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a b s t r a c t 

There has been extensive academic research on the optimisation of reverse logistics (RL) and closed-loop 

supply chain (CLSC) network design. However, the existing literature is lacking in several features of prac- 

tical relevance, and the simultaneous consideration of dynamic characteristics, including the multi-period 

setting, inventory factors, environmental footprints, and scalability of the application. This shortcoming is 

primarily due to the challenges associated with computation complexity, mathematical formulation, and 

the need for a faster solution method to solve such large-scale problems in real-time. In this research, we 

address these challenges and investigate the multi-facility green RL network design problem, integrating 

carbon footprint and vehicle selection, entailing allocation between the facilities in the multi-period set- 

ting to incorporate the dynamic characteristics. We formulate a mixed-integer linear programming (MILP) 

model to minimise the total cost, comprising the carbon emission cost due to transport and production 

at the facilities. We also investigate the effects of carbon emissions and the choice of the vehicle fleet on 

the network’s structure. The novelty of our research lies in the development and application of an ex- 

act solution method, namely “Improved Benders Decomposition (IBD)” with several algorithmic enhance- 

ments, including a strengthened master problem, valid inequalities, a heuristic, and a multi-stage strategy 

to accelerate the convergence of the Benders decomposition method. By combining these elements, the 

proposed IBD solves the MILP model, provides a faster solution methodology with improved convergence 

of the bounds, and addresses the inherent intractability of the existing problem. We apply our proposed 

heuristic on a set of 12 problem configurations under distinct scenarios. We show that the proposed IBD 

heuristic outperforms existing traditional methods in terms of solution quality, computational time, and 

robustness. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The acceleration of climate change and the adverse environ- 

ental impact of waste related to end-of-life (EOL) durable prod- 

cts have forced governments in several countries to legislate in- 

ustries to reduce their ecological footprints and to take back their 

OL products. These EOL products include durable products such as 

ircraft, automobiles, large household appliances, and waste elec- 

rical and electronic equipment (WEEE), containing large quanti- 

ies of precious and depletable raw materials ( Jeihoonian, Zanjani 

 Gendreau, 2016 ; Lu & Bostel, 2007 , Ayvaz, Bolat & Aydin 2015 ,
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Benders-decomposition-based heuristic approach, European Journal of 
ing, Bloemhof-Ruwaard & Vorst 2014 ). It is now widely accepted 

hat reverse logistics (RL) and closed-loop supply chains (CLSCs) 

re key drivers that enable and stimulate the diffusion of the 

ircular economy (CE) business model ( Lechner & Reimann, 2020 ). 

L and CLSCs provide opportunities for industries to bring back 

sed products (core returns), which can be reused via refurbish- 

ng or remanufacturing. 

Several studies ( Fleischmann, Nunen & Gräve, 2003 ; Üster & 

wang, 2016 ; Zhalechian, Tavakkoli-Moghaddam, Zahiri & Moham- 

adi, 2016 ) have considered the designing of a reverse supply 

hain (RSC), attempting to minimise the environmental footprint 

hrough the backward flow of products. Traditionally, RSCs con- 

ern decisions related to facility location, transport, and selection 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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f vehicles. A reverse logistic network (RLN) design is typically 

ast as a multi-echelon framework comprising the collection, in- 

pection, and remanufacturing facilities ( Fleischmann et al., 2003 ). 

ecently, many industries have been considering factors that in- 

uence the environmental footprint of their RL networks, such as 

he size of and emissions from facilities, fuel efficiency, and carbon 

missions from the vehicles used ( Cachon, 2014 ), and have thus 

tarted to promote a green reverse supply chain. An adequately 

esigned green RLN helps a firm reduce carbon emissions from 

reight transport and facilities ( Acquaye et al. 2018 ; Guo, Wang, Fan 

 Gen 2017 ). Furthermore, in the long run, it also reduces the total

perating cost while meeting environmental standards. Optimisa- 

ion models have been widely developed and employed to support 

he decision-making of an RLN design. However, despite extensive 

cademic research in this area, the existing literature lacks sev- 

ral features of practical relevance with respect to the design of 

n RLN ( Ghadimi, Wang & Lim, 2019 ; Reddy, Kumar & Ballantyne, 

019 ). 

The design of such a green RLN faces three key challenges. First, 

 close-to-practical, i.e., incorporating several features of practical 

elevance, RLN design should consider the efficient flow of the re- 

urned products, including decisions related to the location and al- 

ocation of facilities ( Chen, Chan & Chung, 2015 ), selection of ve- 

icle type ( Yang, Hu & Huang, 2020 ), operations such as testing 

nd remanufacturing at facilities, and environmental footprint. Sec- 

nd, mathematical modelling is more complex in comparison with 

he traditional RLN design problem. The complexity increases with 

he constraints brought by consideration of the coordination of 

xogenous supply and demand. Several researchers ( Fleischmann 

t al., 2003 ) have used MILP-based approaches to model the RLN 

esign problem. However, the simultaneous consideration of such 

ynamic characteristics as the multi-period setting, inventory fac- 

ors, environmental footprint, and scalability of the application 

ncreases the complexity of mathematical modelling ( Jeihoonian, 

azemi Zanjani & Gendreau, 2020 ). 

Third, solving such a large-scale network design problem un- 

er considerable time pressure becomes significantly difficult, 

iven the NP -hardness nature of the problem ( Santos, Coutinho- 

odrigues & Current, 2010 ; Sifaleras & Konstantaras, 2017 ). Many 

esearchers have suggested Benders decomposition (BD) based ap- 

roaches to solve such problems ( Naderi, Govindan & Soleimani, 

019 ; Rahmaniani, Crainic, Gendreau & Rei, 2017 ). However, solving 

he problem (as detailed in the Literature Review section) directly 

sing BD does not guarantee an optimal solution within a rea- 

onable time limit. Therefore, the complex problem, as suggested 

n this research, requires an efficient solution methodology to ad- 

ress the inherent computational complexity. Such a methodology 

hould have the properties of accelerating the convergence of the 

ounds. In line with the abovementioned challenges, we develop a 

et of research questions as follows: 

Q1: How to design an RLN design incorporating features of 

practical relevance, including decisions related to the loca- 

tion and allocation of facilities, selection of transport vehicle 

type, route options, operations including testing and reman- 

ufacturing at facilities, inventory at facilities environmental 

footprint, and activation of facilities? 

Q2: How does the carbon tax influence facility openings, pro- 

duction flows, and vehicle fleet choice? 

Q3: How to mathematically model such as a complex RLN de- 

sign problem with dynamic characteristics including multi- 

period setting, inventory factors, environmental footprint, 

and ensuring scalability of the application? 

Q4: How to develop a novel BD-based heuristic to solve the 

proposed model effectively and demonstrate its robustness? 
2 
In this research, we address each decision-making challenge 

nd develop a set of objectives to answer the research questions. 

o address the first challenge, our first objective is to design a four- 

chelon multi-period RLN. In this RLN, the used products are col- 

ected at collection facilities, processed at a testing facility where 

heir yield factors are considered, and finally remanufactured at 

he remanufacturing centre. We consider several decisions, such 

s whether the returned product should be kept in the inventory, 

isposed, or forwarded to remanufacturing facilities or testing fa- 

ilities. At the remanufacturing facilities, we consider decisions re- 

ated to the quantities of new products required to fulfil the en- 

ire demand. At each echelon, we also consider decisions, including 

he selection of the transport vehicle and considering the costs and 

arbon emissions of the vehicles. To address the second challenge, 

ur second objective is to develop a mathematical model using the 

ILP formulation and consider objectives including minimising the 

verall cost (comprising the setup cost, operating cost, transport 

ost, and emission costs, under several constraints). Finally, to ad- 

ress the third challenge, our third objective is to develop a novel 

D-based heuristic, i.e. the IBD technique, to solve the proposed 

odel. Through this technique, we modify the classical BD with 

everal algorithmic enhancements, including a strengthened mas- 

er problem, valid inequalities, a heuristic, and a multi-stage strat- 

gy to accelerate the convergence of the BD method. Finally, our 

ast objective is to conduct exhaustive numerical studies on several 

nstances of the problem to illustrate the applicability and effec- 

iveness of the proposed IBD. We demonstrate the superior perfor- 

ance and robustness of the proposed IBD method over the clas- 

ical branch-and-cut, traditional BD, and BD with the multi-stage 

trategy in terms of solution gap and computational time. 

Our research contributes to the RL and CLSC network design 

iterature by developing a novel mathematical model to mimic 

he plausible practical problem of green RLN design and propos- 

ng a robust and efficient optimisation method, i.e., IBD. Specifi- 

ally, our contribution is threefold. First, we formulate a mathe- 

atical model (MILP) for the four-echelon green RLN to address 

oth strategic and tactical decisions, including facilities location 

nd allocation, inventory, and distribution decisions, as well as tak- 

ng into account the environmental factors including carbon emis- 

ions from transport, production, and vehicle selection and alloca- 

ion between facilities. Furthermore, we analyze the impacts of car- 

on emissions and the choice of vehicle fleet on the network. Sec- 

nd, we develop a novel improved BD-based heuristic, i.e., IBD, by 

nhancing the properties of the classical BD with several algorith- 

ic enhancement strategies. These enhancements include parti- 

ioning into master- and sub-problems based on complex variables, 

roposing a novel algorithm to obtain an initial feasible solution, 

nd strengthening the master problem using a multi-stage strategy 

ased on the number of echelons in the network. These enhance- 

ents not only lead to an improved lower bound but also signif- 

cantly accelerate the convergence of the bounds. Finally, we con- 

uct exhaustive numerical studies on several benchmark instances 

f the problem to show the superior performance and robustness 

f the proposed approach over the existing methods applied in the 

elevant literature. 

We organize the rest of the paper as follows. In the next 

ection, we briefly review the relevant literature on the RLN 

esign problem and the related solution methodologies. In 

ection 3 , we present the problem’s formulation, the related math- 

matical models, as well as assumptions. In Section 4 , we ex- 

lain the proposed IBD-based solution approach with algorithmic 

nhancements to improve convergence. In Section 5 , we discuss 

he computational results, validation, and robustness checks us- 

ng a comparative study and provide managerial insights. Finally, 

n Section 6 , we conclude the paper and suggest some directions 

or future research. 
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. Literature review 

In this section, we review the relevant literature in two separate 

ut complementary research streams. The first stream focuses on 

LN design, and the complexity tackled by researchers in this area. 

or a detailed review of this area, we refer the reader to Alumur 

ibel, Nickel, Saldanha-da-gama and Verter (2012) , Chanintrakul, 

ondragon, Lalwani and Wong (2009) , Govindan, Soleimani and 

annan (2015) , Govindan & Soleimani (2017) and Govindan and 

ouzon (2018) . The second stream of research focuses on solution 

ethodologies, including relevant algorithmic refinements for BD 

ethods. Finally, we summarise our findings from the literature 

eview and highlight the existing research gaps. 

.1. RL network design 

RLN design is much more complex than a forward logistics net- 

ork with the operations such as examining and sorting return 

roducts, addressing return products in terms of quantity, quality, 

upply timing, etc. ( Chanintrakul et al., 2009 ; Reddy, Kumar, Sarkis 

 Tiwari, 2020 ). Table 1 presents a comprehensive review of re- 

earch papers investigating reverse supply chain (RSC) design mod- 

ls during 2016–2021. Consequently, modelling methods are cate- 

orized into two parts: 

1) MILP models without uncertain factors. 

2) MILP models, which dealt with any of the uncertain factors. 

In the first group i.e., MILP models without uncertainty, Diabat 

nd Jebali (2021) proposed a MILP model for CLSC network design 

ith the assumption of a 100% recovery target. Tadaros, Migdalas, 

amuelsson and Segerstedt (2020) developed a MILP model to 

ecide where to locate facilities for inspection and recycling of 

ithium-ion batteries in the Swedish market. Govindan and Bouzon 

2018) presented a framework for RL from the perspectives of 

ultiple stakeholders. They identified that customers demand that 

he supply chain partners follow green standards, including in RL 

perations. Trochu, Chaabane and Ouhimmou (2018) developed a 

odel to re-design the RLN for the construction, renovation, and 

emolition (CRD) industry and formulated a MILP for locating sort- 

ng facilities and measuring their capacity. Coelho and Mateus 

2017) proposed a plant location model for RL with limited ca- 

acity. Meanwhile, Amin and Baki (2017) developed a facility lo- 

ation model for CLSC design with global aspects and validated it 

y applying a CLSC network in Canada. However, they did not in- 

orporate inventory factors, and the model thus lacks applicability 

oncerning larger problems. 

Alshamsi and Diabat (2015) and Alumur Sibel et al. (2012) pre- 

ented MILP models for designing the RLN and validated the mod- 

ls for large household appliances. They also mentioned that pri- 

rity is given to locating inspection and remanufacturing centres 

head of the in-house fleet. Mutha and Pokharel (2009) devel- 

ped a MILP model for an RLN to maximise the reuse and recy- 

ling of used products. They incorporated suppliers as an eche- 

on to provide new models on a need basis when remanufactured 

roduct demand increases. Furthermore, Pishvaee, Jolai and Razmi 

2009) used a MILP model for an integrated logistics (FL and RL) 

etwork design and applied a scenario-based stochastic approach 

o handle uncertainty. The results showed that demand has more 

nfluence on the total cost than the return ratio. 

In general, most of these models only consider the economic 

spect of supply chain sustainability. However, due to the grow- 

ng awareness and regulation of environmental issues, researchers 

ave focused on integrating economic and environmental aspects. 

ovindan, Paam and Abtahi (2016) addressed the significance 

f economic, social, and environmental aspects while designing 

 sustainable RLN over a finite planning horizon applied to a 
3 
edical syringe recycling system. Brandenburg and Rebs (2015) , 

randenburg, Govindan, Sarkis and Seuring (2014) , and Seuring 

2013) reviewed the literature on quantitative models that address 

he environmental and social issues in supply chains. Fahimnia, 

arkis, Dehghanian, Banihashemi and Rahman (2013) designed a 

LSC network in Australia by considering carbon costs and sug- 

ested that the government provide subsidies on carbon costs to 

romote decarbonization, especially for RSC operations. Kannan, 

iabat, Alrefaei, Govindan and Yong (2012) proposed a model com- 

ining location and transport problems to minimise the carbon 

ootprint in an RLN for plastic industries. To find the trade-off

etween environmental and economic objectives, Chaabane, Ra- 

udhin and Paquet (2012) proposed a sustainable framework for 

 supply chain with the help of life-cycle assessment principles. 

hey also presented various efficient carbon management strate- 

ies to achieve long-term sustainability. Paksoy, Bekta ̧s and Özcey- 

an (2011) investigated the environmental and operational perfor- 

ance measures in CLSCs and observed that the operational costs 

ominated the environmental costs under extreme emissions sce- 

arios. 

Zhalechian et al. (2016) designed a CLSC network to make 

ocation-routing-inventory decisions with an emphasis on the im- 

ortance of waiting times of vehicles, using queuing models. They 

bserved that CLSC network costs are influenced more significantly 

y transport costs than inventory costs. Qiu et al. (2018) discussed 

he production routing problem with simultaneous pickups and 

eliveries in RL with remanufacturing. They interestingly found 

hat the location of the remanufacturing depot does not affect the 

ptimal decisions. They also mentioned that it is essential to con- 

ider emissions in vehicle routing. Kim, Yang and Lee (2009) pre- 

ented a MILP model for a vehicle routing problem (VRP) in RL and 

pplied it to recycle electronic products in South Korea. They inves- 

igated that a VRP is more significant when there is an increase in 

oth the EOL of consumer electronic goods and the corresponding 

ollection centres. 

In the second group i.e., MILP model with uncertain factors, 

ome authors ( Antucheviciene, Jafarnejad, Mahdiraji, Hajiagha & 

argar, 2020 ; Shahparvari et al., 2021 ) provided MILP models that 

ealt with uncertainty for RLN Design. Baptista, Barbosa-Póvoa, Es- 

udero, Gomes and Pizarro (2019) introduced a two-stage stochas- 

ic linear model to address CLSC design and production planning 

nder the returns quantity and quality uncertainties along the time 

orizon. Further, they applied their model for efficient waste man- 

gement of the demolition industry in Quebec’s Canadian province. 

imilarly, few papers have considered two-stage stochastic MILP 

odels for tackling uncertainty in CLSCs ( Fattahi & Govindan, 

017 ; Jerbia, Kchaou Boujelben, Sehli & Jemai, 2018 ; Trochu, Chaa- 

ane & Ouhimmou, 2019 ; Üster & Hwang, 2016 ). 

Overall, our review of this stream of research reveals three key 

spects relevant to our study. First, the existing literature is lack- 

ng in practical relevance and fails to simultaneously consider the 

ynamic characteristics, including the multi-period setting, inven- 

ory factors, environmental footprint, and the scalability of the ap- 

lication. The extent to which we propose the model in this re- 

earch goes beyond the existing literature and takes into account 

eturn ratio, quality levels of used products, along with the de- 

and for a new and recoverable inventory. Though demand and 

eturn quantities are uncertain in reality, we consider them as de- 

erministic and known since they are estimated for strategic-level 

ecisions. Second, these research shortfalls may be partially due 

o the challenges associated with computational complexity, math- 

matical formulation, and the need for a faster method to solve 

uch large-scale problems in real-time using commercial solvers. 

ence, it is essential to pursue the application of heuristics. From 

he methodological perspective, compared with the BD-based ap- 

roaches applied in earlier research, the complex nature of the 
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roblem considered in this research requires the development of a 

ovel, efficient, and exact methodology to handle large-sized prob- 

ems and solve the resulting MILP model. 

.2. Solution approaches and algorithmic enhancements made to 

enders decomposition 

The network design problem is complex and an NP -hard com- 

inatorial optimisation problem. The complexity increases signifi- 

antly when the practical aspects, as well as size, are taken into 

onsideration. The existing research is broadly classified into ex- 

ct methods (which provide an optimal solution) and heuristic ap- 

roaches (which provide a near-optimal solution) to solve the com- 

lex network problem. Most solution methods employ standard 

ommercial packages such as CPLEX to solve the MILP formulations 

 Farrokh, Azar, Jandaghi & Ahmadi 2018; Jiang et al., 2020 ). When 

he number of discrete variables is large, the resulting model can 

e solved only using heuristic or metaheuristic approaches to ob- 

ain a near-optimal solution. However, RLN design involves a large 

nvestment, which greatly influences the operational and tactical 

osts and service efficiency ( Keyvanshokooh, Ryan & Kabir, 2016 ). 

herefore, it is imperative to develop an efficient exact solution 

ethodology to solve large-scale and more realistic cases ( De Sá, 

e Camargo & De Miranda, 2013 ). While the focus of our research 

s on exact methods and, more precisely, algorithmic refinements 

f the BD method, we also acknowledge the relevant research on 

euristic methods. 

For the first category (exact methods), various researchers have 

uggested a BD-based approach to solve the network problem 

 Naderi et al., 2019 ; Rahmaniani et al., 2017 ). Fontaine and Minner

2018) converted a bi-level formulation into a mixed-integer linear 

rogram using the Karush-Kuhn-Tucker (KKT) conditions. They 

pplied the multi-cut BD method to solve the Hazmat Trans- 

ort Network Design problem optimally. Easwaran and Üster 

2009) presented a MILP model for the multi-product CLSC and 

olved it using a BD-based approach. They used neighbourhood 

unctions as a heuristic to enhance the BD method, which im- 

roves the convergence of the bounds. Santibanez-Gonzalez and 

iabat (2013) applied IBD schemes such as valid inequalities and 

uasi Pareto-optimal cuts to solve the reverse supply chain (RSC) 

esign problem. 

Similarly, Jeihoonian, Zanjani and Gendreau (2016b) enhanced 

he performance of BD by implementing valid inequalities, Pareto- 

ptimal cuts, and local branching to solve a CLSC for durable prod- 

cts. Elsewhere, Tang, Jiang & Saharidis (2013) proposed a high- 

ensity Pareto-cut generation approach to accelerate BD to solve a 

acility location problem. In Table 2 (Appendix 1), we summarise 

nd compare various algorithmic enhancements used for BD to 

olve complex models in the existing research. Badri, Fatemi Ghomi 

nd Hejazi (2017) applied a two-stage stochastic programming ap- 

roach to solve a value-based CLSC network problem and make 

ecisions in a stochastic environment. Similarly, Lee and Dong 

2008) used a two-stage heuristic approach to solve a logistics net- 

ork design problem by dividing it into two areas: a revised net- 

ork flow problem; and a location-allocation problem. Reddy et al. 

2019) presented a three-phase heuristic method to solve an RLN 

esign. Although the three-phase heuristic is very efficient, it may 

ead to a sub-optimal solution because information flows in one 

irection, so there is no scope for feedback. 

In the second category (heuristics), some researchers have ap- 

lied heuristics to solve the network design problem. For instance, 

ntucheviciene et al. (2020) presented an NSGA-II algorithm to op- 

imize the flow of materials in an RSC for the steel industry. Li, 

uo and Zhang (2018) proposed a novel, improved hybrid differen- 

ial evolution (IHDE) algorithm for the closed-loop supply chain to 

tudy location-inventory decisions with third-party logistics. Simi- 
4 
arly, a hybrid genetic algorithm (GA) was developed by Aravendan 

nd Panneerselvam (2016) ; Liao (2018) to solve the RL problem 

ith product recovery via remanufacturing and tested for bulk 

aste recycling in Taiwan. Alshamsi and Diabat (2017) formulated 

 MILP model to design an RLN, and they implemented an effi- 

ient genetic algorithm to solve the MILP. In the interim, Cui et al. 

2017) proposed a genetic artificial bee colony algorithm approach 

or designing an optimal CLSC network. Similarly, an improved ge- 

etic algorithm was presented to solve the multi-objective CLSC 

etwork design problem in China ( Shi, Liu, Tang & Xiong, 2016 ). 

Similarly, Chen, Wang, Wang and Chen (2017) presented a 

ulti-objective PSO (MOPSO) algorithm to address the sustainable 

LSC problem for the solar energy industry considering economic 

nd environmental concerns. Zohal and Soleimani (2016) devel- 

ped an ant colony approach to solve integrated forward RLN. 

iwari, Chang, Tiwari and Kandhway (2016) applied a hybrid 

erritory-defined evolutionary algorithm to solve semiconductor 

ndustries’ green CLSC network problem. Similarly, Cardona-Valdés, 

lvarez and Pacheco (2014) and Devika, Jafarian and Nourbakhsh 

2014) presented metaheuristics to solve the supply chain network 

esign problem. 

Among all the exact methods and heuristics, BD and its exten- 

ions are widely used to solve various complex problems optimally. 

owever, several researchers have reported issues in relation to 

roblem size, feasibility, cyclical behavior, and slow convergence in 

he traditional BD algorithm. These issues have been taken into ac- 

ount here while developing a solution approach. 

Several researchers have extensively used heuris- 

ics/metaheuristics to produce an initial feasible solution with 

ood quality, which provides a better set of initial cuts for solving 

 master problem or sub-problem. For example, Taskin and Cevik 

2013) found an initial feasible solution using a greedy heuris- 

ic and used a heuristic to handle infeasibility in the BD-based 

pproach. Randazzo, Luna and Mahey (2001) found an initial 

olution using the shortest path algorithm, and Easwaran and 

ster (2009) , and Jiang, Tang and Xue (2009) used a Tabu search 

o yield an initial feasible solution. Correspondingly, Belieres, He- 

itt, Jozefowiez, Semet and Van Woensel (2020) proposed a new 

rimal heuristic to enhance the Benders decomposition method 

long with valid inequalities and a strengthened master problem 

or large-sized industrial problems. Lai, Sohn, Tseng and Chiang 

2010) and Poojari and Beasley (2009) used a genetic algorithm 

o obtain a (sub-optimal) solution for the master problem in 

he BD approach. Furthermore, to address the convergence issue, 

usby, Range and Larsen (2016) and Boschetti and Maniezzo 

2009) developed a BD-based heuristic to solve the problem with 

 good-quality solution. Üster and Hwang (2016) and Easwaran 

nd Üster (2010) strengthened Benders’ cuts using algorithms such 

s the two-phase method and the Tabu approach. 

On the other hand, many researchers have introduced valid in- 

qualities, Pareto-optimal cuts, and induced constraints to signifi- 

antly improve the quality of the lower bounds found by the mas- 

er problem (in the case of minimisation) and also to accelerate 

he convergence of the bounds by restricting the solution space. 

or example, Jeihoonian et al. (2016b) and Saharidis, Boile and The- 

fanis (2011) , Naderi et al. (2019) added valid inequalities to the 

aster problem to reduce the number of feasibility cuts. Moreover, 

eihoonian et al. (2016b) put forward a local branching search to 

mprove both lower and upper bounds concurrently during the ex- 

cution of the BD algorithm. Alshamsi and Diabat (2018) , De Sá et 

l. (2013) , Santibanez-Gonzalez and Diabat (2013) , and Tang et al. 

2013) generated Pareto-optimal cuts to enhance the algorithm by 

xcluding a larger space of the master problem. 

The extant literature has proposed various acceleration tech- 

iques to speed up the classical BD to resolve the slow conver- 

ence issues in logistics network design. As presented earlier, these 
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Fig. 1. RLN structure. 
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echniques range from improvement in the initial feasible solution 

o Pareto-optimal cuts. However, given the topology of RLNs, it is 

romising to explore the acceleration of BD by differentiating be- 

ween the strategic and tactical decision variables. Thereafter, al- 

orithmic enhancements are applied to accelerate the convergence 

f the bounds. This research proposes modelling and algorithmic 

nhancements, including a strengthened master problem, valid in- 

qualities, a heuristic, and a multi-stage strategy. By combining 

hese, the proposed IBD solves the MILP model, provides a faster 

olution methodology with improved convergence of the bounds, 

nd addresses the inherent intractability of the present problem. 

. Mathematical model and formulation 

We consider a multi-period and a single-product RLN. The pri- 

ary setting of our problem spans both strategic and operational 

evels. At the strategic level, the RLN (as shown in Fig. 1 ) consists

f four types of facilities, namely collection, testing, remanufactur- 

ng, and customer points. 

In an RLN, the first step is to collect the available core returns 

rom customers with a return policy and store them at the col- 

ection facilities. The collected core returns are then transferred to 

he testing facilities for testing and sorting. Depending upon the 

echnology and location, these testing facilities can have different 

ields. After testing, depending upon their conditions, the cores are 

ent for either remanufacturing or disposal. The testing facilities 

an also keep the returned products to be used subsequently as 

ore inventory. Finally, the remanufactured products are used to 

atisfy the demand at customer points. 

In an RLN design, the objective is to minimise the total cost, 

hich consists of carbon emission costs, transport costs, and fixed 

osts. Establishing and operating facilities implies the associated 

xed costs and also variable operating costs for the returned prod- 

cts. Furthermore, the product flow between facilities entails vari- 

ble transport costs. In reality, it is not possible to recover all the 
5 
ore returns via the remanufacturing activities because of quality 

ssues. Thus, we consider the yield to represent the percentage of 

eturned products that are remanufactured. The following assump- 

ions support our model presented in this section: 

• Demand and returns quantity and quality are deterministic. 
• Potential locations for the testing and remanufacturing facilities 

are known. 
• At each facility, a fixed and sufficient number of vehicles is 

available to serve all customers. 
• New products are used as substitutes for a remanufactured 

product to meet the total demand. 

.1. Key objectives 

The key objectives of our study are summarised below: 

• To determine the testing and remanufacturing facilities’ 

location(s). 
• To determine the amount of the flow among the facilities of the 

network to minimise the cost. 
• To determine the type and quantity of vehicle(s) in each arc 

between the facilities. 
• To determine the amounts of inventory, disposals, and pur- 

chases. 

.2. Notation 

We introduce the notation, including the sets, parameters, and 

ecision variables used to design the RLN under the 

bove-described characteristics. Sets 

 Set of potential testing facilities 

 Set of customer points 

 Set of collection facilities 

 Set of potential remanufacturing facilities 

 Types of vehicles 
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∑

b

I

I

B

∑
∑

 Length of the planning horizon 

arameters 

 

p 
i 

Returns Supply to collection facility i є D in period p є P . 

 

p 
t Quality level (yield) of core returns at testing facility t є T 

in period p є P 
 

p 
c Demand at customer point c є C in period p є P 
 

p 

d 
Returns quantity at collection facility d є D in period p є P 

 j Capacity limit of a facility j є {T,R} 

 v Capacity of vehicle v є V 

 C j Fixed cost for establishing a facility j є {T,R} 

 C 
p 
j 

Unit processing cost at a facility j є {T,R} in period p є P 

C 
p 
t Unit inventory holding cost at testing facility t є T in pe- 

riod p є P 
C 

p 
t Unit disposal cost at testing facility t є T in period p є P 

 C p Unit purchase cost in period p є P 
 v Emissions generated by vehicle v є V per unit distance 

 E j Emissions generated by facility j є {T,R} for processing unit 

product 

Cost of carbon credits 

 i j Distance between facilities i є {D,T,R} and j є {T,R,C} 

 T C v Fixed cost for using a vehicle v є V 

 T C v Variable cost for using vehicle v є V for travelling unit dis- 

tance 

A big number 

ecision variables 

 

p 
i jv Flow quantity between facilities i є {D,T,R} and j є {T,R,C} in 

period p є P through vehicle v є V 

 

p 
j 

1 if a facility is established at location j є {T,R} in period 

p є P, otherwise 0 

 

p 
i jv 1 if vehicle type v є V is selected on an arc between facili-

ties i є {D,T,R} and j є {T,R,C} in period p є P , 0 otherwise 

 

p 
t Inventory quantity at testing facility t є T in period p є P 
Q 

p 
t Disposal quantity at testing facility t є T in period p є P 

 

p 
r Purchase quantity at remanufacturing facility r є R in pe- 

riod p є P 
 

p 
i jv Vehicle quantity of type v є V required to transport prod- 

ucts between facilities i є {D,T,R} and j є {T,R,C} in period p є P

Based on the notation listed above, the mathematical formula- 

ion for the multi-period RLN design with carbon footprint is pre- 

ented below. 

.3. Objective function 

We formulate the problem mentioned above as a MILP with the 

bjective of cost minimisation and considering the costs related to 

arbon emissions. The model objective is to minimise the overall 

ost correspondingly by determining the optimal location and al- 

ocation of facilities, the flows between the facilities, and the se- 

ection and allocation of the vehicles. The total cost includes the 

xed cost for locating the facilities, processing costs at facilities, 

nd disposal, inventory holding, transport, emissions, and purchase 

osts. 

inimise Z 

= 

∑ 

jεT 

∑ 

pεP 

F C j 
(
x p 

j 
− x p−1 

j 

)
+ 

∑ 

jεR 

∑ 

pεP 

F C j 
(
x p 

j 
− x p−1 

j 

)
+ 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

P C p 
j 
q p 

i jv + 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

P C p 
j 
q p 

i jv 

+ 

∑ 

tεT 

∑ 

pεP 

I p t HC p t + 

∑ 

tεT 

∑ 

pεP 

DQ 

p 
t DC p t + 

∑ 

rεR 

∑ 

pεP 

B 

p 
r B C p 

+ 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v + 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 
6 
+ 

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 

+ 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

q p 
i jv d i j ( V T C v / H v ) 

+ 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

q p 
i jv d i j ( V T C v / H v ) 

+ 

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

q p 
i jv d i j ( V T C v / H v ) 

+ �
∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v + �

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v 

+ �
∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v 

+ �
∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

P E j q 
p 
i jv + �

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

P E j q 
p 
i jv (1) 

The first and second terms represent the total fixed cost for es- 

ablishing the testing and remanufacturing facilities, respectively. 

eanwhile, the third and fourth terms constitute the total pro- 

essing cost of the used products at the testing and remanufac- 

uring facilities, respectively. The fifth term indicates the total in- 

entory cost for holding products until the next period, and the 

ixth term represents the total disposal cost at the testing facilities. 

he seventh term represents the total purchase cost of meeting the 

emaining demand after remanufacturing. Terms eight, nine, and 

en represent the total fixed transport costs to carry products be- 

ween the collection facility to the testing facility, the testing facil- 

ty to the remanufacturing facility, and the remanufacturing facility 

o a customer point, respectively. Similarly, terms eleven, twelve, 

nd thirteen represent the total variable transport costs of moving 

roducts from the collection facility to the testing facility, the test- 

ng facility to the remanufacturing facility, and the remanufactur- 

ng facility to a customer point, respectively. Terms fourteen, fif- 

een, and sixteen represent the total emissions costs of transport 

rom the collection facility to the testing facility, the testing facil- 

ty to the remanufacturing facility, and the remanufacturing facil- 

ty to a customer point, respectively. Finally, the seventeenth and 

ighteenth terms represent the total emissions from the process- 

ng of used products at the testing and remanufacturing facilities, 

espectively. 

.4. Constraints 

The proposed model contains the following constraints: 
 

jεT 

∑ 

v εV 

q p 
i jv = S p 

i 
∀ iεD, ∀ pεP (1.i) 

 

p 
j 

∑ 

iεD 

∑ 

v εV 

q p 
i jv + I p−1 

j 
= 

∑ 

rεR 

∑ 

v εV 

q p 
jrv + DQ 

p 
j 

+ I p 
j 

∀ pε{ 2 ..P } , ∀ jεT 

(1.ii) 

 

p 
j 

= 0 p = 1 , ∀ jεT (1.iii) 

 

P 
j = 0 ∀ jεT (1.iv) 

 

p 
j 
+ 

∑ 

iεT 

∑ 

v εV 

q p 
i jv = 

∑ 

iεC 

∑ 

v εV 

q p 
i jv ∀ pεP, ∀ jεR (1.v) 

 

iεR 

∑ 

v εV 

q p 
i jv = D 

p 
j 

∀ pεP, ∀ jεC (1.vi) 

 

iεD 

∑ 

v εV 

q p 
i jv ≤ x p 

j 
H j ∀ pεP, ∀ jεT (1.vii) 
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iεT 

∑ 

v εV 

q p 
i jv ≤ x p 

j 
H j ∀ pεP, ∀ jεR (1.viii) 

 

p 
i jv ≥

(
q p 

i jv / H v 
) ∀ iεD, ∀ jεT , ∀ v εV, ∀ pεP (1.ix) 

 

p 
i jv ≥

(
q p 

i jv / H v 
) ∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (1.x) 

 

p 
i jv ≥

(
q p 

i jv / H v 
) ∀ iεR, ∀ jεC, ∀ v εV, ∀ pεP (1.xi) 

 

p−1 
t ≤ x p t ∀ tεT , ∀ pεP (1.xii) 

 

1 
t = 0 ∀ tεT (1.xiii) 

 

p−1 
r ≤ x p r ∀ rεR, ∀ pεP (1.xiv) 

 

p 
i jv ≤ x p 

j 
∀ iεD, ∀ jεT , ∀ v εV, ∀ pεP (1.xv) 

 

p 
i jv ≤ x p 

i 
∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (1.xvi) 

 

p 
i jv ≤ x p 

j 
∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (1.xvii) 

 

p 
i jv ≤ x p 

j 
∀ iεR, ∀ jεC, ∀ v εV, ∀ pεP (1.xviii) 

 

p 
i jv ≤ y p 

i jv M ∀ iεD, ∀ jεT , ∀ v εV, ∀ pεP (1.xix)

 

p 
i jv ≥ y p 

i jv ∀ iεD, ∀ jεT , ∀ v εV, ∀ pεP (1.xx) 

 

p 
i jv ≤ y p 

i jv M ∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (1.xxi)

 

p 
i jv ≥ y p 

i jv ∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (1.xxii) 

 

p 
i jv ≤ y p 

i jv M ∀ iεR, ∀ jεC, ∀ v εV, ∀ pεP (1.xxiii) 

 

p 
i jv ≥ y p 

i jv ∀ iεR, ∀ jεC, ∀ v εV, ∀ pεP (1.xxiv) 

 

p 
j 
, y p 

i jv ε{ 0 , 1 } (1.xxv) 

 

p 
i jv , I 

p 
t , DQ 

p 
t , B 

p 
r ≥ 0 , N 

p 
i jv ≥ 0 and int (1.xxvi)

Constraint ( 1.i ) ensures that the outflow from the collection 

acility is equal to the inflow of the core returns collected from 

ustomers. Constraint ( 1.ii ) balances the flow at the testing facility, 

.e., the inflow and inventory of the previous year must be equal 

o the outflow as well as the disposal and inventory of the present 

eriod. Constraints ( 1.iii ) and ( 1.iv ) ensure that the inventory 

uantity is equal to zero at the beginning and end of the horizon. 

onstraint ( 1.v ) ensures that the purchased quantity and the 

roducts being moved to a remanufacturing facility must be equal 

o the outflow from the remanufacturing facility. Constraint ( 1.vi ) 

nsures that all the demand is satisfied at each customer point. 

onstraints ( 1.vii ) and ( 1.viii ) are capacity restrictions and limit the

nflow at the testing facility and remanufacturing facility to their 

espective capacity. Constraints ( 1.ix ), ( 1.x ), and ( 1.xi ) are associ-

ted with the vehicle quantity and assure that a sufficient number 

f vehicles is used to move products from one facility to another 

acility. Constraint ( 1.xii ) is the location and allocation constraint 
7 
elated to testing facilities and ensures that once the facilities 

re installed at a location, they continue operating until the last 

eriod. Constraint ( 1.xiii ) ensures that there is no installation of 

he testing facilities in the initial period. Constraint ( 1.xiv ) is the 

emanufacturing facilities location constraint, which ensures that 

hey continue operating until the last period once the remanufac- 

uring facilities are established. Constraints ( 1.xv ), ( 1.xvi ), ( 1.xvii ),

nd ( 1.xviii ) are if-then constraints related to vehicle selection and 

acility location from the collection facility to the testing facility, 

he testing facility to the remanufacturing facility, and the remanu- 

acturing facility to customer points, respectively. They ensure that 

 vehicle is selected and allocated between facilities if those are 

stablished. Constraints ( 1.xix ) and ( 1.xx ) are if-then constraints 

elated to vehicle selection and quantity on an arc between the 

ollection and testing facilities. Constraints ( 1.xxi ) and ( 1.xxii ) are 

f-then constraints related to vehicle selection and quantity on an 

rc between the testing and remanufacturing facilities. Similarly, 

onstraints ( 1.xxiii ) and ( 1.xxiv ) are if-then constraints related to 

ehicle selection and quantity on an arc between the remanufac- 

uring facilities and customer points. Constraints ( 1.xix )–( 1.xxiv ) 

nsure that at least one vehicle should be allocated on an arc 

etween the facilities if the vehicle is selected, and constraints 

 1.xxv ) and ( 1.xxvi ) represent the non-negativity constraints. 

. Solution methodology 

To solve the proposed complex RLN design problem, we de- 

elop a solution approach in this section. Specifically, we initially 

olve the model using the branch-and-cut method (referred to as 

he exact method) using the CPLEX software. However, the exact 

ethod is not able to provide a solution or takes long times to 

olve large-sized problems. Furthermore, we apply a decomposi- 

ion technique, namely the classical BD, to solve the model ( Costa, 

005 ; Fakhri & Ghatee, 2016 ). However, classical BD also fails to 

onverge the bounds. Hence, we focus on developing an improved 

D-based heuristic, i.e., IBD, to solve our model to enhance com- 

utational efficiency. 

BD is a classical solution approach proposed by Benders 

1962) to solve combinatorial optimization problems very quickly 

ased on the divide-and-conquer strategy. In the BD approach, the 

riginal problem is divided into two interrelated problems, namely 

he master problem and the sub problem with complicated (in- 

eger and binary) variables and coupling constraints. The master 

roblem is a relaxation of the original problem with complex vari- 

bles and an auxiliary variable. In the minimisation problem, the 

ptimal master solution provides a lower bound (LB), and the so- 

ution is transferred to the sub problem to obtain a new sub- 

olution. Solving the dual sub problem provides an upper bound 

UB) and optimality, and feasibility cuts are also produced, which 

re added to the master problem. 

The model presented above can be considered as a combina- 

ion of two independent problem sets. The first can be seen as a 

roblem related to the location and allocation of the testing and 

emanufacturing facilities along with the decision on the selection 

nd allocation of the vehicles, while the second can be considered 

s a problem for the flow of products, inventory, and disposal un- 

er the specified network. This motivates to apply BD as it can pro- 

ide an efficient framework to solve a MILP model. 

.1. Sub problem 

.1.1. . Primal sub problem 

Following the BD approach presented above, the primal sub 

roblem SP ( q p 
i jv , I 

p 
t , DQ 

p 
t , B 

p 
r | ̂ x 

p 
j 
, ̂  y 

p 
i jv , 

ˆ N 

p 
i jv ) is derived by fixing the 

alues of the design variables relating to the locations of testing 
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nd remanufacturing facilities as follows: 

inimise Z SP 

 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

P C p 
j 
q p 

i jv + 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

P C p 
j 
q p 

i jv + 

∑ 

tεT 

∑ 

pεP 

I p t HC p t 

+ 

∑ 

tεT 

∑ 

pεP 

DQ 

p 
t DC p t + 

∑ 

rεR 

∑ 

pεP 

B 

p 
r B C p + 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

q p 
i jv d i j ( V T C v / H v ) 

+ 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

q p 
i jv d i j ( V T C v / H v ) + 

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

q p 
i jv d i j ( V T C v / H v ) 

+�
∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

P E j q 
p 
i jv + �

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

P E j q 
p 
i jv 

(2) 

Subject to constraints ( 1.i ) to ( 1.vi ) and 

 

iεD 

∑ 

v εV 

q p 
i jv ≤ ˆ x p 

j 
H j ∀ pεP, ∀ jεT (2.i) 

 

iεT 

∑ 

v εV 

q p 
i jv ≤ ˆ x p 

j 
H j ∀ pεP, ∀ jεR (2.ii) 

 

p 
i jv ≤ ˆ N 

p 
i jv H v ∀ iεD, ∀ jεT , ∀ v εV, ∀ pεP (2.iii) 

 

p 
i jv ≤ ˆ N 

p 
i jv H v ∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (2.iv) 

 

p 
i jv ≤ ˆ N 

p 
i jv H v ∀ iεR, ∀ jεC, ∀ v εV, ∀ pεP (2.v) 

 

p 
i jv , I 

p 
t , DQ 

p 
t , B 

p 
r ≥ 0 

The optimal solution to the SP (. ) gives the product flows 

etween the facilities ( q p 
i jv ) , disposal, inventory, and purchasing 

uantities ( I p t , DQ 

p 
t , B 

p 
r ) by minimizing the overall cost. 

.1.2. . Dual sub problem (DSP) 

To get an upper bound for the original problem early, 

ere we solve the dual sub problem. The dual variables 

 

1 
pi 

, v 2 
pj 

, v 10 
pj 

, v 11 
pj 

, v 3 
pj 

, v 4 
pj 

, v 5 
pj 

, v 6 
pj 

, v 7 
pi jv , v 

8 
pi jv , v 

9 
pi jv are considered for

onstraints ( 1.i )–( 1.vi ) and ( 2.i )–( 2.v ), respectively. The dual sub-

roblem (DSP) of our model is as follows: 

bjective function. 

inimise Z DSP 

 

∑ 

iεD 

∑ 

pεP 

v 1 
pi 

S p 
i 

+ 

∑ 

jεC 

∑ 

pεP 

v 4 
p j 

D 

p 
j 
+ 

∑ 

jεT 

∑ 

pεP 

v 5 
p j ̂

 x p 
j 
H j + 

∑ 

pεP 

∑ 

jεR 

v 6 
p j ̂

 x p 
j 
H j 

+ 

∑ 

iεD 

∑ 

jεT 

∑ 

pεP 

∑ 

v εV 

v 7 
pi jv 

ˆ N 

p 
i jv H v + 

∑ 

iεT 

∑ 

jεR 

∑ 

pεP 

∑ 

v εV 

v 8 
pi jv 

ˆ N 

p 
i jv H v 

+ 

∑ 

iεR 

∑ 

jεC 

∑ 

pεP 

∑ 

v εV 

v 9 
pi jv 

ˆ N 

p 
i jv H v 

(3) 

onstraints. Constraint associated with variable q 
p 
i jv ( iεD, jεT ) 

 

1 
pi + b p 

j 
v 2 p j + v 5 p j + v 7 pi jv ≤ P C p 

j 
+ �P E j + d i j ( V T C v / H v ) 

∀ pεP, ∀ iεD, ∀ jεT , ∀ v εV (3.i) 

Constraint associated with variable q 
p 
i jv ( iεT , jεR ) 

v 2 p j + v 3 p j + v 6 p j + v 8 pi jv ≤ P C p 
j 
+ �P E j + d i j ( V T C v / H v ) 

∀ pεP, ∀ iεT , ∀ jεR, ∀ v εV (3.ii) 

Constraint associated with variable q 
p 
i jv ( iεR, jεC ) 

v 3 p j + v 4 p j + v 9 pi jv ≤ d i j ( V T C v / H v ) ∀ pεP, ∀ iεR, ∀ jεC, ∀ v εV (3.iii) 

Constraint associated with variable I 1 t 

v 2 p j + v 2 ( p+1 ) j + v 10 
p j ≤ HC p 

j 
∀ jεT , p = 1 (3.iv) 

Constraint associated with variable I 
p 
t 

v 2 p j + v 2 ( p+1 ) j ≤ HC p 
j 

∀ jεT , ∀ pε[ 2 , P − 1 ] (3.v) 
8 
Constraint associated with variable I P t 

v 2 p j + v 11 
p j ≤ HC p 

j 
∀ jεT , p = P (3.vi) 

Constraint associated with variable DQ 

p 
t 

v 2 p j ≤ DC p 
j 

∀ pεP, ∀ jεT (3.vii) 

Constraint associated with variable B 
p 
r 

 

3 
p j ≤ B C p ∀ pεP, ∀ jεR (3.viii) 

 

1 
pi , v 

2 
p j , v 

3 
p j , v 

4 
p j , v 

10 
p j , v 

11 
p j are unrestricted (3.ix) 

 

5 
p j , v 

6 
p j , v 

7 
pi jv , v 

8 
pi jv , v 

9 
pi jv ≥ 0 (3.x) 

The constraints of the dual sub problem are given by ( 3.i )–

 3.x ), which constitute a polyhedron. For fixed values of the de- 

ign variables ( ̂ x 
p 
j 
), if the subproblem is feasible, then the DSP has 

 bounded solution, and an optimality cut is generated. At the 

ame time, if the subproblem is infeasible, then the DSP has an 

nbounded solution, and a feasibility cut will be constructs. 

.2. Benders master problem 

We solve the master problem MP ( x p 
j 
, y 

p 
i jv , N 

p 
i jv | ̂  q 

p 
i jv , ̂

 I 
p 
t , ̂

 DQ 

p 

t , 
ˆ B 

p 
r ) 

y transferring the subproblem solution to the original problem 

iven below. We add the Benders’ optimality and feasibility cuts 

o the master problem in each iteration. 

inimise Z MP 

 

∑ 

jεT 

∑ 

pεP 

F C j 
(
x p 

j 
− x p−1 

j 

)
+ 

∑ 

jεR 

∑ 

pεP 

F C j 
(
x p 

j 
− x p−1 

j 

)
+ 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 

+ 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v + 

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 

+�
∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v 

+�
∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v + �

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v + α

(4) 

Subject to 

 

p−1 
t ≤ x p t ∀ pεP, ∀ tεT (4.i) 

 

1 
t = 0 ∀ tεT (4.ii) 

 

p−1 
r ≤ x p r ∀ rεR, ∀ pεP (4.iii) 

 

p 
i jv ≤ x p 

j 
M ∀ iεD, ∀ jεT , ∀ v εV, ∀ pεP (4.iv)

 

p 
i jv ≤ x p 

i 
M ∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (4.v)

 

p 
i jv ≤ x p 

j 
M ∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (4.vi)

 

p 
i jv ≤ x p 

j 
M ∀ iεR, ∀ jεC, ∀ v εV, ∀ pεP (4.vii) 

 

p 
i jv ≤ y p 

i jv M ∀ iεD, ∀ jεT , ∀ v εV, ∀ pεP (4.viii)

 

p 
i jv ≥ y p 

i jv ∀ iεD, ∀ jεT , ∀ v εV, ∀ pεP (4.ix) 

 

p 
i jv ≤ y p 

i jv M ∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (4.x)

 

p 
i jv ≥ y p 

i jv ∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (4.xi) 



K.N. Reddy, A. Kumar, A. Choudhary et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; May 4, 2022;16:16 ] 

N

N

a

x

α

α

∑
i

4

g

a

s

v

t

t

b

f

t

q

4

(

t

t

l

p

 

c

r  

a

a

f

n

u

4

c

T

p

e

S

f

o

c

t

M

α

S

f

d

s

f

e

M

 

α

S

f

t

m

 

p 
i jv ≤ y p 

i jv M ∀ iεR, ∀ jεC, ∀ v εV, ∀ pεP (4.xii) 

 

p 
i jv ≥ y p 

i jv ∀ iεR, ∀ jεC, ∀ v εV, ∀ pεP (4.xiii) 

nd 

 

p 
j 
, y p 

i jv ε{ 0 , 1 } , N 

p 
i jv ≥ 0 and int 

Now, the Benders cut set (optimality and feasibility) related to 

is as follows: 

Benders optimality cut: 

≥ ∑ 

iεD 

∑ 

pεP 

ˆ v 1 ( k ) 
pi 

S p 
i 

+ 

∑ 

jεC 

∑ 

pεP 

ˆ v 4 ( k ) 
p j 

D 

p 
j 
+ 

∑ 

jεT 

∑ 

pεP 

ˆ v 5 ( k ) 
p j 

x p 
j 
H j 

+ 

∑ 

pεP 

∑ 

jεR 

ˆ v 6 ( k ) 
p j 

x p 
j 
H j 

+ 

∑ 

iεD 

∑ 

jεT 

∑ 

pεP 

∑ 

v εV 

ˆ v 7 ( k ) 
pi jv N 

p 
i jv H v + 

∑ 

iεT 

∑ 

jεR 

∑ 

pεP 

∑ 

v εV 

ˆ v 8 ( k ) 
pi jv N 

p 
i jv H v 

+ 

∑ 

iεR 

∑ 

jεC 

∑ 

pεP 

∑ 

v εV 

ˆ v 9 
pi jv N 

p 
i jv H v 

(4.xiv) 

Benders feasibility cut: 

 

εD 

∑ 

pεP 

ˆ v 1 ( k ) 
pi 

S p 
i 

+ 

∑ 

jεC 

∑ 

pεP 

ˆ v 4 ( k ) 
p j 

D 

p 
j 
+ 

∑ 

jεT 

∑ 

pεP 

ˆ v 5 ( k ) 
p j 

x p 
j 
H j + 

∑ 

pεP 

∑ 

jεR 

ˆ v 6 ( k ) 
p j 

x p 
j 
H j 

+ 

∑ 

iεD 

∑ 

jεT 

∑ 

pεP 

∑ 

v εV 

ˆ v 7 ( k ) 
pi jv N 

p 
i jv H v + 

∑ 

iεT 

∑ 

jεR 

∑ 

pεP 

∑ 

v εV 

ˆ v 8 ( k ) 
pi jv N 

p 
i jv H v 

+ 

∑ 

iεR 

∑ 

jεC 

∑ 

pεP 

∑ 

v εV 

ˆ v 9 
pi jv N 

p 
i jv H v ≤ 0 

(4.xv) 

We present the algorithm for BD below. 

.3. Enhancing the Benders algorithm 

Though BD is a finite scheme, the iterations required for conver- 

ence may be too large, or the algorithm fails to converge within 

 set time limit for many cases. For practical adoption of BD, re- 

earchers have proposed many acceleration strategies, as well as 

alid inequalities and heuristic methods. 

With reference to the literature mentioned in Section 2.2 , in 

he current research, initially, we present three valid inequalities 

o a better set of initial cuts by improving the quality of the lower 

ound. Furthermore, we present an algorithm to produce an initial 

easible solution. Finally, we develop a multi-stage strategy for ob- 

aining a (sub-optimal) solution to the master problem and attain 

uick convergence. 

.3.1. Valid inequalities 

Aside from the produced Benders cuts, Saharidis et al. 

2011) found that one of the reasons for slow convergence is that 

he lower bound has no strong valid inequalities (for the minimiza- 

ion case). Hence, to improve the lower bound and narrow the so- 

ution space, we propose the following valid inequalities for our 

roblem. 

a) Inequalities related to the location decision ∑ 

jεT 

x p 
j 
≥ 1 ∀ pεP (4.xvi) 

∑ 

jεR 

x p 
j 
≥ 1 ∀ pεP (4.xvii) 

Valid inequalities ( 4.xvi ) and ( 4.xvii ) ensure that at least one fa-

ility has to be located for processing the core returns in each pe- 

iod. Constraints ( 4.xvi ) and ( 4.xvii ) are associated with the testing

nd remanufacturing centers, respectively. 
9 
a) Supply inequality at the collection facility ∑ 

jεT 

∑ 

v εV 

N 

p 
i jv H v ≥ S p 

i 
∀ pεP, ∀ iεD (4.xviii) 

Valid inequality (4.xviii) ensures that the total core returns 

vailable at all the collection facilities should move to the testing 

acilities using a sufficient number of vehicles in each period ∀ pεP . 

a) The inequality for using a sufficient number of vehicles to move 

products between facilities ∑ 

iεR 

∑ 

v εV 

N 

p 
i jv H v ≥ b p 

j 

∑ 

iεD 

∑ 

v εV 

N 

p 
i jv H v ∀ pεP, ∀ jεT (4.xix) 

∑ 

iεT 

∑ 

v εV 

N 

p 
i jv H v ≤

∑ 

iεC 

∑ 

v εV 

N 

p 
i jv H v ∀ pεP, ∀ jεR (4.xx) 

Valid inequalities ( 4.xix ) and ( 4.xx ) guarantee that sufficient 

umbers of vehicles are used for the inflow and outflow of prod- 

cts at each facility. 

.3.2. Multi-stage strategy (MSS) 

It is noted that the master solution has an adverse effect on the 

onvergence of the bounds because of computational complexity. 

herefore, we develop a three-stage approach (similar to dynamic 

rogramming) to solve the master problem in each iteration. We 

xplain the stages in detail in the following. 

tage 1. This stage contains the decisions between the collection 

acilities and testing facilities. Here the decisions are the location 

f testing facilities, vehicle selection, and allocation between the 

ollection and testing facilities, as well as the vehicle quantity be- 

ween them. The mathematical model in this stage is as follows: 

inimize Z MP1 = 

∑ 

jεT 

∑ 

pεP 

F C j 
(
x p 

j 
− x p−1 

j 

)
+ 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 

+ �
∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v + α1 (5) 

Subject to ( 1.xii ), ( 1.xiii ), ( 1.xv ), ( 1.xix ), ( 1.xx ), ( 4.iii ), ( 4.v ) and 

1 ≥
∑ 

iεD 

∑ 

pεP 

ˆ v 1 ( k ) 
pi 

S p 
i 

+ 

∑ 

jεT 

∑ 

pεP 

ˆ v 5 ( k ) 
p j 

x p 
j 
H j + 

∑ 

iεD 

∑ 

jεT 

∑ 

pεP 

∑ 

v εV 

ˆ v 7 ( k ) 
pi jv N 

p 
i jv H v . 

(5.i) 

tage 2. In this stage, the decisions between testing and remanu- 

acturing facilities are made, given the stage 1 decisions. Here, the 

ecisions are the location of the remanufacturing facilities, vehicle 

election, and allocation between the testing and remanufacturing 

acilities, along with the vehicle quantity between them. The math- 

matical model in this stage is as follows: 

inimize Z MP2 

= 

∑ 

jεR 

∑ 

pεP 

F C j 
(
x p 

j 
− x p−1 

j 

)
+ 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 

+ �
∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v + α2 (6) 

Subject to ( 1.xiv ), ( 1.xvi ), ( 1.xvii ), ( 1.xxi ), ( 1.xxii ), ( 4.iv ), ( 4.vi ) and

2 ≥
∑ 

pεP 

∑ 

jεR 

ˆ v 6 ( k ) 
p j 

x p 
j 
H j + 

∑ 

iεT 

∑ 

jεR 

∑ 

pεP 

∑ 

v εV 

ˆ v 8 ( k ) 
pi jv N 

p 
i jv H v (6.i) 

tage 3. In this stage, decisions are made between the remanu- 

acturing facilities and facilities, given the stage 2 decisions. Here 

he decisions are vehicle selection and allocation between the re- 

anufacturing facilities and customer points as well as the vehicle 
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Algorithm 1 

Benders Decomposition Algorithm. 

Initialise LB , UB , Iteration , MaxIteration , gap and set BENDERS CUTSET empty 

Solve MP( x p 
j 
, y p 

i jv , N 
p 
i jv | . ) 

Set LB = Z MP 

While ( UB - LB ) ≤ gap and ( Iteration < MaxIteration ) do 

Iteration = Iteration + 1 

Solve DSP to obtain q p 
i jv , I 

p 
t , DQ p t , B 

p 
r 

If (DSP is feasible) 

Calculate UB = (Z DSP + Z MP – �(CUTSET)) 

Add optimality cut to BENDERS CUTSET 

else if (DSP is Infeasible) 

Add feasibility cut to BENDERS CUTSET 

end if 

Solve MP( x p 
j 
, y p 

i jv , N 
p 
i jv | ̂ q p 

i jv , ̂
 I p t , ̂

 DQ 
p 

t , ̂
 B p r ) 

Set LB = Z MP 

end while 

Solve SP( q p 
i jv , I 

p 
t , DQ p t , B 

p 
r | ̂ x p 

j 
, ̂  y p 

i jv , ̂
 N p 
i jv ) 

Report ˆ x p 
j 
, ̂  y p 

i jv , ̂
 N p 
i jv , ̂  q p 

i jv , ̂
 I p t , ̂

 DQ 
p 

t , ̂
 B p r and objective function value 

N

N

N

y

t

P

a

i

c

i

5

5

e

a

c

p

o

g

1  

c

m

uantity between them. The mathematical model in this stage is 

s follows: 

inimize Z MP3 = 

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 

+ �
∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v + α3 (7) 

Subject to ( 1.xvii ), ( 1.xxiii ), ( 1.xxiv ), ( 4.vii ) and 

3 ≥
∑ 

jεC 

∑ 

pεP 

ˆ v 4 ( k ) 
p j 

D 

p 
j 
+ 

∑ 

iεR 

∑ 

jεC 

∑ 

pεP 

∑ 

v εV 

ˆ v 9 pi jv N 

p 
i jv H v (7.i) 

We show the three-stage solution procedure in the form of a 

seudo-code in Algorithm 3 . Now, we present in Algorithm 3 the 

verall pseudo-code for BD with MSS combined with Algorithms 

 and 2 . 

.3.3. Algorithm for initial feasible solution 

Though we provide a multi-stage strategy to converge the 

ounds, the master solution in the initial iterations of the algo- 

ithm leads to a low-quality solution. Thus, we develop a simple 

wo-step algorithm to provide an initial feasible solution for im- 

roving the overall BD approach. Then we solve the sub problem 

o build an optimal solution with this solution. 

Step 1: In this step, consider that all the vehicles available for 

transporting goods between the facilities are homogeneous. 

Now, the objective function P 1 ( x 
p 
j 
| . ) in this step is as fol- 

lows: 

Minimse P 1 
(
x p 

j 
| . )

= 

∑ 

jεT 

∑ 

pεP 

F C j 
(
x p 

j 
− x p−1 

j 

)
+ 

∑ 

jεR 

∑ 

pεP 

F C j 
(
x p 

j 
− x p−1 

j 

)
+ 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

P C p 
j 
q p 

i jv 

+ 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

P C p 
j 
q p 

i jv + 

∑ 

tεT 

∑ 

pεP 

I p t HC p t 

+ 

∑ 

tεT 

∑ 

pεP 

DQ 

p 
t DC p t + 

∑ 

rεR 

∑ 

pεP 

B 

p 
r B C p 

+ 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v + 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 

+ 

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v + 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

q p 
i jv d i j ( V T C v / H v ) 

+ 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

q p 
i jv d i j ( V T C v / H v ) 

+ 

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

q p 
i jv d i j ( V T C v / H v ) + �

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v 

+�
∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v + �

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v 

+�
∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

P E j q 
p 
i jv + �

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

P E j q 
p 
i jv 

(8) 

Subject to ( 1.i ) to ( 1.xvi ) 

We use the solution of P 1 ( x 
p 
j 
| . ) to make decisions on the loca- 

ions of the testing and remanufacturing facilities, which are fixed 

n the next step. 

Step 2: In step 2, consider that the vehicles available to move 

goods between the facilities are heterogeneous. Now, for 

known values of facility locations, product flows from the 

previous step, the objective function P 2 ( y 
p 
i jv , N 

p 
i jv | ˆ x 

p 
j 
, ̂  q 

p 
i jv ) 
10 
is as follows: 

Minimise P 2 
(
y p 

i jv , N 

p 
i jv | ˆ x p 

j 
, ̂  q p 

i jv 

)
= �

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v 

+�
∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v + �

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv E v 

+ 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v + 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 

+ 

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

N 

p 
i jv F T C v 

+ 

∑ 

iεD 

∑ 

jεT 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv V T C v + 

∑ 

iεT 

∑ 

jεR 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv V T C v 

+ 

∑ 

iεR 

∑ 

jεC 

∑ 

v εV 

∑ 

pεP 

d i j N 

p 
i jv V T C v 

(9) 

Subject to ( 1.xv ) to ( 1.xxiv ) and 

 

p 
i jv H v ≥ ˆ q p 

i jv ∀ iεD, ∀ jεT , ∀ v εV, ∀ pεP (9.i) 

 

p 
i jv H v ≥ ˆ q p 

i jv ∀ iεT , ∀ jεR, ∀ v εV, ∀ pεP (9.ii) 

 

p 
i jv H v ≥ ˆ q p 

i jv ∀ iεR, ∀ jεC, ∀ v εV, ∀ pεP (9.iii) 

 

p 
i jv ∈ { 0 , 1 } , N 

p 
i jv ≥ 0 . 

Constraints ( 9.i - 9.iii ) represent the inequalities added in 

his phase after fixing the product flows. The solution to 

 2 ( y 
p 
i jv , N 

p 
i jv | ˆ x 

p 
j 
, ̂  q 

p 
i jv ) gives the vehicle selection and allocation 

long with the vehicle quantity among the facilities. We illustrate 

n Algorithm 4 the solution procedure in the form of a pseudo- 

ode. 

Now, we present in Algorithm 5 the overall pseudo-code for the 

mproved BD (IBD) combined with Algorithms 2 and 4 . 

. Results and discussion 

.1. Computational experiments 

In this section, we report the results obtained by conducting 

xhaustive computational studies to assess IBD’s performance. We 

lso compare IBD with the exact method (classical branch-and- 

ut), classical BD, and BD-MSS. To provide managerial insights to 

ractitioners, we present a case example to illustrate the impacts 

f carbon emissions and the choice of the vehicle fleet (e.g., homo- 

eneous vs. heterogeneous). 

For all our experiments, we employed ILOG CPLEX (version 

2.5) using C ++ API on a PC with an Intel Core i5 2.90 GHz pro-

essor and 16 Gigabyte RAM to solve the problems. We set the ter- 

ination criterion for the CPLEX solution method at 10,800 s or 
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Algorithm 2 

To find a master solution for BD. 

Stage-1: Solve Master problem MP1( x p 
i 
, y t 

i jv , N 
p 
i jv | ̂ v 1 pi 

, ̂ v 5 
p j 

, ̂ v 7 
pi jv ) for i ∈ D, j ∈ T 

record ˆ x p 
i 
, ˆ y t 

i jv , ̂
 N p 
i jv 

Stage-2: Solve Master problem MP2( x p 
i 
, y t 

i jv , N 
p 
i jv | ̂ v 6 p j 

, ̂ v 8 
pi jv , ̂  x p 

k 
, ̂  N p 

ki v ) for i ∈ T, j ∈ R, k ∈ D 
record ˆ x p 

i 
, ˆ y t 

i jv , ̂
 N p 
i jv 

Stage-3: Solve Master problem MP3( x p 
i 
, y t 

i jv , N 
p 
i jv | ̂ v 4 p j 

, ̂ v 9 
pi jv , ̂  x p 

k 
, ̂  N p 

ki v ) for i ∈ R, j ∈ C, k ∈ T 
record ˆ y t 

i jv , ̂
 N p 
i jv 

Algorithm 3 

Benders decomposition with Multi-Stage Strategy (BD-MSS). 

Initialize UB =+ ∞ , LB = - ∞ , Iterations, Gap = 0, loop = 0, ε; 

Solve MP( x p 
j 
, y p 

i jv , N 
p 
i jv | . ) 

Evaluate LB = Z MP 

do { 

Solve dual sub problem 

DSP 

(
v 1 

pi 
, v 2 

p j 
, v 3 

p j 
, v 4 

p j 
, v 5 

p j 
, v 6 

p j 
, v 7 

pi jv , v 
8 
pi jv , v 

9 
pi jv , v 

10 
p j 

, v 11 
p j 
| 

ˆ x p 
j 
, ˆ N p 

i jv 

)
record ˆ v 1 

pi 
, ̂ v 2 

p j 
, ̂ v 3 

p j 
, ̂ v 4 

p j 
, ̂ v 5 

p j 
, ̂ v 6 

p j 
, ̂ v 7 

pi jv , ̂ v 
8 
pi jv , ̂ v 

9 
pi jv , ̂ v 

10 
p j 

, ̂ v 11 
p j 

Evaluate UB = Z DSP + ( Z MP − α( cutset ) ) 

If DSP is infeasible, 

generate Benders feasibility cut (BFC) 

else 

generate Benders optimality cut(BOC) 

Gap = ( ( UB − LB ) /LB ) ∗ 100 

Find Master Solution using Algorithm 2 

Evaluate LB = Z MP 

loop ++ 

} while (loop 〈 Iterations && Gap 〉 ε) 

Solve P SP ( q p 
i jv , I p 

j 
, DQ p 

j 
, B p 

j 
| ̂ x p 

j 
, ˆ N p 

i jv ) 

Report ˆ q p 
i jv , 

ˆ I p 
j 
, ̂  DQ 

p 

j , ̂
 B p 
j 
, ̂  x p 

j 
, ˆ N p 

i jv and 

The objective value Z ∗= UB. 

Algorithm 4 

An initial feasible solution for BD. 

Phase 1: Set V = 1 

solve the P 1 ( x 
p 
j 
| . ) 

record x p 
j 
, q p 

i jv values 

Phase 2: solve the P 2 ( y 
p 
i jv , N p 

i jv | ˆ x p 
j 
, ̂  q p 

i jv ) 

record y p 
i jv , N p 

i jv values 
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p
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.1% optimality gap ( Easwaran & Üster, 2009 , 2010 ; Jeihoonian et 

l., 2016 b). We terminated the BD, BD-MSS, and IBD algorithms 

f one of the following conditions was satisfied: the gap between 

he bounds was below the threshold value of 2, and the maximum 

umber of iterations was fixed at 100. 

.1.1. Data generation 

We used data from previously published research ( Choudhary, 

arkar, Settur & Tiwari, 2015 ; Pishvaee et al., 2009 ), and emissions 

eports from the center for Science and Environment (CSE) and the 

entral Pollution Control Board (CPCB). Table 3 lists the different 

ost parameters (e.g., fixed costs for locating facilities and process- 

ng costs for testing and remanufacturing) and yields of core re- 

urns, along with the demand and capacity of facilities and the 

istances between the facilities. We consider three types of vehi- 

les, namely petrol, diesel, and hybrid vehicles, each with different 

apacity levels, i.e., 60, 80, and 100. 

.2. Test instances 

To assess the performance of the proposed solution approach, 

e generated a set of 12 problem configurations/classes (with five 

roblem instances for each) ( Soleimani & Govindan, 2014 ). There- 

ore, we generated a total of 60 problem instances from these 

roblem configurations. We developed these problem classes by 

arying the planning horizon length (P), the number of potential 
11 
ocations for the testing facilities (T), and the remanufacturing fa- 

ilities (R). The configurations range from networks of planning 

orizon lengths of six, ten potential locations for the testing facili- 

ies, and three potential locations for the remanufacturing facilities 

6 × 30 × 10 × 3) up to 12 × 30 × 20 × 5 ( Table 4 ). 

To explain the complexity of problem configurations, we 

resent the number of constraints and variables in Table 4 . For 

xample, I12 has 92,641 (out of which around 60% are integer 

nd binary variables) and 127,660 constraints. Table 3 shows that 

he problem complexity increases with the number of constraints 

nd variables, which motivates us to implement IBD and solve the 

roblems. In the following section, we present an analysis of the 

esults for various configurations. 

.3. Computational results 

As mentioned above, we solve each problem configuration us- 

ng the branch-and-cut approach (known as the exact method), the 

D approach, the BD approach with the multi-stage strategy, and 

he BD approach with heuristic improvements (IBD). To see the av- 

rage behaviors of the solution methods, we present the resulting 

eans and standard deviations (SD) in Table 5 . We use the re- 

ults obtained by the exact method using the CPLEX solver as the 

enchmark solutions for comparison and validation of the test re- 

ults. We measure the performance of the proposed IBD mainly by 

he computational time and solution gap (%), which we present in 

he following sections. 

.3.1. A comparative study of the computational time 

We compare the solution approaches with respect to the com- 

utational time. Table 6 represents the computational times for the 

nstances using all solution methods. From Table 6 , we observe 

hat, initially, the classical BD finds the solutions for all the in- 

tances within a reasonable time. However, as the instance size 

ncreases, the classical BD and exact methods take more time to 
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Table 3 

Input parameters data. 

Parameter Value Units Parameter Value Unit 

D p c ∼U(350, 100) Units of Product F C t Carbon inefficient: 0.16 

Carbon efficient: 0.32 

$ per unit capacity 

H t 1000 Units of products F C r Carbon inefficient: 0.24 

Carbon efficient: 0.40 

$ per unit capacity 

P E j Carbon inefficient: 0.5 

Carbon-efficient: 3.0 

Kilos of CO 2 per 

product 

PC p t ∼U (0.24, 0.55) $ per unit 

� 0.0625 $ per kilo of CO 2 PC p r ∼U (0.40, 0.78) $ per unit 

b p t ∼U (0.6, 0.9) —– HC p t ∼U (0.1, 0.2) $ per unit per period 

d dt ∼U (20, 50) km DC p t ∼U (0.05, 0.10) $ per unit 

d tr ∼U (40, 90) km B C p 1.78 $ per unit 

d rc ∼U (30, 70) km 

Table 4 

Problem configurations. 

Testconfiguration (P x D x T x R) 

Variables 

Constraints Binary Integer Continuous Total 

I1 6 × 30 × 10 × 3 7638 7560 7699 22,897 31,394 

I2 6 × 30 × 10 × 5 9090 9000 9151 27,241 37,550 

I3 6 × 30 × 15 × 3 10,638 10,530 10,729 31,897 43,644 

I4 6 × 30 × 15 × 5 12,270 12,150 12,361 36,781 50,700 

I5 6 × 30 × 20 × 3 13,638 13,500 13,759 40,897 55,894 

I6 6 × 30 × 20 × 5 15,450 15,300 15,571 46,321 63,850 

I7 12 × 30 × 10 × 3 15,276 15,120 15,397 45,793 62,768 

I8 12 × 30 × 10 × 5 18,180 18,000 18,301 54,481 75,080 

I9 12 × 30 × 15 × 3 21,276 21,060 21,457 63,793 87,258 

I10 12 × 30 × 15 × 5 24,540 24,300 24,721 73,561 101,370 

I11 12 × 30 × 20 × 3 27,276 27,000 27,517 81,793 111,748 

I12 12 × 30 × 20 × 5 30,900 30,600 31,141 92,641 127,660 

Table 5 

Comparison of the solution approaches in terms of the objective function value. 

Testconfiguration 

Exact BD BD-MSS IBD 

Mean SD Mean SD Mean SD Mean SD 

I1 155,382 3862.31 158,658 3735.06 161,613 3335.63 159,352 3619.71 

I2 153,234 1583.27 156,151 1429.13 159,497 1311.73 157,386 2256.97 

I3 155,213 943.147 159,538 943.568 161,899 2103.59 161,327 1079.05 

I4 153,479 1489.37 157,808 1965.73 161,254 1863.18 157,243 1594.32 

I5 156,973 2140.44 163,186 3051.46 164,952 2256.67 162,497 2291.5 

I6 153,903 3963.41 160,590 3214.39 161,122 4291.56 158,175 4470.95 

I7 307,553 5419.99 313,011 4974.61 320,452 4697.32 319,622 7673.33 

I8 303,612 847.72 309,502 829.402 327,305 17,370.7 313,628 1251.82 

I9 307,999 2641.85 315,434 2814.16 321,957 4242.53 315,492 4536.61 

I10 302,592 5253.24 309,483 5357.36 316,992 5214.24 310,506 3180.3 

I11 307,434 2072.05 314,827 1726.51 325,628 3291.14 315,934 4420.3 

I12 302,124 5624.5 311,303 4798.87 319,912 6343.99 311,965 4823.65 
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r  
olve the problem. For example, for the I11 and I12 instances, both 

he exact and BD-based methods take more than 10,800 seconds, 

hereas IBD requires around 60 seconds. In general, IBD requires 

0 seconds, on average, to produce a near-optimal solution. Fig. 2 

resents the box plot for a comparison of the computational times 

mong the solution methods. From Fig. 2 , we see that BD-MSS and 

BD require very little time to find solutions for the test instances. 

From the presented analysis, we conclude that BD-MSS and IBD 

erform better than the exact method and classical BD in terms 

f computational time. In the next section, we examine solution 

uality with respect to the exact method. 

.3.2. A comparative study of solution gap 

In the last section, we established the efficient performance of 

BD with respect to the computational time. To study the effective- 

ess of IBD, we compare the obtained objective values with those 

f the exact method for the test problems. We calculate the solu- 

ion gap for each problem configuration as follows: 

olution gap ( % ) = 100 ∗
(
( V a l SolMethod − V a l Exact ) / V a l Exact 

)

12 
Fig. 3 presents the solution gaps for BD, BD with MSS, and IBD 

or the generated test problems. From Fig. 3 , we observe that BD 

nd BD-MSS produce solutions with an average gap of 3.08% and 

.04%, respectively, whereas IBD produces solutions with an aver- 

ge gap of 2.65%. Therefore, we conclude that IBD is more efficient 

s it produces better solutions than the other methods in most in- 

tances in less time. 

.4. Managerial implications 

To understand the effect of carbon emissions and choice of 

ehicle, we consider the following setting. Assuming that re- 

urns are collected from 16 collection facilities (also 16 customer 

oints) located at various regions over a 5-year planning hori- 

on. There are seven and four potential locations for testing and 

emanufacturing facilities, respectively. This setting results in a 

ILP formulation with 13.027 constraints and 9334 variables (3115 

inary; 6219 continuous). 

The product return data is generated uniformly based on the 

eturn rate in the range of 0.5–0.8 ( Table 7 ). The data regarding
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Table 6 

Computational time comparison among the various solution methods. 

Testconfiguration 

Exact BD BD-MSS IBD 

Mean SD Mean SD Mean SD Mean SD 

I1 1752.06 1528.82 187.33 150.41 94.01 80.03 6.15 1.80 

I2 4032.02 4123.69 179.48 133.73 95.49 131.67 29.03 51.36 

I3 5256.44 3859.48 1854.29 2422.28 411.33 275.49 26.71 13.84 

I4 10,800.32 0.03 977.73 787.69 178.37 123.62 20.10 13.66 

I5 8849.32 2742.18 262.93 39.54 401.96 96.88 60.71 31.44 

I6 10,522.53 621.33 314.68 185.06 273.01 76.08 38.77 18.09 

I7 3348.45 2582.74 1046.62 1096.95 148.44 45.39 9.33 3.44 

I8 6476.66 2975.22 823.26 422.99 432.58 634.80 9.77 1.88 

I9 8037.68 2461.67 8056.97 5256.61 606.25 508.44 18.75 5.94 

I10 8658.32 3139.66 5625.28 2773.65 757.97 274.45 22.83 6.87 

I11 8397.80 3481.66 ≥10,800 ≥10,800 1297.92 650.35 64.44 20.27 

I12 10,803.83 4.74 ≥10,800 ≥10,800 824.46 615.45 56.06 27.82 

Fig. 2. Box Plot Showing comparison of average computational time for different solution methods. 

Table 7 

Product return data at collection facilities. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

T2 296 199 219 318 194 337 282 271 264 199 239 256 224 119 88 175 

T3 396 100 172 275 347 213 156 250 123 212 165 210 263 195 302 365 

T4 304 213 257 228 288 256 183 228 134 302 298 265 262 269 234 237 

T5 243 247 336 196 184 253 199 234 181 216 316 181 199 234 198 314 

Fig. 3. Average Solution gap (%). 
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xed costs, carbon footprint, capacity, and unit processing costs are 

resented in Table 8 for testing and remanufacturing facilities. 
13 
Furthermore, the emission costs are incurred through process- 

ng at facilities and transport. Transport costs are calculated based 

n the number of vehicles used and the distance between facilities. 

e have considered a heterogeneous vehicle fleet with different 

apacity levels. The fixed costs, variable costs, and capacities, along 

ith CO 2 emissions for various vehicles, are presented in Table 9 . 

.4.1. Impact of carbon emissions on the network 

To understand the impact of emission costs on the formulated 

odel, we tested our model on two cases, namely case 1 (RLN de- 

ign model with emission costs) and case 2 (RLN design model 

ithout emission costs). The location decisions are different for 

oth testing and remanufacturing facilities in these two cases. Test- 

ng facilities are located at potential locations 1, 3, 4, and 5 in case 

 vs potential locations 1, 2, 3, and 4 in case 2. In case 1, loca-

ion 5 is preferred over location 2 because it is carbon-efficient, 

lthough it has a higher fixed cost than 2. It is interesting to note 

hat the facility is not located at location 6 in both cases because 

t is carbon-inefficient (though it has a low fixed cost) but has a 

igher average distance from successive and preceding facilities. 

Similarly, considerable changes are found in the location of re- 

anufacturing facilities upon consideration of emission costs. Re- 
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Table 8 

Capacity, carbon footprint, and cost parameters at facilities. 

Testing facilities Remanufacturing Centers 

1 2 3 4 5 6 7 1 2 3 4 

Fixed Cost 250 250 420 420 420 250 250 1200 700 700 1200 

Footprint 3 3 0.5 0.5 0.5 3 3 0.5 3 3 0.5 

Max. Capacity 1000 1000 1000 1000 1000 1000 1000 1400 1400 1400 1400 

Processing Cost T2 0.34 0.29 0.25 0.35 0.26 0.38 0.40 0.89 0.63 0.87 0.96 

T3 0.49 0.44 0.33 0.53 0.43 0.33 0.35 0.95 0.83 0.61 0.82 

T4 0.48 0.34 0.40 0.25 0.27 0.49 0.28 0.69 0.78 0.90 0.74 

T5 0.46 0.30 0.46 0.48 0.50 0.33 0.46 0.77 0.90 0.86 0.71 

Table 9 

Cost, capacity, and CO2 emission parameters of different vehicles. 

Parameter Small (V 1 ) Medium (V 2 ) Large (V 3 ) 

Fixed Cost ($) 1.5625 1.875 3.125 

Variable Cost ($ per km) 0.185 0.185 0.185 

Capacity 60 80 100 

Carbon Footprint 0.25 0.30 0.45 

Table 10 

Various costs (in $) in the entire planning horizon. 

Cost Case 1 Case 2 

Fixed Cost 3910 3240 

Processing Cost 15,049 14,587 

Disposal Cost 29 5 

Inventory Cost 18 24 

Fixed Transport Cost 1494 1614 

Variable Transport Cost 45,188 42,548 

Purchase Cost 41,000 41,400 

Total (WoC) 106,687 103,417 

Emission Cost - Production 1391 0 

Emission Cost- Transport 6100 0 

Total 114,178 103,417 
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anufacturing facilities are located at locations 1 and 4 in case 1 

nd locations 2 and 4 in case 2. In case 1, location 1 is preferred

ver location 4 due to its carbon efficiency, which leads to a re- 

uction in emissions via production, although it has a higher fixed 

ost and a higher-than-average remanufacturing cost. The remanu- 

acturing facility is not located at location 3 due to its carbon inef- 

ciency as well as the high inbound and outbound distances from 

acilities. 

Interestingly, the purchased quantity is less in case 1, although 

here is high disposal here compared to case 2; this is due to high

ecovery and effective utilisation of core returns. It has also been 

ound that the decision on inventory and disposal was steered 

ased on the limited capacity of remanufacturing facilities. 

The total cost and other costs like fixed cost and processing 

osts related to the two cases are presented in Table 10 . The fixed

ost is higher in case 1 compared to case 2 due to the location of

arbon-efficient facilities. Moreover, the processing costs are higher 

n case 1 compared to case 2 because of the high testing cost and

he processing of more core returns. The purchase cost in case 1 

s relatively low compared to case 2; this is due to the effective 

tilisation of core returns and low purchase quantity. Fixed trans- 

ort cost in case 1 is relatively high compared to case 2; this is 

ecause of the need for more vehicles to move goods between 

acilities. However, the variable transport cost is high in case 1 be- 

ause more distance is covered between its facilities. 

Interestingly, the total cost in case 1 is only 2.5% higher than 

n case 2 when emissions are not considered. The total emissions 

ost (due to production and transport) for case 1 is found to be 

S$8244. It should be noted that overall emissions from produc- 

ion in case 2 are almost 2.5 times that of case 1 due to the instal-

ation of carbon-inefficient facilities ( Table 11 ). Moreover, the emis- 
14 
ions from transport in case 2 are 10% higher than case 1 because 

he former uses more vehicles to move products. 

.4.2. Choice of vehicle fleet 

To observe the importance of heterogeneous vehicle fleets 

large, medium, and small capacities) in the model, we com- 

ared the results against the homogeneous vehicle fleet for large, 

edium, and small capacities. In this regard, we presented four 

ases: case 1: heterogeneous vehicle fleet; case 2: homogeneous 

ehicle fleet with large capacity; case 3: homogeneous vehicle fleet 

ith medium capacity; and case 4: homogeneous vehicle fleet 

ith small capacity. 

From Fig. 4 , we see that taking into account the heterogeneous 

r homogeneous vehicle fleet does not affect the location of fa- 

ilities. Moreover, there is not much variation in purchase quan- 

ity, disposal, and inventory quantities. However, the flow of prod- 

cts between facilities does change with the consideration of a ho- 

ogeneous fleet. This happens mainly because of the requirement 

or more vehicles and higher fixed transport costs ( Table 12 ). The 

xed transport cost for all cases follows the following order: case 

 < case 2 < case 3 < case 4. From the results, it can be observed

hat the variable transport cost is greater for case 1. A comparison 

f overall total costs for all cases is presented in Fig. 4 . 

From Table 12 , we can infer that the usage of a heterogeneous 

eet reduces emissions while compromising cost in comparison to 

he homogeneous fleet. Essentially, the usage of a heterogeneous 

ehicle fleet significantly decreases the environmental and fixed 

ransport cost but inversely impacts the variable transport cost. 

ithin the homogeneous vehicle fleet, the use of large-capacity 

ehicles produces fewer emissions and costs compared to a homo- 

eneous fleet with medium- and small-capacity vehicles. Another 

bservation worth noting here is that flow routes/arcs for the net- 

ork depend on the fleet’s composition, which affects both eco- 

omic and environmental costs. For instance, networks with a het- 

rogeneous vehicle fleet help to optimise environmental aspects of 

 network such as emissions by selecting a suitable vehicle, de- 

ending on the quantities and distances involved. 

.4.3. Applicability of model to real-world case and managerial 

nsights 

Our research provides insights that various manufacturing in- 

ustries could use to make decisions related to facilities location, 

ehicle selection, and allocation for product flow while achiev- 

ng environmental sustainability. It is important to highlight that 

ur research can be beneficial in modelling high volume, hyper- 

ocal returns of small-size products such as household appliances 

 Alumur Sibel et al., 2012 ; Jeihoonian et al., 2016 b), healthcare 

ector ( Alizadeh, Makui & Paydar, 2020 ; Kargar, Paydar & Safaei, 

020 ), the fashion industry ( Aravendan & Panneerselvam, 2016 ), 

lectronic goods ( John, Sridharan & Ram Kumar, 2018 ), and Bat- 

ery industry ( Reddy et al., 2019 ). Interestingly, we have considered 

 reverse logistics system with remanufacturing, but our solution 

pproach, specifically a multi-stage strategy that divides the prob- 

em into various echelons, can suitably handle other reverse logis- 
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Table 11 

Emissions due to production and transport. 

Case 1 Case 2 

Cost ($) 

Emissions (Kg of 

CO2) Emission Cost ($) Cost ($) 

Emissions (Kg of 

CO2) Emission Cost ($) 

Production Testing facilities 5915 16,651 1041 5755 36,142 2252 

Remanufacturing 

facilities 

9134 5595 350 8616 18,617 1160 

Total 15,049 22,246 1391 14,371 54,759 3411 

Transport D to T 8662 16,740 1046 8651 22,451 1403 

T to R 5600 9115 570 5427 11,935 746 

R to C 32,420 71,742 4484 30,084 73,170 4573 

Total 46,682 97,597 6100 44,162 107,556 6722 

Fig. 4. Total cost comparison for heterogeneous vehicle fleet vs. homogeneous vehicle fleet. 

Table 12 

Fixed, variable, and emissions cost from transport for all cases. 

Cost Heterogeneous Homogeneous- Large Homogeneous- Medium Homogeneous- Small 

Case 1: Fixed 

Transport Cost 

1494 1647 1829 2321 

Case 2: Variable 

Transport Cost 

45,188 44,386 44,974 45,078 

Case 3: Emission Cost –

Transport 

6100 6854 7658 9809 

Algorithm 5 

Improved Benders decomposition (IBD). 

Initialize UB =+ ∞ , LB = - ∞ , Iterations, Gap = 0, loop = 0, ε; 

Construct the initial feasible solution using Algorithm 4 

Evaluate LB = Z MP 

do { 

Solve dual sub problem 

DSP 

(
v 1 

pi 
, v 2 

p j 
, v 3 

p j 
, v 4 

p j 
, v 5 

p j 
, v 6 

p j 
, v 7 

pi jv , v 
8 
pi jv , v 

9 
pi jv , v 

10 
p j 

, v 11 
p j 
| 

ˆ x p 
j 
, ˆ N p 

i jv 

)
record ˆ v 1 

pi 
, ̂ v 2 

p j 
, ̂ v 3 

p j 
, ̂ v 4 

p j 
, ̂ v 5 

p j 
, ̂ v 6 

p j 
, ̂ v 7 

pi jv , ̂ v 
8 
pi jv , ̂ v 

9 
pi jv , ̂ v 

10 
p j 

, ̂ v 11 
p j 

Evaluate UB = Z DSP + ( Z MP − α( cutset ) ) 

If DSP is infeasible, 

generate Benders feasibility cut (BFC) 

else 

generate Benders optimality cut(BOC) 

Gap = ( ( UB − LB ) /LB ) ∗ 100 

Find Master Solution using Algorithm 2 

Evaluate LB = Z MP 

loop ++ 

} while (loop 〈 Iterations && Gap 〉 ε) 

Solve P SP ( q p 
i jv , I p 

j 
, DQ p 

j 
, B p 

j 
| ̂ x p 

j 
, ˆ N p 

i jv ) 

Report ˆ q p 
i jv , 

ˆ I p 
j 
, ̂  DQ 

p 

j , ̂
 B p 
j 
, ̂  x p 

j 
, ˆ N p 

i jv and 

The objective value Z ∗= UB. 
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ics paradigms such as refurbishing, recycling, disposal, and repair. 

or example, an open box return from the e-commerce industry 

an easily be configured by removing the remanufacturing facil- 

ty from the network. For the household appliances network, the 

emanufacturing centre is replaced by a repair centre. Our study 

elps decision-makers to quickly redesign their systems to respond 

o emergent policies anticipating new carbon emissions rules and 

egulations. Many countries across the world are planning to adopt 

 100% electric vehicle policy by 2030. Our study can help organi- 

ations to carry out a feasibility study to realize the advantages of 

ecoming an initial first mover in such a scenario. This internal- 

zation of externalities into the operations of systems provides a 

ealistic view of the environmental and social costs of doing busi- 

ess. As mentioned earlier, while our model could apply to several 

ndustries, we use a specific example of the tire industry ( Pedram 

t al., 2017; Sasikumar, Kannan & Haq, 2010 ). Table 13 in the ap-

endix shows how different characteristics included in our model 

elate to the tire industry context and therefore demonstrate our 

odel’s real-world applicability. 

. Conclusion 

In this paper, we present a MILP model to design RLN inte- 

rated with carbon footprint in which the facility location deci- 

ions are optimised, and the vehicle allocations in each arc be- 

ween the facilities are made. We consider the carbon footprint 

rom both processing at the facilities and distribution between the 

acilities. Considering a single objective type of optimisation pro- 

ides the decision-makers with insights into the nature of the 

roblem. We propose a BD-based heuristic, namely IBD , to find 

 quality solution within a reasonable time. This will help man- 

gers to find near-optimal solutions within a reasonable time for 

ach instance. We illustrate all the solution approaches through 12 

roblem configurations of different sizes and compare their perfor- 

ance with the CPLEX solver. 

Furthermore, to help managers, we examine the impacts of car- 

on emissions and the choice of the vehicle fleet. It is worth noting 

hat the difference in the total cost between the cases where the 

arbon cost is and is not considered is a mere 2.5%. This increase 

n cost is attributed to investment in carbon-efficient technologies 

or the facilities as well as vehicles. Thus, it is not difficult to en-

isage that, in the long run, once the technology matures, sustain- 

ble practices are no more a burden but would result in a win-win 

ituation for manufacturing industries with a lesser environmental 

mpact and higher profits. Furthermore, our analysis asserts that 

he choice of the vehicle fleet affects the location decision in the 

etwork and noticeably reduces the carbon footprint. 

This study provides improvements and extensions on previ- 

us remanufacturing network designs, but it has limitations and 

ould be improved in several ways. First, the model can be ex- 

ended by allowing inventory at different echelons and considering 

ther pertinent operational decisions. Secondly, the model deci- 

ions could be examined considering different carbon policies such 

s carbon cap and trade. Furthermore, in line with Choudhary, De, 

hmed and Shankar (2021) , we have considered various opera- 

ional and tactical environmental key performance indicators (KPIs) 

n our modelling effort, including GHG emissions, waste manage- 

ent, resources utilization, risk management, etc. However, the 

resent research explicitly doesn’t model other key environmen- 

al performance indicators, including strategic level environmental 

PIs related to innovation and improvement, government regula- 

ions, compliance to regulations, and quality management. Thus, 

ncorporating other strategic KPIs into the modelling framework 

ould be an interesting future research direction. 
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