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Abstract We characterise rectifiable subsets of a complete metric space X in
terms of local approximation, with respect to the Gromov–Hausdorff distance,
by an n-dimensional Banach space. In fact, if E ⊂ X with Hn(E) < ∞ and
has positive lower density almost everywhere, we prove that it is sufficient that,
at almost every point and each sufficiently small scale, E is approximated by
a bi-Lipschitz image of Euclidean space. We also introduce a generalisation
of Preiss’s tangent measures that is suitable for the setting of arbitrary metric
spaces and formulate our characterisation in terms of tangent measures. This
definition is equivalent to that of Preiss when the ambient space is Euclidean,
and equivalent to the measured Gromov–Hausdorff tangent space when the
measure is doubling.

Mathematics Subject Classification Primary: 30L99 · Secondary: 28A75

1 Introduction

A set E ⊂ R
m is n-rectifiable if it can be covered, up to a set of Hn mea-

sure zero, by countably many Lipschitz images of Rn (throughout this paper,
Hn denotes the n-dimensional Hausdorff measure). Rademacher’s theorem
implies that an n-rectifiable E ⊂ R

m with Hn(E) < ∞ has a unique n-
dimensional approximate tangent plane at Hn-a.e. x ∈ E : an n-dimensional
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affine subspaceW � x such that, for each r > 0, there exists Er ⊂ E∩B(x, r)
with

Hn(E ∩ B(x, r) \ Er )

rn
→ 0

and

dH(W ∩ B(x, r), Er )

r
→ 0

as r → 0. Here dH denotes the Hausdorff distance between two subsets of
R
m . A central concept of geometric measure theory is to understand sufficient

conditions for rectifiability in terms of local approximations by tangent planes.
The simplest such result is the converse to the above statement: if E ⊂ R

m

with Hn(E) < ∞, the existence of an n-dimensional approximate tangent
plane atHn-a.e. point implies that E is n-rectifiable (see [1, Theorem 15.19]).
A result of Marstrand [2] (for n = 2 and m = 3) significantly strengthens
this by allowing the approximating affine subspace W to depend on r — the
approximating tangent plane may “rotate” as one zooms into E — under the
additional assumption of the positive lower Hausdorff density of E (see (1)
below). This was later generalised by Mattila [3] to all higher dimensions.
The case of n = 1 is addressed in the work of Besicovitch [4]. This much
stronger result is crucial for many results in geometric measure theory, such
as the density theorems of Marstrand [2], Mattila [3] and Preiss [5].

Analogously, the work of David and Semmes [6] characterises uniform
rectifiability in terms of good approximation by (rotating) tangents in the form
of Jones’s beta numbers [7]. Tolsa and Azzam [8,9] provide similar results for
measures.

Recently there has been significant interest in studying analysis on met-
ric spaces. Inevitably, such study leads to questions regarding the geometric
nature of rectifiable subsets of a metric space. For a metric space X , E ⊂ X
is n-rectifiable if it can be covered, up to a set of Hn measure zero, by
countably many Lipschitz images of subsets of Rn . Kirchheim [10] gives
a precise description of the local structure of rectifiable subsets of a metric
space analogous to the description granted by Rademacher’s theorem. From
this description it is possible to deduce the existence of a tangent structure
of a rectifiable metric space akin to an approximate tangent plane after two
modifications.

Firstly, one must replace the Hausdorff distance dH with the Gromov–
Hausdorff distance dGH. Two metric spaces M1 and M2 satisfy

dGH(M1, M2) < ε
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Rectifiability via tangents

if there exist ametric space Z and isometric embeddings ιi : Mi → Z , i = 1, 2,
such that

dH(ι1(M1), ι2(M2)) < ε

(seeDefinition 2.15 for amodification that ismore suitable for unboundedmet-
ric spaces). Secondly, the affine subspacemust be replacedby ann-dimensional
Banach space; the tangent spacemay not be equippedwith the Euclidean norm.

The question ofwhether an E ⊂ X with approximate tangent planes defined
in thisway is rectifiable has existed since theworkofKirchheim.More recently,
this question appeared in the work of Ambrosio, Brué and Semola [11] when
studying sets of finite perimeter in RCD metric spaces. To date the question
is unknown for any ambient metric space that is not a Euclidean space (in this
case dGH can be replaced by dH in (3) and so the statement is equivalent to the
results of Marstrand andMattila), even if all of the tangent spaces are assumed
to be a fixed n-dimensional Banach space.

In this paper we answer this question affirmatively. In fact we prove the
following stronger result. For K ≥ 1 let biLip(K ) be the set of metric spaces
Y = (Rn, ρ) such that ρ is K -bi-Lipschitz equivalent to the Euclidean norm,
that is

1

K
‖x − y‖2 ≤ ρ(x, y) ≤ K‖x − y‖2 ∀x, y ∈ R

n.

Rather than requiring local approximation by a fixed n-dimensional Banach
space, we allow approximation by an element of biLip(K ) that is allowed to
depend on the scale.

Theorem 1.1 Let (X, d) be a complete metric space, n ∈ N and let E ⊂ X
be Hn-measurable withHn(E) < ∞ and

�n∗(E, x) := lim inf
r→0

Hn(B(x, r) ∩ E)

rn
> 0 for Hn-a.e. x ∈ E . (1)

Suppose that, for Hn-a.e. x ∈ E, there exist Kx ≥ 1 and, for each r > 0, a
Yr ∈ biLip(Kx ) and Er ⊂ E ∩ B(x, r) such that

Hn(E ∩ B(x, r) \ Er )

rn
→ 0 (2)

and

dGH(Yr ∩ B(0, r), Er )

r
→ 0 (3)

as r → 0. Then E is n-rectifiable.
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Note that even in the case that X is a Euclidean space, Theorem 1.1 is new
since it allows for local approximation by bi-Lipschitz images of Rn .

There is a more subtle aspect in which Theorem 1.1 is stronger than the
results of Marstrand andMattila. Since our notion of a tangent space is defined
via Gromov–Hausdorff convergence, we do not rely on any structure of the
ambient metric space X . On the other hand, the proof of Marstrand crucially
relies on tangents that are affine subspaces of Rm . In particular, Marstrand’s
proof fails for tangents that are isometric copies ofR2 when X = (R3, ‖·‖∞).
However, we note that for the special case n = 1, the idea of Besicovitch can
be modified to work in any metric space; an account of this will appear in [12].

The use of Gromov–Hausdorff tangents may be considered as a further
weakening of the concept of the rotating tangent plane. Such a framework is
necessary when working in this generality; Even if we assume X is a Banach
space, it is not possible to define an approximate tangent plane using ambient
linear structure. For example consider

{χ[0,t] ∈ L1([0, 1]) : t ∈ [0, 1]},
which is an isometric copy of [0, 1] but does not have an approximate tangent
plane at any point.

The results of Marstrand and Mattila are a starting point for the work of
Preiss [5]. It is natural to consider generalisations of Preiss’s tangent measures
when investigating results like Theorem 1.1. Recall that a non-zero Radon
measure ν on R

m is a tangent measure to another Radon measure μ at x ∈
sptμ if there exist ri → 0 such that the pushforwards of μ under the maps
y → (y − x)/r , scaled by 1/μ(B(x, ri )), weak* converge to ν.
To define a tangentmeasure of ameasureμ on ametric space X , one requires

a definition of a limit of a sequence of pointed metric measure spaces. In this
paper, a pointed metric measure space (X, d, μ, x) will consist of a metric
space (X, d), a Borel measure μ ∈ Mloc(X) (that is, μ is finite on bounded
sets), and a distinguished point x ∈ sptμ. Given some notion of convergence
of pointed metric measure spaces, we can define a tangent of a metric measure
space (X, d, μ, x) as any metric measure space (Y, ρ, ν, y) for which there
exist ri → 0 such that

(
X,

d

ri
,

μ

μ(B(x, ri ))
, x

)
→ (Y, ρ, ν, y). (4)

One such notion of convergence is measured Gromov–Hausdorff conver-
gence and the resulting tangent spaces are known as measured Gromov–
Hausdorff tangents. This convergence can be metrised similarly to the
Gromov–Hausdorff distance: In addition to taking the Hausdorff distance
between the metric spaces embedded in Z , one also considers the distance
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Rectifiability via tangents

between the pushforwards of the measures, using some canonical metric that
metrises weak* convergence in Z . We construct one such metrisation of mea-
sured Gromov–Hausdorff convergence, dpmGH, in Definition 4.1.

However, the requirement that the underlying metric spaces must Gromov–
Hausdorff converge is too rigid to study rectifiable sets. Indeed, it is easy to
find examples of rectifiable metric spaces with no tangent measures according
to this definition (see Example 4.8). Instead, we define a metric, d∗, that only
considers the distance between the pushforwards of the measures in Z and
disregards the Hausdorff distance between the embedded metric spaces (this
will be discussed further below). We write Tan(X, d, μ, x) for the set of all
tangent measures to (X, d, μ, x) defined using d∗ and (4).

Our main result on tangent measures is the following. For K ≥ 1 let
biLip(K )∗ be the set of all pointed metric measure spaces that are supported
on an element of biLip(K ).

Theorem 1.2 Let (X, d) be a complete metric space, n ∈ N and let E ⊂ X
be Hn-measurable withHn(E) < ∞. The following are equivalent:

1. E is n-rectifiable;
2. For Hn-a.e. x ∈ E, �n∗(E, x) > 0 and there exists an n-dimensional

Banach space (Rn, ‖.‖x ) such that

Tan(X, d,Hn|E , x) = {(Rn, ‖.‖x ,Hn/2n, 0)}.

3. For Hn-a.e. x ∈ E, �n∗(E, x) > 0 and there exists a Kx ≥ 1 such that
Tan(X, d,Hn|E , x) ⊂ biLip(Kx )

∗.

Once Theorem 1.1 is established, the main steps to proving Theorem 1.2
are to develop the properties of d∗ and the properties of tangent measures.

The proof of Theorem 1.1 follows from the combination of two results,
Theorem 3.4 and Corollary 6.4. Roughly speaking, Theorem 3.4 shows that,
under the hypotheses of Theorem 1.1, for Hn-a.e. x ∈ E , the following is
true: for any ε > 0 and any sufficiently small r > 0, there exists a metric
space Ẽ ⊃ E and a continuous (in fact Hölder) map ι : [0, r ]n → Ẽ such that
ι|∂[0,r ]n is close to having Lipschitz inverse and

Hn∞(ι([0, r ]n) \ E) < εrn. (5)

Here Hn∞ denotes the n-dimensional Hausdorff content.
Corollary 6.4 is a consequence of a theorem of [13] (see Theorem 6.3). This

theoremcanbeviewed as a replacement for theBesicovitch–Federer projection
theorem that is valid in any complete metric space. It considers 1-Lipschitz
“non-linear” projections in place of orthogonal projections.Corollary 6.4 states
that any E ⊂ X forwhich each E ′ ⊂ E satisfies the conclusion of Theorem3.4
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is n-rectifiable. Note that the hypotheses of Theorem 1.1 are inherited by any
subset (by Lemma 2.3).

The construction of Theorem 3.4 is the central result of the paper. Naturally,
the idea is to take a set G ⊂ E for which the approximations given by (3) are
in some sense uniform and “glue” together the approximating tangent planes
to construct the Hölder surface. Of course, following this approach, one will
eventually encounter points in E \G where we halt the gluing process and we
begin to define Ẽ \G. Therefore, at every step of the construction, it is crucial
to control the size of the set of points we encounter in E \ G to establish (5).
The details of this construction are discussed further in Sect. 3.

We will see that the basic theory of tangent measures in our setting fol-
lows analogously to Preiss’s tangent measures, once the properties of d∗ are
established.

There are several equivalent ways to define convergence of metric measure
spaces that considers only the convergence of measures and not the Gromov–
Hausdorff convergence of the metric spaces: one simply has to decide upon a
way to metrise weak* convergence in the metric space Z . Sturm [14] first con-
sidered the L2 transportation distance between probabilitymeasureswith finite
variance. Greven, Pfaffelhuber, and Winter [15] consider the Prokhorov met-
ric between probability measures on compact metric spaces. Gigli, Mondino
and Savaré [16] simply define (Xi , di , μi , xi ) → (X, d, μ, x), for μi , μ �= 0,
if there exist isometric embeddings into Z such that xi → x and μi weak*
converges to μ.

To define d∗, we first define a metric F betweenμ, ν ∈ Mloc(Z) by duality
withLipschitz functions.A common approach for finitemeasures is to consider
the metric F1 defined as the dual norm to the set of 1-Lipschitz functions on
Z . It is well known that F1 contains geometric information on the support of
μ, ν. One can define a metric between μ and ν by taking the infimal ε > 0 for
which

F1(μ|B(z,1/ε), ν|B(z,1/ε)) < ε, (6)

for some fixed z ∈ Z . Taking this idea further, we let Fε be the dual norm of the
set of 1/ε-Lipschitz functions, and define F by replacing F1 with Fε in (6) (see
Definition 2.12). Then from F one precisely obtains the Hausdorff distance
between two large subsets of the supports of μ and ν (see Lemma 4.10). Con-
sequently, by defining d∗ using F to metrise weak* convergence inMloc(Z),
we obtain an explicit relationship between d∗ and the dpmGH distance between
two large subsets (see Theorem 4.11). This allows us to use standard Gromov–
Hausdorff techniques and Prokhorov’s theorem to develop the theory of d∗.

However, we do not introduce d∗ as a new notion of convergence. Indeed,
it is equivalent to any of the previously mentioned notions whenever the latter
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is defined: they all correspond to weak* convergence in Z (see Remark 4.14).
Rather, we use it as another, convenient description of the established notions.

Note that Tan(Rn, ‖ · ‖2, μ, x) agrees with (isometry classes of) Preiss’s
tangent measures. Also, for a sequence of uniformly doubling spaces, con-
vergence in d∗ is equivalent to measured Gromov–Hausdorff convergence (by
[16, Theorem 3.33] or Corollary 4.18). Consequently, tangent measures of
doubling metric measure spaces are precisely measured Gromov–Hausdorff
tangents.

To conclude the introduction we discuss results related to this work.
Assuming a set E ⊂ R

m has uniform approximation by tangents that are
isomorphic copies ofRn , a classical construction of Reifenberg [17] constructs
a locally bi-Hölder parametrisation of E by an n-dimensional ball. This has
been generalised by David and Toro [18], using Gromov–Hausdorff tangents,
to any metric space. Such a parametrisation can be used to obtain the map ι in
Theorem 3.4 and in fact one may take Ẽ = E . However, these assumptions
are too strong for our situation: they do not allow the exclusion of sets of small
measure as in (2) and the convergence in (3) is not uniform in x . Moreover,
one cannot deduce that such a map exists for subsets of E and so cannot use
Corollary 6.4 to deduce rectifiability.

Relationships between tangent spaces and parametrising maps have been
explored in specific non-Euclideanmetric spaces such as theHeisenberg group
(or other Carnot groups) [19,20]. In this case, the additional structure of a
particular ambient metric space such as the Heisenberg group enables one to
define a much stronger notion of a tangent than a Gromov–Hausdorff tangent.

The outline of the paper is as follows.
In Sect. 2 we recall preliminary notions of geometric measure theory and

properties of doubling measures. In Sect. 2.3 we recall facts about weak*
convergence of measures in metric spaces and define F . In Sect. 2.4 we recall
several constructions related to theGromov–Hausdorff distance, incorporating
both dH and F , in a way that the definitions and properties of dpGH, dpmGH
and d∗ all follow from the same construction.

In Sect. 3 we prove Theorem 3.4: the construction of a Hölder surface
under the hypotheses of sets X ⊃ C ⊃ G such that, for each x ∈ G and each
sufficiently small r > 0, B(x, r) ∩ C is approximated (up to sets of small
measure) by bi-Lipschitz images of Rn (see Definition 3.2).

In Sect. 4 we define dpmGH and d∗ and prove various properties, in particular
the relationship between the two in Theorem 4.11. This section may be of
independent interest.

Section 5 contains the definition of a tangent measure using d∗ and develops
the theory of tangent measures in parallel to the basic theory of Preiss [5].

In Sect. 6 we conclude the proof of Theorems 1.1 and 1.2.
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2 Preliminaries

Throughout this article n will denote a fixed positive integer. For m ∈ N,
R
m will denote the m-dimensional real vector space, 	m2 = (Rm, ‖ · ‖2) and

	m∞ = (Rm, ‖ · ‖∞). We also write 	∞ for the Banach space of all bounded
real sequences equipped with the supremum norm.

Let (X, d) be a metric space. If S ⊂ X and x ∈ X we will write

d(x, S) = inf{d(x, s) : s ∈ S}

and

B(S, r) = {x ∈ X : d(x, S) ≤ r},

the closed neighbourhood of S of radius r . We write B(x, r) for B({x}, r), the
closed ball of radius r centred at x . Similarly, we define

U (S, r) = {x ∈ X : d(x, S) < r}

and U (x, r) = U ({x}, r), the open neighbourhood of S and open ball centred
on x , respectively. We will often omit notation for the metric d when it is not
necessary.

By ameasure on X wemean a non-negative countably sub-additive function
μ defined on the power set of X withμ(∅) = 0. A set A ⊂ X isμ-measurable
if

μ(F) = μ(F ∩ E) + μ(F \ E) ∀F ⊂ X.

The set of all μ-measurable subsets of X is a σ -algebra and μ is countably
additive when restricted to the set of μ-measurable sets. A Borel measure on
X is a measure for which all Borel subsets of X are μ-measurable. A Borel
measure is Borel regular if, for any S ⊂ X , there exists a Borel B ⊃ S with
μ(B) = μ(S). Note that, for any Y ⊂ X , the monotonicity of μ implies
μ(Y ∩ S) = μ(Y ∩ B). The support of μ, denoted sptμ, is the smallest closed
set C ⊂ X with μ(X \ C) = 0.

We write M(X) for the set of all Borel regular measures on X and define
Mloc(X) to be those μ ∈ M(X) that are finite on all balls in X . By [21,
Theorem 2.2.2], for any μ ∈ Mloc(X), and any Borel B ⊂ X ,

μ(B) = sup{μ(C) : C ⊂ B closed} = inf{μ(U ) : U ⊃ B open}.

Also note that, for any μ ∈ Mloc(X), sptμ is separable. Consequently, if X
is complete, any μ ∈ Mloc(X) is a Radon measure. That is, for every Borel
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B ⊂ X ,

μ(B) = sup{μ(K ) : K ⊂ B compact}.

2.1 Rectifiable subsets of a metric space

For s ≥ 0, 0 ≤ δ ≤ ∞ and A ⊂ X , define

Hs
δ(A) = inf

{∑
i∈N

diam(Ai )
s : A ⊂

⋃
i∈N

Ai , diam(Ai ) ≤ δ

}

and

Hs(A) = lim
δ→0

Hs
δ(A),

the s-dimensional Hausdorff measure of A. For any s ≥ 0 and any metric
space X , Hs is a Borel regular measure on X , see [1, Section 4]. We note
thatHs∞(A), the s-dimensional Hausdorff content of A, is bounded above by
diam(A)s .

For L ≥ 0, a function f : (X, d) → (Y, ρ) between two metric spaces is
L-Lipschitz if

ρ( f (x), f (y)) ≤ Ld(x, y) ∀x, y ∈ X.

Note that, for any s ≥ 0, 0 ≤ δ ≤ ∞ and A ⊂ Y ,

Hs
Lδ( f (A)) ≤ LsHs

δ(A).

In particular, Lipschitz functions increase Hs and Hs∞ by at most a multi-
plicative factor of Ls . A function f : (X, d) → (Y, ρ) is L-bi-Lipschitz if it
is L-Lipschitz and invertible onto its image with L-Lipschitz inverse. That is,
for any x, y ∈ Y ,

1

L
ρ(x, y) ≤ ρ′( f (x), f (y)) ≤ Lρ(x, y) ∀x, y ∈ X.

For a Hs-measurable S ⊂ X and x ∈ X define the upper and lower Haus-
dorff densities of S at x by

�∗,s(S, x) := lim sup
r→0

Hn(B(x, r))

(2r)s
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and

�s∗(S, x) := lim inf
r→0

Hn(B(x, r))

(2r)s

respectively.

Definition 2.1 AHn-measurable E ⊂ X is n-rectifiable if there exist a count-
able number of Lipschitz fi : Ai ⊂ R

n → X such that

Hn

(
E \

⋃
i∈N

fi (Ai )

)
= 0.

AHn-measurable S ⊂ X is purely n-unrectifiable if every n-rectifiable E ⊂ X
satisfiesHn(S ∩ E) = 0.

By the same proof as for rectifiable subsets of Euclidean space (see [1,
Theorem 15.6]), we have the following decomposition result.

Lemma 2.2 Let Y ⊂ X be Hn-measurable with Hn(Y ) < ∞. There exists
a decomposition Y = E ∪ S where E is n-rectifiable and S is purely n-
unrectifiable.

Recall the following classical result regarding Hausdorff densities.

Lemma 2.3 ([21] 2.10.18) Let s > 0 and S ⊂ X be Hs-measurable with
Hs(S) < ∞. Then

1. For Hs-a.e. x ∈ S

�∗,s(S, x) ≤ 1;
2. For Hs-a.e. x ∈ X \ S

�∗,s(S, x) = 0.

The following theorem of Kirchheim precisely describes the local structure
of rectifiable subsets of a metric space. Note the statements of theorem 2.4
and lemma 2.5 are slightly different to those in [10] due to the choice of
normalisation of Hausdorff measure.

Theorem 2.4 (Theorem9 [10])Let E ⊂ X ben-rectifiable. ForHn-a.e. x ∈ E
there exists a norm ‖ · ‖x onRn, a map fx : X → R

n and a closed set Cx ⊂ E
such that fx (x) = 0,

lim
r→0

Hn(B(x, r) ∩ Cx )

(2r)n
= 1 (7)
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and

lim sup
r→0

{∣∣∣∣1 − ‖ fx (y) − fx (z)‖x
d(y, z)

∣∣∣∣ : y �= z ∈ Cx ∩ B(x, r)

}
= 0.

Note that, ifHn(E) < ∞, (7) and Lemma 2.3 item 1 imply

Hn(B(x, r))

(2r)n
→ 1 (8)

and

Hn(B(x, r) \ Cx )

(2r)n
→ 0. (9)

We also note the following.

Lemma 2.5 (Lemma6 [10]) If ‖·‖ is a normonRn thenHn(B(0, r)) = (2r)n.
HereHn and B(0, 1) are defined with respect to ‖ · ‖.

We also require the McShane extension theorem.

Theorem 2.6 Let S ⊂ X and 0 < α ≤ 1. Suppose that f : S → 	m∞ (respec-
tively into 	∞) is an α-Hölder map with Hölder constant H. Then there exists
an α-Hölder extension F : X → 	m∞ (respectively into 	∞) of f with Hölder
constant H. In particular, F is α-Hölder with Hölder constant

√
mH as a

map into 	m2 .
Moreover, for each 1 ≤ i ≤ m (respectively, for each i ∈ N), F may be

chosen such that

inf{ fi (x) : x ∈ S} ≤ Fi ≤ sup{ fi (x) : x ∈ S}.

Finally, if S ⊂ B(x, r) for some ball B(x, r) ⊂ X then F may be chosen
with spt F ⊂ B(x, r ′), for r ′ = r + (H−1‖ f ‖∞)1/α .

Here and throughout, spt F denotes the closure of the set

{x ∈ X : F(x) �= 0}.

Proof The proof of the first part is standard, see [22, Section 6]. For the second
part, one simply replaces the i th coordinate of F by

max{inf{ fi (x) : x ∈ S},min{Fi , sup{ fi (x) : x ∈ S}}}

for each 1 ≤ i ≤ m (respectively for each i ∈ N).
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Finally, if S ⊂ B(x, r) then f is bounded. We first extend f to a map f ′
defined on

S′ := S ∪ (X \ B(x, r ′))

by defining f ′ to equal zero on X \ B(x, r ′). Then f ′ is also α-Hölder with
Hölder constant H . Applying the second part of the theorem to f ′ gives the
final statement. ��

2.2 Doubling measures

Much of the theory of tangent measures requires the original measure to be
asymptotically doubling.

Definition 2.7 For M ≥ 1, μ ∈ M(X) is M-doubling if

0 < μ(B(x, 2r)) ≤ Mμ(B(x, r)) < ∞
for each x ∈ X and each r > 0. A μ ∈ M(X) is asymptotically doubling if

lim sup
r→0

μ(B(x, 2r))

μ(B(x, r))
< ∞ for μ-a.e. x ∈ X.

To proceed we need the following standard facts.

Lemma 2.8 Let μ ∈ Mloc(X). For any r > 0,

x → μ(U (x, r)) is lower semicontinuous (10)

and

x → μ(B(x, r)) is upper semicontinuous. (11)

Consequently, for any R, M, s > 0 the set

A := {x ∈ X : μ(B(x, 2r)) ≤ Mμ(B(x, r)) ∀0 < r < R}
is a Borel set, as are

B := {x ∈ X : μ(B(x, r)) < Mrs ∀0 < r < R}
and

C := {x ∈ X : μ(B(x, r)) > Mrs ∀0 < r < R}.
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Proof If xi → x with d(xi , x) monotonically decreasing then

U (x, r − d(x, xi ))

monotonically increases toU (x, r) and is contained inU (xi , r), proving (10).
Similarly,

B(x, r + d(x, xi ))

monotonically decreases to B(x, r) and contains in B(xi , r), proving (11).
Consequently, for any R, M > 0 and δ ≥ 0, the set

AR,M,δ := {x ∈ X : μ(U (x, (2 + δ)r)) ≤ Mμ(B(x, r)) ∀0 < r < R}

is closed, as is

A =
⋂

δ∈Q+
AR,M,δ.

The proof that B and C are Borel is similar. ��
Lemma 2.9 Let μ ∈ M(X). Suppose that for some M, R > 0 a set Y ⊂ X
satisfies

0 < μ(B(x, 2r)) ≤ Mμ(B(x, r)) < ∞ ∀0 < r < R, ∀x ∈ Y. (12)

Then for any x ∈ Y and r < R/2, B(x, r) ∩ Y is contained in M4 balls
of radius r/2 centred at points of B(x, r) ∩ Y . In particular, for any ε > 0,
B(x, r) ∩ Y is contained in M−4 log2 ε balls of radius εr .

Proof Let N be a maximal disjoint r/4-net of B(x, r) ∩ Y . Then for any
y ∈ N , (12) gives

μ(B(y, r/4)) ≥ μ(B(y, r/2))

M
≥ μ(B(y, r))

M2 ≥ μ(B(y, 2r))

M3 ≥ μ(B(x, r))

M3 .

(13)

For y ∈ N the B(y, r/4) are disjoint subsets of B(x, 2r). Therefore, if
y1, . . . , yN ∈ N ,

μ(B(x, 2r)) ≥ μ

(
N⋃
i=1

B(yi , r/4)

)
=

N∑
i=1

μ(B(yi , r/4))
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≥
N∑
i=1

μ(B(x, r))

M3 ≥
N∑
i=1

μ(B(x, 2r))

M4

using (13) for the penultimate inequality and (12) for the final inequality. Thus
N ≤ M4.
The statement about covering by balls of radius εr follows by induction. ��

Theorem 2.10 Any asymptotically doubling μ ∈ M(X) satisfies the
Lebesgue density theorem. That is, for any S ⊂ X and for μ-a.e. x ∈ S,

lim
r→0

μ(S ∩ B(x, r))

μ(B(x, r))
= 1.

Such an x ∈ S is a Lebesgue density point of S.

Proof This is a standard result for doubling measures. First one proves the
Vitali covering theorem [22, Theorem 1.6] and uses it to deduce the Lebesgue
differentiation theorem [22, Theorem 1.8] and hence the Lebesgue density
theorem for Borel sets S ⊂ X .

The proof for asymptotically doubling measures is the same since the proof
of theVitali covering theoremworks, withminormodifications, only assuming
an almost everywhere countable decomposition into Borel sets, each satisfying
(12) for some M, R > 0. Assuming μ is asymptotically doubling, Lemma 2.8
gives such a decomposition of sptμ.

The statement for arbitrary S ⊂ X follows by considering a Borel S′ ⊃ S
with μ(S′) = μ(S). ��

2.3 Prokhorov’s theorem

A sequence μi ∈ Mloc(X) weak* converges to μ ∈ Mloc(X) if, for every
bounded and continuous g : X → R with bounded support,

∫
g dμi →

∫
g dμ.

We write μi → μ to denote this convergence.
Recall that, if μi → μ ∈ Mloc(X) and xi → x ∈ X , then for every r > 0,

μ(U (x, r)) ≤ lim inf
i→∞ μi (U (xi , r)) (14)

and

μ(B(x, r)) ≥ lim sup
i→∞

μi (B(xi , r)). (15)
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Indeed, these follow by combining the standard proof of lower/upper semi-
continuity for a fixed open/closed set and the proof of Eqs. (10) and (11).

Recall Prokhorov’s theorem, reformulated to describe convergence in
Mloc(X).

Theorem 2.11 (Theorem2.3.4 [23])Let X bea complete and separablemetric
space and x ∈ X. A set S ⊂ Mloc(X) is pre-compact (with respect to weak*
convergence) if and only if, for every r, ε > 0:

• {μ(B(x, r)) : μ ∈ S} is bounded and
• There exists a compact K ⊂ X such that

μ(B(x, r) \ K ) ≤ ε ∀μ ∈ S. (16)

Definition 2.12 Let X be a metric space and x ∈ X . For μ, ν ∈ Mloc(X),
and L , r > 0, define

FL ,r
x (μ, ν) = sup

{∫
g d(μ − ν) : g : X → [−1, 1],

L-Lipschitz, spt g ⊂ B(x, r)} .

Define FL
x (μ, ν) to be the infimum, over all 0 < ε < 1/2, for which

FL ,1/ε
x (μ, ν) < ε.

If no such 0 < ε < 1/2 exists, set FL
x (μ, ν) = 1/2. Also define Fx (μ, ν) to

be the infimum, over all 0 < ε < 1/2, for which

F1/ε,1/ε
x (μ, ν) < ε.

If no such 0 < ε < 1/2 exists, set Fx (μ, ν) = 1/2.

Note that FL ,r
x is increasing in L , r and

FL ′,r
x ≤ L ′

L
FL ,r
x . (17)

Note that, for any Borel S ⊂ X ,

FL ,r
x (μ, μ|S) ≤ μ(B(x, r) \ S). (18)

The reason for allowing the Lipschitz constants of the functions to increase
when defining Fx will become clear in Lemma 4.10.
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Proposition 2.13 Let X be a metric space, x ∈ X and L > 0. Convergence
in Fx , equivalently FL

x , implies weak* convergence in Mloc(X) and, if X is
complete and separable, the converse is true.

Proof Equivalence of convergence in Fx and FL
x follows from (17).

Suppose Fx (μi , μ) → 0 and that g : X → R is bounded and continuous
with spt g ⊂ B(x, r). The fact that

∫
g dμi →

∫
g dμ

follows from a standard approximation argument [16, Section 5.1]. Indeed,
observe that the sequence

gk(y) := inf{g(w) + kd(w, y) : w ∈ X}

monotonically increases to g and that each gk is k-Lipschitz with

spt gk ⊂ B(x, r + ‖g‖∞).

Thus,

lim inf
i→∞

∫
g dμi ≥ lim sup

k→∞
lim inf
i→∞

∫
gk dμi

= lim sup
k→∞

∫
gk dμ

=
∫

g dμ,

usingmonotonicity of the integral for the inequality, the fact that Fx (μi , μ) →
0 for the first equality and the monotone convergence theorem for the final
equality. The reverse “limsup” equality follows from a similar argument that
involves approximating g from above.

Now suppose that X is complete and separable, that μi → μ in Mloc(X)

but Fx (μi , μ) �→ 0. By taking a (non-relabelled) subsequence, there exist an
r > 0 such that Fx (μi , μ) > 1/r for all i ∈ N. That is, for each i ∈ N there
exists an r -Lipschitz gi : X → [−1, 1] with spt gi ⊂ B(x, r) such that

∣∣∣∣
∫

gi d(μi − μ)

∣∣∣∣ ≥ 1/r.
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Set r ′ = r + 1/r . By Theorem 2.11, there exist an M > 0 and a compact
K ⊂ B(x, r ′) such that, for all i ∈ N, μi (B(x, r ′)) ≤ M and

μi (B(x, r ′) \ K ) < 1/8r. (19)

By increasing K if necessary, we may also suppose μ(B(x, r ′) \ K ) < 1/8r .
The Arzelà–Ascoli theorem implies that, after taking a further subsequence,

the gi converge uniformly on K to an r -Lipschitz g : K → [−1, 1] with
spt g ⊂ B(x, r). By Theorem 2.6, we may extend g to an r -Lipschitz function
defined on the whole of X with spt g ⊂ B(x, r ′). Then, for any sufficiently
large i such that

sup{|g(y) − gi (y)| : y ∈ K }(μi + μ)(B(x, r ′)) ≤ 1/4r,

which exists by (15),

∣∣∣∣
∫

g d(μi − μ)

∣∣∣∣ ≥
∣∣∣∣
∫
K
g d(μi − μ)

∣∣∣∣ − 1/4r

≥
∣∣∣∣
∫
K
gi d(μi − μ)

∣∣∣∣ − 1/2r

≥
∣∣∣∣
∫

gi d(μi − μ)

∣∣∣∣ − 3/4r ≥ 1/4r.

This contradicts μi → μ. ��

Lemma 2.14 For any metric space X, x ∈ X and L > 0, Fx and FL
x are

metrics onMloc(X). If X is complete and separable then so are (Mloc(X), Fx )
and (Mloc(X), FL

x ).

Proof Certainly Fx are positive, finite on Mloc(X) and symmetric. If
Fx (μ, ν) = 0, then the monotonicity of FL ,r

x implies FL ,r
x (μ, ν) = 0 for

every L , r > 0. Consequently, the monotone convergence theorem implies
μ(C) = ν(C) for all closed and bounded C ⊂ X and hence μ(B) = ν(B) for
all Borel B ⊂ X . Since μ and ν are both Borel regular, this implies μ = ν.

To see that Fx satisfies the triangle inequality, let μ, ν, λ ∈ Mloc(X). If
either of Fx (μ, λ) or Fx (λ, ν) equal 1/2 then the triangle inequality holds
since Fx (μ, ν) ≤ 1/2. Otherwise, for δ > 0, let 0 < ε1 < Fx (μ, λ) + δ and
0 < ε2 < Fx (λ, ν) + δ satisfy

F
1
ε1

, 1
ε1

x (μ, λ) < ε1 and F
1
ε2

, 1
ε2

x (λ, ν) < ε2.
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Then the triangle inequality and monotonicity of FL ,r
x imply

F
1

ε1+ε2
, 1
ε1+ε2

x (μ, ν) ≤ F
1

ε1+ε2
, 1
ε1+ε2

x (μ, λ) + F
1

ε1+ε2
, 1
ε1+ε2

x (λ, ν)

≤ F
1
ε1

, 1
ε1

x (μ, λ) + F
1
ε2

, 1
ε2

x (λ, ν)

≤ ε1 + ε2

≤ Fx (μ, λ) + Fx (λ, ν) + 2δ.

Since δ > 0 is arbitrary, this shows that Fx is a metric.
If xi , i ∈ N is a dense subset of X , one easily checks that the set

{q1δx1 + . . . qmδxm : m ∈ N, qi ∈ Q}

is dense in Mloc(X).
Finally, the completeness of Fx immediately follows from [23, Corollary

2.3.5] (that convergence of
∫
g dμi for every bounded Lipschitz g implies

(16)), Theorem 2.11 and Proposition 2.13. The proof for FL
x is similar. ��

2.4 Gromov distances, embeddings and convergence

PointedGromov–Hausdorff convergenceofmetric spaces is prevalent in the lit-
erature. However, the metric defining this convergence is less commonly used.
In this subsection we recall Gromov’s metric for pointed Gromov–Hausdorff
convergence and prove some basic facts about it that are missing from the lit-
erature (namely that it is a complete metric on the isometry classes of pointed
metric spaces). Our presentation of this is sufficiently general so that the cor-
responding statements for the pointed measured Gromov–Hausdorff distance,
and our metric d∗, easily follow (see Sect. 4).

We use the following modification of the Hausdorff distance.

Definition 2.15 (Section 6 [24])Let Z be ametric space, z ∈ Z and X, Y ⊂ Z .
Define Hz(X, Y ) to be the infimum over all 0 < ε < 1/2 for which

X ∩ B(z, 1/ε) ⊂ B(Y, ε) and Y ∩ B(z, 1/ε) ⊂ B(X, ε). (20)

If no such 0 < ε < 1/2 exists, set Hz(X, Y ) = 1/2. Note that, if (20) is
satisfied for some ε > 0 then it is satisfied for all ε′ ≥ ε.

Lemma 2.16 For any metric space Z and z ∈ Z, Hz is a pseudometric on the
power set of Z and is a metric on the closed subsets of Z. If Z is complete then
so is the set of closed subsets of Z equipped with Hz.
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Proof Let ζ be the metric on Z , let X, Y,W ⊂ Z and let

dXW = Hz(X,W ) and dWY = Hz(W, Y ).

If one of dXW or dWY equals 1/2 there is nothing to prove. Otherwise, let
0 < δ < 1/2 − min{dXZ , dZY }. If

x ∈ X ∩ B(z, 1/(dXZ + dZY + 2δ)) (21)

then (20) for X and W gives a w ∈ W with

ζ(w, x) ≤ dXW + δ. (22)

In particular, since dXW , dW Z < 1/2 − δ,

ζ(w, z) ≤ ζ(w, x) + ζ(x, z) ≤ dXW + δ + 1/(dXW + dWY + 2δ)

≤ 1/(dWY + δ).

Therefore (20) for W and Y gives a y ∈ Y with

ζ(w, y) ≤ dWY + δ. (23)

In particular,

ζ(x, w) ≤ dXW + dWY + 2δ. (24)

Thus Eqs. (21) and (24) show that (20) holds between X and W for ε =
dXW + dWY + 2δ. Since δ > 0 is arbitrary, this completes the proof.

If C ⊂ Z is closed and Hz(C, S) = 0, then for any x ∈ S there exist xi ∈ C
with xi → x . Since C is closed, x ∈ C and so C ⊂ S. Consequently, Hz is a
metric on the closed subsets of Z .

Completeness follows from the same argument as the regular Hausdorff
metric [25, Proposition 7.3.7]. ��

In this section we consider isometric embeddings X → Z of one metric
space into another. We identify X , its elements and any measure on X , with
their isometric images in Z .

We require the following standard construction.

Lemma 2.17 Let Xi be a sequence of metric spaces and, for each i ≤ j ∈ N,
suppose that there exist isometric embeddings Xi , X j → (Zi, j , ζi, j ) into some
metric space. There exists a metric space (Z , ζ ) and, for each i ∈ N, isometric
embeddings Xi → Z such that, for each i ≤ j ∈ N, wi ∈ Xi and w j ∈ X j ,
ζ(wi , w j ) ≤ ζi, j (wi , w j ), with equality if j = i + 1.
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Proof Define a function ζ on

Z̃ =
⊔
i∈N

Xi

as follows. For i ≤ j ∈ N, wi ∈ Xi and w j ∈ X j , define ζ(wi , w j ) to be the
infimum of

m∑
p=1

ζkp−1,kp(wp−1, wp)

over all m ∈ N, i = k0 ≤ k1 ≤ . . . ≤ km = j and wk ∈ Xk for each
i < k < j . Then ζ is a pseudometric on Z such that ζ(wi , w j ) ≤ ζi, j (wi , w j )

for all i ≤ j ∈ N, wi ∈ Xi and w j ∈ X j . If j = i + 1, the triangle inequality
for ζi,i+1 gives the reverse inequality. Finally, let (Z , ζ ) be the metric space
obtained from (Z̃ , ζ ). Since each Xi → Z̃ , the projection to Z gives an
isometric embedding Xi → Z . ��
Definition 2.18 A pointed metric space (X, x) consists of a metric space X
and a distinguished point x ∈ X . An isometric embedding (X, x) → (Y, y) of
pointed metric spaces is an isometric embedding of metric spaces with x = z.
An isometry (X, x) → (Y, y) is a surjective isometric embedding.

A pointed metric measure space (X, μ, x) consists of a complete and sep-
arable pointed metric space (X, x) and a μ ∈ Mloc(X).

Definition 2.19 Let (X, μ, x) and (Y, ν, y) be pointed metric measure spaces
and a, b ≥ 0. Define

Ga,b((X, μ, x), (Y, ν, y))

to be the infimum, over all pointed metric spaces (Z , z) and all isometric
embeddings (X, x), (Y, y) → (Z , z) of

aHz(X, Y ) + bFz(μ, ν).

Proposition 2.20 For any a, b ≥ 0, Ga,b is a complete pseudometric on the
class of pointed metric measure spaces. Moreover,

Ga,b((Xi , μi , xi ), (X, μ, x)) → 0

if and only if there exists a complete and separable pointed metric space (Z , z)
and isometric embeddings (Xi , xi ) → (Z , z) and (X, x) → (Z , z) such that

aHz(Xi , X) + bFz(μi , μ) → 0.
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Proof First observe the following. Let ζ, ζ ′ be metrics on a set Z with ζ ≤ ζ ′.
Let z ∈ Z and suppose that X, Y ⊂ Z . Then

H ζ
z (X, Y ) ≤ H ζ ′

z (X, Y ), (25)

where the superscript denotes the metric used to define Hz . Also, since any
Lipschitz function on X ∪ Y ⊂ Z with respect to ζ is Lipschitz with respect
to ζ ′, if μ ∈ Mloc(X) and ν ∈ Mloc(Y ),

Fζ
z (μ, ν) ≤ Fζ ′

z (μ, ν). (26)

To prove the triangle inequality for Ga,b, for i = 1, 2, 3 let (Xi , d1, μi , xi )
be a pointed metric measure space and suppose there exist isometric embed-
dings

(X1, d1, x1), (X2, d2, x2) → (Z1,2, ζ1,2, z1,2)

and

(X2, d2, x2), (X3, d3, x3) → (Z2,3, ζ2,3, z2,3).

Let ζ1,3 be themetric on X1�X3 that equalsd1 andd3 on X1 and X3 respectively
and ζ(w1, w3) = 1 + d1(w1, x1) + d3(w3, x3) whenever w1 ∈ X1 and w3 ∈
X3. Let (Z , ζ ) be the metric space obtained from Lemma 2.17 and note that
necessarily x1 = x2 = x3 =: z in Z . The triangle inequality for Hz and Fz in
Z imply

aHz(X1, X3) + bFz(μ1, μ3) ≤ aHz(X1, X2) + bFz(μ1, μ2)

+aHz(X2, X3) + bFz(μ2, μ3). (27)

Combining Eqs. (25) to (27) gives the triangle inequality for Ga,b.
Now let (Xi , μi , xi ) be a Cauchy sequence with respect to Ga,b and, for

each i ≤ j ∈ N, let (Zi, j , ζi, j , zi, j ) be a pointed metric space for which there
exist isometric embeddings

(Xi , xi ), (X j , x j ) → (Zi, j , ζi, j , zi, j )

with

aHzi, j (Xi , X j ) + bFzi, j (μi , μ j ) ≤ 2Ga,b((Xi , μi , xi ), (X j , μ j , x j )).(28)

Let (Z , ζ ) be the completion of the metric space given by Lemma 2.17 and
note that necessarily x1 = x2 = . . . =: z in Z . Since each Xi is separable,
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so is Z . Since each Xi is complete, they are closed subsets of Z and so the
μi ∈ Mloc(Z). Equations (25), (26) and (28) imply that the Xi and μi are
Cauchy sequences with respect to Hz and Fz in Z . Since Z is complete, Xi
and μi converge to some X and μ. Consequently

Ga,b((Xi , μi , xi ), (X, μ, x)) → 0.

Since any convergent sequence is Cauchy, this also proves the moreover state-
ment. ��
Definition 2.21 (Section 6 [24]) The Gromov–Hausdorff distance between
pointed metric spaces (X, x) and (Y, y) is defined to be

dpGH((X, x), (Y, y)) = G1,0((X, 0, x), (Y, 0, y)).

The definition of dpGH in [24] only requires isometric embeddings into
(Z , ζ ) satisfying ζ(x, y) ≤ ε, not necessarily x = y. However, the next
lemma shows that two definitions are bi-Lipschitz equivalent. We will see that
fixing the distinguished point simplifies several results.

Lemma 2.22 Let (Z , ζ ) be a metric space, X, Y ⊂ Z, x ∈ X and y ∈ Y with
x �= y.

1. The metric ζ̃ on X � Y that equals ζ on each of X and Y and ζ̃ (w, w′) =
ζ(w, w′) + ζ(x, y) for any w ∈ X and w′ ∈ Y satisfies

ζ̃ (w, x) ≤ ζ̃ (w, y) ∀w ∈ X and ζ̃ (w, y) ≤ ζ̃ (w, x) ∀w ∈ Y. (29)

2. Let ζ̃ be anymetric on X �Y that equals ζ on each of X and Y that satisfies
(29). If (Z ′, ζ ′) is the quotient metric space of (X �Y, ζ̃ )with respect to the
relation x ∼ y, there exist isometric embeddings X, Y → Z ′ with x = y.

3. There exists a metric space (Z ′, ζ ′) and isometric embeddings X, Y → Z ′
with x = y such that ζ ′ ≤ ζ + ζ(x, y) on X ∪ Y .

Proof The triangle inequality for ζ implies the triangle inequality for ζ̃ . Equa-
tion (29) is equivalent to the triangle inequality for ζ . This proves item 1.

The quotient metric of any metric ζ̃ with respect to the relation x ∼ y is
given by

ζ ′(w, w′) = min{ζ̃ (w, w′), ζ̃ (w, x) + ζ̃ (y, w′), ζ̃ (w′, x) + ζ̃ (y, z)}.

If ζ̃ satisfies (29) then ζ ′ equals ζ on each of X and Y . Indeed, if w, w′ ∈ X ,

ζ̃ (w, w′) ≤ ζ̃ (w, x) + ζ̃ (x, w′) ≤ ζ̃ (w, x) + ζ̃ (y, w′),
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by the triangle inequality and (29). Thus ζ ′(w, w′) = ζ̃ (w, w′). The corre-
sponding statement for elements of Y implies item 2.

Combining items 1 and 2 gives item 3. ��
The following Lemma is an adaptation of the corresponding concepts of an

ε-isometry of bounded metric spaces, see [25, Corollary 7.3.28].

Definition 2.23 Let (X, d, x) and (Y, ρ, y) be pointed metric spaces and ε >

0. An ε-isometry f : (X, d, x) → (Y, ρ, y) is a Borel map f : B(x, 1/ε) → Y
with f (x) = y such that

|ρ( f (z), f (z′)) − d(z, z′)| ≤ ε ∀z, z′ ∈ B(x, 1/ε) (30)

and

B(y, 1/ε − ε) ⊂ B( f (B(x, 1/ε)), ε). (31)

Lemma 2.24 Let (Z , ζ, z) be a pointed metric space, X, Y separable subsets
of Z and 0 < ε < 1/2. If Hz(X, Y ) < ε then there exists a Borel map

f : X ∩ B(z, 1/ε) → Y

with ζ( f (x), x) ≤ ε for all x ∈ X ∩ B(z, 1/ε) and

Y ∩ B (z, 1/ε − ε) ⊂ B ( f (X ∩ B (z, 1/ε)) , 2ε) . (32)

In particular, if dpGH((X, x), (Y, y)) < ε, there exists a 2ε-isometry from
(X, x) to (Y, y).

Conversely, if there exists an ε-isometry from (X, x) to (Y, y) then there
exists a pointed metric space (Z , ζ, z) and isometric embeddings

(X, x), (Y, y) → (Z , z)

such that, for all x ′ ∈ B(x, 1/ε),

ζ(x ′, f (x ′)) ≤ 2ε.

In particular,

dpGH((X, x), (Y, y)) < 2ε.

Proof Let δ > 0 be such that Hz(X, Y ) < ε − δ. Since X is separable, there
exist by countably many disjoint and non-empty Borel sets X j ⊂ X , j ∈ N,
of diameter at most δ with B(z, 1/ε) ∩ X = ∪ j X j . For each j ∈ N, pick
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x j ∈ X j . Since Hz(X, Y ) < ε −δ, there exists y j ∈ Y with ζ(x j , y j ) ≤ ε −δ.
Define f (w) = y j for each w ∈ X j . Then f is a Borel map and, by the
triangle inequality, for x in any X j ,

ζ( f (x), x) ≤ ζ(y j , x j ) + ζ(x j , x) ≤ ε − δ + δ ≤ ε. (33)

To see that (32) holds, let

y ∈ B

(
z,

1

ε
− ε

)

By assumption there exists x ∈ X with ζ(x, y) ≤ ε. Then by the triangle
inequality,

ζ(x, z) ≤ ζ(x, y) + ζ(y, z) ≤ ε + (1/ε − ε) ≤ 1/ε.

Consequently f (x) is defined and, by (33) and the triangle inequality,

ζ( f (x), y) ≤ ζ( f (x), x) + ζ(x, y) ≤ 2ε,

proving (32).
For the converse statement, let f be the assumed ε-isometry and define ζ

on X � Y by ζ = d on X , ζ = ρ on Y and

ζ(z, t) = inf{d(z, w) + ρ( f (w), t) + ε : w ∈ B(x, 1/ε)}

whenever z ∈ X and t ∈ Y . Then ζ is a metric: if z, z′′ ∈ X and w, w′′ ∈
B(x, 1/ε), the triangle inequality for d, ρ and the fact that f is an ε-isometry
imply

d(z, z′) ≤ d(z, w) + d(w, w′) + d(w′, z′)
≤ d(z, w) + ρ( f (w), f (w′)) + ε + d(w′, z′)
≤ d(z, w) + ρ( f (w), t) + ε + d(w′, z′) + ρ(t, f (w′)) + ε

for any t ∈ Y . Taking the infimumover allw, w′ ∈ B(x, 1/ε) shows ζ(z, z′) ≤
ζ(z, t) + ζ(t, z′). A similar argument for t, t ′ ∈ Y and z ∈ X shows that ζ

satisfies the triangle inequality. Note that ζ satisfies ζ(x, y) = ε and (29).
Indeed, for any w ∈ B(x, 1/ε), since f is an ε-isometry,

d(z, x) ≤ d(z, w) + d(w, x) ≤ d(w, z) + ρ( f (w), y) + ε

Taking the infimum over all w ∈ B(x, 1/ε) gives (29).
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Let (Z ′, ζ ′) be the metric space obtained from Lemma 2.22 item 2. Observe
that for any x ′ ∈ B(x, 1/ε), ζ ′(x ′, f (x ′)) ≤ ε, proving and the first contain-
ment in (20). If y′ ∈ Y ∩ B(y, 1/ε − ε) then there exists x ′ ∈ X ∩ B(x, 1/ε)
with ρ(y′, f (x ′)) ≤ ε, so that ζ ′(x ′, y′) ≤ 2ε, proving the second containment
in (20), for ε replaced by 2ε. ��

Recall that a metric space X is proper if all closed balls in X are compact.

Corollary 2.25 The Gromov–Hausdorff distance is a complete and separable
metric on the setMp of isometry classes of proper pointed metric spaces. That
is, if (X, x) and (Y, y) are proper with

dpGH((X, x), (Y, y)) = 0 (34)

then there exists an isometry (X, x) → (Y, y).

Remark 2.26 Here and below, the issue of considering the set of “all” separa-
ble metric spaces can be easily avoided by using the Kuratowski (isometric)
embedding of any separable metric space into 	∞.

We also make no distinction in notation between spaces and their equiv-
alence classes. It can be easily verified that the concepts we consider to not
depend on particular representatives of an equivalence class.

Proof By Proposition 2.20 we know that dpGH is a complete pseudometric.
Moreover, if

dpGH((X, x), (Y, y)) < ε

and B(x, 1/ε) is covered by N balls of radius ε, then B(y, 1/2ε) is covered by
N balls of radius 2ε. Thus, if (Y, y) is a complete pointed metric space and is
the dpGH limit of a sequence of proper pointed metric spaces, then Y is proper
too. It is easily verified that the set of finite pointed metric spaces with rational
distances is dense in (Mp, dpGH).

Now let (X, x) and (Y, y) be proper satisfying (34) and fix k ∈ N. For
each j ∈ N let N j be a finite 1/j-net of B(x, k). For each fixed j ∈ N, by
taking a convergent subsequence, we may suppose that the fi converge to an
isometry when restricted toN j whose image is a 2/j-net of B(y, k). By taking
a diagonal subsequence, we may suppose the fi converge to an isometry when
restricted to eachN j . Let ι : ∪ j N j → B(y, k) be the limiting isometry. Since
∪ jN j is dense in B(x, k), ι(∪ jN j ) is dense in B(y, k) and since B(y, k) is
complete, ι extends to an isometry ι : B(x, k) → B(y, k). Taking a convergent
diagonal subsequence over k → ∞ completes the proof. ��

The Gromov compactness theorem is an immediate corollary of the com-
pleteness of (Mp, dpGH).
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Recall that a set of metric spaces S is uniformly totally bounded if, for every
ε > 0 there exists Nε ∈ N such that each X ∈ S is contained in Nε balls of
radius ε.

Theorem 2.27 (Section 6 [24]) A set S ⊂ (Mp, dpGH) is pre-compact if and
only if, for every r > 0,

{B(x, r) ⊂ X : (X, x) ∈ S}

is uniformly totally bounded.

Proof The given condition is equivalent to S being totally bounded in
(Mp, dpGH). Indeed, for ε > 0 and (X, x) ∈ S, suppose that B(x, 1/ε) is
covered by Nε balls of radius ε. LetN be the set of metric spaces of the form

({1, 2, . . . , Nε}, ρ)

with

ρ(x, y) ∈ {ε j : j ∈ N, 0 < j ≤ 1/ε2}

for each x �= y ∈ Y (and such that ρ satisfies the triangle inequality). Then S
is contained in the 2ε neighbourhood of N .

Conversely, suppose that S is totally bounded and N ⊂ S is a finite set
such that S ⊂ B(N , ε). Since each (Y, y) ∈ N is proper andN is finite, there
exists Nε ∈ N such that, for each (Y, y) ∈ N , B(y, 1/ε) is covered by Nε

balls of radius ε. Then for any (X, x) ∈ S, B(x, 1/2ε) is contained in Nε balls
of radius 2ε. ��

3 Construction of a Hölder surface

Recall that throughout the paper we work with a fixed n ∈ N. For notational
convenience, we define biLip(K ) as the set of K -bi-Lipschitz images of 	n∞,
rather than images of 	n2.

Definition 3.1 For K ≥ 1 let biLip(K ) be the set of isometry classes of all
pointed proper metric spaces (X, x) for which there exists a surjective and
K -bi-Lipschitz ψ : 	n∞ → X .

Definition 3.2 Let (X, d) be a complete metric space, let G ⊂ C ⊂ X be
closed subsets and K ≥ 1, η, R0 > 0 and 0 < δ < 1/2.

The triple (X,C,G) has good tangential approximation, written GT A(η,

K , δ, R0), if both of the following conditions hold:
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1. For each x ∈ C and each 0 < r ≤ R0,

Hn(B(x, r)) ≥ ηrn; (35)

2. For each x ∈ G and each 0 < r ≤ R0, there exists a closed

C ′ ⊂ B(x, r) ∩ C

containing x with

Hn(B(x, r) \ C ′) < η(δr)n (36)

and

dpGH((C ′, d/r, x), biLip(K )) < min{δ, 1/K (1 + 2δ)}. (37)

Observation 3.3 For K ≥ 1 and 0 < δ < 1/2 let

� = [−K (1 + 2δ), K (1 + 2δ)]n ⊂ 	n∞.

If (X,C,G) satisfies GT A(η, K , δ, R0) then for any 0 < r ≤ R0 there exists
a Borel ξ : � → C with ξ(0) = x such that

Hn(B(x, r) \ B(ξ(�), δr)) < η(δr)n (38)

and

‖q − q ′‖∞
K

− δ ≤ d(ξ(q), ξ(q ′))
r

≤ K‖q − q ′‖∞ + δ (39)

for all q, q ′ ∈ �. Indeed, let (Y, ρ, y) ∈ biLip(K ) with

dpGH((C ′, d/r, x), (Y, ρ, y)) < min{δ, 1/K (1 + 2δ)} =: δ′

and let p : 	n∞ → Y be K -bi-Lipschitz and surjective with p(0) = x. Define
ξ by composing p and the δ′-isometry from (Y, ρ, y) to (C ′, d/r, x) granted
by Lemma 2.24.

For m ∈ N and R > 0 let

D(R,m) = {R2−m( j1, . . . , jn) ∈ [0, R]n : j1, . . . , jn ∈ Z}.

The main result of this section is the following theorem.
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Theorem 3.4 For any K ≥ 1, 0 < γ < 1 and η > 0 there exists m0 ∈ N

such that the following is true. Suppose that m ≥ m0 and G ⊂ C ⊂ X ⊂ 	∞
are closed sets such that (X,C,G) satisfies

GT A(η, K , 4−m, R0). (40)

Then for any x ∈ G and 0 < r ≤ R0, there exists a γ -Hölder map

ι : [0, r ]n ⊂ 	n∞ → B(x, 20Kr) ⊂ 	∞

with ι(0) = x such that:

1. ι|D(r,m) : D(r,m) → C is (K + 2−m)-bi-Lipschitz onto its image;
2. For any y, z ∈ [0, r ]n with ‖y − z‖∞ ≤ 2−mr,

‖ι(y) − ι(z)‖∞ ≤ 10K2−mγ /2r;
3.

Hn∞(ι([0, r ]n) \ C) ≤ �Hn(B(ι(0), 20Kr) ∩ X \ G),

for some � > 0 depending only upon K , γ,m, n, η.

Before discussing the proof of Theorem 3.4, we mention how the properties
of ι are used in the proof of Theorem 1.2 (the complete details are given in
Theorem 6.5).

Item 1 implies that the map f := ι|−1
D(r,m) exists and is L-Lipschitz for some

L independent of m and r . After extending f to all of 	∞ using Theorem 2.6,
Theorem 3.4 items 1 and 2 imply that

‖ f (ι(y)) − y‖∞ ≤ A2−mr (41)

for some constant A independent of m and r . Provided m is sufficiently large,
this implies that f (ι([0, r ]n)) contains [r/4, 3r/4]n and hence

Hn( f (ι([0, r ]n))) ≥ crn (42)

for an absolute constant c > 0 (see Corollary 6.4). Provided

Hn(B(ι(0), 20Kr) ∩ X \ G)

rn

is sufficiently small (which can be guaranteed if ι(0) is a density point of G
and r is sufficiently small), item 3 and (42) imply that

Hn( f (ι([0, r ]n) ∩ C)) > 0. (43)
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Moreover, if f is replaced by any L-Lipschitz g with ‖ f − g‖∞ < A2mr/4,
then (41) and hence (42) and (43) also hold for g. The main result of [13]
(see Theorem 6.3) then implies that C cannot be purely n-unrectifiable. In
Proposition 6.2 it is shown that if X satisfies the hypotheses of Theorem 1.2,
any subset of X can be covered (up to a Hn null set) by a countable union of
sets which satisfy the hypotheses ofC . Consequently, X must be n-rectifiable.

We now discuss the proof of Theorem 3.4. First note that, by scaling the
norm in 	∞, it suffices to consider the case R0 = r = 1. The construction of
the map ι involves a multi-scale iteration over sub-cubes of [0, 1]n . To begin
we define ι1 on D(1,m) to equal the map ξ given by Observation 3.3. By
choosing m0 sufficiently large, (39) ensures that item 1 of Theorem 3.4 holds.

We now wish to extend ι1 to a function ι2 defined on (a large subset of)
D(1, 2m). The basic idea is the following:

• Suppose that p ∈ D(1,m) is such that ι1(p) is sufficiently close to a point
of G. Then the map ξ from Observation 3.3 provides a rich structure to the
neighbourhood of ι1(p). We wish to use ξ to locally define ι2 on points in
D(1, 2m) that are close to p, whilst maintaining some control on the local
Lipschitz constant of ι2. (See Lemma 3.8 for the fundamental building
block of this extension.)

• On the other hand, since ξ takes values in C , there may well exist p ∈
D(1,m) for which ι1(p) lies relatively far away from G. At this stage
we do not extend ι2 near to p and this will produce a hole in the domain
of ι. Later we will patch over such holes, but we must control the total
size of the holes we need to patch. The lower density bound (35) allows
us to bound the measure of those points that lie far away from G and
consequently on the amount of patching required. (This is addressed much
later in Proposition 3.15.)

We then iterate this extension process for each i ≥ 2, defining ιi on a large
subset of D(1, im) as an extension of ιi−1 and defining ι as the limit of the ιi .
The control on the local Lipschitz constant of each ιi leads to a Hölder bound
on ι as in Theorem 3.4 item 2; The control on the total amount of patching
over all scales leads to item 3.

Before proceeding with more details, we fix notation for this section.

Notation 3.5 We fix K ≥ 1, 0 < γ < 1 and η > 0.
Let N ∈ N be such that

(5K 2)n ≤ 2N (1−γ )

and choose γ ≤ α < 1 such that

(5K 2)n = 2N (1−α). (44)
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Write l = 2−N and σ = (5K 2)n , so that

σ l = (5K 2)n2−N = 2−Nα = lα. (45)

Fix (X, d) a complete metric space and C,G ⊂ X such that (X,C,G)

satisfies GT A(η, K , l/20, 1).

We note the following. If i ∈ N with i > 2/α, Eqs. (44) and (45) give

σ(σ l)i = lα−1liα < l1 ≤ 1/2.

That is,

σ i <
1

2σ li
. (46)

Definition 3.6 For i ∈ N let

D(i) = {li ( j1, . . . , jn) ∈ [0, 1]n : j1, . . . , jn ∈ Z}.

For an integer 0 ≤ m ≤ n, an m-dimensional face of side length li is any set
of the form

{x ∈ [0, 1]n : p j ≤ x j ≤ p j + b j l
i ∀1 ≤ j ≤ n},

with p ∈ D(i), b ∈ {0, 1}n and exactlym of the bi = 1.We denote byF(m, i)
the set of all such faces. If 1 ≤ m ≤ n and F ∈ F(m, i), define the boundary
of F by

∂F :=
⋃

{F ′ ∈ F(m − 1, i) : F ′ ⊂ F}.

We also write Q(i) = F(n, i), the set of cubes of side length li . For Q ∈
Q(i) the m-dimensional skeleton of Q is

skel(Q,m) :=
⋃

{F ∈ F(m, i) : F ⊂ Q}.

For Q ⊂ Q(i), we define the corners of Q by

cor(Q) =
⋃
Q∈Q

skel(Q, 0).
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We also define the children of Q to be

child(Q) := {Q′ ∈ Q(i + 1) : Q′ ⊂ Q, some Q ∈ Q}.

If Q ∈ Qi we write child(Q) for child({Q}).
To begin the construction, we define a decomposition of a given collection

of cubes in order to implement the idea sketched above.

Lemma 3.7 Let i ∈ N, Q ⊂ Q(i) and, for some β > 0, suppose that

ι : cor(Q) → C

satisfies

d(ι(p), ι(p′)) ≤ β‖p − p′‖∞ (47)

for each Q ∈ Q and each p, p′ ∈ cor(Q). Then there exists a decomposition
Q = G ∪ B such that:

1. For each Q ∈ G there exists x ∈ G with

ι(cor(Q)) ⊂ B(x, 2βli ).

2. For every p ∈ cor(B),

B(ι(p), βli ) ∩ G = ∅.

Proof Let Q ∈ Q. The triangle inequality and (47) imply that either item 1 or
item 2 holds. Decompose Q accordingly. ��

The proof of Theorem 3.4 now consists of two main parts. First, for i ∈ N

and ι and Q satisfying the hypotheses of Lemma 3.7, we define an extension
of ι to

D′ :=
⋃

G ∩ D(i + 1).

This extension satisfies the hypotheses of Lemma 3.7 for i + 1 with a larger
value of β. Note that we do not extend ι into

⋃
B ∩ D(i + 1).

In the second part we iteratively construct such extensions for all i ∈ N,
using the resulting function from one iteration as the input to the next. We
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show that the limiting function,

ι : S ⊂ [0, 1]n → C,

is α-Hölder continuous. A Hölder extension extends ι to

ι : [0, 1]n → 	∞.

This extension simultaneously patches all holes that were created when we did
not extend the function into the cubes inB after each application of Lemma 3.7.
Finally we show how the properties of B imply Theorem 3.4 item 3.

3.1 Constructing the extension to the next scale

The hypothesis that (X,C,G) satisfies GT A(η, K , l/20, 1) is used to prove
the following extension result. This serves as the fundamental building block
that is used construct the extension from D(i) to a large subset of D(i + 1).

Lemma 3.8 For 0 ≤ m ≤ n and i ∈ N let F ∈ F(m, i). For 0 < β < 1/(2li )
suppose that

ι : ∂F ∩ D(i + 1) → C

satisfies

d(ι(p), ι(p′)) ≤ β‖p − p′‖∞ (48)

for each p, p′ ∈ ∂F ∩ D(i + 1). Suppose that there exists x ∈ G with

ι(∂F ∩ D(i + 1)) ⊂ B(x, 2βli ). (49)

Then there exists an extension of ι to

ι : F ∩ D(i + 1) → C

such that

d(ι(p), ι(p′)) ≤ 2K 2β‖p − p′‖∞ (50)

for each p, p′ ∈ F ∩ D(i + 1).

Proof By hypothesis, we have r := 2βli < 1. Let ξ : � → C be given by
Observation 3.3 for x and this value of r . Let δ = l/20.
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For a moment fix a point p ∈ ∂F ∩D(i +1). Since ι(p) ∈ C , Definition 3.2
item 1 implies

Hn(B(ι(p), δr)) ≥ η(δr)n.

Since ι(p) ∈ B(x, 2βli ), (38) implies that there exists z ∈ B(ξ(�), δr) with

d(z, ι(p)) ≤ δr.

That is, there exists a point ψ(p) ∈ � with

d(ι(p), ξ(ψ(p))) ≤ 2δr. (51)

The function ψ : ∂F ∩ D(i + 1) → � is 3Kβ
2r -Lipschitz. Indeed, for any

p, p′ ∈ ∂F ∩ D(i + 1), Eq. (39) implies

‖ψ(p) − ψ(p′)‖∞ ≤ K

r
d(ξ(ψ(p)), ξ(ψ(p′))) + δK .

Combining this with Eq. (51) and using the triangle inequality gives

‖ψ(p) − ψ(p′)‖∞ ≤ K

r
d(ι(p), ι(p′)) + 5δK .

Finally, Eq. (48) and the choice of r gives

‖ψ(p) − ψ(p′)‖∞ ≤ Kβ

r
‖p − p′‖∞ + 5δK

= Kβ

r
(‖p − p′‖∞ + 10δli )

= Kβ

r
(‖p − p′‖∞ + li+1/2)

≤ 3Kβ

2r
‖p − p′‖∞.

This implies thatψ is 3Kβ
2r -Lipschitz as claimed. Sinceψ takes values in�, the

second conclusion of Theorem 2.6 gives an extension of ψ to a 3Kβ
2r -Lipschitz

function (with respect to ‖ · ‖∞ in both the domain and image)

ψ : F ∩ D(i + 1) → �.

For each p ∈ F ∩ D(i + 1) \ ∂F , define ι(p) = ξ(ψ(p)). To check (50),
let p, p′ ∈ F ∩ D(i + 1). Note that, regardless of whether p or p′ ∈ ∂F , Eq.
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(51) and the triangle inequality give

d(ι(p), ι(p′)) ≤ d(ξ(ψ(p)), ξ(ψ(p′))) + 4δr.

Combining this with (39) gives

d(ι(p), ι(p′)) ≤ Kr‖ψ(p) − ψ(p′)‖∞ + 5δr

Using the fact that ψ is 3Kβ
2r -Lipschitz gives

d(ι(p), ι(p′)) ≤ 3K 2β

2
‖p − p′‖∞ + 5δr.

Finally, substituting in for r and δ gives

d(ι(p), ι(p′)) ≤ 3K 2β

2
‖p − p′‖∞ + βli+1

2
≤ 2K 2β‖p − p′‖∞,

giving (50). ��
Suppose we are given ι : D(i) → C that we wish to extend toD(i +1). One

way to do this is to consider each Q ∈ Q(i) one at a time and apply Lemma 3.8
several times to extend ι to Q ∩D(i + 1) (for the purposes of this discussion,
ignore the requirement given in (49)). Such an extension must agree with the
value of ι at those points in ∂Q ∩ D(i + 1) that belong to the boundary of
adjacent cubes to which we have previously extended ι. However, each time
Lemma 3.8 is applied in this way, the Lipschitz constant of the extension, given
by (50), is a multiplicative factor larger than the input Lipschitz constant given
in (48). Consequently, if this is repeated for each Q ∈ Q(i), the Lipschitz
constant of the extension to the whole of D(i + 1) is far too large, and such
an extension is useless.

The correct approach is to first extend ι to all points of

S := D(i + 1) ∩
⋃

F(m, 1)

by applying Lemma 3.8 one face at a time. For any F ∈ F(m, 1),

∂F ∩ D(i + 1) ⊂ D(i).

Since ι is defined onD(i), it can be shown that the Lipschitz constant increases
by a fixed amount, independent of the number of F ∈ F(m, 1) to which the
extension is applied. We then extend to

D(i + 1) ∩
⋃

F(m, 2)
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one face at a time. Similarly to the previous case, for any F ∈ F(m, 2),

∂F ∩ D(i + 1) ⊂ S.

Since ι is now defined on S, as in the previous case, the Lipschitz constant
only increases once, regardless of the number of F ∈ F(m, 2) to which we
apply Lemma 3.8. This is repeated n times in total, so that we extended ι to
all of D(i + 1).

To facilitate this iteration we make the following simple observation.

Observation 3.9 For 0 ≤ m ≤ n and i ∈ N, let Q, Q′ ∈ Q(i), p ∈
skel(Q,m) ∩ D(i + 1) and p′ ∈ skel(Q′,m) ∩ D(i + 1). Suppose that, for
some F ∈ F(m, i), p ∈ F and p′ /∈ F. Then there exists q ∈ ∂F ∩ D(i + 1)
such that

max{‖p − q‖∞, ‖q − p′‖∞} ≤ ‖p − p′‖∞. (52)

Proof Without loss of generality, we may suppose that

F = {x ∈ [0, 1]n : 0 ≤ x j ≤ li ∀1 ≤ j ≤ m}.

If p ∈ ∂F then we pick q = p. Otherwise, we know that

0 < p1, . . . , pm < li .

There are two cases:

1. For some 1 ≤ j ≤ m, p′
j = 0 or p′

j ≥ li ;

2. 0 < p′
1, . . . , p

′
m < li . In this case, since p′ ∈ skel(Q′,m) and hence

belongs to some m-dimensional face, the other components of p′ must be
integer multiples of li . Since p′ /∈ F , one such component, say p′

j differs

from p j . Consequently, |p′
j − p j | ≥ li .

In the first case, define qk = pk for each k �= j and let q j equal either 0 or li ,
such that q j lies between p j and p′

j . Then q ∈ ∂F , qk = pk for all k �= j and

|p j − p′
j | = |p j − q j | + |q j − p′

j |,

which implies (52). In the second case, arbitrarily pick q ∈ ∂F ∩ D(i + 1).
Then ‖p − q‖∞ ≤ li ≤ ‖p − p′‖∞, implying one inequality in (52). Also,
|p′

k − qk | ≤ li ≤ |p′
j − p j | for all 1 ≤ k ≤ m and |p′

k − qk | = |p′
k − pk | for

all k > m. Therefore, ‖p′ − q‖∞ ≤ ‖p′ − p‖∞, proving the other inequality
in (52). ��
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With this observation we demonstrate how to construct the extension from
the m-dimensional faces to the m + 1-dimensional faces.

Lemma 3.10 Fix i ∈ N, let D ⊂ D(i + 1) and let 0 ≤ m < n. Let 0 < β <

1/(2li ) and suppose that ι : D → C satisfies

d(ι(p), ι(p′)) ≤ β‖p − p′‖∞ (53)

for each p, p′ ∈ D with ‖p− p′‖∞ ≤ li . Suppose that G ⊂ Q(i) is such that

∀Q ∈ G, D ∩ Q = skel(Q,m) ∩ D(i + 1) (54)

and

∀Q ∈ G, ∃x ∈ G with ι(D ∩ Q) ⊂ B(x, 2βli ). (55)

Then there exists an extension of ι to

D′ := D ∪
⋃
Q∈G

skel(Q,m + 1) ∩ D(i + 1)

such that

d(ι(p), ι(p′)) ≤ 5K 2β‖p − p′‖∞ (56)

for each p, p′ ∈ D′ with ‖p − p′‖∞ ≤ li .

Proof Let Q ∈ G and F ∈ F(m + 1, i) with F ⊂ Q. By (54), ι is defined
on ∂F ∩ D(i + 1). By (55) and the fact that β < 1/(2li ), the hypotheses of
Lemma 3.8 are satisfied. An application of Lemma 3.8 extends ι|∂F∩D(i+1) to
a map

ι : F ∩ D(i + 1) → C

such that

d(ι(p), ι(p′)) ≤ 2K 2β‖p − p′‖∞ (57)

for each p, p′ ∈ F ∩ D(i + 1). We combine each of these extensions to form
an extension of ι to a map

ι : D′ → C,

ignoring any repetitions of faces that appear in multiple cubes.
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Now let p, p′ ∈ D′ with ‖p − p′‖∞ ≤ li . If p, p′ ∈ D then (56) holds
for p, p′ by hypothesis. Therefore, we may suppose that p /∈ D. Let Q ∈ G
with p ∈ Q and F ∈ F(m + 1, i) with p ∈ F ⊂ skel(Q,m + 1). If p′ ∈ F
then (57) implies (56) for p, p′. Otherwise, let q ∈ ∂F ∩ D(i + 1) be given
by Observation 3.9 such that

max{‖p − q‖∞, ‖q − p′‖∞} ≤ ‖p − p′‖∞

If p′ /∈ D, let Q′ ∈ G and F ′ ∈ F(m + 1, i) with p′ ∈ F ′ ⊂ skel(Q′,m + 1)
and let q ′ ∈ ∂F ′ ∩ D(i + 1) be given by Observation 3.9 such that

max{‖p′ − q ′‖∞, ‖q − q ′‖∞} ≤ ‖p′ − q‖∞.

If p′ ∈ D let q ′ = p′. In either case, we have ‖q −q ′‖∞, ‖p− p′‖∞ ≤ li and
so (53) implies

d(ι(q), ι(q ′)) ≤ β‖q − q ′‖∞.

Further, (57) implies

d(ι(p), ι(q)) ≤ 2K 2β‖p − q‖∞

and

d(ι(q ′), ι(p′)) ≤ 2K 2β‖q ′ − p′‖∞.

Therefore, the triangle inequality gives

d(ι(p), ι(p′)) ≤ 2K 2β‖p − q‖∞ + β‖q − q ′‖∞
+ 2K 2β‖q ′ − p′‖∞

≤ 5K 2β‖p − p′‖∞,

as required. ��
Recall σ = (5K 2)n is defined in Notation 3.5. We now iterate the construc-

tion in Lemma 3.10 to obtain an extension to n-dimensional cubes.

Lemma 3.11 Fix i ∈ N, let D ⊂ D(i) and let

0 < β <
1

2σ li
. (58)

Suppose that ι : D → C satisfies

d(ι(p), ι(p′)) ≤ β‖p − p′‖∞ (59)
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for each p, p′ ∈ D with ‖p − p′‖∞ ≤ li . Suppose also that G ⊂ Q(i) is such
that cor(G) ⊂ D and

∀Q ∈ G, ∃x ∈ G with ι(D ∩ Q) ⊂ B(x, 2βli ). (60)

Then there exists an extension of ι to

D′ :=
(⋃

G ∩ D(i + 1)
)

∪ D = cor(child(G)) ∪ D

such that

d(ι(p), ι(p′)) ≤ σβ‖p − p′‖∞ (61)

for each p, p′ ∈ D′ with ‖p − p′‖∞ ≤ li .

Proof First note that, since cor(G) ⊂ D, (54) holds for m = 0. Since (60)
implies (55), we may apply Lemma 3.10 to obtain an extension of ι to

D1 := D ∪
⋃
Q∈G

skel(Q, 1) ∩ D(i + 1)

such that

d(ι(p), ι(p′)) ≤ 5K 2β‖p − p′‖∞

for each p, p′ ∈ D1 with ‖p − p′‖∞ ≤ li .
Now notice that,

∀Q ∈ G, D1 ∩ Q = skel(Q, 1).

Since

(5K 2)β <
(5K 2)

2σ li
≤ 1

2li
,

we may apply Lemma 3.10 again, but with β replaced by (5K 2)β and with
m = 1. This gives an extension of ι to

D2 := D ∪
⋃
Q∈G

skel(Q, 2) ∩ D(i + 1)

such that

d(ι(p), ι(p′)) ≤ (5K 2)2β‖p − p′‖∞
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for each p, p′ ∈ D2 with ‖p− p′‖∞ ≤ li . Thus, the hypotheses of Lemma3.10
are satisfied again, with β replaced by (5K 2)2β and with m = 2.

Since β < 1/(2(5K 2)nli ), we repeat this for a total of n times, extending ι

to

Dn := D ∪
⋃
Q∈G

skel(Q, n) ∩ D(i + 1) = D ∪
(⋃

G ∩ D(i + 1)
)

= D′

such that

d(ι(p), ι(p′)) ≤ (5K 2)nβ‖p − p′‖∞ = σβ‖p − p′‖∞

for each p, p′ ∈ D′ with ‖p − p′‖∞ ≤ li . ��

3.2 Constructing the extension to all scales

In Lemma 3.11 we demonstrated how to extend a function from some D ⊂
D(i) to D′ ⊂ D(i + 1). We now iterate this extension over all i ∈ N.

Note that, in items 4 and 5 of the following lemma, the radius of the ball
in item 4 and the upper bound in item 5 are of the form (σ l)m , up to some
constant multiple. In (44) we chose α so that (σ l) = lα , so both of these
quantities are comparable to lαm . In particular, item 5 implies that each ιi is α-
Hölder with the same Hölder constant. The fact that these two quantities have
the same power of α is an essential requirement for the construction given
in this section to work; looking ahead to Proposition 3.15, this is exactly the
condition required so that we can boundHn∞(ι([0, 1]n) \C) in (74). Looking
behind, we see that the two powers agree because of Lemma 3.7.

Lemma 3.12 Let M ∈ N with M > α/2 , 0 ≤ L ≤ σ M and suppose that

ιM : D(M) → C

is L-Lipschitz. For each i ≥ M there exist Gi ,Bi ⊂ Q(i) such that

[0, 1]n =
⋃

Gi ∪
⋃

M≤ j≤i

⋃
Bi (62)

and a function

ιi : cor

⎛
⎝Gi ∪

⋃
M≤ j≤i

B j

⎞
⎠ → C (63)

such that:
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1. ιi+1 is an extension of ιi ;
2. child(Gi ) = Gi+1 ∪ Bi+1
3. For each Q ∈ Gi , there exists x ∈ G with

ιi (cor(Q)) ⊂ B(x, 2Lσ i−Mli );
4. For all p ∈ cor(Bi ),

B(ιi (p), Lσ i−Mli ) ∩ G = ∅,

5. For each p, p′ ∈ dom ιi with ‖p − p′‖∞ ≤ li−1,

d(ιi (p), ιi (p
′)) ≤ Lσ i−M‖p − p′‖∞.

Here and throughout, dom ιi denotes the domain of ιi .

Proof We prove the lemma by induction. To begin, for β := L , let

Q(M) = GM ∪ BM

be given by Lemma 3.7 for ι = ιM and i = M . Then ιM ,GM ,BM satisfy the
required conditions.

Nowsuppose that ιi ,Gi andBM , . . . ,Bi exist for some i ≥ M .Wefirst apply
Lemma 3.11 to ιi and Gi and begin by checking that the required hypotheses
are satisfied. Since L ≤ σ M , (46) implies

β := Lσ i−M ≤ σ i <
1

2σ li
,

and so (58) holds. By induction hypothesis, item 5 implies (59) for this choice
of β. Also, item 3 implies Gi satisfies (60). An application of Lemma 3.11
constructs an extension of ιi to

ιi+1 : cor

⎛
⎝child(Gi ) ∪

⋃
M≤ j≤i

B j

⎞
⎠ → C

such that, for each p, p′ ∈ dom ιi+1 with ‖p − p′‖∞ ≤ li ,

d(ιi+1(p), ιi+1(p
′)) ≤ σβ‖p − p′‖∞ = Lσ i+1−M‖p − p′‖∞. (64)

Equation (64) implies that Q = child(Gi ) satisfies the hypothesis of
Lemma 3.7 with β := Lσ i+1−M . Let

child(Gi ) = Gi+1 ∪ Bi+1 (65)
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be the decomposition given by Lemma 3.7, so that item 2 is satisfied and so
that Gi+1 satisfies item 3 and Bi+1 satisfies item 4 for i = i +1. Note that (62)
for i combined with (65) implies (62) for i + 1. Thus the required ιi+1,Gi+1
and Bi+1 exist and so the lemma is true by induction. ��

We now prove, by induction on i ∈ N, a local Lipschitz bound on each ιi
(with a Lipschitz constant that depends on i). Afterwards, this will be upgraded
to uniform Hölder continuity.

Lemma 3.13 Let M ∈ N with M > α/2 , 0 ≤ L ≤ σ M and suppose that

ιM : D(M) → C

is L-Lipschitz. For each i ≥ M let ιi ,Gi and Bi be obtained from Lemma 3.12.
Then for any i ≥ M, j ∈ N and p, q ∈ dom ιi with p, q ∈ Q ∈ Q( j),

d(ιi (p), ιi (q)) ≤ 2Lσ−M+1(σ l) j . (66)

Proof First note that, if i = j , (66) follows from Lemma 3.12 item 5 and if
j > i then p = q, so that (66) holds. To prove (66) for the case i > j ≥ M ,
we will prove that

d(ιi (p), ιi (q)) ≤ Lσ−M+1
i−1∑
k= j

(lσ)k ∀p, q ∈ dom ιi , p, q ∈ Q ∈ Q( j)

(67)

holds for all i > M and all i > j ≥ M by induction on i . Equation (66) then
follows because the geometric series converges by (46).

Note that (67) holds for i = M+1 and j = M since ιM is L-Lipschitz. Now
let i > M + 1, and suppose that (67) holds for i − 1 and all i − 1 > j ≥ M .
Let i > j ≥ M and p, q ∈ dom ιi with p, q ∈ Q ∈ Q( j). If neither of p
or q belong to cor(Gi ∪ Bi ), then they both belong to dom ιi−1. If j = i − 1
then Lemma 3.12 item 5 for i − 1 implies (67) for i since ιi extends ιi−1. If
j < i − 1 then the induction hypothesis implies (67) for i . Therefore, we may
suppose p ∈ cor(Q∗) for some Q∗ ∈ Gi ∪ Bi .

Note that Lemma 3.12 item 2 implies that there exists Q′ ∈ Gi−1 with
Q∗ ⊂ Q′. Let p′ ∈ cor(Q′) ⊂ dom ιi−1, so that ‖p − p′‖∞ ≤ li−1. By
Lemma 3.12 item 5

d(ιi (p), ιi (p
′)) ≤ Lσ i−Mli−1 = Lσ−M+1(σ l)i−1. (68)
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Note also that, since Q′ ∈ Q(i − 1) and Q ∈ Q( j) with j ≤ i − 1, we must
have Q′ ⊂ Q. Thus, since p′, q ∈ Q, the induction hypothesis implies

d(ιi−1(p
′), ιi−1(q)) ≤ Lσ−M+1

i−2∑
k= j

(lσ)k . (69)

Using the fact that ιi extends ιi−1, we may combine Eqs. (68) and (69) using
the triangle inequality to get

d(ιi (p), ιi (q)) ≤ Lσ−M+1
i−1∑
k= j

(lσ)k,

completing the induction step. ��
Recall from (45) that σ l = lα . We now show that the limit of the ιi is

α-Hölder. As mentioned before Lemma 3.12, it is essential that the exponent
of li appearing in item 3 in the following lemma equals α in order to deduce
(74).

Lemma 3.14 Let M ∈ Nwith M > 2/α, 0 ≤ L ≤ σ M and let ι : D(M) → C
be L-Lipschitz. There exist a closed set S ⊂ [0, 1]n with S ⊃ D(M), an
extension of ι to

ι : (S, ‖ · ‖∞) → C ∩ B(ι(0), 5L)

and, for each i ≥ M, a set Bi ⊂ Q(i) such that:

1. ι is α-Hölder continuous with Hölder constant 5Ll−α .
2.

[0, 1]n = S ∪
⋃
i≥M

⋃
Bi

3. For each i ≥ M and each p ∈ cor(Bi ), p ∈ S and

B(ι(p), Lσ−Mlαi ) ∩ G = ∅.

Proof Set ιM = ι and for each i ≥ M let Gi ,Bi and ιi be obtained from
Lemma 3.12. Set S′ = ∪i≥M dom ιi and define ι on S′ by ι(x) = ιi (x) when-
ever x ∈ dom ιi . Let p, p′ ∈ S′, let i ∈ N be sufficiently large such that
p, p′ ∈ dom ιi and let m ∈ N be such that lm+1 < ‖p − p′‖∞ ≤ lm .
If m < M , let Q, Q′ ∈ Q(M) be such that p ∈ Q and p′ ∈ Q′ and let

q ∈ cor(Q) and q ′ ∈ cor(Q′) minimise the distance between cor(Q) and
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cor(Q′), so that ‖q − q ′‖∞ ≤ lm . Then by combining (66), the fact that ι is
L-Lipschitz, and using the triangle inequality

d(ι(p), ι(p′)) ≤ d(ιi (p), ιi (q)) + d(ι(q), ι(q ′)) + d(ιi (q
′), ιi (p′))

≤ 2Lσ−M+1(σ l)M + Llm + 2Lσ−M+1(σ l)M

≤ 4Lσ lM + Llm

≤ 5L(σ l)m . (70)

Ifm ≥ M , let p ∈ Q ∈ Q(m) and p′ ∈ Q′ ∈ Q(m). Since ‖p− p′‖∞ ≤ lm ,
Q and Q′ have a common corner q and hence ‖p − q‖∞, ‖p′ − q‖∞ ≤ lm .
Thus the triangle inequality and (66) give

d(ι(p), ι(p′)) ≤ d(ιi (p), ιi (q)) + d(ιi (q), ιi (p
′))

≤ 2Lσ−M+1(σ l)m + 2Lσ−M+1(σ l)m

≤ 4L(σ l)m, (71)

using the fact that M ≥ 2 in the final inequality.
Equations (45), (70) and (71) show that

d(ι(p), ι(p′)) ≤ 5Llαm ≤ 5Ll−α‖p − p′‖α∞. (72)

That is, ι is α-Hölder with constant 5Ll−α . This also implies that ι maps into
B(ι(0), 5L).
Let S be the closure of S′ and extend ι to S maintaining the Hölder bound.

Since C is closed, this extension maps into C ∩ B(ι(0), 5L). For each i ≥ M ,
(62) implies

[0, 1]n =
⋃

Gi ∪
⋃
j≥M

⋃
B j . (73)

For each i ∈ N, cor(Gi ) ⊂ dom ιi ⊂ S and so ∪Gi ⊂ B(S, li ). Since S is
compact this implies

⋂
i≥M

⋃
Gi ⊂ S.

Thus, intersecting (73) over all i ≥ M gives item 2.
Finally, Eq. (45) and Lemma 3.12 item 4 and imply item 3. ��
We now extend the map ι to [0, 1]n , assuming X is a subset of 	∞. This

will implicitly construct the metric space Ẽ mentioned in the introduction.
Since we have constructed ι to be Hölder continuous, this can be done using
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Theorem 2.6. The Hölder condition is also used (in combination with (35)) to
deduce (74) from Lemma 3.14 item 3.

Proposition 3.15 Let M ∈ N with M > 2/α, 0 ≤ L ≤ σ M and let
ι : D(M) → C be L-Lipschitz. Suppose that X is a subset of 	∞. There
exists an α-Hölder extension ι : [0, 1]n → B(ι(0), 10L) with Hölder constant
5Ll−α such that

Hn∞(ι([0, 1]n) \ C) ≤ (50σ Ml−α)n

η
Hn(B(ι(0), 10L) ∩ X \ G). (74)

Proof First apply Lemma 3.14 to find a closed S ⊂ [0, 1]n and extend ι to an
α-Hölder map

ι : S → B(ι(0), 5L) ∩ C. (75)

Then apply Theorem 2.6 to extend ι to an α-Hölder map

ι : [0, 1]n → 	∞

maintaining the Hölder constant of 5Ll−α . In particular, sinceD(M) ⊂ S and
M > 2/α, this extension maps into B(ι(0), 10L).
Since ι(S) ⊂ C , we deduce (74) by estimating the Hausdorff content of

Y := ι

⎛
⎝ ⋃

i≥M

⋃
Bi

⎞
⎠ ,

where the Bi are as in Lemma 3.14 item 4. That is, for each i ≥ M , Bi ⊂ Q(i)
and, for each p ∈ cor(Bi ), p ∈ S and

B(ι(p), Lσ−Mlαi ) ∩ G = ∅. (76)

Since ι is α-Hölder with constant 5Ll−α ,

Y ⊂ {B(ι(p), 5Ll−αliα) : i ≥ M, p ∈ cor(Bi )}.
That is, if

A = {B(ι(p), Lσ−Mlαi ) : i ≥ M, p ∈ cor(Bi )},
then

Y ⊂
⋃
B∈A

5σ Ml−αB.
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LetA′ be a disjoint 5r -sub-cover ofA, so that the elements ofA′ are pairwise
disjoint and

Y ⊂
⋃
B∈A′

25σ Ml−αB.

In particular,

Hn∞(Y ) ≤
∑
B∈A′

(50σ Ml−α rad B)n (77)

By Eqs. (75) and (76),

⋃
A′ ⊂ B(ι(0), 10L) \ G. (78)

For each i ≥ M and p ∈ cor(Bi ), ι(p) ∈ C and so Definition 3.2 item 1
implies

Hn(B(ι(p), r) ∩ X) ≥ ηrn

whenever r ≤ 1. In particular, this is true for all balls inA′. Therefore, by (78)
and the disjointness of the balls in A′,

η
∑
B∈A′

rad(B)n ≤
∑
B∈A′

Hn(B ∩ X)

≤ Hn(B(ι(0), 10L) ∩ X \ G).

Combining this with (77) gives

Hn∞(Y ) ≤ (50σ Ml−α)n

η
Hn(B(ι(0)), 10L) ∩ X \ G),

as required. ��
To conclude the section, we record the main conclusion without the fixed

quantities of Notation 3.5. Recall, for m ∈ N and R > 0, that

D(R,m) = {R2−m( j1, . . . , jn) ∈ [0, R]n : j1, . . . , jn ∈ Z}.
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Theorem 3.16 For any K ≥ 1, 0 < γ < 1 and η > 0 there exists N ∈ N and
γ ≤ α < 1 such that the following is true. For any closed X ⊂ 	∞ and for
any R0 > 0, let (X,C,G) satisfy

GT A(η, K , 2−N/20, R0). (79)

Then for any M ∈ N with M > 2/α, 0 < r < R0, 0 ≤ L ≤ (5K 2)M and any
L-Lipschitz

ι : D(r, MN ) ⊂ 	n∞ → C,

there exists an α-Hölder extension

ι : [0, r ]n ⊂ 	n∞ → B(ι(0), 10Lr)

with Hölder constant 5L2Nαr1−α such that

Hn∞(ι([0, r ]n) \ C) ≤ �Hn(B(ι(0), 10Lr) ∩ X \ G), (80)

for some � > 0 depending only upon K , γ, M, n, η.

Proof Given K , γ, η as in the hypotheses, let N ∈ N and γ ≤ α < 1 be
given by (44). For any (X,C,G) satisfying (79) and any 0 < r < R0, let
C ′ = C/r and G ′ = G/r , considered as subsets of X ′ = X/r ⊂ 	∞. Then
(X ′,C ′,G ′) satisfiesGT A(η, K , 2−N/20, 1). Define ι′ : D(1, MN ) → C ′ by
ι′(q) = ι(rq)/r . Then ι′ is also L-Lipschitz.An application of Proposition 3.15
gives an α-Hölder extension of ι′ with Hölder constant 5L2Nα satisfying

Hn∞(ι′([0, 1]n) \ C ′) ≤ �Hn(B(ι(0), 10L) ∩ X ′ \ G ′) (81)

for � = (20(5K )2M2αN )n/η. This gives an α-Hölder extension of ι defined
by ι(q) = r ι′(q/r) with Hölder constant 5L2Nαr1−α:

‖ι(y) − ι(z)‖∞ = r‖ι′(y/r) − ι′(z/r)‖∞
≤ r5L2Nα‖y/r − z/r‖α∞
= 5L2Nαr1−α‖y − z‖α∞.

Equation (81) is equivalent to (80). ��
Finally, we conclude the proof of Theorem 3.4

Proof of Theorem 3.4 The hypotheses of Theorem 3.4 imply the hypotheses
of Theorem 3.16. Let N , α be obtained from Theorem 3.16 and let m0 = 2N .
If (X,C,G) satisfies (40) and x ∈ G then by Observation 3.3, there exists a

123



Rectifiability via tangents

(K + 2−m)-bi-Lipschitz ξ : D(r,m) → C with ξ(0) = x . Since (X,C,G)

also satisfies (79), Theorem 3.16 with M = 2 gives an α-Hölder extension
ι : [0, r ]n → B(x, 20Kr)with Hölder constant 10K2Nαr1−α satisfying items
1 and 3 of Theorem 3.4. Since γ ≤ α < 1, ι is also γ -Hölder. Moreover, if
y, z ∈ [0, r ]n with ‖y − z‖∞ ≤ 2−mr then

‖ι(y) − ι(z)‖∞ ≤ 10K2Nαr1−α‖y − z‖α∞
≤ 10K2(N−m)αr1−α+α

≤ 10K2−mα/2r

≤ 10K2−mγ /2r,

giving item 2. ��
Remark 3.17 If, in the hypotheses of Theorem 3.16 or Theorem 3.4, X is
assumed to be a subset of a finite dimensional Banach space (Rm, ‖ · ‖), then
the Hölder map ι can be constructed with values in (Rm, ‖ · ‖). One simply
uses Theorem 2.6 to extend the map into (Rm, ‖ · ‖), increasing the Hölder
constant by a factor that only depends on the norm ‖ · ‖.
Remark 3.18 At this point it would be reasonable to prove Theorem 1.1 using
Theorem 3.4 and Corollary 6.4. However, there are various technical steps that
are simply easier to deal with using d∗. Thus we delay the proof until after the
proof of Theorem 1.2.

4 Metrics between metric measure spaces

4.1 The pointed measured Gromov–Hausdorff metric

Recall the definition of Ga,b given in Definition 2.19. We use the following
metric to describe pointed measured Gromov–Hausdorff convergence.

Definition 4.1 For pointed metric measure spaces (X, μ, x) and (Y, ν, y)
define

dpmGH((X, μ, x), (Y, ν, y)) = G1,1((X, μ, x), (Y, ν, y)).

Note that dpmGH is bounded below by dpGH of the corresponding pointed
metric spaces.

Remark 4.2 If one is only interested in metrising pointed measured Gromov–
Hausdorff convergence, it is more natural to use F1

z rather than Fz in the
definition of dpmGH. Doing so would not change the results of this subsection,
except for minor superficial changes in Corollary 4.4. We use Fz to give the
desired relationship to d∗ in the next subsection.
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We have the following relationship between ε-isometries and F .

Lemma 4.3 Let (Z , ζ, z) be a pointed metric measure space X, Y ⊂ Z Borel
sets, μ ∈ Mloc(X) and ν ∈ Mloc(Y ). For 0 < ε < 1/2 suppose that
f : X ∩ B(z, 1/ε) → Y is a Borel function that satisfies ζ( f (x), x) ≤ ε for
all x ∈ X ∩ B(z, 1/ε). Then for any 0 < r ≤ 1/ε − ε and L > 0,

|FL ,r
z ( f#μ, ν) − FL ,r

z (μ, ν)| ≤ εLμ(B(z, r + ε)).

Proof Let g : Z → [−1, 1] be L-Lipschitz with spt g ⊂ B(z, r). For any
x ∈ B(z, 1/ε),

|g ◦ f (x) − g(x)| ≤ Lζ( f (x), x) ≤ Lε

and so, since r ≤ 1/ε − ε,
∣∣∣∣
∫
B(z,r+ε)

g ◦ f dμ −
∫
B(z,r+ε)

g dμ

∣∣∣∣ ≤ Lεμ(B(z, r + ε)).

However, x ∈ X ∩ B(z, 1/ε) \ B(z, r + ε) then x, f (x) /∈ spt g and so
∣∣∣∣
∫

g ◦ f dμ −
∫

g dμ

∣∣∣∣ ≤ Lεμ(B(z, r + ε)).

Therefore,
∫

g d( f#μ − ν) =
∫

g ◦ f dμ −
∫

g dν

≤ Lεμ(B(z, r + ε) +
∫

g d(μ − ν).

Taking the supremum over all such g gives

FL ,r
z ( f#μ, ν) ≤ Lεμ(B(z, r + ε)) + FL ,r

z (μ, ν).

Similarly,

FL ,r
z (μ, ν) ≤ Lεμ(B(z, r + ε)) + FL ,r

z ( f#μ, ν),

as required. ��
Corollary 4.4 Let (X, μ, x) and (Y, ρ, y) be pointed metric measure spaces
and 0 < ε < 1/2. If dpmGH((X, μ, x), (Y, ν, y)) < ε, there exists a 2ε-
isometry f : (X, x) → (Y, y) such that, for any 0 < r ≤ 1/ε − ε and L > 0,

F L ,r
y ( f#μ, ν) ≤ ε + εLμ(B(x, r + ε)). (82)
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Conversely, if there exists an ε-isometry f : (X, μ, x) → (Y, ν, y) then

dpmGH((X, μ, x), (Y, ν, y))

is bounded above by the maximum of 2ε and

inf{1/r + Fr,r
y ( f#μ, ν) + εrμ(B(x, r + ε)) : 0 < r ≤ 2ε}.

Proof Let (Z , ζ, z) be a pointed metric space for which there exist isometric
embeddings (X, x), (Y, y) → (Z , z) with Hz(X, Y ) < ε and Fz(μ, ν) < ε.
Lemma 2.24 gives a 2ε-isometry f : (X, x) → (Y, y) such that ζ(x ′, f (x ′)) ≤
ε for all x ′ ∈ X ∩ B(x, 1/ε). For any 0 < r ≤ 1/ε − ε, Lemma 4.3 implies
(82).

Conversely, Lemma 2.24 gives a pointed metric space (Z , ζ, z) and iso-
metric embeddings (X, x), (Y, y) → (Z , z) such that ζ(x ′, f (x ′)) ≤ 2ε for
all x ′ ∈ X ∩ B(x, 1/ε) and Hz(X, Y ) ≤ 2ε. Lemma 4.3 implies, for any
0 < r ≤ 1/2ε,

Fr,r
z (μ, ν) ≤ Fr,r

z ( f#μ, ν) + εrμ(B(x, r + ε)).

Thus

Fz(μ, ν) ≤ 1/r + Fr,r
z ( f#μ, ν) + εrμ(B(x, r + ε)).

Taking the infimum over all 0 < r ≤ 1/ε − ε completes the proof. ��
Definition 4.5 An isometry (X, μ, x) → (Y, ν, y) of pointed metric measure
spaces is an isometry (X, x) → (Y, y) with μ = ν.

Corollary 4.6 On the set Mpm of isometry classes of proper pointed metric
measure spaces, dpmGH is a complete and separable metric.

Proof By Proposition 2.20 we know dpmGH is a complete pseudometric. It is
easily verified that the set of finite pointedmetric spaceswith rational distances
and rational combinations of Dirac masses is dense. By Corollary 2.25, any
complete limit of proper pointed metric spaces is also proper.

Let

dpmGH((X, μ, x), (Y, ν, y)) = 0.

By Corollary 4.4, for each i ∈ N there exists a 1/ i-isometry fi : (X, x) →
(Y, y) such that, for any L , r > 0,

FL ,r (( fi )#μ, ν) → 0. (83)
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Fix r > 0. As in the proof of Corollary 2.25, for each j ∈ N letN j be a finite
1/j-net of B(x, r). By taking a subsequence, we may suppose the fi converge
pointwise to an isometry ι when restricted to ∪ jN j whose image is a dense
subset of B(y, r). We extend ι to an isometry ι : B(x, r) → B(y, r).

For a moment fix i, j ∈ N. For any w ∈ B(y, r) let z ∈ N j with w ∈
B(z, 1/j). Since fi is an εi -isometry and ι is an isometry,

ρ(ι(w), fi (w)) ≤ ρ(ι(w), ι(z)) + ρ(ι(z), fi (z)) + ρ( fi (z), fi (w))

≤ d(w, z) + ρ(ι(z), fi (z)) + d(w, z) + εi

≤ ρ(ι(z), fi (z)) + 2/j + εi .

Thus, for any r -Lipschitz g : Y → [−1, 1] with spt g ⊂ B(y, r),

∫
g d(( fi )#μ − ι#μ) ≤ r

(
sup
z∈N j

ρ( fi (z), ι(z)) + 2/j + εi

)
.

Consequently,

Fr,r
y (( fi )#μ, ι#μ) ≤ r

(
sup
z∈N j

ρ( fi (z), ι(z)) + 2/j + εi

)

and so

lim sup
i→∞

Fr,r
y (( fi )#μ, ι#μ) ≤ 2r/j.

Since this is true for all j ∈ N, (83) gives Fr,r
y (ι#μ, ν) = 0 for all r > 0. Thus

Lemma 2.14 implies ι#μ = ν. Consequently, dpmGH is a metric onMpm . ��
Corollary 4.7 A set S ⊂ (Mpm, dpmGH) is pre-compact if and only if

1. {(X, x) : (X, μ, x) ∈ S} ⊂ (Mp, dpGH) is pre-compact and
2. For every r > 0, {μ(B(x, r)) : (X, μ, x) ∈ S} is bounded.
Proof Suppose that S satisfies items 1 and 2 and, for each i ∈ N, let
(Xi , μi , xi ) ∈ S. After passing to a subsequence, there exists a proper pointed
metric space (X, x) such that

dpGH((Xi , xi ), (X, x)) < 1/(2i)

for each i ∈ N. By Lemma 2.24, for each i ∈ N there exists a 1/ i-isometry
fi : (Xi , xi ) → (X, x). Item 2 and Theorem 2.11 imply, after passing to a
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further subsequence, that ( fi )#μi converges to some measure μ on X . Corol-
lary 4.4 then implies

dpmGH((Xi , μi , xi ), (X, μ, x)) → 0.

The converse statement is immediate. ��

4.2 Gromov–Hausdorff convergence of large subsets

Gromov–Hausdorff convergence of pointed metric measure spaces is used
throughout analysis. However, the requirement that the underlying metric
spaces must Gromov–Hausdorff converge is too rigid for some uses in geo-
metric measure theory. For example, it requires that every sequence of null
sets must Gromov–Hausdorff converge to some limit.

For a concrete example, consider the following.

Example 4.8 Let X = {0, 1}with d(0, 1) = 1 and for each i ∈ N letμi ({0}) =
1 and μ({1}) = 1/ i . Then the sequence (X, d, μi , 0) Gromov–Hausdorff
converges to (X, d, δ0, 0) but not to ({0}, δ0, 0), which is the more natural
choice. That is, Gromov–Hausdorff convergence may require one to consider
a larger metric space than simply the support of the limit measure.

For each i ∈ N let Xi be an i-point metric space including a point 0,
equipped with the discrete metric di . Then the sequence (Xi , di , δ0, 0) has no
Gromov–Hausdorff limit, even though a one point metric space with a Dirac
measure is the natural candidate from a measure theoretic point of view.

To construct a 1-rectifiable metric space with no Gromov–Hausdorff tan-
gents at any point, one takes an isometric copy of an interval and scatters “dust”
around it at all scales as in the previous example.

Rather than Gromov–Hausdorff convergence we will use the following.

Definition 4.9 For pointed metric measure spaces (X, μ, x) and (Y, ν, y)
define

d∗((X, μ, x), (Y, ν, y)) = G0,1((X, μ, x), (Y, ν, y)).

Note that d∗ ≤ dpmGH. Also, for any Borel x ∈ S ⊂ X , (18) implies

d∗((X, μ, x), (S, μ|S, x)) ≤ inf{r > 0 : μ(B(x, 1/r) \ S) < r}. (84)

Although d∗ does not require the underlying sets to be close in the sense of
dpGH, we can recover large subsets which are.
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Lemma 4.10 Let (Z , z) be a complete pointed metric space and μ, ν ∈
Mloc(Z). For any r, ε, δ > 0 there exist compact sets

Kμ ⊂ B(z, r) ∩ sptμ and Kν ⊂ B(z, r) ∩ spt ν

with

max{μ(B(z, r) \ Kμ), ν(B(z, r) \ Kν)} < (1 + δ)F1/ε,r
z (μ, ν), (85)

and

Hz(Kμ, Kν) ≤ max

{
1

r − ε
, ε

}
. (86)

Proof There exist compact

K ′
μ ⊂ B(z, r) ∩ sptμ and K ′

ν ⊂ B(z, r) ∩ spt ν

with

max{μ(B(z, r) \ K ′
μ), ν(B(z, r) \ K ′

ν)} < δF1/ε,r
z (μ, ν) (87)

Let

K̃μ = (K ′
μ ∩U (z, r − ε)) \ B(K ′

ν, ε),

a relatively open set in K ′
μ, and define g : Z → [0, 1] by

g(x) =
{
1 z ∈ K̃μ

1 − 1
ε
min{d(z, K̃μ), ε} otherwise.

Then g is 1/ε-Lipschitz with spt g ⊂ B(z, r). By construction,

μ(K̃μ) ≤
∫

g dμ

and ∫
g dν ≤ ν(B(z, r) \ K ′

ν).

Therefore,

μ(K̃μ) ≤ F1/ε,r
z (μ, ν) + ν(B(z, r) \ K ′

ν)
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≤ (1 + δ)F1/ε,r
z (μ, ν), (88)

by (87). Define

Kμ := K ′
μ \ K̃μ = (K ′

μ ∩ B(K ′
ν, ε)) ∪ (K ′

μ \U (z, r − ε)), (89)

a compact set, and, by Eqs. (87) and (88),

μ(B(z, r) \ Kμ) < (1 + 2δ)F1/ε,r
z (μ, ν).

Also, by (89),

Kμ ∩U (z, r − ε) ⊂ B(K ′
ν, ε). (90)

By the symmetric argument, the compact set

Kν := (K ′
ν ∩ B(K ′

μ, ε)) ∪ (K ′
ν \U (z, r − ε))

satisfies

ν(B(z, r) \ Kν) < (1 + 2δ)F1/ε,r
z (μ, ν)

and

Kν ∩U (y, r − ε) ⊂ B(K ′
μ, ε). (91)

Finally, if x ∈ Kμ ∩ U (z, r − ε), let y ∈ K ′
ν with x ∈ B(y, ε). Then

y ∈ B(K ′
μ, ε) and so y ∈ Kν . Thus

Kμ ∩U (x, r − ε) ⊂ B(Kν, ε).

Similarly,

Kν ∩U (y, r − ε) ⊂ B(Kμ, ε).

Thus Hz(Kμ, Kν) ≤ max{1/(r − ε), ε}. Therefore, Kμ, Kν have the required
properties with δ replaced by 2δ. Since δ > 0 is arbitrary, this suffices. ��
Theorem 4.11 For ε > 0 let (X, μ, x) and (Y, ν, y) be pointed metric mea-
sure spaces with

d∗((X, μ, x), (Y, ν, y)) < ε.

123



D. Bate

There exist compact

x ∈ Kμ ⊂ sptμ ∩ B(x, 1/ε) and y ∈ Kν ⊂ spt ν ∩ B(y, 1/ε) (92)

such that

max{μ(B(x, 1/ε) \ Kμ), ν(B(y, 1/ε) \ Kν)} < ε (93)

and

dpmGH((Kμ, μ|Kμ, x), (Kν, ν|Kν , y)) < 3ε. (94)

Conversely, if there exist compact Kμ, Kν as in (92) satisfying (93) and

d∗((Kμ, μ|Kμ, x), (Kν, ν|Kν , y)) < ε (95)

then

d∗((X, μ, x), (Y, ν, y)) < 3ε.

That is, d∗ is bi-Lipschitz equivalent to the metric defined by taking the
infimum over all 0 < ε < 1/2 for which Eqs. (93) and (94) hold.

Proof If ε ≥ 1/2 there is nothing to prove. Otherwise, by the definition
of d∗, there exists a pointed metric space (Z , z) and isometric embeddings
(X, x), (Y, y) → (Z , z) with Fz(μ, ν) < ε.

Let δ > 0 be such that (1+ δ)Fz(μ, ν) < ε and let Kμ and Kν be obtained
from Lemma 4.10, so that (93) is satisfied. Then (86) implies

Hz(Kμ, Kν) ≤ 2ε.

Finally, Eqs. (18) and (93) and the triangle inequality imply

F1/ε,1/ε
z (μ|Kμ, ν|Kν ) ≤ F1/ε,1/ε

z (μ|Kμ, μ) + F1/ε,1/ε
z (μ, ν)

+ F1/ε,1/ε
z (ν, ν|Kν )

< 3ε.

Thus (94) is established.
Conversely, by (84) and the triangle inequality,

d∗((X, μ, x), (Y, ν, y)) ≤ d∗((X, μ, x), (Kμ, μ|Kμ, x))

+ d∗((Kμ, μ|Kμ, x), (Kν, ν|Kν , y))
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+ d∗((Kν, ν|Kν , y), (Y, ν, y))

< 3ε.

��
Working with measures allows us to take limits of ε-isometries (see also

[26, Proposition 3.2], which shows the compactness of the set of isometries).

Lemma 4.12 Let (X, d, μ, x) and (Y, ρ, ν, y) be pointed metric measure
spaces. Suppose that, for each i ∈ N, there exists a Borel set x ∈ Si ⊂ X with

μ(B(x, i) \ Si ) → 0 (96)

and a 1/ i -isometry fi : Si → S′
i ⊂ Ysuch that

Fy(( fi )#(μ|Si ), ν) → 0. (97)

Then there exists an isometry ι : (sptμ ∪ {x}, μ, x) → (spt ν ∪ {y}, ν, y).

Proof By the inner regularity of μ, we may suppose each Si is compact. For
each i ∈ N and w ∈ Si , let gi (w) = (w, fi (w)) ∈ X × Y and define

λi = (gi )#(μ|Si ) ∈ Mloc(X × Y ).

By Theorem 2.11, after passing to a subsequence, we may suppose that
(gi )#(μ|Si ) converges to some measure λ ∈ Mloc(X × Y ). Note that the
pushforward of λi to X under the projection map is μ|Si . By (96) the projec-
tion of spt λ to X has full μ measure and by (97) the projection of spt λ to Y
has full ν measure.

If (x1, y1) ∈ spt λ then there exist x1i ∈ Si with gi (x1i ) → (x1, y1). Indeed,
if not then there exist r > 0 and ik → ∞ such that

λik (B((x1, y1), r)) = μik (Sik ∩ g−1
ik

(B((x1, y1), r))) = 0 ∀k ∈ N,

contradicting the convergence of λi to λ using (14). In particular, if
(x1, y1), (x2, y2) ∈ spt λ, there exist x1i , x

2
i ∈ Si with (x1i , fi (x1i )) →

(x1, y1) and (x2i , fi (x2i )) → (x2, y2). Since each fi is a 1/ i-isometry, this
implies

ρ(y1, y2) = lim
i→∞ ρ( fi (x

1
i ), fi (x

2
i )) = lim

i→∞ d(x1i , x
2
i ) = d(x1, x2).

That is, spt λ lies on the graph of an isometry. This isometry is definedμ almost
everywhere and maps onto a set of full ν-measure. Since Y is complete, ι can
be extended to an isometry of sptμ to spt ν, as required. ��
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Corollary 4.13 LetM∗ be the set of equivalence classes of all pointed metric
measure spaces under the relation

(X, μ, x) ∼ (Y, ν, y) if (sptμ ∪ {x}, μ, x) is isometric to (spt ν ∪ {y}, ν, y).

Then (M∗, d∗) is a complete and separable metric space.

Proof Proposition 2.20 implies d∗ is a complete pseudometric on the set of
all pointed metric measure spaces. It is easily verified that the set of finite
pointed metric spaces with rational distances and rational combinations of
Dirac masses is dense.

We next show that d∗ is well defined on M∗. Indeed, if (X, d, μ, x) ∼
(Y, ρ, ν, y), let

ι : sptμ ∪ {x} → spt ν ∪ {y}

be an isometry of pointed metric measure spaces. Define ζ on X �Y by ζ = d
on X , ζ = ρ on Y and

ζ(x, y) = inf{d(x, w) + ρ( f (w), y) : w ∈ sptμ ∪ {x}}

whenever x ∈ X and y ∈ Y . A similar argument to Lemma 2.24 shows that
ζ is a pseudometric on X � Y . Indeed, if z, z′ ∈ X and t ∈ Y then for any
w, w′ ∈ sptμ ∪ {x}, the triangle inequality for d and ρ and the fact that f is
an isometry implies

ζ(z, z′) ≤ d(z, w) + d(w, w′) + d(w′, z′)
= d(z, w) + ρ( f (w), f (w′)) + d(w′, z′)
≤ d(z, w) + ρ( f (w), t) + ρ(t, f (w′)) + d(w′, z′).

Taking the infimum overw, w′ ∈ sptμ∪{x} gives ζ(z, z′) ≤ ζ(z, t)+ζ(t, z′).
A similar argument for z, z′ ∈ Y and t ∈ X gives the triangle inequality for ζ .
Note that ζ(x, f (x)) = 0 for all x ∈ sptμ ∪ {x}.

Let (Z , ζ ) be the metric space obtained from (X �Y, ζ ) and let z ∈ Z be the
point corresponding to x = y. Then (X, x) and (Y, y) isometrically embed into
(Z , z) and, since f is an isometry of metric measure spaces, the pushforwards
of μ and ν under these embeddings agree. In particular, Fz(μ, ν) = 0 in Z
and hence

d∗((X, d, μ, x), (Y, ρ, ν, y)) = 0.

That is, d∗ is well defined onM∗.
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By combining Corollary 4.4, Lemma 4.12 and Theorem 4.11, any pointed
metric measure spaces satisfying

d∗((X, μ, x), (Y, ν, y)) = 0

are isometric. Hence d∗ is a metric onM∗. ��
When considering (X, μ, x) ∈ M∗, the set X \ (sptμ ∪ {x}) often plays no

role. In such cases, to simplify notation, we will write (μ, x) for the element
of M∗.
Remark 4.14 Sturm [14] defines a metric on the set of metric measure spaces
equippedwith a probability measure with finite variance. Greven, Pfaffelhuber
and Winter [15] define the Gromov–Prokhorov metric on the set of compact
metric measure spaces equippedwith a probability measure. The definitions of
the metrics are analogous to that of d∗, but use the L2 transportation distance
and the Prokhorov metric respectively in place of F and there are no require-
ments imposed on a distinguished point. In this setting, one can slightlymodify
the definition of d∗ to not make any requirements on a distinguished point, or
modify the definitions of [14] or [15] to consider a distinguished point. After
doing so, since F , the L2 transportation distance and the Prokhorov metric all
metrise weak* convergence in the respective settings, the metrics all define
the same topology whenever they are defined.

Gigli, Mondino and Savaré [26] define a notion of convergence on the
set of pointed metric measure spaces by (Xi , μi , xi ) → (X, μ, x) if there
exist a complete and separable metric space Z and isometric embeddings
sptμi , sptμ → Z with xi → x andμi → μ inMloc(Z). By Proposition 2.20
we see that this definition agrees with convergence with respect to d∗, using
Lemma 2.22 to ensure that the distinguished points are mapped to the same
point. Several equivalent definitions of this convergence for non-zeromeasures
are given in [26, Theorem 3.15].

Shortly after a first version of the present paper appeared I became aware of
Pasqualetto and Schultz [27]. Amongst other results, they prove a relationship
between pointed measured Gromov–Hausdorff convergence and the conver-
gence of [26]. This relationship corresponds to the relationship between dpmGH
and d∗ given by Theorem 4.11.

Theorem 4.15 A set S ⊂ (M∗, d∗) is pre-compact if and only if, for every
ε > 0 and (μ, x) ∈ S, there exists a compact Kμ,x ⊂ B(x, 1/ε) with

μ(B(x, 1/ε) \ Kμ,x ) ≤ ε (98)

such that

{(Kμ,x , μ|Kμ,x , x) : (μ, x) ∈ S} ⊂ (Mpm, dpmGH)
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is pre-compact.

Proof Let (μi , xi ) be a sequence in S and, for i, j ∈ N let K j
i ⊂ B(xi , j) be

as in (98) for ε = 1/j . Let K(i, j) = (K j
i , (μi )|K j

i
, xi ). First note that (84)

implies

d∗(K(i, j), (μi , xi )) ≤ 1/j ∀i, j ∈ N (99)

and hence

d∗(K(i, j),K(i, j ′)) ≤ 2/j ∀i ∈ N, ∀ j ≤ j ′ ∈ N. (100)

By assumption, for each j ∈ N there exists aK j ∈ Mpm and a subsequence

i jk such that

dpmGH(K(i jk , j),K j ) → 0 as k → ∞.

By taking a diagonal subsequence, we may suppose that

dpmGH(K(i, j),K j ) → 0 ∀ j ∈ N.

Equation (100) then implies

d∗(K j ,K j ′) ≤ 2/j ∀ j ≤ j ′ ∈ N.

Since (M∗, d∗) is complete, K j converges to some (μ, x). Equation (99) and
the triangle inequality then imply (μi , xi ) converges to (μ, x).

Conversely, suppose that S is pre-compact but the conclusion does not hold.
Note that, for any r > 0, the set {μ(B(x, r)) : (μ, x) ∈ S} must be bounded.
Therefore, there exist δ, ε > 0 and, for each i ∈ N, a (μi , xi ) ∈ S such that,
for any K ⊂ sptμi ∩ B(xi , 1/ε) with

μ(B(xi , 1/ε) \ K ) ≤ ε,

K contains i points separated by distance at least δ. After passing to
a subsequence, we may suppose that (μi , xi ) converges to some (μ, x).
By Proposition 2.20, there exists a complete and separable pointed metric
space (Z , z) and isometric embeddings (sptμi ∪ {xi }, xi ) → (Z , z) with
μi → μ. Theorem 2.11 implies that there exists a compact K ⊂ Z with
μi (B(z, r) \ K ) ≤ ε for all i , contradicting our initial assumption. ��
Remark 4.16 Theorem 4.15 implies [15, Proposition 7.1] and [26, Corollary
3.22]. The properties of d∗ and its relationship to dpmGH allow for a simpler
proof.
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Lemma 4.17 For 0 < δ < 1, 0 < ε < 1/2, and k ≥ 1 let R > 0 satisfy

R > (4R(ε/δ)
1
k )−1. (101)

Suppose that (X, μ, x) is a 2k-doubling pointed metric measure space with
μ(B(x, R)) ≥ δ and suppose that S ⊂ X satisfies

μ(B(x, 2R) \ S) < ε.

Then

dpmGH((X, μ, x), (S, μ|S, x)) ≤ 4R(ε/δ)
1
k + ε. (102)

Proof For 0 < r < R suppose that w ∈ B(x, R) \ B(S, r). Then

μ(B(w, r)) ≤ μ(B(x, R + r) \ S) < ε

and so

δ ≤ μ(B(x, R)) ≤ μ(B(w, 2R)) ≤ (2k)mμ(B(w, r)) < ε2km,

for m = �log2 2R/r�. Therefore

r < 4R(ε/δ)
1
k

and so

B(x, R) ⊂ B(S, 4R(ε/δ)
1
k ).

Combining this with (101) gives

B(x, (4R(ε/δ)
1
k )−1) ⊂ B(S, 4R(ε/δ)

1
k ),

so that

Hx (X, S) ≤ 4R(ε/δ)
1
k .

Since μ(B(x, 2R) \ S) < ε, (102) follows from (18). ��
We also note the following partial converse to the fact that d∗ ≤ dpmGH.
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Corollary 4.18 For 0 < δ < 1 and k ≥ 1 let S be the equivalence classes of
those 2k-doubling pointedmetricmeasure spaces (X, μ, x)withμ(B(x, 1)) ≥
δ. Then, when restricted to S,

dpmGH ≤ 9δ− 1
k d

1
2k∗ . (103)

Proof For 0 < ε < 1/2 suppose that (X, μ, x), (Y, ν, y) ∈ S with

d∗((X, μ, x), (Y, ν, y)) < ε.

By Theorem 4.11, there exist compact Kμ ⊂ B(x, ε−1/2k) and Kν ⊂
B(y, ε−1/2k) satisfying

max{μ(B(x, ε−1/2k) \ Kμ), ν(B(y, ε−1/2k) \ Kν)} < ε (104)

and Eq. (94). Equation (104) and Lemma 4.17 (applied with R = ε−1/2k ,
which satisfies (101) for δ ≤ 1) imply that

dpmGH((X, μ, x), (Kμ, μ|Kμ, x)) and dpmGH((Y, ν, y), (Kν, ν|Kν , y))

are at most 4δ− 1
k ε

1
2k + ε. Therefore (94) and the triangle inequality imply

(103). ��

5 Tangent spaces of metric measure spaces

With the notion of convergence defined in Sect. 4, we may define a tangent
space following Preiss [5]. Given (μ, d, x) ∈ M∗ with x ∈ sptμ and r > 0,
let

Tr (μ, d, x) :=
(

μ

μ(B(x, r))
,
d

r
, x

)

Definition 5.1 A (ν, ρ, y) ∈ M∗ is a tangent measure of (μ, d, x) ∈ M∗ if
there exist rk → 0 such that

d∗(Trk (μ, d, x), (ν, ρ, y)) → 0.

The set of all tangent measures of (μ, d, x) will be denoted by Tan(μ, d, x).

Remark 5.2 If X = 	m2 for somem ∈ N, any tangentmeasure is also supported
on 	m2 . In this case, Tan(μ, x) consists of the equivalence classes of the tangent
measures of Preiss.
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By Corollary 4.18, Tan(μ, x) agrees with the usual definition of Gromov–
Hausdorff tangent spaces for doubling metric measure spaces.

Proposition 5.3 Let X be a metric space and let μ ∈ Mloc(X) be asymptoti-
cally doubling. For μ-a.e. x ∈ sptμ and every r0 > 0,

{Tr (μ, x) : 0 < r < r0} is pre-compact. (105)

In particular, for any x ∈ sptμ satisfying (105), Tan(μ, x) is a non-empty
compact metric space when equipped with d∗ and

∀δ > 0, ∃rx > 0 s.t. d∗(Tr (μ, x),Tan(μ, x)) ≤ δ ∀0 < r < rx . (106)

Proof By Lemma 2.8, we know that we may cover μ almost all of sptμ by

Xm := {x ∈ sptμ : μ(B(x, 2r)) ≤ mμ(B(x, r)) ∀0 < r < 1/m}
with m ∈ N. Fix an m ∈ N. By Theorem 2.10, μ almost every x ∈ Xm is a
Lebesgue density point of Xm . Fix such an x . It suffices to prove the conclusion
for x . To do so, fix R ≥ 2.

First note that, if R/(2m) ≤ r < r0 then

μ(Bd/r (x, R))

μ(Bd(x, r))
= μ(Bd(x, Rr))

μ(Bd(x, r))
≤ μ(Bd(x, Rr0))

μ(Bd(x, R/(2m)))
< ∞.

Here the subscripts on the balls indicate the metrics used to define the balls,
for d the original metric in X . Also, if 0 < r < R/(2m) then

μ(Bd/r (x, R))

μ(Bd(x, r))
= μ(Bd(x, Rr))

μ(Bd(x, r))
≤ m4 log2 R .

Thus

{ν(B(x, R)) : (ν, x) ∈ Tr (μ, x), 0 < r < r0}
is bounded.

Secondly, for any ε > 0, since x is a Lebesgue density point of Xm , there
exists r1 > 0 such that

μ(Bd(x, r) ∩ Xm)

μ(Bd(x, r))
< ε

for all 0 < r < r1. Let r2 = min{r1, R/(2m)}. Also, let K ⊂ B(x, Rr0)
satisfy

μ(Bd(x, Rr0) \ K ) ≤ ε.
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Then for any r2 ≤ r < R0,

μ(Bd/r (x, R) \ K )

μ(Bd(x, r))
= μ(Bd(x, Rr) \ K )

μ(Bd(x, r))
≤ ε

μ(Bd(x, r2))
.

Since K is compact, the metric spaces (K , d/r) with r2 ≤ r < R0 are uni-
formly totally bounded. On the other hand, by Lemma 2.9, if 0 < r < r2
then

Bd/r (x, R) ∩ Xm = Bd(x, Rr) ∩ Xm

is covered by m−4 log2 ε balls of the form Bd/r (wi , ε). Thus

{Bd/r (x, R) : 0 < r < r0}

is uniformly totally bounded. Therefore, Theorem 4.15 proves (105).
Now let x ∈ sptμ satisfy (105). By applying (105) to an arbitrary sequence

ri → 0 we see that Tan(μ, x) is non-empty. To see that it is compact, for each
j ∈ N let (ν j , y j ) ∈ Tan(μ, x) and let 0 < r j < 1/j be such that

d∗(Tr j (μ, x), (ν j , y j )) < 1/j.

By (105) there exists a subsequence r jk → 0 and a (ν, y) ∈ M∗ such that

d∗(Tr jk (μ, x), (ν, y)) → 0.

In particular, (ν, y) ∈ Tan(μ, x) and, by the triangle inequality, (ν jk , y jk ) →
(ν, y), as required. Finally, given δ > 0, the existence of such an r0 is given
by the contrapositive to (105). ��
Lemma 5.4 Let (X, d, μ) be a metric measure space and suppose that S ⊂
M∗. Then for any R, δ > 0,

CR,δ(S) := {x ∈ sptμ : d∗((Tr (μ, d, x),S) ≤ δ ∀0 < r < R}

is a closed subset of X. In particular, if S ⊂ X is a Borel set of points satisfying
(105) and C ⊂ M∗ is closed,

G(C) := {x ∈ S : Tan(μ, d, x) ⊂ C}

is Borel.
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Rectifiability via tangents

Proof Let x ∈ X and x j ∈ CR,δ(S) with x j → x . First note that, since
μ ∈ Mloc(X), all but countably many r > 0 satisfy

μ(B(x, r) \U (x, r)) = 0.

For such an r > 0, Tr (μ, d, x j ) → Tr (μ, d, x). Indeed, Eqs. (14) and (15)
imply thatμ(B(x j , r)) → μ(B(x, r)) and consequently Lemma 2.22 implies

dpmGH

((
μ

μ(B(x j , r))
,
d

r
, x j

)
,

(
μ

μ(B(x, r))
,
d

r
, x

))
→ 0

Therefore

d∗(Tr (μ, x),S) ≤ δ. (107)

For arbitrary 0 < r < R, let r j ↓ r satisfy (107). Then μ(B(x, r j )) →
μ(B(x, r)) and so

dpmGH

((
μ

μ(B(x, r j ))
,
d

r j
, x

)
,

(
μ

μ(B(x, r))
,
d

r
, x

))
→ 0

(for any R > 0, the identity is a (r j −r)R-isometry on B(x, R)). Consequently
(107) holds in this case too and hence CR,δ(S) is closed.

If x satisfies (105) and Tan(μ, d, x) ⊂ C then by (106),

∀δ > 0, ∃rx > 0 s.t. d∗(Tr (μ, x), C) ≤ δ ∀0 < r < rx . (108)

Conversely, if S is closed, (108) implies Tan(μ, x) ⊂ C. Thus,

G(C) = S ∩
⋂

δ∈Q+

⋃
R∈Q+

CR,δ(C),

a Borel set. ��
We now prove three results that correspond results in Preiss [5]. The

following statement, and its proof, is essentially that of [5, Theorem2.12] refor-
mulated in our setting. See also [28,29] for adaptations to Gromov–Hausdorff
tangent spaces and the appendix of [11] for an adaptation to tangents of sets
of finite perimeter in RCD spaces.

Proposition 5.5 Let (X, d, μ) be an asymptotically doubling metric measure
space. Then μ-a.e. x ∈ sptμ has the following property:

∀(ν, y) ∈ Tan(μ, x) and ∀z ∈ spt ν, (ν, z) ∈ Tan(μ, x). (109)
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Proof For each p ∈ N let Ap be the set of x ∈ sptμ for which there are
(νx , yx ) ∈ Tan(μ, x) and bx ∈ spt νx such that

d∗((νx , bx ), Tr (μ, x)) >
1

p
∀0 < r < 1/p.

Note that, if x /∈ ∪p∈NAp, then x satisfies the required conclusion.
Suppose that, for some p ∈ N, μ(Ap) > 0. Then by the separability of

(M∗, d∗), there exists a E ⊂ Ap with μ(E) > 0 such that

d∗((νx , bx ), (νy, by)) < 1/2p

for every x, y ∈ E . By Theorem 2.10 there exists a Lebesgue density point x
of E . Let rk → 0 be such that Trk (μ, x) → (νx , yx ). By Proposition 2.20 there
exists a complete and separable pointed metric space (Z , ζ, z) and isometric
embeddings (sptμ, d/rk, x), (spt ν, yx ) → (Z , ζ, z) with

μ

μ(B(x, rk))
→ νx .

Let μk be the isometric copy of μ ∈ Mloc(X, d/rk), let Ek be the isometric
copy of (E, d/rk) and let ck ∈ Ek be such that

ζ(bx , ck) < ζ(bx , Ek) + 1/k.

Note that

ζ(bx , Ek) → 0. (110)

Indeed, since x is a density point of E , if R = 2ζ(yx , bx ) then

lim
k→∞

μk(Ek ∩ B(x, R))

μk(B(x, R))
= lim

k→∞
μ(E ∩ B(x, Rrk))

μ(B(x, Rrk))
= 1. (111)

On the other hand, suppose that there exists δ > 0 such that B(bx , δ)∩Ek = ∅
for infinitely many k. Equations (14) and (15) imply

lim inf
k→∞

μk(Ek ∩ B(x, R))

μk(B(x, R))
≤ 1 − lim sup

k→∞
μk(B(bx , δ))

μk(B(x, R))

≤ 1 − νx (B(bx , δ/2))

νx (B(yx , 2R))
< 1,

since bx ∈ spt νx . This contradicts (111).
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Now, (110) implies ζ(bx , ck) → 0. This and Lemma 2.22 imply

d∗
((

μ

μ(B(x, rk))
,
d

rk
, ck

)
, (νx , bx )

)
→ 0.

Therefore, there exists k with rk < 1/p such that

d∗
((

μ

μ(B(x, rk))
,
d

rk
, ck

)
, (νx , bx )

)
< 1/2p.

Thus, since each ck ∈ Ek ,

1/p < d∗
((

μ

μ(B(x, rk))
,
d

rk
, ck

)
, (νck , bck )

)

≤ d∗
((

μ

μ(B(x, rk))
,
d

rk
, ck

)
, (νx , bx )

)
+ d∗((νx , bx ), (νck , bck ))

≤ 1/2p + 1/2p,

a contradiction. Therefore we must have μ(Ap) = 0 for all p ∈ N. ��
Lemma 5.6 Let (μ, x) ∈ M∗ with x ∈ sptμ and

Mx := lim sup
r→0

μ(B(x, 2r))

μ(B(x, r))
. (112)

For every (ν, y) ∈ Tan(μ, x) and r > 0,

ν(B(y, 2r)) ≤ Mxν(B(y, r))

and

1 ≤ ν(B(y, 1)) ≤ Mx .

In particular, if x satisfies (109), every (ν, y) ∈ Tan(μ, x) is Mx-doubling.

Proof By Proposition 2.20 and Eqs. (14) and (15), for any (ν, y) ∈ Tan(μ, x)
there exist ri → 0 such that, for any R > 0 and λ > 1,

ν(B(y, 2R)) ≤ lim inf
i→∞

μ(B(x, λ2Rri ))

μ(B(x, ri ))

and

ν(B(y, λR)) ≥ lim sup
i→∞

μ(B(x, λRri )

μ(B(x, ri ))
.
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Consequently,

ν(B(y, 2R))

ν(B(y, λR))
≤ Mx .

Since this is true for all λ > 1 we also have

ν(B(y, 2R))

ν(B(y, R))
≤ Mx . (113)

Also note that, by (15),

ν(B(y, 1)) ≥ lim sup
i→∞

μ(B(x, ri ))

μ(B(x, ri ))
= 1,

and by (14),

ν(B(y, 1)) ≤ ν(U (x, 2)) ≤ lim inf
i→∞

μ(U (x, 2))

μ(B(x, 1))
≤ lim inf

i→∞
μ(B(x, 2))

μ(B(x, 1))
≤ Mx .

��
Corollary 5.7 Let (μ, d, x) ∈ M∗ and let S ⊂ sptμ be μ-measurable with x
a density point of S. Then

Tan(μ|S, x) = Tan(μ, x).

Proof Combine (84) and the definition of Tan. ��

6 Proof of the main theorems

Wefirst demonstrate how tangentmeasures supported on elements of biLip(K )

lead to a decomposition of the space into sets with good tangential approxi-
mation.

Define the projection π1 : Mpm → Mp by

(X, μ, x) → (X, x)

and π2 : Mpm → M∗ by

(X, μ, x) → (μ, x).

Both of π1, π2 are 1-Lipschitz.
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For M ≥ 1 let

S1(M) = {(X, μ, x) ∈ Mpm : M ≥ μ(U (x, 1)), μ(B(x, 1)) ≥ 1/M}
and S2(M) be the set of those (X, μ, x) ∈ Mpm with

μ(U (y, r)) ≤ Mμ(B(y, 2r)) ∀y ∈ X and r > 0. (114)

For K ≥ 1 let

K(K , M) = π−1
1 (biLip(K )) ∩ S1(M) ∩ S2(M).

Lemma 6.1 For any K , M ≥ 1,

1. biLip(K ) is a compact subset of (Mp, dpGH)

2. S1(M) and S2(M) are closed subsets of (Mpm, dpmGH)

3. K(K , M) is a compact subset of (Mpm, dpmGH)andhence a compact subset
of (M∗, d∗).

Proof First note that the elements of biLip(K ) are proper and so do belong to
Mp. Moreover, for any r > 0, the set

{B(x, r) : (X, x) ∈ biLip(K )}
is uniformly totally bounded and so, by Theorem 2.27, biLip(K ) is pre-
compact.

To see that biLip(K ) is closed, for each i ∈ N let (Xi , xi ) ∈ biLip(K ) and
(X, x) ∈ Mp with

dpGH((Xi , xi ), (X, x)) < 1/ i.

For each i ∈ N let fi : (Xi , xi ) → (X, x) be a 2/ i-isometry given by
Lemma 2.24. Also let ψi : 	n∞ → Xi be surjective and K -bi-Lipschitz and
define

φi = fi ◦ ψi : 	n∞ → X.

Fix R > 0. For any y, z ∈ B(0, R) ⊂ 	n∞,

d(φi (y), φi (z)) = d( fi (ψi (y)), fi (ψi (z)))

≤ d(ψi (y), ψi (z)) + 2/ i

≤ K‖y − z‖∞ + 2/ i. (115)
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Thus the φi are equicontinuous on B(0, R). Since the φi map into B(x, K R+
2), a compact set, the Arzelà–Ascoli theorem gives a φ : B(0, R) → X such
that, after passing to a subsequence, φi → φ uniformly on B(0, R). Since
this is true for all R > 0, by taking a diagonal subsequence, we see that there
exists a φ : 	n∞ → X such that φi → φ uniformly on bounded sets. A similar
estimate to (115) shows that φ is K -bi-Lipschitz. Since each φi is surjective
and each fi is a 2/ i-isometry, φ is surjective. Thus biLip(K ) is closed, proving
item 1.

Item 2 follows from Proposition 2.20 and Eqs. (14) and (15).
Item 3 follows sinceK(K , M) is pre-compact and closed in (Mpm, dpmGH)

by Corollary 4.7 and items 1 and 2. ��
For K ≥ 1 let

biLip(K )∗ = {(μ, x) ∈ M∗ : sptμ ∈ biLip(K )}.

Proposition 6.2 Let X be a complete metric space and S ⊂ X a Hn-
measurable set with Hn(S) < ∞. Suppose that, for Hn-a.e. x ∈ S,
�n∗(S, x) > 0 and there exists a Kx ≥ 1 such that

Tan(Hn|S, x) ⊂ biLip(Kx )
∗.

There exist compact Ci ⊂ S with

Hn

(
S \

⋃
i∈N

Ci

)
= 0

and, for each i ∈ N, an ηi > 0 such that, for each x ∈ Ci ,

ηi r
n ≤ Hn(B(x, r) ∩ S) < 2(2r)n ∀0 < r < ηi (116)

and

Tan(Hn|S, x) ⊂ K(η−1
i , η−1

i ). (117)

Further, for each i ∈ N and any ε > 0, there exists countably many closed
G j ⊂ Ci with

Hn

⎛
⎝Ci \

⋃
j∈N

G j

⎞
⎠ = 0,
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Rectifiability via tangents

such that each (Ci ,G j ) satisfies GT A(ηi , η
−1
i , ε,min{ηi , 1/j}).

Proof For any i ∈ N, Lemma 2.8 implies that

Si := {x ∈ S : rn/ i ≤ Hn(B(x, r) ∩ S) < 2(2r)n ∀0 < r < 1/ i}

isHn-measurable. By assumption, the Si monotonically increase to almost all
of S as i → ∞.

Fix i ∈ N. For j ∈ N, let

S j
i := {x ∈ Si : Tan(Hn|S, x) ⊂ K( j, j)}.

If x ∈ Si satisfies (109), Lemma5.6 implies that every (ν, y) ∈ Tan(Hn|S, x) is
4n+1i-doublingwith 1 ≤ ν(B(y, 1)) ≤ 4n+1i . Therefore, ifmax{Kx , 4n+1i} ≤
j then x ∈ S j

i and soHn(S \ ∪i, j S
j
i ) = 0. Lemma 6.1 implies that K( j, j) is

compact and so Lemma 5.4 implies each S j
i isHs-measurable. Consequently,

each can be decomposed as a countable union of compact sets (up to a set of
measure zero). Re-indexing completes the proof of the first decomposition.

Now fix i ∈ N and let C = Ci and η = ηi . SinceHn(C) < ∞, Lemma 2.3
implies �∗,n(C, x) ≤ 1 for Hn-a.e. x ∈ C and since Hn(S \ C) < ∞,
�n∗(C, x) ≥ η for Hn-a.e. x ∈ C . Thus Hn|C is asymptotically doubling.
Therefore, by Corollary 5.7, Theorem 2.10 and Eq. (117),

Tan(Hn|C , x) ⊂ K(η−1, η−1) for Hn-a.e. x ∈ C. (118)

For any ε > 0 the sets

C j,ε := C1/j,ε(K(η−1, η−1))

defined in Lemma 5.4 are closed and ∪ jC j,ε contains C . For any j ∈ N, any
x ∈ C j,ε and any 0 < r < 1/j , let (ν, y) ∈ K(η−1, η−1) with

d∗(Tr (Hn|C , x), (ν, y)) < 2ε.

Apply Theorem 4.11 to obtain a K ⊂ C ∩ B(x, r/2ε) and Kν ⊂ B(y, 1/2ε)
with

max

{Hn(C ∩ B(x, r/2ε) \ K )

Hn(C ∩ B(x, r))
, ν(B(y, 1/2ε) \ Kν)

}
< 2ε (119)

and

dpmGH(Tr (K ,Hn|K , x), (Kν, ν|Kν , y)) < 6ε. (120)
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Note that (114) implies (Y, ν) is 2η−1-doubling. Equation (119) allows us to

apply Lemma 4.17 with k = log2 2η
−1, R = ε− 1

2k and δ = 1 to obtain

dpmGH((Kν, ν|Kν , y), (spt ν, ν, y)) ≤ 9ε
1
2k .

The triangle inequality and (120) then give

dpmGH(Tr (K ,Hn|K , x), (spt ν, ν, y)) ≤ 18ε
1
2k .

In particular,

dpGH((K , d/r, x), biLip(η−1)) ≤ 18ε
1
2k .

Also, Eqs. (116) and (119) imply

Hn(B(x, r) \ K ) < 2εHn(B(x, r)) ≤ 4 · 4nεrn = η4(4(ε/η)1/nr)n.

That is, C j,ε satisfies GT A(η, η−1, ε∗,min{η, 1/j}), for some ε∗ depending
upon η such that ε∗ → 0 as ε → 0. Since ε > 0 was arbitrary, setting
G j = C1/j,ε′ for each j ∈ N and appropriate ε′ completes the proof. ��

To prove that (3) implies (1) in Theorem 1.2 we require the following result
[13, Theorem 1.1]. It concerns the set of all 1-Lipschitz functions f : X → 	n2,
equipped with the supremum norm.

Theorem 6.3 Let X be a complete metric space and m ∈ N. Suppose that
S ⊂ X is purely n-unrectifiable with Hn(S) < ∞ and satisfies �n∗(S, x) > 0
forHn-a.e. x ∈ S. The set of all 1-Lipschitz f : X → 	m2 withHn( f (S)) = 0
is residual and hence dense.

Corollary 6.4 Let X be a complete metric space and let S ⊂ X be Hn-
measurable with Hn(S) < ∞ and �n∗(S, x) > 0 for Hn-a.e. x ∈ S. For
L ≥ 1 and δ > 0 suppose that

1. ι : [0, r ]n → X is continuous with

Hn∞(ι([0, r ]n) \ S) < Hn([δr, (1 − δ)r ]n)/L .

2. f : ι([0, r ]n) → [0, r ]n ⊂ 	n2 is L-Lipschitz with

‖ f (ι(x)) − x‖2 < δr ∀x ∈ ∂[0, r ]n.

Then S is not purely n-unrectifiable.
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Proof Suppose that S is purely n-unrectifiable and let ε > 0 be such that

Hn∞(ι([0, r ]n) \ S) < Hn([(δ + ε)r, (1 − (δ + ε))r ]n)/L .

Let g : ι([0, r ]n) → 	n2 be given by Theorem 6.3 such that

• g is L-Lipschitz;
• ‖ f − g‖∞ < εr ;
• Hn(g(S)) = 0.

In particular,

‖g(ι(x)) − x‖ < (δ + ε)r ∀ x ∈ ∂[0, r ]n (121)

and, sinceHn∞ = Hn in 	n2,

Hn(g(ι([0, r ]n))) ≤ Hn(g(ι([0, r ]n) \ S)) + Hn(g(S))

≤ LHn∞(ι([0, r ]n) \ S) + 0

< Hn([(δ + ε)r, (1 − (δ + ε))r ]n). (122)

Note that (121) implies that

g(ι([0, r ]n)) ⊃ [(δ + ε)r, (1 − (δ + ε))r ]n

(this is a consequence of Brouwer’s fixed point theorem; See [13, Lemma 7.1]
for a proof involving the unit ball). Consequently,

Hn(g(ι([0, r ]n))) ≥ Hn([(δ + ε)r, (1 − (δ + ε))r ]n),
contradicting (122) ��

Recall the definition of biLip(K )∗ preceding Proposition 6.2.

Theorem 6.5 Let (X, d) be a complete metric space, n ∈ N and E ⊂ X
a Hn-measurable set with Hn(E) < ∞. Suppose that, for Hn-a.e. x ∈ E,
�n∗(E, x) > 0 and there exists a Kx ≥ 1 such that

Tan(X, d,Hn|E , x) ⊂ biLip(Kx )
∗. (123)

Then E is n-rectifiable.

Proof By the Kuratowski embedding, we may identify X with an isometric
copy contained in 	∞.

Suppose that E is not n-rectifiable. Then by Lemma 2.2 there exists a
compact purely n-unrectifiable S ⊂ E with Hn(S) > 0. By Lemma 2.3,
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�n∗(S, x) > 0 for Hn-a.e. x ∈ S. In particular, Hn|S is asymptotically dou-
bling and so by Corollary 5.7,

Tan(Hn|S, x) ⊂ biLip(Kx )
∗

for Hn-a.e. x ∈ S. Then S satisfies the hypotheses of Proposition 6.2. Since
Hn(S) > 0, Proposition 6.2 implies the existence of a compact C ⊂ S with
Hn(C) > 0 and a 0 < η < 1 such that, for any ε > 0, there exist countably
many compact G j ⊂ C withHn(C \G j ) = 0 such that each (C,G j ) satisfies
GT A(η, η−1, ε,min{η, 1/j}).

Fix 0 < γ < 1 and 0 < δ < η/4
√
n and let m0 ∈ N be given by

Theorem 3.4 for these parameters and K = η−1. Let m ≥ m0 be such that

20
√
nη−22−mγ /2 + √

n2−m < δ (124)

and set ε = 4−m . Since Hn(C) > 0, there exists j ∈ N for which G j
obtained in the previous paragraph satisfies Hn(G j ) > 0. Set G = G j and
R0 = min{η, 1/j}, so that (C,G) satisfiesGT A(η, η−1, 4−m, R0). Let� > 0
beobtained fromTheorem3.16. Fix x a density point ofGwith�∗,n(X, x) ≤ 1
and let 0 < r < R0 be such that

�Hn(B(x, 20η−1r) ∩ X \ G) < δrn. (125)

ThenTheorem3.4 gives an ι : [0, r ]n ⊂ 	n∞ → B(x, 20η−1r) ⊂ 	∞ satisfying
Theorem 3.4 items 1 to 3.

Since ι|−1
D(r,m) is 2η

−1-Lipschitz and takes values in [0, r ]n , an application of
the second conclusion of Theorem 2.6 extends it to a

√
n2η−1-Lipschitz map

f : ι([0, r ]n) → [0, r ]n ⊂ 	n2. By Theorem 3.4 item 2, for any p, q ∈ [0, r ]n
with ‖p − q‖∞ ≤ 2mr we have

‖ f (ι(p)) − f (ι(q))‖2 ≤ √
n2η−1‖ι(p) − ι(q)‖∞

≤ 20
√
nη−22−mγ /2r.

In particular, for any p ∈ [0, r ]n , pick q ∈ D(r,m) with ‖p − q‖∞ ≤ 2−mr .
Then

‖ f (ι(p)) − p‖2 ≤ ‖ f (ι(p)) − f (ι(q))‖2 + ‖ f (ι(q)) − p‖2
≤ 20

√
nη−22−mγ /2r + ‖q − p‖2

≤ 20
√
nη−22−mγ /2r + √

n2−mr

< δr

by (124). Thus, f satisfies Corollary 6.4 item 2.
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Combining Theorem 3.4 item 3 and (125) implies that f satisfies Corol-
lary 6.4 item 1. An application of Corollary 6.4 shows that S is not purely
n-unrectifiable, a contradiction. ��

Finally we prove that (1) implies (2) in Theorem 1.2.

Theorem 6.6 Let (X, d) be a complete metric space, n ∈ N and E ⊂ X an
n-rectifiable set withHn(E) < ∞. For any x ∈ E that satisfies the conclusion
of Theorem 2.4 and Lemma 2.3 item 1,

Tr (X, d,Hn|E , x) → (Rn, ‖ · ‖x ,Hn/2n, 0) (126)

as r → 0. In particular, for Hn-a.e. x ∈ E,

Tan(X, d,Hn|E , x) = {(Rn, ‖ · ‖x ,Hn/2n, 0)}.

Proof Let x ∈ E be as in the hypotheses and fx , ‖·‖x ,Cx as in the conclusion
of Theorem 2.4. For each r > 0, let

εr = sup

{∣∣∣∣1 − ‖ fx (y) − fx (z)‖x
d(y, z)

∣∣∣∣ : y �= z ∈ Cx ∩ B(x,
√
r)

}
,

so that εr → 0 as r → 0. Also let fr = fx/r and

Cr = Cx ∩ B(x,
√
r).

First note that, for any y, z ∈ Cr with d(y, z)/r ≤ min{r−1/2, ε
−1/2
r },

∣∣∣∣d(y, z)

r
− ‖ fr (y) − fr (z)‖x

∣∣∣∣ = |d(y, z) − ‖ fx (y) − fx (z)‖x |
r

≤ εr d(y, z)

r
≤ √

εr . (127)

Now observe that fr : (Cr , d/r) → (Rn, ‖ · ‖x ) is Lr -bi-Lipschitz, for

Lr = 1 + εr

1 − ε2r
→ 1.

Therefore

1

Ln
r
Hn

x | fr (Cr ) ≤ ( fr )#(Hn
r |Cr ) ≤ Ln

rHn
x | fr (Cr ), (128)
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where Hn
r denotes Hn on the metric space (Cr , d/r) and Hn

x denotes Hn on
(Rn, ‖ · ‖x ). However,

( fr )#(Hn
r |Cr ) = ( fr )#

(Hn|Cr

rn

)
= ( fr )#(Hn

d |Cr )

rn
,

whereHn
d denotesHn on (X, d). Also observe, for any R > 0, by lemma 2.5

and Eq. (9).

Hn
x (B(0, R) \ fr (Cr )) ≤ Hn

x (B(0, R) \ fr (Cr ∩ B(x, Rr/Lr )))

≤ (2R)n − Hn
x ( fr (Cr ∩ B(x, Rr/Lr )))

≤ (2R)n − Ln
r

rn
Hn

d(Cr ∩ B(x, Rr/Lr ))

→ (2R)n − (2R)n = 0 (129)

Let ‖·‖M denote the total variation of elements ofM((B(0, R), ‖·‖x )). Then
Eqs. (128) and (129) imply

∥∥∥∥( fr )#(Hn
d |Cr )

rn
− Hn

x

∥∥∥∥
M

≤
∥∥∥∥( fr )#(Hn

d |Cr )

rn
− Hn

x | fr (Cr )

∥∥∥∥
M

+ ‖Hn
x | fr (Cr ) − Hn

x‖M
≤ (Ln

r − 1)Hn
x (B(0, R))

+ Hn
x (B(0, R) \ fr (Cr )) → 0.

That is,

( fr )#(Hn
d |Cr )

(2r)n
→ Hn

x

2n
strongly on B(0, R). (130)

Equation (130) has two consequences. Firstly, it shows that, for any R, δ >

0,

B( fr (Cr ), δ) ⊃ B(0, R)

for sufficiently small r > 0. Together with (127), this shows that there exist
ε′
r → 0 such that

fr : (Cr , d/r) → (Rn, ‖ · ‖x ) is an ε′
r -isometry. (131)

Equation (130) also implies that

( fr )#(Hn|Cr )

rn
→ Hn

x inMloc(R
n, ‖ · ‖x ). (132)
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Corollary 4.4 and Eqs. (131) and (132) then imply

dpmGH(Tr (Cr , d,Hn|Cr , x), (R
n, ‖ · ‖x ,Hn/2n, 0)) → 0

and so Eq. (9) and theorem 4.11 imply (126). ��
Theorems 6.5 and 6.6 and Eq. (7) complete the proof of Theorem 1.2. To

prove Theorem 1.1, note that, by the translation and scale invariance of Rn ,
one can replace (3) by

dpGH((Yr ∩ B(0, r), 0), (Er , x))

r
→ 0 (133)

and obtain an equivalent hypothesis. Equations (2) and (133) imply (123) (by
using Theorem 4.11) and so Theorem 6.5 implies Theorem 1.1.
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