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ABSTRACT
In the past, terahertz spectroscopy has mainly been performed based on terahertz time-domain spectroscopy systems in a transmission or a
window/prism-supported reflection configuration. These conventional approaches have limitations in regard to characterizing opaque solids,
conductive thin films, multiple-layer structures, and anisotropic materials. Ellipsometry is a self-reference characterization technique with
a wide adaptability that can be applied for nearly all sample types. However, terahertz ellipsometry has not yet been widely applied, mainly
due to the critical requirement it places on the optical setting and the large discrepancy with regard to traditional terahertz spectroscopy and
conventional optical ellipsometry. In this Tutorial, we introduce terahertz time-domain spectroscopic ellipsometry from the basic concept,
theory, optical configuration, error calibration to characterization methods. Experimental results on silicon wafers of different resistivi-
ties are presented as examples. This Tutorial provides key technical guidance and skills for accurate terahertz time-domain spectroscopic
ellipsometry.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0094056

I. INTRODUCTION
Polarization is a fundamental physical property of light, which

can be altered upon interaction with a medium. In other words, the
polarization state of light contains information about the interacted
sample. Polarimetry is a technique in which the properties of a sam-
ple are retrieved from changes in the polarization state of light. This
can be done for either transmission or reflection at oblique inci-
dent angles, while reflection-type polarimetry is more commonly
applied due to its ability to measure opaque samples. Reflection
polarimetry is a branch of ellipsometry, although in many cases,
they are synonymous. In this Tutorial, we will use the term ellip-
sometry as we will focus on sample characterization in a reflection
configuration.

To correlate the polarization change with the sample proper-
ties using the method of ellipsometry, one compares the p and s
reflection coefficients r̃p and r̃s and expresses the ratio as ρ̃ = r̃p/r̃s
(∼ represents complex values). When the incident light has equal p
and s components, this ratio is correlated with the complex reflected

electric fields in the p and s directions, Ẽrp and Ẽrs, respectively, as
follows:1

ρ̃ = tan Ψ exp(iΔ) = r̃p

r̃s
= Ẽrp/Ẽip

Ẽrs/Ẽis
= Ẽrp

Ẽrs
, (1)

where tan Ψ and Δ represent the magnitude ratio and phase dif-
ference, respectively, of ρ̃. Ẽip and Ẽis are the incident electric
fields in p or s directions, respectively. By establishing an opti-
cal model to describe the light–matter interaction, r̃p and r̃s, and,
hence, ρ̃, can be predicted by Fresnel coefficients as a function
of the sample properties, such as ρ̃(ñ) = Ẽrp/Ẽrs, where ñ is the
complex refractive index of the sample. In contrast, characteriza-
tion is done by solving the equation either analytically, numer-
ically, or by model fitting. Therefore, ellipsometry extracts the
sample properties by self-referencing the two orthogonal electric
fields from the sample, without the need for an extra reference
signal.
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The first use of the term “ellipsometry” dates back to 1945.2 At
the present time, spectroscopic ellipsometry has become a mature
characterization technology in the infrared (IR)–UV range, with
many commercial ellipsometer products available. It is straightfor-
ward to consider extending this technique further to the terahertz
(THz) wavelengths, which is desirable in this regime compared to
conventional THz spectroscopy methods, and it was first demon-
strated by Nagashima and Hangyo in 2001 based on THz-TDS
(time-domain spectroscopy).3 Conventional THz spectroscopy uses
a transmission or window/prism-based reflection configuration,
which allows the study of transparent bulk materials, most liquids,
and soft tissues. However, absorptive solids and conductive thin
films, such as most doped semiconductors, amorphous inorganic
materials, and conductors, are challenging to be precisely character-
ized. This is because in transmission, absorptive solids attenuate the
light very quickly while conductive thin films are usually too thin to
cause sufficient phase change. In reflection, these solid samples can-
not contact well with a supporting medium that an uncontrollable
air gap will be induced. The noncontact reflection scheme, which
compares the reflection from the sample with the reflection from
a reference medium, is rarely used for characterization because of
the “phase uncertainty” problem4 caused by the height difference
between the sample and the reference medium. For these sam-
ples, ellipsometry provides an ideal noncontact and self-reference
modality. Actually, ellipsometry is a versatile technology that is
not limited only to these sample types; it is also powerful in char-
acterizing anisotropic samples5 and multiple-layer structures6 and
in investigating magneto-optical effect7–9 and polarization-sensitive
devices.10–12

THz spectroscopic ellipsometry has been done in either
frequency-domain (FD) or time-domain (TD). Due to large dis-
crepancies in the instrumentation between these two techniques,
they have very different characteristics in regard to the bandwidth,
detected quantities, measurement methods, and data processing
methods. Actually, within the class of FD ellipsometers, there are
numerous source–detector combinations, such as BWO (backward
wave oscillator)–Golay cell,9,13,14 BWO–SNA (scalar network ana-
lyzer),15 and black-body source in FTIR (Fourier transform infrared)
plus synchrotron–bolometer.16 A majority of these THz FD
ellipsometers were proposed by the group in University of Nebraska-
Lincoln and their co-workers. On the contrary, the category of
THz-TDS ellipsometers shares similar operation mechanisms. The
studies reported so far have mostly used nonlinear crystals or pho-
toconductive antennas (PCAs) for THz emission and detection,17–20

and very recently, the use of air-plasma filament polarimetry has
also been demonstrated.21 As a tutorial aiming at delivering the key
technical guidance and skills for a specific technique, we will only
focus on ellipsometry based on THz-TDS due to the huge differences
from the FD systems.

THz-TDS ellipsometers have some advantages and challenges
compared to THz-FD ellipsometers and commercial IR-UV ellip-
someters. The first obvious merit is the coherent detection of electric
fields, which simultaneously provides both the amplitude and the
absolute phase in a ultrabroad bandwidth at a fast acquisition rate
(e.g., >20 Hz for systems using a femtosecond laser at a repetition
rate of 100 MHz). Coherent detection also simplifies the polar-
ization control, reducing the number of measurements needed.
In detail, tan Ψ and Δ can be directly obtained from THz-TDS

using a polarizer–sample–analyzer (PSA) scheme with p and s reflec-
tions measured using two analyzer orientations. In contrast, most
FD ellipsometers are intensity-based, using measurements of at
least four polarization directions, where typically the p, s, and ±45○

components are needed to extract tan Ψ and cosΔ, and further
measurements of the left and right circular polarization compo-
nents manipulated by additional phase compensators are required
to determine Δ in the range of [−180○, 180○] from cos Δ.1 Broad
bandwidth is another advantage this method offers compared to
THz FD sources. Typical TDS systems cover 0.1–4 THz, while
most THz CW sources have a limited tunable range and require
additional frequency-multipliers to achieve a broader bandwidth.
Nevertheless, their excellent spectral resolution down to 1 MHz
could be useful in special applications to resolve fine resonant
features.14,22 Finally, the picosecond-temporal resolution (hence,
the absence of standing-wave issue14) enables selecting specific
reflective pulses in the time domain, simplifying the data process-
ing, and may provide additional spectral information. A general
downside to using THz ellipsometry is the beam divergence issue,
which is physically unavoidable when the wavelength of the light
increases to the quasi-optical regime. We will discuss this in detail
in Sec. IV B. A particular weakness of THz-TDS ellipsometers is
the high sensitivity of the single-pixel detector to the THz beam
alignment. Most TDS detectors require the THz beam to be pre-
cisely focused; hence, multiple reflections from bulk samples could
be out-of-focus and have different detection sensitivities, making the
spectrum containing all these reflections differ from the theoretical
reflection model. This can be solved in many cases by tempo-
rally removing the high-order reflections. Pulse shift is another
special issue that could be associated with the time-domain detec-
tion modality, causing phase errors especially at high frequencies.
In this Tutorial, we will focus on these unique characteristics of
THz-TDS ellipsometry and provide key technical guidance and
skills to obtain accurate ellipsometric measurements. We will dis-
cuss the theory in Sec. II, fundamental optics in Sec. III, error
analysis and calibration in Sec. IV, and sample characterization
in Sec. V. Finally, experimental demonstration will be presented
in Sec. VI.

II. THEORY
A. Categories

Ellipsometry can be classified into two categories: standard
ellipsometry and generalized ellipsometry. Standard ellipsometry
refers to measurements with no cross-polarization induced, that
is, no s reflection is produced under a p incidence or vice versa
and no depolarization occurs. Isotropic materials and uniaxial
anisotropic materials whose optical axis is specially aligned par-
allel or perpendicular to the incident plane can be measured
by using this technique. The most commonly reported THz-
TDS ellipsometric measurements are carried out via standard
ellipsometry. For anisotropic materials with randomly orientated
optical axis, conversion between the s and p polarizations occurs,
which requires generalized ellipsometry in order to measure
cross-polarization reflections. If depolarization occurs, such as
by materials with a wavelength-comparable surface roughness,
Mueller-matrix (introduced next in Sec. II C) generalized ellipsom-
etry has to be applied to describe partially polarized or unpolarized
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light. Generalized ellipsometry in the THz regime has been mostly
demonstrated by FD systems,5,14,16,23 while THz-TDS ellipsome-
ters can also be built in this form to measure cross-polarization
reflections.

B. Fresnel coefficients
Fresnel coefficients describe the reflection and transmission of

light for an established optical model. Here, we only introduce reflec-
tion coefficients used in reflection-type ellipsometry. For bilayer
structures containing two semi-infinite media 1 and 2, as shown in
Fig. 1(a), the p and s reflection coefficients for light incident from
medium 1 can be expressed as follows:

r̃p =
Ẽrp

Ẽip
= ñ2 cos θ1 − ñ1 cos θ2

ñ2 cos θ1 + ñ1 cos θ2
, (2)

r̃s =
Ẽrs

Ẽis
= ñ1 cos θ1 − ñ2 cos θ2

ñ1 cos θ1 + ñ2 cos θ2
, (3)

where ñ1 (θ1) and ñ2 (θ2) are the complex refractive indices
(incident/refracted angles) in medium 1 and medium 2, respectively.
Snell’s law connects θ1 and θ2 using the following relation:

ñ1 sin θ1 = ñ2 sin θ2. (4)

For an optical model containing three layers, from 1 to 3, with
the middle layer 2 having a finite thickness d2, as shown in Fig. 1(b),
the corresponding p(s) reflection coefficient for light incident from
medium 1 is given by

FIG. 1. Fresnel coefficients for different optical models. Reflection coefficients for
(a) bilayer, (b) three-layer, and (c) four-layer structures.

r̃123,p(s) =
Ẽr,p(s)
Ẽi,p(s)

= r̃12,p(s) + r̃23,p(s) exp(−2iβ)
1 + r̃12,p(s) r̃23,p(s) exp(−2iβ) , (5)

where

β = 2πd2

λ
ñ2 cos θ2 (6)

is called the film phase thickness. r̃12,p(s) and r̃23,p(s) in Eq. (5) are
p or s reflection coefficients from medium 1 to 2 and from 2 to
3, respectively, calculated by Eq. (2) or Eq. (3) according to the
polarization state.

For a stratified medium containing more than three optical
layers, we can apply Eq. (5) for every three layers iteratively. For
example, for a four-layer structure containing media 1–4 with light
incident from medium 1, as shown in Fig. 1(c), we can first calcu-
late the reflection of the lower three layers r̃234 by using Eq. (5). The
total reflection r̃1234 is calculated again using Eq. (5) by replacing the
lower reflection with r̃234:

r̃1234,p(s) =
r̃12,p(s) + r̃234,p(s) exp(−2iβ)

1 + r̃12,p(s) r̃234,p(s) exp(−2iβ) . (7)

The same principle can be applied for an arbitrary number of
layers. Using these reflection coefficients, we are able to calculate the
polarization state of the reflected light as a function of the sample
properties [i.e., ρ̃(ñ)]. The sample properties are determined from
the best fit between the calculated and measured results.

C. Data expression
An ellipsometer may contain multiple polarization-dependent

optical elements. The measured quantity depends on the orienta-
tion of these components. It could be difficult to directly express
the measured signal as a function of the sample properties when
there are numerous polarization variations during the propagation.
The Jones matrix and Mueller matrix are the two mathematical
approaches used to express polarization-dependent light propaga-
tion. A Jones matrix J is a 2 × 2 complex-valued matrix that relates
the input and output electric fields (expressed as Jones vectors) as
follows:

⎡⎢⎢⎢⎢⎢⎣

Ẽout
x

Ẽout
y

⎤⎥⎥⎥⎥⎥⎦
= J
⎡⎢⎢⎢⎢⎢⎣

Ẽin
x

Ẽin
y

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

jpp jps

jsp jss

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Ẽin
x

Ẽin
y

⎤⎥⎥⎥⎥⎥⎦
. (8)

A Mueller matrix M is a 4 × 4 real-valued matrix. In this
case, the input and output are expressed as Stokes vectors S whose
parameters are intensity-based quantities. The relationship becomes

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sout
0

Sout
1

Sout
2

Sout
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sin
0

Sin
1

Sin
2

Sin
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sin
0

Sin
1

Sin
2

Sin
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)
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where the Stokes parameters are related to the intensities as follows:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ix + Iy

Ix − Iy

I+45○ − I−45○

IR − IL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where the subscripts x, y, +45○, −45○, R (right-circular), and L (left-
circular) represent the polarization components.

Optical elements, sample response and coordinate rotation, can
be expressed by independent Jones matrices in the sequence of their
positions in the propagating path as J1J2J3. . . or by Mueller matrices
as M1M2M3. . .. The product of these matrices relates the input from
the source and the output to the detector. The elements of the final
product matrix contain the sample response, which are functions of
the sample properties that can be estimated by Fresnel coefficients.
The major difference between the Jones matrix and Mueller matrix
is that only the Mueller matrix can express unpolarized and partially
polarized light. For polarized light, both expressions are mathemati-
cally identical, while because the Mueller matrix deals with intensity-
based Stokes parameters, it is sometimes more favorable for FD
ellipsometry in which the intensities of different polarization com-
ponents are measured. For THz-TDS ellipsometry, which involves
directly measuring the complex electric fields without considering
depolarization, the Jones matrix is much more convenient. Actually,
the coherent detection modality of THz-TDS significantly simpli-
fies the polarization control and the measurement (see Sec. III B).
As a result, the relationship between the measured electric fields
and the sample properties [i.e., Eq. (1)] can be easily derived, and
matrix multiplications in terms of simple measurements becomes
unnecessary.18,24–26 Nevertheless, the Jones matrix can be used to
assist the analysis of more complicated situations, such as general-
ized ellipsometry or when taking imperfections of optical elements
into account.20,27

III. OPTICAL CONFIGURATION
A. Beam control

Ellipsometry retrieves the sample properties from the observed
change in polarization, mathematically based on tan Ψ and Δ. The
increased measurement accuracy relies on the high sensitivity of tan
Ψ and Δ to the sample properties. For bulk materials, this is achieved
near the Brewster angle (or pseudo-Brewster angle for absorptive
samples) θB. Assuming a medium with ñ = n − iκ, Figs. 2(a) and
2(b) show the calculated tan Ψ vs the incident angle θi from air to
the medium with n varied from 1.5 to 3 (κ fixed at 0) and with
κ varied from 0 to 1 (n fixed at 2), respectively. The biggest variation
of tan Ψ between curves at a fixed angle is found around θB, while the
smallest variation is observed at the normal incident and 90○. Similar
characteristics can also be observed for Δ (not shown). The analysis
reflects two characteristics of ellipsometry. First, the incident angle
should be adjusted specifically for a certain sample according to its
properties. Doing this requires a robust, ideally, electrical control
of the incident angle. Second, the angular region with a high sam-
ple sensitivity is usually accompanied by a high angular sensitivity
as well, especially for materials with a large refractive index, as can

FIG. 2. Incident-angle sensitivity analysis. Numerically calculated tan Ψ vs θi for
bulk isotropic samples with (a) n varied from 1.5 to 3 (κ fixed at 0) and (b) κ varied
from 0 to 1 (n fixed at 2).

be seen in the rapid variation of tan Ψ at lager incident angles in
Fig. 2(a). This means the incident angle should be precisely set
and measured. To satisfy these requirements, fiber-coupled pho-
toconductive antennas (PCAs) are highly recommended for THz
generation and detection. Free-space coupled PCA, optical rec-
tification, and electro-optic sampling are sensitive to the optical
alignment of the pumping and probing beams; hence, the emitter
and detector are usually fixed. The incident angle is changed by
rotating off-axis mirrors, which in turn requires realigning the THz
optics.20,25,26 In comparison, fiber-coupled antennas can be freely
moved without affecting the coupling between the femtosecond laser
beams and the antennas.18,19,27–29 The optics on the emission and
detection sides can be assembled on two independent rails, respec-
tively, as shown in Figs. 3(a) and 3(b). In this way, the incident angle
can be easily adjusted by rotating the rails around the focal point on
the sample, without causing a significant misalignment, as indicated
by the gray arrows in Fig. 3(a). As the polarization-dependence is
typically weak at small incident angles, designing a rotational stage
with a switchable range of 45○–90○ is suitable for most sample types,
which also allows additional transmission spectra to be measured for
transparent samples.

Figure 3(b) shows the optical arrangement from the incident-
plane view. For PCAs used as an emitter and detector, a pair of
lenses L1 and L4 (could be replaced with parabolic mirrors), typically
with a f -number around 1.3–2, are set next to the antennas to col-
limate the beam from the emitter and to focus the collimated beam
to the detector. Another pair of lenses, L2 and L3, is used to focus
the beam onto the sample and to collimate the reflected beam from
the sample. The selection rule for this pair of lenses will be discussed
in Sec. IV B.

B. Polarization manipulation
Polarization state measurement is another key feature of an

ellipsometer. We have discussed earlier that the coherent detection
of THz-TDS greatly simplifies measurements by only detecting two
orthogonal electric fields. Therefore, unlike IR-UV ellipsometers
that require additional phase compensators to measure the cir-
cular polarization components, THz-TDS ellipsometry only needs
polarizers in a PSA configuration to obtain the absolute polarization
state. Typically, three polarizers are necessary for a precise polariza-
tion manipulation in standard ellipsometry, as shown in Fig. 3(b).
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FIG. 3. Schematic of a standard THz-TDS ellipsometer based on fiber-coupled
PCAs. (a) 3D view and (b) incident-plane view of the optical arrangement. The
insets show the polarization states at different beam positions, viewed from the
wavevector direction. P1, P2, and P3 are three polarizers, with P2 acting as an
analyzer to select the polarization component of the reflected signal. The lenses
are labeled from L1 to L4.

Most THz PCAs are quasi-linearly polarized in emission and
detection.12 The degree of linearity strongly depends on the antenna
design, but most of them still have considerable cross-talk. There-
fore, two polarizers, P1 and P3, are placed in front of the emitter
and detector, respectively, with the passing direction aligned paral-
lel to the main-polarizing direction of the antennas.28,29 As we will
prove in Sec. IV C, it is convenient to regard this polarizer–antenna
combination as a single unit, providing an ideal linear emission
and detection. They are normally set at 45○ (to the s direction).
Another polarizer, P2, acts as the analyzer to select the reflected
s or p component. The polarization states at different beam posi-
tions are illustrated as insets in Fig. 3(b). The emission unit sends
a perfectly 45○ linearly polarized light after P1, containing equal
s or p components. Sample reflection causes a polarization vari-
ation, which is reconstructed by rotating P2 to measure the s
and p components, respectively. The detector unit aligning at 45○

ensures that both s and p components after P2 can be detected
with equal sensitivity. For generalized ellipsometry in which cross-
polarization occurs, an additional polarizer can be placed on the
emitter side after P1 to set the incident light to the sample as
s or p polarized. In this way, four electric field quantities of
Ẽrpp, Ẽrsp, Ẽrps, and Ẽrss can be measured, and three relationships,
typically by normalizing the former three electric fields to Ẽrss,
can be obtained. Note that in any measurement, it is not recom-
mended to rotate the antenna units as any mechanical adjustment
to the emitter and detector will lead to a sensitive change in the
optical alignment, hence the measured electric fields cannot be
self-referenced.

IV. ERROR PROPAGATION AND CALIBRATION
A. Measurement error

Measurement errors occur in any practical experiment, ulti-
mately limiting the accuracy that can be achieved. Error-propagation
analysis is essentially a sensitivity analysis, which is especially impor-
tant for ellipsometry as the sensitivity highly depends on the incident
angle, and it is particularly useful for samples without a clear
definition of θB (e.g., conductive materials). A poor sensitivity
significantly magnifies the measurement error in regard to the
characterization results (e.g., measured at near normal incidence).
Error-propagation calculation is also important for result analysis.
THz-TDS measurements offer a frequency-dependent signal-to-
noise ratio (SNR). Analyzing the noise error enables the deter-
mination of the data credibility and the available bandwidth
also.

Table I provides steps to perform error-propagation analysis.
If the analysis is performed prior to an experiment to analyze the
sensitivity, the first two steps are required. Step 1 estimates the
sample properties ñsample(ω), which can be obtained from a proper
dielectric model or literature. The accuracy requirement is low for
sensitivity analysis. Based on the optical model corresponding to the
measurement, r̃p(ω) and r̃s(ω) can be calculated using ñsample(ω).
To analyze errors in a measurement, we also simulate Ẽi(ω) to con-
vert r̃p(ω) and r̃s(ω) to Ẽrp(ω) and Ẽrs(ω) in Step 2. Ẽi(ω) can
be numerically expressed as a double-Gaussian filter in THz-TDS30

or approximated from metal reflection. Step 3 adds random noise
to the spectrum, as shown in the equations. If the analysis is per-
formed after an experiment, Ẽrp and Ẽrs are directly obtained from
the measurement. N(ω) in the equation represents the noise ampli-
tude randomly assigned within [0, Nmax], where Nmax is the max-
imum noise amplitude that can be estimated from the noise floor.
ϕ(ω) is the noise phase randomly distributed within [0, 2π]. Note
that here we only consider the white noise mainly from the detec-
tor, hence, Nmax is independent of the reflectivity and frequency. In
this case, a weak reflection leads to a small signal and, hence, a low
SNR. ρ̃noise(ω) is regarded as the noise-affected ratio used to char-
acterize ñsample in Step 4 (characterization methods are detailed in
Sec. V). Steps 3 and 4 are repeated M times (e.g., M > 100) to enable
statistical analysis.

Based on these steps, we show an example of error analysis
for fused quartz (ñqz = 1.95 − 0.0 048i),31 assuming that the sam-
ple is being measured at θi = 40○ and 65○, respectively. r̃p and
r̃s are calculated by Eqs. (2) and (3), respectively. Ẽi(ω) is sim-
ulated by a normalized double-Gaussian filter with −6 dB cutoff

TABLE I. Error propagation analysis.

1. Estimate ñsample(ω) and calculate r̃p(ω) and r̃s(ω).
2. Simulate or measure Ẽi(ω).
3. Add random noise to Ẽrp and Ẽrs:
Ẽnoise

rp (ω) = Ẽrp(ω) +N(ω)eiϕ(ω),
Ẽnoise

rs (ω) = Ẽrs(ω) +N(ω)eiϕ(ω),
ρ̃noise(ω) = Ẽnoise

rp (ω)/Ẽnoise
rs (ω).

4. Characterize ñsample from ρ̃noise.
5. Repeat 3 and 4 for M times and do statistical analysis.
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frequencies at 0.15 and 1.1 THz and a noise floor at −60 dB.
Figure 4(a) shows examples of the simulated detected spectrum
with ∣r∣ = 1 and ∣r∣ = 0.1, respectively, showing a reduced SNR and
useful bandwidth with a lower reflectivity. For quartz measure-
ment, 200 groups of Ẽrp and Ẽrs signals are calculated with random
noise added, corresponding to 200 groups of ρ̃noise for each inci-
dent angle. Figure 4(b) shows the SNR of tan Ψ at the two incident
angles, calculated by mean(tan Ψ)/std(tan Ψ) (mean and std repre-
sent average and standard deviation, respectively). Since the value of
θB for fused quartz is 62.9○, the SNR of the orange curve calculated at
θi = 65○ is about one-fourth that of the blue curve, due to the weak
p reflection. Interestingly, Figs. 4(c) and 4(d) show that the final
errors in n and κ of θi = 65○ are less than half the errors obtained for
θi = 40○. This verifies our previous discussion that the best sensi-
tivity is achieved around θB and that it has a huge impact on the
characterization of our results. At angles far away from θB, small
measurement errors can be magnified to the characterization results.
The example shows the importance of sensitivity and error analysis
in ellipsometry.

B. Angular error
Ellipsometry has a higher angular sensitivity than traditional

reflection measurements, mainly due to the need for a large inci-
dent angle around θB. This is especially obvious for samples with
a large refractive index because, as can be observed in Fig. 2(a),
a rapid change in tan Ψ is observed at large angles. Similar to
the measurement error, we can estimate the influence of the inci-
dent angle error by performing theoretical analysis. Here, we
choose bulk high-resistivity silicon (HR-Si), fused quartz, and high-
density polyethylene (HDPE) as examples. The complex refractive
indices (θB) of Si, fused quartz, and HDPE are 3.418 − 0i (73.7○),

FIG. 4. Measurement error and its propagation. (a) Assigned measured spectrum
when ∣r ∣ = 1 and ∣r ∣ = 0.1, respectively, with the noise floor at −60 dB. (b) SNR
of tan Ψ for measuring fused quartz at θi = 40○ and 65○, respectively. (c) n and
(d) κ with the error bars given by the standard deviations of 200 calculations.

1.95 − 0.0048i (62.9○), and 1.54 − 0.01i (57○), respectively.31,32 We
assume they are measured under θi = 70○, 65○, and 60○, respectively.
Theoretical ρ̃ for the three samples can be calculated by Eqs. (1)–(3).
Assuming the actual incident angle is measured as θi + Δθ, the
corresponding refractive index obtained from the characterization
will have an error Δn compared to the theoretical value, which is
shown as a function of Δθ in Fig. 5. A higher angular sensitivity
is found for materials with a larger refractive index as expected,
but overall, all the three samples are sensitive to the incident angle
compared to traditional transmission or reflection measurements.
In ellipsometry, attention should be given to the optical set up to
reduce Δθ.

The angular accuracy can be improved in two ways. First, good
alignment is essential: the THz beams should be aligned parallel
to the optical rails. This is because the incident angle is physically
measured by the angle between the two rails (or other mechanical
components), it is fundamental to ensure that the angle measured
represents the angle of incidence. When on-axis lenses are used,
properly extending the beam paths on the rails can reduce the
error due to the tilting angles of the antennas. Second, the issue
of beam divergence should be carefully considered. This issue has
been noticed for infrared ellipsometry due to the longer wavelength
involved,1 and it becomes more significant for THz waves. Colli-
mated THz beams provide a near-zero angular spread, however,
with a centimeter-level beam diameter as it must be adequately
larger than the wavelength to meet the plane-wave approximation.
In ellipsometry, the use of large incident angle further enlarges
the illuminating area due to elliptical projection, making colli-
mated beams impractical for most samples. This is limited not
just by the sample size but also by the surface evenness or film-
thickness homogeneity. Focusing the beam introduces a trade-off
issue between the spot size and the beam divergence. Physically,
the radius (i.e., beam width) of a Gaussian beam w is defined as
the distance between the optical axis and the position at which the
light intensity drops to e−2 times the on-axis intensity, as shown in
Fig. 6. w is related to the beam propagating distance z (in air) as
follows:33

w2(z) = w0
2[1 + ( λz

πw02 )
2

], (11)

FIG. 5. Estimated refractive index error Δn arising from the incident-angle error Δθ,
theoretically calculated for Si, fused quartz, and HDPE measured for an incident
angle of 70○, 65○, and 60○, respectively.
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FIG. 6. Illustration of the angular spread issue for focused Gaussian beam.

where w0 is the beam waist, defined as the minimal beam radius
achieved at the focal point (z = 0) and λ is the wavelength. As
the beam propagates away from the waist, w increases to form an
angular spread. Having a smaller w0 generates a faster variation of
w with z, hence, a larger beam spread. This can be expressed mathe-
matically by Eq. (11), which is a hyperbola with an asymptote slope
of θ = arctan( λ

πw0
), as indicated by the blue line in Fig. 6.

The expression for θ clearly shows the trade-off issue between
the beam divergence and the spot size. Optics with a smaller
numerical aperture (NA = sin θ), or equivalently a larger f -number
(N = EFL/D, where EFL is the effective focal length, D is the effec-
tive aperture), reduce the divergence but increase the focal spot
size. To quantitatively show the relationship between the spot size
s = 2w0 and θ, Table II is given as a reference. In the calculation,
we assume the collimated THz beam has a diameter (i.e., D) of
30 mm for all frequencies, and it is focused by lenses or mirrors
with different EFL values. This assumption gives the condition of
w(EFL) = 15 mm. Substituting this into Eq. (11), we obtain w0, as
well as s and θ for different frequencies. In practice, the sample
is placed at the focal point such that only a limited range of the
beam will interact with the sample, as illustrated in Fig. 6. Since
the beam is less diverging around the focal point, the actual angu-
lar spread ϕ is smaller than θ. ϕ can be evaluated by the edge of the
beam interacting with the sample, and it is identical to the slope of
the tangent at this point, expressed as ϕ = arctan w′∣z=z1 . z1 is the
z position at which the edge of the beam interacts with the sam-
ple, which is related to the incident angle by tan θi = z1

w(w1) . Note
that the two edges of the beam interacting with the sample have the
same spreading direction, thus the total spreading angle is consid-
ered as ϕ rather than 2ϕ. Here, we assume θi = 60○ to calculate ϕ in
Table II. With the defined incident angle, the projecting length of
the illuminating area on the sample in the incident-plane direction
l is also estimated by l = 2z1

sin θi
, as shown in Fig. 6. s and l together

indicate the minimum sample size required under the specific optics
and wavelength.

TABLE II. Examples of angular spread and spot size vs different effective focal
lengths, calculated for 0.2, 0.5, 1.0, and 2.0 THz.

EFL (mm) f a (THz) θ (○) ϕ (○) s (mm) l (mm)

50

0.2 16.6 8.8 3.20 7.48
0.5 16.7 8.8 1.28 2.98
1.0 16.7 8.9 0.64 1.48
2.0 16.7 8.9 0.32 0.74

75

0.2 11.2 3.9 4.84 10.30
0.5 11.3 3.9 1.91 4.06
1.0 11.3 4.0 0.96 2.03
2.0 11.3 4.0 0.48 1.02

100

0.2 8.3 2.1 6.52 13.49
0.5 8.5 2.2 2.56 5.29
1.0 8.5 2.2 1.28 2.63
2.0 8.5 2.2 0.64 1.32

150

0.2 5.4 0.9 10.15 20.58
0.5 5.7 1.0 3.85 7.83
1.0 5.7 1.0 1.91 3.88
2.0 5.7 1.0 0.96 1.94

200

0.2 3.8 0.4 14.56 29.31
0.5 4.2 0.5 5.17 10.44
1.0 4.3 0.6 2.56 5.15
2.0 4.3 0.6 1.28 2.56

aFrequency.

One obvious characteristic observed from the table is that both
θ and ϕ are nearly frequency-independent, while s and l are basi-
cally proportional to the wavelength. This explains the severity of
angular spread issue for longer wavelengths. Using optics with a
large EFL offers a smaller beam divergence for all frequencies, while
the high-frequency components can be focused to a smaller size.
Second, it is found that although both θ and ϕ decrease with increase
in EFL, θ is roughly inversely proportional to EFL while ϕ is roughly
inversely proportional to EFL2. The reason that ϕ decreases much
faster comes from the longer depth of focus when using optics with
a larger EFL, which means the weakly diverging region near the
focus is longer. Note that the effect of beam divergence on the reflec-
tion is rather complicated, and one cannot simply equate ϕ and Δθi
in Fig. 5 to evaluate or calibrate the error. The divergence devi-
ates the actual reflection away from the plane-wave approximation
made in the derivation of Fresnel coefficients. However, the high
angular sensitivity indicates the importance of using optics with a
smaller beam divergence to reduce the error on the characteriza-
tion results. We also notice that both s and l are about linearly
proportional to EFL. Increasing EFL is more efficient in reducing
the divergence ϕ compared to the expansion of the illuminating
area. Therefore, a general guideline for the selection of optics is to
maximize the EFL as long as the beam spot size can be supported
by the sample. Another strategy is to give up some low-frequency
components whose illuminating areas are too large for a specific
sample.
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C. Limited extinction ratio
THz polarizers are mostly wire-grid polarizers (WGPs) made

by using subwavelength metallic grids.34 They can be commercially
purchased or self-fabricated by a couple of techniques. In gen-
eral, they fall into three categories, i.e., bulk-substrate, thin-film,
and free-standing polarizers, which have different advantages and
limitations. In ellipsometry, the most important parameter is the
extinction ratio (ER), defined as the ratio between the transmitted
intensities from the passing and blocking directions of a polarizer,
expressed as follows: ER = Tpass

Tblock
. We will later analyze the influ-

ence of ER on the measurements. In conventional designs made of
single-layer subwavelength metallic grids, ER increases with decreas-
ing wire width and period. The achievable ER is mainly limited by
the fabrication technology. ER up to 104 over 0.1–2.0 THz with a
140 nm period has been demonstrated.35 The use of multiple lay-
ers of metallic grids is another efficient approach to improve the
ER, which normally doubles the ER (in dB scale) compared to the
single-layer design.36,37 Other strategies may also be applied, such
as using triangular or sinusoidal metallic surfaces. These meth-
ods can be adapted with bulk-substrate or thin-film polarizers.
Free-standing polarizers are made using metallic wires such that
the ER can only be improved by reducing the wire width and
period.38 However, limited by the mechanical strength, the wire
width is typically limited to be above 5 μm.39,40 As a result, the ER is
often insufficient especially in systems with an ultrabroad bandwidth
because the ER is basically inversely proportional to the frequency.
Nevertheless, free-standing polarizers have two additional attractive
characteristics: They provide the best transparency in the passing
direction over the three designs as no absorption materials are
involved and they are also devoid of Fabry–Perot (FP) effects
arising from the multiple reflections within the substrate or the thin
film. The second feature is especially useful in time-domain spec-
troscopy as the multiple reflections either broaden the pulse width
to decrease the temporal resolution or introduce pulse echoes in
the time domain that can be interfered with reflections from the
sample.

In the ellipsometer configuration shown in Fig. 3, the ER of
P2 has the largest impact on the measurement accuracy. To show
this, we define the ratio between the transmission coefficients of the
passing and blocking directions of P2 as follows:

R = tpass

tblock
. (12)

It can be seen that ER = ∣R2∣. When the ER is not sufficiently
high, R cannot be approximated as infinite in practical measure-
ments. In this case, the measured signal when P2 is set in the p
direction becomes

Ẽmeas
rp = 1√

2
(tpassẼrp + tblockẼrs) =

tpass√
2
(Ẽrp +

Ẽrs

R
), (13)

where the 1/
√

2 term comes from the projection from the p
or s direction of P2 onto the 45○ direction of P3, as shown
in Fig. 3(b). Ellipsometers usually measure a sample around θB,
where ∣Ẽrp∣ ≪ ∣Ẽrs∣; hence, the second term in the brackets cannot
not be omitted when R is not sufficiently large. For example, if

∣Ẽrs∣ = 10∣Ẽrp∣, ∣R∣ > 1000 (i.e., ER > 60 dB) is needed to have the
amplitude error for Ẽmeas

rp to be less than 1%. Such a requirement
is difficult to achieve for single-layer WGPs, especially at high fre-
quencies where ER decreases.36,41,42 Figure 7 shows the amplitude
and phase of 1/R of a free-standing WGP with a wire width of
5 μm and a period of 12 μm, which has nearly the highest ER
among commercially available free-standing WGPs. ∣R∣ is less than
100 for frequencies above 0.6 THz. Therefore, in many cases, it is
recommended to numerically calibrate the measured signals for the
limited ER of P2. To do this, R of P2 should be first characterized
as follows:

R = Ẽpass

Ẽblock
, (14)

where Ẽpass and Ẽblock are the transmitted electric fields when the
passing and blocking directions of P2 are aligned parallel to P1
(and P3), respectively. We rewrite Eq. (13) and add the relationship
for the measured s signal as follows:

√
2

tpass
Ẽmeas

rp = Ẽrp +
Ẽrs

R
, (15)

√
2

tpass
Ẽmeas

rs = Ẽrs +
Ẽrp

R
. (16)

Combining Eqs. (15) and (16), we have the following
expressions:

Ẽrp =
√

2
tpass

Ẽmeas
rp − Ẽrs

R

=
√

2
tpass

Ẽmeas
rp −

√
2

tpass

Ẽmeas
rs

R
− Ẽrp

R2

≈
√

2
tpass
(Ẽmeas

rp − Ẽmeas
rs

R
), (17)

FIG. 7. Characterization of a free-standing WGP with a wire width of 5 μm and a
period of 12 μm.
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Ẽrs =
√

2
tpass

Ẽmeas
rs − Ẽrp

R

=
√

2
tpass

Ẽmeas
rs −

√
2

tpass

Ẽmeas
rp

R
− Ẽrs

R2

≈
√

2
tpass
(Ẽmeas

rs − Ẽmeas
rp

R
), (18)

which provide the equations required to calibrate the measured
signals using R. Notice that tpass is not measured, but it can take
arbitrary values as it will be canceled out when we finally calculate
Ẽrp/Ẽrs.The approximation by omitting terms with R2 is mostly sat-
isfied as R2 > 100 can be achieved in most polarizers, such that the
introduced error is less than 1%.

P1 and P3 have the passing direction parallel to the major
polarizing direction of the antennas. Assuming that the emitted sig-
nal (or the detection sensitivity) is mainly linear, with the emitted
electric field (or detector response) in the major polarizing direc-
tion as Ẽmajor and that in the perpendicular direction as Ẽminor ,
the emitted field from P1 (or the detected field with P3) becomes
Ẽfilter = tpass(Ẽmajor + Ẽminor/R). Most antennas have ∣Ẽmajor ∣ > 10
∣Ẽminor ∣, the influence of the second term will be smaller than 1%
with R > 10. Therefore, the ER issue for P1 and P3 is usually
ignorable.

Another factor that produces error similar to the ER effect is
the orientation error of P2. Analogously, a small angular error for
P2 when measuring the p component could lead to a relatively large
s component projected onto the passing direction. To set an accurate
orientation, all polarizers should be first carefully aligned parallel
relative to each other in a transmission configuration, then all of
them should be aligned to the sample p − s coordinate in a reflection
configuration (e.g., calibrated by a metal mirror), generally referred
to as the gravity vertical. In addition, the rotational error should be
especially considered when P2 is manually rotated due to the limited
the controlling accuracy. It is recommended to reduce the rotating
error using a motorized rotational stage such that <0.1○ repeatability
can be achieved.

D. Pulse shift
Reflection characterization techniques are always sensitive to

the phase, including ellipsometry. This is because the maximum
phase variation induced by a sample is ±180○.43 In contrast, the
pulse can be delayed for a long distance in transmission to cre-
ate a huge phase change.44 Although ellipsometry is a self-reference
technique without a phase-uncertainty issue from the sample dis-
placement, other factors such as delay-line positioning error or
pulse shift mostly caused by temperature variation in fiber-based
THz-TDS systems can generate phase error. Pulse shifts can have
a significant influence at high frequencies. The phase error Δϕ is
related to the pulse shift τ by Δϕ(ω) = ωτ. For example, a 10 fs
pulse shift results in 3.6○, 7.2○, and 14.4○ phase errors at 1.0,
2.0, and 4.0 THz, respectively, which can cause significant error
in the characterization results at high frequencies. Such an error
is very system-dependent, and it is recommended to test both
the short-term and long-term (over a few minutes) phase stabil-
ity by continuously recording a reference signal. Figure 8 plots the

FIG. 8. Pulse shift of two fiber-based THz-TDS systems.

measured pulse shifts of two fiber-based THz-TDS systems (deter-
mined from the slope of the unwrapped phase), showing very
different levels of pulse stability. The variation in system A is found
to be correlated with minor variations in the environmental temper-
ature. Here, we introduce a method to calibrate the unknown pulse
shift in ellipsometry measurement.28

The basic principle involves measuring a third signal Ẽmeas
β by

rotating P2 to β direction (β ≠ 0○ or 90○). If there is no pulse shift
error, Ẽmeas

β can be reconstructed from Ẽrp and Ẽrs, mathematically
expressed as their linear combination. In contrast, the expression
is impossible if there are pulse shifts between the measured p, s,
and β signals. We assume there are two pulse shift errors, i.e., τp
and τβ, relative to Ẽrs. This principle allows us to find τp and τβ by
minimizing the error between Ẽmeas

β and the linear combination of
Ẽrp and Ẽrs. Notice that the ER calibration is not independent of
the pulse-shift calibration, and they should be performed together.
Table III gives the calibration steps for the pulse shift and ER errors
simultaneously.

TABLE III. Calibration steps for ER and pulse shift errors.

1. Assign τp and τβ within a searching range.
2. ER and pulse-shift calibration for Ẽrp and Ẽrs:
Ẽrp ≈

√
2

tpass
(Ẽmeas

rp eiωτp − Ẽmeas
rs /R),

Ẽrs ≈
√

2
tpass
(Ẽmeas

rs − Ẽmeas
rp eiωτp/R).

3. Calculate the projections on β and β′ = β + 90○ directions:
Ẽproj

β = Ẽrpêp ⋅ êβ + Ẽrsês ⋅ êβ,
Ẽproj

β′ = Ẽrpêp ⋅ êβ′ + Ẽrsês ⋅ êβ′ .
4. Calculate the β to P3 projection with ER calibration:
Ẽβ−P3 = tpass[Ẽproj

β êβ ⋅ êP3 + (Ẽproj
β′ /R)êβ′ ⋅ êP3].

5. Calculate the error:
ΔEβ(τp, τβ) = ∑ω1

ω0
∣Ẽβ−P3 − Ẽmeas

β eiωτβ ∣.
6. Determine τp and τβ at the minimum of ΔEβ.
7. Output the corresponding Ẽrp and Ẽrs by step 2.
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Step 1 empirically assigns τp and τβ within a searching range
according to the potential error of the system. Step 2 calibrates
the ER using Eqs. (17) and (18) by taking τp into consideration.
Here, Ẽmeas

rp and Ẽmeas
rs are again multiplied by

√
2/tpass, but tpass can

still be arbitrary as it will be canceled out in step 4. Step 3 calcu-
lates the numerical projections in the β and β′ directions, where
β′ = β + 90○. The β′ component is needed to simulate the limited
ER effect when measuring Ẽmeas

β . êp, ês, êβ, êβ′ , and êP3 are the
unit vectors in the p, s, β, β′, and P3 (detector) directions, respec-
tively. We have êp = [0, 1], ês = [1, 0], and êP3 = [cos 45○, sin 45○]
according to the defined coordinate, while êβ (êβ′) could be defined
pointing to β (β′) or β + 180○ (β′ + 180○). During the selection of
β, one should consider the contribution of Ẽrp and Ẽrs. The direc-
tion that makes Ẽrp and Ẽrs have about equal projections on it can
maximize the influence of τp, such that τp can be more accurately
found. Figure 9 shows an example of the selection of β direction
to provide equal contribution from Ẽrp and Ẽrs. Step 4 simulates
the detected β signal by considering the limited ER effect. tpass in
the equation will be canceled out with the scaling factor of 1/tpass

contained within Ẽproj
β and Ẽproj

β′ . Step 5 compares the simulated and
measured β signals by summing up the values in the spectral range
with a good SNR, specified by ω0 and ω1, with the potential pulse
shift τβ considered. This equation serves as the evaluation function
of the algorithm. Theoretically, ΔEβ is zero only if both τp and τβ
are correctly found. Therefore, τp and τβ are determined at the mini-
mum of ΔEβ. Finally, τp found from the minimum can be substituted
into the equations in step 2 to calibrate both the ER and pulse shift
errors.

E. Other errors
Some other errors may require individual considerations for

specific measurements. For example, measuring samples with a
wavelength-comparable thickness results in multiple reflections
that overlap temporally. At large incident angles, the high-order
reflections could have an obvious offset in space, that is, the reflec-
tions become only partially overlapped with the surface reflection.

FIG. 9. Example for selecting the β direction.

The degree of alignment with the detector, and hence the detec-
tion sensitivity, is changed compared to the surface reflection. Far
sub-wavelength thin films cause negligible changes to the align-
ment while multiple reflections from bulk substrate can be tem-
porally chopped. Therefore, it is wise to avoid measuring samples
with a thickness of around 50–300 μm (depending on the pulse
width and sample refractive index). Another potential error is the
flatness. Wavelength-comparable roughness, or uneven surface over
the illuminating area, scatters or depolarizes the light. Selecting
proper optics to control the depth of focus and beam size, or
numerically filtering the unaffected spectral range, may reduce these
errors.

V. CHARACTERIZATION
A. Analytical solution

Characterization refers to extracting the sample optical prop-
erties from the measurement, which is the fundamental purpose
of spectroscopic ellipsometry. Characterization could be either sim-
ple or complicated depending on the sample and the measurement.
The simplest case is the analytical solution that is possible when
measuring homogeneous and isotropic bulk samples. In this case,
combining Eqs. (1)–(3), we have the following:1

ρ̃ = r̃p/r̃s =
sin2θi − cos θi

√
ε̃t/ε̃i − sin2θi

sin2θi + cos θi
√

ε̃t/ε̃i − sin2θi
, (19)

where ε̃i and ε̃t are the complex permittivities of the incident (i.e.,
air) and transmitted (i.e., sample) media, respectively, relating to ñ
by ε̃ = ñ 2. With ε̃i = 1, Eq. (19) has an analytical solution as follows:

ε̃t = sin2θi

⎡⎢⎢⎢⎢⎣
1 + tan2θi(

1 − ρ̃
1 + ρ̃

)
2⎤⎥⎥⎥⎥⎦

. (20)

n and κ can be determined from εt . For conductive materials,
it is convenient to represent the properties by the complex optical
conductivity σ̃, which is related to the permittivity as follows:

σ̃ = iωε0(ε̃t − ε∞), (21)

where ε0 and ε∞ are the vacuum permittivity and the permittivity,
respectively, at high frequencies.

B. Numerical solution and model fitting
Numerical solution usually applies to the cases where only

one set of frequency-dependent ñ(ω) [or equivalently ε̃(ω) or
σ̃(ω)] is unknown but analytical solution is impossible or dif-
ficult to be derived. For example, measuring a thin-film sample
with the thickness already known, we have the relationship of
ρ̃(n, κ) = tan Ψ exp(iΔ). At each individual frequency, we are map-
ping (n, κ) to (Ψ, Δ). Therefore, (n, κ) can be found by numerically
calculating (Ψ, Δ) over a searching space to find the point that
has the smallest difference to (Ψmeas, Δmeas). As the solution can
be found independently for each frequency, only two parameters
need to be determined at once, thus the computational complexity is
low. Many algorithms are available, such as the Newton–Raphson
and Gauss–Newton methods that have been used for thin-film
characterizations in transmission.45,46

APL Photon. 7, 071101 (2022); doi: 10.1063/5.0094056 7, 071101-10

© Author(s) 2022

https://scitation.org/journal/app


APL Photonics TUTORIAL scitation.org/journal/app

A more complicated situation is when multiple measurements
are taken. Measurements at various incident angles, at differ-
ent sample orientations, or by adding an additional transmission
measurement are necessary when the sample has more unknown
parameters, such as thin-film samples with an unknown thickness,
anisotropic medium, or multiple-layer structures. Actually, even
simple isotropic materials for which an analytical or a numeri-
cal solution is available benefit from multiple measurements by
the improved fitting robustness.14 This is a common strategy in
IR-UV ellipsometry. Redundant measurements are preferred so as to
improve convergence and eliminate mathematical ambiguity. How-
ever, when there are more unknown variables [such as two sets of
ñ(ω)], the solution becomes a high-dimensional model fitting prob-
lem, which significantly increases the computational complexity.
Although theoretically, every individual frequency is independent
and it is still possible to fit point-by-point to simplify the calcula-
tion, it is not recommended as the optimization is not robust when
the searching dimension is large while the number of unknown val-
ues is not significantly less than that of the measured values. For
example, finding [n1, κ1, n2, κ2] by fitting to [Ψ1, Δ1, Ψ2, Δ2] at
each frequency is usually not robust and could be trapped into local
minimums, leading to unreasonable fluctuations in the optical spec-
tral properties. A more robust and widely adopted protocol is to
describe the sample properties by a proper dielectric model and
fit to all measured spectra at once. The model essentially reduces
the number of unknown values to a few model parameters. For
example, let us express a conductive sample by the Drude model
(replace i with −i in this equation for the definition of ñ = n + iκ)
as follows:47

σ̃(ω) = Nq2 τ
m∗(1 + iωτ) , (22)

where N, q, m∗, and τ are the concentration, charge, effective mass
of carriers, and the scattering time, respectively. The permittivity
can be further calculated by substituting Eq. (22) into Eq. (21). In
the Drude model, typically, only the carrier concentration N and
the scattering time τ are unknown. The number of unknown values
for the whole spectrum is reduced to two. Using proper dielectric
models can significantly improve the fitting convergence to ensure
approaching the global minimum. Other commonly used dielec-
tric models include the Lorentz model, Cauchy model, Sellmeier
model, and combinations thereof. For complex mixtures, effective
medium theories can be used to express the properties as a mixture
of two or more inclusions, usually with the volume fractions being
unknown, to be found from the fit. These examples indicate another
difficulty of performing model fitting—that the selection of the
model is highly experience-based, sometimes with trial and error on
different models to find the best fit. Recently, machine learning
has been proposed for solving this issue by providing an auto-
matic and unambiguous fit to the IR–UV ellipsometric data,48

which is promising but less meaningful for THz ellipsometry
before it is widely available as a standardized characterization tech-
nique. Another solution is using a general mathematical model to
describe the dielectric behavior. For example, we have formerly
shown that the empirical exponential function can provide a good
description of n (or κ) for various materials in the THz range
as follows:49

FIG. 10. Ellipsometric characterization of skin in vivo. (a) Schematic of the ellip-
sometry configuration. (b) Labeled photo of measuring living forearm skin by the
ellipsometer.

n = aebω + c, (23)

where a, b, and c are three parameters representing the frequency-
profiles of n or κ, hence, leading to six parameters in total to describe
the material’s complex spectral properties. The purpose of using
mathematical models is to reduce the number of unknown vari-
ables and characterize the sample unambiguously. Its adaptability
is usually limited to materials without resonant features. For broad-
band ellipsometry, the exponential function may not provide a good
approximation for the full bandwidth and more terms may be added
to increase the fitness. This method has even been successfully
applied to perform ellipsometric characterization of living skin,11 as
shown in Fig. 10. In this work, a double-prism design is adopted
to enable two alternative incident angles to be easily switched by
moving the prisms vertically. Equation (23) is used to express the
complex refractive indices of the stratum corneum (anisotropic) and
epidermis.

VI. EXPERIMENTAL DEMONSTRATION
We demonstrate the experimental ellipsometric measurement

and data processing of a HR Si wafer (sample A), a low n-doping
Si wafer (sample B), and a high n-doping Si wafer (sample C) as
examples. The system configuration is the same as that presented
in Fig. 3. We used lenses with a diameter of 1.5 in. L1 and L4 have
EFL = 50 mm, while L2 and L3 have EFL = 100 mm. θi is set at 70○

for all three samples. The current configuration has ϕ about 3.5○ for
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all frequencies and l = 20.8, 4.1, and 1.4 mm for 0.2, 1.0, and 3.0 THz,
respectively. β = 97○, 98○, and 123○ are selected for samples A, B, and
C respectively, for the calibration of the pulse shift. In these direc-
tions, the projections of p and s signals are about equal and opposite
and, thus, destructively interfere. The calibration follows the steps
in Table III. The calibration of sample C is shown in Fig. 11 as an
example. Figure 11(a) shows the normalized ΔEβ calculated by using
step 5 in Table III. A single minimum is found at [τp, τβ] = [0, −4]
fs. At this point, the magnitude spectra of the Ẽβ−P3, Ẽmeas

β and their
difference ΔEβ are shown in Fig. 11(b). ΔEβ has reached the noise
floor, indicating that we have found the minimum available under
the system SNR. tan Ψ and Δ with and without calibration are shown
in Figs. 11(c) and 11(d), respectively. As the system we used has a
high pulse stability, the major difference between them is provided
by the ER calibration that corrects the high-frequency signal leakage.
However, the singular minimum in Fig. 11(a). and the rapid varia-
tion against τp and τβ show the high sensitivity of the algorithm in
pulse-shift calibration, which could be very important for systems
with low pulse stability.

The characterization was then performed based on the cali-
brated tan Ψ and Δ. As the samples are bulk and isotropic, Eq. (20)
can be applied to obtain the analytical solution. Alternatively, we
can apply the Drude model to describe doped semiconductors in
the THz range. Therefore, Eqs. (21) and (22) were used to find the
Drude parameters by fitting to the whole spectrum of ρ̃ at once for
samples B and C. In the model fitting, q = e (electron charge for
n-type), ε∞ = 11.7, and m∗ = 0.26me are used,50,51 where me is the

FIG. 11. Calibration of the ellipsometric data of sample C. (a) ΔEβ (normalized)
vs τp and τβ. (b) The magnitude spectra of the Ẽβ−P3 and Ẽmeas

β and their differ-
ence ΔEβ, when τp = 0 fs and τβ = −4 fs. (c) tan Ψ and (d) Δ with and without
calibration.

electron mass. Sample A (thickness 987 μm) and sample B (thick-
ness 538 μm) are sufficiently transparent in the effective bandwidth,
hence they are further measured by transmission to evaluate the
experimental accuracy.

Figure 12 shows the corresponding ñ characterized by the
different approaches mentioned above for the three samples. A high
degree of agreement can be found for the results obtained by dif-
ferent characterization methods, confirming the high measurement
and calibration accuracy. Some negative values of κ are found in the
analytical solution for samples A and B, which are caused by small
phase errors making Δ slightly greater than 180○. Table IV gives the
Drude parameters N and τ for samples B and C found from the best
fit in 0.2–3.5 THz, as well as the DC (direct-current) resistivities
from the model RDrude

0 = 1/σ(0). RDrude
0 matches well with the DC

resistivities R0 measured by the four-probe method. The resistivity
can be more accurately determined if the bandwidth can be extended
to lower frequencies. To further evaluate the model, we adopt values
from the mobility-carrier density curve by Jeon and Grischkowsky.50

The scattering times from the literature (calculated from the
mobility) at the corresponding carrier densities of samples B and C
are provided in the table and they highly coincide with the values
from the fit. As transmission measurements are limited to carrier
densities below 1017 cm−3 for n-doped Si,50 sample C is completely
opaque to the studied wavelength. In this example, we demonstrate
one of the advantages of ellipsometry in accurately characterizing

FIG. 12. Characterization results of three Si wafers. (a) Ellipsometric analytical
solution of ñ for sample A compared with the transmission result. (b) Ellipsometric
analytical solution and Drude model fitting result of ñ for sample B compared with
the transmission result. (c) Ellipsometric analytical solution and Drude model fitting
result of ñ for sample C.
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TABLE IV. Drude model parameters and DC resistivities for samples B and C. Data
for B and C are taken from the mobility-carrier density curve in Ref. 50.

Sample R0 (Ω cm) RDrude
0 (Ω cm) N (×1016 cm−3) τ (ps)

Sample B 0.651 0.577 0.596 0.268
B ref. ∼0.596 ∼0.24

Sample C 0.023 0.027 56.3 0.061
C ref. ∼56.3 ∼0.065

highly absorptive solids in the THz regime. Similar methods can
be applied in other measurements and further combined with mul-
tiple configurations (e.g., prism-coupled, different incident angles,
sample azimuthal angles), serving as a versatile technique for various
sample types.

VII. SUMMARY
THz-TDS has been widely applied as a powerful character-

ization tool for physical, chemical, and biomedical applications.
However, the commonly used transmission and window/prism-
supported reflection configurations have limitations in the
characterization of thin films, absorptive solids, and complicated
structures. THz spectroscopic ellipsometry has a great potential to
fill these gaps, despite having a higher requirement in regard to
optical alignment, polarization manipulation, and data process-
ing. These technical details, particularly the sensitivity, angular
divergence, limited ER, and pulse shift, significantly affect the
characterization accuracy, but they are not well known since they
are less important in conventional configurations.

In this Tutorial, we quantitatively analyzed errors that com-
monly occur in THz ellipsometry and their propagation, dis-
cussed the reasons, and provided methods for their calibration.
Characterization methods are also introduced for different types
of measurements. Compared to the conventional ellipsometers
at higher frequencies, the major difficulties for THz ellipsome-
try come from the angular control due to the trade-off between
the beam size and the angular spread, as well as the potentially
higher phase error in fiber-coupled antennas. Nevertheless, THz
ellipsometry also has a few unique advantages. The most promis-
ing feature is the coherent generation and detection of THz waves,
which significantly simplifies the polarization control. The time-
domain sampling scheme also provides a good temporal reso-
lution to easily separate multiple reflections for thick samples,
avoiding the out-of-focus and standing-wave issues and simpli-
fying the data analysis. By properly eliminating or reducing the
errors, THz spectroscopic ellipsometry can be used as an accu-
rate characterization tool with a very broad adaptability. With the
ability to precisely control the incident angle, polarization, and
phase, it can also serve as a versatile platform for testing func-
tional devices or for being applied in various interdisciplinary
applications.
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