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A set S of Boolean points is a specifying set for a threshold function f if the only threshold 
function consistent with f on S is f itself. The minimal cardinality of a specifying set for 
f is the specification number of f and it is never smaller than n + 1 for a function with n
relevant variables. In the present paper, we develop an inductive approach to describing 
the set of Boolean threshold functions with minimum specification number by means of 
operations that allow us to extend functions of n variables in this set to functions of n + 1
variables.
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1. Introduction

The notion of specification number arises in the context of on-line learning with a helpful teacher [6]. Speaking infor-
mally, teaching an unknown function f in a given class is the problem of producing its teaching (or specifying) set, i.e. a set 
of points in the domain which uniquely specifies f within the class.

In the present paper, we study threshold Boolean functions, also known as linearly separable or halfspaces. A Boolean func-
tion is threshold if there exists a hyperplane separating true and false points of the function. Threshold functions play 
fundamental role in the theory of Boolean functions and they appear in a variety of applications such as electrical engineer-
ing, artificial neural networks, reliability theory, game theory etc. (see, for example, [4]). Specifying sets of threshold and 
related (non-Boolean) functions are studied in [14,1,11].

It is known that in the worst case the specifying set of a threshold Boolean function contains all the 2n points of the 
Boolean hypercube [2]. However, positive (or increasing) threshold functions, i.e. functions where an increase of a variable 
cannot lead to a decrease of the function, can be specified by the set of its extremal points, i.e. its maximal false and minimal 
true points (in the worst case 

( n+1⌊
n+1

2

⌋) points [2]). It turns out that this description can be redundant, i.e. sometimes a 

positive threshold function f can be specified by a proper subset of its extremal points, namely, by the set of essential
points. The minimum cardinality of a teaching set of f , i.e. the minimum number of points needed to specify f , is the 
specification number of f . For threshold functions this number coincides with the number of essential points of f . The role 
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of essential points in the characterization of threshold and related functions was also studied in [12] and later in [13] where 
small subsets of essential points were used to estimate the number of intersections of threshold functions.

Anthony et al. proved in [2] that the specification number of a threshold function with n relevant variables is at least 
n + 1 and that this bound is attained for so-called linear read-once functions. The importance of linear read-once functions 
in learning theory is evidenced, in particular, by their connection with special types of decision lists [9].

In addition to showing that the lower bound n + 1 is attained by the linear read-once functions, Anthony et al. [2] also 
conjectured that for all other threshold functions with n relevant variables the specification number is strictly greater than 
n + 1. In [8], we disproved this conjecture by exhibiting an infinite family of threshold functions with n relevant variables, 
which are not linear read-once and for with the specification number equals n + 1. However, the problem of describing 
the set of all such functions remains open. This set is not closed under taking subfunctions, which makes the problem of 
producing a complete description highly non-trivial. In the present paper, we explore an approach to this problem that 
allows us to construct Boolean threshold functions with minimum specification number inductively.

We denote the set of all threshold n-variable functions that have the minimum specification number n + 1 by Tn and 
identify a number of operations that allow us to construct a function in Tn from a function in Tn−1. Our operations produce 
a variety of new Boolean threshold functions with minimum specification number. In particular, these operations provide 
a complete description of functions in Tn for n ≤ 5. For larger values of n, the problem remains open and we discuss it in 
Section 7. All preliminary information related to the topic of the paper is presented in Section 2.

2. Preliminaries

Let n be a natural number and B = {0, 1}. For a point x ∈ Bn and an index i ∈ [n], we denote by

(x)i the i-th coordinate of x,
x the point in Bn with (x)i = 1 if and only if (x)i = 0 for every i ∈ [n].

Also, we denote by 0 and 1 the points consisting of all 1s and all 0s respectively.
By � we denote a partial order over Bn , induced by inclusion in the power set lattice of the n-set. In other words, x � y

if (x)i = 1 implies (y)i = 1. In this case we will say that x is below y. When x � y and x �= y we will sometimes write x ≺ y.
A Boolean function f = f (x1, . . . , xn) be on Bn is called positive (also known as positive monotone or increasing) if f (x) = 1

and x � y imply f (y) = 1. If f is positive, then we say that a point x is a minimal one of f if f (x) = 1 and f (y) = 0 for each 
y such that y ≺ x. Similarly, a point x is a maximal zero of f if f (x) = 0 and f (y) = 1 for each y such that x ≺ y. A point 
will be called an extremal point of f if it is either a maximal zero or a minimal one of f .

The dual of a function f is the function g defined as follows:

g(x) = f (x) for each x ∈ Bn.

If f coincides with its dual then it is called self-dual.
For an index k ∈ [n], and αk ∈ {0, 1} we denote by f |xk=αk the Boolean function on Bn−1 defined as follows:

f |xk=αk (x1, . . . , xk−1, xk+1, . . . , xn) = f (x1, . . . , xk−1,αk, xk+1, . . . , xn).

Inductively, for i1, . . ., ik ∈ [n] and α1, . . ., αk ∈ {0, 1} we denote by f |xi1 =α1,...,xik
=αk the function ( f |xi1 =α1,...,xik−1

=αk−1 )|xik
=αk . 

We say that f |xi1 =α1,...,xik
=αk is the restriction of f to xi1 = α1, . . . , xik = αk . We also say that a Boolean function g is a 

restriction (or a subfunction) of f if there exist i1, . . . , ik ∈ [n] and α1, . . . , αk ∈ {0, 1} such that g = f |xi1 =α1,...,xik
=αk .

A function f is called canalyzing if there exists i ∈ [n] such that f |xi=0 or f |xi=1 is a constant function. It is easy to see 
that if f is a positive canalyzing function, then f |xi=0 ≡ 0 or f |xi=1 ≡ 1 for some i ∈ [n].

A variable xk is called irrelevant for f if f |xk=1 ≡ f |xk=0, i.e., f |xk=1(x) = f |xk=0(x) for every x ∈ Bn−1. Otherwise, xk is 
called relevant for f and we also say that f depends on xk . Two distinct variables xi and x j of f are symmetric if for every 
x ∈ Bn we have f (x) = f (x′), where x′ is obtained from x by swapping the i-th and j-th coordinates.

We denote by ∨ and ∧ the logical disjunction and conjunction respectively. We also often omit the operator ∧ and 
denote conjunction by mere juxtaposition. We say that a Boolean formula is in disjunctive normal form (DNF) if it is a 
disjunction consisting of one or more conjunctive clauses, each of which is a conjunction of one or more literals (variables 
or their negations). A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction consisting of one or more 
disjunctive clauses, each of which is a disjunction of one or more literals. We say that a Boolean formula is positive if it does 
not contain the operation of negation. It is well-known that any positive Boolean function can be represented by a positive 
Boolean formula.

Two Boolean functions f and g are congruent, if they are identical up to renaming (without identification) and/or nega-
tion of variables.

2.1. Threshold and linear read-once functions

A Boolean function f on Bn is called threshold if there exist n weights w1, . . . , wn ∈ R and a threshold t ∈ R such that 
f (x1, . . . , xn) = 0 if and only if w1x1 + . . . + wnxn ≤ t . The latter is called threshold inequality representing f .
2
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Let k ∈N, k ≥ 2. A Boolean function f on Bn is k-summable if, for some r ∈ {2, . . . , k}, there exist r not necessarily distinct 
false points x1, . . . , xr and r not necessarily distinct true points y1, . . . , yr of f such that 

∑r
i=1 xi = ∑r

i=1 yi . A function is 
asummable if it is not k-summable for all k ≥ 2.

Theorem 1 ([5]). A Boolean function is a threshold function if and only if it is assumable.

It is known (see e.g. [4]) that the class of threshold functions is closed under taking restrictions, i.e., any restriction of a 
threshold function is again a threshold function.

A Boolean function f is called read-once if it can be represented by a read-once formula, i.e., by a Boolean formula 
involving only the operations of conjunction, disjunction, and negation in which every variable appears at most once. A read-
once function f is linear read-once (lro) if it is either a constant function, or it can be represented by a nested formula defined 
recursively as follows:

1. both literals x and x are nested formulas;
2. x ∨ F , x ∧ F , x ∨ F , x ∧ F are nested formulas, where x is a variable and F is a nested formula that contains neither x, 

nor x.

It is not difficult to see that an lro function f is positive if and only if the nested formula representing f does not 
contain negations.

2.2. Essential points and specifying sets of Boolean threshold functions

Let f = f (x1, . . . , xn) be a threshold function on Bn . A set of points S ⊆ Bn is a specifying set for f if the only threshold 
function consistent with f on S is f itself. The minimal cardinality of a specifying set for f is called the specification number 
of f and denoted σ( f ).

It was shown in [10] and later in [2] that the specification number of a threshold function of n variables is at least 
n + 1. Furthermore, it was shown in [2] that this lower bound is attained on linear read-once functions. More specifically, 
the specification number of an lro function depending on all its n variables is exactly n + 1. In fact, the authors of [2]
conjectured that lro functions depending on all their n variables are the only threshold functions that have the minimum 
specification number n + 1. This conjecture was disproved in [8] by showing that for every n ≥ 4 the function

x1x2 ∨ x1x3 ∨ · · · ∨ x1xn−1 ∨ x2x3 . . . xn (1)

is not linear read-once, threshold and has specification number n + 1. However, complete characterization of threshold 
functions with the minimum specification number remains a tantalizing open problem. In the present paper we make a 
progress towards such a characterization by broadening the class of known threshold functions with the minimum specifi-
cation number. For a natural number n, we denote by

Tn the class of all threshold n-variable functions that have the minimum specification number n + 1.

The concept of specification number of a threshold function is closely related to so-called essential points of the function. 
A point x is essential for a threshold function f , if there exists a threshold function g on Bn such that g(x) �= f (x) and 
g(y) = f (y) for every y ∈ Bn \ {x}. A point that is not essential for f is called inessential for f . Clearly, any specifying set for 
f should include all essential points for f . It turns out that the essential points alone are sufficient to specify f [3], and, in 
particular, we have the following well-known result

Theorem 2 ([3]). The specification number σ( f ) of a threshold function f is equal to the number of its essential points.

Furthermore, it is known that a Boolean threshold function f of n variables has at least n + 1 essential points in general 
position:

Theorem 3 ([2]). Let f be a Boolean threshold function of n variables. Then f has at least n + 1 essential points in general position.

This fact was used in [2] to show that if f has an irrelevant variable, then it has at least 2n essential points. By a similar 
argument one can show that if f is a self-dual function, then it has at least 2n essential points.

Lemma 1. Let f be a self-dual threshold function. Then f has at least 2n essential points.

Proof. First, notice that if a point x is an essential point of a self-dual threshold function, then its complement x is also an 
essential point for the function. Let S be the set of essential points of f , and let S ′ be a subset of n + 1 essential points 
3
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in general position that are guaranteed to exist by Theorem 3. We claim that S ′ cannot contain more than one pair of 
complementary points. Assume to the contrary that S ′ contains at least two pairs of complementary points, i.e. there exist 
two non-complementary points x, y ∈ S ′ such that x, y ∈ S ′ . Then

x + x = y + y,

which implies that the four points x, x, y, y lie on a 2-flat, i.e. a plane, which contradicts the assumption that the points in 
S ′ are in general position. Therefore, S ′ contains at most one pair of complementary points and at least n points none of 
which is the complement of another. Consequently, the complements of these n points are in S \ S ′ and hence |S| ≥ 2n. �

Since we are studying Boolean functions with the minimum number n + 1 of essential points, due to the above facts, 
we will often assume that functions under consideration depend on all their variables and are not self-dual. Furthermore, 
it was observed in [2] that in the study of specification number of threshold functions, one can be restricted to positive 
functions, because for any threshold function f there exists a positive function g that is congruent to f and has the same 
specifying set. We will therefore consider only positive threshold functions. One useful benefit of this positivity assumption 
is the fact that for a positive threshold function depending on all its variables any essential point is an extremal point. This 
is a corollary of the following

Theorem 4 ([2]). Suppose f is a positive threshold function depending on all its variables. Then the set of extremal points of f specifies 
it.

As any specifying set of a Boolean function contains all its essential points we conclude

Corollary 1. Suppose f is a positive threshold function depending on all its variables. Then all essential points of f are extremal.

3. More non-lro threshold functions with minimum specification number

In this section we extend the family of functions (1) that provide a counterexample to the conjecture of Anthony et al. 
[2].

Theorem 5. Let n and k be integers such that 3 ≤ k ≤ n − 1 and let fn,k(x1, . . . , xn) be a Boolean function defined by its DNF

x1x2 ∨ x1x3 ∨ · · · ∨ x1xk ∨ x2x3 . . . xn.

Then fn,k is a positive, non-lro, threshold function, depending on all its variables, and the specification number of fn,k is n + 1.

Proof. Clearly, fn,k is positive and depends on all its variables. Also fn,k is not canalyzing, and therefore it is non-linear 
read-once. We show next that fn,k is a threshold function. To this end we will identify all minimal ones and all maximal 
zeros of fn,k , and then present a threshold inequality that separates these sets of points.

It is easy to check that the minimal ones of fn,k are

x1 = (1,1,0,0, . . . ,0,0, . . . ,0),

x2 = (1,0,1,0, . . . ,0,0, . . . ,0),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk−1 = (1,0,0,0, . . . ,1,0, . . . ,0),

xk = (0,1,1, . . . ,1,1),

and the maximal zeros are

y1 = (0,0,1,1, . . . ,1,1,1),

y2 = (0,1,0,1, . . . ,1,1,1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yn−2 = (0,1,1,1, . . . ,1,0,1),

yn−1 = (0,1,1,1, . . . ,1,1,0),

z = (z1, . . . , zn),

where zi = 0 iff i ∈ {2, . . . ,k}.
Now, if k = n − 1, then the inequality

(2n − 5)x1 + 2(x2 + x3 + · · · + xn−1) + xn ≥ 2n − 3

holds in all minimal ones and does not hold in all maximal zeros, which can be checked directly for each extremal point by 
substituting its coordinates in the inequality, and hence fn,n−1 is threshold. Similarly, if k < n − 1, then the inequality
4
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((k − 1)(n − k + 1) − 1)x1 +
k∑

i=2

(n − k + 1)xi +
n∑

i=k+1

xi ≥ k(n − k + 1) − 1 (2)

separates minimal ones and maximal zeros witnessing that fn,k is threshold.
It remains to show that fn,k has n + 1 essential points. Since fn,k depends on all its variables, by Corollary 1, every 

essential point of fn,k is extremal. Therefore, since fn,k has n + k extremal points, it suffices to prove that k − 1 of them are 
not essential. We will show that maximal zeros y1, y2, . . . , yk−1 are not essential. Suppose, towards a contradiction, there 
exists a threshold function g that differs from fn,k only in point yi for some i ∈ [k − 1], i.e., g(yi) = 1 and g(x) = fn,k(x) for 
every x �= yi . From yn−1 � z and fn,k(z) = 0 we conclude that fn,k(yn−1) = 0, and therefore xi + yi = yn−1 + yn−1 implies 
that g is 2-summable, and hence is not threshold. This contradiction completes the proof. �

We observe that the restriction fn,k|xk+1=1,...,xn=1 is equal to the k-variable function x1x2 ∨ x1x3 ∨ · · · ∨ x1xk ∨ x2x3 . . . xk . 
This function, as was shown in [7], has 2k essential points, and therefore we conclude the following

Corollary 2. The set of threshold functions with minimum specification number is not closed under taking restrictions.

This corollary also shows that specification number is not monotone with respect to restrictions, i.e., by restricting a 
function specification number can increase.

4. Extension on a variable

By definition any linear read-once function of n > 1 variables can be obtained from a linear read-once function of n − 1
variables as the conjunction or disjunction of this function with a new variable. We will refer to these operations as adding 
a variable. To prove that all linear read-once functions have minimum specification number, it was shown in [2] that the 
operation of adding a variable increases specification number by exactly one.

Lemma 2 ([2]). Let f = f (x1, . . . , xn) be a threshold function depending on all its variables and let y be a new variable. Then the 
functions f ′ = y ∨ f and f ′′ = y ∧ f both have specification number σ( f ) + 1.

Since any linear read-once function can be constructed recursively using the operations of adding a variable starting 
from a constant function, Lemma 2 implies that any such function depending on all its variables has specification number 
one more than the number of variables.

It is natural to ask whether the recursive definition of the class of linear read-once functions can be generalized to the 
whole class Tn . This section is devoted to some results in this direction.

Definition 1. Let f (x1, . . . , xn) be a positive Boolean function, i ∈ [n], and let y be a new variable. The (xi, y)-extension of f
is the function

f (xi ,y)(x1, . . . , xn, y) = xi(y ∨ f |xi=1) ∨ yf |xi=0.

We say that f (xi ,y) is obtained from f by the extension on the variable xi .

To illustrate the relation between the operations of adding a variable and extension on a variable we introduce the notion 
of restriction graph.

Definition 2. Let f = f (x1, . . . , xn) be a Boolean function and let S = {xi1 , . . . , xik } be a set of variables of f . We say 
that a graph G is the S-restriction graph for f if its vertex set is the set of all restrictions of f to S and for any 
α1, . . . , αk, β1, . . . , βk ∈ {0, 1} two vertices f |xi1 =α1,...,xik

=αk and f |xi1 =β1,...,xik
=βk are connected by an edge if and only if 

vectors (α1, . . . , αk) and (β1, . . . , βk) differ in exactly one coordinate.

For a function f and a new variable y, the {y}-restriction graphs for the functions f ∨ y and f ∧ y both contain a 
vertex corresponding to a constant function (see Fig. 1a, 1b). Similarly, half of the vertices of the {xi , y}-restriction graph 
of f (xi ,y) (Fig. 1c) correspond to constant functions. Moreover, this graph can be split into two subgraphs, which are the 
{y}-restriction graphs of the functions f |xi=1 ∨ y and f |xi=0 ∧ y, i.e., functions that are obtained from f |xi=1 and f |xi=0 via 
operations of adding variable y.

In this section we reveal more resemblance between the two operations by showing that, similarly to the operation of 
adding a variable, the operation of extension on a variable, when applied to a function in Tn , preserves thresholdness and 
increases specification number by exactly one, i.e., the resulting function belongs to Tn+1. To prove the former property, we 
start with an auxiliary statement characterizing functions that are extensions on a variable.
5
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Fig. 1. The restriction graphs for the functions obtained from a given positive Boolean function f = f (x1, . . . , xn) by the operations of adding a variable and 
extension on the variable xi for some i ∈ [n].

Lemma 3. Let f (x1, . . . , xn) and g(x1, . . . , xn, xn+1) be Boolean functions, and let i ∈ [n]. Then g is the (xi, xn+1)-extension of f if 
and only if

g(x1, . . . , xn+1) =
{

xi, xn+1 = xi

f (x1, . . . , xn), xn+1 �= xi

Proof. Let f ′ be the (xi, xn+1)-extension of f . To prove the statement, it is enough to show that f ′ ≡ g . The latter follows 
from the observation that the two functions coincide on all restrictions to the variables xi and xn+1:

f ′|xi=0,xn+1=0 = 0 = g|xi=0,xn+1=0,

f ′|xi=1,xn+1=1 = 1 = g|xi=1,xn+1=1,

f ′|xi=1,xn+1=0 = f |xi=1 = g|xi=1,xn+1=0,

f ′|xi=0,xn+1=1 = f |xi=0 = g|xi=0,xn+1=1. �
Lemma 4. Let f (x1, . . . , xn) be a positive threshold function on n ≥ 2 variables. The extension of f on a variable is a positive threshold 
function.

Proof. Without loss of generality, we prove the lemma for the extension on variable x1, i.e., we will show that the 
(x1, xn+1)-extension of f is a positive threshold function. Denote f0 = f |x1=0 and f1 = f |x1=1. Then, by definition,

f (x1,xn+1)(x1, . . . , xn, xn+1) = x1(xn+1 ∨ f1) ∨ xn+1 f0.

The positivity of f (x1,xn+1) clearly follows from the formula above. Towards a contradiction, assume f (x1,xn+1) is not threshold 
and let k be the minimum number such that f (x1,xn+1) is k-summable. Let y1, . . . , yk be k not necessarily distinct zeros and 
z1, . . . , zk be k not necessarily distinct ones of f (x1,xn+1) such that

y1 + · · · + yk = z1 + · · · + zk = (a1, . . . ,an+1) (3)

for some non-negative integers a1, . . . , an+1. Since for any α2, . . . , αn ∈ {0, 1},

f (x1,xn+1)(0,α2, . . . ,αn,0) = 0

and

f (x1,xn+1)(1,α2, . . . ,αn,1) = 1

we conclude that for every i ∈ [k] at least one of (yi)1 and (yi)n+1 is equal to 0, and at least one of (zi)1 and (zi)n+1 is 
equal to 1. Therefore,

k ≥
k∑

i=1

(
(yi)1 + (yi)n+1

) = a1 + an+1 =
k∑

i=1

(
(zi)1 + (zi)n+1

) ≥ k,

and hence (yi)1 = (yi)n+1 and (zi)1 = (zi)n+1 for every i ∈ [k]. Consequently, by Lemma 3, for every i ∈ [k],
f ((yi)1, . . . , (yi)n) = f (x1,xn+1)(yi)

and
6
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f ((zi)1, . . . , (zi)n) = f (x1,xn+1)(zi),

which together with equation (3) imply that f is k-summable, a contradiction. �
In the rest of the section we show that the operation of extension on a variable increases specification number by at 

most one. For this we first establish two auxiliary claims.

Claim 1. Let f (x1, . . . , xn) be a positive threshold function and let x be a zero of f . Then x is an inessential zero of f if and only if for 
some positive m and k ≥ m there exist k not necessarily distinct zeros z1, . . . , zk and k −m not necessarily distinct ones zk+1, . . . , z2k−m

of f such that x /∈ {z1, . . . , zk} and

z1 + · · · + zk = zk+1 + · · · + z2k−m + m · x. (4)

Proof. Denote by g the Boolean function equal to f in all points except x. First, if equation (4) holds for some k zeros and 
k − m ones of f , then g is k-summable, and hence x is inessential for f .

To prove the claim in the other direction, assume that x is an inessential point of f , then g is k-summable for some 
k ≥ 2, and therefore there exist not necessarily distinct zeros z1, . . . zk and not necessarily distinct ones zk+1, . . . , z2k of g
such that

z1 + · · · + zk = zk+1 + · · · + z2k. (5)

Since point x is a one of g , it does not belong to {z1, . . . , zk}. Furthermore, x belongs to {zk+1, . . . , z2k}, as otherwise f
would be k-summable by (5). Therefore, equation (5) can be rewritten in the form of (4) for some m ≤ k. �

The following claim is an analog of Claim 1 for inessential ones and can be proved similarly.

Claim 2. Let f (x1, . . . , xn) be a positive threshold function and let x be a one of f . Then x is an inessential one of f if and only if for 
some positive m and k ≥ m there exist k not necessarily distinct ones z1, . . . , zk and k −m not necessarily distinct zeros zk+1, . . . , z2k−m

of f such that x /∈ {z1, . . . , zk} and

z1 + · · · + zk = zk+1 + · · · + z2k−m + m · x.

We are now ready to prove the main statement.

Theorem 6. Let n ≥ 2 and let f = f (x1, . . . , xn) be a positive function from Tn. Then the extension of f on a variable belongs to Tn+1 .

Proof. Without loss of generality, we prove the statement for the (x1, xn+1)-extension f (x1,xn+1) . Denote f0 = f |x1=0 and 
f1 = f |x1=1. Then

f (x1,xn+1)(x1, . . . , xn, xn+1) = x1(xn+1 ∨ f1) ∨ xn+1 f0.

By Lemma 4, the function f (x1,xn+1) is threshold, so we only need to show that its specification number is n + 2.
Assume first that at least one of f0 and f1 is a constant function. Notice that neither f1 ≡ 0 nor f0 ≡ 1, as otherwise f

would be a constant function, contradicting the assumption that f ∈ Tn . Suppose now that f1 ≡ 1. Then f = x1 ∨ f0. Since 
f depends on all its variables, f0 also depends on all its variables, and therefore from Lemma 2 we conclude σ( f0) = n. 
Moreover, f (x1,xn+1) = x1 ∨ xn+1 f0, and hence, again by Lemma 2, specification number of f (x1,xn+1) is σ( f0) + 2 = n + 2. The 
case f0 ≡ 0 can be treated in a similar way.

Assume now that both f0 and f1 are non-constant functions. We show next that if y is an inessential zero (respectively 
an inessential one) of f , then y′ = ((y)1, . . . , (y)n, (y)1) is an inessential zero (respectively an inessential one) of f (x1,xn+1) . 
We provide the arguments only for the case when y is an inessential zero, as the case of an inessential one is proved 
similarly. By Lemma 3, we have f (x1,xn+1)(y′) = f (y) = 0. Since y is an inessential zero of f , by Claim 1, for some m and k
(0 < m ≤ k) there exist k not necessarily distinct zeros z1, . . . , zk and k − m not necessarily distinct ones zk+1, . . . , z2k−m of 
f such that

z1 + · · · + zk = zk+1 + · · · + z2k−m + m · y.

Let z1 + · · · + zk = (a1, . . . , an) and let z′
i = ((zi)1, . . . , (zi)n, (zi)1) for i ∈ [2k − m]. Then

z′
1 + · · · + z′

k = z′
k+1 + · · · + z′

2k−m + m · y′ = (a1, . . . ,an,k − a1).

Furthermore, by Lemma 3, we have f (x1,xn+1)(z′
i) = f (zi) for each i ∈ [2k − m]. Therefore, by Claim 1, y′ is an inessential 

zero of f (x1,xn+1) , as desired.
7
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By the above discussion, we conclude that the number of essential points of f (x1,xn+1) with distinct first and last coor-
dinates does not exceed the number of essential points of f , i.e., n + 1. To complete the proof we will show that f (x1,xn+1)

has at most one essential point with the same first and last coordinates. We start noticing that f (x1,xn+1) depends on all 
its variables and hence, by Corollary 1, only extremal points of f can be essential. We proceed by showing that only two 
points with the same first and last coordinates are extremal points of f (x1,xn+1) , namely, (0, 1, . . . , 1, 0) is a maximal zero 
and (1, 0, . . . , 0, 1) is a minimal one of f (x1,xn+1) . Indeed, the point (0, 1, . . . , 1, 0) is a maximal zero of f (x1,xn+1) because 
f (x1,xn+1)(0, 1, . . . , 1, 0) = 0 and

f (x1,xn+1)(1,1, . . . ,1,0) = f1(1, . . . ,1) = 1,

f (x1,xn+1)(0,1, . . . ,1,1) = f0(1, . . . ,1) = 1.

Both equations hold as f0 and f1 are non-constant positive functions. The extremality of (1, 0, . . . , 0, 1) is proved similarly 
and we omit the details. All other points with the same first and last coordinates are either below the maximal zero 
(0, 1, . . . , 1, 0) or above the minimal one (1, 0, . . . , 0, 1), and therefore they are not extremal points.

It remains to show that one of the points (1, 0, . . . , 0, 1) and (0, 1, . . . , 1, 0) is inessential. We observe that f (x1,xn+1) is not 
self-dual. Indeed, otherwise Lemma 3 would imply that f is self-dual, which, by Lemma 1, would contradict the assumption 
that f has n + 1 essential points. Now since f (x1,xn+1) is not self-dual, there exists a point x such that f (x1,xn+1)(x) =
f (x1,xn+1)(x). Therefore, combining the equation

x + x = (0,1, . . . ,1,0) + (1,0, . . . ,0,1) = (1, . . . ,1)

with Claims 1 and 2, we conclude that regardless of the value of f (x1,xn+1) in the point x, at least one of the points 
(1, 0, . . . , 0, 1) and (0, 1, . . . , 1, 0) is inessential for f (x1,xn+1) . Consequently, f (x1,xn+1) has at most (and, by Theorem 3, at 
least) n + 2 essential points and hence belongs to Tn+1, as claimed. �
Example 1. The function fn,k from Theorem 5 is obtained from the linear read-once function

f (x1, x2, xk+1, . . . , xn) = x2(x1 ∨ xk+1xk+2 . . . xn)

by applying k − 2 times the operation of extension on the variable x1:

(x2(x1 ∨ xk+1xk+2 . . . xn))
(x1,x3) = x1(x2 ∨ x3) ∨ x2x3xk+1 . . . xn,

(x1(x2 ∨ x3) ∨ x2x3xk+1 . . . xn)
(x1,x4) = x1(x2 ∨ x3 ∨ x4) ∨ x2x3x4xk+1 . . . xn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(x1(x2 ∨ x3 ∨ · · · ∨ xk−1) ∨ x2 . . . xk−1xk+1 . . . xn)
(x1,xk)

= x1(x2 ∨ · · · ∨ xk) ∨ x2x3 . . . xn = fn,k.

5. Symmetric variables extension

Inspired by the relation between the operations of adding a variable and extension on a variable, in this section, we 
develop another operation that can be used to inductively construct new threshold functions with minimum specification 
number from functions with symmetric variables.

Definition 3. Let f (x1, . . . , xn) be a positive Boolean function, let xi and x j be its symmetric variables, and let y be a 
new variable. The (xi, x j, y)-s-extension (stands for symmetric variables extension) of f is denoted f (xi ,x j ,y)(x1, . . . , xn, y) and 
defined as follows:

f (xi ,x j ,y)(x1, . . . , xn, y) = xix j y f |xi=1,x j=1 ∨ (xi ∨ x j ∨ y) f |xi=1,x j=0 ∨ f |xi=0,x j=0.

We say that f (xi ,x j ,y) is obtained from f by the operation of symmetric variables extension on the variables xi and x j .

It is easy to see that if f is a positive function then its symmetric variables extension on any pair of variables is positive. 
We also observe that the variables xi , x j, y are pairwise symmetric in the function f (xi ,x j ,y) and illustrate the new operation 
with restriction graphs (see 2). The {xi, x j}-restriction graph G1 for f is composed of vertices of three different types: 
f0 = f |xi=0,x j=0, f11 = f |xi=1,x j=1, and f10 = f |xi=1,x j=0 = f |xi=0,x j=1 (the latter equality is due to the symmetry of xi and 
x j ). The same holds for the {xi, x j, y}-restriction graph G2 for f (xi ,x j ,y) . Indeed, it follows from the definition of f (xi ,x j ,y)

(and positivity of f ) that f
(xi ,x j ,y)

|xi=0,x j=0,y=0 = f00, f
(xi ,x j ,y)

|xi=1,x j=1,y=1 = f11,

f
(xi ,x j ,y)

|xi=1,x j=0,y=0 = f
(xi ,x j ,y)

|xi=0,x j=1,y=0 = f
(xi ,x j ,y)

|xi=0,x j=0,y=1 = f10,

and
8
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Fig. 2. The graph G1 is the {xi , x j}-restriction graph for a function f with symmetric variables xi and x j , where f00 = f |xi=0,x j=0, f10 = f |xi=1,x j=0 =
f |xi=0,x j=1, f11 = f |xi=1,x j=1. The graph G2 is the {xi , x j , y}-restriction graph for the (xi, x j , y)-s-extension of f . The graph Gk is the {xi , x j , y1, . . . , yk}-
restriction graph for the function obtained from f by applying k time the symmetric variables extension operations, where y1, . . . , yk are the new variables.

f
(xi ,x j ,y)

|xi=1,x j=1,y=0 = f
(xi ,x j ,y)

|xi=1,x j=0,y=1 = f
(xi ,x j,y)

|xi=0,x j=1,y=1 = f10.

Furthermore, if we apply the symmetric variables extension operation k times on the same pair of variables xi, x j , the 
{xi, x j, y1, . . . , yk}-restriction graph for the resulting function will also be composed of the same three functions: the func-
tions f11 and f00 will be in the top and the bottom layers of the graph respectively and all k internal “layers” will be the 
same and consist of vertices corresponding to the function f10.

As the following example demonstrates, in contrast to the operation of extension on a variable, the operation of sym-
metric variables extension does not necessarily leave the function in the class of threshold functions.

Example 2. Consider function f (x1, . . . , x5) = x1x2 ∨ (x1 ∨ x2)x3x4x5. This function is threshold as witnessed by the following 
threshold inequality

x1

2
+ x2

2
+ x3

6
+ x4

6
+ x5

6
< 1.

The (x1, x2, x6)-s-extension of f is

f (x1,x2,x6) = x1x2x6 ∨ (x1 ∨ x2 ∨ x6)x3x4x5.

The function f (x1,x2,x6) is 2-summable as

f (x1,x2,x6)(1,1,0,0,0,1) = f (x1,x2,x6)(0,1,1,1,1,0) = 1,

f (x1,x2,x6)(0,1,1,0,1,1) = f (x1,x2,x6)(1,1,0,1,0,0) = 0,

and

(1,1,0,0,0,1) + (0,1,1,1,1,0) = (0,1,1,0,1,1) + (1,1,0,1,0,0).

Hence f (x1,x2,x6) is not threshold.

Although the operation of symmetric variables extension does not always preserve the property of being threshold, when 
it does and when it is applied to a function in Tn , it increases specification number by exactly one, i.e., the resulting function 
belongs to Tn+1. To prove this fact, we first provide several auxiliary statements.

Claim 3. Let f (x1, . . . , xn) be a positive Boolean function. If there exist k ones x1, . . . , xk and k zeros y1, . . . , yk of f such that

(a1, . . . ,an) = x1 + · · · + xk � y1 + · · · + yk = (b1, . . . ,bn),

then f is k-summable. If, in addition, bi = k or ai = 0 for some i ∈ [n], then f |xi=1 or f |xi=0 is k-summable respectively.

Proof. To prove the first part of the statement, we first observe that if (a1, . . . , an) = (b1, . . . , bn) then k ≥ 2 and f is k-
summable by definition. Now, if (a1, . . . , an) ≺ (b1, . . . , bn), by changing some coordinates of the points x1, . . . , xk from zeros 
to ones we can obtain k points x′

1, . . . , x
′
k such that

x′
1 + · · · + x′

k = (b1, . . . ,bn).

Since f is a positive function and x j � x′
j for each j ∈ [k], we have f (x′

1) = · · · = f (x′
k) = 1, and hence, as before, f is 

k-summable.
To prove the second part of the statement, assume, without loss of generality, that bn = k and denote f1 = f |xn=1. The 

assumption implies that (y j)n = 1 for every j ∈ [k], and hence f1((y j)1, . . . , (y j)n−1) = f (y j) = 0. Also, since f is positive, 
we have f1((x j)1, . . . , (x j)n−1) = f (x j) = 1 for every j ∈ [k]. Therefore, by the first part of the statement, f1 is k-summable. 
The case an = 0 is treated similarly. �
9
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Claim 4. Let f (x1, . . . , xn) be a positive threshold function and let x be a zero of f . If for some positive m and k ≥ m there exist k not 
necessarily distinct zeros z1, . . . , zk and k − m not necessarily distinct ones zk+1, . . . , z2k−m of f such that x /∈ {z1, . . . , zk} and

zk+1 + · · · + z2k−m + m · x � z1 + · · · + zk,

then x is an inessential zero of f .

Proof. Let g be the function that coincides with f in all points except x. By Claim 3 the function g is k-summable, and 
hence x is not an essential point of f . �

The following claim is an analog of Claim 4 for inessential ones and can be proved similarly.

Claim 5. Let f (x1, . . . , xn) be a positive threshold function and let x be a one of f . If for some positive m and k ≥ m there exist k not 
necessarily distinct ones z1, . . . , zk and k − m not necessarily distinct zeros zk+1, . . . , z2k−m of f such that x /∈ {z1, . . . , zk} and

z1 + · · · + zk � zk+1 + · · · + z2k−m + m · x,

then x is an inessential one of f .

Lemma 5. Let f (x1, . . . , xn) ∈ Tn, and let xi and x j be symmetric variables of f . Then the set of essential points of f has exactly 2
points with different i-th and j-th coordinates and these points only differ in these two coordinates.

Proof. Without loss of generality we assume i = 1 and j = 2. Notice that since f has exactly n + 1 essential points, by 
Theorem 3, they all are in general position. This in particular implies that f has at least one essential point with distinct 
values in the first and second coordinates.

Let a = (α1,α1,α3, . . . ,αn) be an essential point of f for some α1, α3, . . . , αn ∈ {0, 1}. Due to the symmetry of x1 and 
x2, the point a′ = (α1, α1, α3, . . . , αn) is also essential for f . We claim that there are no other essential points of f with 
distinct first two coordinates. Suppose, towards a contradiction, that there exists an essential point b = (β1, β1, β3, . . . , βn)

for some β1, β3, . . . , βn ∈ {0,1} such that b /∈ {a,a′}. As before, the point b′ = (β1, β1, β3, . . . , βn) is also an essential point 
of f . However, depending on the values of α1 and β1 we have either a + b′ = a′ + b or a + b = a′ + b′ . Consequently, the 
points a, a′, b, b′ are not in general position, a contradiction. �

For convenience, in the lemma below we will use the following notation. For a Boolean vector a = (α1, . . . , αm)

and a set of Boolean numbers β1, . . . , βn ∈ {0, 1} we will denote by (a, β1, . . . , βn) the (m + n)-dimensional vector 
(α1, . . . , αm, β1, . . . , βn).

Lemma 6. Let f (x1, . . . , xn) be a positive threshold function with symmetric variables xi and x j , i, j ∈ [n], and let f ′ be its 
(xi, x j, xn+1)-s-extension. If f ′ is threshold, then for any inessential point a = (α1, . . . , αn) of f and any αn+1 ∈ {0, 1}, the point a′ =
(a, αn+1) is inessential for f ′ whenever f (a) = f ′(a′) and (αi, α j, αn+1) ∈ {(0, 0, 0), (1, 1, 1), (1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)}.

Proof. Assume, without loss of generality, that i = n − 1 and j = n. Let a = (α1, . . . , αn) be an inessential point of f and let 
an+1 ∈ {0, 1} be such that f (a) = f ′(a′) and

(αn−1,αn,αn+1) ∈ {(0,0,0), (1,1,1), (1,0,0), (0,1,0), (1,0,1), (0,1,1)}.
Suppose first that f (a) = f ′(a′) = 0. Since a is inessential for f , by Claim 1, for some positive m and k ≥ m there exist 

k − m ones x1, . . . , xk−m and k zeros y1, . . . , yk of f such that

x1 + · · · + xk−m + m · a = y1 + · · · + yk = (b1, . . . ,bn),

where b1, . . . , bn ∈ [0, k]. Denote the following sets of points

X = {x1, . . . ,xk−m},
Y = {y1, . . . ,yk},
X11 = {(x1 . . . , xn) ∈ X | xn−1 = xn = 1},
X00 = {(x1 . . . , xn) ∈ X | xn−1 = xn = 0},
X10 = {(x1 . . . , xn) ∈ X | xn−1 �= xn},
Y11 = {(x1 . . . , xn) ∈ Y | xn−1 = xn = 1},
Y00 = {(x1 . . . , xn) ∈ Y | xn−1 = xn = 0},
Y10 = {(x1 . . . , xn) ∈ Y | xn−1 �= xn}.

Without loss of generality we assume
10
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X00 = {x1, . . . ,x|X00|},
X10 = {x|X00|+1, . . . ,x|X00|+|X10|},
X11 = {x|X00|+|X10|+1, . . . ,xk−m},
Y00 = {y1, . . . ,y|Y00|},
Y10 = {y|Y00|+1, . . . ,y|Y00|+|Y10|},
Y11 = {y|Y00|+|Y10|+1, . . . ,yk}.

Since

f ′(x1, . . . , xn−2,1,1,1) = f (x1, . . . , xn−2,1,1),

by definition of symmetric variables extension and positivity of f , we have

f ′(x,1) = 1 for all x ∈ X11. (6)

Similarly, we obtain

f ′(x,0) = 1 for all x ∈ X00 ∪ X10,

f ′(y,0) = 0 for all y ∈ Y00,

f ′(y,1) = 0 for all y ∈ Y10 ∪ Y11.

(7)

Using these k − m ones and k zeros of f ′ we will prove that a′ is an inessential point of f ′ . First, observe that

(x1,0) + · · · + (x|X00|+|X10|,0) + (x|X00|+|X10|+1,1) + · · · + (xk−m,1) + m · a′
= (b1, . . . ,bn, |X11| + αn+1m)

and

(y1,0) + · · · + (y|Y00|,0) + (y|Y00|+1,1) + · · · + (yk,1) = (b1, . . . ,bn, |Y10| + |Y11|).
Hence, the desired conclusion will follow from Claim 4 if |X11| + αn+1m ≤ |Y10| + |Y11|. Notice that since all points in Y00

have zero in the (n − 1)-th and n-th coordinates, we have |Y10| + |Y11| = |Y | − |Y00| ≥ max(bn−1, bn). Therefore, it suffices 
to show that

|X11| + αn+1m ≤ max(bn−1,bn). (8)

To this end we consider three cases:

1. αn+1 = 0, i.e., (αn−1, αn, αn+1) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0)}. Since X11 is the set of points where both the (n − 1)-th 
and n-th coordinates are ones, we have |X11| + αn+1m = |X11| ≤ min(bn−1, bn) ≤ max(bn−1, bn).

2. αn = αn+1 = 1, i.e., (αn−1, αn, αn+1) ∈ {(0, 1, 1), (1, 1, 1)}. Since the n-th coordinate of every point in X11 ∪ {a} is a one, 
we conclude |X11| + αn+1m = |X11| + m ≤ bn ≤ max(bn−1, bn).

3. (αn−1, αn, αn+1) = (1, 0, 1). Since the (n −1)-th coordinate of every point in X11 ∪{a} is a one, we have |X11| +αn+1m =
|X11| + m ≤ bn−1 ≤ max(bn−1, bn).

Inequality (8) holds in all three cases, thus, by Claim 4, the point a′ is inessential for f ′ .
Suppose now that f (a) = f ′(a′) = 1. By Claim 2, for some positive m and k ≥ m there exist k ones x1, . . . , xk and k − m

zeros y1, . . . , yk−m of f such that

x1 + · · · + xk = y1 + · · · + yk−m + m · a = (b1, . . . ,bn),

where b1, . . . , bn ∈ [0, k]. We denote X = {x1, . . . , xk} and Y = {y1, . . . , yk−m} and define the sets X00, X10, X11, Y00, Y10, 
and Y11 as before. Also, without loss of generality, we assume

X00 = {x1, . . . ,x|X00|},
X10 = {x|X00|+1, . . . ,x|X00|+|X10|},
X11 = {x|X00|+|X10|+1, . . . ,xk},
Y00 = {y1, . . . ,y|Y00|},
Y10 = {y|Y00|+1, . . . ,y|Y00|+|Y10|},
Y11 = {y|Y00|+|Y10|+1, . . . ,yk−m}.

Notice that equations (6) and (7) also hold for these sets, and therefore, similarly to the previous case, we have

(x1,0) + · · · + (x|X00|+|X10|,0) + (x|X00|+|X10|+1,1) + · · · + (xk,1) = (b1, . . . ,bn, |X11|)
and
11
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(y1,0) + · · · + (y|Y00|,0) + (y|Y00|+1,1) + · · · + (yk−m,1) + m · a′ = (b1, . . . ,bn, |Y10| + |Y11| + αn+1m).

We will show that |X11| ≤ |Y10| + |Y11| + αn+1m, which together with Claim 5 will imply that a′ is an inessential point for 
f ′ , as desired. Since |X11| ≤ min(bn−1, bn), it is enough to show that

min(bn−1,bn) ≤ |Y10| + |Y11| + αn+1m. (9)

To this end we consider two cases:

1. At least one of αn−1 and αn is a zero, i.e., (αn−1, αn, αn+1) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1)}. Without loss 
of generality, assume αn = 0. Then min(bn−1, bn) ≤ bn ≤ |Y10| + |Y11| ≤ |Y10| + |Y11| + αn+1m.

2. (αn−1, αn, αn+1) = (1, 1, 1). Then min(bn−1, bn) ≤ |Y10| + |Y11| + m = |Y10| + |Y11| + αn+1m. �
We are now in a position to prove the main result of the section.

Theorem 7. Let f (x1, . . . , xn) be a positive function in Tn and let xi and x j be symmetric variables of f . Let f ′ be the (xi, x j, y)-s-
extension of f . If f ′ is threshold, then it belongs to Tn+1.

Proof. Without loss of generality, we assume i = n − 1, j = n. Let S be the set of essential points of f and let Sαβ =
{(x1, . . . , xn) ∈ S | xn−1 = α, xn = β}. Lemma 5 implies that each of the sets S01 and S10 consists of a single point, and hence

|S00| + |S11| = n + 1 − |S01| − |S10| = n − 1.

From this equation and Lemma 6 it follows that the set of essential points of f ′ has at most n − 1 points with equal 
(n − 1)-th, n-th and (n + 1)-th coordinates.

We now turn to the points in which the last three coordinates are not all the same. Let (α1, . . . , αn−2, 0, 1) denote the 
unique point in S01. Then, by Lemma 5, we have S10 = {(α1, . . . , αn−2, 1, 0)}. It follows from Lemma 6 and symmetry of the 
variables xn−1 and xn that the only points with non-equal (n − 1)-th and n-th coordinates which can be essential for f ′ are

(α1, . . . ,αn−2,1,0,0),

(α1, . . . ,αn−2,0,1,0),

(α1, . . . ,αn−2,1,0,1),

(α1, . . . ,αn−2,0,1,1).

Taking into account the symmetry between the variables xn and xn+1 we conclude that the only points with non-equal last 
three coordinates which can be essential for f ′ are four points above and the points

(α1, . . . ,αn−2,0,0,1),

(α1, . . . ,αn−2,1,1,0).

We claim that only three of the six above points can be extremal for f ′ , and therefore essential. Indeed, since f ′ has the 
same value in all of them, the first three points cannot be maximal zeros and the last three points cannot be minimal ones. 
Hence, at most three of them can be extremal.

All in all, f ′ has at most n − 1 essential points with equal (n − 1)-th, n-th and (n + 1)-th coordinates and at most three 
other essential points, resulting in at most n + 2 essential points in total, and therefore f ′ ∈ Tn+1. �

By definition, the operation of symmetric variables extension is only applicable to functions with symmetric variables. 
However, we believe that among threshold functions with minimum number of essential points this property is not rare. We 
support our intuition by the following observations. First, it is easy to see, that after applying the conjunction operation to 
a Boolean function twice, the new variables in the resulting function are symmetric. Obviously, the same also holds for the 
disjunction operation. In fact, according to the following easily verifiable observation, almost all positive linear read-once 
functions have symmetric variables.

Observation 1. Let f (x1, . . . , xn) be a positive linear read-once function without symmetric variables. Then f is either a constant or a 
single variable.

Second, the operation of extension of a function applied twice on the same variable, produces a function with two new 
variables that are symmetric:

(
f (x1, . . . , xn)

(xi ,y)
)(xi ,z) = xi(y ∨ z ∨ f |x =1) ∨ yzf |x =0.
i i

12
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6. Characterization of the functions in Tn with at most six variables

In this section we characterize functions in Tn for n ≤ 6. We start by noting that without loss of generality we can 
restrict our consideration to non-canalyzing functions. Indeed, it is easy to see that a canalyzing function f is of the form
x ∨ g , x ∧ g , x ∨ g or x ∧ g for some variable x and function g that does not depend on x. Furthermore, g is threshold 
whenever f is. Hence, it follows from Lemma 2 that a canalyzing function in Tn is obtained from a function in Tn−1 using 
the operation of adding a variable.

Claim 6. All functions in Tn for n ≤ 3 are linear read-once.

Proof. It was proved in [7] that a non-lro threshold function contains as a restriction a function congruent to x1x2 ∨ x1x3 ∨
· · · ∨ x1xn ∨ x2 . . . xn for some n ≥ 3. Since n ≥ 3 and for n = 3 the function does not belong to Tn , this implies the result. �

The following two claims were obtained by a computer-aided enumeration of all functions in Tn for the corresponding 
values of n.

Claim 7. Any non-canalyzing function in T4 is congruent to f4,3(x1, x2, x3, x4) = x1(x2 ∨ x3) ∨ x2x3x4 or to its dual function.

We observe that the function from Claim 7 is congruent to the (x1, x4)-extension of the linear read-once function 
f (x1, x2, x3) = (x1 ∨ x2)x3.

Claim 8. Any non-canalyzing function in T5 is congruent to one of the following seven functions (or their duals), each of which can be 
obtained from a function in T4 via the operation of extension on a variable.

1. f5,4 = x1(x2x2x2 ∨ x3 ∨ x4) ∨ x2x2x2x3x4x5 = f (x1,x2)
4,2 (x1, x3, x4, x5),

2. f5,3 = x1(x2x2x2 ∨ x3) ∨ x2x2x2x3x4x5 = (x3(x1 ∨ x4x5))
(x1,x2) ,

3. x1(x2x2x2 ∨ x3 ∨ x4x5) ∨ x2x2x2x3x4 = f (x1,x2)
4,3 (x3, x1, x4, x5),

4. x1(x2x2x2 ∨ x3 ∨ x4x5) ∨ x2x2x2x3 = (x1x4x5 ∨ x3)
(x1,x2) ,

5. x1(x2 ∨ x3x4x5) ∨ x2x4x5 = x2(x1x1x1 ∨ x4x5) ∨ x1x1x1x3x4x5 = ((x2 ∨ x3)x4x5)
(x2,x1) ,

6. x1(x2 ∨ x3x5) ∨ x2x5(x3 ∨ x4) = x2(x1x1x1 ∨ x5(x3 ∨ x4)) ∨ x1x1x1x3x5 = (x5(x2x4 ∨ x3))
(x2,x1) ,

7. x1(x2x2x2 ∨ x3x4 ∨ x3x5 ∨ x4x5) ∨ x2x2x2x3(x4 ∨ x5) = f (x1,x2)
4,3 (x3, x4, x5, x1).

Claims 6, 7, and 8 imply the following

Lemma 7. The classes Tn, n ≤ 5 can be defined inductively starting from T1 and using the operations of adding a variable and extension 
on a variable.

A complete description of all functions in T6 can be found in Appendix. Unfortunately, Lemma 7 cannot be extended to 
T6, since this set contains functions that cannot be obtained from any function in T5 using only the operations of adding a 
variable, extension on a variable or symmetric variables extension. The following example exhibits such a function, which is 
not difficult to check:

f ∗(x1, . . . , x6) = x1(x2 ∨ x3 ∨ x5 ∨ x6) ∨ x2x3(x4 ∨ x5) ∨ x6(x2 ∨ x3).

Nonetheless, the latter function f ∗ can also be obtained inductively using the following operation

fn,k(x1, . . . , xn) → f ′(x1, . . . , xn, xn+1, xn+2)

= fn,k|x1=1,xn=0(x1 ∨ xn+2) ∨ fn,k|x1=0,xn=1(xn ∨ xn+1) ∨ x1(xn+1 ∨ xn+2),
(10)

which transforms the function fn,k ∈ Tn into a function of n + 2 variables. Indeed, by applying operation (10) to the function 
f4,3 from Claim 7, we obtain f ∗ . We conjecture that operation (10) applied to functions fn,k always preserves the property 
of being threshold with minimum specification number and leaves the proof of this conjecture as an open problem.

7. Concluding remarks and open problems

In the present paper, we have introduced a number of operations that allow us to construct inductively Boolean thresh-
old functions with minimum specification number. Although these operations and most of the related statements were 
formulated for positive threshold functions, they can be extended to the class of all threshold functions as each threshold 
function is either positive or congruent to some positive threshold function and congruent functions have the same spec-
ification number. The provided operations produce all functions with at most 5 variables and a variety of functions with 
13
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more variables. Whether the set of all Boolean threshold functions with minimum specification number admits an inductive 
description by means of finitely many operations remains an open problem, but definitely the set of operations presented 
in the paper must be extended, as the example of the function f ∗ in the end of Section 6 shows.
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Appendix A

Any non-canalyzing function in T6 is congruent to one of the following 70 functions (or their duals).

1. x1x2x3x6 ∨ x1x2x4x5 ∨ x1x2x4x6 ∨ x1x2x5x6 ∨ x1x3x4x5 ∨ x1x3x4x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x3x5x6 ∨ x4x5x6
2. x1x2x3x6 ∨ x1x2x4x6 ∨ x1x2x5x6 ∨ x1x3x4x5 ∨ x1x3x4x6 ∨ x1x3x5x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x2x3x5x6 ∨ x4x5x6
3. x1x2x3x5 ∨ x1x2x3x6 ∨ x1x2x4x5 ∨ x1x2x4x6 ∨ x1x2x5x6 ∨ x1x3x4x5 ∨ x2x3x4x5 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
4. x1x2x3x4 ∨ x1x2x3x5 ∨ x1x5x6 ∨ x2x3x6 ∨ x2x4x5 ∨ x2x4x6 ∨ x2x5x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
5. x1x2x4x6 ∨ x1x2x5x6 ∨ x1x3x4x5 ∨ x1x3x4x6 ∨ x1x3x5x6 ∨ x1x4x5x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x2x3x5x6 ∨ x2x4x5x6 ∨ x3x4x5x6
6. x1x2x3x4 ∨ x1x2x3x5 ∨ x1x2x3x6 ∨ x1x2x4x5 ∨ x1x5x6 ∨ x2x4x6 ∨ x2x5x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
7. x1x2x3x4 ∨ x1x2x3x5 ∨ x1x2x3x6 ∨ x1x2x4x5 ∨ x1x2x4x6 ∨ x1x3x4x5 ∨ x2x3x4x5 ∨ x2x5x6 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
8. x1x2x3x5 ∨ x1x2x3x6 ∨ x1x2x4x5 ∨ x1x2x4x6 ∨ x1x2x5x6 ∨ x1x3x4x5 ∨ x1x3x4x6 ∨ x1x3x5x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x2x3x5x6 ∨

x4x5x6
9. x1x2x3x4 ∨ x1x2x3x5 ∨ x1x2x3x6 ∨ x1x2x4x5 ∨ x1x2x4x6 ∨ x1x2x5x6 ∨ x1x3x4x5 ∨ x1x3x4x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x3x5x6 ∨

x4x5x6
10. x1x2x3x6 ∨ x1x2x4x5 ∨ x1x2x4x6 ∨ x1x2x5x6 ∨ x1x3x4x5 ∨ x1x3x4x6 ∨ x1x3x5x6 ∨ x1x4x5x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x2x3x5x6 ∨

x2x4x5x6 ∨ x3x4x5x6
11. x1x2x3x4x5 ∨ x4x6 ∨ x5x6
12. x1x2x3x4x5 ∨ x3x4x6 ∨ x5x6
13. x1x2x3x4x5 ∨ x2x3x4x6 ∨ x5x6
14. x1x2x3x6 ∨ x4x5 ∨ x4x6 ∨ x5x6
15. x1x2x4x5 ∨ x3x4x5 ∨ x4x6 ∨ x5x6
16. x1x3x4x5 ∨ x2x3x4x5 ∨ x4x6 ∨ x5x6
17. x1x2x3x4x5 ∨ x3x6 ∨ x4x6 ∨ x5x6
18. x1x2x3x6 ∨ x3x4x5 ∨ x4x6 ∨ x5x6
19. x1x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
20. x1x3x4x5 ∨ x2x3x4x5 ∨ x3x4x6 ∨ x5x6
21. x1x2x3x4x5 ∨ x2x3x6 ∨ x4x6 ∨ x5x6
22. x1x2x3x6 ∨ x2x3x4x5 ∨ x4x6 ∨ x5x6
23. x1x2x3x4x5 ∨ x2x4x6 ∨ x3x4x6 ∨ x5x6
24. x1x2x4x6 ∨ x2x3x4x5 ∨ x3x4x6 ∨ x5x6
25. x1x3x4x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x5x6
26. x1x2x3x4x5 ∨ x2x3x4x6 ∨ x3x5x6 ∨ x4x5x6
27. x1x2x3x5 ∨ x3x6 ∨ x4x5 ∨ x4x6 ∨ x5x6
28. x1x2x6 ∨ x3x4x5 ∨ x3x6 ∨ x4x6 ∨ x5x6
29. x1x2x4x5 ∨ x3x4x5 ∨ x3x6 ∨ x4x6 ∨ x5x6
30. x1x2x3x4x5 ∨ x2x6 ∨ x3x6 ∨ x4x6 ∨ x5x6
31. x1x2x6 ∨ x2x3x4x5 ∨ x3x6 ∨ x4x6 ∨ x5x6
32. x1x2x3x5 ∨ x2x3x6 ∨ x4x5 ∨ x4x6 ∨ x5x6
33. x1x3x6 ∨ x2x3x4x5 ∨ x2x3x6 ∨ x4x6 ∨ x5x6
34. x1x2x3x6 ∨ x2x4x5 ∨ x3x4x5 ∨ x4x6 ∨ x5x6
35. x1x2x4x5 ∨ x2x3x6 ∨ x3x4x5 ∨ x4x6 ∨ x5x6
36. x1x4x6 ∨ x2x3x4x5 ∨ x2x4x6 ∨ x3x4x6 ∨ x5x6
37. x1x3x4x5 ∨ x2x3x4x5 ∨ x2x3x6 ∨ x4x6 ∨ x5x6
38. x1x2x4x5 ∨ x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
39. x1x3x4x5 ∨ x2x3x4x5 ∨ x2x4x6 ∨ x3x4x6 ∨ x5x6
40. x1x2x3x6 ∨ x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
41. x1x2x3x4x5 ∨ x2x5x6 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
42. x1x2x5x6 ∨ x2x3x4x5 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
43. x1x3x4x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x3x5x6 ∨ x4x5x6
44. x1x2x3x5 ∨ x2x4x5 ∨ x3x4x5 ∨ x3x6 ∨ x4x6 ∨ x5x6
45. x1x2x3x4 ∨ x2x3x5 ∨ x3x6 ∨ x4x5 ∨ x4x6 ∨ x5x6
14
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46. x1x2x3x5 ∨ x2x3x6 ∨ x2x4x5 ∨ x3x4x5 ∨ x4x6 ∨ x5x6
47. x1x2x3x6 ∨ x2x4x5 ∨ x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
48. x1x2x4x5 ∨ x2x3x6 ∨ x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
49. x1x5x6 ∨ x2x3x4x5 ∨ x2x5x6 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
50. x1x2x4x6 ∨ x2x5x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
51. x1x3x4x5 ∨ x2x3x4x5 ∨ x2x5x6 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
52. x1x2x4x5 ∨ x1x2x4x6 ∨ x1x3x4x5 ∨ x2x3x4x5 ∨ x3x4x6 ∨ x5x6
53. x1x2x4x6 ∨ x1x3x4x5 ∨ x1x3x4x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x5x6
54. x1x2x3x6 ∨ x1x2x4x5 ∨ x1x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
55. x1x2x3x5 ∨ x1x2x3x6 ∨ x1x2x4x5 ∨ x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
56. x1x2x4x6 ∨ x1x2x5x6 ∨ x1x3x4x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x3x5x6 ∨ x4x5x6
57. x1x2x5x6 ∨ x1x3x4x6 ∨ x1x3x5x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x2x3x5x6 ∨ x4x5x6
58. x1x2x4x5 ∨ x1x2x6 ∨ x1x3x6 ∨ x2x3x6 ∨ x3x4x5 ∨ x4x6 ∨ x5x6
59. x1x2x4x5 ∨ x1x2x6 ∨ x1x3x4x5 ∨ x2x3x4x5 ∨ x3x6 ∨ x4x6 ∨ x5x6
60. x1x2x3x5 ∨ x2x3x6 ∨ x2x4x5 ∨ x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
61. x1x2x3x5 ∨ x1x2x3x6 ∨ x1x4x5 ∨ x2x4x5 ∨ x3x4x5 ∨ x4x6 ∨ x5x6
62. x1x2x3x5 ∨ x1x2x4x5 ∨ x1x3x6 ∨ x2x3x6 ∨ x3x4x5 ∨ x4x6 ∨ x5x6
63. x1x2x3x4 ∨ x2x3x5 ∨ x2x3x6 ∨ x2x4x5 ∨ x3x4x5 ∨ x4x6 ∨ x5x6
64. x1x2x3x6 ∨ x1x2x4x5 ∨ x1x2x4x6 ∨ x2x5x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
65. x1x2x3x5 ∨ x1x2x4x5 ∨ x1x4x6 ∨ x2x3x6 ∨ x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6x1x2x3x5 ∨ x1x2x3x6 ∨ x1x4x6 ∨ x2x4x5 ∨ x2x4x6 ∨

x3x4x5 ∨ x3x4x6 ∨ x5x6
66. x1x2x4x5 ∨ x1x2x4x6 ∨ x1x3x4x5 ∨ x2x3x4x5 ∨ x2x5x6 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
67. x1x2x4x6 ∨ x1x3x4x5 ∨ x1x3x4x6 ∨ x2x3x4x5 ∨ x2x3x4x6 ∨ x2x5x6 ∨ x3x5x6 ∨ x4x5x6
68. x1x2x3x4 ∨ x1x2x3x5 ∨ x1x4x6 ∨ x2x3x6 ∨ x2x4x5 ∨ x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
69. x1x2x3x5 ∨ x1x2x3x6 ∨ x1x2x4x5 ∨ x2x4x6 ∨ x2x5x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x3x5x6 ∨ x4x5x6
70. x1x4x6 ∨ x2x3x4 ∨ x2x3x5 ∨ x2x3x6 ∨ x2x4x5 ∨ x2x4x6 ∨ x3x4x5 ∨ x3x4x6 ∨ x5x6
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