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COUNTING MULTIPLICATIVE APPROXIMATIONS

SAM CHOW AND NICLAS TECHNAU

Abstract. A famous conjecture of Littlewood (c. 1930) concerns approx-
imating two real numbers by rationals of the same denominator, multiply-
ing the errors. In a lesser-known paper, Wang and Yu (1981) established
an asymptotic formula for the number of such approximations, valid al-
most always. Using the quantitative Koukoulopoulos–Maynard theorem of
Aistleitner–Borda–Hauke, together with bounds arising from the theory of
Bohr sets, we deduce lower bounds of the expected order of magnitude for
inhomogeneous and fibre refinements of the problem.

1. Introduction

Khintchine’s theorem [10] is the foundational result of metric diophantine ap-
proximation. For d ∈ N, we denote by µd the d-dimensional Lebesgue measure.
For x ∈ R, we write ∥x∥ = infm∈Z |x −m|. The abbreviation i.o. stands for
‘infinitely often’. Throughout, let k ⩾ 2 be an integer, and let ψ : N → [0, 1/2].

Theorem 1.1 (Variant of Khintchine, 1924). If ψ is non-increasing then

µ1({α ∈ [0, 1] : ∥nα∥ < ψ(n) i.o.}) =

{
1, if

∑∞
n=1 ψ(n) = ∞

0, if
∑∞

n=1 ψ(n) <∞.

Gallagher’s theorem [8] is one of the standard generalisations of Khintchine’s
theorem, and is related to a famous conjecture of Littlewood. For d ∈ N and
α1, . . . , αd ∈ R, write α = (α1, . . . , αd).

Theorem 1.2 (Gallagher, 1962). If ψ is non-increasing then

µk({α ∈ [0, 1]k : ∥nα1∥ · · · ∥nαk∥ < ψ(n) i.o.})

=

{
1, if

∑∞
n=1 ψ(n)(log n)

k−1 = ∞
0, if

∑∞
n=1 ψ(n)(log n)

k−1 <∞.
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2 SAM CHOW AND NICLAS TECHNAU

Conjecture 1.3 (Littlewood, c. 1930). If α, β ∈ R then

lim inf
n→∞

n∥nα∥ · ∥nβ∥ = 0.

As well as having infinitely many good rational approximations, one might
be interested in the number of such approximations up to a given height.
Schmidt [12] demonstrated such a result, see [9, Theorem 4.6].

Theorem 1.4 (Variant of Schmidt, 1960). For N ∈ N and α ∈ Rk, denote by
S(α, N) the number of n ∈ N such that

n ⩽ N, ∥nαi∥ < ψ(n) (1 ⩽ i ⩽ k).

Assume that ψ is non-increasing, assume that

Ψk(N) :=
∑
n⩽N

(2ψ(n))k

is unbounded, and let ε > 0. Then, for almost all α ∈ Rk, we have

S(α, N) = Ψk(N) +Ok,ε(
√
Ψk(N)(logΨk(N))2+ε) (N → ∞).

Wang and Yu [13] established a counting version of Gallagher’s theorem. We
state a variant of this below, deducing it from [9, Theorem 4.6] in the appendix.
For N ∈ N and α,γ ∈ Rk, denote by S×

γ (α, N, ψ) the number of n ∈ N
satisfying

n ⩽ N, ∥nα1 − γ1∥ · · · ∥nαk − γk∥ < ψ(n). (1.1)

For N ∈ N, define

Ψ×
k (N) =

1

(k − 1)!

∑
n⩽N

ψ(n)(− log(2kψ(n)))k−1

and
Ψ̃×
k (N) =

∑
n⩽N

ψ(n)(log n)k−1.

In our definition of Ψ×
k (N), we adopt the convention that

x(− log x)d |x=0 = 0 (d ∈ R).

Remark 1.5. In standard settings, we have

− logψ(n) ≍ log n (n ⩾ 2),

and correspondingly
Ψ×
k (N) ≍ Ψ̃×

k (N).

Theorem 1.6 (Variant of Wang–Yu, 1981). Assume that ψ is non-increasing,
that ψ(n) → 0 as n→ ∞, and that Ψ×

k (N) is unbounded. Then, uniformly for
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almost all α ∈ Rk, we have

S×
0 (α, N, ψ) ∼ Ψ×

k (N) (N → ∞).

Remark 1.7. Without the assumption that ψ(n) → 0, there is a less explicit
asymptotic main term, namely Tk(N) as defined in the appendix. As can be
seen from the proof therein, the assumption that ψ(n) → 0 is necessary for
Theorem 1.6 as stated.

In this note, we address natural inhomogeneous and fibre refinements of this
problem, as popularised by Beresnevich–Haynes–Velani [2]. Our findings are
enumerative versions of some of our previous results [3, 4, 5].

Theorem 1.8. Let γ ∈ Rk with γk = 0, and let κ > 0. Assume that ψ is non-
increasing, that ψ(n) < n−κ for all n, and that Ψ̃×

k (N) is unbounded. Then,
for almost all α ∈ Rk, we have

S×
γ (α, N, ψ) ≫ Ψ̃×

k (N) (N → ∞).

The implied constant only depends on k.

The multiplicative exponent of α ∈ Rd is

ω×(α) = sup{w : ∥nα1∥ · · · ∥nαd∥ < n−w i.o.}.
Specialising k = d and ψ(n) = (n(log n)d+1)−1 in Gallagher’s Theorem 1.2, we
see that ω×(α) = 1 for almost all α ∈ Rd. Thus, Theorem 1.8 is implied by
the following fibre statement.

Theorem 1.9. Let κ > 0. Assume that ψ is non-increasing, that ψ(n) < n−κ

for all n, and that Ψ̃×
k (N) is unbounded. Let γ1, . . . , γk−1 ∈ R, and suppose

(α1, . . . , αk−1) has multiplicative exponent w < k−1
k−2

, where k−1
k−2

∣∣
k=2

= ∞. Then,
for almost all αk, we have

S×
(γ1,...,γk−1,0)

((α1, . . . , αk), N, ψ) ≫ Ψ̃×
k (N) (N → ∞).

The implied constant only depends on k, w, and κ.

A natural strategy to prove Theorem 1.9 is to isolate the metric parameter αk
to one side of the inequality (1.1). Indeed, defining

Φ(n) =
ψ(n)

∥nα1 − γ1∥ · · · ∥nαk−1 − γk−1∥
, (1.2)

the quantity
S×
(γ1,...,γk−1,0)

((α1, . . . , αk), N, ψ)
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counts positive integers n ⩽ N satisfying ∥nαk∥ < Φ(n). If Φ were monotonic,
then one could try to apply Theorem 1.4. The basic problem with this ap-
proach is that Φ is far from being monotonic. Khintchine’s theorem is false
without the monotonicity assumption, as was shown by Duffin and Schaef-
fer [6]. They proposed a modification of it, not requiring monotonicity of the
approximating function, that was open for almost 80 years and only recently
settled by Koukoulopoulos and Maynard [11]. We rely heavily on a very recent
quantification by Aistleitner, Borda, and Hauke. Recall that ψ : N → [0, 1/2].

Theorem 1.10 (Aistleitner–Borda–Hauke, 2022+). Let C > 0. For α ∈ R,
let S(α,N) denote the number of coprime pairs (a, n) ∈ Z× N such that

n ⩽ N,
∣∣∣α− a

n

∣∣∣ ⩽ ψ(n)

n
.

If

Ψ(N) :=
∑
n⩽N

2
φ(n)

n
ψ(n)

is unbounded then, for almost all α ∈ R, we have

S(α,N) = Ψ(N)(1 +OC((logΨ(N))−C))

as N → ∞.

Our proof of Theorem 1.9 also involves the theory of Bohr sets, as developed in
our previous work [3, 4], which we use to verify the unboundedness condition
in Theorem 1.10. In general Φ(n), as defined in (1.2), will not lie in [0, 1/2],
but the condition ψ(n) < n−κ enables us to circumvent this and ultimately to
apply Theorem 1.10 to an allied approximating function.

Remark 1.11. We do not believe that the condition

ψ(n) ∈ [0, 1/2] (n ∈ N)
is necessary in Theorem 1.10, though it is currently an assumption. It is
necessary for many of the other theorems stated here, owing to the use of the
distance to the nearest integer function ∥ · ∥. If one could relax this condition,
then the condition that ψ(n) < n−κ for all n could be removed from Theorems
1.8 and 1.9 but, instead of using S×

γ (α, N, ψ), one would need to count pairs
(n, ak) ∈ N× Z such that

n ⩽ N, ∥nα1 − γ1∥ · · · ∥nαk−1 − γk−1∥ · |nαk − ak| < ψ(n).

The latter counting function is greater than or equal to the former, so the
reader should not be alarmed that our lower bound for it could far exceed
Ψ×
k (N) if ψ were to be constant or decay very slowly.
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A natural ‘uniform’ companion to S×
γ (α, N, ψ) replaces ψ(n) by ψ(N) in the

definition, giving rise to the counting function

S×
γ,unif(α, N, ψ) := #{n ⩽ N : ∥nα1 − γ1∥ · · · ∥nαk − γk∥ < ψ(N)}.

When ψ is not decaying too rapidly, lattice point counting can be successfully
used to obtain asymptotic formulas for S×

0,unif(α, N, ψ). We refer to the works
of Widmer [14] and Fregoli [7].

Notation. For complex-valued functions f and g, we write f ≪ g or f = O(g)
if |f | ⩽ C|g| pointwise for some constant C, sometimes using a subscript to
record dependence on parameters, and f ≍ g if f ≪ g ≪ f . We write f ∼ g
if f/g → 1, and f = o(g) if f/g → 0.

Funding and acknowledgements. NT was supported by a Schrödinger Fel-
lowship of the Austrian Science Fund (FWF): project J 4464-N. We thank
Jakub Konieczny for raising the question, as well as for feedback on an earlier
version of this manuscript, and we thank Christoph Aistleitner for a helpful
conversation.

2. Counting approximations on fibres

In this section, we prove Theorem 1.9. Fix ε > 0 such that

10k
√
ε ⩽ min

{
1

w
− k − 2

k − 1
, κ

}
∈ (0, 1). (2.1)

We write
α = (α1, . . . , αk−1), γ = (γ1, . . . , γk−1).

Define
G = {n ∈ N : ∥nαi − γi∥ ⩾ n−

√
ε (1 ⩽ i ⩽ k − 1)}

and

UN(α,γ, ψ) =
∑
n⩽N
n∈G

φ(n)ψ(n)

n∥nα1 − γ1∥ · · · ∥nαk−1 − γk−1∥
.

We showed in [4, Equation (6.3)] that

UN(α,γ, ψ) ≫α Ψ̃×
k (N),

so the unboundedness assumption needed to apply Theorem 1.10 to the ap-
proximating function

n 7→ ψ(n)

∥nα1 − γ1∥ · · · ∥nαk−1 − γk−1∥
1G(n) ∈ [0, 1/2]

is met. Thus, for almost all αk, we have

S×
(γ1,...,γk−1,0)

((α1, . . . , αk), N, ψ) ≫ UN(α,γ, ψ). (2.2)
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The implied constant in [4, Equation (6.3)] was allowed to depend on α, how-
ever the following more uniform statement holds with essentially the same
proof.

Lemma 2.1. Assume that ψ is non-increasing. Let α = (α1, . . . , αk−1) be a
real vector such that ω×(α) = w < k−2

k−1
, and let γ = (γ1, . . . , γk−1) ∈ Rk−1.

Then there exist c = c(k, w, κ) > 0 and N0 = N0(α) such that

UN(α,γ, ψ) ⩾ c
∑
n⩽N

ψ(n)(log n)k−1 (N ⩾ N0).

Proof. Recall that ε > 0 satisfies (2.1). First, we verify that the implicit
constants in the ‘inner structure’ ([4, Lemma 3.1]) and ‘outer structure’ ([4,
Lemma 3.2]) lemmas depend only on k. That is, there exist positive constants
c1 = c1(k) and c2 = c2(k) such that if

N
√
ε ⩽ δi ⩽ 1/2 (1 ⩽ i ⩽ k − 1), N ⩾ N0 (2.3)

then

c1 ⩽
#B0

α(N ; δ)

δ1 . . . δk−1N
⩽ c2, (2.4)

where

Bγ
α(N ; δ) = {n ∈ Z : |n| ⩽ N, ∥nαi − γi∥ ⩽ δi (1 ⩽ i ⩽ k − 1)}.

The proofs of [4, Lemma 3.1] and [4, Lemma 3.2] are quite similar to one
another, so we confine our discussion to the former. The only essential source
of implied constants in its proof comes from the first finiteness theorem, and
that implied constant only depends on k. The other implied constants that we
introduced can easily be made absolute. For example, with λ, λ1 as defined in
[4, §3.1], the upper bound

∥nα1∥ · · · ∥nαk−1∥ ⩽ (λ1/(10λ))
k−1δ1 · · · δk−1 ⩽ (λ1/λ)

k−1

and, for n ⩾ N0, the lower bound

∥nα1∥ · · · ∥nαk−1∥ ⩾ nε−w ⩾ (Nλ1/(10λ))
ε−w.

We thus have (2.4).

The construction of the base point b0 in [4, Section 3.2] only requires N0 to be
large, and does not affect the implied constants as long as N ⩾ N0. Thus, we
have

c1 ⩽
#Bγ

α(N ; δ)

δ1 · · · δk−1N
⩽ c2,

subject to (2.3).
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With this at hand, the argument of [4, Section 4] yields∑
n∈B̂γ

α(N ;δ)

φ(n)

n
≫k,ε δ1 . . . δk−1N,

where B̂γ
α(N ; δ) = Bγ

α(N ; δ) ∩ [N
√
ε, N ]. The implied constant comes from

Davenport’s lattice point counting estimate [4, Theorem 4.2] and the value of∑
p prime

p−1−ε, and therefore only depends on k, ε.

Decomposing the range of summation into (k − 1)-tuples of dyadic ranges for
(δ1, . . . , δk−1), together with partial summation, as in [4, Sections 5 and 6],
then gives

UN(α,γ, ψ) ≫k,ε

∑
n⩽N

ψ(n)(log n)k−1 (N ⩾ N0).

Indeed, this process involves at least

c3(logN)k−1

many (k − 1)-tuples of dyadic ranges, where c3 = c3(k, ε) > 0.

Finally, note that ε can be chosen to only depend on k, w, κ. □

Combining Lemma 2.1 with (2.2) completes the proof of Theorem 1.9.

Appendix A. Computing a volume

Here we deduce Theorem 1.6 from [9, Theorem 4.6] and the argument of Wang
and Yu [13, Section 1]. For λ > 0, define

Bk(λ) = {x ∈ [0, 1]k : 0 ⩽ x1 · · ·xk ⩽ λ}
and

Ck(λ) = {x ∈ [0, 1/2]k : 0 ⩽ x1 · · ·xk ⩽ λ}
By symmetry and [9, Theorem 4.6], for almost all α ∈ Rk, we have

S×
0 (α, N, ψ) = Tk(N) +O(

√
Tk(N)(log Tk(N))2+ε),

where
Tk(N) = 2k

∑
n⩽N

µk(Ck(ψ(n))).

Thus, it remains to show that

Tk(N) ∼ Ψ×
k (N) (N → ∞). (A.1)
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Lemma A.1. For k ∈ N and λ > 0, we have

µk(Bk(λ)) =

{
1, if λ ⩾ 1

λ
∑k−1

s=0
(− log λ)s

s!
, if 0 < λ < 1.

Proof. We induct on k. The base case is clear: µ1(B1(λ)) = min{λ, 1}. Now
let k ⩾ 2, and suppose the conclusion holds with k − 1 in place of k. We may
suppose that 0 < λ < 1. We compute that

µk(Bk(λ)) =
∫ 1

0

µk−1(Bk−1(λ/x)) dx = λ+

∫ 1

λ

λ

x

k−2∑
s=0

(log(x/λ))s

s!
dx

= λ+
k−2∑
s=0

λ

s!

∫ 1/λ

1

(log y)s

y
dy = λ+ λ

k−2∑
s=0

(− log λ)s+1

(s+ 1)!

= λ
k−1∑
t=0

(− log λ)t

t!
.

□

In view of Schmidt’s Theorem 1.4, we may assume that k ⩾ 2. Now, as

µk(Ck(λ)) = 2−kµk(Bk(2kλ)),
and as ψ(n) < 2−k for large n, we have

Tk(N) = Ok,ψ(1) +
∑
n⩽N

ψ(n)
k−1∑
s=0

(− log(2kψ(n)))s

s!

= Ψ×
k (N) +Ok(Ψ

×
k−1(N)) +Ok,ψ(1).

Since ψ(n) → 0 as n→ ∞, we have Ψ×
k−1(N)+1 = o(Ψ×

k (N)) and hence (A.1),
completing the proof of Theorem 1.6.

References

[1] C. Aistleitner, B. Borda, and M. Hauke, On the metric theory of approximations by
reduced fractions: A quantitative Koukoulopoulos–Maynard theorem, arXiv:2202.00936.

[2] V. Beresnevich, A. Haynes, and S. Velani, Sums of reciprocals of fractional parts and
multiplicative Diophantine approximation, Mem. Amer. Math. Soc. 263 (2020).

[3] S. Chow, Bohr sets and multiplicative diophantine approximation, Duke Math. J. 167
(2018), 1623–1642.

[4] S. Chow and N. Technau, Higher-rank Bohr sets and multiplicative diophantine approx-
imation, Compositio Math. 155 (2019), 2214–2233.

[5] S. Chow and N. Technau, Littlewood and Duffin–Schaeffer-type problems in diophantine
approximation, Mem. Amer. Math. Soc., to appear.

[6] R. J. Duffin and A. C. Schaeffer, Khintchine’s problem in metric Diophantine approxi-
mation, Duke Math. J. 8 (1941), 243–255.



COUNTING MULTIPLICATIVE APPROXIMATIONS 9

[7] R. Fregoli, On a counting theorem for weakly admissible lattices, Int. Math. Res. Not.
2021, 7850–7884.

[8] P. X. Gallagher, Metric simultaneous diophantine approximation, J. Lond. Math. Soc.
37 (1962), 387–390.

[9] G. Harman, Metric number theory, London Math. Soc. Lecture Note Ser. (N.S.) 18,
Clarendon Press, Oxford, 1998.

[10] A. I. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie
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