 0,

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[cN (sj)−BDN (sj)]

≥
τN (t)∑

s1,...,sl=1
all distinct

l∏
j=1

cN (sj)−

τN (t)∑
s=1

DN (s)

 (t+ 1)l−1(1 +B)l.
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4.2 Main components of induction argument

Proof. A binomial expansion and subsequent manipulation as in (4.6)–(4.7) gives

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[cN (sj)−BDN (sj)]

=
∑
I⊆[l]

(−B)l−|I|
τN (t)∑

s1,...,sl=1
all distinct

(∏
i∈I

cN (si)

)∏
j /∈I

DN (sj)


=

l∑
I=0

(
l

I

)
(−B)l−I

τN (t)∑
s1,...,sl=1
all distinct

(
I∏
i=1

cN (si)

) l∏
j=I+1

DN (sj)


=

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj) +
l−1∑
I=0

(
l

I

)
(−B)l−I

τN (t)∑
s1,...,sl=1
all distinct

(
I∏
i=1

cN (si)

) l∏
j=I+1

DN (sj)


≥

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj)−
l−1∑
I=0

(
l

I

)
Bl−I

τN (t)∑
s1,...,sl=1
all distinct

(
I∏
i=1

cN (si)

) l∏
j=I+1

DN (sj)


where the last inequality just multiplies some positive terms by −1. Then (4.8)–(4.9) can
be applied directly (noting that an upper bound on negative terms gives a lower bound
overall):

−
l−1∑
I=0

(
l

I

)
Bl−I

τN (t)∑
s1,...,sl=1
all distinct

(
I∏
i=1

cN (si)

) l∏
j=I+1

DN (sj)


≥ −

τN (t)∑
s=1

DN (s)

 (t+ 1)l−1(1 +B)l

which concludes the proof. �

4.2 Main components of induction argument

This section contains the technical aspects of the proof of Lemma 4.3, which establishes the
limiting distributions of holding times of the coupled process, via an induction argument.
This section is split into four lemmata: the first (Lemma 4.7) is used in the basis step and
the others in the induction step. The induction step is established by combining upper
and lower bounds, proved in Lemmata 4.8 and 4.9 respectively. Lemma 4.10 is a technical
result which is common to both the upper and lower bounds, determining the limit as
N →∞ of a certain expectation that arises in both bounds.

Recall that the following conditions are all consequences of (4.1): for all t > s > 0,

E [cN (τN (t))]→ 0 (4.10)

E

 τN (t)∑
r=τN (s)+1

cN (r)2

→ 0 (4.11)

E

 τN (t)∑
r=τN (s)+1

DN (r)

→ 0 (4.12)
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4 Weak Convergence

as N →∞. (See Lemmata 3.7, 3.8 and 3.10 for proofs.)

Lemma 4.7 (Basis step). Assume (4.1) holds. Then for any 0 < t <∞,

lim
N→∞

E

τN (t)∏
r=1

(1− pr)

 = e−αnt

where αn := n(n− 1)/2.

Proof. We start by showing that limN→∞ E
[∏τN (t)

r=1 (1− pr)
]
≤ e−αnt.

Setting ξ = ∆ in Proposition 3.4, we have for each r and for sufficiently large N

1− pr = p∆∆(r) ≤ 1− αn1N
[
cN (r)−B′nDN (r)

]
. (4.13)

Recall that 1N is asymptotic notation for a function that converges to 1 as N → ∞.
Since we will eventually take N → ∞, it is sufficient to have bounds that hold for large
enough N . However, some of the following manipulations require that these bounds are
non-negative. For this reason we introduce some indicator functions (which will be almost
surely equal to 1 in the limit) to keep the bounds non-negative. These indicators will
later be dropped from certain terms that are clearly non-negative without them. The
indicators introduced at this point are such that if their conditions do not hold then the
bound becomes the trivial 1− pr ≤ 1.

When N ≥ 3, a sufficient condition to ensure that the expression on the right-hand side
of (4.13) is non-negative is that the event

E1
N (r) :=

{
cN (r) < α−1

n AN
}

(4.14)

occurs, where AN = 1N as N → ∞ and is independent of r but will not be specified
explicitly. We will also need to control the sign of cN (r)−B′nDN (r), for which we define
the event

E2
N (r) :=

{
cN (r) ≥ B′nDN (r)

}
, (4.15)

and we define E1
N :=

⋂τN (t)
r=1 E1

N (r) and E2
N :=

⋂τN (t)
r=1 E2

N (r). Then

1− pr = p∆∆(r) ≤ 1− αn1N
[
cN (r)−B′nDN (r)

]
1E1

N∩E
2
N
.

Applying a multinomial expansion and then separating the positive and negative terms,

τN (t)∏
r=1

(1− pr) ≤ 1 +

τN (t)∑
l=1

(−αn)l1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[
cN (sj)−B′nDN (sj)

]
1E1

N∩E
2
N

= 1 +

τN (t)∑
l=2
even

αln1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[
cN (sj)−B′nDN (sj)

]
1E1

N∩E
2
N

−
τN (t)∑
l=1
odd

αln1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[
cN (sj)−B′nDN (sj)

]
1E1

N∩E
2
N
. (4.16)
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4.2 Main components of induction argument

This is further bounded by applying Lemma 4.6 and then both bounds of Lemma 4.4(b):

τN (t)∏
r=1

(1− pr)

≤ 1 + 1E1
N∩E

2
N

{
τN (t)∑
l=2
even

αln1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj)

−
τN (t)∑
l=1
odd

αln1N
1

l!

 τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj)−

τN (t)∑
s=1

DN (s)

 (t+ 1)l−1(1 +B′n)l

}

≤ 1 +

{
τN (t)∑
l=2
even

αln1N
1

l!

{
tl + cN (τN (t))(t+ 1)l

}

−
τN (t)∑
l=1
odd

αln1N
1

l!

tl −
τN (t)∑

s=1

cN (s)2

( l
2

)
(t+ 1)l−2


−

τN (t)∑
s=1

DN (s)

 (t+ 1)l−1(1 +B′n)l

}
1E1

N∩E
2
N
.

Collecting some terms,

τN (t)∏
r=1

(1− pr) ≤ 1 +

τN (t)∑
l=1

(−αn)l1N
1

l!
tl1E1

N∩E
2
N

+ cN (τN (t))

τN (t)∑
l=2
even

αln1N
1

l!
(t+ 1)l

+

τN (t)∑
s=1

cN (s)2

 τN (t)∑
l=1
odd

αln1N
1

l!

(
l

2

)
(t+ 1)l−2

+

τN (t)∑
s=1

DN (s)

 τN (t)∑
l=1
odd

αln1N
1

l!
(t+ 1)l−1(1 +B′n)l

≤ 1 +

∞∑
l=1

(−αn)l1N
1

l!
tl1{τN (t)≥l}1E1

N∩E
2
N

+ cN (τN (t)) exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

DN (s)

 exp[αn1N (t+ 1)(1 +B′n)]. (4.17)

The requirement τN (t) ≥ l has been dropped in all but the first term, which constitutes
adding some positive terms, giving an upper bound. Now, taking the expectation and
limit, then applying (4.10)–(4.12), and using Lemmata 4.12, 4.13 and 4.14 to show that
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4 Weak Convergence

limN→∞ P
[
{τN (t) ≥ l} ∩ E1

N ∩ E2
N

]
= 1,

lim
N→∞

E

τN (t)∏
r=1

(1− pr)

 ≤ 1 +
∞∑
l=1

(−αn)l
1

l!
tl lim
N→∞

P
[
{τN (t) ≥ l} ∩ E1

N ∩ E2
N

]
+ lim
N→∞

E [cN (τN (t))] exp[αn(t+ 1)]

+ lim
N→∞

E

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn(t+ 1)]

+ lim
N→∞

E

τN (t)∑
s=1

DN (s)

 exp[αn(t+ 1)(1 +B′n)]

= 1 +
∞∑
l=1

(−αn)l
1

l!
tl = e−αnt. (4.18)

Passing the limit and expectation inside the infinite sum is justified by dominated conver-
gence and Fubini.

It remains to show the corresponding lower bound

lim
N→∞

E

τN (t)∏
r=1

(1− pr)

 ≥ e−αnt.
Setting ξ = ∆ in Proposition 3.3, we have

1− pt = p∆∆(t) ≥ 1− Nn−2

(N − 2)n−2
αn[cN (t) +BnDN (t)] (4.19)

where Bn > 0. Due to Proposition 3.1((b)), a sufficient condition for this bound to be
non-negative is

E3
N (r) :=

{
cN (r) ≤ (N − 2)n−2

Nn−2
α−1
n (1 +Bn)−1

}
, (4.20)

and we define E3
N :=

⋂τN (t)
r=1 E3

N (r). Then

1− pt ≥
{

1− Nn−2

(N − 2)n−2
αn[cN (t) +BnDN (t)]

}
1E3

N (t)

is also a valid lower bound since if E3
N (t) does not occur then this collapses to the trivial

lower bound 1− pt ≥ 0. We now apply a multinomial expansion to the product, and split
into positive and negative terms:

τN (t)∏
r=1

(1− pr) ≥

1 +

τN (t)∑
l=1

(−αn)l1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[cN (sj) +BnDN (sj)]

1E3
N

=

{
1 +

τN (t)∑
l=2
even

αln1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[cN (sj) +BnDN (sj)]

−
τN (t)∑
l=1
odd

αln1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[cN (sj) +BnDN (sj)]

}
1E3

N
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4.2 Main components of induction argument

This is further bounded by applying Lemma 4.5 and both bounds in Lemma 4.4(b):

τN (t)∏
r=1

(1− pr)

≥ 1E3
N

{
1 +

τN (t)∑
l=2
even

αln1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj)

−
τN (t)∑
l=1
odd

αln1N
1

l!

 τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

cN (sj) +

τN (t)∑
s=1

DN (s)

 (t+ 1)l−1(1 +Bn)l

}

≥ 1E3
N

{
1 +

τN (t)∑
l=2
even

αln1N
1

l!

tl −
τN (t)∑

s=1

cN (s)2

( l
2

)
(t+ 1)l−2


−
τN (t)∑
l=1
odd

αln1N
1

l!

tl + cN (τN (t))(t+ 1)l +

τN (t)∑
s=1

DN (s)

 (t+ 1)l−1(1 +Bn)l

}.

Collecting terms and dropping indicators from some non-positive terms,

τN (t)∏
r=1

(1− pr) ≥
τN (t)∑
l=0

(−αn)l1N
1

l!
tl1E3

N
−

τN (t)∑
s=1

cN (s)2

 τN (t)∑
l=2
even

αln1N
1

l!

(
l

2

)
(t+ 1)l−2

− cN (τN (t))

τN (t)∑
l=1
odd

αln1N
1

l!
(t+ 1)l

−

τN (t)∑
s=1

DN (s)

 τN (t)∑
l=1
odd

αln1N
1

l!
(t+ 1)l−1(1 +Bn)l

≥
∞∑
l=0

(−αn)l1N
1

l!
tl1E3

N
1{τN (t)≥l} −

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn1N (t+ 1)]

− cN (τN (t)) exp[αn1N (t+ 1)]

−

τN (t)∑
s=1

DN (s)

 exp[αn1N (t+ 1)(1 +Bn)]. (4.21)

Now, taking the expectation and limit, and applying (4.10)–(4.12) to show that all but the
first sum vanish, and Lemmata 4.12 and 4.13 to show that limN→∞ P[{τN (t) ≥ l}∩E3

N ] =
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4 Weak Convergence

1,

lim
N→∞

E

τN (t)∏
r=1

(1− pr)

 ≥ ∞∑
l=0

(−αn)l1N
1

l!
tl lim
N→∞

P
[
{τN (t) ≥ l} ∩ E3

N

]

− lim
N→∞

E

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn(t+ 1)]

− lim
N→∞

E [cN (τN (t))] exp[αn(t+ 1)]

− lim
N→∞

E

τN (t)∑
s=1

DN (s)

 exp[αn(t+ 1)(1 +Bn)]

=
∞∑
l=0

(−αn)l
1

l!
tl = e−αnt. (4.22)

Again, passing the limit and expectation inside the infinite sum is justified by dominated
convergence and Fubini. Combining the upper and lower bounds in (4.18) and (4.22)
respectively concludes the proof. �

Lemma 4.8 (Induction step upper bound). Assume (4.1) holds. Fix k ∈ N, i0 := 0,
ik := k. For any sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ t,

lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)




≤ αkne−αnt
∑

i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
.

Proof. We use the bound on (1−pr) from (4.13), which holds for sufficiently large N , and
apply a multinomial expansion. Define as in (4.14) and (4.15) respectively the sequences
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4.2 Main components of induction argument

of events E1
N and E2

N which ensure that the following manipulations make sense:

τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr) ≤
τN (t)∏
r=1

/∈{r1,...,rk}

{
1− αn1N [cN (r)−B′nDN (r)]1E1

N∩E
2
N

}

= 1 +

τN (t)−k∑
l=1

(−αn)l1N
1

l!

τN (t)∑
s1,...,sl=1
/∈{r1,...,rk}
all distinct

l∏
j=1

[cN (sj)−B′nDN (sj)]1E1
N∩E

2
N

= 1 +

τN (t)−k∑
l=1

(−αn)l1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[cN (sj)−B′nDN (sj)]1E1
N∩E

2
N

−
τN (t)−k∑
l=1

(−αn)l1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct:
∃i,i′:si=ri′

l∏
j=1

[cN (sj)−B′nDN (sj)]1E1
N∩E

2
N
.

(4.23)

The penultimate line above is exactly the expansion we had in the basis step (4.16), except
for the limit on l, and as such following the same arguments gives a bound analogous to
that in (4.17):

1 +

τN (t)−k∑
l=1

(−αn)l1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct

l∏
j=1

[cN (sj)−B′nDN (sj)]1E1
N∩E

2
N

≤ 1 +

τN (t)−k∑
l=1

(−αn)l1N
1

l!
tl1E1

N∩E
2
N

+ cN (τN (t)) exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

DN (s)

 exp[αn1N (t+ 1)(1 +B′n)].
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For the last line of (4.23), recalling that DN (t) ≤ cN (t) (Proposition 3.1(b)),

−
τN (t)−k∑
l=1

(−αn)l1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct:
∃i,i′:si=ri′

l∏
j=1

{cN (sj)−B′nDN (sj)}1E1
N∩E

2
N

≤
τN (t)−k∑
l=1

αln1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct:
∃i,i′:si=ri′

l∏
j=1

{cN (sj) +B′nDN (sj)}

≤
τN (t)−k∑
l=1

αln1N
1

l!

τN (t)∑
s1,...,sl=1
all distinct:
∃i,i′:si=ri′

(1 +B′n)l
l∏

j=1

cN (sj)

≤
τN (t)−k∑
l=1

αln1N
1

(l − 1)!

∑
s1∈{r1,...,rk}

τN (t)∑
s2,...,sl=1
all distinct

(1 +B′n)l
l∏

j=1

cN (sj)

=
∑

s∈{r1,...,rk}

cN (s)

τN (t)−k∑
l=1

αln1N
1

(l − 1)!
(1 +B′n)l

τN (t)∑
s1,...,sl−1=1
all distinct

l−1∏
j=1

cN (sj)

≤
k∑
j=1

cN (rj)

τN (t)−k∑
l=1

αln1N
1

(l − 1)!
(1 +B′n)l(t+ 1)l−1

≤

 k∑
j=1

cN (rj)

αn(1 +B′n) exp[αn1N (1 +B′n)(t+ 1)],

where the penultimate inequality uses Lemma 4.4(a). Putting these together, we have

τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr) ≤ 1 +

τN (t)−k∑
l=1

(−αn)l1N
1

l!
tl1E1

N∩E
2
N

+ cN (τN (t)) exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

DN (s)

 exp[αn1N (t+ 1)(1 +B′n)]

+

 k∑
j=1

cN (rj)

αn(1 +B′n) exp[αn1N (1 +B′n)(t+ 1)]. (4.24)

Meanwhile, using the bound on pr from (4.19) then applying a modification of Lemma 4.5
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4.2 Main components of induction argument

where the sum is over ordered indices rather than distinct indices,

∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

pri ≤ αkn1N
∑

r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

[cN (ri) +BnDN (ri)]

≤ αkn1N
∑

r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri) +

τN (t)∑
s=1

DN (s)

αkn1N (t+ 1)k−1(1 +Bn)k.

(4.25)

A more liberal but simpler bound can be arrived at thus:

k∏
i=1

pri ≤ αkn1N

k∏
i=1

[cN (ri) +BnDN (ri)]

≤ αkn1N

k∏
i=1

cN (ri)(1 +Bn)

≤ αkn1N (1 +Bn)k
k∏
i=1

cN (ri) (4.26)

which, using Lemma 4.4(a), also leads to the deterministic bound

∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

pri ≤ αkn1N (1 +Bn)k
∑

r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)

≤ αkn1N (1 +Bn)k
1

k!

τN (t)∑
r1 6=···6=rk

k∏
i=1

cN (ri)

≤ αkn1N (1 +Bn)k
1

k!
(t+ 1)k. (4.27)

Combining this sum-product with (4.24), the expression inside the expectation in Lemma 4.8
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is bounded above by

∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)


≤

{
1 +

τN (t)−k∑
l=1

(−αn)l1N
1

l!
tl1E1

N∩E
2
N

} ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

pri

+

{
cN (τN (t)) exp[αn1N (t+ 1)] +

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

DN (s)

 exp[αn1N (t+ 1)(1 +B′n)]

} ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

pri

+ exp[αn1N (1 +B′n)(t+ 1)]αn(1 +B′n)
∑

r1<···<rk:
ri≤τN (ti)∀i

k∑
j=1

cN (rj)
k∏
i=1

pri .

Applying (4.25) to the first term, (4.27) to the second term and (4.26) to the third term,
we have

∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)


≤ αkn1N

{
1 +

τN (t)−k∑
l=1

(−αn)l1N
1

l!
tl1E1

N∩E
2
N

} ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)

+

τN (t)∑
s=1

DN (s)

αkn1N (t+ 1)k−1(1 +Bn)k
τN (t)∑
l=0

(αn)l1N
1

l!
tl

+

{
cN (τN (t)) exp[αn1N (t+ 1)] +

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

DN (s)

 exp[αn1N (t+ 1)(1 +B′n)]

}
αkn1N (1 +Bn)k

1

k!
(t+ 1)k

+ exp[αn(1 +B′n)(t+ 1)]αn(1 +B′n)αkn1N (1 +Bn)k

×
∑

r1<···<rk:
ri≤τN (ti)∀i

k∑
j=1

cN (rj)

k∏
i=1

cN (ri).
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Upon taking the expectation and limit, we have

lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)




≤ αkn lim
N→∞

E


1 +

τN (t)−k∑
l=1

(−αn)l
1

l!
tl1E1

N∩E
2
N

 ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)


+ lim
N→∞

E

τN (t)∑
s=1

DN (s)

αkn(t+ 1)k−1(1 +Bn)k exp[αnt]

+

{
lim
N→∞

E [cN (τN (t))] exp[αn(t+ 1)]

+ lim
N→∞

E

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn(t+ 1)]

+ lim
N→∞

E

τN (t)∑
s=1

DN (s)

 exp[αn(t+ 1)(1 +B′n)]

}
αkn(1 +Bn)k

1

k!
(t+ 1)k

+ exp[αn(1 +B′n)(t+ 1)]αk+1
n (1 +B′n)(1 +Bn)k

× lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

k∑
j=1

cN (rj)

k∏
i=1

cN (ri)

 .

The middle terms vanish due to (4.10)–(4.12) and the expression becomes

lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)


 ≤ αkn lim

N→∞
E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)



+ αkn

∞∑
l=1

(−αn)l
1

l!
tl lim
N→∞

E

1{τN (t)≥k+l}1E1
N∩E

2
N

∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)


+ exp[αn(1 +B′n)(t+ 1)]αk+1

n (1 +B′n)(1 +Bn)k

× lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

k∑
j=1

cN (rj)
k∏
i=1

cN (ri)

 , (4.28)

where passing the limit and expectation inside the infinite sum is justified by dominated
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convergence and Fubini; see Lemma 4.16. To simplify the last line,

∑
r1<···<rk:
ri≤τN (ti)∀i

k∑
j=1

cN (rj)

k∏
i=1

cN (ri) ≤
1

k!

τN (t)∑
r1,...,rk

all distinct

k∑
j=1

cN (rj)

k∏
i=1

cN (ri)

=
1

k!

τN (t)∑
r1,...,rk

all distinct

k∑
j=1

cN (rj)
2
∏
i 6=j

cN (ri)

≤ 1

k!

k∑
j=1

τN (t)∑
s=1

cN (s)2

τN (t)∑
r1,...,rk−1
all distinct

k−1∏
i=1

cN (ri)

≤ 1

(k − 1)!

τN (t)∑
s=1

cN (s)2(t+ 1)k−1,

using Lemma 4.4(a) for the final inequality. Hence

lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

∑
s∈{r1,...,rk}

cN (s)
k∏
i=1

cN (ri)

 ≤ 1

(k − 1)!
(t+ 1)k−1 lim

N→∞
E

τN (t)∑
s=1

cN (s)2



which equals 0 by (4.11). By Lemmata 4.12, 4.13 and 4.14, limN→∞ P[{τN (t) ≥ k + l} ∩
E1
N ∩ E2

N ] = 1, so we can apply Lemma 4.10 to the remaining expectations in (4.28),
yielding

lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)




≤ αkn
∞∑
l=0

(−αn)l
1

l!
tl

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!

= αkne
−αnt

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!

as required. �
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4.2 Main components of induction argument

Lemma 4.9 (Induction step lower bound). Assume (4.1) holds. Fix k ∈ N, i0 := 0,
ik := k. For any sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ t,

lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)




≥ αkne−αnt
∑

i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
.

Proof. Firstly,

∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)

 ≥ ∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

)τN (t)∏
r=1

(1− pr)

 . (4.29)

Now the second product does not depend on r1, . . . , rk, and we can use the lower bound
from (4.21):

τN (t)∏
r=1

(1− pr) ≥
τN (t)∑
l=0

(−αn)l1N
1

l!
tl1E3

N
−

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn1N (t+ 1)]

− cN (τN (t)) exp[αn1N (t+ 1)]

−

τN (t)∑
s=1

DN (s)

 exp[αn1N (t+ 1)(1 +Bn)] (4.30)

where E3
N is defined as in (4.20). We will also need an upper bound on this product, which

is formed from (4.17) with a further deterministic bound:

τN (t)∏
r=1

(1− pr) ≤
τN (t)∑
l=0

(−αn)l1N
1

l!
tl1{τN (t)≥l}1E1

N∩E
2
N

+ cN (τN (t)) exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn1N (t+ 1)]

+

τN (t)∑
s=1

DN (s)

 exp[αn1N (t+ 1)(1 +B′n)]

≤ exp[αn1N t] + exp[αn1N (t+ 1)]

+
1

2
α2
n(t+ 1) exp[αn1N (t+ 1)] + (t+ 1) exp[αn1N (t+ 1)(1 +B′n)]

≤
(

2 +
α2
n(t+ 1)

2

)
exp[αn1N (t+ 1)] + (t+ 1) exp[αn1N (t+ 1)(1 +B′n)].

(4.31)
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Now let us consider the remaining sum-product on the right-hand side of (4.29). We use
the same bound on pr as in (4.13):

pr = 1− p∆∆(r) ≥ αn1N
[
cN (r)−B′nDN (r)

]
(4.32)

where the 1N term does not depend on r. When N is large enough for the factor of 1N
to be non-negative, the condition that the bound in (4.32) is non-negative holds on the
event E2

N that was defined in (4.15). Then

k∏
i=1

pri ≥ αkn1N

k∏
i=1

[
cN (ri)−B′nDN (ri)

]
1E2

N
.

Applying a modification of Lemma 4.6 where the sum is over ordered indices rather than
distinct indices,∑

r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

pri ≥ αkn1N
∑

r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

[
cN (ri)−B′nDN (ri)

]
1E2

N

≥ αkn1N

{ ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)1E2
N

− 1

k!

τN (t)∑
s=1

DN (s)

 (t+ 1)k−1(1 +B′n)k

}
.

The above expression is already split into positive and negative terms; a lower bound on
(4.29) can be formed by multiplying the positive terms by the lower bound (4.30) and the
negative terms by the upper bound (4.31). Thus

∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)


≥ αkn1N

∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)1E2
N

{
τN (t)∑
l=0

(−αn)l1N
1

l!
tl1E3

N

−

τN (t)∑
s=1

cN (s)2

 1

2
α2
n exp[αn1N (t+ 1)]

− cN (τN (t)) exp[αn1N (t+ 1)]

−

τN (t)∑
s=1

DN (s)

 exp[αn1N (t+ 1)(1 +Bn)]

}

−

τN (t)∑
s=1

DN (s)

αkn1N
1

k!
(t+ 1)k−1(1 +B′n)k

{
(

2 +
α2
n(t+ 1)

2

)
exp[αn1N (t+ 1)]

+ (t+ 1) exp[αn1N (t+ 1)(1 +B′n)]

}
.
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4.2 Main components of induction argument

Due to (4.10)–(4.12), all but the first line on the right-hand side of the above have vanishing
expectation, leaving

lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)




≥ lim
N→∞

E

αkn1N
∑

r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)1E2
N

τN (t)∑
l=0

(−αn)l1N
1

l!
tl1E3

N



= αkn

∞∑
l=0

(−αn)l
1

l!
tl lim
N→∞

E

1{τN (t)≥l}1E2
N∩E

3
N

∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)

 .
(4.33)

Passing the limit and expectation inside the infinite sum is justified by dominated conver-
gence and Fubini; see Lemma 4.16. Lemmata 4.12 and 4.14 establish that limN→∞ P[E2

N ∩
E3
N ] = 1 and Lemma 4.13 deals with the other indicator. We can therefore apply

Lemma 4.10 to conclude that

lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

(
k∏
i=1

pri

) τN (t)∏
r=1

/∈{r1,...,rk}

(1− pr)




≥ αkn
∞∑
l=0

(−αn)l
1

l!
tl

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!

= αkne
−αnt

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!

as required. �

Lemma 4.10. Assume (4.1) holds. Fix k ∈ N, i0 := 0, ik := k. Let EN be a
sequence of events such that limN→∞ P[EN ] = 1. Then for any sequence of times
0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ t,

lim
N→∞

E

1EN ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)

 =
∑

i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
.

Proof. As pointed out by Möhle (1999, p.460), the sum-product on the left hand side can
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be expanded as

∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri) =
∑

i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

1

(ij − ij−1)!

τN (tj)∑
rij−1+1,...,rij
=τN (tj−1)+1

all distinct

ij∏
i=ij−1+1

cN (ri).

By a modification of the upper bound in Lemma 4.4(b) where the lower limit of the sum
is a general time rather than 1,

τN (tj)∑
rij−1+1,...,rij
=τN (tj−1)+1

all distinct

ij∏
i=ij−1+1

cN (ri) ≤ (tj − tj−1)ij−ij−1 + cN (τN (tj))(tj − tj−1 + 1)ij−ij−1

Now, taking the product on the outside,

k∏
j=1

1

(ij − ij−1)!

τN (tj)∑
rij−1+1,...,rij
=τN (tj−1)+1

all distinct

ij∏
i=ij−1+1

cN (ri)

≤
k∏
j=1

{
(tj − tj−1)ij−ij−1

(ij − ij−1)!
+ cN (τN (tj))

(tj − tj−1 + 1)ij−ij−1

(ij − ij−1)!

}

≤
k∏
j=1

{
(tj − tj−1)ij−ij−1

(ij − ij−1)!
+ cN (τN (tj))(tj − tj−1 + 1)ij−ij−1

}

=
∑
I⊆[k]

∏
j∈I

(tj − tj−1)ij−ij−1

(ij − ij−1)!

∏
j /∈I

cN (τN (tj))(tj − tj−1 + 1)ij−ij−1

 .

Separating the term where I = [k], this becomes

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!

+
∑
I⊂[k]

∏
j∈I

(tj − tj−1)ij−ij−1

(ij − ij−1)!

∏
j /∈I

cN (τN (tj))(tj − tj−1 + 1)ij−ij−1


≤

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
+
∑
I⊂[k]

∏
j∈I

tij−ij−1

∏
j /∈I

cN (τN (tj))(t+ 1)ij−ij−1


≤

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
+
∑
I⊂[k]

cN (τN (tj?(I)))

k∏
j=1

(t+ 1)ij−ij−1

=
k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
+
∑
I⊂[k]

cN (τN (tj?(I)))(t+ 1)k
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4.2 Main components of induction argument

where, say, j?(I) := min{j /∈ I}. Now we are in a position to evaluate the desired limit:

lim
N→∞

E

1EN ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)

 ≤ lim
N→∞

E

 ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)


≤

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
+

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

∑
I⊂[k]

lim
N→∞

E
[
cN (τN (tj?(I)))

]
(t+ 1)k

=
∑

i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!

using (4.10). For the corresponding lower bound, by a modification of the lower bound in
Lemma 4.4(b) where the lower limit of the sum is a general time rather than 1,

τN (tj)∑
rij−1+1,...,rij
=τN (tj−1)+1

all distinct

ij∏
i=ij−1+1

cN (ri)

≥ (tj − tj−1)ij−ij−1 −
(
ij − ij−1

2

) τN (tj)∑
s=τN (tj−1)+1

cN (s)2

 (tj − tj−1 + 1)ij−ij−1−2

≥ (tj − tj−1)ij−ij−1 − (ij − ij−1)!

 τN (tj)∑
s=τN (tj−1)+1

cN (s)2

 (tj − tj−1 + 1)ij−ij−1−2.

Define the events

E4
N (j) =


 τN (tj)∑
s=τN (tj−1)+1

cN (s)2

 ≤ 1

(ij − ij−1)!

(
tj − tj−1

tj − tj−1 + 1

)ij−ij−1

 ,

which is sufficient to ensure the jth term in the following product is non-negative, and
define E4

N :=
⋂k
j=1E

4
N (j). If tj = tj−1 then E4

N (j) has probability one automatically;
otherwise the constant on the right is strictly positive and so satisfies the conditions of
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Lemma 4.15. Now, taking a product over j,

k∏
j=1

1

(ij − ij−1)!

τN (tj)∑
rij−1+1,...,rij
=τN (tj−1)+1

all distinct

ij∏
i=ij−1+1

cN (ri)

≥
k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
−

 τN (tj)∑
s=τN (tj−1)+1

cN (s)2

 (tj − tj−1 + 1)ij−ij−1−2

1E4
N

=
∑
I⊆[k]

(−1)k−|I|

∏
j∈I

(tj − tj−1)ij−ij−1

(ij − ij−1)!


×

∏
j /∈I

 τN (tj)∑
s=τN (tj−1)+1

cN (s)2

 (tj − tj−1 + 1)ij−ij−1−2

1E4
N
.

Separating the term with I = [k], this becomes

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
1E4

N

+
∑
I⊂[k]

(−1)k−|I|

∏
j∈I

(tj − tj−1)ij−ij−1

(ij − ij−1)!


×

∏
j /∈I

 τN (tj)∑
s=τN (tj−1)+1

cN (s)2

 (tj − tj−1 + 1)ij−ij−1−2

1E4
N

≥
k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
1E4

N

−
∑
I⊂[k]

∏
j∈I

(tj − tj−1)ij−ij−1

(ij − ij−1)!


×

∏
j /∈I

 τN (tj)∑
s=τN (tj−1)+1

cN (s)2

 (tj − tj−1 + 1)ij−ij−1−2


≥

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
1E4

N

−
∑
I⊂[k]

∏
j∈I

tij−ij−1

∏
j /∈I

 τN (tj)∑
s=τN (tj−1)+1

cN (s)2

 (t+ 1)ij−ij−1−2

 .

Using parts (a) and (d) of Proposition 3.1 to upper bound all but one of the
∑
cN (s)2
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terms, and arbitrarily setting j?(I) := min{j /∈ I}, this is further bounded by

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
1E4

N

−
∑
I⊂[k]

 τN (tj?(I))∑
s=τN (tj?(I)−1)+1

cN (s)2

∏
j∈I

tij−ij−1

∏
j /∈I

(t+ 1)ij−ij−1−1


≥

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
1E4

N
−
∑
I⊂[k]

 τN (tj?(I))∑
s=τN (tj?(I)−1)+1

cN (s)2

 k∏
j=1

(t+ 1)ij−ij−1

=
k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
1E4

N
−
∑
I⊂[k]

 τN (tj?(I))∑
s=τN (tj?(I)−1)+1

cN (s)2

 (t+ 1)k.
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We can now evaluate the limit:

lim
N→∞

E

1EN ∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)



≥ lim
N→∞

E

1EN∩E4
N

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!



− lim
N→∞

E

1EN
∑

i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

∑
I⊂[k]

 τN (tj?(I))∑
s=τN (tj?(I)−1)+1

cN (s)2

 (t+ 1)k


≥

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
lim
N→∞

E
[
1EN∩E4

N

]

− lim
N→∞

E


∑

i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

∑
I⊂[k]

 τN (tj?(I))∑
s=τN (tj?(I)−1)+1

cN (s)2

 (t+ 1)k


=

∑
i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!
lim
N→∞

P
[
EN ∩ E4

N

]

−
∑

i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

∑
I⊂[k]

lim
N→∞

E

 τN (tj?(I))∑
s=τN (tj?(I)−1)+1

cN (s)2

 (t+ 1)k

=
∑

i1≤···≤ik−1

∈{0,...,k}:
ij≥j∀j

k∏
j=1

(tj − tj−1)ij−ij−1

(ij − ij−1)!

where for the last equality we use (4.11) to show that the second sum vanishes and
Lemma 4.15 to show that limN→∞ P[EN ∩ E4

N ] = 1. We have shown that the upper
and lower bounds coincide, so the proof is complete. �

4.3 Indicators

Many of the preceding results make use of indicator functions in order to control the signs
of certain terms. It was claimed that the probabilities of the corresponding events converge
to 1 as N →∞, so that the indicators do not have any effect in the limit. These claims are
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proved in this section. The first result (Lemma 4.11) shows that it is sufficient to prove
the limits separately for each event, even if we are actually taking a product of indicators
on two or more events. The remainder of this section is split into four more lemmata, each
of which deals with events of a certain form, showing that their probabilities converge to
1 as N →∞.

Lemma 4.11. Let (AN ), (BN ) be sequences of events. If limN→∞ P[AN ] = 1 and
limN→∞ P[BN ] = 1 then limN→∞ P[AN ∩BN ] = 1.

Proof.

lim
N→∞

P[AN ] = 1 and lim
N→∞

P[BN ] = 1

⇔ lim
N→∞

P[AcN ] = 0 and lim
N→∞

P[Bc
N ] = 0

⇒ lim
N→∞

{P[AcN ] + P[Bc
N ]} = 0

⇒ lim
N→∞

P[AcN ∪Bc
N ] = 0

⇔ lim
N→∞

P[AN ∩BN ] = 1. �

Lemma 4.12. Assume (4.11) holds. Fix t > 0. Let (KN )N≥0 be a positive sequence,
which may depend on n but not on r, that is bounded away from 0. Define the events

EN (r) := {cN (r) < KN} and denote EN :=
⋂τN (t)
r=1 EN (r). Then limN→∞ P[EN ] = 1.

Proof.

P[EN ] = 1− P[EcN ] = 1− P

τN (t)⋃
r=1

EcN (r)

 = 1− E
[
1
⋃
EcN (r)

]
≥ 1− E

τN (t)∑
r=1

1EcN (r)


= 1− E

τN (t)∑
r=1

E
[
1EcN (r)

∣∣∣Fr−1

] = 1− E

τN (t)∑
r=1

P[EcN (r) | Fr−1]

 (4.34)

where for the second line we apply Lemma 3.2 with f(r) = 1EcN (r). By the generalised
Markov inequality,

P[EcN (r) | Fr−1] = P[cN (r) ≥ KN | Fr−1] ≤ K−2
N E[cN (r)2 | Fr−1].

Substituting this into (4.34) and applying Lemma 3.2 again, this time with f(r) = cN (r)2,

P[EN ] ≥ 1−K−2
N E

τN (t)∑
r=1

E[cN (r)2 | Fr−1]

 = 1−K−2
N E

τN (t)∑
r=1

cN (r)2

 .
Applying (4.11), the limit is

lim
N→∞

P[EN ] = 1− 0 = 1

as required. �
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Lemma 4.13. Fix t > 0. For any l ∈ N, limN→∞ P[τN (t) ≥ l] = 1 .

Proof. We can replace the event {τN (t) ≥ l} with an event of the form of EN in Lemma 4.12:

{τN (t) ≥ l} =

{
min

{
s ≥ 1 :

s∑
r=1

cN (r) ≥ t

}
≥ l

}
=

{
l−1∑
r=1

cN (r) < t

}

⊇
l−1⋂
r=1

{
cN (r) <

t

l

}
⊇

τN (l)⋂
r=1

{
cN (r) <

t

l

}
since τN (l) ≥ l (Proposition 3.1(f)). Hence

lim
N→∞

P[τN (t) ≥ l] ≥ lim
N→∞

P

τN (l)⋂
r=1

{
cN (r) <

t

l

} = 1

by applying Lemma 4.12 with K = t/l. �

Lemma 4.14. Assume (4.12) holds. Fix t > 0. Let K be a constant not depending
on N, r (but which may depend on n).

lim
N→∞

P

τN (t)⋂
r=1

{cN (r) ≥ KDN (r)}

 = 1.

Proof.

P

τN (t)⋂
r=1

{cN (r) ≥ KDN (r)}

 ≥ P

τN (t)⋂
r=1

{cN (r) > KDN (r)}


= 1− P

τN (t)⋃
r=1

{cN (r) ≤ KDN (r)}


= 1− E

[
1
⋃
{cN (r)≤KDN (r)}

]
≥ 1− E

τN (t)∑
r=1

1{cN (r)≤KDN (r)}


= 1− E

τN (t)∑
r=1

P[cN (r) ≤ KDN (r) | Fr−1]

 (4.35)

where the final inequality is an application of Lemma 3.2 with f(r) = 1{cN (r)≤KDN (r)}.
Fix 0 < ε < 1/(2K) and assume N > max{ε−1, (K−1 − 2ε)−1}. For each r, i define the

event Ai(r) := {ν(i)
r ≤ Nε}. We have (almost surely)

DN (r) =
1

N(N)2

N∑
i=1

(ν(i)
r )2

ν(i)
r +

1

N

∑
j 6=i

(ν(j)
r )2

1Aci (r)
+

1

N(N)2

N∑
i=1

(ν(i)
r )2

ν(i)
r +

1

N

∑
j 6=i

(ν(j)
r )2

1Ai(r).
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For the first term,

1

N(N)2

N∑
i=1

(ν(i)
r )2

ν(i)
r +

1

N

∑
j 6=i

(ν(j)
r )2

1Aci (r)
=

N∑
i=1

1Aci (r)

 1

N(N)2
(ν(i)
r )2

ν(i)
r +

1

N

∑
j 6=i

(ν(j)
r )2


≤

N∑
i=1

1Aci (r)
DN (r) ≤

N∑
i=1

1Aci (r)
.

For the second term,

1

N(N)2

N∑
i=1

(ν(i)
r )2

ν(i)
r +

1

N

∑
j 6=i

(ν(j)
r )2

1Ai(r)
≤ 1

N(N)2

N∑
i=1

(ν(i)
r )2ν

(i)
r 1Ai(r) +

1

N2(N)2

N∑
i=1

(ν(i)
r )2

N∑
j=1

(ν(j)
r )2

1Ai(r)

≤ 1

N
cN (r)Nε+

1

N2(N)2

N∑
i=1

(ν(i)
r )2

N∑
j=1

(ν(j)
r )21Ai(r)

+
1

N2(N)2

N∑
i=1

(ν(i)
r )2

N∑
j=1

(ν(j)
r )1Ai(r)

≤ εcN (r) +
1

N2

N∑
i=1

ν(i)
r NεcN (r) +

1

N2
cN (r)N

= cN (r)

(
2ε+

1

N

)
.

Altogether we have

DN (r) ≤ cN (r)

(
2ε+

1

N

)
+

N∑
i=1

1Aci (r)
.

Hence

{cN (r) ≤ KDN (r)} ⊆

{
cN (r) ≤ KcN (r)(2ε+N−1) +K

N∑
i=1

1Aci (r)

}

=

{
K−1 − 2ε− 1

N
≤

N∑
i=1

1Aci (r)

cN (r)

}

where the ratio 1Aci (r)
/cN (r) is well-defined because

Aci (r)⇒ cN (r) :=
1

(N)2

N∑
j=1

(ν(j)
r )2 ≥

1

(N)2
(ν(i)
r )2 ≥

ε(Nε− 1)

N − 1
≥ ε

(
ε− 1

N

)
> 0.

Hence by Markov’s inequality (the conditions on ε,N ensuring the constant is always
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strictly positive),

P [cN (r) ≤ KDN (r) | Fr−1] ≤ P

[
N∑
i=1

1Aci (r)
≥
(
K−1 − 2ε− 1

N

)
ε

(
ε− 1

N

)∣∣∣∣∣Fr−1

]

≤ 1(
K−1 − 2ε− 1

N

)
ε
(
ε− 1

N

)E[ N∑
i=1

1Aci (r)

∣∣∣∣∣Fr−1

]

≤ 1(
K−1 − 2ε− 1

N

)
ε
(
ε− 1

N

)E[ N∑
i=1

(ν
(i)
r )3

(Nε)3

∣∣∣∣∣Fr−1

]

≤ 1(
K−1 − 2ε− 1

N

)
ε
(
ε− 1

N

)E [N(N)2

(Nε)3
DN (r)

∣∣∣∣Fr−1

]
.

Applying Lemma 3.2 once more, with f(r) = DN (r),

E

τN (t)∑
r=1

P[cN (r) ≤ KDN (r) | Fr−1]


≤ 1(

K−1 − 2ε− 1
N

)
ε
(
ε− 1

N

)N(N)2

(Nε)3
E

τN (t)∑
r=1

E[DN (r) | Fr−1]


=

1(
K−1 − 2ε− 1

N

)
ε
(
ε− 1

N

)N(N)2

(Nε)3
E

τN (t)∑
r=1

DN (r)


−→
N→∞

1

(K−1 − 2ε)ε5
× 0 = 0

due to (4.12). Substituting this back into (4.35) concludes the proof. �

Lemma 4.15. Assume (4.11) holds. Fix k ∈ N, a sequence of times 0 = t0 ≤ t1 ≤
· · · ≤ tk ≤ t, and let K1, . . . ,Kk be strictly positive constants. Define the event

EN :=

k⋂
j=1


τN (tj)∑

s=τN (tj−1)+1

cN (s)2 ≤ Kj

 .

Then limN→∞ P[EN ] = 1.

Proof.

P[EN ] = 1− P[EcN ] = 1− P

 k⋃
j=1


τN (tj)∑

s=τN (tj−1)+1

cN (s)2 > Kj




≥ 1−
k∑
j=1

P

 τN (tj)∑
s=τN (tj−1)+1

cN (s)2 ≥ Kj

 .
Applying Markov’s inequality,

P[EN ] ≥ 1−
k∑
j=1

K−1
j E

 τN (tj)∑
s=τN (tj−1)+1

cN (s)2

 −→
N→∞

1−
k∑
j=1

K−1
j × 0 = 1

by (4.11). �
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4.4 Fubini & dominated convergence conditions

4.4 Fubini & dominated convergence conditions

There are a few instances where Fubini’s Theorem and the Dominated Convergence The-
orem are needed in order to pass a limit and expectation through an infinite sum. Now
we verify the conditions of these theorems. This result, analogous to that in Koskela et al.
(2018, p.24), is used once in Lemma 4.8 at (4.28) and once in Lemma 4.9 at (4.33).

Lemma 4.16. For any fixed t > 0, for N sufficiently large,

E

 ∞∑
l=0

∣∣∣∣∣(−αn)l1N
1

l!
tl

∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)

∣∣∣∣∣
 <∞.

Proof.

E

 ∞∑
l=0

∣∣∣∣∣(−αn)l1N
1

l!
tl

∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)

∣∣∣∣∣
 = E

 ∞∑
l=0

αln1N
1

l!
tl

∑
r1<···<rk:
ri≤τN (ti)∀i

k∏
i=1

cN (ri)


≤ E

 ∞∑
l=0

αln1N
1

l!
tl

τN (t)∑
r1 6=···6=rk

k∏
i=1

cN (ri)


≤ E

[ ∞∑
l=0

αln1N
1

l!
tl(t+ 1)k

]
= E[exp{αnt1N}(t+ 1)k]

= exp{αnt1N}(t+ 1)k <∞

for N sufficiently large, where the bound on the sum-product comes from Lemma 4.4(a).
�
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Earth’s crammed with heaven,
And every common bush afire with God,
But only he who sees takes off his shoes;
The rest sit round and pluck blackberries.

Elizabeth Barrett Browning

Theorem 4.1 gives verifiable conditions under which interacting particle systems with
dynamics in the form of Algorithm 2.1 have asymptotically Kingman genealogies. The
work was motivated by SMC algorithms, which have the required form. However, certain
choices of state space and dynamics within the context of Algorithm 2.1 yield systems
that are not very SMC-like but may have applications in other fields such as population
genetics. For instance, we have generally required that the resampling scheme is unbiased,
but this is by no means necessary for Theorem 4.1 (or indeed Theorem 3.6); it is just that
biased resampling schemes are of little use in SMC.

The applications presented in this chapter are all motivated by SMC, but an interesting
area of future research would be to explore the implications of Theorem 4.1 in other
contexts. From the population genetics point-of-view, Theorem 4.1 may be seen as a
complement to the convergence criteria for neutral models discussed in Section 2.2.4, so
it would be interesting to construct some corollaries for classical non-neutral population
models.

For many of the following results it will be necessary to compute filtered expectations
Et[·] ≡ E[· | Ft−1], which are generally difficult to compute directly. To simplify the
computations we introduce a sequence of σ-algebras (Ht), defined below, such that filtered
expectations can be written in terms of conditional expectations given Ht.

Figure 5.1 shows a section of the conditional dependence graph implied by Algorithm 2.1,
as in Figure 2.2, except that time is now labelled in reverse. The σ-algebra

Ht := σ(X
(1:N)
t−1 , X

(1:N)
t , w

(1:N)
t−1 , w

(1:N)
t ) (5.1)

at each time t forms a separatrix, in the sense of d-separation (Verma and Pearl 1988),

between the parental indices a
(1:N)
t and the previous σ-algebra Ft−1 in the filtration.

That is, a
(1:N)
t is conditionally independent of Ft−1 given Ht. The practical upshot of this

is that we can use the tower rule along with conditional independence to write filtered
expectations as

Et
[
f(ν

(1:N)
t )

]
= Et

[
E[f(ν

(1:N)
t ) | Ht,Ft−1]

]
= Et

[
E[f(ν

(1:N)
t ) | Ht]

]
. (5.2)

As we will see, this enables us to compute bounds on the filtered expectations of interest
relatively easily.
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Ht
...

...

...

...

X
(1:N)
t+1

w
(1:N)
t+1

a
(1:N)
t+1

ν
(1:N)
t+1

X
(1:N)
t

w
(1:N)
t

a
(1:N)
t

ν
(1:N)
t

X
(1:N)
t−1

w
(1:N)
t−1

a
(1:N)
t−1

ν
(1:N)
t−1

...

...

...

...
Ft−1FtFt+1

Figure 5.1: Part of the conditional dependence graph implied by Algorithm 2.1 illustrating the
construction of Ht. The direction of time is from left to right. The reverse-time
filtration is indicated by the dashed areas. The nodes highlighted in grey generate the

separatrix Ht between a
(1:N)
t and Ft−1.

5.1 Multinomial resampling

Multinomial resampling is often preferred in theoretical studies of SMC because it renders
the parental indices conditionally i.i.d. given the weights, making it relatively simple to
analyse the resulting algorithm. The convergence of finite-dimensional distributions for
multinomial resampling was proved in Koskela et al. (2018, Corollary 1), but we are now
able to prove an analogous weak convergence result. The following proof also demonstrates
the relative ease with which we can verify the conditions of Theorem 3.6 as opposed to
those of Koskela et al. (2018, Theorem 1).

Corollary 5.1. Consider an SMC algorithm using multinomial resampling, such that
(A1) is satisfied. Assume there exist constants ε ∈ (0, 1], a ∈ [1,∞) and probability
density h such that for all x, x′, t,

1

a
≤ gt(x, x′) ≤ a, εh(x′) ≤ qt(x, x′) ≤

1

ε
h(x′). (5.3)

Let (G
(n,N)
t )t≥0 denote the genealogy of a random sample of size n among the N

terminal particles in the output of the algorithm. Then, for any fixed n, the time-

scaled genealogy (G
(n,N)
τN (t) )t≥0 converges weakly to Kingman’s n-coalescent as N →∞.

The bounds on gt and qt in (5.3) are rather strong; they can only reasonably be expected
to hold if the state space is compact. However, they are widespread in the literature,
where they are known as the strong mixing conditions (Del Moral 2004, Section 3.5.2),
because they greatly facilitate the theoretical analysis of SMC algorithms. It is often
possible to relax these conditions at the expense of considerable technical complication.
The conditions on gt in (5.3) ensure that the weights are all O(N−1), none of them being
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too close to zero or one. Together with the bounds on qt, this is enough to control the
relative rate of multiple mergers, as seen in the following proof.

Proof. Define Ht as in (5.1). Conditional on Ht the parental indices are independent, with
conditional law

P
[
a

(i)
t = ai

∣∣∣Ht] ∝ gt(Xa
(ai)
t+1

t+1 , X
(ai)
t )qt−1(X

(ai)
t , X

(i)
t−1) (5.4)

for each i, so the joint law is

P
[
a

(1:N)
t = a1:N

∣∣∣Ht] ∝ N∏
i=1

gt(X
a
(ai)
t+1

t+1 , X
(ai)
t )qt−1(X

(ai)
t , X

(i)
t−1).

Using the bounds (5.3) and the balls-in-bins coupling of Koskela et al. (2018, Proof of

Lemma 3), we can obtain bounds on expectations of functions of a
(1:N)
t . For any k ∈ N

the function a
(1:N)
t → (ν

(i)
t )k is {i}-increasing in the sense of Koskela et al. (2018, p.19),

so we may apply the bounds

E
[
(V

(i)
L )k

]
≤ E

[
(ν

(i)
t )k

∣∣∣Ht] ≤ E
[
(V

(i)
U )k

]
,

where

V
(i)
L

d
= Binomial

(
N,

ε/a

(ε/a) + (N − 1)(a/ε)

)
,

V
(i)
U

d
= Binomial

(
N,

a/ε

(a/ε) + (N − 1)(ε/a)

)
.

independently for each i and independently of F∞. Furthermore, using the moments of
the Binomial distribution (see for example Mosimann 1962, p.67)

E
[
(V

(i)
L )k

]
= (N)k

(
ε/a

(ε/a) + (N − 1)(a/ε)

)k
≥ (N)k

(
ε/a

N(a/ε)

)k
=

(N)k
Nk

ε2k

a2k
.

Similarly,

E
[
(V

(i)
U )k

]
≤ (N)k

Nk

a2k

ε2k
.

We therefore have the bounds

(N)k
Nk

ε2k

a2k
≤ E

[
(ν

(i)
t )k

∣∣∣Ht] ≤ (N)k
Nk

a2k

ε2k
.

for each k ∈ N. Consequently,

1

(N)2

N∑
i=1

E
[
(ν

(i)
t )2

∣∣∣Ht] ≥ ε4

Na4
(5.5)

and

1

(N)3

N∑
i=1

E
[
(ν

(i)
t )3

∣∣∣Ht] ≤ a6

N2ε6
. (5.6)

Applying (5.2) to (5.5) and (5.6) we find

1
(N)3

∑N
i=1 Et[(ν

(i)
t )3]

1
(N)2

∑N
i=1 Et[(ν

(i)
t )2]

≤ a6/(N2ε6)

ε4/(Na4)
=

a10

Nε10
=: bN −→

N→∞
0.

Thus (4.1) is satisfied. It remains to show that, for N sufficiently large, P[τN (t) =∞] = 0
for all finite t, a technicality which is proved in Lemma 5.2. Applying Theorem 4.1 then
yields the result. �
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Lemma 5.2. Consider an SMC algorithm using multinomial resampling, satisfying
(A1) and (5.3). Then, for all N > 2, P[τN (t) =∞] = 0 for all finite t.

Proof. Since cN (t) ∈ [0, 1] almost surely and has strictly positive expectation, for any fixed
N the distribution of cN (t) with given expectation that maximises P[cN (t) = 0 | Ft−1] is
two atoms, at 0 and 1 respectively. To ensure the correct expectation, the atom at 1 should
have mass P[cN (t) = 1 | Ft−1] = Et[cN (t)], which is bounded below by (5.5). If cN (t) > 0
then cN (t) ≥ 2/(N)2 > 2/N2. Hence, in general P[cN (t) > 2/N2 | Ft−1] ≥ Et[cN (t)].
Applying (5.5) along with (5.2), we have for any finite N

∞∑
t=0

P[cN (t) > 2/N2 | Ft−1] ≥
∞∑
t=0

Et[cN (t)] ≥
∞∑
t=0

ε4

Na4
=∞.

By a filtered version of the second Borel–Cantelli lemma (see for example Durrett 2019,
Theorem 4.3.4), this implies that cN (t) > 2/N2 for infinitely many t, almost surely. This
ensures, for all t <∞, that P [∃s <∞ :

∑s
r=1 cN (r) ≥ t] = 1, which by definition of τN (t)

is equivalent to P[τN (t) =∞] = 0. �

5.2 Stratified resampling

Corollary 5.3. Consider an SMC algorithm using stratified resampling, such that
(A1) is satisfied. Assume that there exists a constant a ∈ [1,∞) such that for all
x, x′, t,

1

a
≤ gt(x, x′) ≤ a. (5.7)

Assume that P[τN (t) = ∞] = 0 for all finite t. Let (G
(n,N)
t )t≥0 denote the genealogy

of a random sample of size n among the N terminal particles in the output of the

algorithm. Then, for any fixed n, the time-scaled genealogy (G
(n,N)
τN (t) )t≥0 converges

weakly to Kingman’s n-coalescent as N →∞.

Stratified resampling is, by design, much more restrictive than multinomial resampling.
Once the weights are known there is little freedom in the offspring counts, so it is not
surprising that control over the weights such as (5.7) provides is sufficient without any
additional control over the transition densities qt. Indeed the transition kernels need not
even admit densities. This is in contrast to multinomial resampling (Corollary 5.1), where
gt and qt are more or less on an equal footing, and we require both to be bounded.

It is not immediately clear that the finite time scale condition P[τN (t) = ∞] = 0 holds
under conditions (5.7), so it is included in the statement of the corollary. Proposition 5.6
presents some sufficient conditions for the finite time scale, but these are by no means
necessary.

Proof. Define the σ-algebras Ht as in (5.1). With stratified resampling, conditional on

the weights each offspring count almost surely takes one of four values: ν
(i)
t ∈ {bNw

(i)
t c −

1, bNw(i)
t c, bNw

(i)
t c+ 1, bNw(i)

t c+ 2}. Define for each k ∈ Z

p
(i)
k := P

[
ν

(i)
t = bNw(i)

t c+ k
∣∣∣Ht] . (5.8)
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Then p
(i)
k ≡ 0 for k /∈ {−1, 0, 1, 2}. Now

E
[
(ν

(i)
t )2

∣∣∣Ht] = p
(i)
−1(bNw(i)

t c − 1)2 + p
(i)
0 (bNw(i)

t c)2 + p
(i)
1 (bNw(i)

t c+ 1)2

+ p
(i)
2 (bNw(i)

t c+ 2)2

and

E
[
(ν

(i)
t )3

∣∣∣Ht] = p
(i)
−1(bNw(i)

t c − 1)3 + p
(i)
0 (bNw(i)

t c)3 + p
(i)
1 (bNw(i)

t c+ 1)3

+ p
(i)
2 (bNw(i)

t c+ 2)3

= p
(i)
−1(bNw(i)

t c − 3)(bNw(i)
t c − 1)2 + p

(i)
0 (bNw(i)

t c − 2)(bNw(i)
t c)2

+ p
(i)
1 (bNw(i)

t c − 1)(bNw(i)
t c+ 1)2 + p

(i)
2 bNw

(i)
t c(bNw

(i)
t c+ 2)2

≤ bNw(i)
t c
{
p

(i)
−1(bNw(i)

t c − 1)2 + p
(i)
0 (bNw(i)

t c)2 + p
(i)
1 (bNw(i)

t c+ 1)2

+ p
(i)
2 (bNw(i)

t c+ 2)2

}
= bNw(i)

t cE
[
(ν

(i)
t )2

∣∣∣Ht]
≤ a2E

[
(ν

(i)
t )2

∣∣∣Ht] . (5.9)

The last line uses the almost sure bound w
(i)
t ≤ a2/N which follows from (5.7) along with

the form of the weights in Algorithm 2.1. Some terms in the above expressions may be

equal to zero when w
(i)
t is small enough, but the bound still holds in these cases. Since

(5.9) holds for all i, applying the tower rule as in (5.2) we have

1

(N)3

N∑
i=1

Et
[
(ν

(i)
t )3

]
≤ a2

N − 2

1

(N)2

N∑
i=1

Et
[
(ν

(i)
t )2

]
,

satisfying (4.1) with bN := a2/(N − 2)→ 0. The result follows by applying Theorem 4.1.
�

Proposition 5.4. Consider an SMC algorithm using stratified resampling. Suppose
that there exists a constant ε ∈ (0, 1] and a probability density h such that

εh(x′) ≤ qt(x, x′) ≤ ε−1h(x′)

uniformly in x, t, and that there exist ζ > 0 and δ ∈ (0, 1) such that

P
[
max
i
w

(i)
t −min

i
w

(i)
t ≥ 2δ/N

∣∣∣∣Ft−1

]
≥ ζ (5.10)

for infinitely many t. Then, for all N > 1, P[τN (t) =∞] = 0 for all finite t.

We now assume qt is bounded above and away from zero, as in (5.3). We saw that such
a condition was not necessary for Corollary 5.3, and we do not believe it to be necessary
here either; it is merely a convenient way to control the contributions from the transition
density. Indeed, the terms in ε appearing in the bounds established in the following proof
are rather crude. In fact, the stated condition is stronger than necessary: we only need
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the bounds on qt to hold for infinitely many t, rather than for all t. We use this stronger
statement to avoid complicating the proof.

The second condition (5.10) is required to ensure that, at least infinitely often, the
weights are not equal to (1, . . . , 1)/N , since stratified resampling is degenerate under equal
weights, which could cause the time scale to explode. It is hardly conceivable that any
real SMC algorithm would fail to satisfy this very mild condition, which effectively ensures
that the weights cannot be “too well-behaved”.

Proof. As argued in Lemma 5.2, it is sufficient to prove that under the stated conditions

∞∑
r=0

P[cN (r) > 2/N2 | Fr−1] =∞.

Firstly,

P[cN (t) ≤ 2/N2 | Ht] = P[cN (t) = 0 | Ht] = P[ν
(i)
t = 1∀i ∈ {1, . . . , N} | Ht]

≤ P[ν
(i?)
t = 1 | Ht], (5.11)

where i? := argmaxi{w
(i)
t } (but note that the inequality holds when i? is taken to be

any particular index). Define p
(i)
k as in (5.8) and recall that, under stratified resampling,

p
(i)
k ≡ 0 for k /∈ {−1, 0, 1, 2} and

2∑
k=−1

p
(i)
k =

2∑
k=−1

P
[
ν

(i)
t = bNw(i)

t c+ k
∣∣∣w(1:N)

t

]
= 1.

Up to a proportionality constant C,

p
(i)
k = C P

[
ν

(i)
t = bNw(i)

t c+ k
∣∣∣w(1:N)

t

]
×

∑
a1:N∈{1,...,N}N :

|{j:aj=i}|=bNw
(i)
t c+k

P
[
a

(1:N)
t = a1:N

∣∣∣ ν(i)
t , w

(1:N)
t

] N∏
j=1

qt−1(X
(aj)
t , X

(j)
t−1)

for each k ∈ {−1, 0, 1, 2}. We can bound each probability above and below using the
almost sure bounds on qt−1 from the statement of the Proposition. Once the bounds on
qt−1 are brought outside, the remaining sum of probabilities is equal to one:

p
(i)
k ≥ C P

[
ν

(i)
t = bNw(i)

t c+ k
∣∣∣w(1:N)

t

]
εN

N∏
j=1

h(X
(j)
t−1),

p
(i)
k ≤ C P

[
ν

(i)
t = bNw(i)

t c+ k
∣∣∣w(1:N)

t

]
ε−N

N∏
j=1

h(X
(j)
t−1).

We then eliminate the proportionality constant C by normalising, to obtain lower bounds

p
(i)
k ≥

C P[ν
(i)
t = bNw(i)

t c+ k | w(1:N)
t ]εN

∏N
j=1 h(X

(j)
t−1)∑2

j=−1C P[ν
(i)
t = bNw(i)

t c+ j | w(1:N)
t ]ε−N

∏N
j=1 h(X

(j)
t−1)

= P[ν
(i)
t = bNw(i)

t c+ k | w(1:N)
t ]ε2N (5.12)
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for each k, which also imply

1− p(i)
k ≥

(
1− P[ν

(i)
t = bNw(i)

t c+ k | w(1:N)
t ]

)
ε2N . (5.13)

Suppose that maxiw
(i)
t − miniw

(i)
t ≥ 2δ/N . Then that at least one of {maxiw

(i)
t ≥

(1 + δ)/N} and {miniw
(i)
t ≤ (1 − δ)/N} occurs. We will now examine each of these

possibilities.

We can always write the maximum weight as w
(i?)
t = 1+γ

N for some γ ≥ 0. Then, using
(5.11),

P[cN (t) > 2/N2 | Ht] ≥ 1− P[ν
(i?)
t = 1 | Ht] =


0 if γ = 0

1− p(i?)
0 if γ ∈ (0, 1)

1− p(i?)
−1 if γ ∈ [1, 2)

1 if γ ≥ 2.

If γ ∈ (0, 1) then the overhang in the sense of Figure 2.7 is γ, and

1− p(i?)
0 ≥ 3γ

4
ε2N

using Table 2.1 (upper bound on p0) and (5.13). Similarly, if γ ∈ [1, 2) then the overhang
is γ − 1 and by Table 2.1 (upper bound on p−1),

1− p(i?)
−1 ≥

(
1− 1

4

)
ε2N ≥ 3

4
ε2N .

Overall, under the constraint maxiw
(i)
t ≥ (1 + δ)/N , we have

P[cN (t) > 2/N2 | Ht] ≥ min
γ≥δ

{
3γ

4
ε2N

1{γ∈[0,1)} +
3

4
ε2N

1{γ∈[1,2)} + 1{γ≥2}

}
=

3

4
δε2N ,

since δ < 1.
We now construct a similar argument for the minimum weight. Let j? := argmini{w

(i)
t }

and write w
(j?)
t = 1−γ

N , for some γ ∈ [0, 1]. Then by (5.11) we have

P[cN (t) > 2/N2 | Ht] ≥ 1− P[ν
(j?)
t = 1 | Ht] =

{
1− p(j?)

1 if γ ∈ (0, 1]

0 if γ = 0.

If γ ∈ (0, 1] then the overhang in the sense of Figure 2.7 is 1− γ, and

1− p(j?)
1 ≥

(
1− 1 + (1− γ)

2

)
ε2N =

γ

2
ε2N ,

using Table 2.1 (upper bound on p1). Therefore, under the constraint miniw
(i)
t ≤ (1 −

δ)/N , we have

P[cN (t) > 2/N2 | Ht] ≥ min
γ≥δ

{γ
2
ε2N

}
=

1

2
δε2N .

Combining both cases, we find for arbitrary r

P[cN (r) > 2/N2 | Hr] ≥
1

2
δε2N

1{maxi w
(i)
r −mini w

(i)
r ≥2δ/N}

105



5 Applications

so, by the tower rule and conditional independence,

P[cN (r) > 2/N2 | Fr−1] = Er
[
P[cN (r) > 2/N2 | Hr]

]
≥ 1

2
δε2NP[max

i
w(i)
r −min

i
w(i)
r ≥ 2δ/N | Fr−1]

≥ 1

2
δε2Nζ > 0

for infinitely many r. Hence

∞∑
r=0

P[cN (r) > 2/N2 | Fr−1] =∞

as required. �

5.3 Stochastic rounding

Corollary 5.5. Consider an SMC algorithm using any stochastic rounding as its
resampling scheme, such that (A1) is satisfied. Assume that there exists a constant
a ∈ [1,∞) such that for all x, x′, t,

1

a
≤ gt(x, x′) ≤ a.

Assume that P[τN (t) = ∞] = 0 for all finite t. Let (G
(n,N)
t )t≥0 denote the genealogy

of a random sample of size n among the N terminal particles in the output of the

algorithm. Then, for any fixed n, the time-scaled genealogy (G
(n,N)
τN (t) )t≥0 converges

weakly to Kingman’s n-coalescent as N →∞.

Proof. We can apply exactly the proof of Corollary 5.3, except that stochastic rounding is

more restrictive than stratified resampling, so that conditional on w
(1:N)
t the only possible

offspring counts (almost surely) are ν
(i)
t ∈ {bNw

(i)
t c, bNw

(i)
t c + 1}. We simply set p

(i)
−1 =

p
(i)
2 = 0 in the proof of Corollary 5.3 to see that

1

(N)3

N∑
i=1

Et
[
(ν

(i)
t )3

]
≤ a2

N − 2

1

(N)2

N∑
i=1

Et
[
(ν

(i)
t )2

]
as required. The result then follows by applying Theorem 4.1. �

We can also show, under additional conditions, that the assumption P[τN (t) =∞] = 0
for all finite t holds.

Proposition 5.6. Consider an SMC algorithm using any stochastic rounding as its
resampling scheme. Suppose that there exists a constant ε ∈ (0, 1] and a probability
density h such that

εh(x′) ≤ qt(x, x′) ≤ ε−1h(x′)

uniformly in x, t, and that there exist ζ > 0 and δ ∈ (0, 1) such that

P
[
max
i
w

(i)
t −min

i
w

(i)
t ≥ 2δ/N

∣∣∣∣Ft−1

]
≥ ζ

for infinitely many t. Then, for all N > 1, P[τN (t) =∞] = 0 for all finite t.
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This result was published in Brown et al. (2021a, Lemma B.1) with the slightly stronger
conditions where the bounds on qt are also uniform in x′. It has since been noted that
the conditions given here are sufficient; the h terms can be cancelled as in (5.12). As was
the case for Proposition 5.4, for convenience the conditions on qt are made stronger than
necessary.

Proof. Define p
(i)
k for k ∈ Z as in (5.8). In the case of stochastic rounding, p

(i)
k ≡ 0 for all

k /∈ {0, 1}, and we also have

P
[
ν

(i)
t = bNw(i)

t c
∣∣∣w(1:N)

t

]
= 1−Nw(i)

t + bNw(i)
t c,

P
[
ν

(i)
t = bNw(i)

t c+ 1
∣∣∣w(1:N)

t

]
= Nw

(i)
t − bNw

(i)
t c.

Combining this with (5.12),

p
(i)
0 ≥ (1−Nw(i)

t + bNw(i)
t c)ε2N ,

p
(i)
1 ≥ (Nw

(i)
t − bNw

(i)
t c)ε2N . (5.14)

Define i? := argmaxi{w
(i)
t } and write w

(i?)
t = 1+γ

N , for some γ ≥ 0. Then, using (5.11),

P
[
cN (t) > 2/N2

∣∣Ht] ≥ 1− P
[
ν

(i?)
t = 1

∣∣∣Ht] =

{
1− p(i?)

0 if γ ∈ [0, 1)

1 if γ ≥ 1.

In the case γ ∈ [0, 1) we have Nw
(i?)
t − bNw(i?)

t c = γ, so

P
[
cN (t) > 2/N2

∣∣Ht] ≥ 1− p(i?)
0 = p

(i?)
1 ≥ γε2N ,

due to (5.14). Therefore, subject to maxiw
(i)
t ≥ (1 + δ)/N ,

P
[
cN (t) > 2/N2

∣∣Ht] ≥ min
γ≥δ

{
γε2N

}
= δε2N .

Similarly, write j? := argmini{w
(i)
t } and w

(j?)
t = 1−γ

N , for some γ ∈ [0, 1]. Then, again
using (5.11),

P
[
cN (t) > 2/N2

∣∣Ht] ≥ 1− P
[
ν

(j?)
t = 1

∣∣∣Ht] =


0 if γ = 0

1− p(j?)
1 if γ ∈ (0, 1)

1 if γ = 1.

If γ ∈ (0, 1) then Nw
(i?)
t − bNw(i?)

t c = 1− γ, so

1− p(j?)
1 = p

(j?)
0 ≥ (1− (1− γ))ε2N = γε2N .

Therefore, subject to miniw
(i)
t ≤ (1− δ)/N ,

P
[
cN (t) > 2/N2

∣∣Ht] ≥ min
γ≥δ

{
γε2N

}
= δε2N .

Combining the cases for the maximum and minimum weight we have that

P
[
cN (t) > 2/N2

∣∣Ht] ≥ δε2N
1{maxi w

(i)
t −mini w

(i)
t ≥2δ/N}

and we conclude as in Proposition 5.4. �
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5.4 Residual resampling with stratified residuals

Corollary 5.7. Consider an SMC algorithm using residual resampling with stratified
residuals, such that (A1) is satisfied. Assume that there exists a constant a ∈ [1,∞)
such that for all x, x′, t,

1

a
≤ gt(x, x′) ≤ a.

Assume that P[τN (t) = ∞] = 0 for all finite t. Let (G
(n,N)
t )t≥0 denote the genealogy

of a random sample of size n among the N terminal particles in the output of the

algorithm. Then, for any fixed n, the time-scaled genealogy (G
(n,N)
τN (t) )t≥0 converges

weakly to Kingman’s n-coalescent as N →∞.

Proof. We can apply exactly the proof of Corollary 5.3, except that residual-stratified

resampling is more restrictive than stratified resampling, so that conditional on w
(1:N)
t the

only possible offspring counts (almost surely) are ν
(i)
t ∈ {bNw

(i)
t c, bNw

(i)
t c+1, bNw(i)

t c+2}.
We simply set p

(i)
−1 = 0 in the proof of Corollary 5.3 to see that

1

(N)3

N∑
i=1

Et
[
(ν

(i)
t )3

]
≤ a2

N − 2

1

(N)2

N∑
i=1

Et
[
(ν

(i)
t )2

]
as required. The result then follows by applying Theorem 4.1. �

We can also show, under additional conditions, that the assumption P[τN (t) =∞] = 0
for all finite t holds.

Proposition 5.8. Consider an SMC algorithm using residual resampling with strati-
fied residuals. Suppose that there exists a constant ε ∈ (0, 1] and a probability density
h such that

εh(x′) ≤ qt(x, x′) ≤ ε−1h(x′)

uniformly in x, and that there exist ζ > 0 and δ ∈ (0, 1) such that

P
[
max
i
w

(i)
t −min

i
w

(i)
t ≥ 2δ/N

∣∣∣∣Ft−1

]
≥ ζ

for infinitely many t. Then, for all N > 1, P[τN (t) =∞] = 0 for all finite t.

Proof. Define p
(i)
k for k ∈ Z as in (5.8). In the case of residual resampling with stratified

residuals, p
(i)
k ≡ 0 for all k /∈ {0, 1, 2}. Define i? := argmaxi{w

(i)
t } and write w

(i?)
t = 1+γ

N ,
for some γ ≥ 0. Then, using (5.11),

P
[
cN (t) > 2/N2

∣∣Ht] ≥ 1− P
[
ν

(i?)
t = 1

∣∣∣Ht] =


0 if γ = 0

1− p(i?)
0 if γ ∈ (0, 1)

1 if γ ≥ 1.

In the case γ ∈ (0, 1) we have

1− p(i?)
0 = p

(i?)
1 + p

(i?)
2 ≥ p(i?)

1 ≥ P
[
ν

(i?)
t = bNw(i?)

t c+ 1
∣∣∣w(1:N)

t

]
ε2N

108



5.5 Residual resampling with multinomial residuals

by (5.12). Also, the residual weight in this case is ri? = γ/R, for some R ∈ {1, . . . , N − 1}
(since γ > 0, R 6= 0). Therefore P[ν

(i?)
t = bNw(i?)

t c + 1 | w(1:N)
t ] is the probability that

stratified resampling with R individuals assigns exactly 1 offspring to a parent with weight
γ/R. According to Table 2.1 (lower bound on p1), this probability is at least γ/2. Hence

P
[
cN (t) > 2/N2

∣∣Ht] ≥ γ

2
ε2N .

This means that, subject to maxiw
(i)
t ≥ (1 + δ)/N ,

P
[
cN (t) > 2/N2

∣∣Ht] ≥ min
γ≥δ

{γ
2
ε2N

}
=

1

2
δε2N .

Now a similar calculation for the minimum weight: let j? := argmini{w
(i)
t } and write

w
(j?)
t = 1−γ

N , for some γ ∈ [0, 1]. Using (5.11),

P
[
cN (t) > 2/N2

∣∣Ht] ≥ 1− P
[
ν

(j?)
t = 1

∣∣∣Ht] =


0 if γ = 0

1− p(j?)
1 if γ ∈ (0, 1)

1 if γ = 1.

If γ ∈ (0, 1) then rj? = (1− γ)/R, for some R ∈ {1, . . . , N − 1}, and

1− p(j?)
1 = p

(j?)
0 + p

(j?)
2 ≥ p(j?)

0 ≥ P
[
ν

(j?)
t = bNw(j?)

t c
∣∣∣w(1:N)

t

]
ε2N

by (5.12). Now P[ν
(j?)
t = bNw(j?)

t c | w(1:N)
t ] is the probability that stratified resampling

with R individuals assigns exactly 0 offspring to a parent with weight (1−γ)/R. According
to Table 2.1 (lower bound on p0), this probability is at least γ/2. Hence

P
[
cN (t) > 2/N2

∣∣Ht] ≥ γ

2
ε2N .

Therefore, using (5.12), we have that subject to miniw
(i)
t ≤ (1− δ)/N

P
[
cN (t) > 2/N2

∣∣Ht] ≥ min
γ≥δ

{γ
2
ε2N

}
=

1

2
δε2N .

Combining the cases for the maximum and minimum weight we have

P
[
cN (t) > 2/N2

∣∣Ht] ≥ 1

2
δε2N

1{maxi w
(i)
t −mini w

(i)
t ≥2δ/N}

and we conclude as in Proposition 5.4. �

5.5 Residual resampling with multinomial residuals

We believe that an analogous result holds when the resampling scheme used is residual
resampling with multinomial residuals. Considering the ordering by variance presented
in Proposition 2.3, the residual-multinomial scheme sits between the multinomial scheme
and the residual-stratified scheme, both of which admit the desired convergence result
(Corollaries 5.1 and 5.7).

However, we have so far been unable to prove a similar corollary for the residual-
multinomial scheme. The techniques used for other residual schemes (see Section 5.4)
fail here because the number of offspring assigned to each individual is not upper bounded
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by bNw(i)
t c plus a constant; as many as R = O(N) residual offspring may be assigned

to a single individual. The technique used for multinomial resampling (Section 5.1) also
fails here: although we have a closed-form expression for the joint distribution of parental
indices, it is not a straightforward product form because of the additional dependence
between offspring counts induced by the deterministic assignments, so it is unclear how to
recover the marginal distributions.

5.6 Star resampling

One might ask the question: is it possible to construct an SMC algorithm whose genealogies
converge to some object other than the n-coalescent? The answer is yes, as we now
illustrate.

Recall that star resampling assigns all of the offspring to a single parent which is sampled

from the Categorical distribution parametrised by w
(1:N)
t . It is easy enough to show that

such a resampling scheme does not satisfy (4.1). The vector of offspring counts is at every
generation some permutation of (N, 0, . . . , 0), and hence we calculate

1

(N)2

N∑
i=1

E
[
(ν

(i)
t )2

∣∣∣Ht] =
1

(N)2
(N)2 = 1,

1

(N)3

N∑
i=1

E
[
(ν

(i)
t )3

∣∣∣Ht] =
1

(N)3
(N)3 = 1,

so no suitable sequence bN can be found. Now we know that Theorem 3.6 does not apply,
but this is not enough because condition (4.1) was not proved to be necessary. But in
fact we know exactly what the genealogy of n particles from this SMC algorithm looks
like (Figure 5.2). Whatever time scale is used, we cannot get away from the fact that this

· · ·

Figure 5.2: Sample genealogy induced by star resampling

genealogy involves multiple mergers; it cannot converge to the n-coalescent.

The limiting genealogy is more like a star coalescent (Griffiths and Mano 2016; Pitman
1999). This is the coalescent process comprising an Exp(1)-distributed event time at which
all of the lineages merge into one.

In the case of star resampling we have cN (t) ≡ 1, so the time-scaling function τN (t)
defined in (3.2) is the identity function τ(t) ≡ t for all N , and this does not yield a
continuous-time limit. Under any time scale that results in a continuous-time limiting
process, the coalescent event time converges to 0, rather than the usual Exp(1)-distributed
random variable. The resulting genealogy is a variant star coalescent where the distribu-
tion of the event time is a point mass at 0. An interesting consequence of this is that this
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coalescent comes down from infinity instantaneously, while the classical star coalescent
does not.

5.7 Conditional SMC

In conditional SMC, one “immortal” particle is treated differently to the others when it
comes to assigning offspring to parents. The immortal particle is guaranteed at least
one offspring, and has on average one more offspring than each of the other parents
in each generation. This results in genealogies that are qualitatively different to those
of a corresponding standard SMC algorithm. For one thing, the population MRCA is
guaranteed to be an immortal particle; there is a sense in which the immortal lineage
attracts coalescence events.

Given this, we should not have been surprised if conditional SMC genealogies converged
to a quite different coalescent process, perhaps a structured coalescent (Notohara 1990).
As it turns out, we still recover Kingman’s n-coalescent in the large population limit
(Corollary 5.9). The explanation for this is that, as N → ∞, the probability of a given
sample of size n interacting with the immortal lineage (before its within-sample MRCA)
vanishes, leaving a process that looks very much like the one induced by the corresponding
standard SMC algorithm.

Corollary 5.9. Consider a conditional SMC algorithm using multinomial resampling,
such that (A1) is satisfied. Assume there exist constants ε ∈ (0, 1] and a ∈ [1,∞) and
probability density h such that for all x, x′, t,

1

a
≤ gt(x, x′) ≤ a, εh(x′) ≤ qt(x, x′) ≤

1

ε
h(x′). (5.15)

Let (G
(n,N)
t )t≥0 denote the genealogy of a random sample of size n among the N

terminal particles in the output of the algorithm. Then, for any fixed n, the time-

scaled genealogy (G
(n,N)
τN (t) )t≥0 converges weakly to Kingman’s n-coalescent as N →∞.

We restrict here to the case of multinomial resampling, which seems to be the most
commonly-used resampling scheme within conditional SMC. Implementing other resam-
pling schemes while maintaining the immortal lineage is more involved, though by no
means impossible (for details see Lee, Murray, and Johansen 2019, for example). We con-
jecture that similar results hold for conditional SMC with other resampling schemes, as
in the preceding corollaries.

The conditions (5.15) are, as one might expect, identical to those assumed in the case of
standard SMC with multinomial resampling (Corollary 5.1). These should be interpreted
as holding uniformly in the choice of immortal trajectory.

Proof. Assume, without loss of generality, that the immortal particle takes index 1 in each
generation. This assumption is valid due to (A1), and significantly lightens the notation,
but the same argument holds if the immortal indices are taken to be a?0:T rather than
(1, . . . , 1).

Define Ht as in (5.1). The parental indices are conditionally independent given Ht, as
in standard SMC with multinomial resampling, but we have to treat i = 1 as a special

111



5 Applications

case. The conditional law on the ith parental index is

P
[
a

(i)
t = ai

∣∣∣Ht] ∝
1ai=1 i = 1

gt(X
a
(ai)
t
t+1 , X

(ai)
t )qt−1(X

(ai)
t , X

(i)
t−1) i = 2, . . . , N,

resulting in the joint law

P
[
a

(1:N)
t = a1:N

∣∣∣Ht] ∝ 1a1=1

N∏
i=2

gt(X
a
(ai)
t
t+1 , X

(ai)
t )qt−1(X

(ai)
t , X

(i)
t−1).

As in Corollary 5.1, under (5.15) we have bounds

E
[
(V

(i)
L )k

]
≤ E

[
(ν

(i)
t )k

∣∣∣Ht] ≤ E
[
(V

(i)
U )k

]
,

where now

V
(i)
L

d
= 1i=1 + Binomial

(
N − 1,

ε/a

(ε/a) + (N − 1)(a/ε)

)
,

V
(i)
U

d
= 1i=1 + Binomial

(
N − 1,

a/ε

(a/ε) + (N − 1)(ε/a)

)
.

independently for each i and independently of F∞. Furthermore, using the Binomial
moments and the identity (X + 1)2 ≡ 2(X)1 + (X)2, one can show that

E
[
(V

(i)
L )2

]
≥

{
(N−1)2
N2

ε4

a4
+ 2(N−1)

N
ε2

a2
if i = 1

(N−1)2
N2

ε4

a4
if i 6= 1.

Using the identity (X + 1)3 ≡ 3(X)2 + (X)3, we also have

E
[
(V

(i)
U )3

]
≤

{
(N−1)3
N3

a6

ε6
+ 3(N−1)2

N2
a4

ε4
if i = 1

(N−1)3
N3

a6

ε6
if i 6= 1.

We therefore have

1

(N)2

N∑
i=1

E
[
(ν

(i)
t )2

∣∣∣Ht] ≥ 1

(N)2

N∑
i=1

E
[
(V

(i)
L )2

]
≥ 1

(N)2

[
2(N − 1)

N

ε2

a2
+

N∑
i=1

(N − 1)2

N2

ε4

a4

]

=
1

N2

[
2
ε2

a2
+ (N − 2)

ε4

a4

]
≥ ε4

Na4
(5.16)

and

1

(N)3

N∑
i=1

E
[
(ν

(i)
t )3

∣∣∣Ht] ≤ 1

(N)3

N∑
i=1

E
[
(V

(i)
U )3

]
≤ 1

(N)3

[
3(N − 1)2

N2

a4

ε4
+

N∑
i=1

(N − 1)3

N3

a6

ε6

]

=
1

N3

[
3
a4

ε4
+ (N − 3)

a6

ε6

]
≤ a6

N2ε6
.

Hence, applying (5.2), we can upper bound the ratio

1
(N)3

∑N
i=1 Et[(ν

(i)
t )3]

1
(N)2

∑N
i=1 Et[(ν

(i)
t )2]

≤ a10

Nε10
=: bN −→

N→∞
0

so (4.1) is satisfied. Proof that the time scale is finite is relegated to Lemma 5.10, whence
we conclude by applying Theorem 4.1.

�
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5.7 Conditional SMC

Lemma 5.10. Consider a conditional SMC algorithm using multinomial resampling,
satisfying (A1) and (5.15). Then, for all N > 2, P[τN (t) =∞] = 0 for all finite t.

Proof. The proof is identical to that of Lemma 5.2, since (5.16) gives us exactly the same
lower bound on Et[cN (t)] that we had in standard SMC with multinomial resampling. �

5.7.1 Effect of ancestor sampling

Ancestor sampling breaks up the immortal lineage into sections, so it is not really a lineage
any more. We can still trace genealogies of terminal particles by tracing back their lineages
as usual, except that some parts of these lineages may be ancestor-sampled links rather
than links from the original forward lineages (see Figure 2.13b).

Using the parent sampling probabilities specified in (2.17), now with time reversed so
future information must be incorporated, we obtain

P
[
a

(i)
t = ai

∣∣∣Ht] ∝ {w(ai)
t qt−1(X

(ai)
t , X

(i)
t−1) i ∈ non-immortal particles

w
(ai)
t qt−1(X

(ai)
t , x?t−1) i = immortal particle.

But when i is the index of the immortal particle, X
(i)
t−1 = x?t−1, so the above simplifies to

P
[
a

(i)
t = ai

∣∣∣Ht] ∝ w(ai)
t qt−1(X

(ai)
t , X

(i)
t−1)

for each i, which is exactly (5.4), the law on parental indices under standard SMC with
multinomial resampling!

In other words, when parental indices are chosen, the immortal particle is treated exactly
like all of the other particles; it has completely lost its reproductive advantage. This means
it is no more likely for lineages to coalesce onto the immortal lineage than onto any other
lineage, so we do not see the behaviour of Figure 2.12 which caused the particle Gibbs chain
to mix slowly over the sequential component. This supports the claim of Section 2.5.3:
particle Gibbs with ancestor sampling still experiences ancestral degeneracy, but this no
longer causes the sequential component to get stuck.
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Oh, there’s such a lot of things to do
and such a lot to be

That there’s always lots of cherries
on my little cherry tree!

A. A. Milne

We have provided a simple sufficient condition for genealogies of SMC particle sys-
tems to converge weakly to Kingman’s n-coalescent in the large population limit. This
result complements existing work not only in the SMC literature but also in mathemati-
cal population genetics, where it shows that non-neutral population models can produce
n-coalescents in the limit, under conditions analogous to those required for neutral models.

We have demonstrated that our convergence condition is verifiable in a range of settings,
including SMC algorithms using many of the most popular resampling schemes. Conver-
gence to a coalescent limit requires a random rescaling of time, governed by the function
τN , which can be viewed as encoding the genealogical behaviour of each algorithm. In-
formation about this time-scale function could therefore be used to directly compare the
ancestral degeneracy of different algorithms, solve tuning problems, or quantify asymptotic
behaviour of SMC estimators.

I believe that the main limitation of the work, therefore, is our lack of information about
τN . An interesting topic of future research would be to characterise this function a priori,
say for a particular tractable class of models. From there it would be possible to find the
limiting distributions of many statistics of interest, such as the time to full coalescence
or the probability of maintaining a certain number of distinct lineages over a given time
window. It would also allow a direct comparison of the genealogies arising from different
resampling schemes.

I will finish by describing three more open questions raised by the current work, which
I believe to be interesting avenues for future research. These problems are, in my opinion,
less critical than that of characterising the time-scale function, but probably easier to
tackle. I hope that a future researcher may find these to be interesting diversions.

In neutral models, the neutral version of our main condition has been shown to be
necessary and sufficient for convergence to the n-coalescent. This raises the question: are
our conditions necessary as well as sufficient, or else what alterations are needed to render
them necessary and sufficient?

We have shown that our convergence theorems apply to a range of SMC algorithms,
encompassing most of the resampling schemes that are routinely used by practitioners. A
notable exception is residual resampling with multinomial residuals, which, although not
generally recommended by theorists, is frequently used in practice. There is no reason
to believe that the convergence results should not apply in this case: we have seen that
by various metrics residual-multinomial resampling lies between multinomial and, say,

115



6 Discussion

residual-stratified resampling, both of which have been shown to satisfy the conditions of
the theorems. However, we have not yet succeeded in proving a corollary for residual-
multinomial resampling.

Adaptive resampling is routinely used to improve the performance of SMC, and mitigates
the problem of ancestral degeneracy. It is not immediately clear, however, what exactly
is the effect of adaptive resampling on the resulting genealogies. Del Moral, Doucet,
and Jasra (2012) show that the random resampling times converge almost surely to some
unspecified deterministic resampling times as the number of particles tends to infinity,
suggesting that adaptive resampling should simply slow the coalescent time scale by a
factor corresponding to the frequency of these resampling times. However, another effect
of adaptive resampling is that whenever resampling occurs the weights necessarily have
variability above a certain threshold, so the resulting coalescences tend to be larger than
those resulting from non-adaptive resampling. It may be that conditions such as those in
Corollary 5.1 impose sufficient regularity to nonetheless yield a Kingman coalescent limit
under adaptive resampling, albeit on a slower time scale than its non-adaptive analogue.
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