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Amino acids are among the building blocks of life forming peptides and proteins and have been carefully ‘selected’ to
prevent harmful reactions caused by light. To prevent photodamage, molecules relax from electronic excited states to the
ground state faster than the harmful reactions can occur, however, such photochemistry is not fully understood, in part
because theoretical simulations of such systems are extremely expensive — with only smaller chromophores accessible.
Here, we study the excited-state dynamics of tyrosine using a method based on deep neural networks that leverages
the physics underlying quantum chemical data and combines different levels of theory. We reveal unconventional and
dynamically-controlled ‘roaming’ dynamics in excited tyrosine that are beyond chemical intuition and compete with
other ultrafast deactivation mechanisms. Our findings suggest that the roaming atoms are radicals that can lead to
photodamage, offering a new perspective on the photostability and photodamage of biological systems.

INTRODUCTION

Amino acids form functional peptides and proteins that en-
able human life on earth and fundamental reactions in nature
such as photosynthesis. [1, 2] These systems have been care-
fully selected to prevent harmful reactions caused by exter-
nal stimuli, such as UV/visible light. The uptake of UV light
leaves the molecule in a highly electronic excited state – po-
tentially driving toward harmful reactions such as photodegra-
dation, aggregation or bond cleavage. [3–6] To prevent photo-
damage, molecules undergo ultrafast, nonradiative transitions
from electronic excited states to the ground state on a time
scale much faster than irreversible, harmful reactions. Yet,
the mechanisms underlying photo-induced reactions in amino
acids remain elusive. Thus, knowledge about these mecha-
nisms can substantially contribute to a better understanding
of the photostability of peptides and proteins and can further
help the design of novel drugs in phototherapy [7] as well as
functional systems with special excited-state properties. [8–
10]

Mainly three amino acids are prone to photoexcitation by
sunlight: phenylalanine, tyrosine, and tryptophan. Their pho-
todynamics can be studied experimentally, for instance via
pump-probe [11] or high-harmonic spectroscopy, [12] but
also theoretically via excited-state dynamics. [13] Photody-
namics simulations are very powerful to decipher mecha-
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nisms underlying photo-excitation and to provide explana-
tions to experimental observables. While tryptophan, tyro-
sine, and phenylalanine were studied experimentally, [14–17]
theoretical simulations of their excited states are extremely
expensive, such that only the smaller chromophores of these
molecules (such as benzene, phenol, and indole) are often the
focus of theoretical investigations. [15, 18–20] However, size-
dependent deactivation pathways suggested by experiments
question the use of chromophores as model systems to study
the photochemistry of the respective amino acids. [14, 16,
17] In particular, the photochemistry of tyrosine leaves many
questions unanswered.

Photodissociation of the O–H bond located on the phenol
ring (abbreviated as PhO–H in the following) is found to be a
major deactivation pathway. Two main dissociation channels,
which operate on a slow and a fast time scale, have been pro-
posed for tyrosine and its chromophores after photo-excitation
using 200 nm laser pulses. [16, 21] However, a significantly
lower signal-to-noise ratio was found in tyrosine, in contrast
to its chromophores, phenol and tyramine. Existing theoreti-
cal studies confirmed a repulsive 1πσ∗ state that can lead to
photodissociation. [22] More elaborate theoretical simulations
are needed to unravel the excited-state dynamics of tyrosine,
but remain computationally infeasible. Studies have been ei-
ther limited to static calculations or to low accuracy. [22, 23]
Neither experiments nor theoretical simulations could suggest
time constants or a comprehensive picture of the processes
that take place in photoexcited tyrosine.

In this work, we present a computational method that can
predict the excited-state dynamics of tyrosine with high accu-
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racy and on experimentally relevant time scales – that is on the
order of picoseconds with respect to recent experiments. [21]
This is achieved by extending our previously proposed [24,
25] photodynamics approach based on deep neural networks.
We combine different levels of theory and exploit underlying
physics when training neural network models. In this way, an
unexpected reaction pathway, namely roaming, [26–29] for
highly excited tyrosine has been discovered putting photo-
chemical processes in biology into a new perspective.

ROAMING DISCOVERED IN HIGHLY EXCITED TYROSINE

Figure 1. Roaming hydrogen atoms in tyrosine discovered during
a photodynamics simulation. Selected frames of the trajectory in
which roaming atoms in tyrosine were first observed. Each frame
shows the time step and active state at which the geometry was vis-
ited. As can be seen, the hydrogen atom attached at the PhO–H group
dissociates, but changes direction in between 40 and 80 fs. After this
time, it roams around the molecule and eventually, attaches the car-
boxy group at the peptide backbone, after which hydrogen transfer
from the carboxy group to the amino group is observed. One hy-
drogen atom dissociates from the amino group and starts roaming
around the molecule again. A movie that shows this trajectory is
attached as a supplementary file.

Roaming, originally explored in formaldehyde in the pio-
neering work of Bowman and coworkers from 2004 [29] and
actively investigated since then, [30–35] describes an atom or
fragment that moves along a dissociative potential and sud-
denly changes direction toward an unconventional, dynami-
cally controlled path. The path of roaming fragments devi-
ates from and competes with known deformation pathways
and is not what one would expect based on chemical intuition.

Characteristics derived from known examples are a large in-
teractomic distance up to 2-3 Å between the dissociated frag-
ment and the remaining molecule [26–28, 36] and time scales
that can range from hundreds of femtoseconds up to nanosec-
onds. [34] Yet, we are just at the beginning of understanding
this special reaction mechanism and its role in nature. It was
only in 2020 that roaming fragments have been observed ex-
perimentally in real-time. [34]

Experimental studies conducted on tyrosine [16, 21] are
blind to the mechanisms underlying photoexcitation and can-
not trace roaming atoms. Another fact that complicates the
investigation of the reaction is that, at least in principle, roam-
ing can lead to the same photoproducts. Whether this reaction
prevents or promotes photodissociation or leads to long-lived
excited states prone to ionization is not known.

Here, we shed light on the dynamical processes that take
place after photoexcitation of tyrosine by carrying out dy-
namics simulations with our SchNarc approach that com-
bines trajectory surface hopping with deep neural networks
for excited-state properties. [25] The training set for the neu-
ral networks is to a large part based on the algebraic dia-
grammatic construction to second order perturbation theory
(PT2) method, ADC(2). [37] To describe reactions that in-
volve the breaking and formation of bonds, data points based
on the complete active space perturbation theory of second
order method, CASPT2, [38, 39] are added and amended to
match the ADC(2) potential energy surfaces (see Supplemen-
tary section 3 for details). Corresponding simulations of only
1 picosecond directly based on the CASPT2 approach would
have taken about 8 years on a high performance computer
but likely would have encountered problematic geometries for
the rather small, but just still computationally feasible active
space (see Methods and Extended Data Fig. 1 a) and crashed.
In this sense, our machine learning (ML) approach offers the
unique possibility to carry out such dynamics simulations,
while, to the best of our knowledge, neither multi-reference
methods nor single reference methods can directly be used in
practice to simulate the photodynamics of tyrosine. A more
detailed description on the reference methods and training set
generation can be found in the Methods section and SI, i.e.,
in supplementary sections 1-3, Supplementary Fig.s 1-4, and
Supplementary Tables 1-4.

A total number of 29 spin-mixed states, i.e., 5 singlet and
8 triplet states, are learned including the forces as derivatives
of the fitted potential energy surfaces and the spin-orbit cou-
plings (SOCs) between states of different multiplicity. To
the best of our knowledge, previous studies on medium-sized
molecular systems like tyrosine only described a few states,
while we treat more than dozens of states with ML including
SOCs. One data point comprises 29 energy values, 29 force
vectors, and 812 SOC values. The large number of values
that have to be trained per data point adds additional com-
plexity to the model training, which led us to introduce dif-
ferent aspects of the underlying physics into the neural net-
work model. We developed a network architecture that uses
the Hamiltonian as directly obtained from quantum chemistry,
which consists of spin-diabatic states as diagonal elements
and SOCs as off-diagonal elements. In addition, informa-
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tion of the diagonalized Hamiltonian is added. The diago-
nalized Hamiltonian contains spin-mixed energies as diagonal
elements with off-diagonal elements being zero. The model is
trained on energies and SOCs by using information of both
the spin-diabatic (adiabatic) and diagonal representations. It
predicts a spin-diabatic Hamiltonian and diagonalizes it to get
the diagonal Hamiltonian. Both representations are included
in the loss function, which leads to improved training of SOCs
and ensures that these SOCs in combination with the spin-
diabatic potentials yield accurate diagonal potentials that are
afterwards used in the dynamics. Supplementary section 7.B
provides a detailed explanation of the architecture (Supple-
mentary Fig. 15) and accuracy (Supplementary Fig. 16) of
the neural network models.

We simulated over 1,000 trajectories based on the neural
network potentials to obtain statistically significant results and
to discover possible reactions that take place after light exci-
tation. We get a first impression of the photodynamics of ty-
rosine from a representative trajectory shown in Fig. 1, which
is also attached as a movie in the supplementary information.
The active state is indicated at each frame; corresponding ex-
cited state potential energy curves are given in Supplementary
Fig. 8. As can be seen, the hydrogen atom that is located at
the PhO–H group of the molecule follows a dissociative path
and suddenly changes direction at about 80 femtoseconds to
roam around the molecule. In this case, hydrogen abstrac-
tion is in competition with the hydrogen transfer from the car-
boxy group to the amino group of the peptide chain, form-
ing a zwitter-ionic species that is known from recent studies
and reflects much better our chemical intuition. [22] Inter-
estingly, after hydrogen transfer, the roaming atom attaches
to the carboxy group of the peptide chain and the hydrogen
atom of the NH+

3 group is transferred toward the phenyl-ring
to roam again around the molecule. Roaming is accompa-
nied by internal conversion from the first excited singlet state,
S1, to the ground state, S0, which takes place between 300
and 400 femtoseconds. In contrast, the deactivation from the
fourth, bright excited singlet state, S4, to the first excited sin-
glet state is much faster. To make sure that roaming is not an
artifact introduced by our neural network potentials, we veri-
fied this reaction in Supplementary section 5 using CASPT2
reference calculations (see Supplementary Fig. 7).

A. Fragmentation analysis

To investigate whether roaming atoms are radicals or pro-
tons, we characterize partial charges of 10,767 molecular ge-
ometries with roaming atoms that were obtained from differ-
ent time steps of all trajectories (> 3 million data points). We
find that roaming atoms are present as radicals. The anal-
ysis was carried out with deep neural networks trained on
dipole moment vectors, which internally form latent partial
charges by exploiting the underlying physics of dipole mo-
ment vectors. [40] This workflow needs to be followed as
partial charges derived from conventional population analy-
sis, especially those for excited states, would necessitate a te-
dious recomputation of all conformations sampled during the

neural network dynamics with quantum chemistry. This pro-
cess is not only computationally costly, but also tedious, and
existing partitioning schemes are often unreliable or counter-
intuitive. [41, 42] The model for dipole moment vectors is
discussed in the Methods section and Supplementary section
6.B and its performance and architecture is evaluated in sup-
plementary sections S7.B and S7.C, respectively, with scatter
plots for dipole moments shown in Supplementary Fig. 17.

The impact of roaming on the photochemistry of tyro-
sine was obtained from over 1,000 dynamics simulations that
would have been computationally infeasible without the help
of deep learning. As already mentioned, simulations were set
up according to earlier pump-probe experiments conducted
by Iqbal et al. [16] (with further details in Supplementary
section 6.D/Supplementary Fig. 5). Every dynamics trajec-
tory was simulated at least up to 1 picosecond or until the
photoproducts were formed. This picosecond time scale was
suggested by experimental studies to be sufficiently long to
capture all relevant reactions taking place. Nevertheless, a
few hundred trajectories were additionally simulated up to 2
and 10 picoseconds. Fig. 2 (a) shows the distribution of the
products that we split into those that were obtained from non-
roaming and roaming trajectories. As can be seen, we found
roaming hydrogen atoms that were originally located at the
phenol ring in about 17% of all 1,022 trajectories character-
ized. Due to the large amount of data to analyze, i.e., over 3
million data points, we used k-means clustering [43] (Supple-
mentary section 6.A and Supplementary Fig. 10) to identify
different groups of products. For this analysis, we separated
all trajectories into roaming and non-roaming trajectories and
analysed them separately:

a. Non-roaming trajectories. The results suggest that
most molecules that do not show roaming atoms remain stable
during the photodynamics and can prevent most of the harm-
ful reactions that can take place. Only about 9% of the non-
roaming trajectories show direct dissociation of a hydrogen
atom. The hydrogen atoms that dissociated were originally lo-
cated at the oxygen of the phenol-group. Remarkably, in about
15% of the cases of hydrogen dissociation, the formation of a
zwitter-ionic species can be found (see Fig. 2 (b) upper right).
An additional 3.5% of non-roaming trajectories show other
fragmentation paths within the conducted simulation time: p-
methylphenol and peptide chain fragments (see Fig. 2 (b) up-
per left) are likely to be generated. Decarboxylation is another
possible route that can happen before C–C bond breaking of
the peptide chain or after (see lower left example).

b. Roaming trajectories. In contrast to non-roaming tra-
jectories, only 36% of all excited molecules stay stable in
roaming trajectories during the simulation time of 2 ps, while
64% eventually undergo dissociation or fragmentation of
some sort, see second purple/yellow pie chart in Fig. 2 (a).
All pathways start with roaming of the hydrogen atom from
the phenol group. Later on, most of these hydrogen atoms
leave the vicinity of the parent molecule and are classified as
dissociated. Hence, roaming increases the likelihood of sub-
sequent dissociation. Other roaming pathways lead the hydro-
gen atom to different parts of the tyrosine molecule and induce
fragmentation into smaller pieces, as indicated in the lower
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Figure 2. Photoproducts of tyrosine observed in "non-roaming" and "roaming" trajectories. (a) Products discovered by the dynamics simula-
tions split into "no roaming" trajectories and "roaming" trajectories. Clustering techniques are used to identify the different types of products in
each set of trajectories. Both types of mechanisms can lead to dissociation and fragmentation, but with different probability. (b) Representative
structures found in "non-roaming" trajectories marked by light-blue rectangulars and "roaming" trajectories marked by dark-blue rectangulars.
Importantly, only "roaming" trajectories lead to much smaller fragments. Other pronounced signatures that are found during the dynamics
are carboxylation, H-dissociation, and dissociation of the peptide chain to form p-methylphenol and phenol. (c) Time-of-flight (TOF) mass
spectrum with data extracted from ref. [21] that confirms the existence of the discovered reaction outcomes and fragments observed. The
fragments that correspond to a specific, pronounced m/z ratio are indicated in the plot.

right pie chart of Fig. 2 (a) and also in panel (b). The frag-
ments that are found in roaming trajectories are much more
diverse than those in non-roaming trajectories, see Fig. 2 (b),
and some smaller fragments are only found in roaming trajec-
tories. Signatures corresponding to these smaller fragments
are in agreement to those detected in experiments using multi-
mass ion imaging [16, 21]. The time-of-flight mass spectrum
shown in Fig. 2 (c) extracted from ref. [21] further confirms
the dynamics. Large peaks in the spectrum are related to
p-methylphenol, decarboxylation, hydrogen dissociation and
hydrocarbons. The findings are in agreement with our cur-
rent understanding of the impact of roaming on photo-excited
molecules.[36]

B. Kinetics

Besides geometrical characterization, the dynamics simula-
tions can be used to obtain population kinetics of the reaction.
The average populations, after excitation to the S4 state, in
the different excited states are plotted in Fig. 3 (c). After 1
picosecond the populations change only slightly, so they are
shown up to 10 picoseconds in Supplementary Fig. 6 in Sup-
plementary section 4.

In contrast, the population transfer to the S1 state is ex-
tremely fast and happens on an average of 66 femtoseconds.
After these ultrafast transitions the molecule is found to be
stuck in the S1 state. About 40% of the trajectories show pop-
ulation transfer back to the ground state within 1 picosecond.

Intersystem crossing between singlet and triplet states can
play an important role in biomolecules [44, 45] but here it is
found to be negligible and does not have an impact on the dy-
namics as suggested by the population curves shown in Fig.
3 (c). The latter are similar to the ones by Mitrić and co-
workers,[22] who simulated about 50 trajectories for up to 200
fs using TDDFT and did not include any triplets in the dynam-
ics. There are some trajectories in triplets by the end of the
simulation, e.g. dissociated or roaming structures, but in such
conformational regions of the molecule singlets and triplets

are degenerate, hence they are treated on the same footing.

The pump-probe experiments by Stavros and co-
workers [16] suggest ultrafast photodissociation and two
different reaction channels – one operating on a slow and
one on a fast time scale after excitation with 200 nm (pump)
and probe pulses of 243.1 nm. The kinetic energy spectrum
of tyrosine, extracted from ref. [16], with the two peaks
corresponding to the different kinetic components can be seen
in Fig. 3 (a). To get an insight into the impact of roaming
on the time scales of photodissociation, the PhO–H bond
distance of each trajectory is plotted along the simulation
time in panel (b). Trajectories are split into those that show
roaming and those that do not show roaming – the latter
are additionally split into dissociative and non-dissociative
trajectories. The roaming fragments are characterized by
bond distances that are mainly within 2-5 Å to the parent
oxygen atom initially. The relatively small distances in the
range of 2-3 Å refer to recoiling hydrogen atoms that bounce
against the oxygen atom several times before they either
recombine, dissociate or roam around the molecule. An ex-
ample trajectory of this event is attached as a supplementary
movie. Noticeably, these large amplitude vibrations were also
found in formaldehyde. [29]

Unfortunately, due to a low signal-to-noise ratio, no ex-
perimental time constants are reported for tyrosine. Experi-
ments on smaller chromophores of tyrosine and other amino
acids [14, 16, 17] suggest that the fast component with time
constant, k1, results from dissociation in the ground state,
whereas the slow component with time constant, k2, is at-
tributed to take place in an excited state. To investigate this
assumption, we carry out a two-fold analysis. On one side,
the experimentally found time constants for p-ethylphenol and
tyramine are used to fit an exponential function, f (t), of the
form: f (t) = a1 · exp(− t

k1
) + a2 · exp(− t

k2
) with a1 and a2

being constants of 0.15 and 0.1. The function is subtracted
from its maximum value and plotted in panel (d). As it is vis-
ible, the dissociation is slower in tyramine. In addition, the
amount of dissociation found in the dynamics are plotted up
to 1 picosecond (solid dark orange curve), which fits well to
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Figure 3. Kinetic analysis of photodissociation in tyrosine. (a) Kinetic energy release spectrum for tyrosine with data extracted from ref. [16],
in which it was obtained via velocity map ion imaging techniques and which shows that the dynamics operate on two different time scales
and reaction mechanisms. (b) The bond distance of the hydrogen atom located at the hydroxy group at the phenyl ring (PhO–H) is plotted
against simulation time of 1 picosecond and separated into "roaming" and "non-roaming" (dissociative and non-dissociative) trajectories. As
can be seen, roaming atoms can be present for several hundred femtoseconds, but can also be short-lived, resulting in re-attachment to the
PhO–H group or dissociation. (c) Population plots averaged from 1022 trajectories simulated up to 1 picosecond. Population transfer from the
S4 to the S1 state is ultrafast, but slow from the S1 state to the S0 state. Intersystem crossing is negligible and populations on short time scales
are similar to those obtained with time-dependent density functional theory and without consideration of triplet states.[22] (d) Amount of
trajectories that show dissociation (solid orange) against time. Experimentally found time constants for p-ethylphenol (dashed orange line) and
tyramine (dashed-dotted purple line) as well as the theoretically fit time constants for tyrosine (dotted orange line) used to fit an exponential
function. The determined time constant of tyrosine fits well to the experimental assumption that the dynamics are slower in tyrosine compared
to those of its smaller chromophores.

the experimental observables. To verify that the slow and fast
components are due to dissociation in an excited and ground
state, respectively, we split the trajectories into these two cat-
egories. The population curves from the S1 to the S0 state are
fitted (see Supplementary Fig. 12 in Supplementary section
6.B). The fast component has a reaction constant of k1 = 66
± 9 femtoseconds and the slow component has a time con-
stant of k2 = 237 ± 77 femtoseconds. These time constants
are used to fit the previously defined function f (t) and are
shown by dotted lines in panel (d). The results confirm that
the two time scales are due to dissociation on different po-
tential energy surfaces. In addition, the calculated constants
agree very well with the size-dependent kinetics suggested
by Iqbal et al. [16] and Tseng et al.[17] The reaction rates
of p-ethylphenol are reported to be 80 ± 28 femtoseconds
(k1) and 140 ± 22 femtoseconds (k2) and those of tyramine
are in the range of 80 ± 40 femtoseconds (k1) and 210 ±
24 femtoseconds (k2) for the fast and slow components, re-
spectively.

CONCLUSION

In summary, we unravelled the photodynamics of tyrosine
by using a combination of different high-level ab initio data
that are learned with deep neural networks that exploit un-
derlying physics of potential energy surfaces and couplings

in the spin-diabatic and spin-mixed representations. The dis-
tinct characteristics of the photochemistry of this amino acid
could be explained and theoretically observed photoproducts
and computed reaction kinetics are in agreement with experi-
mental findings. [16, 21]

Besides the expected photodissociation, we discovered
roaming atoms that are beyond chemical intuition and com-
pete with other ultrafast deactivation mechanisms. Roaming
atoms are characterized by large interatomic distances and de-
viate from the minimum energy paths. Analysis of latent par-
tial charges obtained from another physically-inspired neural
network [40] at the accuracy of the reference method can pro-
vide information on the type of the roaming atom. Analysis
revealed that roaming atoms are present as radicals. While
they are found in both, dissociative and non-dissociative tra-
jectories, analysis with ML clustering models suggests that
roaming leads to higher yields of dissociated structures and
smaller fragments. Two time components of the dissociation
pathway can be distinguished, in line with lifetimes proposed
experimentally. [16, 21] The simulations confirm that the slow
and fast time scales originate from dissociation in the ground
and excited states, respectively.

The dynamics simulations as well as the analysis could only
be achieved with the help of different types of ML meth-
ods. The dynamics were conducted with deep neural net-
work potentials that were fitted by using combined data of
multi-reference methods to capture the bond-breaking and -
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formation in tyrosine and a single-reference method to pro-
vide smooth potential energy surfaces in conformational re-
gions that do not describe any bond-breaking and -formation.
Due to the complexity of the system and the many states, the
underlying physics of the system have been considered, both
in the curation of the quantum chemical data as well as in the
neural network models, to enable the fitting of 29 electronic
states and over 800 coupling values. Due to the computational
efficiency of the prediction of potential energies, derivatives,
and couplings provided by the neural networks, over thousand
trajectories could be simulated on time scales comparable to
experiment.

Discovering theoretical evidence for roaming in highly ex-
cited tyrosine, one of the main building blocks of life, brings
our knowledge one step further toward a better understanding
of the photostability and -damage of biological systems. Our
results suggest that roaming might be a competing relaxation
pathway in peptides and proteins, especially in phenomena
like hydrogen transfer reactions that are fundamental to na-
ture. [46, 47] Yet we are still at the beginning of understanding
the secrets behind these mechanisms and their role in nature.
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METHODS

Choice of Reference Method

The simulation of the photodynamics of tyrosine is enabled
with deep neural network potentials that are trained by com-
bining two different levels of theory. To the best of our knowl-
edge, ML remains one of few, if not the only, viable method
to tackle the excited state dynamics of tyrosine on a quantita-
tively and qualitatively accurate picture. This is, because ML
models can outsource the problem of costly quantum chem-
istry calculations from the dynamics simulations by pre-fitting
the potential energy surfaces from ab initio data. [48, 49] Un-
fortunately, this is only true if a reference method capable of
describing the investigated phenomena is available, which is
not the case for tyrosine. The question that thus had to be
addressed and lies at the heart of the fitting is how to com-
bine different methods in the best possible way to enable the
photodynamics simulations of tyrosine?

Available methods that could, at least in principle, de-
scribe the photochemistry of tyrosine qualitatively correctly
are multi-reference methods such as CASPT2/SA-CASSCF
(complete active space perturbation theory of second order
/ state-average CAS self-consistent field). [38, 39] However,
they are far too expensive to study the dynamics of this sys-
tem. Simulations on a picosecond time scale would take up
to 8 years on a high performance computer, let alone the re-
quirement for statistical averaging by sampling of hundreds
of individual trajectories. Even if one decided to invest such
computational resources, the simulations would likely crash
before reaching the desired time scale due to inconsistencies
in the active space along different trajectories. In addition, the
fitting of potential energy surfaces obtained from CASSCF
or CASPT2 fails with ML methods, due to the many excited
states that are energetically close to each other in tyrosine. As
can be seen in the dissociation curves in Extended Data Fig. 1
(a) in the left panel, states are likely to switch their character
along a reaction path and lead to inconsistent potential energy
curves. Significant jumps in the potential energy prohibit a
meaningful fitting with ML. [49]

Single-reference methods, such as the algebraic diagram-
matic construction to second order (ADC(2)) [37] (Extended
Data Fig. 1 (a) right panel) provide smooth potential energy
curves in non-dissociative regions. However, single-reference
methods are usually less suitable to describe strongly cor-
related systems, such as tyrosine,[49, 50], as well as bond-
breaking and -formation. [51] Consequently, the potential en-
ergy curves at large interatomic distances are qualitatively
wrong and show a splitting of singlet and triplet states, which
should be degenerate in the dissociation limit.

We thus conclude that neither multi-reference methods, nor
single reference methods can be used in practice to simulate
the photodynamics of tyrosine. However, ADC(2) gives a rea-
sonably accurate description of tyrosine in non-dissociative
regions, which can also be seen from the absorption spectra
obtained with ADC(2) in Extended Data Fig. 1 (b). The
spectrum of ADC(2) is shown with contributions from dif-
ferent excited states and redshifted by 0.3 eV in panel (c). It
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can be seen that ADC(2) can reproduce the experimentally
measured spectrum of tyrosine, while other methods such as
CASSCF(12,11) or time-dependent density functional theory
(TD-DFT) as used in literature [22] exhibit pronounced differ-
ences (see panel b). The spectra of CASPT2, CASSCF, and
TDDFT are shown separately in Supplementary Fig. 3 with
contributions from each state.

Still, the advantage of a multi-reference method like
CASPT2 is that it can describe the correct asymptotic be-
haviour (see panel a). Thus, we resorted to exploit the ex-
pressive power of deep neural networks to combine the best
of both worlds: 1) the smooth potential energy surfaces for
singlet and triplet states including their derivatives and SOCs
are provided from the ADC(2) method in regions that are
not characterized by large interatomic distances, [37] and 2)
the correct description of bond breaking and formation from
CASPT2 reference data. A similar approach was applied by
Kidwell et al.,[52] in which the ground-state potential energy
surface for describing syn-CH3CHOO dissociation was ob-
tained by combining CCSD(T) and CASPT2 energies.

Training Data Generation and Ad Hoc Data

A detailed description of the training set generation and
the training of models is provided in supplementary sections
2-3 and 7, respectively. Here, we only briefly describe the
concepts and process used for the computation of the train-
ing set. A total number of 29 spin-mixed states, i.e., 5 sin-
glet and 8 triplet states, were learned. Chemical accuracy
could be achieved by introducing underlying physics into the
NN model. The numbers and types of states were chosen to
match the experimental conditions, where molecules are ex-
cited with 200 nm (≈6.2 eV) laser pulses.[16, 21] With the
shift of ADC(2) energies (Extended Data Fig. 1(b)), this
excitation energy corresponds to 6.5 eV. The full excitation
window was set to 6.5-7.0 eV. Using this excitation window,
stochastic selection of the states populated via excitation was
carried out based on oscillator strengths and excitation en-
ergies. This wavelength corresponds to an excitation to the
fourth excited singlet state as can be seen from Extended Data
Fig. 1(c). All triplet states that cover the same energy range
as the considered singlet states are included to allow for as-
sessing the importance of intersystem crossing between sin-
glet and triplet states in the dynamics as phosphorescence in
tyrosine cannot be excluded.[53]

The final training set comprised 17,265 data points, of
which 1,967 data points were obtained from initial sampling
with ADC(2) along different normal modes and combinations
thereof using different conformers. Every data point was
phase corrected[24] to remove the influence of the arbitrary
sign of the wave function on the learning of excited-state prop-
erties like SOCs and transition dipole moments that arbitrarily
switch their signs. Six simple multi-layer feed-forward neu-
ral networks as described in ref. [24] and discussed in Sup-
plementary section 7.A (Supplementary Table 5 and Supple-
mentary Fig.s 13-14), which train faster than SchNarc mod-
els, were then trained on the initial data points and adaptive

sampling was carried out with ADC(2) starting from different
conformers. Adaptive sampling uses two or more ML models
during dynamics simulations. At every time step, the predic-
tions of the different models are compared and whenever the
variance of the predictions exceeds a pre-specified threshold,
simulations terminate and reference calculations are carried
out to expand the training set. We started this iterative pro-
cess with six neural networks as their mean allows for more
robust simulations with little amount of data.[41] We ended
this scheme with two neural networks and 16,738 data points.
105 ad hoc data points were added subsequently that were
amended based on CASPT2 to reflect the correct physics in
dissociative regions as will be described below (see Supple-
mentary section 3 for additional information).

105 data points were added from 5 scans along different
dissociation coordinates using the energetically lowest lying
conformer of tyrosine. The corresponding hydrogen atoms
are indicated in Extended Data Fig. 1(d) and were initially
attached at the hydroxy group located at the phenyl-ring (1),
at two C-atoms located at the phenyl ring (2 and 3), at the
amino group (4), and at the carboxyl group (5). The hydro-
gens were detached along the vectors in which their bonds
originally pointed. Unrelaxed scans were carried out, i.e., the
rest of the atoms did not change position. The reaction coor-
dinates were chosen with the aim of including a dissociation
from every heavy atom type (C, N, O) and based on literature,
where for example a hydrogen transfer was reported from the
carboxyl group or from the amino group and to the carbon
atom of the phenyl-ring. [22] To check the maximum bond
length up to which ADC(2) provided valid reference data, we
recalculated several points along the dissociation scans using
CASPT2(12,11) and MP2. Comparison of the energy values
from these different theory levels led us to define different
maximum bond lengths up to which the ADC(2) data were
usable along the different X–H coordinates. These maximum
distances for the use of the ADC(2) data, rADC(2)

max , are given in
Supplementary Table 3 along with the respective X–H equi-
librium distances.

As an example for the artificial data generation, the poten-
tial scans along the PhO–H bond (bond 1) and the N–H bond
(bond 4) of tyrosine are analysed in Extended Data Fig.s 1(e)
and (f), respectively. In the leftmost panels, ADC(2) scans are
illustrated using solid lines up to the molecular geometry that
was included in the training set. Noticeably, at that point, also
the phase correction algorithm [24] that tracks the phase back
to a reference geometry could not be used anymore, because
states that were very high in energy at the equilibrium stuc-
ture (which is the reference point used in this work) entered
the range of considered states here, so that their phases could
not be tracked reliably. The dashed lines indicate ADC(2)
results that were not included in the training set. CASPT2 en-
ergies are shown by dots and unrestricted Møller-Plesset per-
turbation theory (MP2) energies by blue and red crosses. The
absolute energy at the respective equilibrium distance was set
to zero for all methods.

As can be seen in the leftmost plots of panels (e) and
(f), CASPT2(12,11) describes the dissociation event accu-
rately and shows that at large distances, the S0/T1, S1/T2,
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S2/T3, S3/T4, and S4/T5 states become degenerate. In contrast,
ADC(2) incorrectly describes this event and shows a splitting
of singlet and triplet energies. To include dissociated geome-
tries in the training set, the relative energies of the ad hoc
data points were adjusted from CASPT2(12,11) calculations
to the MP2 energy of the ground state (since the ground state
in ADC(2) was taken from MP2 calculations) and scaled to the
energy range obtained in the ADC(2) calculations at rADC(2)

max .
The bond distances that were added manually to the training
set are given in Supplementary Table 4. In more details the
data points were manipulated as follows: In a first attempt,
the degeneracy of the respective states (S0/T1, S1/T2, S2/T3,
S3/T4, and S4/T5) at large bond distances was confirmed with
CASPT2(12,11) calculations for each scan separately. Af-
terwards, several unrestricted MP2 calculations were carried
out. At large bond distances, unrestricted MP2 also shows
that the S0 and T1 states are degenerate. The energies at this
point were taken for the artificial data points for the S0 and
T1 states. The energies of T5, T6, and T7 were left unchanged
from ADC(2) calculations at the point rADC(2)

max . The remain-
ing energies were obtained by taking the energy difference
from CASPT2(12,11) calculations of each pair of degenerated
states, i.e. S1/T2, S2/T3, S3/T4, and S4/T5, to the S0/T1 pair.
The SOC values were kept constant from rADC(2)

max . The forces
were first taken from the equilibrium geometry since an unre-
laxed scan was carried out. Only the forces along the disso-
ciation coordinate are then set to zero and the remaining ones
adapted from the original forces by applying Gram-Schmidt
orthogonalization. The ADC(2) training data and the ad hoc
generated training data are illustrated with solid lines in the
second left-most plots of panels (e) and (f).

The third and fourth plots of panels (e) and (f) show the
neural network potentials that were obtained from the previ-
ously generated training set of 16,654 data points without and
with artificial data points, respectively. As can be seen, mod-
els without manipulated data that reflect physically correct be-
haviour fail to reproduce dissociation accurately. In contrast,
the neural network potentials that were additionally trained
on dissociated geometries can reproduce this reaction, as ex-
pected. Close inspection of the potentials generated with a
simple feed-forward neural network based on the matrix of
inverse distances as input (see supplementary section 7.A)
shows that the singlet and triplet states are not fully degen-
erate. In fact, degeneracies in energies are known to pose a
problem for ML algorithms, [54, 55] which can also be seen
here. Nevertheless, the potentials are sufficiently close to each
other and the underlying dataset is deemed sufficient to pro-
ceed with training SchNarc models, which yield higher ac-
curacy predictions (see Supplementary Fig. 4), and conduct
photodynamics simulations. Potential energy curves along the
Ph–OH minimum path are shown in Supplementary Fig. 4.

After we trained two SchNarc models on energies and
forces and one SchNarc model on SOCs, accurate photody-
namics were ensured by using two neural network models
for energies. Their energy predictions were compared ev-
ery time step and two additional adaptive sampling runs were
needed until the neural network potentials converged for the
targeted simulation time. The mean absolute errors (root-

mean squared errors) for energies, forces, and SOCs on a
hold-out test set were 9.6 meV, 163 meV/Å, and 0.137 cm−1,
respectively, with scatter plots shown in Supplementary Fig.
16. Note that these values are averaged from all electronic
states used. State-specific errors are reported in Supplemen-
tary Table 6.

Photodynamics simulations

All excited-state dynamics simulations were carried out
with the SchNarc approach for deep-learning enhanced nona-
diabatic dynamics [25] with Tully’s fewest switching surface
hopping method [56, 57] as implemented in the SHARC pro-
gram. [58, 59] The photodynamics approach SchNarc was
validated with small model systems in pilot projects. [24, 25,
60] The accuracy and usability of this method was validated
for long time scale simulations,[24] ultrafast and slow nona-
diabatic transitions, [25] and the description of different spin
multiplicities. [25, 61]

The neural network that lies at the heart of SchNarc is
SchNet, [62, 63] adapted by us for excited states. [25] A spe-
cial feature of SchNarc is that it can compute the nonadi-
abatic couplings between electrons and nuclei via Hessians
of the squared energy-difference potentials provided by the
neural network model. Such approximated nonadiabatic cou-
plings were used to determine the hopping probability from
one electronic state to another during the dynamics simula-
tions. As nonadiabatic couplings are not available in the open
quantum chemistry code that support ADC(2) and were thus
not available to us, the coupling approximation was crucial
to our study although they come with considerable computa-
tional costs that are outlined in Supplementary section 4.

Neural Network Models for Atomic Partial Charges

To find out whether the bond between the roaming atom and
the parent oxygen atom is homo- or heterolytically broken,
leading to radicals or cations and anions, respectively, the par-
tial atomic charges were analyzed. The partial atomic charges
were predicted by another deep neural network model trained
on dipole moment vectors. We used the extended SchNarc ap-
proach of ref. [40] to fit dipole moment vectors, ~µ , via latent
partial atomic charges for a given state i, qi,a. This model was
used here to analyze the atomic partial charges of the roam-
ing atoms and the parent oxygen atoms. It is worth mention-
ing that partial atomic charges cannot be obtained by solving
the electronic Schrödinger equation and that their computa-
tion requires a post-processing step. Different charge mod-
els exist, such as the Hirshfeld [64] or Mulliken partitioning
scheme. [65] However, especially the latter scheme, is often
considered as unreliable and less accurate than the former.
Further, these schemes are often not implemented for the ex-
cited states. [40–42] Nevertheless, the models can be validated
with dipole moment vectors for the ground and excited states.
The dipole moment vectors are obtained as the sum of partial
atomic charges multiplied by the vector that points from an
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Figure 4. Validation of our method to combine ADC(2) and CASPT2, the generation of ad hoc data, and their influence on neural network
training. (a) Potential energy curves along the PhO-H bond using CASSCF(12,11) (left panel, solid lines), CASPT2(12,11) (left panel, dotted
lines), and ADC(2) (right panel). (b) Absorption spectra of tyrosine computed with ADC(2), TD-DFT/PBE0/SV(P), CASSCF(12,11), and
CASPT(12,11) spectra using 1000 Wigner-sampled conformations. For CASPT2(12,11) and CASSCF(12,11) 758 calculations converged.
The full width at half maximum for the Gaussian convolution was 0.2 eV in ADC(2) and TD-DFT spectra and 0.5 eV in CASPT2(12,11) and
CASSCF(12,11) spectra and absorption peaks are scaled such that the lowestenergy peak has the same height as the energetically lowest-lying
experimental absorption peak that was extracted from ref. 46. (c) Spectrum obtained from ADC(2) redshifted by 0.3 eV with contributions
from different excited states. (d) Tyrosine shown with circled hydrogen atoms that were detached to generate ad hoc data (Supplementary Table
3 and 4). (e) The Ph-OH and (f) the N-H bond as example reaction coordinates to show the differences of ADC(2) (solid and dashed lines),
CASPT2(12,11) (circles), and MP2 calculations (crosses) that manifest the degeneracy of singlet and triplet states. Second plots illustrates the
data used for training and the third and fourth plots show neural network predictions using a simple multi-layer feed-forward neural network
(Supplementary section 7.A) faster trainable than SchNarc models that were trained without ad hoc data points and with ad hoc data points,
respectively. S refers to singlet and T to triplet states.

atom to the center of mass,rCM
a :

~µi =
Na

∑
a

qi,arCM
a (1)

The model fits the permanent and transition dipole moments.
The latter properties are fitted in the same way as permanent
dipole moment vectors to preserve rotational covariance. The

MAE (RMSE) on a hold-out test is 0.14 (0.32) Debye and
models are comparable in accuracy with models from our pre-
vious study,[40] which could accurately represent the charge
distribution in the methylenimmonium cation and ethylene.
The scatter plots that show the predicted dipole moment val-
ues against the reference values are shown in Supplementary
Fig. 17 with additional information in Supplementary section
7.C.



10

Data availability

The supporting information is freely available at
doi:10.1038/s41557-022-00950-z. The molecular coor-
dinates of the used conformers in this study that are shown
in Supplementary Fig. 1 and Supplementary Fig. 9 are
available as a supplementary file. Additionally, the data set
is made available at doi:10.6084/m9.figshare.15132081[66]
in the Atomic Simulation Environment (ase) [67] data base
format including the initial conditions (geometries and
velocities) to set up the dynamics. A detailed description
of the machine learning models, the training set generation,
training procedure, dynamics simulations and analysis is
provided in the supplementary material. For reproduction of
this work replace the example data set provided in the tutorial
with the provided data set and set the necessary parameters
indicated in the supplementary information and listed in the
tutorial-instructions. For dynamics, set up the trajectories
with SHARC [68] using the initial conditions file available
at doi:10.6084/m9.figshare.15132081[66] and follow the
tutorial on how to run dynamics with SchNarc. Source data
for figures shown in the main text and the supplementary
information are included.

Code availability

The ML code used in this work is available at
https://github.com/schnarc/schnarc [25] and included as a
Supplementary Code. The development branch includes a tu-
torial for training SchNarc models and running dynamics with
it.
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