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Abstract 

Major sources of concern when auxetic protective structures are deployed in service of 

mission-critical applications encompass the triggering of high impact stress and the 

weakening of the structures’ elastic strength in response to the impact events. The current 

prevailing approach to assessing the impact resistance of these structures broadly hinges 

on mechanics-informed nonlinear finite element (FE) analysis. However, this method is 

computationally expensive and ill-suited for tackling the implementation of automated 

condition monitoring schemes. To address the above issues, first, this paper proposes a 

hybrid hierarchical auxetic structure named Hybrid-Hierarchical Re-entrant Honeycomb 

(HHRH) that is endowed with a feature that dialed down the impact stress. Next, using 

explicit FE, the investigation proceeds to uncover the interplay between the key geometric 

features of this HHRH auxetic structure and the impact performance under low, 

intermediate, and high crushing velocities. The focus then steered towards unifying the 

outcome of the nonlinear explicit FE simulations with random forests (RF) scheme towards 

the establishment of intelligent auxetic structural systems. The results revealed that the 

developed HHRH maintained the auxeticity of the regular re-entrant auxetic and exhibited 

superior performance in some crushing strain regions. Moreover, the HHRH structure 

manifests up to an 85% reduction in peak stress and the proposed reinforcement boosts the 

auxetic property by up to 23% when compared to the regular re-entrant auxetic structure 

under high-velocity applications. As for the established data-driven RF-enabled machine 

learning model, its predictive strength with optimally-tuned hyperparameters is 

demonstrated to excellently capture the nonlinear multi-modal crushing stress response at 

various crushing strains, velocities, and geometric variations.  
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1. Introduction 

The present work relates to the performance assessment of auxetic structures. Category-

wise, auxetic structures reside within a cluster of materials known as cellular structural 

systems. A comprehensive account of the behaviour of cellular materials is documented by 

Gibson and Ashby [1]. Often inspired by nature, man-made cellular materials have 

emerged as excellent candidates in the quest to concurrently reduce the weight and carbon 

footprint of structural systems without sacrificing stiffness and strength [2, 3]. One notable 

feature of the general cellular materials is the close link between their mechano-physical 

responses and the architecture of their unit cells [4]. In the specific case of auxetic 

materials, an additional distinguishing feature emerged in the form of negative Poisson’s 

ratio (NPR). The implication of NPR is counterintuitive. It dictates that when an auxetic 

material is stretched axially, lateral expansion occurs (as opposed to shrinking as is 

common in conventional materials). Crucially, this NPR effect translates to the 

enhancement of shear modulus, which has led to the emergence of difficult-to-shear, but 

volumetrically easy-to-deform structures [5]. Other distinct effects of NPR include 

elevated indentation resistance, enhanced fracture toughness, boosted energy absorption 

property/crash resistance, and synclastic curvature, among others [6-10]. Historically, the 

very concept of materials with negative or zero Poisson’s ratio is traced to the work of 

Love [11], as chronicled by Prawoto [12]. Around the late 1980s, Lakes [13, 14] pioneered 

the synthesis of isotropic auxetic foams. This breakthrough accelerated the development of 

what has now become an important class of structural materials. Since Lake’s landmark 

study, scholars have pursued investigations into the theoretical analytical/numerical 

modelling [15-20], manufacturing [21] and performance assessments of auxetic material 

systems as highlighted in some of the recent review papers [7, 22-25].  

From a static analysis perspective, factors that influence the mechanical response of various 

auxetic structures have been comprehensively studied. A notably non-thorough list of 

selected studies along this line is given next. Choi and Lakes [26] investigated the linear 

elastic response of re-entrant foams. The study upheld the link between the static 

mechanical response of general auxetics to change in the shape of the internal structure 

from convex to concave. Lee, et al. [27] applied a homogenization finite element analysis 

to assess the linear elastic response of re-entrant auxetics. Wan, et al. [28] reported the 

application of large deflection beam theory to the static simulation of soft polymeric re-

entrant auxetics structures. It was shown that the Poisson’s ratios of auxetic materials vary 

significantly with strain under large deformation loading scenarios. The effects of cell wall 

size and cell wall angle on the static performance of re-entrant auxetics are covered in the 

study by Yang, et al. [17], Gonella and Ruzzene [19], Rad, et al. [29], and Fu, et al. [30], 

among others. Beyond the above studies based on the response of defect-free auxetic 

structures, some authors have spearheaded investigations into the influence of 

imperfections on the behaviour of auxetics. For instance, Liu, et al. [31] studied the effect 

of manufacturing-induced irregularity on the effective mechanical properties of re-entrant 

honeycomb auxetics. Recently, Gao, et al. [32] presented a four-step analytical framework 

to investigate the effects of irregularity on the elastic properties of double arrowed auxetics. 

It was reported that the effective Young’s modulus of the auxetic is more sensitive to the 

presence of imperfections than the Poisson’s ratio. Parallel to the aforementioned studies, 

important investigations have also been devoted to the assessments of the performance of 
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various types of auxetics under dynamic loading scenarios [33]. This is understandable 

considering the usages of auxetic structures for impact and shock absorption applications 

(such as damper and body armour, etc.). One of the earliest studies on the crushing 

resistance of auxetic structures is reported by Scarpa, et al. [34]. The results indicate an 

overall superiority displayed by the auxetic structures in damping and acoustic properties 

compared to conventional foams. Henderson, et al. [35] compared the effect of defects on 

the crush performance of auxetic and non-auxetic honeycombs. It was highlighted that the 

reduction of the crush performance in the auxetic honeycomb is less severe. Zhang, et al. 

[36] investigated the in-plane dynamic crushing behaviour of re-entrant honeycombs 

within a certain range of cell-wall properties. The study showed that an increase in the 

thickness of the unit cell enhances the plateau stress. Besides, it was demonstrated that 

changes in the cell-wall angle create different collapse modes, while the magnitude of the 

impacting velocity creates different localization bands. The effects of cell wall angle, cell-

wall length ratio and variation of impact velocity on the dynamic response were studied by 

Hu, et al. [37]. Gao, et al. [38] studied the deformation patterns of double arrowed 

honeycomb auxetics under low/high impact velocities and presented analytical models for 

the dynamic strength based on the idea of cellular collapse mechanism. The authors 

concluded that the crushing strengths of the double arrowed honeycomb auxetic structure 

rise with the increase of relative density. The response of auxetic composite structures 

under blast loading is reported in [39-41].  

Collectively, the above studies have dealt with a variety of 2D and 3D auxetic structures 

ranging in size (molecular, microscale to macroscale) and shape (re-entrant, chiral, anti-

chiral, rotating unit type auxetic structures etc.,) [42, 43]. Nevertheless, towards the 

deployment of auxetic structures in the mitigation of dynamic impact damages, it has been 

established that many categories of lightweight materials (such as auxetics, cellular 

materials, thin-walled foam-filled tubes, etc) suffer from low stiffness [44, 45]. A 

detrimental consequence of low stiffness is the acceleration of failure by yielding, which 

may arise from high internal stress when these auxetic structures are exposed to extreme 

impacting events [46]. For instance, according to Baran and Öztürk [47], re-entrant 

auxetics have limited applications as a result of the low rigidity of the unit cell. For the 

above reasons, a growing body of research has emerged with a focus on improving the 

stiffness of many classical auxetic structures. The challenge though is that improving the 

stiffness may often lead to the loss of the auxetic behaviour [44]. Nonetheless, certain 

strategies have been proposed to retain the NPR effect, improve the stiffness, and enhance 

the crushing performance of various types of auxetic structures. Along this line, Zied, et 

al. [48] presented an improvement to the in-plane stiffness of hexagonal re-entrant auxetics 

through the modification of the basic structure with spline edges and stiffener. In a similar 

vein, Ingrole, et al. [49] proposed a set of new designs for re-entrant honeycomb structure 

to provide enhanced in-plane stiffness properties. Novak, et al. [50] considered the use of 
graded materials to tailor the mechanical behaviour of auxetic structures derived from inverted 

tetrapods. Gao and Liao [51] proposed the combination of gradient arrowhead auxetics with 

thin-walled tubes and investigated its crashworthiness performance using the finite element 

method. More recently, Wu, et al. [52] investigated the use of cell‐wall angle gradation in 

a study on a planar auxetic structure with re-entrant unit cells. Li, et al. [53] modified the 

re-entrant unit cell topology by adding a vertical beam element, leading to increased 

Young’s modulus and yield strength.  
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Compared to the above methods of enhancing the properties of auxetics, the use of 

hierarchy and a rigorous investigation of the mechanical behaviour of the ensuing 

hierarchical auxetic structures remains fully unexplored. Indeed, the crushing response of 

hierarchical auxetic structures under high impact velocities has not been fully tackled in 

literature, although it was widely used for strengthening traditional honeycomb structures 

[54]. Among the very few studies on the use of hierarchical architecture in the context of 

auxetics, Zhang, et al. [55] considered the in-plane mechanical behaviour of the 

hierarchical star-re-entrant metamaterial. Tan, et al. [56] investigated the re-entrant 

hierarchical honeycombs constructed by replacing the cell walls of re-entrant honeycombs 

with a regular hexagon substructure. These studies not only showed lower plateau stresses 

for the first and second-order hierarchical structures, but they also revealed that the 

hierarchical auxetic structures exhibited very high energy absorption capacity. In practice, 

a limiting barrier to the wider applications of hierarchical structures is manufacturing. 

Therefore, given the possible difficulty in the manufacturing of hierarchical auxetics 

proposed in the existing studies, the current study investigates a new hierarchical auxetic. 

Specifically, the current work bears similarities to that of Hou, et al. [57]. The similarity 

stems from the restriction of the hierarchical elements to the vertex rather than the cell 

walls. This approach limits the number of hierarchical elements and facilitates a faster 

fabrication procedure while enhancing the mechanical properties of the base auxetic 

structure. However, in contrast with [57], the current study mobilizes a series of micro-

scale hexagonal structures to reinforce a typical re-entrant. Consequently, this paper 

investigates the response of these new hierarchical auxetics under low, intermediate, and 

high impacting velocities via nonlinear dynamic finite element analyses (FEA). In addition 

to this, the paper incorporates the development of a new data-driven predictive 

methodology for unravelling the crushing response of the auxetics after impact. To the best 

of our knowledge, this sets the work apart from all previous studies where the analysis of 

auxetics has been approached majorly from the numerical solution perspective. The 

primary motivation that drives this approach rests on the deployment of auxetics in 

defence-facing and aerospace applications. These use cases often raise the risk of damage 

from impact events that may consequently hamstring the true value of these materials [58]. 

Typically, the characterization of impact depends on the estimation of location and 

magnitude of the impact via streams of data collected through embedded sensors. For this 

reason, the reconstruction of the impact location and magnitude becomes an inverse 

problem that requires a series of expensive experiments [59]. However, of late, a cost-

effective method that has become accepted is to funnel the data obtained from the solution 

of the forward problem enabled by nonlinear FEA into the machine learning pipeline. 

Using this approach, several scholars have developed expert systems for the structural 

health monitoring of composite structures [60]. For this study, we introduce the capability 

of the random forest (RF) scheme, an excellent algorithm for regression and classification 

tasks [47]. Consequently, the work comprises two contributions that modestly address the 

design of impact-tolerant auxetics and the establishment of a machine learning-enabled 

framework for condition monitoring/impact detection of intelligent auxetic structural 

systems. 

The rest of the presentation is as follows. Section 2 introduces the methodology. The results 

from analyses with the nonlinear dynamic finite element analyses and random forest 

models are discussed in section 3, while section 4 covers the conclusions from the study. 
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2. Materials and Methods 

2.1 Geometric modelling of the auxetic structure 

A hierarchical auxetic structure named Hybrid-Hierarchical Re-entrant Honeycomb 

(HHRH) is developed by reinforcing the vertices of the conventional re-entrant auxetic unit 

cell with scaled hexagonal unit cells. As highlighted in the introduction, an unfavourable 

consequence of low stiffness in conventional re-entrant auxetics is the acceleration of 

failure by yielding which may originate from high internal stress when exposed to extreme 

impacting events [46]. Thus, a primary motivation for this new design is to enhance the 

stiffness, without sacrificing the NPR effect, of the re-entrant auxetic unit cell. Schematics 

of the hierarchical unit cell are depicted in Figure 1(a), while Figure 1(b) indicates the 

integrated area of the unit cell (explained further in section 2.2). Meanwhile, Figure 1(b) 

describes the key geometric features of the HHRH unit cell. That is: ℎ (the length of the 

horizontal edge); 𝑙 (the length of the slanted edge); 𝑡 (the thickness of the edge), and 𝜃 (the 

re-entrant angle).  

In this study, 𝜃 is kept constant at a value of 60° for the HHRH. However, ℎ and  𝑙 are 

altered in response to changes in the scaling parameter (𝛾) while maintaining the overall 

horizontal and slanted lengths of the parent re-entrant unit cell at values of 10 mm and 5 

mm respectively as shown in Figure 1.  

 
(a) 

 

 
(b) 

 

Figure 1: (a) Modification of a conventional re-entrant unit cell (zero-order) to a first-

order hierarchical unit cell; (b) the integrated areas of the unit cell. 

Based on the above-specified transformation, the scaling parameter 𝛾 is derived as the ratio 

of the hexagon edge length to the horizontal length of the unit cell (𝑙ℎ 10⁄ ). Consequently, 
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three different models 𝛾 = 0.05, 0.1 and 0.15 were developed with varying hexagon sizes 

as shown in Figure 2.  

 

Figure 2: Variation of the hierarchical models based on the unit cell 

The performance of the three models is later compared with the conventional re-entrant 

hexagonal structure which has a 𝛾 value of 0. Table 1 summarizes the geometric values 

used in all models. It will be noticed that different thickness values are used for each model 

to maintain a constant relative density. 

Table 1: Values of the geometric variables 

𝜸 𝒍 (𝒎𝒎) 𝒉 (𝒎𝒎) 𝒍𝒉 (𝒎𝒎) 𝒕 (𝒎𝒎) 

0 5 10 0 0.62 

0.05 4 8 0.5 0.42 

0.10 3 6 1 0.30 

0.15 2 4 1.5 0.19 

2.2 Basic theoretical analysis  

The mechanical properties of cellular materials depend on the relative density, ∆𝜌 [1]. As 

a result, maintaining a constant relative density will ensure a fair comparison of 

performance between the models. Meanwhile, the relative densities of the classical re-

entrant, ∆𝜌𝑟, and that of the hexagon, ∆𝜌ℎ, cellular structures are given as [61]:  

∆𝜌ℎ =
2𝑡

√3𝑙
          (1) 

∆𝜌𝑟 =
1

2

𝑡

𝑙

ℎ 𝑙⁄ +2

cos 𝛼(ℎ 𝑙⁄ +sin 𝛼)
        (2) 

where 𝛼 is 90 − 𝜃. Based on the equations above, a modified expression for the newly 

established HHRH is formulated by integrating the area fractions of the hexagon and re-

entrant elements in the structure as: 

∆𝜌 =  𝐴ℎ∆𝜌ℎ + (1 − 𝐴ℎ)∆𝜌𝑟        (3) 

where 𝐴ℎ is the area fraction of the hexagonal element. To find 𝐴ℎ, it is noted that the total 

area of the hierarchical unit cell is the additive sum of two trapezoidal areas and 4 full 

hexagonal areas (as indicated in Figure 1(b)). The areas of a trapezoid (𝐴𝑡) and that of a 

regular hexagon (𝐴ℎ𝑒𝑥) are defined as: 
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𝐴𝑡 =  
𝑎+𝑏

2
𝑦          (4) 

𝐴ℎ𝑒𝑥 =  
3√3

2
𝑙ℎ

2
         (5) 

where, in Eq. (4), 𝑎 and 𝑏 denote the top and bottom edges of the trapezoid, and 𝑦 

symbolizes the height (Figure 1(b)). Also, from Figure 1(b), it is noticed that 𝑏 will be the 

sum of ℎ and 4𝑙ℎ, while 𝑎 equals 𝑏 − 2𝑥. Both 𝑥 and 𝑦 are obtained as:  

𝑥 = (𝑙 + 2𝑙ℎ) sin
𝜃

2
         (6) 

𝑦 = (𝑙 + 2𝑙ℎ) sin 𝜃         (7) 

Using Eqns. (6) and (7), the expressions for 𝑎 and 𝑏 simplify to: 

𝑎 = (ℎ + 4𝑙ℎ) − 2(𝑙 + 2𝑙ℎ) sin 𝜃       (8) 

𝑏 = ℎ + 4𝑙ℎ          (9) 

From Eqns. (8) and (9), the total area of the unit cell (𝐴𝑡) is thus obtained as: 

𝐴𝑡 = (2ℎ + 6𝑙ℎ − 𝑙)(sin 𝜃 (𝑙 + 2𝑙ℎ)) + 6√3𝑙ℎ
2
     (10) 

Next, the area fraction occupied by the hexagon elements, 𝐴ℎ, takes the form. 

𝐴ℎ =
9√3𝑙ℎ

2

(2ℎ+6𝑙ℎ−𝑙)(𝑠𝑖𝑛60(𝑙+2𝑙ℎ))+6√3𝑙ℎ
2       (11) 

With the help of Eqns. (1), (2) and (11), the relative density of the HHRH can be varied to 

assess the effect of scaling the reinforcing elements on the overall performance of the 

auxetic structure.        

Meanwhile, to assess the crashworthiness of the HHRH models, the following metrics are 

employed: (a) the peak stress (𝜎𝑝); (ii) the magnitude of energy absorption (𝐸𝑑); (iii) the 

average stress between the peak stress and the densification stress (𝜎𝑝𝑙); and (iv) the 

Poisson’s ratio (𝑣). Each of these parameters is defined as follows [36, 52, 61, 62]: 

𝐸𝑑 = ∫ 𝜎(𝜀)𝑑𝜀
𝜀𝑑

0
         (12) 

𝜎𝑝𝑙 =
∫ 𝜎(𝜀)𝑑𝜀

𝜀𝑑
𝜀𝑝

𝜀𝑑−𝜀𝑝
         (13) 

𝑣 = −
𝜀𝑥

𝜀𝑦
= −

∆̅𝐿 𝐿⁄

𝜀𝑦
, where  ∆̅𝐿 = (𝐴𝑥 + 𝐵𝑥 + 𝐶𝑥 + 𝐷𝑥)/4   (14) 

In Eq. (14), 𝜀 represents the crushing normal strain and 𝜎(𝜀) is the crushing normal stress 

experienced by the structure, which is obtained by multiplying the reaction force between 

the impactor and the structure to the initial cross-section area of the structure [56]. Besides, 

𝜀𝑝 is the peak strain corresponding to the peak stress, while 𝜀𝑑 is the densification strain. 

The densification strain is defined as the point after which the crushing stress rises sharply 
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[57]. Concerning Eqn. (14), 𝜀𝑥 is the lateral strain along the 𝑥-axis and 𝜀𝑦 signifies the 

longitudinal strain along the 𝑦-axis (vertical direction). Moreover, ∆̅𝐿 is calculated by 

averaging the lateral displacements of 4 symmetric nodes on both sides of the model as 

shown in Figure 3, while 𝐿  is the initial lateral length of the structure.  

 

Figure 3: Calculating the average lateral displacement 

2.3 Finite element simulation of the impact response  

Numerical analysis of the mechanical performance of the novel auxetic structures to in-

plane crushing is carried out using the nonlinear explicit finite element solver 

ANSYS/AUTODYN. In this model, the structure is sandwiched between two plates as 

shown in Figure 4. The bottom plate is fixed while the top rigid plate crushes the 

honeycomb structure at an impacting velocity, 𝑉, along the negative 𝑦-axis direction. The 

crushing speed is varied between 6-100 m/s in this study to capture the crushing responses 

associated with low, intermediate, and high velocities. An out-of-plane thickness of 8 mm 

is assigned throughout. Similar to [63], all investigated structures have 6 unit cells in the 

horizontal direction and 8 cells in the vertical direction to achieve reasonable global bulk 

properties.  

 

Figure 4: Schematics of the auxetic structure between the impactor and the fixed end 
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Aluminium alloy is selected as the solid material of the HHRH structure. With this, the 

following material properties are used: Young’s modulus, 𝐸 = 71 𝐺𝑃𝑎; Poisson’s ratio, 

𝑣 = 0.33; yield strength, 𝜎𝑦 = 280 𝑀𝑃𝑎; and density 𝜌 = 2770 𝑘𝑔/𝑚3. Furthermore, an 

idealized elastic-perfectly plastic material behaviour is adopted in this model. The out-of-

plane degrees of freedom are constrained for all nodes to prevent deformations along the 

z-direction. Moreover, to avoid the interpenetration of cell walls during dynamic crushing, 

a shell thickness factor of 1 is used along with automatic single surface contacts. A bonded 

contact is assigned between the structure and the bottom plate, while a frictional contact is 

employed between the impactor and the structure [52, 62]. To have a time-step size that 

achieved a balance between accuracy and convergence, a modal analysis was performed to 

determine the natural frequency of the structure. Eventually, the inverse of 20 times the 

10th natural frequency (𝑓𝑛
10) is used for the time-step [64]. Figure 5 demonstrates the 𝑓𝑛

10 

and the 10th mode shapes of each model.  

 

Figure 5: The estimated 10th natural frequencies for the models investigated. 

2.4 Machine learning model for intelligent detection of impact events 

2.4.1 Random forests modelling 

Based on the output data accumulated from the FE numerical experiments on impact 

analysis, we undertook the implementation of a machine learning (ML) model. This 

bridges the gap between the forward problem of determining the impact response of the 

auxetics and the inverse problem of real-time reconstruction of the dynamic response for 

monitoring or detection purposes. Devised by Breiman [65], RF belongs to the family of 

ensemble supervised ML schemes whose base learner is a decision tree. Recognizing its 

capability and flexibility, several studies have employed RF for classification and 

regression tasks with high-dimensional feature spaces [66-69]. Consequently, the current 

study employs the regression mode of RF to develop a predictive model of the dynamic 

impact stress. This model is anticipated to be used as a baseline to trigger an alarm in case 

of an impact event or to discriminate between different classes of impact events.  

2.4.2 Major steps of RF modelling, software package and hyperparameters  

For this study, the RF modelling was carried out using the randomForest package within 

the R programming environment [70, 71]. The construction of RF is outlined next. Given 

a matrix of a training dataset (𝑆) of 𝑛 observations and 𝑝 predictor variables, the 

development of the RF scheme features the following steps [72-74].  
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1. Bootstrap sampling. This involves drawing random samples (which may range from 

𝑏 = 1 … 𝐵), of size 𝑠 from the original training dataset (ℒ).  

2. Growing of random forest trees. This relates to the construction of hundreds (and at 

times thousands) of tree-based predictive models (𝑡𝑏) using the bootstrap samples. 

Primarily, this involves two major sub-steps. 

a. Fit a tree on a bootstrap sample (ℒ𝐵), where the tree consists of branches, 

internal nodes, and terminal nodes.  

b. At each node of the tree, randomly select 𝑚 subset of the 𝑝 independent 

predictors for splitting. Here, the 𝑚 selected predictors are tested as candidates 

for splitting and the predictor that yields the best split is chosen. This sub-step 

decreases the correlation between the trees in the forest. 

c. With the best split determined, a cut point 𝑐𝑠 is identified. With this, the data is 

split by sending observations with 𝑥𝑖𝑗 < 𝑐𝑠 to the left child node and the 𝑥𝑖𝑗 >

𝑐𝑠 to the right child node.  

d. For each tree, sub-steps (a) - (c) are repeated until a terminal node is reached. 

 

3. Ensemble averaging. Here the average of the observed target value at the terminal 

nodes of the collection of RF trees is outputted as the final predicted value. In short: 

a. Collate the outputs of the ensembled {𝑡𝑏}1
𝐵, where 𝐵 is the total number of 

bootstrap samples. 

b. Predict numerical observation at a new point 𝒙 by using: 

 𝑓𝑟𝑓
𝐵 (𝒙) =

1

𝐵
∑ 𝑡𝑏

𝐵
𝑏=1         (15) 

 

On the practical side, the above steps lead to some key hyperparameters that can be 

leveraged for the optimal performance of RF models [72, 75]. This includes, among others: 

(i) sample size – the number of observations that are drawn for each tree in step 1 above; 

(ii) ntree – the total number of trees in the random forest architecture; (iii) mtry – the 

number of predictors selected for splitting as highlighted in step 2a; and (iv) nodesize – the 

size of data points in a cell below which the cell is not split further.  

2.4.3 Dataset, data splitting and performance measures 

Overall, the dataset used for the RF modelling consists of 3523 observations with a total 

of 6 predictors and 1 outcome variable as listed in Table 2. The 6th predictor named velocity 

class takes on three values (low, medium, and high) and it is derived from the value of the 

impacting velocity (that is low = 6 𝑚/𝑠, medium = 20 𝑚/𝑠, and high = 100 𝑚/𝑠).  

A core aspect of ML workflow is to split an original dataset into training and testing 

datasets. As part of this workflow, we experimented with the implication of using 60:40, 

65:35, and 70:30 ratios of the training data to test data. Consequently, the performance of 

three RF models of the crushing response (named CR-RF1, CR-RF2 and CR-RF3) is 

examined and contrasted. For these RF models, three of the hyperparameters (ntree, mtry, 

and nodesize) were tuned to maximize the generalization of the results [75]. Meanwhile, 

the estimated optimal hyperparameters, which are obtained via the grid search technique, 

were used to build the three RF models. 
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Table 2: Predictor and outcome variables 

Variables Definitions Description 

Predictors ℎ: The length of the horizontal edge of the unit 

cell (depicted in Figure 1a) (𝑚𝑚) 

Continuous 

𝑙: The length of the slanted edge of the unit cell 

(depicted in Figure 1a) (𝑚𝑚) 

Continuous 

𝛾: The hierarchical scaling parameter Continuous 

𝑉: A vector of impact velocity (𝑚/𝑠) Continuous 

𝜀: Dynamic nominal strains of past impact events 

 

Continuous 

 Velocity class Categorical 

   

Outcome 𝜎: Dynamic impact stress (𝑀𝑃𝑎) Continuous 

At the heart of every ML modelling task is the central question of performance. For this 

reason, the predictive accuracy of the model was established by using the test dataset via 

the following metrics: coefficient of determination (𝑅2); the root mean squared error 

(RMSE); and the mean absolute error (MAE). These are defined as follows [76-78]: 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
           (16) 

where RSS and TSS denote the residual sum of squares and the total sum of squares, 

respectively. They are defined as: 

𝑅𝑆𝑆 =  ∑ (𝑦𝑖 − 𝑓𝑖)2𝑛
𝑖=1         (17) 

𝑇𝑆𝑆 = ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1          (18) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑓𝑖)2𝑛

𝑖=1         (19) 

   

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑓𝑖|

𝑛
𝑖=1         (20) 

where �̅� symbolizes the average value of the actual data, and 𝑛 is the number of 

experimental data. Besides, 𝑦𝑖  and 𝑓𝑖 are the ith actual and predicted values of the outcome 

variable, respectively.  

3. Result and discussion 

3.1 Validation and convergence studies 

As a starting point, several validation studies were conducted to substantiate the accuracy 

of the simulation setup. Here, two layers of validation are presented.  
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First, we validate the negative Poisson’s ratio effect of a basic re-entrant unit cell that is 

statically loaded and compared the results with the work of Zied, et al. [48]. Figure 6(a) 

describes the major geometric features of the re-entrant unit cell. A representative model 

of the loaded unit cell is shown in Figure 6(b). As with the simulations in later sections, 

the simulation of the unit cell is accomplished with ANSYS using a collection of shell 

elements (SHELL181) to be consistent with Zied, et al. [48]. All later computations are 

based on the following properties: 𝐸 = 210 𝐺𝑃𝑎, 𝑣 = 0.3, thickness of 𝑙 (𝑡𝑙 = 3 𝑚𝑚), 

thickness of ℎ (𝑡ℎ = 3 𝑚𝑚), 𝜃 = −23°, width of the unit cell, 𝑤 = 8 𝑚𝑚. For the static 

simulation, the unit cell is subjected to a tensile remote force at the top end along the 𝑦-

axis, while the base is fixed. Consequently, the Poisson’s ratio is computed as the ratio of 

the lateral extensional strain (𝜀𝑥) against the longitudinal extensional strain (𝜀𝑦). Both 

strains are found using the directional displacements of reference points on the unit cell, 

which is consistent with the approach used for the computational results in the other 

sections that follow. As an example, the transverse strain is calculated as shown in Figure 

6(b), while the longitudinal extensional strain is found using the ratio of the average 

longitudinal displacements of vertical reference points on the unit cell against the initial 

height 𝐻. 

 

(a) 

 

(b) 

Figure 6: (a) Basic geometric dimensions of the re-entrant unit cell; (b) evaluation of the 

strains for Poisson’s ratio calculation. 

It’s important to highlight that to avoid the Saint-Venant effect [57], the final simulated 

structure is modified as shown in Figure 7(a) so that the unit cell is positioned at the centre. 

Furthermore, to restrict the deformation to in-plane tension/compression behaviour, the 

rotational degrees of freedom along with the out-of-plane translational degree of freedom 

of all nodes of the shell elements are constrained. Table 3 compares the results from the 

current study with those reported in [48]. An example of the deformed finite element model 

is shown in Figure 7(b).  
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(a) 
 

(b) 

Figure 7: (a) Model of the undeformed unit cell; (b) illustration of the deformed pattern of 

the re-entrant unit cell after loading.  

Table 3: Negative Poisson's ratio 

Rib length Major Poisson’s ratio (𝑣𝑦𝑥)  

 Present Numerical [48] Experiment [48] 

15 −2.68 −2.79 -2.99 

25 −2.95 −2.93 -3.10 

30 −3.03 −2.99 -3.20 

40 −3.47 −3.42 -3.42 

60 −3.69 −3.62 -3.65 

Overall, it is observed from the table that a good agreement is found between the current 

study with the experimental and numerical results reported in [48]. The table further shows 

that, by keeping the rib angle (𝜃) constant, the Poisson’s ratio decreases (becomes more 

negative) as the rib length increases. Technically, this can be attributed to reduced stiffness 

of the structure with increased rib length and indicates that the Poisson’s ratio can be tuned 

by adjustment of the geometric parameters. Furthermore, the largest percentage difference 

between the current study and the numerical computations is roughly 4%. This small 

deviation can be explained by the fact the current study employed the ANSYS’s shell 

element SHELL181, which differs in stiffness from the ANSYS’s legacy SHELL99 

element type employed in [48]. As for the comparison with the experimental data, a slightly 

higher percentage difference of 11% is obtained. This deviation can be attributed to the 

difference between the experimental setup and the simplified boundary conditions 

employed for the simulation. 
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Proceeding to the next validation, we consider a network of re-entrant unit cells subjected 

to impact. For this, a comparison with the work of Hou, et al. [79] is undertaken. The model 

(8 cells by 11 cells), which is a basic re-entrant structure with no hierarchical feature, is 

crushed vertically at a velocity of 100 𝑚/𝑠. Representative plots of the crushing response 

at different crushing strains, 𝜀, and the stress-strain graph are shown in Figure 8 and Figure 

9, respectively. The layer-by-layer deformation modes at the proximal end and the general 

pattern of deformation shown in Figure 8 are consistent with those reported in [79]. 

Moreover, the first peak stress and the plateau stress, with corresponding values of 

92.4 𝑀𝑃𝑎 and 3.62 𝑀𝑃𝑎 differed by less than 2% from those reported by Hou, et al. [79]. 

 

Figure 8: Crushing response of the validation model at different crushing strains 

 

 

Figure 9: Stress-strain curve of the validation model 
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For subsequent analyses involving the hierarchical re-entrant structure, a mesh 

convergence analysis is performed to choose a suitable mesh size. Figure 10 shows the 

convergence results, indicating that a mesh size of 0.3 mm is appropriate to balance the 

computational cost and accuracy of the dynamic stress. This mesh size is found to be 

consistent with other studies, for instance [80].  

 

Figure 10: Mesh independent analysis for the hierarchical re-entrant 

3.2 Crushing response of hierarchical re-entrant auxetics 

3.2.1 Deformation modes with different scaling factors at a low, medium and high 
impacting velocity 

Crushing velocity influences the global deformation modes of cellular materials as reported 

in previous studies [62, 81]. In the case of hierarchical structure, a different magnitude of 

the scaling factor (defined in section 2.1) also leads to different crushing strengths. In what 

follows, the effect of crushing speed on three of the models with varying scaling factors is 

reported. All models are crushed along the negative 𝑦-direction and the global deformation 

is observed. Besides, 𝜀 represents the global strain of the models under the impacting 

velocity.  

Figure 11 and Figure 12 respectively depict representative deformation modes and the 

stress-strain curves involving the nominal axial stress vs nominal axial strain of three 

HHRH models under the 6 m/s impacting velocity. Specifically, Figure 11(a) shows the 

deformations at four selected strain points for 𝛾 = 0.15 (the HHRH with the biggest 

hierarchical elements). This model experiences the greatest distortion. Besides, at a low 

strain value, a V-shaped band starts to develop, which soon disappeared as crushing strain 

increases because of the larger-sized hierarchical elements. As a result of the larger 

hexagons when 𝛾 = 0.15, the ribs of the ensuing structure are not long enough to generate 

the kind of alignment observed when 𝛾 = 0.1 and 0.05. Instead, the hexagons become 

stacked on top of each other. Further crushing causes the stacked hexagons to buckle and 

eventually densify. This then generates a response that appears to be a composite of the 

hexagonal unit cell and that of the re-entrant unit cell. The corresponding impact stress-

strain curve is portrayed in Figure 12(a). The plot reveals the apparent two-stage local 

deformation modes with the transition strain located at 𝜀 = 0.3. Stage 1 is dominated by 
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bending and rotational winding of the diagonal ribs, while stage 2 mostly experiences 

buckling of the stacked hexagon elements.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 11: Crushing response of the different models at a crushing velocity of 6 m/s: (a) 

𝛾 = 0.15; (b) 𝛾 = 0.1; (c) 𝛾 = 0.05.  

Figure 11 (b) is the deformation mode for 𝛾 = 0.1. Here the appearance of the V-shaped 

deformation band at the distal end is noticeable. As the strain increases, a second V-shaped 

deformation band also appears at the proximal end of the impactor, oriented in the opposite 

direction of the distal end. Further increase in the crushing displacement leads to the 

densification of the structure. In Figure 11(c), when 𝛾 = 0.05, a crushing response similar 

to when 𝛾 = 0.1 is also observed. Essentially, the small size of the hexagonal elements in 

these two cases generates a higher rotational stiffness. This is similar to the observation 

reported by [49], although for a different auxetic design. Meanwhile, as the crushing 
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progresses, some of the struts of the main re-entrant sub-cell start to bend around the corner 

hexagonal elements, creating a rotational deformation pattern that bears semblance to that 

of chiral type auxetic structures. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 12: Crushing response of the HHRH: (a) 𝛾 = 0.15; (b) 𝛾 = 0.1 and (c) 𝛾 = 0.05 

structure at different stages in the stress-strain curve at a crushing velocity of 6 m/s.  

The corresponding stress-strain curve (nominal axial stress vs nominal axial strain) for 

Figures 11(b) and (c) are shown in Figures 12(b) and (c), respectively. As depicted in these 

figures, these models have a single notable plateau region. Further, as the curves show, at 
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the final stage of the crushing process, the structures are densified leading to a sharp rise 

in the crushing stress. Besides, from the three stress-strain curves, it is observed that the 

first peak stress upon impact is highest for 𝛾 = 0.05 and lowest for 𝛾 = 0.15. Also, for 

𝛾 = 0.05 a sudden rise and drop of stress can be observed at a strain value 𝜀 = 0.69 partly 

due to alignment of some diagonal ribs at the final row. The buckling of these aligned cell 

edges causes a temporary rise in crushing stress after which the structure densifies causing 

the stress to rise sharply again. 

Under the impacting velocity of 20 m/s, Figures 13 and 14 represent the deformation modes 

and the stress-strain response curves at increasing strain levels.  

 
(a) 

 

(b) 

 

(c) 

Figure 13: Crushing response of the different models at a crushing velocity of 20 m/s: (a) 

𝛾 = 0.15; (b) 𝛾 = 0.1; (c) 𝛾 = 0.05. 

From Figure 13, it is noticed that all three models experienced localized deformations at 

the medium strain level. However, the unit cells of the model with 𝛾 = 0.15 (Figure 13a) 

experienced more sliding deformations compared to the others (Figure 13b and c). 

Moreover, for 𝛾 = 0.05, as crushing strain increases, first there is a clustering of the unit 
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cell towards the centre (𝜀 = 0.49) due to auxetic effect and then finally the alignment of 

the unit cells. This alignment of the unit cell produced prolonged plateau stress after the 

densification stage takes place as reflected in Figure 14. Further, from Figure 14, it is seen 

that of the three models, the peak resistance stress is highest for the case when 𝛾 = 0.05, 

follow by 𝛾 = 0.1, and then 𝛾 = 0.15. 

 
(a) 

 
(b) 

 
 

(c) 

Figure 14: Stress-strain curves of three HHRH at a crushing velocity of 20 m/s: (a) 𝛾 =
0.15 (b) 𝛾 = 0.1 and (c) 𝛾 = 0.05. 

For the higher crushing speed of 100 m/s, Figures 15 and 16 signify the deformation modes 

and the response curves, respectively. Here, as shown in Figure 15, the inertia effects 

dominate and there is a gradual layer-by-layer deformation that aggregates at the proximal 

end and then propagates as the crushing progress until the HHRH structures densify. Also, 

due to the layer-by-layer deformation mode, the stress-strain curves in Figure 16 indicate 
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that all three structures experience very high oscillations around a single plateau stress, 

consistent with [79]. As with the low and medium-impacting velocity, the model with 𝛾 =

0.05 experience a high resistant stress that is almost twice that of the other two models. 

 

(a) 

 

(b) 

 

(c) 

Figure 15: Crushing response of the different models at a crushing velocity of 100 m/s: (a) 

𝛾 = 0.15; (b) 𝛾 = 0.1; and (c) 𝛾 = 0.05.  
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(a) 

 

(b) 

 

(c) 

Figure 16: Crushing response of the HHRH structures at different stages in the stress-strain 

curve at a crushing velocity of 100 m/s: (a) 𝛾 = 0.15; (b) 𝛾 = 0.1 and (c) 𝛾 = 0.05  

3.2.2 Evaluations of crashworthiness  

Several indicators are used for assessing the crashworthiness of structures. Peak stress, 𝜎𝑝, 

is one of these indicators [82]. Others include plateau stress and densification strain as 

summarized in Table 4. From this table, it is observed that the HHRH structure reduces 𝜎𝑝 

compared to the traditional re-entrant hexagonal structure (𝛾 = 0). Overall, the results in 
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the table show that increasing 𝛾 reduces the 𝜎𝑝 experienced by the HHRH structure, which 

is related to the ability of hexagon structures in reducing 𝜎𝑝 [46].  

Table 4: Crashworthiness parameters 

Velocity, 𝑽 (m/s) The 

hierarchical 

scaling 

factor (𝜸) 

Peak Stress, 𝝈𝒑 

(MPa) 

Plateau Stress, 𝝈𝒑𝒍 

(MPa)  

Densification 

Strain, 𝜺𝒅 

6 0 3.936 2.325 0.730 
0.05 4.362 1.258 0.670 

0.10 1.614 0.833 0.470 

0.15 0.901 1st = 0.549 0.680 

2nd= 1.077 

20 𝛾 = 0 11.704 3.240 0.814 

𝛾 = 0.05 10.898 1.465 0.738 

𝛾 = 0.1 3.878 0.984 0.508 

𝛾 = 0.15 1.670 1st = 0.684 0.740 

2nd= 1.284 

100 𝛾 = 0 54.582 8.569 0.763 

𝛾 = 0.05 24.156 5.981 0.765 

𝛾 = 0.1 25.396 4.906 0.833 

𝛾 = 0.15 16.834 3.015 0.918 

 

Meanwhile, from Table 4, the peak stress is also noticed to intensify as the crushing 

velocity increases. For instance, at  𝑉 = 6 𝑚/𝑠, 𝜎𝑝 values of 3.936, 4.362, 1.614 and 0.901 

MPa were recorded when 𝛾 = 0, 0.05, 0.1 and 0.15, respectively. The lowest value of 

0.901 MPa, recorded when 𝛾 =  0.15, reduced 𝜎𝑝 by 79.34% and 77.11% when compared 

to models with 𝛾 = 0 and 𝛾 = 0.05 respectively. A similar trend is observed under the 

medium and high impacting velocities. For instance, the lowest peak stress values of 1.670 

MPa and 16.834 MPa were observed for the model with 𝛾 = 0.15 under the impacting 

velocities of 20 𝑚/𝑠 and 100 𝑚/𝑠. Both values are lower by around 85.7 % and 69.2 % 

than that of the traditional re-entrant structure.  

Another measure of crashworthiness is the energy absorbed per unit volume, 𝐸𝑑. This is 

represented by the area under the stress-strain curve before densification. Figure 17 

illustrates the variation of this for the models at low, medium and high velocities, along 

with that of a re-entrant hexagonal model for comparison. As can be seen in this figure, 

independent of crushing velocity, 𝐸𝑑 increases with increased crushing strain as more cell 

walls deform, which is in line with [36].  
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(a) 

 

(b) 

 

(c) 

Figure 17: Accumulated energy absorption per unit volume for the different models at 

various crushing velocities: (a) 6 m/s; (b) 20 m/s and (c) 100 m/s.  

During the low-velocity crushing, bending of the cell walls, initially about corner hinges 

and then winding around hexagon elements, is attributed to what creates most of the plastic 

deformation mechanisms utilized for energy absorption when 𝛾 = 0.05 and 0.1. However, 

when 𝛾 = 0.15, one more energy absorbance mechanism is present, and that is the buckling 

of the stacked hexagon structure creating more plastic deformations. Consequently, the 

stacked hexagons will have an increased effective wall thickness at the top and bottom cell 
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walls due to the folding of slanted ribs in between the hexagon elements, yielding an 

increased second 𝜎𝑝𝑙, which is about 96.2% higher than the first 𝜎𝑝𝑙 as indicated in Table 

4. Further, when 𝛾 = 0.15, the total absorbed energy (577.8 kJ/𝑚3) is higher than when 𝛾 

= 0.1 by about 46.35%. It should also be noted that the hexagon elements did not collapse 

at low and medium velocities when 𝛾 = 0.05 and 0.1, as observed in Figure 12 and Figure 

15,  due to the increased effective wall thickness and given their small size, requiring very 

high crushing forces to further crush the structure. This causes early densification, reducing 

the area under the stress-strain curve. As 𝛾 reduces, the cell wall thickness increases to 

balance ∆𝜌 and as a result, cell walls will require more force to bend and deform. This is 

reflected by the increased 𝜎𝑝𝑙 for 𝛾 = 0.05 and 0 by 16.8% and 115.9% respectively when 

compared to the 2nd 𝜎𝑝𝑙 of 𝛾 = 0.15. This increased 𝜎𝑝𝑙 will increase the area under the 

stress-strain curve causing an increase in 𝐸𝑑.  

At 𝑉 = 20 m/s, a similar trend is observed where the highest 𝐸𝑑 = 2651 kJ/𝑚3 is 

dissipated when 𝛾 = 0, followed by 𝐸𝑑 = 1111 kJ/𝑚3 absorbed by the HHRH structure 

with 𝛾 = 0.05. At this velocity, the 𝛾 = 0.15 model is still able to outperform the 𝛾 = 0.1 

model despite reduced wall thickness, with 𝐸𝑑 = 715 kJ/𝑚3, a 41% increase in energy 

absorption performance. The slight increase in 𝐸𝑑 performance when 𝛾 = 0.1 compared to 

𝛾 = 0.15 is assumed to be due to inertia effects starting to take effect with increased 

velocities, allowing more of the structure to collapse and incur plastic deformations to 

enable more energy absorbance.  Further, when crushing velocity increases to 100 m/s, the 

global deformation mode is dominated by inertia effects causing a layer-by-layer collapse 

pattern. 

All in all, the above indicates the existence of tradeoffs. Specifically, at the same ∆𝜌, the 

addition of the hexagonal elements mitigates the impact stress in HHRH. As a result, the 

HHRH structures perform better than the traditional re-entrant structure by reducing the 

initial 𝜎𝑝. However, to benefit from the energy absorption capability of the parent auxetic 

structure, a careful balance is required between the size of the hierarchical hexagon 

elements and the parent auxetic unit so that the auxetic property of the parent unit cell is 

not lost.  

3.2.3 Poisson’s ratio 

This section deals with the investigation of how the scale of the reinforcing hexagonal 

element influences the auxetic behaviour of the HHRH structure. For this, the Poisson’s 

ratio, 𝑣, at different axial crushing strains was computed at crushing velocities of 6 and 100 

m/s. For brevity's sake, the following reported results focused on the variation of the major 

Poisson’s ratio (that is 𝑣𝑦𝑥). Under the crushing velocity of 6 m/s, all models followed a 

similar trend where initially a sharp drop in Poisson’s ratio is recorded due to initial 

shrinkage as revealed in Figure 18. It is noticed from the figure that the Poisson’s ratio 

increases in absolute value as the strain increases, which aligns with other studies [28]. For 

this study, the minimum 𝑣𝑦𝑥 values recorded were -0.62, -1.15, -1.85 and -2.29 when 𝛾 = 

0.15, 0.10, 0.05 and 0 respectively. When 𝛾 = 0, the structure experiences the minimum 
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drop in 𝑣𝑦𝑥,  increasing with bigger reinforcing element as expected due to the hindering 

of the diagonal ribs folding process.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 18: Poisson’s ratio vs crushing strain at a crushing velocity of 6 m/s: (a)  𝛾 = 0.15, 

b); 𝛾 = 0.1 (c) 𝛾 = 0.05, (d) 𝛾 = 0.  

It is observed that below a crushing strain of 0.05, the model with 𝛾 = 0.15 has the least 

NPR performance while that with 𝛾 = 0.05 demonstrates the best performance followed 

by 0.1 and 0 respectively. The effect of the high impacting velocity of 100 m/s is provided 

in Figure 19. It is noted that for this scenario, the initial sharp drop in Poisson’s ratio is not 

apparent but rather, a more gradual decreasing-increasing 𝑣𝑦𝑥 curve is obtained for all 

structures. The minimum 𝑣𝑦𝑥 values recorded were -0.05,-0.26, -0.36 and -0.29 when 𝛾 = 

0.15, 0.10, 0.05 and 0 respectively, suggesting an overall drop in auxetic performance at 

high crushing velocities consistent with the observation by Logakannan, et al. [83].  
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(c) 

 
(d) 

Figure 19: Poisson’s ratio vs crushing strain at a crushing velocity of 100 m/s: (a)  𝛾 =
0.15; (b) 𝛾 = 0.10; (c) 𝛾 = 0.05; (d) 𝛾 = 0.  

Another notable observation from the plots in Figure 19 is that during a crushing strain 

range of 0.2 ≤ 𝜀 ≤ 0.8, the model with 𝛾 = 0.15 exhibited the least NPR effect with an 

average 𝑣 = -0.043. This can be explained by the increased size of hexagon elements which 

will reduce the length of the slanted ribs and hence lower the NPR effect created by the 

folding of diagonal ribs. The best auxetic performance at 100 m/s is demonstrated by the 

𝛾 = 0.05 model with an average 𝑣 = -0.339, a 23.3% improvement when compared to the 

regular re-entrant structure. This improvement in auxetic performance can be attributed to 

the extra local deformation mode introduced by the addition of hexagon elements, where 

the winding of diagonal ribs around the hexagon elements tends to further increase the 

lateral shrinkage of the HHRH structure. 

3.3 Random forests modelling results 

3.3.1 Outcome of stratified sampling  

As highlighted in section 2.4.3, three partition ratios are investigated leading to three 

random forests (RF) models of the crushing response, namely CR-RF1, CR-RF2 and CR-

RF3. For each of the partitions, we embraced the idea of stratified resampling via the caret 

package during the splitting phase of the data [84]. This is to ensure similar distribution 

between the training and test datasets. A representative plot of the stratified training and 

testing data is depicted in Figure 20 based on CR-RF1, which demonstrates a balanced 

distribution. But the plots also show that the feature space of the outcome variable is multi-

modal, which can be quite challenging for non-robust ML schemes.  
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(a) 

 

(b) 

 

(c) 

Figure 20: Effect of stratification to ensure analogous distribution of the test and training 

data: (a) 60:40 partition ratio; (b) 65:35 partition ratio; and (c) 70:30 partition ratio.  

3.3.2 RF model optimization and performance metrics 

With the stratified sampling completed, each training data set is deployed to fit an RF 

model, during which it encodes the interactions between the input variables and the various 

nonlinear features of the impact stress response curve. Meanwhile, for each RF model (CR-

RF1, CR-RF2 and CR-RF3), a grid search is performed to choose the best performing 

combination of hyper-parameters in terms of the number of trees, tree complexity and the 

subset of features to be considered at each node split (𝑚𝑡𝑟𝑦). Table 5 highlights the best 

combinations of values determined for building a high-performing ensemble of RF trees 

for this study.  
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Table 5: Best performing choice of random forest parameters 

RF parameters Optimal choice 

Number of trees (𝑛𝑡𝑟𝑒𝑒) 250 

Number of random split points 

(𝑛𝑠𝑝𝑙𝑖𝑡) 

10 

No. of variables tried at each split (mtry) 

 

5 

Forest terminal node size 

 

1 

Resampling used to grow trees 

 

Sampling without replacement 

Resample size used to grow trees 

 

63.2% of the training observation 

 

Using the parameter values indicated in Table 5, the out-of-bag (OOB) error rate is used to 

assess the performance of the model and to estimate variable importance, which is one of 

the unique upsides to working with RF [85]. Figure 21 depicts the variation of the error 

rate for each model. To provide more context about the OOB, in the building of the RF 

model, each tree is grown on a bootstrap sample as explained in section 2.4.2. For this 

reason, a few data points, known as OOB observations, are left out of the growing process 

of each tree. Consequently, these OOB data records are used internally to both estimate the 

generalization error of the random forest and to assess the significance of each predictor 

variable [86]. Premised on this, Figure 21 indicates the model with the 70:30 partition ratio 

(CR-RF3) achieves the lowest error rate among the three models, as seen in Figure 21(c). 

However, the plots in Figure 21 (a) – (c) also show that the error rates for all three models 

stabilize with roughly 250 trees.  Figure 21 (d) illustrates the ranking of the predictor 

variables on the performance of CR-RF3. It is seen from this plot that the crushing strain 

is the most dominant factor in determining stress. Other geometric features defining the 

unit cell topology, 𝑙, ℎ and 𝑙ℎ are all found to be of similar average importance. 

Interestingly, the variable importance plot suggests that the impacting velocity has a 

minimal influence on the predictive strength of the RF. However, given that the velocity 

implicitly contributes to the level of the strain, then this observation that the velocity has a 

minimal influence on the predictive strength can only be taken at face value, at least from 

mechanics perspective. Nonetheless, the utmost importance of strain is expected since the 

stress-strain curve can be portioned into distinct regions such as the initial peak stress 

region, plateau, and densification regions according to the value of the strain. 
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 21: (a) OOB error vs the number of trees for CR-RF1; (b) OOB error vs the number 

of trees for CR-RF2; (c) OOB error vs the number of trees for CR-RF3; (d) variable 

importance plot for CR-RF3.  

In addition to using the OOB error rate to assess the three RF models, Table 6 compares 

the models’ performance in terms of other well-known performance metrics (𝑅2, 𝑀𝐴𝐸 and 

𝑅𝑀𝑆𝐸). Unlike the OOB which assesses the models’ strength based on the training data, 

the results in Table 6 encompass the performance metrics concerning both training and test 

datasets. The table shows that the model with the 70:30 partition ratio (i.e., CR-RF3) again 

has a better performance across the three metrics. It exhibits an 𝑅2, 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 values 

of 96.6%, 0.375 and 2.27 𝑀𝑃𝑎 for the testing data. Figure 22 represents the goodness-of-

fit plots that compare the actual stress values from the numerical experiment contained in 

the test dataset and the stress values predicted by the three RF models. As observed from 

the figure, the learned RF model is found to fits well with the actual stress distribution, 

reflecting good reliability in predicting the crushing stress response in the unseen data set. 
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The performance of the CR-RF3 is scrutinized further in Figure 23, which highlights the 

small prediction error is linked to the high-stress value. However, overall, the CR-RF3 RF 

model shows an impressive performance across all classes of velocity values.  

Table 6: Summary of performance metrics for the three RF models on the testing dataset 

RF Model 𝑹𝟐 𝑴𝑨𝑬 𝑹𝑴𝑺𝑬 

 Training Testing Training Testing Training  Test 

CR-RF1 0.919 0.856 1.230 1.140 4.700 4.460 

CR-RF2 0.917 0.894 1.150 1.320 4.270 5.170 

CR-RF3 0.986 0.966 0.279 0.375 1.190 2.270 

 

 

 

(a) CR-RF1 

 

(b) CR-RF2 

 

(c) CR-RF3 

Figure 22: R-squared plots of the numerical experiment stress (MPa) data against the 

predictions by the three RF models. 
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Figure 23: Breakdown of the R squared plots of the numerical experiment stress data 

against the predictions by the optimal RF model (CR-RF3) 

Finally, the CR-RF3 model was used to predict the stress-strain curve of the HHRH 

structure when 𝛾 = 0.1 at 𝑉 = 20 𝑚/𝑠. The result is shown in Figure 24. As reflected in 

the figure, the predicted stress-strain curve fits very well with the actual curve and hence, 

can capture the actual crashworthiness of the structure with great reliability. Put together, 

the strong performance of the RF model bodes well for its use in the detection of impact 

events or detection of collision impacts. With the help of embedded sensors, the 

instantaneous state of strain in intelligent auxetic structures can be acquired during an 

impact event. Feeding this information to a pre-trained RF model for automated prediction 

then presents a promising approach for condition monitoring of intelligent structures. 

 

 

 

Figure 24: Predicting the stress-strain curve of the HHRH structure when  𝛾 = 0.1 at 𝑉 =
20 𝑚/𝑠 
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4. Conclusion and recommendation 

A primary motivation for the presented work is to improve the stiffness of the conventional 

re-entrant auxetics, and hence its crashworthiness, without sacrificing the beneficial 

negative Poisson’ ratio effect. Along this line, sections of this paper have discussed the 

performance of a proposed hybrid hierarchical re-entrant structures (HHRH) that involves 

reinforcing the regular re-entrant structure’s vertexes with hexagonal mini-unit cells. 

Controlled by a scaling factor, the size of the hexagon element is varied to assess its 

influence on the impact response of the parent re-entrant auxetic structure. With the 

geometric model of the new structure accomplished, a numerical simulation of the 

nonlinear response under impact is established. The finite element (FE) simulation set-up 

was first validated with published studies and found to show excellent agreement. The 

nonlinear FE model was then employed to study the crushing response and crashworthiness 

of the HHRH at specific range of impacting velocities. Towards the development of 

intelligent auxetic structure, a random forest (RF) machine learning model was developed 

to learn the crushing stress of the different models given geometric and strain inputs. 

Overall, the following conclusions are noted. First, the proposed HHRH shows a complex 

deformation mode that integrates the behaviour of the reinforcing hexagonal elements and 

that of the parent re-entrant structure. Second, at intermediate and high impacting 

velocities, the HHRH exhibits lower peak stress than the conventional re-entrant auxetics. 

Moreover, due to the increased effective wall thickness, the HHRH requires a very high 

crushing force and experiences early densification. Importantly, the HHRH structures are 

found to maintain the auxetic behaviour and showed an enhanced negative Poisson’s ratio 

effect compared to the regular re-entrant structure. Furthermore, an optimized RF model 

grown with 250 trees predicted the crushing stress of the testing data set with a coefficient 

of correlation that is as high as 97%, with an RMSE of around 2.27, showing promising 

potential for the development of intelligent auxetic structures.  

Despite the findings highlighted above, further generalizability of this study is bound by 

some limitations. First, the simulations of the impact response were based on elastic-

perfectly plastic material behaviour. While this material model provides reasonable 

accuracy for a certain class of materials under certain loading conditions, it neither allows 

for the simulation of hardening and softening effects nor does it account for rate-dependent 

behaviour that may accompany plasticity. Second, the development of the machine 

learning technique has been based on a limited range of impacting velocity along with a 

restrained axial crushing force. To enhance the generalization of the RF model, expanding 

the scope of the training data to include a wider range of impacting velocity and oblique 

impacting loads will be essential. These two limitations, among others, form part of the 

future work for this investigation.  

Data Availability 

The raw/processed data required to reproduce these findings cannot be shared at this time 

as the data also forms part of an ongoing study.
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