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The moving-contact-line between a fluid, liquid and a solid is a ubiquitous phenomenon,9
and determining the maximum speed at which a liquid can wet/dewet a solid is a practically10
important problem. Using continuummodels, previous studies have shown that themaximum11
speed of wetting/dewetting can be found by calculating steady solutions of the governing12
equations and locating the critical capillary number, �0crit, above which no steady-state13
solution can be found. Below �0crit, both stable and unstable steady-state solutions exist14
and if some appropriate measure of these solutions is plotted against �0, a fold bifurcation15
appears where the stable and unstable branches meet. Interestingly, the significance of this16
bifurcation structure to the transient dynamics has yet to be explored. This article develops17
a computational model and uses ideas from dynamical systems theory to show the profound18
importance of the unstable solutions on the transient behaviour. By perturbing the stable state19
by the eigenmodes calculated from a linear stability analysis it is shown that the unstable20
branch is an ‘edge’ state that is responsible for the eventual dynamical outcomes and that21
the system can become transient when �0 < �0crit due to finite amplitude perturbations.22
Furthermore, when �0 > �0crit, we will show that the trajectories in phase space closely23
follow the unstable branch.24

1. Introduction25

Understanding the shape and evolution of the interface between a fluid, liquid and a solid26
substrate is a classic problem in fluid mechanics and yet a remarkable number of open27
questions still remain (Afkhami et al. 2020; Semenov et al. 2011). There are two fundamental28
cases: an advancing contact line, where a liquid phase advances and ‘wets’ the solid, see29
figure 1(a)-(c), and a receding contact line, where a liquid phase recedes and ‘dewets’ the30
solid, see figure 1(d)-(f). Both experimental and theoretical studies (see, for example Bonn31
et al. 2009; Snoeijer & Andreotti 2013) have shown that there is a critical contact-line speed32
relative to the solid, beyond which stability is lost and the system ceases to return to a steady33
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state. In the case of an advancing contact line (see figure 1(c)) this instability is characterised34
by fluid entrainment (which in many practical cases is air entrainment) whilst for the receding35
contact line (see figure 1(f)) a thin liquid film is deposited on the solid. The principal aim36
of this article is to provide insight into this instability and understand the dynamics of the37
system near the critical speed.38
The critical speed where the instability occurs is associated with a fold bifurcation in39

the steady solution structure (see, for example, Kamal et al. 2019; Vandre et al. 2013),40
which divides the steady solutions between a stable branch and an unstable branch (as41
seen in figure 2(a); see Kuznetsov (1998) for a detailed mathematical description) . For42
parameter values ‘beyond the fold’ there are no (known) two-dimensional steady states and the43
system must become transient and/or three-dimensional. In our system, the appropriate non-44
dimensional parameter associated with the speed of the solid is the capillary number,�0 (see45
next section for a precise definition).Whilst analysis of the unstable branch of solutions (which46
exists for parameter values ‘below the fold’) can reveal important information about transient47
behaviour, the focus of theoretical studies has been mainly to calculate and characterise only48
the stable steady solutions immediately up to the critical speed (see, for example Eggers49
2005; Chan et al. 2012; Vandre et al. 2013; Sprittles 2015).50
Interestingly, Chan et al. (2012) hypothesised that the set of unstable solutions represents,51

what they termed, ‘effective dynamics’, so that the unstable branch of the bifurcation curve52
guides time-dependent behaviour of the system.More specifically, when the capillary number53
is above its critical value (�0 > �0crit), and the speed of the contact line is measured relative54
to that of the solid, time dependent trajectories closely match those obtained from the55
unstable branch of the steady system, as confirmed experimentally in Delon et al. (2007).56
Therefore, the unstable branch is not just an insignificant consequence of the fold bifurcation57
but provides unique insight into the system dynamics. Such an influence and importance of58
unstable states in fluid dynamics systems has been investigated in many different contexts,59
including shear flow (Eckhardt et al. 2008), droplets (Gallino et al. 2018), finite air bubbles60
(Keeler et al. 2019; Gaillard et al. 2020) and a slide-coating flow (Christodoulou & Scriven61
1988). Indeed, as shown in figure 2(b), where the phase-plane is sketched for a generic62
system with an stable (‘attractor’) and weakly unstable (‘saddle-node’) state, the unstable63
state can act as a separator of dynamical outcomes; its stable manifold is a dividing ‘line’ and64
its unstable manifold connects to the stable state. In this article we adapt these ideas from65
dynamical-systems theory to the moving-contact-line problem, for the first time, to reveal the66
role of the unstable solutions. We calculate the bifurcation structure and stability properties67
of the steady solutions and relate these to time-dependent calculations in the sub-critical68
(�0 < �0crit) and super-critical (�0 > �0crit) regimes.69
We now provide some important background on moving contact lines. It is well known70

that the classical ‘moving-contact-line paradox’, as described in Huh & Scriven (1971) can71
be alleviated if there is slip near the contact point. Asymptotically, if this slip occurs in an72
inner region, as considered by Voinov (1976) and Cox (1986), then bending of the interface73
occurs in an intermediate region where viscous effects can cause the liquid-fluid interface to74
curve sharply. In this formulation, it is often assumed that the intermediate region connects to75
an outer region where the interface retains its static meniscus shape. The possible asymptotic76
matching of these regions has critical consequences and provides insight into the bifurcation77
structure of the steady solution space. In a series of remarkable articles (Eggers 2004b,a,78
2005), it was shown, by solving a lubrication model for a liquid-vacuum system, how the79
curvature of the inner and outer regions can be asymptotically matched. For the advancing80
contact line this can be achieved for all values of �0, but for the receding contact line, the81
matching fails when �0 is past some critical threshold, interpreted as (i.e. defining) �0crit.82
The bifurcation structure of the stable and unstable branches of the receding contact line was83
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then fully described using matched asymptotics and bifurcation theory by Chan et al. (2012)84
for �0 � 1, and �0crit was determined to occur at a fold bifurcation.85
The aforementioned analysis has been extended to general liquid-fluid systems, where the86

viscosity of the fluid phase is considered non-zero (Chan et al. 2020; Kamal et al. 2019;87
Chan et al. 2013) and also for the full Navier-Stokes equations (Vandre et al. 2012, 2013;88
Vandre 2013). A key result from these studies is that, for the advancing contact line, the89
presence of viscosity fundamentally alters the bifurcation structure and a fold bifurcation90
appears at a finite �0. Vandre et al. (2013) showed that, physically, this fold bifurcation in91
the advancing contact-line problem occurs when the horizontal air pressure gradient matches92
the strength of capillary-stress gradient near the contact point. It was also demonstrated93
that using the lubrication model, in both phases, poorly predicts �0crit when compared to94
the full Navier-Stokes equations for the advancing contact line (Vandre et al. 2012, 2013;95
Vandre 2013). Other physical effects such as Marangoni flows, inertia and gravity, and shear96
thinning/thickening were also found to preserve the fold bifurcation (Vandre et al. 2013; Liu97
et al. 2019, 2016a,b, 2017; Charitatos et al. 2020).98
In the advancing case, the critical behaviour indicates the threshold at which fluid99

entrainment occurs where, experimentally, a three-dimensional saw-tooth pattern emerges100
as observed in a variety of different flow configurations e.g. liquid films (Reysatt & Quéré101
2006), drop impact (Thoroddsen et al. 2012; Pack et al. 2018) and plate penetration in a102
liquid bath (He & Nagel 2019). In the receding case, however, the fold bifurcation marks103
the onset of thin-film deposition (Snoeijer et al. 2006, 2008). Interestingly, despite the 3D104
structures of air entrainment (He & Nagel 2019; He 2020), 2D models appear to accurately105
predict the transition point, an observation which is yet to be understood (see, for example Liu106
et al. 2019; Vandre et al. 2012; Sprittles 2017). Transversal three-dimensional perturbations107
have been considered for the receding contact line (Snoeijer et al. 2007) and the advancing108
contact line (Vandre 2013), both using a lubrication model, but a stability analysis using the109
full hydrodynamics equations has not yet been conducted.110
In this article, we develop a computational framework and methodology that can quanti-111

tatively determine the stability of dynamic contact lines. To do so, we will use ideas from112
dynamical systems theory to understand the effect of the stable/unstable states on the transient113
dynamics, considering both advancing and receding contact lines. We emphasise that the114
methodology we describe here can easily be extended to include different physics, including,115
the effects of inertia, gravity, different slip conditions on themoving plate and differentmodels116
that account for a velocity-dependent contact angle. We choose to focus on understanding the117
qualitative transient behaviour, from a dynamical systems perspective, rather than attempting118
to include every physical effect in our model. Our analysis of two-phase contact-line stability119
will focus on steady-state solutions using a hybrid model; the liquid phase is modelled using120
the Navier-Stokes equations and the fluid phase is accurately modelled using a lubrication121
approximation (see Liu et al. 2019, 2016a,b, 2017; Stay & Barocas 2003; Sprittles 2017).122
The structure of the article is as follows. In § 2 we describe the hydrodynamic equations123

that describe the system. In § 3 we calculate the steady solution curves to determine the124
critical parameters associated with the loss of stability of the system. In addition, we perform125
a numerical linear stability analysis that reveals the significance of the unstable branch to126
the transient dynamics of the system. By treating the governing equations as a dynamical127
system we form a generalised eigenproblem that can be solved numerically to determine and128
quantify the stability of the solution branch. Next, in § 4, by solving a time-dependent initial129
value problem (IVP) numerically we are able to demonstrate that, far from having a passive130
role, the unstable branch represents, in the language of dynamical systems theory, the ‘basin131
boundary of attraction’ of the stable state. Furthermore, by examining the phase-plane of the132
solution trajectory, we discover that the subsequent unsteady time-evolution is intrinsically133
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Figure 1: The moving contact-line problem in a channel geometry in a frame of reference
that moves with the liquid. Panels (a)-(c) describe the advancing contact-line problem
whilst (d)-(f) describe the receding contact-line problem. In both cases, as the speed of the
substrate, *∗, increases, the system is first stable (panels (a) and (d)), before the system
becomes transient at a critical speed*∗crit (panels (b) and (e)) and air entrainment (panel (c))
or thin-film formation (panel (f)) occurs. We denote the characteristic horizontal width of
the fluid entrainment region in the advancing problem as ℎ̂ and the characteristic horizontal
width of the thin-film in the receding problem as ℎfilm. The height of the interface, defined
as the difference in heights of the left and right contact points, is denoted . (c.f. (2.20))

linked to the unstable branch and are able to confirm the prediction of Chan et al. (2012)134
that the receding contact line moves quasi-statically along the unstable branch. Viewing the135
trajectories through the lens of the phase plane allows us to understand if, and how, the system136
becomes transient when �0 < �0crit and also provides criteria that could potentially enable137
suppression of this instability. Finally, in § 5, we discuss the implications of these results and138
some possible future research.139

2. Governing Equations140

We now discuss the hydrodynamic model and the assumptions that allow us to derive an141
accurate simplified hybrid model that is used in the calculations thereafter. The following dis-142
cussion applies to both the advancing and receding contact lines, although the demonstrative143
figures only show the advancing contact line.144

2.1. Full Hydrodynamic Model145

Motivated by the system used in Vandre et al. (2012), which is representative of an
experimental system, we consider two-dimensional flow between two parallel plates, as
shown in figure 1. In the following discussion we denote dimensional quantities using a ∗
superscript. Two fluids of viscosity `∗1,2, and density d∗1,2, fill the channel bounded by two

Focus on Fluids articles must not exceed this page length
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Figure 2: (a) A sketch of a typical fold bifurcation structure. A solution measure is plotted
against a control parameter to form a solution curve. At a critical value, two branches – one
stable (solid line) and one unstable (dashed line) meet. The location of their intersection is
known as a fold bifurcation. Beyond the critical value there are no (known) steady states.
In our specific problem the control parameter is �0 and the solution measure is either
the interface length or meniscus rise. (b) A generic two-dimensional phase plane for a
parameter value less than the critical value with a stable state (an ‘attractor’ on the stable
branch, see (a)) and an weakly unstable state (a ‘saddle-node’ on the unstable branch, see
(a)). The unstable/stable manifolds of the saddle-node are dashed/dotted respectively.

rigid plates which are separated by a fixed distance �∗; subscripts with 1 indicate the upper
fluid (the fluid phase) and those with 2 indicate the lower fluid (the liquid phase). In our
system the left plate moves with constant speed in the H−direction *∗ and the right plate is
stationary. For a receding contact line *∗ > 0 and an advancing contact line *∗ < 0. The
fluid flow of each phase is governed by the two-dimensional Navier-Stokes equations. All
speeds, lengths, pressures and times are scaled by*∗, �∗, `∗2*

∗/�∗ and �∗/*∗ respectively.
Finally, the viscosity ratio, denoted j, is defined with respect to the liquid phase, i.e.

j = `∗1/`
∗
2,

and we assume that the upper fluid is less viscous, i.e. j < 1.146

As in previous studies (Vandre et al. 2013, 2012; Liu et al. 2019, 2016a,b, 2017; Sprittles &147
Shikhmurzaev 2013, 2011b,a) we apply the Stokes-flow approximation so that the Reynolds148
number, '4 = *∗�∗d∗2/`

∗
2, is negligible and assumed zero; results in Vandre et al. (2013)149

show '4 can have an influence at sufficiently high values but it does not qualitatively150
alter the conclusions. We assume that gravitational effects are negligible throughout. The151
non-dimensional computational domain is shown in figure 3(c). The coordinate system is152
centred on the contact point between the two fluids and the left (moving) plate. The boundary153
corresponding to the left plate is denoted Γ1, the right plate Γ2, the bottom Γ3, the free-surface154
Γ4 and the top Γ5. The fluid and liquid domains are denoted by Ω1 and Ω2 respectively. The155
Stokes-flow equations, for the fluid velocity, u8 = (D8 , E8), and pressure, ?8 , in each phase156
can be written as157

j∇2u1 = ∇?1, ∇ · u1 = 0, x ∈ Ω1, (Fluid) (2.1)158

∇2u2 = ∇?2, ∇ · u2 = 0, x ∈ Ω2. (Liquid) (2.2)159160

On the left (moving) and right (stationary) plates, Γ1 and Γ2 respectively, we implement a161
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Figure 3: The computational domain for the hybrid and full models for an advancing contact
line. The boundaries are denoted by Γ8 (labelled in panel (c)) with the origin centred on the
contact line. (a) A typical streamline pattern for a steady solution in the hybrid model. (b)
The computational domain for the hybrid model. In this model we solve for the velocity and
pressure in the liquid domain, but only solve for the pressure of the fluid on the interface
boundary, Γ4. (c) The computational domain for the full model where the velocity and
pressure fields are also solved in the fluid domain. (d) The vertical component of velocity
along the moving plate, i.e. Γ1. (e) The enlargement near the contact line shows the mesh
refinement required to ensure that the flow-field is sufficiently resolved.

Navier-slip condition written as162

_(38 · np) · tp = (u8 − U) · tp, x ∈ Γ1, 8 = 1, 2, (2.3)163

_(38 · np) · tp = u8 · tp, x ∈ Γ2, 8 = 1, 2, (2.4)164165

where np and tp are the vectors normal and tangential to each plate, respectively,U = (0,*) is166
the non-dimensional speed of the (moving) left plate (where*, in our dimensionless system,167
is ±1, corresponding the receding(+)/advancing(−) problem) and _ is the non-dimensional168
slip length which, for simplicity, we assume to be the same in each phase (see, Sprittles169
(2017) for potential extensions). We could choose different conditions that regularise the170
singularity at the contact line (Shikhmurzaev 2006), but, assuming the actual contact angle171
is unchanged, the details of the solution (i.e. the value of �0crit) are more sensitive to values172
of the slip-length parameter that arises in these models (in our case _), than the actual form173
of the model (Dussan 1976). Thus, we would expect the results we obtain to be qualitatively174
similar to those obtained for a different slip model, although such slip-models are easy to175
implement, if required. We choose a moderate value of _ = 0.1, and although quantitative176
details, i.e. the values of �0crit and other solution measures, will differ as we vary _, we177
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find that the transient behaviour and solution structure, as we describe later in the article, is178
qualitatively the same (c.f. figure 7).179
We choose to implement a Navier-slip condition on the stationary plate for consistency180

and to ensure that the contact point on the stationary plate is allowed to move. However, we181
could fix u8 = 0 on Γ2 and get similar results (see, for example Vandre et al. (2013); Liu et al.182
(2017)) which corresponds to a pinned contact line. We also implement a no-penetration183
condition on each plate, i.e.184

u8 · np = 0, x ∈ Γ1 ∪ Γ2, 8 = 1, 2. (2.5)185

The stress tensor in each phase 38 is defined as186

38 = −?8I + X8
(
∇u8 + (∇u8))

)
, (2.6)187

where I is the identity matrix and X1 = j, X2 = 1. We denote the unknown position of the188
interface, Γ4, as r = (GB, HB) (see figure 3(b)) and assume a constant surface tension, W∗, so189
that the dynamic boundary condition can be written as190

31 · n − 32 · n =
1
�0

^n, x ∈ Γ4, (2.7)191

where n is the normal of the interface pointing towards the fluid phase (see figure 3(b)),192
^ = ∇ · n is the curvature of the interface and �0 = `∗2 |* |/W

∗ is the capillary number. In193
addition to (2.7), we impose a kinematic condition on Γ4, written as194

mr
mC
· n = u · n, x ∈ Γ4. (2.8)195

We have to specify the angle the interface makes on the left and right plates. These angles196
can be allowed to vary with the capillary number, slip-length or other quantities but we197
choose the simplest approach and take these to be constant values, i.e.198

\ = \1, on Γ1 ∩ Γ4, (2.9)199

\ = \2, on Γ2 ∩ Γ4. (2.10)200201

It is straightforward to replace these conditions with equations involving �0 and other202
quantities, but this is not the focus of this article.203
Finally, we implement fully-developed flow conditions on the inflow and outflow bound-204

aries,205

u8 · tinflow = 0, x ∈ Γ3 ∪ Γ5, (2.11)206

where tinflow = (1, 0)) , alongside a pressure drop across the domain so that,207

?1 = 0, x ∈ Γ5, (2.12)208

?2 = ?out, x ∈ Γ3. (2.13)209210

The full hydrodynamic system is defined in (2.1)-(2.13) with the following infinite-211
dimensional state vector (denoted w) of unknowns;212

w = [u1, u2, ?1, ?2, r]) . (2.14)213

It is worth noting that we model the effect of varying the speed of the plate by varying �0214
and that the non-dimensional slip-length, _, can be varied to investigate changes in physical215
channel width. Finally, as our primary interest is on understanding the transient behaviour,216
for simplicity, we set \1 = \2 = π/2 in all simulations. Therefore we have a set of control217
parameters218

�0, _, j, ?out, (2.15)219
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that need to be specified in order to solve (2.1)-(2.13).220

2.2. Hybrid Model221

The computational cost of the full model can be significantly reduced by solving the thin-film222
equations where they are valid (Sbragaglia et al. 2008; Jacqmin 2004; Oron et al. 1997),223
leading to a hybridmodel (seeLiu et al. 2019, 2016a,b, 2017; Stay&Barocas 2003;Charitatos224
et al. 2020) which approximately halves the complexity of the problem, as unknowns in the225
fluid phase are only computed on the interface. The difference of our approach from previous226
implementations is that our hybrid model takes into account time-dependence so that stability227
can be probed and IVP calculations can be performed. A key assumption is that a typical228
horizontal distance in the fluid phase, when air entrainment occurs, is small when compared229
to the vertical height of the meniscus (i.e. ℎ̂ � . in figure 1) so that the flow is approximately230
parallel, i.e. the cross-stream component of u1 is small. The full derivation is discussed in231
Appendix A and the computational domain is shown in figure 3(b).232
The effect of this reduction in the fluid phase is to replace a full two-dimensional233

description, given in (2.1), by a one-dimensional equation for the fluid pressure, ?1, on234
the interface only. This equation can be stated as235

mr
mC
· n ± 1

j

m&1

mB
= 0, &1 =

1
6
m?1

mB
ℎ3 + 1

2
�ℎ2 + �ℎ, (2.16)236

where ℎ is the horizontal distance (i.e. GB), from the left plate, to the interface (see figure 3),237
&1 is the flux, and the constants � and � are functions of j, _ and u2 and are given in238
Appendix A. The ± sign is used for the advancing(+)/receding(−) contact line. The fluid239
phase is coupled to the liquid phase through the applied traction given in (A 6). We now have240
a system of PDEs described by equations (2.2)-(2.13) and (2.16) with the infinite-dimensional241
state vector of unknowns:242

w = [u2, ?2, ?1(r), r]) . (2.17)243

The hybrid model has been extensively validated for steady advancing contact-line problems244
against the full system and experiment (Liu et al. 2016b, 2019). We validate the time-245
dependent hybrid model by comparing to the full hydrodynamic model in Appendix A.246
Finally we note that this approach is strictly only valid for the advancing contact-line problem247
but, as shall be shown later, the receding contact-line problem is effectively a one-phase248
problem, (c.f. figure 7) and implementing the hybrid model for a receding contact line does249
not significantly change the value of �0crit (Appendix A).250

2.3. System Parameters and Integral Measures251

We now describe additional system parameters andmeasures that will be useful in computing252
and describing the steady and time-dependent solutions. The pressure at the outflowboundary,253
?out, is determined implicitly by an integral volume constraint acting on the liquid phase, i.e.254 ∬

Ω2

d+ = +, (2.18)255

where + is the volume of the liquid domain (corresponding to the area of the computational256
domain). In our numerical calculations the position of the contact points on the moving257
and stationary plates are both allowed to move so that (2.18) can be satisfied. For ease of258
presentation, we post-process and rescale the solution so that the origin is always at the259
contact point of the moving plate. In the calculations that follow we choose a value of +260
which is large enough for fully-developed flow to occur near the outflow boundary, Γ1. After261
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careful experimentation we find that the solutions are independent of values of + > 5 that262
we choose.263
For a fixed set of parameter values, as defined in (2.15), we calculate steady solution264

curves by setting the time derivatives in the governing equations to zero and then solving265
the resulting steady system. As we vary �0, and then subsequently calculate a solution, a266
solution curve will be traced and a fold bifurcation will occur at the critical value of the267
capillary number, denoted �0crit. Whilst it is possible to trace a solution branch around268
the fold numerically by a pseudo-arclength continuation method (see, for example Doedel269
2007), we implement an alternative, bespoke approach. We expect the interface length, !,270
to increase monotonically as the curve is traced out around the fold and therefore it is a271
suitable candidate for a continuation parameter that allows us to calculate solutions smoothly272
around the fold. To achieve this, we let�0 become an unknown parameter that is determined273
implicitly by setting the total length of the interface, i.e.274 ∫

Γ4

dB = !. (2.19)275

This approach enables us to trace solution curves around the fold by incrementally increasing276
! and solving the system of equations, with �0 effectively determined by (2.19). We also277
emphasise that (2.18) and (2.19) are only be implemented in steady calculations; the former278
constraint is unnecessary in time-dependent calculations as the second equation in (2.2)279
ensures volume is conserved, whilst the latter constraint is used as a means of tracing the280
solution curve.281
Finally, when describing the steady solutions and time-dependent solutions we use the282

meniscus rise (more specifically, the vertical distance between the two contact lines) defined283
as284

. (C) = |HB (B = !) − HB (B = 0) | (2.20)285

as a convenient solution measure (as previously considered, for example, in Kamal et al.286
(2019); see figure 3 (in this article) for reference).287

2.4. Numerical Method288

The governing equations are solved using the finite-element method from within the open-289
sourceoomph-lib object-orientatedmulti-physics library (Heil&Hazel 2006). The structure290
and implementation of our equations follows that of Sprittles & Shikhmurzaev (2013).291
Following multiplication of the equations by a test function, k, and then an integration over292
the domain, the boundary integrals that result from integration by parts require the traction293
to be specified on each of the boundaries. The dynamic condition, (2.7), and the Navier-slip294
condition, (2.4), therefore can be implemented as a natural condition by these boundary295
integrals.296
Special care has to be taken at the contact point. In other studies (Vandre et al. 2013,297

2012; Liu et al. 2019, 2016a,b, 2017) the contact angle is imposed as an essential boundary298
condition at the expense of solving a component of the momentum equations at the contact299
point. We adopt the approach of Sprittles & Shikhmurzaev (2013) and impose the contact300
angle as a natural boundary condition on both the intersection of the free-surface with the left301
plate (Γ1) and the symmetry plate (Γ2). We therefore introduce a field of Lagrange multiplier302
unknowns on Γ1 and Γ2 which are determined from the weak form of the no-penetration303
condition, (2.5). We refer the reader to Sprittles & Shikhmurzaev (2013) for a detailed304
description of this implementation (we adopt approach (B) in their nomenclature).305
As is standard, the fluid velocities are interpolated using bi-quadratic shape functions and306

the pressure using linear continuous shape functions with Taylor-Hood triangular elements.307
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We choose to mesh the liquid domain using an unstructured triangular grid; see figures 3(b)308
and (c). The mesh is considered to be a fictitious pseudo-solid with the position of the nodes309
coming as part of the solution. The weak form of the kinematic condition, (2.8), is imposed310
as an essential condition and determines a field of Lagrange multipliers (not to be confused311
with the Lagrange multipliers in the previous paragraph) that act on the solid deformation312
equations which in turn determines the shape of the unknown interface, r; see Sackinger et al.313
(1996) for more details. We note that this approach results in a large system of equations314
which is disadvantageous, but, it allows for the interface to become highly deformed, as well315
as naturally handling time-dependent flow (where the domain could significantly change316
shape, c.f. Figure 1), which is difficult to achieve if the mesh is structured.317
To solve the hybrid equation, (2.16), it is convenient to introduce two fields of unknowns on318

the fluid interface, the pressure ?1 and flux&1, interpolated using quadratic shape functions.319
We solve two equations in their weak form:320 ∫

(

(&1 −&�)k d( = 0, &� =
1
j

(
�ℎ + 1

2
�ℎ2 + 1

6
ℎ3 m?

mB

)
(2.21)321

and322 ∫
(

(
mr
mC
· n ± m&1

mB

)
k dB = 0 (2.22)323

Equation (2.21) projects the flux from the lubrication equation onto the finite element space324
and then (2.22) ensures mass is conserved in the fluid phase.325
The resulting discretised equations are solved with Newton’s method using the SuperLu326

numerical algebra package (Li 2005). For time-dependent calculations the solution is327
updated in time using a backwards-difference second-order Euler method (BDF2). A typical328
streamline pattern is shown in figure 3(a).329
Around the contact line the interface becomes highly deformed due to viscous bending and330

the pressure and velocity gradients are large; see figures 3(d) and (e). In steady calculations,331
as �0 → �0crit, we expect the number of elements required in the vicinity of the contact332
line to increase to ensure a smooth converged solution. We re-mesh the domain according to333
a ZZ error estimator (Zienkiewicz & Zhu 1992), which measures the discontinuity of strain334
rate gradients between adjacent elements and interprets this as a measure for the local error.335
Typically we set a minimum error as 10−6 and a maximum error 10−3, so that elements with336
error above this range get refined and those with error below this range get unrefined. We337
allow element sizes from 10−12 to 10−2 to accommodate these error estimates. We do not338
adapt the mesh at each calculation; rather we adapt the mesh based on the condition that339

|\1 − \2 | < 1.0◦, \2 = atan((H2 − H1)/(G2 − G1)), (2.23)340

where \2 is the computed angle based on (G1, H1) and (G2, H2); the coordinates of the nodes341
on Γ4 directly at the contact line and immediately adjacent, respectively. The number of342
elements and their sizes are highly dependent on _ and �0. As an illustrative example, for343
steady solutions at _ = 0.1, j = 0.1 and + = 5, the resulting mesh has ∼ 103 triangular344
elements and ∼ 105 discretised unknowns at �0 = �0crit.345

3. Linear Stability Analysis346

We now present the stability algorithm and results. Rather than perform a standard normal347
modes reduction to the Orr-Somerfeld equations (see, for example Severtson &Aidun 1996),348
we take a more general approach that determines the modes as part of the solution. The349

Rapids articles must not exceed this page length
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analysis below is independent of the model, and although the results we present are from the350
hybrid model, these results also follow from the full model.351
In both cases the PDE system can be written as352

R( ¤w,w) = 0, (3.1)353

where R is a nonlinear operator and w(C) represents a state of the system at time C, given as a354
vector of all the unknowns (either (2.14) or (2.17)). The time derivatives, ¤w, appear in linear355
combinations in our system so we can decompose R into a linear mass operator, M, that356
operates on the time-derivatives in the problem and a nonlinear operator, F , that operates on357
the spatial derivatives in the problem so that (3.1) becomes358

R( ¤w,w) ≡ M( ¤w) + F (w) = 0. (3.2)359

To proceed we write the state of the system, w, as a perturbation expansion, i.e.360

w = w★ + YefCg +$ (Y2), (3.3)361

where w★ is a base state only dependent on spatial variables, Y � 1 is a small parameter, g362
is an eigenmode that is dependent on spatial variables only and f is the growth rate of the363
perturbation. The expansion in (3.3) represents a general class of perturbations that satisfy364
the boundary conditions of the problem and are in-plane perturbations; we are not extending365
to the third dimension, a problem we will discuss later.366
Substituting (3.3) into (3.2) gives a series of problems that have to be solved at each order367

of Y. At leading order we have368

F (w★) = 0. (3.4)369

The solution, w★, is the steady state of the system. At first order we solve370

[fM(w★) + J (w★)] g = 0, (3.5)371

where J (w★) is the functional derivative of the nonlinear operator F applied at the steady372
state w = w★. Equation (3.5) is a generalised eigenvalue problem that can be solved to find373
g and f. The eigenspectrum of f determines the stability of the steady solutions. If at least374
one of the spectrum of f has a positive real part then the steady state is linearly unstable.375
Conversely if the entire spectrum lies in the left-half of the complex plane then the solution376
is linearly stable. In general there will be an infinite number of these eigenmodes and thus377
we can write the linearised solution as378

wlin(C) = w★ +
∞∑
==1

0=g=ef=C + c.c, (3.6)379

where c.c denotes the complex conjugate and 0= are arbitrary constants set by the initial380
conditions. When the system becomes discretised, the operatorsM and J are represented381
by the mass matrix and Jacobian matrix, respectively. The mass-matrix representation of382
M is highly rank deficient as the only time-derivatives occur at the fluid-liquid interface383
and special care has to be taken to ensure that the solution to (3.5) has converged. We use384
the Anazasi linear algebra library which is an iterative eigensolver that can solve highly385
rank-deficient eigenproblems (Heroux et al. 2003). As the spectrum has an infinite number386
eigenvalues, the discretised spectrum will have a finite number of eigenvalues, proportional387
to the number of unknowns in the problem. We find a small subset of eigenvalues which have388
the largest real part as these will be the modes visible in the transient dynamics; large negative389
eigenvalues correspond to eigenmodes that decay very rapidly. We validate the calculations390
using a simplified lubrication model and present this in Appendix B.391
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Figure 4: Solution curves for the advancing (panel (a)) and receding (panel (b)) contact lines.
The values of the control parameters are j = 0.1 and 0 for panels (a) and (b), respectively,
and _ = 0.1 for both panels. Individual solutions are labelled on the curve and correspond
to the inset panels with the same label. The solid/dashed lines sections of the curve are
the stable/unstable branches, respectively. The smaller insets show the eigenspectra for the
A1/R1 and A2/R2 solutions and at the fold. A3/R3 are the solutions where the inflection
point on the interface first becomes parallel to the plate, i.e. when dGB/dHB = 0. In panel
(a) A4 is the solution just before the numerical calculations cease to converge. In panel (b)
R4 is the solution where the interface starts to ‘overhang’ the right plate. The top-left inset
in (b) shows the bifurcation curve for larger . .

3.1. Stability of the Solution Branches392

We now discuss the bifurcation structure and the corresponding stability results of the393
advancing and receding dynamic contact-line problems. Figure 4 show the bifurcation394
structures in a typical advancing case (panel (a): j = 0.1, _ = 0.1) and receding case395
(panel (b): j = 0.0, _ = 0.1). Notably, our focus here is on providing insight into the stability396
structure, rather than necessarily probing the precise values from experimental analyses,397
where the slip length could be far smaller and therefore typically require more computational398
resources. Previous works (Vandre et al. 2012) have shown that whilst changes in slip length399
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Figure 5: The advancing and receding steady solution curves for _ = 0.1 and j = 0.0 (red
curves), j = 0.1 (blue curves) . The horizontal axis is�0 scaled by* = ±1 and the vertical
axis is HB (B = !) − HB (B = 0), i.e. the signed version of. . The critical �0 for each problem
is denoted by a dotted line. The two problems are connected through the origin.

can have a weak effect on �0crit, they do not qualitatively alter the physical mechanisms at400
play (similarly for smaller viscosity ratios, e.g. with a glycerol-air system).401
The solution curves are shown in the (�0,. ) projection of the solution space (see (2.20) for402

a definition of. ). The markers on the curve indicate specific solutions which are shown in the403
inset panels labelledA1-A4 for the advancing contact line, andR1-R4 for the receding contact404
line. In both the advancing and receding cases, as. increases, the solution curve experiences405
a fold which separates the lower branch and upper branch. The eigenspectra are real and at406
the fold a single eigenvalue crosses the imaginary axis, as expected. The eigenspectra also407
indicates that the A1/R1 states (all eigenvalues in the left-hand Argand plane) are ‘attractors’408
of the system and A2/R2 states (a single eigenvalue in the right-hand Argand plane, akin to409
a ‘saddle-node’ state in a two-dimensional dynamical system) are weakly unstable, as seen410
in figure 2(b), thus numerically confirming the lower branch is stable (solid curve) and the411
upper branch is unstable (dashed curve).412
The interface has an inflection point near the contact point. We measure the angle at the413

interface inflection point (to the downwards vertical) and, as is common, define this as \app;414
the apparent contact angle (Vandre et al. 2012; Liu et al. 2016b). Notably, as can be seen415
from solutions A1,A2 and R1,R2 in figure 4, \app < 180◦ not only on the stable branch, but416
also immediately after the fold on the unstable branch. This is consistent with the asymptotic417
results of Eggers (2004a), who shows that the solution at �0crit has \app → 180 as _ → 0.418
Consequently, for given _ > 0 we would expect to find that \app < 180 at �0crit. These419
findings are consistent with Sbragaglia et al. (2008).420
Further up the unstable branch, see A3,A4 and R3,R4 in figure 4, \app = 180◦ and the421

interface develops a stationary point (i.e. dGB/dHB = 0). In the advancing case, the solution422
curve terminates when the interface touches the right plate and effectively appears to ‘pinch-423
off’ off the fluid domain; see A4. For the receding case, the calculations stop when the size424
of the computational domain no longer allows a converged solution.425
The steady-solution curves of the advancing and receding contact-line problems, although426

treated separately in figure 4, are actually two halves of the same solution space. Figure 5427
shows the connection for _ = 0.1, j = 0 and 0.1, where the signed meniscus rise, HB (B =428
!) − HB (B = 0), is plotted against �0 × *, where * = ±1 with ± corresponding to the429
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Figure 6: Comparison of the air pressure gradient and the capillary stress gradient for
the steady solutions at the inflection point on the interface for the advancing contact-line
problem. Parameter values are j = 0.1, _ = 0.1.

receding(+)/advancing(−) problem. In this projection the advancing and receding curves430
occupy the second and fourth quadrants, respectively, and the location of the respective folds431
in each quadrant highlights that the advancing contact line only becomes unstable if j ≠ 0,432
in which case �0crit,rec < �0crit,adv (Chan et al. 2013; Marchand et al. 2012) and that in433
general, �0adv,crit and �0rec,crit increase as j→ 0.434
Finally, we note that in both cases the solution curve does not experience additional435

bifurcations as. increases along the unstable branch. For a system where gravity is included436
it is known that within the lubrication approximation, the solution curve (for the receding437
contact line, at least) oscillates around a fixed value of �0 = �0∗, (see Chan et al. 2012),438
experiencing multiple saddle-node bifurcations as . → ∞. Preliminary calculations show439
that, if gravity is included, the oscillations are also present in the advancing/receding hybrid440
system, although, for brevity, we do not show the results here.441

3.2. Physical Interpretation of the Bifurcation442

As discussed in Vandre et al. (2013) for the advancing contact line, the fold occurs when the443
fluid pressure gradients (fluid 1) are comparable to the capillary stress gradients (see Vandre444
2013) near the contact line, i.e. when445

m?1

mB
∼ 1
�0

m^

mB
. (3.7)446

This is because as �0 → �0crit the air pressure gradients near the contact line will increase447
as the system seeks to ‘pump’ air out of the region near the contact line to maintain a steady448
state. Eventually these air pressure gradients will exceed the capillary stress gradients and the449
systemwill be unable to maintain a stable steady equilibrium. Figure 6 shows the evolution of450
the quantities on either side of (3.7) calculated at the inflection point for the advancing case.451
Here, one can see that The pressure and capillary stress gradients balance close to �0crit, as452
seen by the intersection of the curves, which confirms the ideas of Vandre et al. (2013).453

3.3. Fold-Tracking454

We can take advantage of the fact that at the fold bifurcation the leading eigenvalue crosses455
the imaginary axis to develop an algorithm for finding �0crit. We augment the system with456
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Figure 7: The evolution of the fold, and hence �0crit, as the relative viscosity, j (panels
(a) and (b)), and the slip-length, _ (panel (c)) are varied. (a) The advancing contact line,
_ = 0.1. As j→ 0, �0crit →∞ so that the fold in the bifurcation structure ceases to exist.
The inset shows the generic bifurcation structure in the j = 0 and j ≠ 0 cases. In the former
case there is always a stable solution for the system to be attracted to. (b) The receding
contact line, _ = 0.1. The fold exists for all viscosity ratios. For a given j the bifurcation
structure is shown in the inset. (c) Variation of �0crit as _ is varied for the advancing and
receding problem (different colours) with j = 0.1.

the additional constraint457

Re(f1) = 0, (3.8)458

and let another control parameter come as part of the solution. It is convenient to let the459
interface length, !, be determined by (3.8) so we are able to track the evolution of the �0crit460
as another parameter; the viscosity ratio j, for example, is varied. This is a robust way of461
tracking the fold without having to recalculate the solution curve for every set of parameters,462
as previously considered in Kamal et al. (2019) and Vandre et al. (2012).463
If we vary j and calculate �0crit we observe that the curve of the loci of �0crit does not464

itself experience any bifurcation, as seen in figures 7(a) and (b). In addition, we observe that465
the bifurcation structure also remains intact when the slip-length, _, is varied; see panel (c) of466
figure 7. In fact, we note that the value of �0crit only changes relatively weakly as _ changes467
from $ (1) to $ (10−4). Therefore we expect the dynamics to be qualitatively similar (from a468
dynamical systems perspective) regardless of the slip-length and provided j ≠ 0.469
An important observation is that the advancing and receding cases differ significantly as470

j → 0. For the advancing case, �0crit → ∞ in this limit, whilst for the receding case it471
tends to a finite value. This indicates that the viscosity of the fluid phase has to be taken472
into account for the advancing contact line in order to describe the bifurcation structure.473
This feature has been identified before, in driven liquid filaments (Ledesma-Aguilar et al.474
2011) and in plate-plunging experiments (Marchand et al. 2012). In contrast the receding475
contact line is essentially a one-phase problem, particularly if the fluid is a gas and qualitative476
features of the bifurcation structure are the same regardless of the viscosity of the fluid.477

3.4. Eigenmode Perturbations478

We now discuss the nature of the eigenmodes resulting from the stability analysis. The modes479
corresponding to the three leading eigenvalues of the unstable branch, i.e. f1, f2 and f3, are480
shown in figure 8. These eigenmodes correspond to the base states w★ = A2,R2 in figure 4.481
In this figure the dotted profile indicates the steady interface shape and the coloured lines482
indicate the shape of the interface when it is perturbed by a single eigenmode, i.e.483

w = w★ ± dg8 , 8 = 1, 2, 3. (3.9)484
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Figure 8: The eigenmodes of the unstable branch. The steady profile is shown as the dotted
line. Top row: The leading eigenmodes, g1, g2, g3, corresponding to the advancingw★ = A2
(�0 = 0.873, j = 0.1) solution in figure 4(a). Bottom row: The leading eigenmodes
corresponding to the receding w★ = R2 (�0 = 0.3, j = 0) solution in figure 4(a). In each
case the eigenmodes cross the steady interface in successively more locations. The slip
length is _ = 0.1.

The dashed/solid curves correspond to the +/− sign, respectively. The amplitude of the485
perturbation, d, is constrained so that the meniscus rise of the perturbation is no more than486
10% of the rise of the steady solution. Each successive mode intersects the steady interface487
at precisely one more location, in similarity to the form of the (sinusoidal) eigenmodes in a488
related lubrication model (see figure 20). Thus, the effect of adding higher-order eigenmodes489
to the steady state is to add extra corrugations to the interface and increase the overall length490
of the interface.491
Concentrating on the leading eigenmode alone, the action of adding a multiple of g1 to a492

steady solution, i.e. using (3.9), stretches/shrinks the interface according to the ± sign with493
no additional corrugations. Figure 9(a) shows the stable A1, and unstable A2 states with solid494
lines and the perturbation from theA1 state using (3.9) and 8 = 1 with dotted lines. This figure495
demonstrates that we can continuously ‘stretch’ the nonlinear stable state by increasing the496
strength of the perturbation, d, and can eventually achieve an interface with an identical value497
of. to the unstable steady state and remarkably similar profile. This will have consequences,498
as discussed in the next section. We can also continuously deform the unstable branch in the499
same manner to match the interface of the stable branch. Therefore, we denote perturbations500
using the leading eigenmode only in (3.9) as ‘stretch’ perturbations.501
In a physical experiment, perturbations will naturally emerge from the presence of ‘noise’502

in the system causing fluctuations of the interface and contact line. We will take advantage503
of the stability analysis and mimic this ‘noise’ by using the higher-order eigenmodes in the504
perturbation, i.e.505

w = w★ +
#∑
8=1

d8g8 , (3.10)506

where for the purpose of simple illustration we choose the amplitude coefficients, d8 , to be507
equal. Figure 9(b) shows the perturbed interface as the value of # increases from 1 to 10,508
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Figure 9: Perturbations of the advancing w★ = A1 state. Panel (a) ‘Stretch’ perturbations.
The lower solid curve is the stable interface and the upper solid curve is the unstable
interface. The dotted curves are different strength perturbations of the stable state according
to (3.9) with 8 = 1. The dashed curve corresponds to the perturbation which results in an
identical value of . as the A2 state. Panel (b) ‘Corrugation’ perturbations. The coloured
curves are different strength perturbations of the stable state according to (3.10) for a fixed
value of d and increasing # and the shaded region represents the nonlinear A1 steady
solution. Parameter values are �0 = 0.873, j = 0.1, _ = 0.1.

which demonstrates that by increasing the value of # we are able to perturb the nonlinear509
steady interface with increasingly more corrugations or ‘noise’ in a systematic manner and510
hence be able to isolate specific geometric effects that act on the stability of the system (the511
first 10 modes are sufficient to analyse the response of the system as higher-order modes512
will decay rapidly). Strictly speaking, to model physical ‘noise’ would require performing a513
number of realisations with the values of d8 chosen randomly from a probability distribution,514
which must be chosen in some reasonable manner; ideas which we do not pursue further515
here. Henceforth, perturbations of the form in (3.10), i.e. a combination of leading-order and516
higher-order modes, shall be called ‘corrugation’ perturbations.517
The two forms of perturbation discussed here, in our nomenclature the ‘stretch’ and518

‘corrugation’ perturbations, will be used in the next section to understand the subsequent519
time-dependent behaviour of the system after systematically applying a perturbation to a520
steady state.521

4. Transient Dynamics522

Now that we have calculated the steady solution branches and quantified their stability, we523
attempt to answer the two questions of fundamental importance:524



18

Figure 10: The perturbation measure. The solid curve in each panel is the interface of the
base solution, w★, and the dotted curve represents the interface of the system at a given
time, F(C). (a) The system is in a state with Δ(C,★) > 0. (b) The system is in a state with
Δ(C,★) < 0.

(i) How do the steady-states, stable and unstable, and the resulting bifurcation structure525
help us understand the time-dependent behaviour of the system when �0 < �0crit?526
(ii) What is the time-dependent behaviour of the systemwhen we choose initial conditions527

(IC) beyond the fold, i.e. when �0 > �0crit?528
To address these questions we solve the time-dependent hybrid PDE as an IVP. It is useful529

to define solution measures that will help visualise and aid the discussion. In our formulation530
�0 corresponds to the speed of the plate and not the speed of the contact point. It is therefore531
useful to introduce an ‘effective’ �0, based on the contact-line speeds relative to the plate532

(as discussed in Chan et al. (2012)), which we denote �0 and is defined as533

�0 = �0 |* −*cl |, (4.1)534

where * = ±1 is the non-dimensional speed of the plate, the ± sign corresponds to the535
advancing(−)/receding(+) case and*cl = dHcl/dC is the speed of the contact line. We remark536

that for steady solutions *cl = 0, and hence �0 = �0 and the time-dependent phase-plane537

trajectories can be directly compared to the bifurcation structure in the (�0,. ) plane.538
We also introduce a system measure to quantify the size of the perturbation. Let the539

meniscus rise of a steady solution be.★, where★ indicates the base solution the perturbation540
is measured against. We can then define a quantity, Δ(C,★) that measures the deviation of the541
perturbation from the corresponding steady state at time C:542

Δ(C,★) = . (C) − .★, (4.2)543

as demonstrated schematically in figure 10. If Δ(C,★) > 0 then the meniscus rise of the544
current state is larger than that of the steady interface indicated by ★ and vice versa if545
Δ(C,★) < 0 (see panels (a) and (b) of figure 10 respectively).546

4.1. Perturbations from a steady state IVP: �0 < �0crit547

We now consider the first question and look at the dynamics of the system when�0 < �0crit.548
Our methodology is to start at either the stable or unstable state and perturb it using either a549
‘stretch’ or ‘corrugation’ eigenmode expansion, which we will consider separately. We then550
run a series of IVPs to examine the transient behaviour and eventual dynamical outcome.551

4.1.1. ‘Stretch’ perturbations552

For the ‘stretch’ perturbations, we use the leading eigenmode only, and set the IC to be553

w(C = 0) = w★ ± dg1. (4.3)554
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Figure 11: Time-dependent perturbations of the advancing contact line using (4.3). This
figure shows perturbations from the solution labelled A1 in figure 4(a). The two different
ICs are shown in the inset panels corresponding to the same colour lines in the main panel.
Whether Δ(0,A1) > 0 or Δ(0,A1) < 0 the system relaxes back to the stable state. The inset
panels on the right show the time signal of log( |Δ(C,A1) |) as compared to the predicted
growth rate f1. Parameter values are �0 = 0.873, j = 0.1, _ = 0.1.

Initially we concentrate on the advancing contact-line problem. Using the IC stated in555
(4.3), small perturbations from the A1 stable state (figure 4(a)) decay and the system556
(unsurprisingly) relaxes back to its stable configuration. Figure 11 demonstrates this by557
tracking the value of. in time for two different perturbations, corresponding to Δ(0,A1) < 0558
and Δ(0,A1) > 0, of the stable state near the fold (parameter values quoted in the caption).559
Furthermore, as seen in the insets on the right of figure 11, the decay rate excellently matches560
the value of the leading eigenvalue, f1, obtained from the linear stability analysis.561
For the same parameter values, we can also perturb the A2 unstable state (figure 4(a)) by562

its leading eigenmode, which is unstable. Figure 12(a)-(b) shows the time-signal of. as well563

as the phase-plane trajectories in the (�0,. ) projection. This case is more interesting, and564
we see that if Δ(0,A2) < 0 (i.e. the perturbation ‘contracts’ the A2 interface) then the system565
returns to the stable state, see figure 12(a), whereas if Δ(0,A2) > 0 (i.e. a ‘stretch’) then566
entrainment of the upper fluid occurs, see figure 12(b).567
Similar outcomes occur for the receding contact-line problem. Perturbations, using the568

leading eigenmode, of the R1 (figure 4(b)) stable state relax back to the stable equilibrium569
(results not shown). In contrast, figure 12(c)-(d) shows the time evolution of perturbations570
from the R2 (figure 4(b)) unstable state, where for Δ(0,R2) < 0, the system relaxes back to571
the R1 state. But if Δ(0,R2) > 0 then, unlike the advancing contact line where entrainment572
occurs, a thin-film develops that grows in size at a linear rate as C → ∞ as shown in panel573
(d).574
These IVP calculations show that if we consider the class of perturbations representing575

‘stretches’, using the leading eigenmode only, then the indicator of whether the system returns576
to the stable state is that meniscus rise of the initial perturbation is smaller than the meniscus577
rise of the unstable state, i.e. the condition for stability is578

Δ(0,A2) < 0, Advancing Contact Line, (4.4)579

Δ(0,R2) < 0, Receding Contact Line (4.5)580581

In the language of dynamical systems the unstable state represents the ‘boundary of the basin582
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Figure 12: Time-dependent perturbations of the unstable branch using (4.3). Panels (a)-
(b) show the advancing contact-line problem and panels (c)-(d) the receding contact-line
problem. This figure shows perturbations from the solution labelled A2/R2 in figure 4.
For both the advancing and receding contact line, when Δ(0,A2) < 0 the perturbation
relaxes to the corresponding stable branch, see panels (a) and (c). When Δ(0,A2) > 0 the
perturbation grows and in the case of the advancing contact line, entrainment occurs, see
inset panel labelled ‘Entrainment’ in panel (b). For the receding contact line a thin-film
develops, see inset panel labelled ‘Thin-film’ in panel (d). The other inset panels show
the phase plane in the (�0,. ) projection. The IC are marked as hollow circular markers,
the system trajectory is marked with arrows and the steady bifurcation is shown without
arrows. The unstable branch can be considered as the basin boundary of attraction of the
stable steady state. Parameter values are �0 = 0.873, j = 0.1, _ = 0.1 for the advancing
problem and �0 = 0.3, j = 0, _ = 0.1 for the receding problem.

of attraction’ of the stable state, when considering simple stretches of the stable interface583
corresponding to perturbations using the leading eigenmode. The unstable state is therefore584
not just a trivial consequence of the steady bifurcation structure but also has an important585
role in dividing the phase plane into regions that have different transient dynamics.586
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Another important observation is that the calculation in figure 12(d), for the receding587
contact line, is consistent with the claim from Chan et al. (2012) that the solution curve588
represents the effective dynamics of the system “in which the state of the solution moves589
quasi-statically along the solution curve”. In the receding case, the trajectory of the system590

in the phase-space (�0,. ) is qualitatively similar to the steady solution curve when plotted591
in the same diagram. The inset diagrams in figures 12(b) and 12(d) labelled ‘Phase plane’592
show the steady solution curve and the trajectory of the system shown with an arrow. In593
the receding case, when Δ(0,R2) > 0 the trajectory closely follows the upper reaches of594
the unstable branch, whereas in the advancing problem this similarity does not occur. The595
comparison between the steady solution curve and the time-dependent trajectories will be596
discussed in more detail in the next section. Finally, we note that the qualitative behaviour and597
conclusions that we have described are identical to the full model, as we show in appendix C.598

4.1.2. ‘Corrugation’ perturbations599

We now concentrate on the ‘corrugation’ perturbations which arise from taking more600
eigenmodes in the perturbation expansion (3.10). As discussed in the previous section601
this class of perturbation includes higher modes, which we might reasonably expect in a602
noisy physical system. We choose the number of eigenmodes as # = 10 for computational603
efficiency. We set the initial condition of the system therefore as604

w(C = 0) = w★ + d
#∑
8=1

g8 + c.c, # = 10. (4.6)605

We concentrate solely on the advancing case and, as before, examine perturbations from606
the stable A1 and unstable A2 (figure 4(a)) states using the IC prescribed in (4.6). Figure 13607
shows the time-dependent results for incrementally increasing values of d in (4.6). Panel (a)608
shows trajectories in the (!,. ) phase plane projection, where ! is the total arclength of the609
interface. To help orient the trajectories we have added artificial axes which are centred on610
the unstable A2 state.611
After perturbing the A1 state, initially the system ‘smoothes’ the corrugations, which is612

indicated by the decreasing value of ! in the trajectories. Once these corrugations disappear613
the system either becomes transient, and air entrainment occurs, or the system returns to the614
stable state. The dashed line between the A1 and A2 state is the response of the system if only615
the leading eigenmode is retained in the initial perturbation, as considered in the previous616
section on ‘stretch’ modes, which can be interpreted as the approximate unstable manifold617
of the A2 state.618
The nonlinear trajectories, i.e. the time-dependent solution to the hybrid system given in619

(2.2)-(2.13) and (2.16) with IC (3.10), all eventually collapse on the unstable manifold of the620
unstable A2 state once the higher-order modes have sufficiently decayed, but, significantly,621
the combination of stable higher-order modes in the initial perturbation can cause transient622
behaviour, i.e. fluid entrainment, in the system, despite the corresponding eigenvalues being623
highly stable. This is in contrast to the linear response, i.e.624

wlin(C) = w★ + d
#∑
8=1

g8ef8 C + c.c, # = 10, (4.7)625

which will always decay back to the stable state (as the eigenvalues are all negative), as626
demonstrated in the inset diagram for a particular initial condition.627
The unstable A2 state, as indicated by a large circular symbol, plays a crucial role in628

the partition of behaviours. By examining the trajectories that explore the vicinity of the629
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Figure 13: Time-dependent perturbations using the ‘corrugation’ perturbations.
Perturbations from the solutions labelled in figure 4(a) using (4.6). (a) - (c) Perturbations
fromA1, (d) - (f) Perturbations fromA2. Panels (a) and (d) show time-dependent trajectories
in the in the (!,. ) phase plane projection. Initial perturbations are denoted by hollow
circular markers and steady states are large solid circular markers. The dashed blue lines
indicate the unstable manifold of the A2 state and the solid black lines are artificial axes
centred on the unstable A2 state. (a) Each red curve indicates a time-dependent trajectory
with a different value of increasing d, as indicated by the black arrow, the initial conditions
with minimum and maximum d have been labelled. The solid trajectories correspond to
initial perturbations that return to the steady state and dotted trajectories correspond to
trajectories that result in entrainment. The inset diagram shows the linear response given
in (3.6) for a particular initial condition marked with a solid circle in the main panel. (b)
The initial interfaces of the trajectories shown in (a) are shown as solid lines and the A1
and A2 steady states are shown using the shaded area and a dashed line, respectively. (c)
The corresponding time signals of . for the trajectories shown in (a). (d) Red/black curves
indicate trajectories with initial conditions Δ(0,A2) positive/negative, respectively. (e) - (f)
The initial conditions corresponding to the trajectories in panel (d) with the unstable state
indicated by the shaded area. Parameter values are �0 = 0.873, j = 0.1, _ = 0.1.

unstable branch in figure 13(a)-(c), it is not unreasonable to hypothesise that by continually630
refining the value of d in the initial perturbation the system would be able to stay in the631
vicinity of the unstable state for an arbitrary time-period; where the dynamics of the system632
are dominated by the stable eigenmodes of the unstable branch. This behaviour is typically633
indicative of interpreting the unstable branch as an ‘edge’ state, commonly used to describe634
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weakly unstable states in the transition to turbulence and other fluid dynamics problems635
(see Kerswell et al. 2014, for a description of an edge state). In these scenarios the weakly636
unstable ‘edge’ state acts as an ‘edge’ between two dynamical outcomes; in our problem it637
separates the system returning to the stable state or becoming transient.638
The role of the unstable state is further emphasised in figure 13(d) - (f) for perturbations639

from the unstableA2 branch. In panel (d) different colour trajectories correspond to whether a640
positive or negative d is chosen in the IC given by (4.6), and panels (e) and (f) show the initial641
conditions compared to the A2 steady state. Again, the system outcomes are partitioned by642
the presence of the unstable state which ‘deflects’ the system to either relax back to the stable643
state or becomes transient so that entrainment occurs.We note that in this case ifΔ(0,A2) < 0644
(ICs in the lower half plane of panel (d)) then the system will become transient which is645
in direct contradiction to the ‘stretch’ mode perturbations. These calculations demonstrate646
that ! could be a more robust indicator of dynamical outcome; in this figure, all trajectories647
in the right side (!,. ) plane (centred on the unstable state) eventually become transient as648
entrainment occurs.649
To determine the exact regions in phase space where initial conditions becomes transient650

or return to the stable state, requires knowledge of the stable manifold of the A2 state; see651
figure 2(b). In our high-dimensional system of PDEs, the calculation of the stable manifold652
of the A2 state is a non-trivial task (see, for example Krauskopf et al. 2005) which we do not653
pursue here.654

4.1.3. Physical significance of the perturbations655

We now relate these results to the physical system. Firstly, we make the key observation656
that the system is able to experience instability for �0 < �0crit due to finite-amplitude657
perturbations of the stable state. Furthermore, these results suggest that the system is sus-658
ceptible to instability caused by perturbations that increase the total arclength; corrugations,659
representing ‘noise’, can be just as dangerous as perturbations that increase the meniscus660
rise. Given that noise is a ubiquitous phenomena in physical systems we would expect to661
see this realised in a system with �0 < �0crit. Secondly, the extent to which we are able to662
perturb the stable A1/R1 state so that the system remains stable is dictated by the information663
encoded in the unstable A2/R2 steady state, in particular whether the perturbation causes664
the interface length or meniscus rise to increase beyond that of the unstable steady state.665
A consequence of this is that the closer �0 is to �0crit (from below), the smaller the finite666
amplitude is required to cause the system to become transient, as the stable and unstable667
branches are increasingly approaching each other.668
We can be more precise and approximate the ‘size’ of the maximal stretch perturbation669

that maintains a steady contact-line as a function of �0 − �0crit. Locally to the fold, the670
bifurcation curve will take the form671

�0 − �0crit = 01(. − .crit)2 + 02(. − .crit)3 + · · · , (4.8)672

where .crit is the meniscus rise at the fold and 08 are constants than can be determined by,673
for example, normal-form reduction methods (Kuznetsov 1998). Therefore, close to the fold,674
the ‘length’ of the basin boundary is approximately equal to the vertical distance between675
the stable and unstable branches and is approximately676

.2 − .1 =

√
2
01
|�0 − �0crit |1/2. (4.9)677

As a conclusion, finite disturbances from the steady stable state potentially lead to insta-678
bility before that interface might become transient otherwise (due to a lack of steady state).679
Minimising ambient disturbances and minimising fluctuations in �0 would help maintain680
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Figure 14: Time-dependent evolution for an advancing contact line when �0 > �0crit and
the system is at rest initially for _ = 0.1, j = 0.1. The different colour curves indicate
different values of �0 = 0.95, 1.05. (a) The time-signal of . with interface profiles at
the indicated times in the inset. (b) The trajectories (curves with arrows) in the (�0,. )
phase-plane projection compared with the steady bifurcation curve (curve without arrows).
The inset panels compare the interface profiles for each �0 at C = 200.

a stable interface for higher �0. The physical mechanisms underlying the observations are681
not straightforward to address due to the highly nonlinear nature of the problem. Moreover,682
three-dimensional perturbations will likely be important in practice and introduce additional683
physical mechanisms. Such 3D calculations are exceedingly challenging and are currently684
the focus of ongoing research, so we defer a detailed study of physical mechanisms for future685
work.686

4.2. Dynamics ‘beyond’ the fold: �0 > �0crit687

We now turn our attention to starting the system from rest with a flat interface beyond the688
fold, i.e. �0 > �0crit, so that we are able to answer the second question stated at the start of689
§ 4. The IC is690

w(C = 0) = [u(0), ?(0), ?1(0), r(0)]) = [0, 0, 0, (GB, 0)]) . (4.10)691

For values of �0 exceeding the critical value there are no (known) steady states which can692
influence the system, unlike in the previous section. For the advancing case, the system693
becomes transient with entrainment occurring, as shown in figure 14 where the time-signal694
of . is measured along with time snapshots of the interface at the times indicated for695
�0 = 1.05, 1.25. We emphasise that the system is not attracted to a different steady state696
of the system that may exist and we are unable to find any additional steady states beyond697
the fold bifurcation. There are two distinct length-scales present in the interface profile for698
sufficiently large times. The width of the fluid entrainment, ℎ̂, and the width of the thin-film,699
ℎfilm, appear to be weakly dependent on �0 as shown by the inset of figure 14(b). These700
results are consistent with recent experimental work (He & Nagel 2019), but we leave a701
detailed analysis of the thickness of these entrainment regions, and their dependence on702
system parameters, to a future study; our focus is on the broad dynamical outcome, rather703
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Figure 15: Time-dependent evolution for a receding contact line when �0 > �0crit and the
system is at rest initially for _ = 0.1, j = 0. The different colour curves indicate different
values of�0 = 0.4, 0.5. (a) The time-signal of. with the final interface profiles in the inset.
(b) The trajectories (curves with arrows) in the (�0,. ) phase-plane projection compared
with the steady bifurcation curve (curve without arrows). The inset panels compare the
interface profiles for the time-dependent evolution (red) and the steady solution branches
(blue) at the same values of . = 1, 2, 3 for the �0 = 0.4 case.

Figure 16: Time-dependent evolution for the receding contact line when �0 > �0crit and
the system is at rest initially. Once a film has formed and . = 6, we set �0 < �0crit, as
indicated in the figure by different colour trajectories and interface profiles. Other parameter
values _ = 0.1, j = 0.0.

than the fine details of the solution. We do, however, remark that the hybrid model shows704
excellent promise in being able to predict the width of these films.705
For the receding case, a thin-film develops. Figure 15 (a) shows the time-signals of . in706

the receding case when �0 = 0.4, 0.5 > �0crit. The system, although not approaching a707
steady state, forms a coherent structure whose meniscus rise grows at a constant velocity,708
independent of �0, similar to the structure seen in figure 12(c). Unlike the advancing case,709
the time-dependent trajectories and the steady solution curve for the receding problem, when710

plotted in (�0,. ), are qualitatively similar. Figure 15(b) also compares the actual interface711
profiles for the time-dependent calculation and the corresponding steady solution for the712
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same value of . (inset figures). It is striking how close the two corresponding interface713
profiles are, although we note that in the time-dependent case the horizontal height of the714
inflection point is smaller than that of the steady solution in all of the cases. This again shows715
compelling evidence that in the receding contact-line problem the unsteady solution branch716
represents the effective dynamics of the system.717
In both the advancing and receding contact-line problems, the system trajectory approaches718

a fixed value of �0 as C → ∞. For the advancing contact line, the limiting meniscus719
rise velocity is dependent on �0 (see slopes in figure 14(a)) so that the trajectories720

approach a limiting value of �0 which depends on �0 (see figure 14(b)). However, for721

the receding contact-line, the limiting value of �0 appears to be almost independent of �0722
(see figure 15(b)), indicating the contact-line region and the thin-film region are essentially723
de-coupled by this point. This would mean that if, after a thin-film has developed, we slow the724
plate speed so that �0 < �0crit, the contact line would continue to move upwards and only725
the thin-film thickness, which is dependent on �0 according to a Landau-Levich type law,726
(Landau&Levich 1988) would change. Figure 16 shows this situation, where the trajectory in727

the (�0,. ) plane of an receding contact-line IVP initially starting at rest when �0 > �0crit.728
Once a film is developed we instantaneously change the value of�0 < �0crit, once. is large729
enough (we choose . = 6 for convenience) and observe the contact line continuing to rise,730
whilst the thin-film becomes smaller, adjusting to the changed value of �0.731
We do not have a concrete physical explanation for why the trajectories and steady732

bifurcation curve closely match one another for the receding contact line. From a dynamical733
systems perspective it is possible that the stable manifolds of the unstable branch persist as734
�0 > �0crit and that the system is constantly being ‘attracted’ by the remnants of the stable735
manifolds. This is, of course, speculation, and we leave this aspect as a challenge for future736
work.737

5. Discussion738

Wehave developed a time-dependent hybridmodel and utilised ideas fromdynamical systems739
theory to investigate the advancing and receding contact-line problems. By solving a gen-740
eralised eigenproblem numerically and performing IVP simulations we have demonstrated741
that far from being passive, the unstable branch of the bifurcation structure plays a subtle742
role in the underlying time-dependent behaviour, from a dynamical systems perspective.743
By perturbing the stable branch using the eigenmodes we have demonstrated that the744

unstable branch represents the basin boundary of attraction of the stable solution and it745
has a profound effect on the eventual evolution of the system. We have demonstrated that746
perturbations that cause the interface to stretch are robust, in that provided the stretch747
does not exceed that of the unstable branch the system returns to the stable state. In contrast,748
perturbations that increase the overall length of the interface by adding ‘corrugations’ are also749
dangerous and the system can become transient, despite these ‘corrugations’ corresponding750
to stable eigenmodes, as indicated by figure 13(d) - (f). This information may be helpful in751
physical systems as a means of flow control, as knowledge of the structure of the unstable752
eigenmodes may enable us to stabilise the system using suction/injection techniques. We also753
note that in physical experiments, estimates of �0crit should be interpreted as a lower bound,754
because in practice fluctuations may cause the system to become transient, despite a stable755
state existing, which has implications in real-life control of fluid systems.756
We note that the perturbations we have considered here are purely theoretical eigenmode757

perturbations and it would be of interest to examine the stability of the contact line when758
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physically perturbed by, for example, the surface defects on the moving substrate. This is759
part of the authors’ current research.760
In addition, for the receding case, by performing time-dependent calculations we have761

shown that trajectories in phase space qualitatively match the steady bifurcation structure.762
The solution curve describes what Chan et al. (2012) termed the ‘effective dynamics’ of763
the system. The bifurcation structure remains structurally stable (i.e. the stable-fold-unstable764
branch structure does not change) as j and _ is varied, (see figure 7) and hence we predict765
the overall qualitative behaviour to be similar, i.e. the unstable branch is generically the basin766
boundary of attraction for systems of this nature.767
Gravitational and inertial effects can easily be added to the model and it is interesting768

to consider what effect these would have on the bifurcation structure and stability analysis.769
We have already performed some preliminary calculations incorporating gravity and have770
found that the bifurcation structure experiences the same multiple saddle-node bifurcations771
as predicted by the lubrication model (Chan et al. 2012). Our preliminary analysis shows772
that the entire upper branch past the first saddle-node bifurcation is unstable, but we have not773
pursued this in detail and leave this for future research. For inertial effects, we could expect774
other types of bifurcations, including Hopf bifurcations, which would introduce complex775
eigenvalues to the spectrum of f and lead to more complex transient behaviour. We also776
leave this avenue for future research.777
We emphasise that the computational stability algorithm and methodology presented here778

is independent of the governing equations that are chosen, even if the results differ. The779
system we decide to analyse is applicable to a wide-range of physical settings where gravity780
and inertia play a minimal role (see, for example Ledesma-Aguilar et al. (2011)) but these781
physical effects, and even different contact-line physics such as that which MKT proposes782
(see, for example Blake 2006), can easily be incorporated into our computational framework.783
In fact, any dynamic wetting system that can be written in the form784

'( ¤w,w) = 0, (5.1)785

where ' represents a dynamic wetting model that is appropriate for the physical situation786
with a set of state variables given by w is amenable to the analysis that we have described.787
In our model, we choose the simplest approach and set the dynamic contact angle to be788

constant. It is hotly debated whether this is indeed physically realistic and whether the actual789
contact angle varies or whether all dynamics of the angle are ‘apparent’. A natural extension790
to the model would be to investigate the effect of having a contact angle that is dependent791
on the velocity of the plate, such as that proposed by molecular kinetic theory (MKT), (see,792
for example Fernández-Toledano et al. 2021; Blake 2006) or the interface formation model793
(see Shikhmurzaev 2007). Provided the bifurcation structure remains intact (i.e. stable-fold-794
unstable) then we predict the dynamics will be qualitatively the same. This is the subject of a795
submitted article where we apply the hybrid model and stability algorithm developed here to796
account for a �0-dependent contact angle observed in molecular simulations (Keeler et al.797
2021).798
For the advancing contact line, the instability manifests itself as fluid entrainment and799

for the receding contact line, a thin film and a capillary ridge forms. The instability in800
this study is taken in a two-dimensional context but it is well-known that the ‘saw-tooth’801
patterns that emerge in an unstable advancing contact line are intrinsically three-dimensional.802
An intriguing extension to our model would be to consider transverse perturbations of the803
advancing contact line in the third dimension and perform a stability analysis, similar to804
our approach here. This has been done before in the receding case (Snoeijer et al. 2007)805
and the advancing case (Vandre 2013) using a lubrication model, but the time-dependent806
hybrid model developed here is a perfect testing ground for a three-dimensional calculation807
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as the computational cost is relatively small compared to the full model, and we are also able808
to fully account for the two-dimensional (lubrication-violating) velocity in the liquid. This809
direction of research is currently being developed.810
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Appendix A. Derivation of Hybrid Model823

As the flow is approximately one-dimensional, using a lubrication approximation, the824
momentum equations of the fluid phase are known to reduce (Oron et al. 1997) in our825
case to826

m?1

mG
= 0,

m?1

mH
= j

m2E1

mG2 , (A 1)827

so the pressure in the fluid phase is a function of H only and a straightforward two-fold828
integration of the momentum equation in (A 1) yields an expression for E1, i.e.829

E1 =
1
j

(
1
2
m?1

mH
G2 + �G + �

)
, (A 2)830

where � and � are constants of integration.We impose the Navier-slip condition on G = 0 and831
impose continuity of velocity at the interface boundary, denoted by G = ℎ, as in figure 3(c).832
These conditions determine � and �:833

� =
� −*j
_

, � =
j(*ℎ + _E2) − 1

2_(m?1/mH)ℎ2

_ + ℎ , (A 3)834

where E2 is the vertical component of velocity of the lower fluid and ?1 is the upper fluid835
pressure, both evaluated at the interface. We have now determined the vertical velocity in the836
fluid phase in terms of the (as yet) unknown pressure gradient, m?1/mH on the interface.837
We now use conservation of mass to form an equation that determines the pressure in the838

fluid at the interface. The conservation equation, (2.1), can be written as839

D1 −
mℎ

mH
E1 ±

1
j

m

mH

(
1
6
m?1

mH
ℎ3 + 1

2
�ℎ2 + �ℎ

)
= 0, (A 4)840

where the ± sign is used for the advancing(+)/receding(−) contact line. As typical horizontal841
length scales are small compared to vertical distances in the fluid when entrainment occurs,842
i.e. ℎ̂/. � 1 (see figure 1(c) for illustrations of ℎ̂ and . ), then the arclength along the843
interface, B, measured from the contact point (see figure 3(e)) is B = H + $ ( ℎ̂/. ). Therefore844
we can replace derivatives w.r.t H with derivatives w.r.t B which means the first two terms845
above become u1 · n. The arclength parameterisation is preferable, as it allows the interface846
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to become multi-valued in calculations. Using the kinematic condition (2.8) at the interface847
means that equation (A 4) becomes848

mr
mC
· n ± 1

j

m&1

mB
= 0, &1 =

1
6
m?1

mB
ℎ3 + 1

2
�ℎ2 + �ℎ, (A 5)849

as stated in the main text. This equation determines the evolution of the pressure in the fluid850
phase on the interface. We set ?1(B = !) = 0 and &1(B = 0) = 0 to ensure the system is851
well-posed. The velocity in the fluid phase can be recovered using (A 2). In this formulation,852
the equations in the liquid phase are coupled to (A 5) due to the presence of E2 in the definition853
of the constant �. Furthermore, we couple the pressure and velocity in the fluid phase to the854
liquid phase through the dynamic boundary condition, i.e.855

31 · n = −?1n − j mE1

mG
t, x ∈ Γ4, (A 6)856

where t is the tangent along the direction of the arclength B, see figure 3(b), which is standard857
when using a thin-film approximation (Oron et al. 1997).858

A.1. Justification of the model859

We now discuss the justification of the hybrid model. For small �0 the hybrid model’s860
slender geometry approximation is not valid, but because in this regime upper fluid stresses861
are small compared to the capillary stress (i.e. the fluid is dynamically passive), the difference862
between the hybrid and full model is small. In contrast, in the large. regime, the geometry is863
genuinely slender in the upper fluid phase and a hybrid model is justified and we expect the864
difference again to be small. However there are cases when the hybrid model loses accuracy.865
For example, when the upper fluid is a liquid of similar viscosity its stress on the interface is866
significant even at moderate �0 and the geometry is not always slender - clearly such cases867
require the full model, although figure 17, which shows a comparison of steady solutions868
of the receding contact line between the hybrid (solid lines) and full (circular markers) for869
_ = 0.1 and j = 0.1, demonstrates that even at j = 0.1 agreement between the models is870
reasonable.871
The hybrid model has been extensively validated for steady solutions of the advancing872

contact-line problem, over awide range of j (Liu et al. 2016b), and has also shown impressive873
agreement with curtain-coating experiments (Liu et al. 2019). Here, we show that the time-874
dependent hybrid model is consistent with the full model by performing a series of time-875
dependent IVP calculations starting the system from rest (u8 = 0) with a flat interface.876
If we choose �0 < �0Crit we expect the system to eventually relax to a stable state. As877
j → 0 the full model and the hybrid model should converge, because the pressure in fluid878
1, reduces to ?1 = Constant so that the hybrid and full model are described by identical879
equations. Figure 18 shows the time-signal of the meniscus rise, . , for different viscosity880
ratios (different colours) for the full model (dotted lines) and the hybrid model (solid lines).881
In all cases the interface eventually relaxes to a stable state, as shown by the time signals882
in the main figure. It is also clear that for the smallest value of j in the figure the full and883
hybrid model are virtually indistinguishable. This is because for small j, the fluid only has884
an influence on the liquid in thin-films (where the liquid phase has an approximately constant885
height, ℎ̂, see figure 1(c)) in front of the contact line, and this is where the lubrication886
model is valid. In contrast, at moderate j the influence of the fluid is felt everywhere, the887
films are thicker/non-existent and this approximation loses accuracy. In other words, this888
approximation works best when the fluid is a gas.889
In our final validation calculation, we show in figure 19 that for different values of j and890
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Figure 17: Steady bifurcation curve of the receding hybrid and full model when _ = 0.1, j =
0.1. The horizontal axis is �0 and the vertical axis is the meniscus rise, . = |HB (B =
!) − HB (B = 0) |. The solid markers are the full model solutions and the solid/dashed lines
are the corresponding hybrid model results. The inset diagrams show the comparison of
the interface and streamlines in the full and hybrid models when . = 2 (right panels) and
. = 4 (left panels).

Figure 18: Comparison of the time-dependent hybrid and full model for the advancing
contact line. Time signals of the meniscus rise, . = |HB (B = !) − HB (B = 0) |, of the hybrid
(solid) and full (dashed) models when _ = 0.1, �0 = 0.2. The different colours indicate
j = 0.1, 0.01, 0.001. As the main panel shows the system relaxes to a stable state and as
j→ 0 the two models converge. The inset panels show interface profiles at sampled times
indicated by the labels.

\1 the hybrid model is consistent with the full two-layer model for variations in j and the891
contact angle \1.892
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Figure 19: Comparison of �0crit between hybrid (solid lines) and full (circular markers)
models for the receding contact line. (a) Variations in j when _ = 0.1 and \1 = c/2. (b)
Variations in \1 for _ = j = 0.1.

Appendix B. Validation of our eigenvalue analysis893

We can validate the solutions of (3.5) against a situation where analytic eigenmodes are894
known. If we assume the plate is static (�0 = 0) and that �/! � 1, corresponding to a short895
fat pool of liquid at the bottom of the channel with no-slip beneath it, then we can also apply896
a lubrication approximation to the liquid domain. If the fluid is treated as a vacuum we have897
the following equation for the vertical height of the interface:898

HC + �
(
H3HGGG

)
G
= 0, (B 1)899

where � is a known constant containing non-dimensional system parameters (in this case900
we choose � = 3). The boundary conditions H(0) = H(!) = H0, HGGG (0) = HGGG (!) = 0901
describe a pinned contact-line and no flux through the plates so that the resulting interface902
is flat in equilibrium. In this case the set of unknowns is ‘one-dimensional’ in that w = [H]903
and using the perturbation in (3.3) yields a set of equations where analytic progress can be904
made. It can be shown that the eigenvalues and eigenmodes of (B 1) can be written as

905

6= = 0=

[
sinh(f1/4

= !) + sin(f1/4
= !)

cos(f1/4
= !) − cosh(f1/4

= !)
(cosh(f1/4

= G) − cos(f1/4
= G))+906

sinh(f1/4
= G) + sin(f1/4

= G)
]
, f= ≈

(
π/2 + =π

!

)4
. (B 2)907

These non-trivial analytic expressions can be used to validate our numerical stability908
calculations. We choose a computational domain with �/! = 40, to reflect �/! � 1, and909
calculate the corresponding eigenmodes numerically using the hybrid model described in910
the previous section. Figure 20 shows the first three eigenmodes corresponding to the largest911
three eigenmodes, = = 1, 2, 3 as calculated by the hybrid model and the analytic solution912
(different colour curves). These solutions are stable as the eigenspectra lies exclusively in913
the left-hand complex plane and the agreement between the numerical calculations and the914
analytic solution obtained from the lubrication model is excellent, giving us confidence in915
our computational framework.916
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Figure 20: Comparison of eigenmodes, �/! = 40, � = 3.0. The different colour profiles
indicate the analytic eigenmodes from (B 2) and those obtained from the numerical
calculations. The top figure is the eigenmode 61, corresponding to the largest eigenvalue
whilst the lower panels show 62 and 63, the eigenmodes for the next two largest eigenvalues.

Appendix C. Full two-layer time-dependent perturbations917

In this appendix we show that the qualitative time-dependent behaviour of the full two-918
layer model matches that of the hybrid model. In particular we show that applying a stretch919
perturbation to the unstable state, as shown in § 4.1.1, leads to similar qualitative transient920
features. In figure 21, leading-order eigenmode perturbations, i.e. ‘stretch’ modes, of the921
unstable state in the full model result in either stable flow, if the initial interface has been922
contracted, or becomes transient, if the initial interface has been stretched. This qualitative923
behaviour precisely matches that of the hybrid model, in both the advancing and receding924
contact-line problems, as is evident from the red (full) and black (hybrid) curves in panels925
(a) and (d). Furthermore, as can be seen by the mesh in panel (d), when a thin film starts926
developing, the number of elements in the computational domain significantly increases927
due to the adapation procedure and the calculations become prohibitively expensive and928
eventually fail when the moving-wall contact point reaches the end of the domain, thus929
highlighting the attraction of the hybrid model for time-dependent simulations.930
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