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Abstract—With the development of automated vehicles and
advanced driver assistance systems, the compression of the large
amount of data generated by the vehicle camera sensors becomes
a necessary processing step to improve the automated driving
system efficiency. H.264 is a widely adopted video compression
scheme, and it has been designed for human vision. Rate
control in H.264 uses fixed quantisation parameter, however, this
process can lead to fluctuation in different regions of the image
quality of each frame. In this paper, we propose a two-stage
H.264 based video compression framework, named “Two Stage
Compression (TSC)”, to compress the automotive camera videos
with different values of compression rate in different regions of
each frame. In the first stage, each frame will be divided into
the region-of-interest and the region-out-of-interest. In the second
stage, different compression ratios will be applied based on the
importance of the region. The experimental results show that
under the same overall compression ratio, our proposed TSC
increments the semantic-aware PSNR by 3.213 dB compared to
uniform H.264 compression. Our method is also compared to
uniform H.264 compression using a segmentation algorithm, with
an improvement of 1.77% in mIOU, the average Intersection over
Union.

Index Terms—Automotive camera data, video compression,
semantic segmentation, machine learning, Intelligent Vehicles,
Automated and Assisted driving.

I. INTRODUCTION

AUTOMATED vehicles (AVs) and advanced driver as-
sistant systems (ADASs) can bring vast benefits to the

society including improved safety, more flexible mobility,
reduced emissions and traffic jams [1]. The perception sensor
suite is vital for aiding AV decision making process in all
levels of SAE classification of automation [2]. The increased
automation results in the remarkable increment of data amount
generated by the sensors, including video data produced by
the widely adopted camera sensors. However, current and
near-future vehicles are limited in computational resources
and bandwidth. Besides, a high volume of data transmission
can lead to unacceptable latency when facing a bandwidth
bottleneck, and this issue may lead to safety problems. To sup-
port the real-time transmission of the large amount of sensor
data, video compression needs to be evaluated. While a higher
compression ratio may reduce data volume and transmission
latency, it will result in poor video quality, distortions and
artefacts that might compromise the accuracy of the perception
step and therefore safety in AV systems. Commonly used
methods such as H.264 [3] can reduce the spatial and temporal

redundancy within a single frame or across multiple frames
by finding the balance between quality and compression
ratio during video compression. However, this standard was
designed for human vision, and the implications on machine
learning (ML) based perception have been only recently started
to be discussed and analysed (e.g. retraining deep neural
networks with compressed data) [4], [5]. Therefore it is clear
that more work needs to be done to exhaustively investigate
the relationship between video compression and ML based
perception for automated driving.

In this paper, we propose a novel two-stage based H.264
method, entitled TSC, to compress the automotive camera
video frames to achieve an increased compression ratio with-
out compromising the quality of the perception step. To
achieve this semantic video compression, we propose to use
higher compression ratios for regions of the video frames
containing less important information, and lower compression
ratios for key areas. We first use a semantic segmentation
neural network to process the original video stream into
regions of interest (ROI) and regions outside the ROI (non-
ROI). This segmentation scheme can be low-quality (as long
as the ROI is identified properly), but it needs to be lightweight
so it can be implemented with no latency on sensors. More
specifically, in the context of AVs, we consider the categories
of object, human, vehicle, unlabeled, dynamic, ground, road,
parking to be the ROI and the categories of construction,
nature, sky to be non-ROI. The different compression ratios
are achieved by changing the constant rate factor using a
H.264 compliant codec. The experimental results show that our
TSC technique outperforms uniform compression in terms of
our proposed semantic-aware Structural Similarity Index (SA-
SSIM) and Peak Signal to Noise Ratio (SA-PSNR).

II. RELATED WORK

A. H.264 Standards

The international organization ISO/IEC groups named Mov-
ing Picture Experts Group (MPEG) and International Telecom
Union (ITU) have developed several standards to regulate
video coding techniques [6]. For example, the H.26X family
has been developed by ITU since 1991 [7]. At present, some
of the most widely used video coding techniques are based on
H.264 standard [7]. This standard considers both spatial and
temporal redundancy to reduce the bit rate. A group of pictures



(GOP) in H.264 contains three different types of frames: the
intra-coded frames (I-frames), the predicted frames (P-frames),
and the bidirectionally predicted frames (B-frames). The I-
frames indicate that all of the macroblocks in the frames are
coded by intra-prediction while the others mainly use inter-
frame prediction. Accordingly, the P-frames are generated
referencing historical frames by motion estimation and mo-
tion compensation, B-frames are generated using bidirectional
referencing to I and P frames [8] . The predictive coding archi-
tecture used by H.264 consists of motion estimation, block-
based motion compensation, transform, quantisation, inverse
transform, entropy coding and frame reconstruction. These
conventional video compression method has the advantages
of maturity and wide adoption in numerous fields. However,
without ad hoc strategies when using this standard for different
applications, its efficiency is not optimised to be used in
AV and ADAS video streaming. In our paper, we combine
the well established compression techniques based on H.264
with a pre-segmentation to overcome the limitation of current
compression techniques.

B. Rate control in H.264

Video encoding can produce a variable compressed bit
stream due to entropy coding properties and variability in the
information content of each frame [9]. However, that would
cause a variable bit rate under constrained bandwidth which
might cause problems in the systems [10]. On the one hand,
if the encoded video bit rate is larger than the bandwidth,
the channel will become congested, potentially causing data
loss and therefore problems in the quality of the reconstructed
video. One solution to this problem is to use rate control
compression, which can fix the video bit rate while producing
the best quality within the limited bandwidth. Various rate-
control algorithms have been proposed through the history of
video encoding to maintain the data size within the bandwidth
limit. The constant rate factor (CRF) is the default quality
setting for the X264 codec [11], the value of CRF can vary
from 0 to 51. It has been demonstrated that the higher is CRF,
the higher is the compression rate and therefore the worst is the
decoded video quality [12]. Rate control might be a solution
for AV and ADAS applications to have the best data quality
under a unified constrained data flow.

C. Region-based video compression

Content-aware based compression means to compress the
original video frames based on their content; our proposed
method belongs to this category of compression techniques.
Several content-aware compression techniques use video seg-
mentation to separate the foreground objects from the back-
ground. One recent work has proposed a content-adaptive
video compression for AVs remote control application [13]. It
uses a simulated dataset for the ROI and non-ROI compression
by varying the quantisation parameter. However, the realism
and reliability of the synthetic dataset have not been discussed.
Moreover, this work only emphasises the object detection
results after compression and focuses on only one particular

class (the traffic lights) as the target object. However, it is
important to quantify the quality of the compressed video
data and how it will influence the perception algorithms.
Different from the existing methods, we use a new machine
learning-based segmentation network to assess the quality of
our proposed method. Semantic segmentation is an important
task in computer vision that can be used in many applications,
and it is based on assigning to each pixel in a frame a specific
class [14]. Most of the existing works evaluate the influence
on quality by considering the implications on object detection,
without considering semantic segmentation [4], [5]. Therefore,
we also evaluate the performance of the semantic segmentation
on the compressed data with more than 20 classes and 8
categories. Building on previous works, in this paper we use
attention-based semantic segmentation for ROI extraction on
the Cityscape dataset; furthermore, the reconstructed videos
are re-segmented and compared to the original data.

III. METHODOLOGY

Our methodology aims to study the performance of the
two-stage H.264 compression scheme on the selected dataset
and study the effect on semantic segmentation. The original
video sequence can be expressed as I = {x1, x2, ..., xt}, where
xt means the frame at time t. After the compression, the
reconstructed video Î can be obtained. A schematic view of
the applied methodology is presented in Fig.1, and its detailed
description is provided in the following subsections. This
structure aims to provide a solution for AV data compression
and to mimic the AV architecture where the sensor data may
be transmitted over wired vehicle communication networks
and fed to a semantic segmentation algorithm in a central
processing unit.

A. Masks Generation

In Fig.1 the blue module is responsible for generating on
the sensor chip the semantic segmentation masks for the ROI
and non-ROI. This step is implemented through a designed
segmentation network ϕ with the Residual Net (ResNet) as
backbone for feature extraction and the attention-based criss-
cross attention modules (RCCA) to obtain better segmentation
efficiency [15], [16]. The output is ϕ (I). The categories
of the segmentation pixels will firstly be represented with
four shades of grey, which represent nature, construction,
sky and ROI. After that, the frames will go through the
thresholding operation; this step will decrease the number
of the segmentation categories to two: non-ROI (i.e. nature,
construction and sky) and ROI (i.e. vehicles, traffic signs,
pedestrians and road). Since the following steps will involve
using X264 codec, a 16 × 16 macroblock filter is used to
simulate the macroblocks used in the standard for motion
compensation and prediction. During filtering, any 16 × 16
pixel block that contains important area pixels will be regarded
as an ROI block. This can reduce the risk of damaging the
integrity of important targets. Once we got the masks for



Fig. 1. Illustration of our video compression architecture. The input video firstly goes through the segmentation block, then the masks generation (blue block)
and the two-level compression with H.264 (green block) is processed.

ROI (Mroi) and non-ROI (Mnon), the two streams (Sroi) and
(Snon) can be generated with the following functions:

Sroi = Mroi ⊗ I (1)

Snon = Mnon ⊗ I (2)

The “⊗ ” denotes a pixel by pixel multiplication.

B. Two-level compression-decompression

After the last step above, two streams of ROI (Sroi) and
non-ROI (Snon) frames will be generated. We set nt and it to
be the frames at the time t from the video sequence Snon and
Sroi separately. They will need to meet the following criteria:

nt ⊂ Snon , it ⊂ Sroi (3)

xt = nt ⊕ it (4)

The process of the compression techniques used in our two
level scheme can be divided into seven phases (P1 - P7), as
can be seen in the green box, Fig. 1. These phases are: P1,
motion estimation; P2, motion compensation; P3, transform;
P4, quantisation; P5, inverse transform; P6, entropy coding;
P7, frame reconstruction; for a more detailed description refer
to [8]. These phases are applied to the ROI and non-ROI
streams separately. The ROI area frame it can be reconstructed
through the predicted frame ît and the reconstructed residual
rt by the following equation:

it = ît + rt (5)

The other non-ROI area frames nt can be reconstructed in a
similar way, i.e. we set the reconstructed ROI area frame in
time t as nt. Finally, the reconstructed whole frame xt with
two-level compression can be generated through the following
equation:

xt = it + nt (6)

In the following time step (t + 1), the reconstructed residual
rt will be stored in the decoded frame buffer and used in the
following iteration of the process. Although the above pipeline
is similar to all encoder-decoder video compression methods,
the main difference resides in the quantisation process (P4). In
the process of quantisation, the constant rate factor parameter
can be adjusted to achieve different quality levels. The higher
the CRF value, the worse the video quality. The CRF parame-
ter here is adjustable by different settings where the stream Si

CRF is smaller than the stream Sn CRF. The CRF rate control
parameter is the key in our proposed TSC method.

Fig. 2. Video Compression Visual Result. From top to down, left to right:
The original frames, the semantic segmentation results, the non-ROI, the ROI,
the reconstructed frames by H.264 and TSC.



IV. IMPLEMENTATION

Our experiment used an Ubuntu 20 virtual machine with
100 GB space, Quadro P5000 GPU and a Conda environment
with Python 3.8 for the libraries. The open-source PyTorch
library was used for network training and testing.
1) Dataset: the Cityscape dataset was used for the experiment
[17]. It is an AVs open benchmark dataset that provides seman-
tic annotations for 30 classes with 8 categories (e.g.: humans,
vehicles, constructions, nature, sky, etc). Data are captured
in 50 cities during several months (spring, summer, fall),
daytime, and good weather conditions. The dataset consists of
50 sequences of videos, with 5000 fine annotated images. The
proportion of frames used for training, validation and testing is
approximately 60%, 10% and 30%, as suggested on the dataset
official website. The frames are 2048 × 1024 × 3 RGB images,
but we downsized them into 1024 × 512 × 3 for ground truth
and 1024 × 512 × 1 for labels to reduce computational costs.
2) Loss function. The accuracy of the deep learning segmen-
tation not only relies on the network architecture but also on
the choice of the loss function. When there are less common
classes in the segmentation task, the imbalance of the classes
may result in sub-optimal performance. The dice loss is useful
for highlighting unbalanced segmentation [18]. However, the
dice loss function is not useful when there are small-sized
targets, therefore, adding the binary cross-entropy (BCE) loss
function can address this aspect [19]. Here we designed the
loss function to be the combination of the BCE [19] and dice
loss [18], thereafter named the “BCE-Dice loss”.

This novel loss function used in our experiments can be
defined as below.

LBCE−Dice = LBCE (s, ŝ) + LDice (s, p̂) (7)

3) Evaluation of segmentation. The evaluation metric for ROI-
segmentation will be the accuracy of the “Intersection-over-
Union” (IOU). If the ground truth area is A and the predicted
area is B, the intersection region in the equation is A∩B, the
union is A ∪B. The IOU can be then expressed as:

IOU =
A ∩B

A ∪B
(8)

Assuming to have m categories of labels, the average IOU
(mIOU) in the whole frame can be calculated as:

mIOU =

∑m
1 IOUm

m
(9)

Since in our task we are only interested in differentiating the
non-ROI from the ROI, the concept of “Region-of-interets
IOU” (iIOU) is proposed as described below.

iIOU =
Aroi ∩Broi

Aroi ∪Broi
(10)

4) Evaluation for Compression. FFmpeg was used for
compression since it is a free and open-source environment
consisting of a suite of libraries for compression. We used
X264 codecs for our experiments. We used Icrf as the CRF
value for stream I and Ncrf as the CRF value for stream N.
The used CRF values are summarised in table I. In this paper,

TABLE I
CRF VALUES USED IN THE EXPERIMENTS

Method CRF default settings
H.264 Icrf = Ncrf = a(23)
TSC Icrf = a− 5(18), Ncrf = a+ 5(28)
Note that TSC is the proposed two-stage compression based on the
X264 codec

the widely used peak signal-to-noise ratio (PSNR) [20] and
SSIM [21] are also used to measure compression distortion.
Besides, the compression ratio is also considered.

V. RESULTS

A. Compression and artefacts

After 47 epochs with 2974 iterations in each epoch, the
average ROI-segmentation result for various categories reaches
87.97% in training and 80.89%, 79.08% for validation and
testing respectively. However, the iIOU remains high, all iIOU
results are above 90% for the binary masks. The average time
of segmentation each frame is 0.081 s.

The experimental results of one selected frame (at t =207s)
are shown in Fig. 2. The second row represents the used masks;
we can observe that the mask boundaries are not smooth
since the macro-block filter has been applied. In the last
row, the reconstructed frames are shown with the parameter
settings shown in Table I. The two-stage compression shows
comparable visual performance as the H.264 under the default
settings. However, by visual inspection of the reconstructed
frames, we noticed that some artefacts can appear at the
boundaries. As an example, one generated artefact has been
highlighted in the red rectangle in Fig. 3, with purple and dark
blue coloured pixels appearing in the output frames.

Fig. 3. The flash artefact phenomenon at t=207.

B. Image quality evaluation

In Fig.4 we compare PSNR and SSIM after compressing
with X264 the original frames (X264-O), the ROI stream
(X264-I) and non-ROI stream (X264-N). The evaluated video
quality of the original frames has lower SSIM and PSNR
than the separated two streams I and N under all compression
methods and all CRF settings. This might be due to accurate



Fig. 4. The comparison results with different CRF settings on different frame areas. From left to right, the PSNR results and the SSIM results.

segmentation mask generation and the simplicity of the sepa-
rated frames compared with the original whole frame. Higher
PSNR or SSIM values mean better compression quality. There
is a clear decreasing trend as the value of CRF increases for all
the compared methods. Specifically, for smaller CRF values
(CRF <12), the region of non-ROI has higher PSNR, while
for higher CRF value (CRF >12), the ROI has higher PSNR.
The result show a similar trend for the PSNR values. These
results can be related to the different proportions of the ROI
and non-ROI area in the dataset frames. Although the average
proportion of the ROI is higher (55%) than non-ROI (45%),
the proportion varies from frame to frame.

C. Semantic-aware Evaluation

Since our proposed method is based on two streams with
different compression ratios, inspired by [22], we thereby
propose a novel fairer way of evaluating it. The new evaluation
metrics respectively called Semantic-aware SSIM (SA-SSIM)
and Semantic-aware PSNR (SA-PSNR) are used to evaluate
our results. These new metrics take both compression ratio and
performance into account as the weights of the two regions.
We define the (Icrf , Ncrf ), (Si, Sn) and (Pi, Pn) to be the
CRF, SSIM and PSNR values for stream I and N separately.
The compression ratio index which indicates the relationships
between the streams I and N compression ratios (rroi, rnon )
can be calculated as the following equations:

rroi = Ncrf ÷ (Ncrf + Icrf ) (11)

rnon = Icrf ÷ (Ncrf + Icrf ) (12)

The SA-PSNR and SA-SSIM can be calculated as the
following equations.

SA-SSIM = rroiSi + rnonSn (13)

SA-PSNR = rroiPi + rnonPn (14)

The performance of our proposed method are compared with
the compressed video quality under a uniform compression
ratio. The experiment is to use different CRFs to keep the ROI
with higher quality and the non-ROI with lower quality, which
is different from the settings of the conventional uniform
method where the same CRF is used through the whole frame.
We started setting the CRF value of the H.264 to be a =23

TABLE II
COMPRESSION AND POST-SEGMENTATION RESULTS USING TRADITIONAL

UNIFORM VS OUR TWO STAGE COMPRESSION MAINTAINING OVERALL
SAME COMPRESSION RATIO.

Method SA-PSNR SA-SSIM mIOU iIOU
H.264 45.181 0.982 85.71% 91.43%
TSC 47.762 0.991 87.48% 92.04%

(i.e. this value is often used as the default value), and selected
our TSC CRFs as shown in Table I to achieve the same
overall compression ratio with the two methods. The quality
results using the newly described indicators are summarised
in TableII.

From Table II, we can see that our TSC outperforms H.264
in terms of both the SA-SSIM and SA-PSNR. The calculated
value is more than 2 dB higher than H.264 for SA-PSNR. This
is similar to the trend in Fig. 4. After compression, we are
also interested in evaluating its implications on the perception
tasks. Here, we use our proposed semantic segmentation model
to test the outcome of the videos compressed by the two
investigated methods. The performance of segmentation is
evaluated using mIOU and iIOU, see section IV, and the results
are presented in Table II. The results show that techniques
with a higher SA-PSNR and SA-SSIM achieve better seg-
mentation performance in terms of both mIOU and iIOU. This
quantitative analysis is in accordance with the visual results
after segmentation (See Fig. 5). Our proposed TSC techniques
result in better segmentation mIOU with respect to traditional
compression based on uniform compression of each frame.
This might be due to a better compression quality of the
ROI. As can be seen from the figure, traditional H.264 based
segmentation presents both false negatives (shown in red box)
and false positives (shown in the blue box).

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new video compression method
that uses semantic segmentation to extract region-of-interest
and region-out-of-interest for each video frame and then ap-
plies different compression ratios to the two regions. Besides,
we proposed three new quality evaluation metrics (i.e. SA-
SSIM, SA-PSNR, iIOU) that also consider the division of the
frames into different areas. Experimental results show that our



Fig. 5. The visual segmentation results on the original frame and the compressed frame under same compression ratio.

method outperforms traditional H.264 compression in terms of
SA-SSIM and SA-PSNR. In the future, better and lightweight
segmentation algorithms, other compression parameters and
more variations can be investigated to optimised our proposed
technique in terms of performance and speed. More advanced
algorithms such as H.265 [23] or other machine learning-based
compression techniques can also be implemented into our
framework. Our research shows that optimising compression
techniques in combination with high-level perception tasks,
such as semantic segmentation and object detection, may be
a new and promising exploration direction in the future for
addressing the sensor data conundrum in automotive. Further
investigation is needed for the compression artefacts, e.g. the
“flash phenomenon” in Fig. 3. However, from the overall
results, these small artefacts do not to have a detrimental
effect on the perception task. We believe that our proposed
method can inspire other researchers to propose new algo-
rithms for other applications achieving superior compression
performance with respect to traditional techniques.
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