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Abstract

In this paper, an Advanced Dynamic Model Predictive Control (AMPC) based on a Nonlinear Model Predictive Control
(NMPC) framework with a multi-objective cost function driven by dynamic weights is proposed to improve the energy
performance of fuel cell hybrid electric vehicles whilst prolonging their component lifetime. By the use of dynamic
weights, the cost function is effectively formulated as the combination of fuel consumption, rate of change of fuel cell
power, battery power, the fuel cell efficiency, state of charge of the battery, and their temperatures. In order to enhance
the adaptability of the AMPC, a Fuzzy Cognitive Map (FCM) is then newly designed to regulate online the dynamic
weights to adjust the importance of each cost component according to the conditions prevailing during driving. A
comparative study between the proposed AMPC, a constant weight based NMPC and a conventional NMPC having cost
function with fewer objectives has been carried out by means of simulation using a FCHEV model from the simulation
tool ADVISOR to illustrate the efficacy of the proposed AMPC.

Keywords: Fuel Cell Hybrid Electric Vehicle, Energy Management System, Simulink design, Nonlinear Model
Predictive Control, Fuzzy Cognitive Map, Fuel cell degradation

1. Introduction4

With rising concern over rising global temperature and5

pollution caused by the use of carbon-based fuels, as well6

as the depletion of natural fuel reserves at an alarming7

rate, the world is transitioning toward renewable, green8

fuels for energy. One of the potential alternatives is9

hydrogen. Hydrogen is an a ubiquitous element in the10

universe that may be produced on Earth by electrolyzing11

water. When hydrogen is combusted (oxidised), the12

product is water, which is environmentally safe. Many13

studies are being carried out in the field of hydrogen14

fuel cells as a transportation power source, with great15

emphasis to Proton Exchange Membrane Fuel Cells16

(PEMFC) [1]. PEMFC is the most commonly used fuel17

cell in the automotive sector due to its advantages such18

as usage of solid electrolyte, lower operating temperature,19

faster start-up, and higher efficiency [2, 3]. Even though20

fuel cells have many advantages, they are not used alone21

in automobile applications due to the slow response to22

power demands. The power delivery delay is attributed23

to the slow dynamics of mechanical valves, pumps present24

in the hydrogen and oxygen supply line [4]. Fuel cells also25

cannot absorb energy generated during vehicle braking.26

Thus, secondary sources such as batteries and/or ultra-27

capacitors are used in conjunction with fuel cells in order28
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to provide a large amount of power in a short span and29

absorb the regenerative braking energy [4].30

31

Fuel cell Hybrid Electric Vehicles (FCHEV) are electric32

vehicles having hybrid power sources, fuel cell and battery.33

Having hybrid power sources helps to operate the vehicle34

effectively under different conditions by splitting power35

between the fuel cell and battery so that both can operate36

in their high-efficiency regions [5]. This decision of power37

split is taken by a so-called Energy Management System38

(EMS). In FCHEVs, the key to success is that an EMS39

needs to take care of the power split to deal with different40

decisive factors such as minimization of fuel consumption,41

braking energy recuperation, efficiency, and safety of the42

various vehicle sub-systems.43

44

State-of-the-art literature shows that EMS for FCHEV45

can be broadly classified into two types - rule-based46

management and optimization-based management [6].47

In rule-based management, the controller splits the48

demanded power between the power sources according to49

predefined rules created by experts. Deterministic rule-50

based control techniques such as Thermostat control [7],51

Power Following control [8], Finite State Machine Control52

[9] fall under this category. Due to the simple design and53

low computational demand, these energy management54

schemes are widely used in commercial applications.55

However, these controllers perform poorly in real-world56
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Nomenclature

(
dPfc FCM

dt )max/min Limits of rate of fuel cell power
given by FCM in AMPC

αi Coefficient for the expression of ṁH2
hot (i=1..4)

βi Coefficient for the expression of hrad (i=1,2,3)

ṁair Mass flow rate of air across modules of battery

ṁcabin Mass flow rate of air in cabin

ṁH2hot Mass flow rate of fuel in hot condtitions

ηcabin Efficiency of cabin heat transfer

γi Coefficient for the expression of vhtx (i=1,2,3)

θ Angle of elevation

θFCM Bias of threshold function in FCM

A Frontal area of vehicle

a Acceleration of the vehicle

Ai Input concepts of Fuzzy Cognitive Map (i=1..9)

Afrontal Frontal area of the radiator

Cd Drag Coefficient

crolling Rolling friction coefficient

Cpair Heat capacity of air

Cpfc Heat capacity of fuel cell

Cpmodule Heat capacity of module of battery

g Acceleration due to gravity

hrad Heat transfer coefficient of radiator

LHV Lower Heating Value of fuel

mv Mass of vehicle

mfc Mass of fuel cell

mmodule Mass of each module of battery

nmodule Number of modules in battery

Pdemand Power demanded by the vehicle

P commandfc Fuel cell power command

P prevfc Previous fuel cell power

r Radius of the wheel

Tair Temperature of air surrounding the battery

Tamb Ambient temperature

Tb ref Battery reference temperature

Tfc max Maximum fuel cell temperature

tfc min off Minimum fuel cell off time

tfc min on Minimum fuel cell on time

Tfc ref Fuel cell reference temperature

tf Temperature correction factor for ṁH2hot

uworking min Minimum fuel cell working power

v Velocity of the vehicle

vhtx Air velocity in the radiator

Wi Weights of NMPC cost function (i=1..7)

T Sampling time interval for the controller

driving situations since the rules are dependent on the57

designer’s expertise and are created for a limited number58

of driving scenarios. Fuzzy rule-based control strategies59

[10, 11] are an improvement compared to deterministic60

rule-based control strategies due to the decision making61

mechanism, which mimics the way of human thinking62

to control the power split. Nevertheless, fuzzy-based63

approaches require more design effort and only adapt to a64

limited range of system uncertainties. Hence, this kind of65

energy management is not robust to unseen disturbances.66

67

Meanwhile, optimization-based management is used68

where the power split is done by minimizing an objective69

function. In [12], a comparative study between rule-based70

and optimization-based energy management systems for71

heavy duty fuel cell vehicles has been carried out by72

means of simulation to confirm the superior performance73

of optimization-based EMS. Optimization-based EMS74

is further classified into two types: online EMS and75

offline EMS [5]. Offline optimization techniques such as76

Dynamic programming [13–16], Genetic Algorithm [17]77

require information about the complete trip and external78

disturbances to derive a globally optimal solution which79

can be used as reference of power split during the vehicle80

operation [5]. Since driving conditions are normally81

unknown and these techniques require significant compu-82

tational effort, their direct implementation is impractical;83

thus, online-based EMS is a preferable option. With84
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online EMS methods, an objective function is optimized85

in real-time to obtain the control input in-situ without86

the full drive cycle knowledge. Such optimization provides87

a sub optimal solution by predicting the system states88

in the near future, such as Model Predictive Control89

[18, 19] or by considering future system conditions in90

evaluating the current power split. Equivalent Con-91

sumption Minimization Strategy (ECMS) [20–22] and92

Pontryagin’s Minimum Principle (PMP) [23] comes under93

latter. PMP provides an optimal solution by minimizing94

a Hamiltonian. Although PMP is capable of providing so-95

lutions comparable to Dynamic Programming, it requires96

tuning of co-state in the Hamiltonian for different driving97

conditions to obtain an optimal solution. ECMS derives98

the power split between various power sources at each99

instant by optimising an equivalent energy consumption100

of the vehicle using equivalent factors. Similar to PMP,101

to enhance the optimal operation of ECMS requires102

tuning the equivalent factor for different operating modes,103

which is difficult unless information about the driving104

condition is available. Meanwhile, MPC is a receding105

horizon control method that optimizes the system’s future106

state by using predictions from the system’s dynamic107

model and control variables. Only the first control108

variable obtained from the optimal control policy is109

then utilized in the current step, while the remainder110

is discarded. The prediction horizon is shifted one step111

forward, and the process is repeated for the next step.112

Due to the ability to deal with multiple objectives, MPC113

is known as a feasible solution for process control [24]114

and energy management for hybrid electric vehicles [25–27]115

116

MPC techniques employed for EMS application can117

be classified as linear and nonlinear. Different to lin-118

ear MPC which uses linearized equations of the plant,119

nonlinear MPC (NMPC) offers better performance using120

nonlinear models which can capture the dynamics of121

the plant effectively. In [28], a recurrent neural network122

is used as a fuel cell prediction model to construct the123

NMPC-based energy management for FCHEVs. Incorpo-124

rating power source degradation into the prediction model125

is critical for developing health-conscious EMS. Because126

of its ability to handle non-linear prediction models,127

NMPC can efficiently handle power source deterioration128

models. In [29] a NMPC with highly nonlinear battery129

degradation model was employed in the EMS of a hybrid130

electric vehicle. The health conscious EMS improved the131

fuel consumption and battery life compared to the EMS132

not considering the degradation of battery. In [30], the133

authors have employed degradation models of the fuel134

cell and battery in the NMPC based EMS for FCHEV.135

The results show that considering the health of the power136

sources in EMS can lead to lower operating costs. NMPC137

also permits the use of nonlinear cost functions in the138

optimization, allowing the use of nonlinear economic stage139

cost incurred in the plant, multiple objective oriented140

minimizing function as cost function [31]. In [30, 32] the141

monetary cost associated with the operation of FCHEV is142

taken as the cost function to be minimized in NMPC. The143

cost function includes the cost of hydrogen, cost incurred144

due to fuel cell and battery degradation. In another study145

[33], a multi objective cost function, dealing with fuel cell146

power tracking, battery state of charge set point tracking147

and fuel cell power regulation is proposed to reduce fuel148

cell power fluctuation and minimal fuel consumption via149

state of charge of the battery tracking.150

151

To improve the prediction of NMPC, velocity pre-152

dictors can be used in conjunction with NMPC. In [33],153

an online learning Markov speed predictor is used in154

conjunction with an MPC based on a multi objective155

cost function. The predicted velocities from the online156

learning Markov predictor is then used to create a state157

of charge reference. The velocity predictors are utilised in158

recent literature to characterise future driving conditions159

based on expected velocity and acceleration. Then the160

classification is used to choose the mode of operation of161

EMS. In [34], the online driving condition is classified162

using a probabilistic driving cycle classification approach163

based on three driving conditions. By using data fusion164

approach, the probability distribution is used to calculate165

online the parameters of the three offline tuned fuzzy logic166

controllers which drive the decision-making of the EMS.167

Utilising the similar concept, a NMPC-based EMS with168

an adaptive cost function is proposed [35, 36]. The cost169

function’s weights are selected online from predefined sets170

of weights generated for various driving conditions. To171

identify the online driving condition, a Markov pattern172

recognizer is utilised.173

174

However, the above literature study identified limitations175

in the literatures and opportunities for improvement in176

NMPC-based EMS for FCHEV, which are listed below:177

1. The need of complex vehicle model, sub-system model178

or artificial intelligence-based black-box models to179

enable the optimisation require significant time and180

effort to develop. In addition, training and/or181

parametrising these models for diverse working con-182

ditions, especially for life prediction, necessitates the183

collection of energy system data for various condi-184

tions, which is time consuming and laborious [28, 29].185

2. Using monetary cost in the cost function requires ex-186

tra effort in setting the weights of cost components187

that cannot be assigned comparable monetary cost,188

such as set point tracking of battery state of charge,189

as seen in [30, 32].190

3. The temperature conditions of the fuel cell and bat-191

tery are not taken into account in the EMS decision192

([33, 35, 36]). Maintaining the temperatures of the193

fuel cell and battery is critical for optimal perfor-194

mance with minimal deterioration [30].195

4. The identification of driving cycles and/or modes can196

occasionally be incorrect, potentially causing poor197
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performance of EMS. Switching the EMS modes or198

regulating the EMS cost functions based on driving199

pattern recognition on a frequent basis might impair200

the EMS’s efficiency [7, 34, 35].201

To address the aforementioned research problems, an ad-202

vanced NMPC based on a dynamic multi-objective cost203

function (named as AMPC) is proposed in this study for204

efficient energy management of FCHEVs. The contribu-205

tion of this work can be expressed as follow:206

1. Different from [28], only a simple plant model of the207

fuel cell is required for the design of AMPC. Here,208

the AMPC will consider the state of charge of the209

battery, temperatures of fuel cell and battery, power210

demand as the measurement inputs to derive the op-211

timal power command of the fuel cell and battery.212

2. Different from [30, 32, 33], the AMPC cost function213

is designed to address all aspects of energy manage-214

ment in FCHEVs using dynamic weights. The goal215

is to minimise the fuel consumption and maintain the216

battery state-of-charge, but also to prevent the power217

sources’ deterioration due to a variety of factors. In218

addition, objectives associated with the optimal tem-219

perature operating regions of the power sources are220

integrated in this design via activation functions.221

3. Different from existing studies on enhancing the222

adaptability of NMPC [35, 36], a novel continuous223

weight regulation method is proposed to regulate on-224

line the AMPC cost function weights by considering225

only the vehicle instantaneous states and power de-226

mand.227

(a) The cost components are normalised according228

to their ranges to minimise the design and cali-229

bration efforts.230

(b) A fuzzy cognitive map architecture is designed231

based on the dynamic relationship between the232

AMPC cost function weights and vehicle states,233

allowing for easy calibration and transparency234

in the relationship between the states and the235

weights.236

(c) Therefore the AMPC cost function weights can237

be directly regulated based on an instant update238

of vehicle states without the need of driving con-239

dition recognition.240

4. A comparative study between the AMPC and a typi-241

cal NMPC has been carried out by means of simula-242

tions under different driving scenarios to confirm the243

superiority of the proposed approach.244

The rest of the paper is organized as follows: the FCHEV245

architecture and its dynamic model are introduced in Sec-246

tion 2; the design of NMPC framework, cost function, con-247

straints and the FCM for the AMPC is presented in Sec-248

tion 3 while the simulation study on the AMPC using the249

FCHEV model is presented in Section 4; the conclusions250

and future work are finally given in Section 5.251

2. System Architecture and Dynamics252

The architecture of the studied FCHEV is depicted in253

Figure 1a. A unidirectional DC/DC booster is employed254

to ensure voltage matching between the fuel cell and the255

battery [4]. The motor takes in power from the battery256

and fuel cell through an inverter. The torque generated257

from the motor is then transferred to the wheels via the258

drivetrain. Here, the parallel architecture of the power259

sources enables the following modes:260

1. Traction using both the fuel cell and battery261

2. Traction using only the fuel cell. Once necessary, the262

battery can be charged in this case using redundant263

power generated by the fuel cell264

3. Traction using only the battery265

4. Braking with/without regeneration. The braking en-266

ergy can be utilised to charge the battery under its267

constraints, such as SoC, temperature and maximum268

charge current.269

The selection of above modes as well as decision on power270

distribution between the fuel cell and battery are derived271

by the EMS based on the measured vehicle states. With-272

out loss of generality, only longitudinal vehicle dynamics273

are considered in this study. Based on [5], the vehicle trac-274

tion torque and angular speed of wheels can be calculated275

using Equation 1.276

Tv = (mvgcrollingcos(θ) + 0.5ρACdv
2 +mva+mvgsin(θ))r

ωv =
v

r
(1)277

The gearbox in the drivetrain uses a single gear ratio (gr)278

to amplify the torque produced by the motor. The re-279

lationship between wheel torque and speed to the input280

torque and speed to the gear box considering efficiency281

(ηgb) is as shown in Equation 2282

ωgb = (gr)ωv

Tgb =

{
Tv

(gr)ηgb
Tv ≥ 0

ηgbTv

gr Tv < 0

(2)283

The connection between gear box and motor is assumed284

to be ideal. Therefore the motor speed (ωm) and torque285

(Tm) is equal to ωgb and Tgb respectively.286

2.1. Fuel Cell287

A fuel cell is a type of electrochemical device that trans-288

forms chemical energy into electrical energy. During the289

operation of a PEMFC system in FCHEV, hydrogen (from290

pressurized storage) oxidizes in the anode releasing elec-291

trons and protons. Protons are allowed to flow through292

the solid membrane, but electrons are not permitted and293

must travel through an external circuit [3]. The protons294

from the anode reaches the cathode and reacts with oxygen295

(from atmosphere, pressurized by compressor) to produce296
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(a)

FUEL CELL SYSTEM (Tfc, η)

WATER RESERVOIR CABIN HEATINGRADIATOR

H2 IN (ṁH2
) AIR IN

AIR OUTPOWER OUT (Pfc)

EXHAUST WATER

COOLANT OUT

COOLANT IN

(b)

Figure 1: (a) Power Flow and signal flow in FCHEV under different conditions (b) Process flow diagram of the Fuel Cell system [38]

water. The electrical power generated by the fuel cell sys-297

tem is used to power the vehicle. The water produced in298

the chemical reaction is returned to a reservoir. The heat299

generated during the chemical process is removed from the300

fuel cell by using a cooling system as shown in Figure 1b.301

Here, the deionized water from the reservoir is used as the302

coolant to maintain the temperature of the fuel cell and303

humidity in the membrane (the heat is dissipated via the304

cabin and radiator).305

The rate of hydrogen consumed by the fuel cell can be306

represented as a polynomial function of net fuel cell power.307

The coefficients of the polynomial approximating the rate308

of hydrogen consumption in Equation 3 (α1, α2, α3, α4)309

can be derived from the measurements of rate of hydro-310

gen consumption during fuel cell operation. Because the311

measurements for the rate of hydrogen consumption are312

conducted at high temperatures, a correction factor is fur-313

ther applied to account for higher fuel consumption at314

lower temperatures [37]. The expression for temperature-315

corrected fuel consumption rate (ṁH2
) is therefore given316

in Equation 3.317

ṁH2hot = α1P
3
fc + α2P

2
fc + α3Pfc + α4

tf = 1 + 0.1((Tfc max − Tfc)/(Tfc max − Tamb))0.65

ṁH2 = ṁH2hottf
(3)318

The thermal model of the fuel cell system is modelled319

under the assumption that the fuel cell temperature and320

coolant temperature are the same and denoted by Tfc and321

radiator heat transfer Qradiator happens only when fuel322

cell temperature exceeds its cutoff temperature. The heat323

generated by the fuel cell and the heat transfer between324

coolant and surrounding are then described as in Equa-325

tion 4.326

Qgenerated = ṁH2LHV − Pfc327

Qcabin = ηcabinṁcabinCpair(Tfc − Tamb)328

Qradiator = hradAfrontal(Tfc − Tamb), if Tfc > Tfc cutoff329

Qcoolant = Qcabin +Qradiator (4)330

The heat transfer coefficient hrad can be calculated from331

air velocity in the radiator vhtx using an empirical model332

as presented in Equation 5 ([39]). Here, the air velocity333

in the radiator can be represented as a function of vehicle334

velocity. Meanwhile, the heat transfer model coefficients335

(β1, β2, β3) can be derived from the data obtained through336

heat transfer measurements between the radiator and air337

[40] and the air velocity model coefficients (γ1, γ2, γ3) can338

be derived from the data obtained from wind tunnel tests339

[41].340

hrad = β1v
2
htx + β2vhtx + β3

vhtx =

{
(γ1v

γ2 + γ3)v if v > 1 m/s

5.073v else

(5)341

Using Equation 4, Equation 5, the dynamic equation of342

Fuel Cell temperature Tfc is obtained. The fuel cell tem-343
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Figure 2: Efficiency of Fuel Cell as a function of Output power [37]

perature can be computed using Equation 6.344

Ṫfc =
Qgenerated −Qcoolant

mfcCpfc
(6)345

The efficiency of the fuel cell is calculated as the ratio of346

net output power to the available power in the fuel. Using347

the mass flow rate of hydrogen in Equation 3, the efficiency348

of the fuel cell is calculated in Equation 7.349

η =
Pfc

ṁH2LHV
(7)350

Figure 2 then demonstrates an efficiency curve of a351

PEMFC system with maximum power output of 50kW as352

a function of the output power [37]. As seen in this figure,353

around half of the power generated in a fuel cell could be354

lost. This loss mainly comes from the heat generated in the355

fuel cell due to reactions and ohmic loss in the fuel cell. In356

addition, a small fraction of the energy generated is used357

to run auxiliary systems (such as air compressor, coolant358

pump, and fans) to provide suitable operating conditions359

for the fuel cell [38]. Therefore, it is important for the360

EMS to consider the efficiency of fuel cell in its decisions361

to maximise the fuel cell efficiency.362

Next, transient dynamics of the fuel cell during start-363

up or power changing phase is considered. To represent364

the slow response of the fuel cell in these scenarios, a low365

pass filter with time constant ts is included in the fuel cell366

model. The fuel cell output power can be then represented367

by Equation 8.368

Pfc = P commandfc

T

ts + T
+ P prevfc

ts
ts + T

(8)369

Another important issue when using fuel cells is degra-370

dation, since it affects the operating lifetime. An efficient371

management of fuel cell operation can increase the life of372

the fuel cell, enabling the minimisation of its life-cycle cost.373

The operational factors that contribute to the degradation374

of FC are primarily divided into four categories [30],[42] :375

1. Frequent start/stop: Large number of start/stop376

of fuel cell results in inadequate reactants inside the377

membrane electrode assembly resulting in starvation378

of reactants.379

2. Low power operation: Operating at power lower380

than 20% of rated power leads to formation of surface381

oxides.382

3. High power operation: At higher power (higher383

than 80%) [32], heat generation is large, leading to384

high temperatures in fuel cell. Higher temperatures385

can create thermal stress, accelerate reactions and re-386

duce humidity in the membrane thus reducing ion387

conduction in membrane.388

4. Transient loading: Continuous change in operating389

point of fuel cell can lead to reactant starvation which390

causes carbon electrodes to oxidize.391

The total deterioration in the voltage of fuel cell can be392

determined using Equation 9 and Table 1, assuming that393

each factor’s contribution to degradation is independent of394

each other [43].395

Vdegrade = γlowtlow + γhighthigh + γtransientΣ|
dPfc
dt
|

+ γcyclencycle

(9)396

The fuel cell’s state of health is used to calculate its life-

Table 1: Degradation Rate for PEMFC (per cell) [42]

Condition Degradation Rate
Low power Operation (γlow) 10.17 µV/h

High Power Operation (γhigh) 11.74 µV/h
Transient Loading (γtransient) 0.0441 µV/kW

Start/Stop (γcycle) 23.91 µV/cycle

397

time as follows:398

SOH = 1− Vdegrade
Vmaxdrop

(10)399

where, Vmaxdrop is the maximum fuel cell voltage drop at400

the end of life of fuel cell [22].401

2.2. Battery402

Lithium-ion based batteries are widely employed as en-403

ergy storage systems in FCHEV because of their longer404

life cycle [44]. Because of its easy and realistic depic-405

tion of data, the internal resistance model is employed for406

lithium-ion battery simulation [3]. As illustrated in Fig-407

ure 3, the internal resistance model of the battery consists408

of an ideal cell with open-circuit voltage V oc and inter-409

nal resistance Rint in series with the cell. The internal410

resistance of the battery varies depending on whether it is411

7



Voc

Rint

ib

+
−

Vb

Figure 3: Internal resistance model of battery

charging or discharging [3]. The battery’s output power412

(Pb), terminal voltage (Vb) and current (ib) can be related413

by Equation 11.414

Pb = Vocib −Rinti2b

ib =
Voc −

√
V 2
oc − 4PbRint

2Rint
Vb = Voc −Rintib

Vb =
Voc +

√
V 2
oc − 4PbRint
2

(11)415

The amount of energy stored in the battery is quantified416

by calculating the amount of charge left in the battery for417

usage. The amount of available charge to the maximum418

charge capacity of the battery is referred to as the State419

of Charge (SoC) of the battery [45]. The Coulombic Ef-420

ficiency (Ceff ) is used to quantify the effect of charging421

loss. The dynamic equation for the state of charge of the422

battery during charging and discharging is given by Equa-423

tion 12 [45].424

˙soc =

{
− ib
CAh

ib ≥ 0

−Ceff ib
CAh

ib < 0
(12)425

where CAh is the maximum capacity of the battery. The426

equations of Open Circuit Voltage (Voc), Internal Resis-427

tance of the battery (Rint) for charging and discharging428

condition, Coulombic efficiency (Ceff ) and Maximum429

capacity of the battery (CAh) as a function of SoC and430

battery temperature Tb are provided in Appendix A.431

432

The thermal performance of the battery with air433

cooling can be represented by a lumped capacity model434

[46]. The heat generated by Joule heating and Coulom-435

bic inefficiency Qb gen is absorbed by the air through436

convection. For temperatures below cutoff temperature,437

surrounding air gets heated, and fresh air gets replenished.438

When the temperature rises above the cutoff point, a439

fan turns on. Due to forced convection, it is assumed440

that 50% of heat absorbed by air is convected away while441

50% of heat absorbed results in heating of air [46]. The442

heat absorbed by the air is denoted by Qb air. After443

air cooling, the net heat generated is as illustrated in444

Equation 13.445

Qb gen =

{
i2bRint − Vbib(1− Ceff ) , if ib < 0

i2bRint , else

Qb air =

{
Tb−Tair

Ron
, if Tb ≥ Tb cutoff

Tb−Tamb

Roff
, if Tb < Tb cutoff

Tair = Tamb +
0.5Qb air
ṁairCpair

, if Tb ≥ Tb cutoff

qb =
Qb gen −Qb air

nmodule

(13)446

where, Tb is the temperature of the battery and SoC is the447

State of Charge of the battery. Ron, Roff are the effec-448

tive thermal resistance when airflow is present and absent449

respectively. The rate of change in battery temperature is450

calculated using Equation 14.451

Ṫb =
qb

mmoduleCpmodule
(14)452

2.3. Electric Motor453

The electric motor is an important component of the454

FCHEV. The machine converts electrical energy into me-455

chanical energy to be provided to the wheels and vice456

versa. In this paper, an AC induction motor and an in-457

verter are employed. Curve fitted equations for maximum458

torque and electrical power considering the efficiency of459

the inverter are provided in Appendix B460

3. Advanced NMPC Design Formulation for En-461

ergy Management462

The fundamental goal of an Energy Management Sys-463

tem is to coordinate the fuel converter and energy stor-464

age systems to supply the motor with the required power.465

However, an EMS’s strength resides in achieving the pri-466

mary purpose while lowering the cost of vehicle operation.467

The cost of operation can be reduced by lowering fuel us-468

age and extending the vehicle’s life. FCHEV’s operating469

costs can be reduced by470

1. Minimizing Fuel Consumption (mH2
).471

2. Minimizing Battery Energy Consumption (
∫
Pbdt).472

3. Operating Fuel Cell at its efficient point (η).473

4. Maintaining Fuel Cell temperature Tfc in the opti-474

mum range.475

5. Operating the battery at or near its nominal State of476

Charge to prevent deep discharge and ensuring suffi-477

cient capacity is available for regeneration power.478

6. Maintaining Battery Temperature Tb in the optimum479

range.480
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7. Minimizing the degradation of the fuel cell by avoiding481

situations that accelerate the degradation as seen in482

Table 1.483

The first three aims are concerned with reducing fuel con-484

sumption, while the last four objectives are concerned with485

extending the life of FCHEV. The fuel cell and battery486

dynamics and the thermal dynamics involved are highly487

nonlinear and cannot be retained by utilizing linear time-488

varying MPC. To deal with this design challenge, the Ad-489

vanced Dynamic Model Predictive Control (AMPC) based490

on the NMPC framework is introduced in this section.491

3.1. NMPC Formulation492

Nonlinear Model Predictive Control (NPMC) is an493

optimization-based feedback control technique. The cost494

function is optimized for a finite time horizon in the fu-495

ture, known as the prediction horizon. The future states496

are predicted using current state measurements and a dy-497

namic model of the system [31]. For Energy Management498

problem in FCHEV, the control problem is formulated as499

min
u(k),u(k+1)..u(k+N−1)

J(k) (15)500

where,501

J(k) =

N−1∑
i=0

{Cstage(x(i|k), u(i|k),um(i|k))}+ Cterminal(x(N |k))

(16)

502

Such that,503

x(k + 1) = g(x(k), u(k), um(k)), x ∈ X, u ∈ U (17)504

h(x(k), u(k), um(k)) ≤ 0 (18)505

m(x(k), u(k), um(k)) = 0 (19)506

The cost component Cstage represents the stage cost507

to be minimized inside the prediction horizon. The508

terminal cost Cterminal is added to the total cost function509

J(k) at the end of the prediction horizon. Terminal510

cost is used in the formulation of cost function to511

stabilize the optimization problem [31]. Manipulated512

or control variable is chosen as the Fuel cell power513

u(k) = Pfc(k). The state vector for the optimal control514

problem is defined as x(k) = [soc(k), Tfc(k), Tb(k)].515

Exogenous input vector contains information re-516

quired for solving the optimization problem517

um(k) = [Pdemand(k), fc on(k − 1), v(k − 1), Pfc(k − 1)]518

519

The state updation rule in discrete form x(k + 1) =520

g(x(k), u(k), um(k)) is obtained by integrating the contin-521

uous state space equation ẋ = f(x(k), u(k), um(k)). The522

continuous state space equations can be constructed from523

the dynamic equations of State of Charge (Equation 12),524

Fuel cell temperature (Equation 6), Battery temperature525

(Equation 14). m(x(k), u(k), um(k)), h(x(k), u(k), um(k))526

are respectively the equality and inequality constrains to527

be followed during optimization.528

3.2. Cost formulation for AMPC529

To address all the objectives described above, a cost530

function comprising multiple objectives is formulated. The531

prediction horizon stage cost Cstage is constructed based532

on the seven objectives defined above. Equation 20 depicts533

the components of Cstage534

Cstage(k)
k=0,1,...N−1

= CmH2
(k) + CP batt(k) + Cfc rate(k)

+ Cfc eff (k) + Csoc(k) + CTfc
(k) + CTb

(k)
(20)535

where,536

CmH2
= W1(

ṁH2

ṁH2max
)2 (21)537

CP batt = W2
Pb

Pb max
(22)538

Cfc rate = W3(
Pfc(k)− Pfc(k − 1)

Ṗfc maxT
)2 (23)539

Cfc eff =

{
0 , if Pfc = 0

W4(η−ηmax

ηmax
)2 , else

(24)540

Csoc = W5(
2(soc− socnom)

socmax − socmin
)2 (25)541

CTfc
=

{
W6(

Tfc−Tfc ref

Tfc max−Tfc ref
)2 , if Tfc > Tfc ref

0 , else

(26)

542

CTb
=

{
W7(

Tb−Tb ref

Tb max−Tb ref
)2 , if Tb > Tb ref

0 , else
(27)543

here, all the cost factors are written in their normalised544

forms to minimise the calibration efforts. Particularly,545

CmH2
relates to the minimization of hydrogen mass flow546

rate; CP batt is designed to minimize battery power at each547

step; the rate of change of fuel cell power is minimized us-548

ing Cfc rate; Cfc eff encourages the fuel cell to operate549

near the maximum efficiency region and it is active only550

when the fuel cell is on; Csoc is utilized to keep SoC close551

to its nominal value (the average of socmax and socmin);552

CTfc
and CTb

are designed to penalized the controller when553

the temperature crosses their respective reference temper-554

atures. The weights W1 −W7 are tuned to get the best555

performance of the EMS. The weights indicate the rela-556

tive significance of each of the above mentioned cost com-557

ponents. Next, a terminal cost Cterminal(N) with weight558

wterminal is used in the optimization to enforce the set559

point tracking of soc (Equation 25), Tfc (Equation 26)560

and Tb (Equation 27). The formulation of terminal cost is561

shown in Equation 28.562

Cterminal(N) = wterminal(Csoc(N) + CTfc
(N) + CTb

(N))
(28)563
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3.3. Constraints564

The physical constraints of the fuel cell and battery are565

expressed as equality and inequality equations used dur-566

ing cost function optimization. The drivability of the ve-567

hicle must be maintained at all times. First, the power568

demanded by the vehicle must be satisfied by the power569

sources:570

Ptotal = Pmotor + Paccessory = Pfc + Pb (29)571

Next, the fuel cell power is limited by maximum allowable572

power limit. Since the fuel cell cannot absorb energy, its573

minimum power is set as zero. The temperature of the574

fuel cell must not exceed the maximum limit. Meanwhile,575

the rate of change of fuel cell power is limited to reduce576

deterioration due to transient loading [43]:577

Pfc min ≤Pfc ≤ Pfc max (30)578

(
dPfc
dt

)min ≤
dPfc
dt
≤ (

dPfc
dt

)max (31)579

Tfc min ≤Tfc ≤ Tfc max (32)580

To reduce frequent switching of the fuel cell, a minimum581

switch off/on duration for the fuel cell is used in the EMS582

[2]. The fuel cell must maintain power above a particular583

threshold value, called uworking min if the time period be-584

tween turning on the fuel cell and turning it off (∆ton) is585

less than the minimum fuel cell on duration (tfc min on)586

and the fuel cell must remain off, if the time it has been off587

from the preceding on (∆toff ) is less than the minimum588

fuel cell off duration (tfc min off ).589

Pfc ≥ uworking min if ∆ton ≤ tfc min on (33)590

Pfc = 0 if ∆toff ≤ tfc min off (34)591

Finally, the battery’s state of charge, output power, ter-592

minal voltage, and temperature must remain within their593

bounded limits to operate the battery safely and effi-594

ciently:595

socmin ≤soc ≤ socmax (35)596

Pb min ≤Pb ≤ Pb max (36)597

Vb min ≤Vb ≤ Vb max (37)598

Tb min ≤Tb ≤ Tb max (38)599

The dynamic weight regulation scheme for AMPC based600

on Fuzzy Cognitive Map (FCM) is described in the follow-601

ing subsection. It is used to regulate the weights of the602

NMPC cost functions W1−W7 according to the instanta-603

neous vehicle states.604

3.4. Fuzzy Cognitive Map for AMPC605

Fuzzy Cognitive Maps (FCMs) are directed graph-based606

Fuzzy inference systems [47]. They consist of concepts607

(nodes) and weights associated with each edge connect-608

ing the nodes. The weight between ith concept and j th609

concept wij ∈ [−1, 1] specifies the causal relationship be-610

tween them. A positive weight represents a proportional611

relationship between the concepts, while a negative weight612

signifies the inverse relationship. An example Fuzzy Cog-613

nitive Map is shown in Figure 4. Fuzzy Cognitive Maps614

are preferred over the traditional rule-based fuzzy logic615

because of their numerical inference based method. The616

relationship between input and output can be understood617

intuitively [48] and tuning of fuzzy inference system are618

easier compared to conventional fuzzy logic. In addition,619

if the number of inputs increases, the number of rules in620

traditional fuzzy logic increases many folds, whereas, in621

FCM, an increase in concepts leads to a slight increase in622

the number of edge weights. Fuzzy Cognitive Map also has623

the capability of assigning hidden causality between con-624

cepts [49]. Due to the ease of building and tuning FCMs,625

they are suitable for modelling of physical system [50],626

functioning as controller [51] and especially functioning as627

decision making tool [52]. A FCM inference is made in628

three steps629

1. Concept Updation Rule: At each time step, con-630

cept values (Ai) are either obtained as input (ac-631

tivated concepts)[49] or as previous concept values.632

These concepts are updated by adding weighted sum633

of incoming concepts to its predecessor value as seen634

in Equation 39.635

Ak+1
i = f(Aki +

N∑
j=1

wijA
k
j ) (39)636

2. Threshold: To avoid the value of concepts exceed-637

ing the limit of [0,1], a threshold function is used. For638

our requirement, sigmoid function as defined in Equa-639

tion 40 is used.640

f(x) =
1

1 + e−c(x+θFCM )
(40)641

3. Iteration: The above two step are repeated until642

the difference in concept value at iteration k and k+1643

is lower than δ, Ak+1
i − Aki ≤ δ, where δ is a small644

positive value.645

1 2

3

4

5

w12

w13

w14

w15 w23

w24

w25

w35

w43w45

Figure 4: An example of Fuzzy Cognitive Map
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Table 2: Definition of Concepts

Concept Definition

A1(soc) 2(soc−socnom)
socmax−socmin

,Normalized state of charge of the battery.

A2(Tfc)
Tfc−Tfc ref

Tfc max−Tfc ref
if Tfc > Tfc ref , Normalized fuel cell temperature.

A3(Tb)
Tb−Tb ref

Tb max−Tb ref
if Tb > Tb ref , Normalized battery temperature.

A4(thot)
t(Tfc>Tfc cutoff )
t(Tfc>Tfc ref ) , Normalized duration for which Tfc > Tfc cutoff .

A5(Vtransient)
wdegradeΣ|

dPfc
dt |γtransient

Vmaxdrop
, Ratio of degradation due to transient to max degradation.

A6(Vlow)
wdegradet(Pfc<0.2Pfc max).γlow

Vmaxdrop
, Ratio of degradation due to low power to max degradation.

A7(Vhigh)
wdegradet(Pfc>0.8Pfc max)γhigh

Vmaxdrop
, Ratio of degradation due to high power to max degradation.

A8(Vcycle)
wdegradencycleγcycle

Vmaxdrop
, Ratio of degradation due to frequent start/stop to max degradation.

A9(Vdegrade) Increment in component A5 in the last 60 seconds.
A10(W1) Weight corresponding to fuel consumption rate.
A11(W2) Weight corresponding to Battery Power.
A12(W3) Weight corresponding to rate of change of fuel cell power.
A13(W4) Weight corresponding to efficiency of fuel cell.
A14(W5) Weight corresponding to state of charge of battery.
A15(W6) Weight corresponding to Fuel Cell Temperature.
A16(W7) Weight corresponding to Battery Temperature.

A17(W8) Maximum rate of change of fuel cell power. (
dPfc FCM

dt )max = (1−W8)(
dPfc

dt )max
A18(W9) Minimum rate of change of fuel cell power. (

dPfc FCM

dt )min = (1−W9)(
dPfc

dt )min

In this work, a FCM is newly designed for the AMPC646

by proposing causality between different concepts based647

on prior relevant knowledge to update the cost function648

weights, Wi. The concepts are divided into two categories649

- input concepts and output concepts. The input concepts650

are updated at each time step by measurements, while651

the output concepts are updated by inference process652

as described above. The FCM architecture created is653

shown in Figure 5. Table 2 shows the definition of all the654

concepts involved in the FCM design. To ensure correct655

causality and relative importance of causality weights, the656

input values are normalised and used as input concepts.657

The concepts A1 − A4 are constructed from the states658

of the vehicle. Once activated, the fuel cell degradation659

concepts A5 − A8 are designed to remain active and660

non-decreasing (Table 2). This enables the determination661

of the cost function weights while taking into account the662

history of fuel cell’s deterioration. A factor, wdegrade is663

multiplied to the degradation input concept to make the664

values comparable to other input concepts. The input665

concept A9 is used to regulate the rate of change of fuel666

cell power by evaluating the recent history of transients667

(in the last 60 seconds). The output concepts W8,W9 are668

obtained from A9 and they are used to regulate the limits669

of rate of change of fuel cell power as shown in Table 2.670

The updated limits of rate of change of fuel cell specified671

by the FCM (
dPfc FCM

dt )min,
dPfc FCM

dt )max) will be applied672

in Equation 31.673

674

The vital aspect of building FCM is to define the675

weights between concepts. The connections from input676

concepts Ai, i={1..9} to output concepts Wj , j={1..9} are677

created based on the influences which can be described as678

below679

� W1 is the weight associated with the mass flow rate680

of fuel. W1 is increased when the fuel consumption681

requirement is less. It occurs when the SoC (A1) is682

high or the fuel cell temperature (A2) is high, fuel683

cell degradation due to high power operation (A7) is684

high. When there is a need for fuel cell power, W1 is685

reduced. When battery temperature (A3) rises, fuel686

cell power is expected to increase to decrease the bat-687

tery load. When degradation related to low power688

operation (A6) increases, W1 is lowered to increase689

fuel cell power.690

� Weight W2 is increased when the temperature of bat-691

tery (A3) or fuel cell degradation due to low power op-692

eration (A6) increases. When SoC (A1) is lower than693

nominal value, W2 is increased to promote charging.694

� Weight W3 is increased to reduce the rate of change695

of power. The concept A5 corresponding to degrada-696

tion due to transient loading has the most significant697

impact on W3. An increase in fuel cell (A2) and bat-698

tery (A3) temperature allows for relaxation in W3 to699

increase or decrease freely.700

� Weight W4 corresponding to fuel cell efficiency is701

increased when SoC (A1) is low or battery tem-702

perature (A3) is high, and degradation is high703

11



Table 3: Weight Matrix from input concept Ai to output concept Wi

A1 A2 A3 A4 A5 A6 A7 A8 A9

W1 0.1 0.5 -0.5 0.5 0.75 -0.5 0.25 1 0
W2 -0.05 -0.5 0.5 -0.25 -0.75 0.5 0 -0.5 0
W3 0.1 -0.1875 -0.125 -0.75 1 -0.5 0.25 0 0
W4 -0.1 -0.25 0.25 -0.5 0.5 1 -0.25 0 0
W5 0.1sign(A1) -0.25 0.5 -0.5 -0.5 1 -0.25 0 0
W6 0 0.375 -0.25 1 0.5 0 0.25 0 0
W7 0 0.25 0.5 -0.1 0 0.375 -0.25 0.5 0
W8 0 0 0 0 0 0 0 0 0.25
W9 0 0 0 0 0 0 0 0 0.25

Input
concept

Output
concept

A1 W1

A2 W2

A3 W3

A4 W4

A5 W5

A6 W6

A7 W7

A8 W8

A9 W9

w11

w12

w21

w22

w23

w32

w33

w34

w43

w44

w45

w54

w55

w56

w65

w66

w67

w76

w77

w87

w98

w99

w1011

w1312

w1314

Figure 5: Fuzzy Cognitive Map used for NMPC weight updation

(A5, A6, A7, A8, A9). Operating fuel cell at higher ef-704

ficiency can lead to reduction in degradation [42].705

� Weight given to SoC (W5) increases when SoC706

(A1) deviates from nominal value ,temperature of707

battery rises (A3) and decreases when fuel cell708

needs to be taken care of. The connection weight709

w15 = 0.1sign(A1) is chosen because when soc >710

socnom, A1 > 0, thus w15 is positive, increasing W5.711

Similarly when soc < socnom, A1 < 0 and w15 < 0.712

But the weighted contribution w15A1 is positive thus713

increasing W5.714

Table 3 shows the causality weight between input concepts715

and output concepts. This matrix depicts the relation-716

ship and the strength of the input on the output concepts.717

The causality weights are initially tuned based on the in-718

coming concepts Ai and their importance to the output719

concept Wj . This corresponds to the tuning of causality720

weights row-wise in Table 3. Then, column-wise tuning721

of causality weights is done in order to decide the order722

and weightage of cost function weights for different input723

concepts. Causality weights between Wi are used to rein-724

force the importance of the cost function weight compared725

to other cost function weights. For example, cost function726

weight W1 (fuel consumption) is reinforced by cost func-727

tion weights W3 (rate of change of fuel cell power), W4728

(fuel cell efficiency), W5 (SoC), W6 (fuel cell temperature)729

by having a positive causality weight, while opposed by730

cost function weight W7 (battery temperature) by having731

a negative causality weight. Table 4 shows the impacts732

between the output concepts.733

Table 4: Weight Matrix from output concept Wi (horizontal) to
output concept Wj (vertical)

W1 W2 W3 W4 W5 W6 W7

W1 0 0 0.5 0.1 0.1 0.1 -0.05
W2 -1 0 0 -0.75 0.05 0 0
W3 0.5 0 0 0.1 -0.1 0.2 0.1
W4 0.1 0 0 0 0 -0.1 0.2
W5 0.3 0 0.2 0.1 0 0 0.05

Using the causality weight matrix, the FCM can provide734

cost function weights to the NMPC for various combina-735

tions of input concepts, thereby covering all driving condi-736

tions. Unlike the driving pattern recognizer and fixed cost737

function weights for each driving mode proposed in [35]738

the proposed continuous weight regulation method using739

Fuzzy Cognitive Map is more agile to various driving con-740

ditions.741
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4. Simulation results742

In order to evaluate the effectiveness of the designed743

AMPC, a comparative study between the APMC and744

other two typical MPC strategies, denoted by MPC-1 and745

MPC-2, has been carried out by means of simulation. The746

MPC-1 is a simplified version of the NMPC developed747

above with fewer components/objectives of the cost func-748

tion and fixed weights, while the MPC-2 is the NMPC749

developed in the above section with fixed weights (to be750

presented later). To support this comparative study, an751

SUV FCHEV model is created within MATLAB/Simulink752

environment using ADVISOR (ADvanced Vehicle Simula-753

tOR) [37].754

4.1. Simulation environment setup755

The created FCHEV model is setup to run in conjunc-756

tion with the comparative energy management strategies757

as depicted in Figure 6. In the model, the EMS provides758

the optimal fuel cell power command to fuel cell and the759

battery power is calculated by subtracting the fuel cell760

power from total power demand via the power bus block.761

The default thermal system of the fuel cell model (ini-762

tialised by ADVISOR) is modified by incorporating the763

thermal model described through Equation 4, Equation 5,764

Equation 6. Table 5 shows the parameters of components765

of the SUV used in the simulation. The coefficients of766

mass flow rate of hydrogen (Equation 3) and heat trans-767

fer coefficient in the radiator (Equation 5) are obtained by768

using the lookup table data available from ADVISOR and769

the curve fitting method. The derived coefficients are then770

shown in Table 6.771

The simulations are then carried out with a sampling772

period (T) of 1s, the initial SoC as 0.6, and the ambient773

temperature at 20 ◦C. The EMS evaluation is conducted774

on two different trips - trip-1 and trip-2. Trip-1 is based775

on two consecutive occurrences of UDDS cycle with a top776

speed of 25.35 m/s and maximum acceleration and decel-777

eration of 1.48 m/s2 and −1.48 m/s2 respectively whereas,778

trip-2 is based on two consecutive occurrences of LA92779

cycle with a top speed of 30.04 m/s and maximum accel-780

eration and deceleration of 3.08 m/s2 and −3.93 m/s2 re-781

spectively [53]. To examine the fuel cell degradation in782

each trip, the fuel cell state of health is assumed to be 100783

% at the start of the journey. The total energy supplied784

to the vehicle is defined as785

Eveh =

∫
ṁH2

LHV dt−∆socVoc meanCAh nomnpns (41)786

Here, the first term corresponds to the total chemical en-787

ergy given to the fuel cell while the second term is the788

total electrical energy taken out from the battery, repre-789

sented by the difference between the battery energy levels790

at the beginning and at the end of the trip. To under-791

stand the thermal conditions of the power sources, the792

mean deviation of fuel cell and battery temperatures from793

their reference temperature is calculated. This mean value794

is calculated from the first time the fuel cell, battery ex-795

ceeded its respective reference temperatures.796

Table 6: Coefficients of Fuel Cell equations

Equations Coefficients
ṁH2 α1 = 3.19× 10−15

α2 = −1.27× 10−10

α3 = 1.45× 10−5,α4 = 0.016
hrad β1 = −5.27,β2 = 112.08

β3 = 134.93
vhtx γ1 = 4.07,γ2 = −1.56

γ3 = 0.15

4.2. Setting of comparative energy management strategies797

The system parameters and the constraints used for798

all the three EMSs are the same and provided in Table 7799

and Table 8 respectively. ∆soccutoff is the difference800

between the SoC at which the fuel cell is turned off and801

Table 5: Configuration of Fuel Cell Hybrid Electric Vehicle from ADVISOR

Component Specification Component Specification
Vehicle Total mass (mv)- 1843 kg Fuel cell Mass of fuel cell (mfc) - 125 kg

crolling - 0.009 Heat capacity of fuel cell (Cpfc) - 500 J/kgK
Gear ratio (gr) - 10.549 Cabin heating efficiency (ηcabin) - 0.7
Accessory (Paccessory) - 700 W Mass flow rate of air in cabin ṁcabin - 0.07 kg/s
Transmission - one speed Battery Nominal capacity(CAh nom) - 6Ah

Motor Type - Induction motor No. of series connection (ns)- 27
Maximum power - 107 kW No. of parallel connection (np) - 2
Peak efficiency - 0.94 Eff. thermal resistance - on (Ron) - 1.12 W/K

Fuel cell Max. power - 55 kW Eff. thermal resistance - off (Roff ) - 7.81 W/K
Peak efficiency (ηmax) - 0.55 Heat capacity of module (Cpmodule) - 795 J/kgK
LHV of H2 - 120 000 J/g Mass of module (mmodule) - 1.1347 kg
Time constant (ts) - 1.5 s Mass flow rate across module (ṁair)- 0.0058 kg/s
Frontal area of radiator (Arad) - 0.2 m2
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Figure 6: Simulink design of SUV FCHEV model integrated comparative EMSs

Table 7: Parameters of EMSs used in the simulation.

Parameter Value
∆soccutoff 0.05
socnom 0.6
Pb max 75 kW
ṁH2max 0.8208 g/s
uworking min 2500 W
θFCM -1.2
wdegrade 1000
wterminal 2
tfc min off 90 s
tfc min on 60 s
Tfc cutoff 70 ◦C
Tfc ref 60 ◦C
Tb cutoff 35 ◦C
Tb ref 33 ◦C
Vmaxdrop 0.2 V

the nominal value of SoC. This parameter is used as the802

final measure to prevent overcharging of the battery by803

turning off the fuel cell and running the vehicle in pure804

battery mode. The control and prediction horizons are805

both set to N=4. Due to the number of variables and806

cost components involved in the optimization process,807

the small prediction horizon is selected to reduce the808

computational effort. The control horizon is taken to be809

the same as the prediction horizon to provide freedom to810

the optimizer to properly choose control commands at811

each step.812

813

While the AMPC is constructed as presented in814

Section 3, the MPC-1 has a simplistic cost function815

with Cstage(k) = CmH2
+ CP batt + Csoc and no terminal816

cost. Meanwhile, the MPC-2 uses the proposed cost817

function (Equation 21 - Equation 27) with constant818

weights. Table 9 shows the weight selection for the cost819

components of the MPC-1 and MPC-2. For the MPC-1820

and MPC-2, these weight values are calibrated for trip-1821

and then re-used for trip 2. The weights of cost function822

Table 8: Upper and lower limits of operating variables

Variable Minimum Maximum
Pfc 0 W 50 000 W

Ṗfc −3000 W/s 3000 W/s
Tfc 20 ◦C 80 ◦C
soc 0.4 0.8
Vb 162 V 315.9 V
Tb 20 ◦C 50 ◦C

for the AMPC are automatically regulated online by the823

FCM (see Subsection 3.4).824

Table 9: Weights of cost components for MPC-1 and MPC-2 during
simulation

Weight MPC-1 MPC-2
W1 1 1
W2 0.333 0.2737
W3 0 0.5826
W4 0 1.2
W5 1.3333 1.8
W6 0 0.7227
W7 0 1.5

4.3. Results and discussions825

The comparative simulation results and the AMPC826

weight profile according to trip-1 are shown in Figure 7,827

Figure 8 and Figure 9. The same for trip-2 are then shown828

in Figure 10, Figure 11 and Figure 12. The upper and829

lower limits, reference values and cut-off values set for the830

fuel cell and battery can be seen in Figure 7, Figure 8,831

Figure 10 and Figure 11. The performance of EMSs for832

trip-1 and trip-2 are discussed in the upcoming sections.833

4.3.1. Comparison of EMSs performance in trip-1834

In trip-1, the three EMSs met the total power demand835

to the energy sources, as seen in the total power plot836
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Figure 7: Trip 1 simulation result - a) Vehicle speed, b) Total power requested and provided by EMSs, Comparison of c) Fuel cell power, d)
Fuel cell power rate and e) Battery power under different EMSs

Figure 8: Trip 1 simulation result - Comparison of a) State of Charge of battery, b) Fuel consumed, c) Efficiency of fuel cell, d) Fuel cell
temperature and e) Battery temperature under different EMSs
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Figure 9: Trip 1 simulation result: AMPC weights regulated by FCM

Figure 7b. The performance of the MPC-1 in trip-1 is first837

analyzed. As seen in Figure 8a,d,e, the SoC of the battery838

is kept near the initial value throughout trip-1, and the839

fuel cell and battery temperatures gradually increase. It840

is due to the fact that the fuel cell’s average power of 6.57841

kW (Figure 7c) provides nearly continuous power while842

the average power demand of trip-1 is 6.22 kW. As a843

result, the net battery power is low, resulting in a low SoC844

deviation and a moderate battery temperature rise. How-845

ever, due to the fuel cell’s continuous low-power operation846

in trip-1, the temperature of the fuel cell has increased847

(Figure 8d), the efficiency has reduced (Figure 8c), and848

the fuel consumption has increased (Figure 8b). In the849

case of MPC-1, high-frequency oscillation is observed in850

the system response, as shown in a zoom-in of Figure 7d.851

The MPC-1’s poor performance could be related to852

using a small number of cost components that do not853

account for fuel cell efficiency, operating temperature, or854

deterioration and instead focus on fuel consumption and855

battery power.856

857

As observed in Figure 7c,e, the second EMS, MPC-858

2, used the battery significantly in trip-1, reducing the859

reliance on fuel cell. The SoC of the battery fluctuated860

from minimum to the SoC cutoff value (∆soccutoff ), at861

which point the fuel cell is switched off. The battery862

temperature increased as a result of increased usage.863

The surges in battery temperatures at t = 200 s and864

1550 s (Figure 8e) are caused by surges in battery power865

provided to the vehicle (Figure 7e). All of these trends are866

caused by the on/off supply of fuel cell power. When the867

power demand is high and the fuel cell is off, the battery868

has to provide a large amount of power as seen in times t869

= 200 s and 1550 s. The on/off supply of fuel cell power870

also had impact on the fuel cell performance as well.871

Throughout the journey, it was observed that the fuel872

cell temperature has increased and decreased unlike the873

case of the MPC-1. When the fuel cell is off, the cooling874

system can effectively cool the fuel cell due to the lack of875

heat generation. A drop of 20 ◦C is observed between time876

t = 850 s and t = 1600 s (Figure 8d). The MPC-2 has877

operated the fuel cell in the best efficient region as seen878

in Figure 8b. Subsequently, it has helped in minimising879

the fuel consumption (see Figure 8). The power transient880

during fuel cell operation is considerably reduced when881

compared to the MPC-1. The enhanced performance of882

MPC-2 compared to MPC-1 can be attributed to the cost883

function formulation, which includes various objectives884

for the fuel cell’s (Cfc rate, Cfc eff , CT fc) and battery’s885

(CT b) welfare are provided. The design of Cfc eff886

discourages switching on and favours switching off of the887

fuel cell, which aids the optimizer in determining when to888

turn on/off the fuel cell as needed.889

890

The proposed EMS, AMPC, operated similarly to891

MPC-2, but the AMPC provided more fuel cell power892

and thus could support the battery. This is evidenced by893

the rapid increase in SoC at times t = 650 - 850 s and t894
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= 1600 - 1700 s in Figure 8a. By operating in a higher895

power region, the fuel cell charges the battery faster and896

shuts down earlier than the MPC-2. The duration of897

fuel cell off has increased by 23% in the case of AMPC898

compared to MPC-2 while meeting power demand, as899

shown in Figure 7c. As seen in Table 10, this allowed for900

further reductions in fuel cell temperature as well as a901

shorter duration of low power fuel cell operation.902

903

The AMPC uses the dynamic weights obtained from904

FCM to compute the optimal control decision. The905

output concepts W1 − W7, and the factors W8 and W9,906

influence the optimizer’s decisions by modifying the907

weights of the cost function and the domain of the control908

variable (fuel cell power), respectively in order to enhance909

the performance of NMPC in the AMPC architecture.910

The magnitude and distribution of the weights in Figure 9911

show that the priority and significance of the priority vary.912

913

The weights W1 − W7 are normalized by dividing914

by weight W1 as shown in Figure 9. From the start of the915

journey until t = 300 s, the SoC dropped to a minimum916

value, and in response to the drop, the weights W2,W4,W5917

grew while the weights W1,W3 decreased, as designed918

in column A1 of Table 3. The fuel cell efficiency (W4)919

was given more importance than fuel consumption (W1)920

and transients (W3), encouraging the fuel cell to perform921

more efficiently and supply power for both traction and922

charging the battery. The weights W6,W7 are increased923

compared to W1, in reality, they remained constant as924

there was no input concept activation for W6,W7 between925

t = 0 and 300 s. At t = 300 s, when the fuel cell was926

turned on, the input concept A8 was activated. The fuel927

cell power transients during start-up activated the input928

concept A5. The activation of concept A5, A8 increased929

weight W1 and reduced all other weights relative to930

W1, creating a sudden drop in weights. The weights931

W2,W4,W5,W7 dropped relative to W1 when SoC grew932

from t = 300 s due to charging till t = 400 s. At t = 400933

s, the input concept A3 related to battery temperature934

was triggered as the temperature crossed the reference935

value. The weights increased slightly as the battery936

temperature increased slowly. Between time t = 400 – 950937

s, the SoC reached the nominal value and crossed it, while938

the temperature stayed constant. As a result, W1 has939

increased further, and all other weights have decreased940

and below W1, demonstrating that once the battery’s941

SoC is sufficient to match the vehicle’s demand, reducing942

fuel consumption becomes a higher priority. From t =943

950 to 1550 s, the weights W2,W4,W5,W7 grew at a large944

rate, while W6 increased at a smaller rate in response to945

diminishing SoC and reaches a peak. When the fuel cell946

turns on the second time at t = 1550 s, it caused a drop947

in weights for the reasons stated above. Between t = 1550948

and 1700 s, the battery temperature reached a new peak,949

prompting the FCM to increase the weights. At time t950

= 1700 s, the concept A2 was activated as the fuel cell951

temperature crossed the reference value. The activation of952

A2 increased weights W1,W6,W7 and decreased weights953

W2,W3,W4,W5, allowing the fuel cell to operate at lower954

power for the battery to take over, as designed in the955

column A2 in Table 3. The highest drop was observed in956

weights W2,W3,W4,W5, when the causal weights are of957

opposite signs. During the period t = 2000 - 2250 s, when958

both fuel cell and battery temperatures were decreasing,959

the weights stabilised and began to reverse trend, and960

from t = 2250 s, since the SoC was near to the nominal961

value, the weights are adopted such that the function of962

the fuel cell is reduced and that of the battery is increased.963

964

Depending on the fuel cell transient, the factors W8,W9965

reduce the rate of change of the fuel cell power limit.966

When the fuel cell is turned off, the transients are zero,967

hence the limits remain unchanged. However, when the968

fuel cell is turned on or off, there is a large transient in969

fuel cell power, and the limits of fuel cell power transients970

are reduced as seen in Figure 7d. If no transients exist in971

the fuel cell power during operation, the factors are not972

updated, and the limits remain unchanged. Otherwise,973

if there have been transients in the past one minute, the974

factors are updated, further lowering the limits, as seen975

in Figure 7d near the time t = 1650 s.976

4.3.2. Comparison of EMSs performance in trip-2977

The trip-2 is used to study the performance of EMS in978

previously unseen harsher accelerations and decelerations979

as all three EMSs are tuned for trip-1. Trip-1 has less980

power demand than trip-2 due to lower accelerations981

and decelerations and shorter peak velocity durations,982

as shown in Figure 7a, b and Figure 10a, b. In trip-2,983

from the total power plot Figure 10b, it can be observed984

there are some deviation in braking power required and985

braking power provided by all three EMSs. It is because986

the braking power is more than the battery’s capacity987

to absorb the regenerative power and the capacity of988

mechanical brakes, resulting in a slight deviation in veloc-989

ity achieved and requested (Table 10). One observation990

regarding the battery temperatures in trip-2 is that they991

are larger than in trip-1 for all three EMSs. It is due992

to the trip-2’s consistent high power demand. When a993

sudden peak vehicle power demand arises, the fuel cell994

may not be able to scale the power to the required value995

due to constrains in rate of change of power. In such996

cases, the battery power requirement may reach the limits997

of the battery. The power required is high in trip-2 near998

the time instances t = 300 s, 850 s (Figure 10b), and999

the fuel cell was unable to provide the required power1000

(Figure 10c), so the battery power reached its maximum1001

limit, and the battery temperature also took a large jump,1002

as shown in the battery power and battery temperature1003

plots in Figure 10e and Figure 11e respectively.1004

1005

At the start of trip-2, the MPC-1 was focused on1006

limiting fuel consumption and battery usage. It can be1007

17



Figure 10: Trip 2 simulation result - a) Vehicle speed, b) Total power requested and provided by EMSs, Comparison of c) Fuel cell power, d)
Fuel cell power rate and e) Battery power under different EMSs

Figure 11: Trip 2 simulation result - Comparison of a) State of Charge of battery, b) Fuel consumed, c) Efficiency of fuel cell, d) Fuel cell
temperature and e) Battery temperature under different EMSs
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Figure 12: Trip 2 simulation result: AMPC weights regulated by FCM

inferred from the low power operation of the fuel cell1008

(Figure 10c) and lower battery power (Figure 10e) from1009

the start of the trip until time t = 350 s. When the1010

SoC dropped to a minimum at time t = 600 s, the fuel1011

cell tried to enhance the battery SoC (Figure 11a), as1012

evidenced by the rapid increase in fuel cell power in the1013

Figure 10c. Minimizing battery power resulted in lower1014

battery temperatures at first, but by t = 1500 s, all three1015

EMSs had the same battery temperatures. This can be1016

explained by the MPC-1’s increased battery usage, as1017

considerable variations in SoC can be seen near time t1018

= 1500 s. As indicated in the total power and fuel cell1019

power plot in Figure 10, the MPC-1 frequently turned1020

off the fuel cell as the vehicle decelerated. This resulted1021

in large transients in fuel cell power, as shown in the1022

Figure 10d. It should be noticed that the duration of1023

each fuel cell switch off is 90 s, which is the minimum1024

switch off duration ∆toff . Except at t = 200 s, the fuel1025

cell was turned on to charge the battery and provide the1026

required traction. At t = 200 s, the fuel cell was turned1027

on to reduce battery power until t = 350 s. The rise in1028

fuel cell temperature is limited by low power output and1029

frequent switch off (Figure 10d). Nonetheless, in trip-2,1030

the increased frequency of start/stop events and strong1031

transients in fuel cell power (Figure 10d) are the primary1032

reason for the fuel cell’s poor health, with a SoH drop of1033

0.12% by the end of the trip.1034

1035

In the instance of MPC-2, it can be seen from the1036

SoC plot Figure 11a and the fuel cell power plot Fig-1037

ure 10c that the SoC of the battery and the response1038

of the fuel cell are comparable to the MPC-1 after t1039

= 500 s, however, the number of on/off operation and1040

transients during operation of fuel cell is smaller. Because1041

the fuel cell power output is similar to MPC-1, the fuel1042

cell temperature after t = 500 s is likewise similar. The1043

MPC-2 and MPC-1 responses are comparable because,1044

after switching off the fuel cell at t = 500 s due to braking,1045

the SoC in both the EMSs declined from 0.45 at t = 5001046

s to 0.4 at t = 600 s (Figure 11a). Since the EMS must1047

maintain SoC while simultaneously taking into account1048

the aims and constraints of power sources, the response1049

of the EMSs, i.e., fuel cell power, is similar but differs1050

depending on the objectives of each EMS. One of the1051

goals of MPC-1 is to reduce fuel consumption and hence1052

lower power production, while MPC-2’s goal is to run the1053

fuel cell at higher efficiency with less transients. These1054

varied EMS objectives yield diverse responses, which1055

can be seen in the fuel cell power (Figure 10c), power1056

transient (Figure 10d), and efficiency plots (Figure 11c)1057

for example, from t = 600 s to t = 950 s. The transients1058

during switch off are high due to the sudden availability1059

of braking power at times t = 500, 950, 1150, 1650, and1060

1950 s, while the transients during start-up are high at1061

times t = 375, 1050, 1250, and 2000 s. The fuel cell is1062

switched on faster to provide traction and charge the1063

battery faster as SoC is low in those instances. Transients1064

during operation are also observed between t = 1750 -1065
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1950 s (Figure 10d).1066

1067

The AMPC maintained the SoC near to the nomi-1068

nal value better than MPC-1 and MPC-2 (Figure 11a).1069

The AMPC achieved this by a) careful computation of1070

fuel cell switch off instant and duration; b) operating1071

the fuel cell at higher efficiency (Figure 11). We can see1072

that in some instances (near the times t = 500 s and t1073

= 1150 s) where there are large decelerations, the fuel1074

cell was shut down by the MPC-1 and MPC-2 due to1075

high regenerative braking power from the motor, whereas1076

instead of switching off, the AMPC reduced the fuel cell1077

power, as seen in Figure 10c. The AMPC sent the energy1078

from fuel cell to the battery, resulting in less capacity to1079

accommodate the regenerative energy. Nonetheless, there1080

are two benefits to doing this: a) reducing the number of1081

switching to improve the fuel cell lifespan; b) in the event1082

of a sudden massive acceleration after the deceleration,1083

as seen in these instances, the fuel cell supplies power,1084

to reduce the load on the battery and hence improve its1085

lifetime, as opposed to the MPC-1 and MPC-2. In trip-2,1086

compared to the MPC-1 and MPC-2, the lowest number1087

of fuel cell on/off operations was achieved by AMPC1088

(Table 10). The AMPC had lower transients during1089

fuel cell start-up than MPC-1 and MPC-2 because, the1090

battery’s SoC is sufficient to provide power until the fuel1091

cell power can increase at a moderate rate. Because of the1092

high power generation in the fuel cell and the low number1093

of switch offs, the fuel cell temperature rose quickly in1094

time t = 500 - 950 s (Figure 11d). Nonetheless, the fuel1095

cell temperature becomes comparable to other EMSs fuel1096

cell temperatures due to radiator cooling in the fuel cell.1097

1098

Figure 12 shows the weights regulated by the fuzzy1099

cognitive map in the AMPC for trip-2. Due to increased1100

battery temperature in trip-2, the weights W2 −W7 are1101

1.5 times larger than trip-1 with weight W1 normalized to1102

1.1103

1104

The trend observed in Figure 9 at the start of trip-1105

1, during minimum SoC, start-up of fuel cell, and1106

activation of concept A3, is also exhibited at the start of1107

trip-2 and at times t = 300 s, t = 350 s, and t = 4251108

s respectively (Figure 12). As the battery temperature1109

grew gradually owing to charging between times t =1110

500 - 850 s, the weight W7 climbed while the weight W61111

declined, as determined from causal weights in column1112

A3 of Table 3. As the SoC reached nominal value, the1113

weights declined from t = 800 - 850 s, and the concept1114

A2 was activated at time t = 825 s. Due to a significant1115

rise in battery temperature due to huge battery power,1116

the weights W2,W4W5,W6,W7 increased whereas W1,W31117

decreased at t = 850 s. Weights W2,W4,W5 drop as fuel1118

cell temperature increased, whereas W6 increased till t =1119

900 s. Weights increased from t = 950 s to t = 1125 s due1120

to the increased battery temperature and reduced SoC.1121

The weight decreased when the fuel cell was turned on for1122

the second time for the reasons explained in the case of1123

fuel cell start-up in trip-1. The weights decreased in the1124

intervals t = 1125 -1550 s, t = 1775 – 1950, and t = 2075 s1125

– until the end of trip -2 as the fuel cell temperature rose,1126

whereas the weights increased in the intervals t = 1550 –1127

1775 s and t = 1950 – 2075 s as the fuel cell temperature1128

decreased and SoC deviated from the nominal value. It is1129

observed that the magnitude of the weights decreases at1130

each peak. It is due to the degradation concept associated1131

with fuel cell start/stop cycles A8, which causes the1132

weight W1 to grow as the number of start/stop cycles1133

increases. This is done to give fuel consumption greater1134

importance and limit the number of switching on when1135

the fuel cell is off. Due to the logic employed in the FCM,1136

the SoC was well maintained near nominal value in trip-21137

with fewer fuel cell switch on/off cycles.1138

4.3.3. Overall performance of EMSs1139

The simulation results of all three EMS are summarized1140

in the Table 10. In the case of AMPC, the average im-1141

provement in hydrogen consumption in the two journeys1142

Table 10: Comparison of numerical results of MPC-1, MPC-2 and AMPC

Parameters Trip-1 Trip-2
MPC-1 MPC-2 AMPC MPC-1 MPC-2 AMPC

RMS Error in velocity (m/s) 0 0 0 0.0046 0.0046 0.0046
Total Fuel Consumed (g) 309.27 287.22 279.73 307.03 303.75 300.78
Total Energy given to the vehicle (MJ) 36.57 34.26 33.77 38.80 38.47 38.25
Final SoC-Initial SoC 0.0354 0.0137 -0.0135 -0.1275 -0.1313 -0.1406
Average Efficiency (%) 48.43 51.95 51.91 51.76 53.25 53.44
State of health of Fuel Cell (%) 99.98 99.97 99.97 99.88 99.91 99.94
Mean deviation from Tfcref (0C) 4.95 -1.23 -3.84 3.83 4.90 5.65
Mean deviation from Tbref (0C) 2.75 3.81 3.85 10.14 10.68 10.90
Low Power Duration (s) 2739 1132 755 666 483 480
High Power Duration (s) 0 0 19 3 12 2
Number of Start/Stops 1 2 2 8 6 4
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compared to MPC-1 and MPC-2 was 6.131% and 1.865%,1143

respectively. Due to the increased power requirement in1144

trip-2, the total energy amounts provided to the vehicle1145

in the three cases are similar. If the driving conditions of1146

trip2 are extrapolated for 100 hours, the improvement in1147

SoH of fuel cell in the case of AMPC compared to MPC-1148

1 and MPC-2 is 11.7% and 5.5% respectively. Because1149

the fuel cell is the most expensive component in the car,1150

improving its SoH is beneficial for extracting utility over1151

a longer period of time. The drop in mean deviation of1152

fuel cell temperature for the MPC-1 and MPC-2 compared1153

to AMPC is due to the high frequency of fuel cell turn1154

off. This is offset by the higher SoH of the fuel cell un-1155

der AMPC strategy. For trip-1, the drop of 8.8 ◦C in fuel1156

cell temperature in AMPC compared to MPC-1 is signifi-1157

cant because a lower operating temperature of a fuel cell1158

can minimize thermal stress and hence work for a longer1159

period of time. In both the trips, the fuel cell life is ex-1160

tended compared to the other two EMS by minimizing the1161

depletion of SoH of fuel cell and minimizing the fuel cell1162

temperature.1163

5. Conclusion and future work1164

In this paper, an Advanced Model Predictive Control1165

is proposed for optimal energy management in FCHEVs.1166

The AMPC employs a novel dynamic multi-objective cost1167

function that considers fuel consumption, operational1168

efficiency, fuel cell health, battery state of charge, and1169

lastly fuel cell and battery temperatures in order to1170

prolong the lifetime of components and lower the overall1171

running cost of FCHEV. A Fuzzy Cognitive Map is1172

constructed for AMPC to continuously regulate the cost1173

function weights to optimise the energy management1174

performance. The proposed controller has been compared1175

with two conventional constant weighted NMPC based1176

EMSs by numerical simulation. The simulation results1177

show that the AMPC offers the best performance by1178

reducing fuel consumption, total energy given to the1179

vehicle, and improving the lifetime of fuel cells by con-1180

trolling the number of fuel cell on/off, efficient operation1181

and lower fuel cell operating temperature compared to1182

MPC-1 and MPC-2. It is due to the adaptive nature1183

of dynamic weights of NMPC regulated by the FCM.1184

Another key benefit of AMPC is that it requires little1185

effort for calibrating the EMS due to the generalized1186

and easily comprehensible causality between the states1187

of the vehicle (input concepts) and NMPC cost function1188

weights (output concepts) enabled by the proposed FCM1189

architecture.1190

1191

Future work will be carried out with an updation of1192

causality weight matrix of FCM using artificial in-1193

telligence - based learning techniques to improve the1194

adaptability as well as robustness of the AMPC. In1195

another research direction, the auxiliary power in the fuel1196

cell and battery system will be analysed for inclusion in1197

the AMPC.1198

Appendix A. Battery Equations1199

Equations of Coulombic Efficiency Ceff and Maximum1200

Capacity of the battery CAh ,Open circuit Voltage Voc,1201

Charging resistance rchg, Discharging resistance rdis are1202

obtained by fitting the battery lookup table data available1203

in ADVISOR.1204

Ceff = δ1T
2
b + δ2Tb + δ3 (A.1)1205

1206

CAh = ζ1T
2
b + ζ2Tb + ζ3 (A.2)1207

1208

Voc = α1 + α2Tb + α3soc+ α4T
2
b + α5Tbsoc+ α6soc

2+

α7T
2
b soc+ α8Tbsoc

2 + α9soc
3 + α10T

2
b soc

2 + α11Tbsoc
3

+ α12soc
4 + α13soc

5 + α14soc
4Tb + α15soc

3T 2
b

(A.3)1209

1210

rchg = β1 + β2Tb + β3soc+ β4T
2
b + β5Tbsoc+ β6soc

2+

β7T
2
b soc+ β8Tbsoc

2 + β9soc
3 + β10T

2
b soc

2 + β11Tbsoc
3

+ β12soc
4 + β13T

2
b soc

3 + β14Tbsoc
4 + β15soc

5

(A.4)1211

1212

rdis = γ1 + γ2Tb + γ3soc+ γ4T
2
b + γ5Tbsoc+ γ6soc

2+

γ7T
2
b soc+ γ8Tbsoc

2 + γ9soc
3 + γ10T

2
b soc

2 + γ11Tbsoc
3

+ γ12soc
4 + γ13T

2
b soc

3 + γ14Tbsoc
4 + γ15soc

5

(A.5)1213

Table Appendix A.1: Coefficients of equations for battery

Eqs Coefficients
Voc α1 = 10.31,α2 = −0.05814,α3 = 2.043

α4 = 0.0008699,α5 = 0.3595,α6 = −9.587
α7 = −0.004332,α8 = −0.8736,α9 = 26.31
α10 = 0.007505, α11 = 0.8867, α12 = −28.31
α13 = 10.93,α14 = −0.3132,α15 = −0.004072

rchg β1 = 0.06283,β2 = −0.001489,β3 = −0.128
β4 = 1.77× 10−5,β5 = −0.00924,β6 = 0.6212
β7 = 0.0002199,β8 = 0.02236, β9 = −1.571
β10 = −0.0005006, β11 = −0.01379, β12 = 1.712
β13 = 0.0002911,β14 = 0.0003481,β15 = −0.6516

rdis γ1 = 0.1311,γ2 = 0.006381,γ3 = −0.8978
γ4 = −0.0001372,γ5 = −0.07916,γ6 = 4.631
γ7 = 0.00135,γ8 = 0.2015,γ9 = −11.3
γ10 = −0.002685, γ11 = −0.1869, γ12 = 12.24
γ13 = 0.001516,γ14 = 0.05568,γ15 = −4.749

Ceff δ1 = −1.841× 10−5,δ2 = 0.00134, δ3 = 0.968
CAh ζ1 = −0.000727,ζ2 = 0.06563, ζ3 = 5.943
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Appendix B. Motor Equations1214

The maximum torque and power required by the mo-1215

tor are obtained by fitting the motor lookup table data1216

available in ADVISOR.1217

Tmax = ε1ω
6
m + ε2ω

5
m + ε3ω

4
m + ε4ω

3
m + ε5ω

2
m + ε6ωm + ε7

(B.1)1218

1219

Pmotor = ρ1 + ρ2ωm + ρ3ω
2
m + ρ4ωmTm + ρ5T

2
m + ρ6ωmT

2
m

+ ρ7ω
2
mT

2
m + ρ8T

4
m + ρ9ωmT

4
m

(B.2)1220

Table Appendix B.1: Coefficients of equations for electric motor

Eqs Coefficients
Tmax ε1 = 15.19,ε2 = −8.746,ε3 = −66.71,ε4 = 47.96

ε5 = 78.79,ε6 = −124.1,ε7 = 155.1
Pmotor ρ1 = 2832,ρ2 = −15.03,ρ3 = 0.01907,ρ4 = 1

ρ5 = −0.1376,ρ6 = 0.001626,ρ7 = 3.204× 10−7

ρ8 = 2.358× 10−6,ρ9 = −1.403× 10−8
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[32] Y. Zhou, A. Ravey, M. C. Péra, Real-time cost-minimization1358

power-allocating strategy via model predictive control for fuel1359

cell hybrid electric vehicles, Energy Conversion and Manage-1360

ment 229 (December 2020) (2021). doi:10.1016/j.enconman.1361

2020.113721.1362
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