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Abstract

The analysis of brain images poses many challenges from a statistical per-

spective. First, these images are usually high-dimensional (sometimes millions

of data points for each image), therefore a statistical analysis based on scalable

techniques is often required. Second, these data exhibit clear spatial dependence

due to the differences in structures and functions of the brain regions.

Functional data analysis is a modern branch of statistics aimed at analysing

data that are in the form of functions. Many tools from multivariate analysis and

nonparametric smoothing are used in functional data analysis to reduce noise

and perform dimension reduction.

This thesis shows three applications of functional data analysis for large-scale

3-dimensional brain images, mainly focusing on prediction of scalar and imag-

ing outcomes. A workflow for building prediction intervals for scalar outcomes

from 3D covariates is devised and applied for the prediction of individual chrono-

logical age from brain anatomical images. Then, a framework for the analysis of

functional data with spatially-dependent mean-variance relationship and skew-

ness is described, with an application to structural imaging. At last, a functional

imaging problem is studied: the prediction of a task-evoked response image from

resting-state data is achieved through an image-on-image regression model.

The results discussed in this thesis are mostly comparable with more compli-

cated machine-learning approaches available in the literature, while being more

easily interpretable and often more computationally appealing. Functional data

analysis might represent a valid option for the statistical analysis of brain images

even in high-dimensional setting.
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Chapter 1

Introduction

1.1 Neuroimaging data analysis

In the last decades, neuroimaging has provided great contributions towards a

deeper understanding of the human brain, thanks to the large number of non-

invasive techniques devised to display the anatomy or the functionality of the

brain. In basic neuroscience, it has changed the way to identify the links between

structural features and functional architecture of the brain. In the clinical prac-

tice, it represents an invaluable tool to support the diagnosis and monitor the

progression of diseases which figure among the global health burdens in terms

of deaths and years spent with disability, with substantial impact on social care,

healthcare expenditures and on the quality of life of patients, caregivers and fam-

ily members.

From the perspective of a statistician, the opportunities offered by neuroimag-

ing are countless. Brain data come indeed in many fashions: high-dimensional

multivariate measurements, longitudinal and time-to-event observations or mul-

tiple images recorded over time. The room for new research avenues in terms of

1



1. INTRODUCTION

data analysis driven by neuroscientific questions is growing and multidisciplinary

approaches are becoming common, if not necessary.

Restricting the attention only to imaging data, there are at least two impor-

tant statistical issues that need to be addressed. Images come as large arrays of

data which are recorded in pixels (or voxels, the analogous unit for 3-dimensional

scans). The spatial characteristics encoded in the brain signal represent a ma-

jor challenge for statistical modelling. Brains are indeed different between sub-

jects, and even multiple scans on the same individual show distortions due to

head motion artifacts, for example. These aspects are usually taken care in a se-

ries of preprocessing steps aimed at registering (or warping) the brain images to a

common space and masking, i.e. subsetting the part of the image which refers to

brain tissues and discarding those areas outside the brain. More important, the

signal within the brain is spatially structured, meaning that the values recorded at

neighbouring locations are often correlated. The partition in voxels is not indica-

tive of physiologically compartments but it is a discretisation coming from the

acquisition method; the underlying signal is actually considered to be smooth,

showing gradual changes over different brain regions.

The other relevant issue in current neuroimaging studies is the data size. The

technological advancement and the growth of worldwide research collaborations

have reshaped the whole data collection process, moving in just a few decades

from small studies of tens of subjects to multicenter initiatives with thousands of

participants. This is the case for example of ADNI (Mueller et al., 2005), a repos-

itory of demographic, clinical and imaging data aimed at finding biomarkers of

early Alzheimer’s disease, or UK Biobank (Sudlow et al., 2015, Miller et al., 2016),

a large biomedical database including lifestyle, genetic and health information

which currently counts approximately half a million UK subjects (with the plan

of obtaining brain scans for almost a fifth of them, as per Littlejohns et al., 2020).

The improvement has also impacted on the image resolution, that in turn affects

the number of data points recorded for each subject. The combination of higher

sample size and higher resolution make even loading the data in memory in a

standard laptop a difficult, if not unfeasible, step. This calls for new statistical

approaches based on parallelisation, dimension reduction, batch modelling and

federated learning. The worth of large-scale datasets in neuroimaging and other

biomedical sciences is undoubted, as they allow to identify more refined statisti-

cal relationships otherwise undetectable in smaller samples, although at a higher

risk of being subject to confounding effects (Smith and Nichols, 2018).

2



1. INTRODUCTION

Among the different approaches to neuroimaging data analysis we can enu-

merate mass-univariate methods and machine-learning techniques. In the mass-

univariate approach, a generalised linear model (GLM) is applied independently

for each voxel. At each location, the voxel value is predicted using the same design

matrix. The test statistic for the significance of the regression (t- or F-statistic)

is then plotted spatially in the so-called statistical parametric map, then multi-

ple testing corrections (using random field theory or nonparametric resampling

methods) are introduced to account for the spatial structure. The main advantage

of the mass-univariate analysis is scalability. Being developed several decades

ago, this approach has been for a long time the first and only viable option in

terms of computational efficiency as the regression models could be run indepen-

dently (in parallel) for each voxel. The mass-univariate approach plays a primary

role especially in estimation and inference problems, when comparison between

groups are considered or in task activation studies.

On the other side, machine learning has provided a more flexible approach

towards the analysis of brain imaging data, with a specific focus on individual

prediction. In particular, artificial neural networks have been largely employed,

thanks to their ability of learning about outcomes without choosing a specific

model in advance. Deep neural-network architectures are indeed structured to

return an output prediction from multiple layers of non-linear operations on an

input. Although neural networks are scalable to high-dimensional settings, of-

ten the model is too complicated to get a complete understanding of all the pa-

rameters (Bzdok et al., 2019), at the cost of the interpretability of the model. To

tackle this issue, recent work has focused on explainable artificial intelligence (see

Krichmar et al., 2021 for a review). In addition, training deep neural networks

(or ensemble models, where the predictions from multiple neural networks are

combined) requires a large amount of data and is also computationally demand-

ing. Some therefore have also studied whether the improvement in the predic-

tive ability is worth the additional complications, or whether the prediction from

simpler linear models could be preferable. When the problem of interest is in-

trinsically linear, more complex models will not outperform the linear alterna-

tives (Davatzikos, 2019) and in neuroimaging applications it appears that even for

moderate-to-high sample sizes linear approaches are not outperformed by deep

learning models (Schulz et al., 2020).

Methods from multivariate statistics are becoming more popular in the neu-

roimaging field, especially in recent years. In particular, principal component

analysis (PCA), canonical correlation analysis (CCA) and independent compo-
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nent analysis (ICA) allow to detect data-driven relationships between different

types of neuroscientific data. These methods have provided useful insights on the

correlation between imaging, demographic and behavioural data (Smith et al.,

2015) and have become the standard tools for achieving a dimension reduction

which is not only data-driven, but also biologically meaningful (Smith and Nichols,

2018). Nonetheless, these multivariate techniques do not directly incorporate the

spatial structure between voxels in the model and look at the brain scans just as

vectors of voxels.

A modern approach that at the same time incorporates the spatial structure

in a single model while keeping interpretability is represented by functional data

analysis (FDA). In this context, the “atom” of interest (Wang et al., 2016) is a func-

tion, not the discrete collection of values which the function takes over a discreti-

sation of its domain. Functional data are intrinsically defined on a continuous

and their smoothness, although not strictly required in theory, is distinctive of

the nature of the underlying phenomenon. An alternative definition describes

functional data as an extension of multivariate data “with an ordering on the di-

mensions” (Wang et al., 2016), meaning that the observations lie in a space where

invariancy to permutation does not hold. In a more theoretical perspective, func-

tional data are no longer a finite collection of points but realisations of an infinite-

dimensional stochastic process.

In the case of brain imaging, this definition has a clear application. The brain

signal is recorded as a collection of voxels solely for the purpose of data collec-

tion, but actually the analyst would be more interested in the underlying, smooth

signal function. In other words, the spatial structure of the brain introduces a

topology in the vector of voxel values. The benefit of the spatial structure affects

also the scalability of the statistical analysis, as smoothing techniques induces

also a more parsimonious representation of the functional data. In other words,

the smooth function can be represented via a number of coefficients often much

smaller than the number of voxels.

1.2 Thesis outline and contributions

The main aim of this thesis is to provide FDA-based methods to analyse 3-

dimensional imaging data, with an emphasis on computationally efficient ap-

proaches, for moderate-to-high sample sizes. An application of these methods to

some questions in neuroscience is provided, using different imaging modalities.
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1. INTRODUCTION

The presentation of the methods in this thesis aims at being statistically princi-

pled and at the same time approachable for a reader whose main expertise is in

biomedical science.

This thesis, dealing exclusively with 3D images, collects a suite of tools that are

useful for the analysis of functional data with multidimensional domain and large

sample size. In this setting, dimension reduction techniques are fundamental to

tackle the high-dimensionality of the problem. Given the large number of images

and their size, the FDA approaches presented in the central chapters of this thesis

share a common structure which can be seen as made of at least two sections. The

first one is the smoothing step, where the image array is reduced to a vector of co-

efficients from a basis expansion. This first step is run in parallel for each image,

independently on the type of smoothing technique used (in this thesis the focus

is on simple approaches like radial basis functions and B-splines tensor product).

Once the matrix of coefficients for the whole set of images is created, along with

the matrix of basis functions, then the second step of the analysis (model train-

ing) is performed. The application of several FDA methodologies is shown in the

next chapters (functional principal component analysis, functional partial least

squares, regression with scalar and functional outcome).

A key point of this thesis is the focus on individual predictions rather than es-

timation. The neuroimaging questions addressed in this work (all pertaining to

currently open problems) require indeed low prediction errors, in order to be po-

tentially applied to the everyday clinical practice. In this sense, often the com-

parison is run with machine-learning solutions available in the literature, where

the flexibility of the tools is better designed for predictions. This thesis aims not

necessarily at beating the performances of those approaches, but rather at the ex-

planation of statistical workflows which could provide results which are not too

dissimilar in a simpler and less computationally demanding way.

In Chapter 3, a functional quantile regression model is used to predict the

chronological age of an individual from anatomical MRI scans, in order to provide

a sensitive summary (generally called brain age) of brain changes which could be

linked to different neurodegenerative diseases. The workflow designed for this

project takes as input a set of tensor-based morphometry (TBM) images (which

inform about regional volume changes in the brain) for a subset of cognitively

normal (CN) subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI),

and returns brain age predictions also for subjects with Mild Cognitive Impair-

ment (MCI) and Alzheimer’s Disease (AD). The main contribution of this work is

the focus on individual prediction intervals (obtained by using quantile regres-
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sion for different quantile levels), by which to account for the prediction uncer-

tainty in a simple way. The approaches available in the literature of brain age

prediction (mostly based on machine learning) are indeed returning only point

predictions. In addition, this is the first work (to the best of our knowledge) which

employs TBM imaging covariates for this purpose.

The same TBM dataset show interesting features from a statistical point of

view. TBM images are smooth but they exhibit (especially in diseased groups)

higher values in some brain regions called lateral ventricles. More specifically,

a voxelwise analysis shows a mean-variance relationship in these areas and evi-

dence of spatially dependent skewness which can be missed in the standard FDA

settings, which focus only on the first two functional moments. Following the ap-

proach proposed by Staicu et al. (2012), Chapter 4 presents a statistical model

for 3-dimensional functional data where mean, variance, and shape functions

vary smoothly across brain locations. The voxelwise distribution is modelled as

a skew-normal (Azzalini, 2013) and the spatial dependence is represented via a

Gaussian copula. Each individual image is then represented in terms of a Gaus-

sian process that captures the dependence between voxelwise distributions. The

functional parameters are estimated on a reference population of cognitively nor-

mal subjects and the Gaussian maps can be obtained for subjects with unknown

brain health condition. These subject-specific normative maps are used to derive

indices of deviation from a healthy condition which could help to assess the indi-

vidual risk of pathological degeneration or to cluster different disease groups. The

use of the skew normal for TBM images represents a novelty in the TBM literature,

offering the flexibility of a single family of distribution for the whole brain image.

Chapter 5 shows an application of linear regression with a 3D imaging out-

come with multiple functional predictors based on functional partial least squares.

The model handles moderate-to-high sample size in a computationally efficient

way, without the need of high performance computing resources, by extending

the approach proposed in Preda and Schiltz (2011) and Beyaztas and Shang (2020)

to the case of 3D imaging data. The regression model is used to predict the subject-

specific brain activation maps from data collected when the subject was at rest.

This represents one of the very first instances in the literature of multivariate func-

tional data analysis where the functions have a multidimensional domain, using

a partial least squares approach. In terms of the neuroimaging application, the

model does not differentiate between cortical and subcortical information and

does not require to split the brain image into regions, as commonly done in the

literature of task activation map prediction.
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1. INTRODUCTION

The thesis is structured in 6 chapters. After this introduction (Chapter 1), we

provide in Chapter 2 a basic overview on the mathematical and statistical aspect

of functional data analysis which are necessary to understand the following chap-

ters. Chapter 3 presents the application of regression for functional data to the

prediction of chronological age from brain anatomical imaging. In Chapter 4, the

model which incorporates skewness is used to study some features of a 3D imag-

ing dataset and to provide indices of deviation from a healthy condition. Chap-

ter 5 describes the statistical model to predict the brain activation in a task from

resting-state data where both the covariates and the outcome are images. Chap-

ter 6 is dedicated to a list of the main questions that remain open, with the dis-

cussion of potential solutions.
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Chapter 2

Mathematical aspects of

functional data analysis

2.1 Mathematical aspects of functional data analysis

As discussed in Hsing and Eubank (2015, Chapter 7) the mathematical foun-

dations of FDA rely on two different perspectives on functional data. On one side,

functional data are seen as realisations of random variables taking values in a

Hilbert space equipped with the Borel σ-algebra; on the other, the observations

are realisations of continuous stochastic processes with smooth mean and covari-

ance functions. The two perspectives provide both the theoretical background of

concepts like mean and covariance in the abstract setting as well as the founda-

tions of the tools used to analyse the variability of the sample. Hsing and Eubank

(2015) provide an extensive illustration of the mathematical concepts underly-

ing FDA; Kokoszka and Reimherr (2017) and Horváth and Kokoszka (2012) offer a

more concise overview and will serve as the main resources which this section is

built upon. Some paragraphs of this section are also borrowed from Palma et al.

(2020).
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2. MATHEMATICAL ASPECTS OF FUNCTIONAL DATA ANALYSIS

2.1.1 The space L2(T )

In FDA, the attention is restricted to the Hilbert spaceL2(T ) of all the functions

f : T 7→ R that are square-integrable,∫
T
[f(t)]2 dt <∞. (2.1)

Typically in FDA it is often assumed T ⊆ Rd (Ramsay and Silverman, 2005, Ferraty

and Vieu, 2006, Kokoszka and Reimherr, 2017). The space L2(T ) is endowed with

the inner product

⟨f, g⟩ =
∫
T
f(t)g(t)dt, (2.2)

and the L2 norm

∥f∥ =

(∫
T
[f(t)]2 dt

) 1
2

, (2.3)

where f, g ∈ L2(T ). A set of functions {e1, e2, ....} ⊆ L2(T ) is called a basis inL2(T )

if every square-integrable function f ∈ L2(T ) admits a unique representation of

the form

f(t) =

∞∑
j=1

ajej(t), ∀t ∈ T (2.4)

where aj ∈ R. The basis is orthonormal if ⟨ej , eǰ⟩ = 0 for j ̸= ǰ and ∥ej∥ = 1.

The notion of operators (linear transformations on vector spaces) on a Hilbert

space (and in particular L2(T )) is largely used in FDA. Within the space L(L2(T ))

of linear operators with finite operator norm

sup
∥f∥=1

∥Ψ(f)∥ <∞, (2.5)

let Ψ ∈ L(L2(T )) be a compact (or completely continuous) operator if it admits a

singular value decomposition of the form

Ψ(f) =
∞∑
j=1

λj⟨f, wj⟩w̌j f ∈ L2(T ), (2.6)

where {wj} ⊆ L2(T ) and {w̌j} ⊆ L2(T ) are orthonormal basis functions and

{λj} ⊆ R+ is a real non-negative decreasing sequence converging to zero. Ad-

ditionally, if
∑∞

j=1 λ
2
j < ∞, Ψ is called a Hilbert–Schmidt operator. If the Hilbert–
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2. MATHEMATICAL ASPECTS OF FUNCTIONAL DATA ANALYSIS

Schmidt operator is also symmetric, i.e.

⟨Ψ(f), g⟩ = ⟨f,Ψ(g)⟩ f, g ∈ L2(T ) (2.7)

and positive-semidefinite

⟨Ψ(f), f⟩ ≥ 0 f ∈ L2(T ), (2.8)

then Equation (2.6) reduces to

Ψ(f) =
∞∑
j=1

λj⟨f, vj⟩vj f ∈ L2(T ), (2.9)

and {wj} is the set of eigenfunctions of Ψ for which Ψ(wj) = λjwj .

Let us now consider an integral operator, defined as

Θ(f)(t) =

∫
T
θ(t, s)f(s)ds s, t ∈ T (2.10)

for f ∈ L2(T ) and for a bivariate square-integrable function θ on T × T . The bi-

variate function θ is referred to as the kernel of the integral operator. The operator

Θ is Hilbert–Schmidt if and only if∫
T

∫
T
[θ(t, s)]2 dtds <∞, (2.11)

The theory illustrated above allows us to state Mercer’s theorem: a continuous

symmetric positive semidefinite kernel admits the representation

θ(t, s) =
∞∑
j=1

λjwj(t)wj(s), t, s ∈ T (2.12)

where λj is the j-th eigenvalue corresponding to the j-th eigenfunction wj of the

integral operator Θ and the sum converges absolutely and uniformly in s and t.

2.1.2 Random functions in L2(T )

In the FDA framework, an observation is viewed as a realisation of a random

function X defined on a probability space (Ω,F ,P). Given the sample space Ω,

X(ω) is a deterministic function belonging to the spaceL2(T )of square-integrable
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2. MATHEMATICAL ASPECTS OF FUNCTIONAL DATA ANALYSIS

functions, that is

∥X(ω)∥2 =
∫
T
[X(ω)(t)]2 dt <∞, ∀ω ∈ Ω. (2.13)

In the following paragraphs, the notation X(ω)(t) will be shortened as X(t).

If E ∥X∥ <∞, the first order moment ofX is the mean function µ(t) = E [X(t)],

t ∈ T . If E ∥X∥2 < ∞ the second order variations of X are encoded in the covari-

ance function

γ(s, t) = E [(X(s)− µ(s)) (X(t)− µ(t))] , s, t ∈ T (2.14)

of which the variance function is a special case (s = t).

The mean function can be estimated by the sample mean evaluated pointwise

on the domain:

µ̂(t) =
1

N

N∑
i=1

Xi(t), t ∈ T (2.15)

that corresponds to a pointwise average over all the functional observation. Like-

wise, the sample covariance function is the estimator of the covariance function:

γ̂(s, t) =
1

N

N∑
i=1

(Xi(s)− µ̂X(s)) (Xi(t)− µ̂X(t)) , s, t ∈ T . (2.16)

These estimators share the same inferential properties with their non-functional

counterparts: µ̂ is an unbiased estimator for the mean function whereas for the

covariance function

E
(

N

N − 1
γ̂(s, t)

)
= γ(s, t), s, t ∈ T (2.17)

where the scaling factor (due to the estimation of the mean function) tends to 1

asymptotically.

A central object when dealing with functional data is the covariance operator

Γ : L2(T ) 7→ L2(T ), which is the integral operator associated to the kernel func-

tion γ(s, t). It is defined as

Γ(f) = E [⟨X − µ, f⟩(X − µ)] , ∀f ∈ L2(T ). (2.18)
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2. MATHEMATICAL ASPECTS OF FUNCTIONAL DATA ANALYSIS

The covariance operator transforms a function f ∈ L2(T ) in another function

Γ(f) ∈ L2(T ) whose values are

Γ(f)(t) =

∫
T
γ(t, s)f(s)ds, ∀t ∈ T . (2.19)

The covariance operator is a self-adjoint positive semi-definite Hilbert–Schmidt

operator. Mercer’s theorem therefore applies for the covariance function and the

random functionX admits the Karhunen–Loève expansion for square-integrable

stochastic processes

X(t) = µ(t) +
∞∑

m=1

νmψm(t), (2.20)

expressing X as an infinite linear combination of the deterministic eigenfunc-

tions {ψm} ∈ L2(T ) of Γ with random and uncorrelated weights νm. The eigen-

functions are the solutions of the eigendecomposition problem∫
T
γ(t, s)ψm(s)ds = λmψm(t), ∀t ∈ T . (2.21)

The eigenfunctions {ψm} are orthogonal and rescaled to have unit norm, and

their corresponding eigenvalues {λm} ⊆ R+ are in non-increasing order. In addi-

tion, the approximation error

E

∥∥∥∥∥X −
M∑

m=1

⟨X,um⟩um

∥∥∥∥∥
2
 , u1, . . . , uM ∈ L2(T ) (2.22)

is minimised, for each M ≥ 1, when um = ψm,m = 1, . . . ,M .

The results of the eigendecomposition of the covariance operator can be inter-

preted under the framework of functional principal component analysis (FPCA),

which aims at studying the principal modes of variation of the random function

X. FPCA is in practice an empirical version of the Karhunen–Loève decomposi-

tion, where the covariance operator is replaced by its sample version. The eigen-

value λm is the part of the variance of X explained by the m-th eigenfunction ψm,

also called functional principal component. The random variables

νm = ⟨X − µ, ψm⟩ (2.23)

are called scores. The scores are uncorrelated and centered with variance λm.
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2.2 Smoothing

In statistics, non-parametric smoothing techniques are aimed at modelling a

function without imposing a specific functional form. Smoothing is extensively

used for many applications, not only for data visualisation purposes, but also as

building blocks of generalised additive models (see Wood, 2017, Hastie and Tib-

shirani, 2017 for monographs on the topic), where the relationship between some

predictors and an outcome can be represented more flexibly as a smooth func-

tion. In FDA, smoothing is usually applied on the raw discretised data to obtain

a noise-free estimate of the underlying function used in the following analysis.

Smoothing is crucial especially in a big data setting, as the smooth underlying

function can be represented more compactly with respect to the raw data, and

brings additional insight on the data (for example, derivatives of the functions

can also be considered, as in Ramsay and Silverman, 2005).

2.2.1 Smoothing by basis expansion

A common smoothing approach is to represent a function by a basis expan-

sion. A system of basis functions is first chosen such that a function can be ap-

proximated by a linear combinations of them. Then, ordinary or weighted least

squares allow to estimate the coefficients of this linear combination. This set of

coefficients therefore provides a simpler representation of any general function.

As shown in (2.4), the set of basis functions is defined to be infinite, but in prac-

tice the attention is restricted to a finite set. The choice of the type and number

of basis functions controls how good the reconstruction of the original image is.

Splines are a common choice for basis functions, as they retain all the benefits

of polynomial fitting while also ensuring good computational properties. Splines

are piecewise polynomials which are joined together at some points κ1 ≤ κ2 ≤
. . . ≤ κI in the domain of the function called knots. In mathematical terms, given

the degree r (the power of each piecewise polynomial), a polynomial splines is

r−1 times continuously differentiable. The flexibility of the polynomial splines is

governed by the degree r (or analogously the order r+1, defined as the number of

constants needed to define the polynomial), the number l of knots and their loca-

tion. The number of free parameters is r+ l−1. Natural cubic splines (well-suited

for interpolation) are polynomial splines of degree 3 with null second derivative

at the extremes of the domain.
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Since the space of polynomial splines is a vector space for a given set of I knots

and degree r (therefore linear combinations of splines are again splines), several

types of basis functions have been used in the literature. B-splines (De Boor, 1978)

are often considered among the most convenient ones. Given a set of I knots the

B-spline basis of degree 0 is given by the functions (B0
1(x), . . . , B

0
I−1(x)) with

B0
j (x) =

1 κj ≤ x < κj+1,

0 otherwise.
(2.24)

Given a set of I knots, the B-spline basis of degree r > 0 is given by the functions

(Br
1(x), ..., B

r
I−1(x)) , defined recursively as

Br
j (x) =

x− κj−r

κj − κj−r
Br−1

j−1(x) +
κj+1 − x

κj+1 − κj+1−r
Br−1

j (x). (2.25)

Although defined in an iterative fashion (currently available in many software im-

plementations), B-spline basis functions have interesting properties, such as the

compact support: a B-spline basis function of degree r is positive over r + 1 ad-

jacent intervals and 0 elsewhere. In addition, for any point within the domain

[κ1, κI ] the basis functions sum to 1 (this is also a result of the introduction of ad-

ditional knots outside the domain of interest, which are needed just to construct

the splines recursively). These features make B-splines (although not being or-

thogonal) appealing even in large data settings, because the matrix containing

the inner products of these basis functions will be highly sparse.

While the choice of the degree is restricted to few options (usually there is no

need to go more than r = 3), there is not a “one-size-fits-all” solution for the knot

selection. Evenly spaced knots are often used, although placing more knots in

a region of the domain rather than another might help to capture finer changes

in the behaviour of the function. In addition, the number of effective degrees of

freedom (which depends on the number of knots) can be reduced by applying

roughness penalties on the function, in order to find a balance between the bias

and the variance of the fit.

It is worth also mentioning other systems of basis functions which have found

application in functional data analysis. Fourier series gives a basis expansion that

is often used for periodic functions which are stable throughout the whole do-

main. Properties and derivatives of the Fourier series are well known and the

fast Fourier transform makes the calculation of coefficients efficient. Wavelets

basis functions are built as translations and dilations of an initial function called
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mother wavelet and are used to obtain a parsimonious multiresolution expansion

(Ramsay and Silverman, 2005).

2.2.2 Kernel smoothing

An alternative approach to smoothing and interpolation is based on kernel

functions. These functions take as argument the distance between two points

and return weights which are inversely proportional to this distance. Kernel func-

tions are non-negative (and the weights are values in [0, 1]), have unit integral and

are symmetric. Examples of popular kernels (with u being the distance between

two points) are:

• the tri-cube kernel:

h(u) = (1− |u|3)3 |u| ≤ 1,

• the Gaussian kernel:

h(u, δ̌2h) =
1√
2π

exp

(
− u

2δ̌2h

)

where the smoothing parameter δ̌2h > 0 is equal to the variance,

• the (inverse) multiquadric kernel

h(u) =
1√

1 + (εu)2

where ε is a constant,

• the Epanechnikov kernel:

h(u) =

3
4(1− u2) |u| ≤ 1,

0 otherwise.

Before choosing the kernel function, it is necessary to specify the “centres”, i.e.

the points in the domain to compute the distance from, and the type of distance

(for which the usual choice is the Euclidean one).

Depending on the task, the centres might be selected in different ways. In lo-

cal smoothing, especially if the number of data points is small, every data point
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might play as centre and the weighted average of the window is taken (as in the

Nadaraya–Watson estimator, where the weights are proportional to the weights

derived from the kernel function). In interpolation the centres are instead often

taken on a regular grid, while the usual choice for distance is the Euclidean one.

The kernel function will assign non-zero weights only to the data points within

a certain radius form the centres (for this reason, this is also known as radial ba-

sis function, RBF). For some kernels, the radius is also controlled by one or more

additional parameters: for example, the scale of the Gaussian kernel is controlled

by δ̌2h > 0 or the full width at half maximum (FWHM). The quality of the approx-

imation is controlled by the number and locations of centers and the choice of

the additional smoothing parameter(s). In most of the cases, there are no existing

criteria to select the best value for this parameters.

2.2.3 Multidimensional smoothing

These considerations about smoothing can be also extended to the multidi-

mensional case. For radial basis functions the extension is conceptually straight-

forward, as only the distance of a point from a centre is needed to compute the

weights.

For B-splines, the immediate extension of the 1-dimensional setting is to de-

fine a tensor product of univariate B-splines defined in each dimension. At each

point in the domain, the multivariate B-spline basis would correspond to the

product of univariate B-splines for each coordinate. For the 3-dimensional do-

main (which will be used throughout this thesis), denote byB(j)
1 (t(j)), . . . , B

(j)
Qj

(t(j))

the univariate basis functions for the j-th dimension (j = 1, 2, 3). The number of

basis functions for each dimension is Qj = Ij + r − 1, where Ij is the number of

knots and r is the degree of the spline. We now define the set of basis functions

Bq1q2q3(t
(1), t(2), t(3)) = B(1)

q1 (t(1))B(2)
q2 (t(2))B(3)

q3 (t(3)) (2.26)

for qj = 1, . . . , Qj , for j = 1, 2, 3.

In order to derive the projection of each image onto this set of basis functions,

we define the following matrix of basis functions using the Kronecker product

Φ = S(3) ⊗ S(2) ⊗ S(1). (2.27)

where S(j) is the Pj × Qj-dimensional matrix whose qj-th column contains the

evaluation of the function B
(j)
qj (t(j)) at each point in t(j) (for j = 1, 2, 3) and Pj is
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the number of sampled points in the j-th dimension. The matrix Φ has dimen-

sions P1P2P3 × Q1Q2Q3 (the number of rows is equal to the number of sampled

points in the 3D function and the number of columns is equal to the number of

basis functions). Once the basis set is determined, Φ can be used as set of covari-

ates where the original (vectorised) 3D function is the response variable. Estima-

tion can be performed via ordinary least squares:

X̂i(t) =

K∑
k=1

c̃ikϕk(t), (2.28)

whereK = Q1Q2Q3, c̃i is theK-dimensional vector containing the coefficients of

the projection for the i-th 3D function and ϕk(t) is the k-th basis function corre-

sponding to the the k-th column of Φ. In compact form, all theN 3D function are

represented by the product of the N × K coefficient matrix C̃ and the matrix of

basis functions evaluations Φ.

Tensor products of univariate B-splines provide a highly flexible framework

for multidimensional smoothing. Anisotropic smoothing can be easily accom-

modated by using a different smoothing parameter for each dimension. In ad-

dition, multidimensional penalties can be included, although the computational

cost might become a relevant issue. The easier approach is to build roughness

penalties for each dimension (in terms of difference matrices), then build other

Kronecker products (see Wood, 2017, p.161). In the multidimensional penalised

smoothing field, thin-plate regression splines are also very popular, as they are

the result of applying natural cubic splines with a multidimensional roughness

penalty based on second order partial derivatives (see Lindquist et al., 2010 for an

application to neuroimaging). Smoothing on irregular domains is also of interest,

but we shall not investigate this here.

2.3 Overview of functional regression

In addition to functional principal component analysis, regression models for

functional data are among the most researched topics in FDA. The classical taxon-

omy of functional regression (Ramsay and Silverman, 2005, Morris, 2015) is based

on the role of the functional data into the model, either as outcome/dependent

variable/response or predictor/independent variable/covariate (we will use those

terms interchangeably). We could therefore list:
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• scalar-on-function regression, where at least one covariate is functional and

the outcome is scalar;

• function-on-scalar regression, with functional response and scalar indepen-

dent variables;

• function-on-function regression, where both the predictors and the response

are functional objects.

Scalar-on function regression represents a natural extension of multiple re-

gression as it is performed in multivariate statistics. The functional linear model

indeed follows the same structure, replacing the inner product term with its func-

tional counterpart:

yi = α+ ⟨Xi, β⟩+ εi

= α+

∫
T
Xi(t)β(t)dt+ εi, εi ∼ N (0, σ2) (2.29)

where yi denotes the scalar response, Xi(t) the functional predictor and β(t) the

functional slope (belonging to the same space as Xi(t)).

The classical approach is to express both the functional covariate and the co-

efficient as linear combinations of basis functions:

Xi(t) =

KX∑
k=1

xikϕk(t)

β(t) =

Kβ∑
ǩ=1

bǩχǩ(t). (2.30)

Let us consider now the matrix forms for the basis coefficientsxi = [xi1, . . . , xiKX
]T

and b =
[
b1, . . . , bKβ

]T, as well as for the basis functionsϕ(t) = [ϕ1(t), . . . , ϕKX
(t)]T

and χ(t) =
[
χ1(t), . . . , χKβ

(t)
]T. The inner product becomes a product of matri-

ces (Ramsay and Silverman, 2005, Morris, 2015):

∫
T
Xi(t)β(t)dt =

∫
T

[
KX∑
k=1

xikϕk(t)

]Kβ∑
ǩ=1

bǩχǩ(t)


= xT

i Wϕ,χb. (2.31)
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where Wϕ,χ is the matrix of inner products

Wϕ,χ =

∫
T
ϕ(t)χ(t)Tdt. (2.32)

The only parameter is b and the estimates can be obtained using standard multi-

variate regression techniques. For suitable choices of basis functions (e.g. orthog-

onal) the matrix Wϕ,χ reduces to the identity matrix.

On one side, fixed basis functions can be selected a priori. Splines, Fourier,

wavelets for X and β can be used to turn the regression model in Equation (2.29)

into an ordinary linear model. On the other side, basis functions can be built

using available data. This is the case of functional principal component analysis

(FPCA) or functional partial least squares (FPLS) basis functions, which rely on

the variability within the functional predictor or the covariance with the outcome.

Hybrid approaches are also available. The same machinery virtually applies to a

large share of regression models originally designed for multivariate data. There

are simple extensions to generalised linear models (Müller and Stadtmüller, 2005,

Crainiceanu et al., 2009), quantile regression (Cardot et al., 2005, Kato, 2012, Yao

et al., 2017), longitudinal (Yao et al., 2005) and survival analysis (Gellar et al., 2015,

Kong et al., 2018).

Function-on-scalar regression of the form

Yi(t) = β0(t) +Ziβ(t) + εi(t), (2.33)

with error term generally assumed to be normally distributed with mean zero and

within-function covariance

Cov(Yi(t), Yi(ť)) = σ2(t, ť), t, ť ∈ T (2.34)

is of interest in several application, for example growth curves (Morris, 2015),

where covariates might be either categorical or continuous. The pointwise ap-

proach illustrated by Ramsay and Silverman (2005) consists in considering a grid

on the domain on the function and run a series of multiple regression. The result-

ing regression coefficients are then interpolated. Other approaches are instead

based on the smoothing of the functional outcome first, although it has been

pointed out that the resolution of the outcome should be kept high (or higher than

the one of the functional regression coefficient) in order not to lose informative

features which could improve the quality of the fit. Basis expansion approaches
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(either with fixed or data-driven basis) could be used to make the computation

more efficient. In the setting of regression with functional predictors, simultane-

ous inference on the functional outcome (especially in the setting of mean differ-

ences) is also a topic of interest (see Morris, 2015 for further references).

In function-on-function regression models, the relationship between a covari-

ate and the functional outcome is denoted by a functional coefficient B(t, s):

Yi(s) = β0(s) +

∫
T
Xi(t)B(t, s)dt+ εi(s), s ∈ S. (2.35)

Suppose both Xi(t) and Yi(s) can be represented as linear combinations of basis

functions {ϕX(t)} and {ϕY (s)}, respectively. The coefficient B(t, s) simplifies to

ϕX(t)TBϕY (s), where B is the matrix of coefficients in the basis space. In this

setting, FPCA for both Xi(t) and Yi(s) independently has been used to reduce the

dimensionality of the functional data (Yao et al., 2005). FPLS approaches are also

of large interests as the components directly take into account the joint variabil-

ity of the outcome and predictors (Preda and Schiltz, 2011, Beyaztas and Shang,

2020). Special cases of the function-on-function regression where the predictors

and the outcome are defined on the same domain T are the concurrent or point-

wise model (Ramsay and Silverman, 2005), when the prediction of Yi(t) depends

only on the value of the predictor at the same point t, and the historical model,

when the prediction of Yi(t) depends on the value of the predictor for s ∈ [0, t]

(Morris, 2015).

2.4 Multidimensional functional data analysis

A great deal of work in functional regression is focused on 1-dimensional func-

tional data. i.e. smooth curvesX(t) observed on some grid of points (as t ∈ [0, 1]).

Nevertheless, a growing interest is on more complex settings, where images with

multidimensional domain are considered. In this direction, the natural approach

would be to repurpose methods originally designed for 1D functional data by

adopting for example a different system of basis functions which would incor-

porate and solve the issue of having more than one dimension. This is concep-

tually grounded and in many cases also practically feasible, but new technical

challenges arise when the combination of the number of measurements (e.g. pix-

els/voxels) per subject and the sample size makes even loading all the data in

memory at one time an unviable option (Reiss et al., 2017).
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In terms of functional principal component analysis, Zipunnikov et al. (2011)

propose a high-dimensional multilevel FPCA aimed for densely-observed images

recorded at multiple visits for each subject. The proposed solution relies on block-

partitioning the matrix containing all the subject-specific measurements and then

perform SVD sequentially on each block. A best linear unbiased prediction then

returns the estimates for scores at cross-sectional and longitudinal level. The

method is recommended for balanced designs with a moderate number of sub-

jects and visits.

In the setting of multivariate FDA, when each subject has 2 or more functional

elements, FPCA with multidimensional imaging data is presented in Happ and

Greven (2018). The relationship between univariate and multivariate Karhunen–

Loève decomposition is derived. After computing a univariate FPCA for each ele-

ment, the matrix that contains the univariate scores undergo an additional eigen-

analysis. The eigenvectors obtained in this way are then used as weights to com-

pute multivariate scores and eigenfunctions. This approach works for functional

data of different dimensionality (e.g. a curve and an image) and comes with a R

package called MFPCA (Happ, 2018) which offers also a great deal of basis func-

tions for multidimensional data (especially or 2D images, ranging from penalised

splines to the functional higher-order PCA in Allen, 2013 and tensor cosine basis).

The field of scalar-on-function regression has seen many more contributions

pertaining imaging covariates. Reiss and Ogden (2010) introduced a mixed ap-

proach for dimension reduction in functional principal component regression

(FPCR) with a roughness penalty. The functional regression coefficient is first pro-

jected onto the span of a B-spline basis and then reduced by considering the first

M∗ principal components. The images are smoothed with a radial cubic B-spline

basis with a thin plate penalty. The fitting method for generalised functional lin-

ear models is the iteratively reweighted least squares (IRLS) method as in com-

mon GLM. The smoothing parameter is selected via GCV, AIC, corrected AIC or

REML. Reiss and Ogden (2010) propose also some simultaneous testing by in-

verting the simultaneous confidence bands derived by nonparametric bootstrap.

This method is claimed to have a conceptual advantage over Statistical Paramet-

ric Mapping (SPM) in those cases in which the observed quantity in the image

is supposed to be causing the disease (Reiss and Ogden, 2010); moreover, it of-

fers a straightforward way to predict the disease given the image and to assess the

contribution of each predictor.

Wang et al. (2014) consider the case of functional regression where a 3D brain

image is the predictor. A tensor product of 1D Haar wavelets basis expansion pro-
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vides a flexible and parsimonious way to obtain sparsity while taking account of

the spatial correlation at different levels of smoothness. In a similar setting, Wang

et al. (2017) study a relaxation of functional regression models where the coeffi-

cient image is assumed to be piecewise smooth image with unknown jumps and

edges, by recurring to the notion of total variation. The approach by Park et al.

(2016) focuses on finding a principled way to partition the domain of the regres-

sion coefficient. A sequential segmentation procedure based on an approxima-

tion of the spatial correlation is provided, then the selection algorithm is applied

until the improvement in the cross-validation prediction error becomes negligi-

ble.

Bayesian approaches have been also proposed in the scalar-on-images litera-

ture. Goldsmith et al. (2014) select some specific prior distributions to get a sparse

and smooth estimate. Given a latent binary indicator which detects those loca-

tions that are predictive of a scalar outcome, an Ising prior distribution is applied

to estimate contiguous predictive regions and an intrinsic Gaussian Markov ran-

dom field prior distribution controls the smoothness of the non-null coefficients.

A fast single-site Gibbs sampler is used to fit the model. The parameters of the

Ising prior and the variances are tuned via cross-validation instead of being de-

rived using hyperpriors in order to improve the computational speed. The sim-

ulations show that this model works particularly well in detecting nonpredictive

regions (true negative values). Spatial variable selection is also addressed by Kang

et al. (2018) by using a soft-thresholding function for a latent Gaussian process.

This choice is claimed to be more efficient with respect to the Ising model, espe-

cially for large datasets, and enforces a gradual transition between predictive and

non-predictive regions. Metropolis–Hastings within Gibbs is used to sample from

the posterior distribution.

Smoothness and sparsity assumptions of several scalar-on-image regression

models are evaluated in Happ et al. (2018). The models are categorised in fixed ba-

sis functions expansion (penalised B-splines or wavelets), data-driven basis func-

tions expansion (principal component regression), combined methods (such as

FPCR by Reiss and Ogden, 2010), PCR and PLS in wavelet space), random field

methods (like in Goldsmith et al., 2014). Smoothness, sparsity and projection (the

assumption that a set of basis functions is a space where the coefficient image lies)

are defined underlying assumptions; in the modelling framework, smoothness is

governed by penalties or prior distribution (in a Bayesian setting) while sparsity

translates into a variable selection method or restrictions on the number of prin-

cipal components included. The findings show that while different assumptions
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produce quite different results in terms of estimation accuracy, the predictive per-

formance seems not to vary dramatically across models.

In the image-on-scalar literature, the recent contribution of Yu et al. (2021)

proposes an expansion of the outcome in terms of flexible multivariate splines

over triangulations, in order to deal efficiently with the irregular domain of the

images. It is worth mentioning also some innovative applications of functional

data analysis on more complex domains: for example, Lila and Aston (2020) con-

sider the setting where functions are evaluated on surfaces and the variability be-

tween subjects arises also in terms of differences in the domain of the functions

and devise a specific FPCA for this application.
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Chapter 3

Quantifying uncertainty in

brain-predicted age using

scalar-on-image quantile

regression

3.1 Introduction

The process of brain ageing is known to be associated to a general decline in

cognitive functions and higher risk of neurodegenerative diseases (Yankner et al.,

2008, Denver and McClean, 2018). In some cases, both ageing and dementia af-

fect the same areas in the brain (Lockhart and DeCarli, 2014). For these reasons,

a deeper understanding of brain ageing in healthy conditions could potentially

improve the diagnosis of neurodegeneration at early stages.

Neuroimaging provides a non-invasive and safe way to study brain structure

and functioning. A large part of the research in neuroimaging data analysis has
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been focused on explanatory analyses aimed at describing the relationship be-

tween the brain and some variables of interest (such as neurodegenerative dis-

eases, sex, physical activity). With the advent of imaging databases with larger

size, a prediction-oriented focus has been also considered, in order to detect in-

dividual differences among subjects that could be used in clinical practice (for

example Yoo et al., 2018, Zhou et al., 2019).

The study of brain ageing has recently gained attention in the neuroscientific

community thanks to the availability of this large amount of data and of computa-

tional tools for their analysis. A growing body of research employs neuroimaging

to develop a biomarker of individual brain health, called “brain age” (Franke and

Gaser, 2019, Cole et al., 2017). In the absence of a clear definition and assess-

ment of biological brain age, a brain-derived prediction of chronological age is

considered. In order to be integrated in clinical practice, a brain age biomarker

should be easily accessible from brain data (or better, images), harmless for the

subjects, computationally not demanding and correlated with other brain health

indicators (Franke and Gaser, 2019). In addition, since there is a high variability

between subjects in terms of their brain ageing, a useful biomarker should predict

cognitive decline better than the chronological age itself.

In this work we propose a statistically grounded workflow that produces brain

age individual predictions from 3-dimensional brain images. Furthermore, we

go beyond simple point predictions by also providing prediction intervals of the

brain age to quantify the uncertainty. Our model is trained on a control group

with no ongoing brain diseases in order to avoid spurious effects due to other

conditions. The same model can be used to predict age in neurodegenerative dis-

eases, in order to provide a “baseline” or “normative” brain age, whose difference

from the individual chronological age (brain-predicted age difference or brain-

PAD as in Cole et al., 2017) might inform about the extent of the effect induced by

the pathology.

In addition, reporting a prediction interval alongside a point estimate offers

another potential binary biomarker (whether the chronological age falls within

it). Since the width of the prediction interval is different for each subject, the same

brainPAD could be interpreted in different ways in light of its location with respect

to the individual prediction limits. The joint use of point and interval brain age

predictions could therefore be employed to easily assess departures from a typical

ageing profile.

The approach developed in this paper is based on modern statistical tools. In

order to use 3D brain images without the need to summarise information by re-
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gions of interest, a functional data analysis (FDA) framework is adopted (Ramsay

and Silverman, 2005, Horváth and Kokoszka, 2012). Functional data get this name

because the observation for each statistical unit is a function1 (a curve, surface,

or image). These data are usually considered as infinite dimensional and intrinsi-

cally continuous, even if the data collection process reduces them to a discrete

series of observed points (Ramsay and Silverman, 2005, Section 3.2). In other

words, the whole function is considered as the object of interest, and not only the

specific value observed at a discrete location for each image. A common model

in FDA is scalar-on-function regression (see Morris, 2015, Reiss et al., 2017 for

reviews), which provides an effective way to predict a scalar quantity of interest

from a functional observation, by fitting a regression model using the whole func-

tion as a covariate. In our context we call it scalar-on-image regression. The non-

identifiability problem (Happ et al., 2018) arising from having sample size lower

than the number of voxels for each image can be attenuated by imposing some

assumptions on the data generating process (for example smoothness).

We obtain prediction intervals by integrating the FDA framework with quantile

regression (Koenker and Bassett, 1978, Koenker and Hallock, 2001), a model that

is largely used in fields such as economics (Fitzenberger et al., 2013) and ecology

(Cade and Noon, 2003) to derive a more complete picture of the relationship be-

tween a covariate and the response variable. Quantile regression does not model

the expected value (or a function of it) of the outcome of interest given the pre-

dictors, but some selected quantiles of the conditional distribution (for example

the median). This model can be adapted for functional covariates: in a functional

quantile regression model we explore the linear relationship between a certain

quantile of the outcome and the 3D image. By fitting several quantile regression

models we can build the prediction intervals given the covariates. Prediction in-

tervals from quantile regression (or similar models) have received some atten-

tion in recent decades (Zhou and Portnoy, 1996, Meinshausen, 2006, Mayr et al.,

2012), but not within the framework of functional data. In addition, the scalar-

on-image quantile regression generates a regression coefficient with the same di-

mensionality as the brain image, providing an interpretable map that shows how

the changes in each brain structure are related to the predicted age.

Our FDA-based approach departs considerably from other methods that are

commonly used in the neuroimaging literature. The state-of-the-art method in

neuroimaging data analysis is the so-called mass-univariate approach and it is

1the word “functional” in this case is used in a mathematical sense and is not related to func-
tional MRI.
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implemented in the Statistical Parametric Mapping software (Ashburner et al.,

2014). A model is fitted to predict the signal at each voxel independently using

the clinical or demographic information as covariate, then a significance map is

produced (see for further details Friston et al., 1994, Penny et al., 2011). Although

computationally efficient, this approach does not explicitly model the spatial cor-

relation of adjacent pixels and is not tailored for prediction purposes (Reiss and

Ogden, 2010). The functional data approach allows instead the incorporation of

the spatial structure by using smoothing techniques and in this way the fit of a

global model for a scalar outcome given the entire brain image.

Another popular approach is based on machine learning algorithms. Franke

and Gaser (2019) review a collection of studies published in the last decade based

on a technique called relevance vector regression. They review a number of stud-

ies that examine associations with brain age, including effects of meditation and

playing an instrument. Cole et al. (2019) collects a larger number of studies deal-

ing with brain age prediction conducted from 2007 to 2018 with different imaging

modalities and pathologies. Many of them adopt support vector regression (as the

ones listed in Franke et al., 2012, Franke and Gaser, 2019 or Sone et al., 2019) or

more recently Gaussian processes and convolutional neural networks (Cole et al.,

2017, Cole, 2017, Varatharajah et al., 2018, Wang et al., 2019). A comparison be-

tween the predictive performances of these methods is difficult due to the use

of different datasets and different age ranges, but according to Cole et al. (2019)

the choice of the algorithm does not seem to play a fundamental role. However,

these approaches provide only a point prediction with little knowledge of the in-

ternal procedure that returned it, and in particular deep learning methods are

often criticised as “black boxes”. Our approach attempts to provide a better pic-

ture of the set of information on which brain age is based, introducing a straight-

forward quantification of uncertainty and at the same time producing a visual

display of the regions that are most relevant for the prediction. In addition, the

features of each step of the workflow proposed here can be evaluated, therefore

improving the interpretability of the results. This last aspect is crucial in medi-

cal sciences and is particularly welcome for predictive modelling in neuroscience

(Scheinost et al., 2019).

Another important distinction with the available literature on brain age pre-

diction relates to the imaging techniques used. Although several models use func-

tional imaging or multiple modalities, a large share of studies focused on struc-

tural magnetic resonance imaging (MRI), in particular T1-weighted images, usu-

ally segmentated into grey and white matter. Unprocessed MR images have also
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been employed with success (Cole et al., 2017). In this work we still remain in the

family of structural imaging but we use tensor-based morphometry (TBM) im-

ages, that are obtained after a transformation of standard MRI images. TBM im-

ages give information about relative volumes of brain structures with respect to

a common template; for this reason the images are all spatially registered. TBM

quantifies volumetric differences in brain tissue for each voxel and is therefore

specifically aimed at assessing the level of local cortical atrophy which might help

to study brain degeneration for different diseases (Hua et al., 2008). To the best of

our knowledge, this is the first study addressing brain age prediction from TBM

images. The dataset used in this manuscript comes from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI, Mueller et al., 2005).

The work is structured as follows. Section 3.2 gives an overview of functional

data analysis and quantile regression. Section 3.2.3 introduces the plan of the

analysis and discusses details of the implementation. The main characteristics of

the ADNI dataset are described in Section 3.3, while the results of the analysis are

reported in Section 3.4 in terms of the predictions, their robustness with respect

to the choices of the parameters in the model and their correlation with standard

cognitive measures. Finally, Section 3.5 discusses the main findings, summarises

the work and briefly introduces further research directions.

3.2 Materials and Methods

3.2.1 Quantile regression

Regression models are used to study the relationship between some fixed and

known predictors Z = (z1, ...,zP̌ )
T ∈ RP̌ and an outcome variable Y . For exam-

ple, linear models are used to evaluate the change in the expected value of the

continuous outcome conditioned on the values of the predictors, under specific

assumptions on the error term. Nevertheless, there are occasions in which either

these assumptions do not hold (for example, when there is heteroskedasticity in

the residuals) or simply the main interest is to model specific quantiles of the con-

ditional distribution of the response variable in order to produce a deeper analy-

sis of the randomness of Y |Z that goes beyond the conditional mean2. Quantile

regression (Koenker and Bassett, 1978) can effectively deal with these cases by

2From Mosteller and Tukey (1977): “Just as the mean gives an incomplete picture of a single
distribution, so the regression curve gives a correspondingly incomplete picture for a set of distri-
butions.”
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specifying the model:

Qτ (Y |Z) = ατ +

P̌∑
p̌=1

zp̌δp̌,τ , τ ∈ (0, 1), (3.1)

where Qτ (Y |Z) is the τ-th conditional quantile of Y |Z defined as

Qτ (Y |Z = z) = inf{y : FY |Z(y|z) ≥ τ} (3.2)

and

FY |Z(y|z) = Pr(Y ≤ y|z) (3.3)

is the conditional cumulative distribution function ofY |Z. For example, Q0.5(Y |Z)
is the median of the conditional distribution of Y |Z. The interpretation of δp̌,τ is

similar to the one in linear models: it corresponds to the marginal effect on the

conditional quantile due to a one-unit increment in the p̌-th covariate.

GivenN observations, the estimation procedure for the model in Equation (3.1)

is based on the following minimisation problem:

(α̂τ , δ̂1,τ , . . . , δ̂P̌ ,τ ) = argmin
a,δ1,...,δP̌

 N∑
i=1

ρτ

yi − α−
P̌∑

p̌=1

zip̌δp̌

 , (3.4)

where ρτ (u) =
[
τ − 1{u≤0}

]
u is the check (or quantile loss) function (Koenker and

Bassett, 1978). There is a relationship between the linear formulation Y = Zδ + ε

and the quantile formulation in Equation (3.1). Under a linear data generating

process Y = α+Zδ+εwith known α and δ, we can write the conditional quantile

restriction

Qτ (Y |Z) = α+Zδ + F−1
ε (τ), τ ∈ (0, 1) (3.5)

with ε being the mean zero random term of the model with cumulative distribu-

tion function (CDF) Fε. In this simple setting, the marginal effect of the covariate

is constant across quantiles. Note that the result in Equation (3.5) holds for any

distribution of the error term. Quantile regression can nonetheless accommodate

more complicated data generating processes, like for example the location-scale

model where ε is replaced by σ(Z)ε, with σ(Z) > 0 and ε ⊥⊥ Z. In this case the

variance of the random term depends on Z and it can be shown that the esti-

mated slope in the quantile regression model will be governed by the quantiles of

ε.
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All the quantile regression models return as output a prediction at a specific

quantile level. For example, the model with τ = 0.5 gives the conditional median

prediction for each experimental unit given particular values of the covariates.

Predictive accuracy of the conditional median can be measured through the mean

absolute error (MAE) and the root mean square error (RMSE) between the point

predictions and the observed responses. By fitting a model for several values of τ ,

we can also build prediction intervals for new observations (y∗, z∗) (Davino et al.,

2013, Mayr et al., 2012). For example, if we fit a model on the same data for two

quantile levels τ1 = w̃/2 and τ2 = 1− w̃/2 (with w̃ ∈ (0, 1)), the interval

PI1−w̃(z
∗) =

(
Q̂τ1(Y |Z = z∗), Q̂τ2(Y |Z = z∗)

)
(3.6)

should contain the observed response value for new data (1− w̃)100% of the time

(provided Equation (3.1) is true). For example, a 90% prediction interval can be

obtained by fitting a model for τ1 = 0.05 and τ2 = 0.95. This prediction model

can effectively handle heteroskedasticity or skewness, since in quantile regres-

sion there are no assumptions on the response distribution: using simulated data

Davino et al. (2013) provide examples in which prediction intervals obtained via

quantile regression achieve the nominal levels where ordinary least squares pre-

diction intervals fail. This is also confirmed theoretically in Zhou and Portnoy

(1996): the coverage probability tends to 1 − w̃ with an error of O(N−1/2), as the

sample size of the training set N → ∞.

3.2.2 Functional quantile regression

A large body of literature has been developed in order to translate regression

models into the functional data framework, where the observations are no longer

considered to lie in Rd, but they are realisations of a random function X ∈ L2(T ),

the space of square-integrable functions.

For example, functional GLMs are now well established in the theory, both

in the frequentist and Bayesian approaches (see for example Müller and Stadt-

müller, 2005 and Crainiceanu et al., 2009). Quantile regression (Koenker and Bas-

sett, 1978) has also been extended in the functional data paradigm: first with Car-

dot et al. (2005), then with Kato (2012) and Yao et al. (2017), the model has been

readapted for the case of functional covariates with scalar response. The model

illustrated in Kato (2012) (which provides the main reference for this section)

shares the main characteristics with the scalar-on-function regression of Müller
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and Stadtmüller (2005), except for the assumption that the conditional quantile is

a linear function of the (centered) covariates. In particular, the conditional quan-

tile of the response is expressed as a linear function of the scalar product between

the functional data and a coefficient function βτ ∈ L2(T ):

Qτ (Y |X) = ατ +

∫
T
X(t)βτ (t)dt, τ ∈ (0, 1). (3.7)

The functional nature of the coefficient makes its interpretation less straightfor-

ward than in standard regression. In the regions where βτ (t) = 0 any increment

in the covariate produces no marginal change on the quantile of the conditional

distribution Y |X. On the other hand, if βτ (t) is constant over a region T ∗ ⊂ T and

null elsewhere, then only the region T ∗ plays a role in the prediction of the con-

ditional quantile. Despite the differences between quantile and linear scalar-on-

function regression, the same difficulties of the interpretation of the functional

coefficients discussed in James et al. (2009) apply. The model can easily accom-

modate scalar covariates z1, ..., zP̌ (see for example Yao et al., 2017):

Qτ (Y |X,Z) = ατ +

∫
T
X(t)βτ (t)dt+

P̌∑
p̌=1

zp̌δp̌,τ , τ ∈ (0, 1). (3.8)

In order to estimate the parameters in Equation (3.7), both the predictors and the

coefficient functions are represented in the truncated Karhunen–Loève expan-

sion in Equation (2.20):

Xi(t) ≈
M∑

m=1

νimψm(t)

βτ (t) ≈
M∑

m̌=1

bm̌,τψm̌(t). (3.9)

Thanks to the orthonormality of the eigenfunctions ψm,

∫
T
Xi(t)βτ (t)dt ≈

M∑
m=1

M∑
m̌=1

νimbm̌,τ

∫
T
ψm(t)ψm̌(t)dt

=

M∑
m=1

νimbm̌,τ . (3.10)
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Thus the functional model in (3.7) becomes a standard quantile regression prob-

lem of the form

Qτ (Y |X) = ατ +

M∑
m=1

νimbm,τ , (3.11)

whereατ and b1,τ , . . . , bm,τ are estimated as in Equation (3.4). The estimated func-

tional coefficient is then reconstructed by computing

β̂τ (t) =
M∑

m=1

b̂m,τψm(t); (3.12)

for a given τ the estimated value for the quantile function is obtained by plugging

in the estimated coefficient into (3.7):

Q̂τ (Y |X) = α̂τ +

∫
T
X(t)β̂τ (t)dt. (3.13)

In this functional principal components regression (FPCR) setting, the number of

principal components M to be used as regressors controls the smoothness and

the approximation error with respect to the real images. The choice of M could

be automated by using information criteria or percentage of variance explained;

nevertheless, there is no guarantee that the first M components (which explain

the most of the variability of X) are also able to capture effectively the relation-

ship between the functional predictor and the scalar response (Febrero-Bande

et al., 2017, Delaigle and Hall, 2012). For this reason, a simple option could be to

select M such that a very large share of explained variability is represented and

then use LASSO regularisation within the quantile regression model (Belloni and

Chernozhukov, 2011, Wang, 2013). The regularisation might produce a different

subset of selected variables across different quantile levels τ . Since for each τ a

different model has to be fitted, the plug-in estimator Q̂τ (Y |X) is not guaranteed

to be monotonically increasing in τ as the conditional quantile function Qτ (Y |X)

is by construction.

It must be considered that the bias introduced by the penalised estimation

could harm the interpretability of the coefficients for each covariate. A way to

solve this issue is the post-ℓ1 quantile regression, where LASSO is used only for

model selection and then a vanilla quantile regression model is fitted using only

the covariates selected. This approach guarantees better convergence rates and

could reduce the bias (Belloni and Chernozhukov, 2011).
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3.2.3 Data analysis workflow

3.2.3.1 Imaging

The brain images are acquired using structural MRI. This workflow does not

depend on any specific preprocessing stages, except for intersubject registration

to an atlas image, such that voxels from different images are aligned.

More transformations can be operated on the structural MR images. For ex-

ample, the analysis can be based on tensor-based morphometry (TBM) images.

TBM is an image technique that aims at showing local differences in brain volume

from structural imaging. In a cross-sectional setting (one image for each subject),

each image is aligned to a common MRI template called minimal deformation

template (MDT). The deformation induced by this alignment can be represented

by a function that maps a 3-dimensional point in the template to the correspond-

ing one in the individual image. The Jacobian matrix of the deformation can be

used to inform about volume differences in terms of shearing, stretching and ro-

tation. The determinant of the Jacobian matrix for each voxel is then a summary

of local relative volumes compared to the MDT: a value greater than 1 indicates

expansion, while a value less than 1 means contraction. Further details about

TBM are available in Ashburner and Friston (2004).

In order to reduce the dimensionality of the problem, the voxels outside the

brain can be excluded from the analysis imposing a mask on the images. We used

FSL (through its R interface fslr, Muschelli et al., 2015) to obtain a mask on the

template image with smooth boundaries.

3.2.3.2 Basis expansion

A common assumption in FDA is that the observed data are a noisy, discretised

version of the true underlying signal function that is of interest in the analysis. In

other words, the values observed at a specific voxel may be contaminated with

some measurement error that could have an impact on the spatial correlation

structure within the images. Removing this measurement error leads therefore

then to smoother images, improving the performances of FPCA.

For this reason, nonparametric basis expansion techniques such as B-splines

or wavelets are usually employed. The latter are chosen mainly when the underly-

ing function is thought to be characterised by rapid changes in behavior (Ramsay

and Silverman, 2005); B-splines are instead preferred for their properties (com-

pact support, unit sum) when less abrupt changes in the function are expected.
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In this case, TBM images are already smooth by construction, so we can use B-

spline basis functions with the main aim to obtain a parsimonious representation

(under the fairly safe assumption that the main sources of error have been already

removed).

In order to get a 3-dimensional basis function, a tensor product of univariate

B-spline basis functions is built as described in Section 2.2.3. In compact form,

all theN images are represented by the product of theN ×K coefficient matrix C̃

and the matrix of basis functions Φ. We center the projected data (equivalent to

centering the raw data since the projection is linear). This apparently negligible

aspect is actually very relevant in the big data context as it allows to parallelise the

basis expansion stages without the need to import and store simultaneously all

the images. We call the centered coefficient matrix C.

In this work we used a 3D tensor product of quadratic B-spline univariate basis

functions with equidistant knots. The number of knots (or analogously their spac-

ing) can be fixed in advance, but a poor choice might heavily affect the number

of basis functions that are needed to represent the functions and consecutively

the computational time and the quality of projection. For this reason a prelim-

inary study on a subset of the data is recommended. Outcomes of interest for

this preliminary study could be the number of non-zero basis functions within

the masked image, the average time needed for the projection of an image and

the R2 value obtained from the regression of each image using as design matrix

the matrix of basis functions. The latter value can be interpreted as a proportion

of variance explained. At this stage, it is highly recommended to retain as much

variability as possible: a 0.95 threshold for R2 should work for many applications

and should ensure a manageable set of basis functions. Alternative criteria could

be established in terms of full width at half maximum (FWHM).

3.2.3.3 Functional PCA

The coefficients of the projection are the quantities needed to solve the eigen-

decomposition problem in Equation (2.21). In this section, we rely heavily on

Ramsay and Silverman (2005, Section 8.4.2), with minor modifications to make

this high dimensional problem computationally feasible. The procedure is de-

scribed also in Chen et al. (2018).

The (corrected) sample variance-covariance function can be written as

γ̂(s, t) =
1

N − 1
ϕ(s)TCTCϕ(t) (3.14)
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using the same decomposition in (2.28). Suppose then that the eigenfunctions in

Equation (2.21) can be expressed as linear combinations of the same basis func-

tions Φ:

ψ(s) =

K∑
k=1

ξkϕk(s) = ϕ(s)Tξ. (3.15)

Then the eigenanalysis of the covariance operator described in Equation (2.21)

takes the following form:∫
T

[
1

N − 1
ϕ(s)TCTCϕ(t)

] [
ϕ(t)Tξ

]
dt = λϕ(s)Tξ. (3.16)

Denoting by Wϕ the K ×K symmetric basis product matrix with elements

wkl = ⟨Φk,Φl⟩, (3.17)

Equation (3.16) can be rewritten as

1

N − 1
ϕ(s)TCTCWϕξ = λϕ(s)Tξ. (3.18)

The entries in Wϕ are usually computed with some numerical quadrature rules

(Ramsay and Silverman, 2005) but these procedures are computationally demand-

ing in our 3D context. The cross product, although less accurate at the boundaries

with respect to the trapezoidal rule, offers a good result in shorter time. Simplify-

ing both sides of Equation (3.18) by ϕ(s)T (the relationship must hold for all s) we

obtain
1

N − 1
CTCWϕξ = λξ. (3.19)

In order to get orthonormal eigenfunctions, some constraints must be imposed:

ξTj Wϕξj = 1 and ξTj Wϕξk = 0. (3.20)

These are fulfilled by setting u = LTξ, where L is obtained through the Cholesky

decomposition Wϕ = LLT (Ramsay and Silverman, 2005, p. 181); solving the

equivalent problem
1

N − 1
LTCTCLu = λu, (3.21)

the original eigenfunctions are obtained using ξ =
(
LT
)−1

u.

We note that for A = (N−1)−1/2CL the eigendecomposition problem consists

in finding the eigenvalues and eigenvectors of ATA. These can be obtained in
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a computational efficient way by using the SVD of the matrix A. In particular,

the non-zero eigenvalues {λm} are equal to the squared non-zero singular values,

whereas the eigenvalues {um} of ATA are equal to the right singular vectors of A.

The m-th score for the i-th image is then

νim = ⟨Xi − µ, ψm⟩

=

∫
T

[∑
l

cilϕl(t)

]∑
ľ

ξmľϕľ(t)

 dt
= cTi Wϕξm. (3.22)

3.2.3.4 Functional Quantile Regression

The scores obtained after FPCA are plugged into a standard quantile regres-

sion problem. We create the design matrix for the quantile regression model using

the first M scores for each image such that the first M eigenfunctions represent

at least 80% of the variability within the sample (see Section 3.4.3 for a sensitiv-

ity analysis). LASSO regularisation can be applied within the quantile regression

framework. The minimisation problem in Equation (3.4) can be readapted there-

fore to our situation by writing

(α̂τ , b̂1,τ , ..., b̂M,τ ) =

argmin
α,b1,...,bM

{
n∑

i=1

ρτ

(
yi − α−

M∑
m=1

νimbm

)
+ ιLASSO

M∑
m=1

|bm|

}
(3.23)

where ιLASSO is the LASSO tuning parameter. For a specific value of ιLASSO, a

solution path is found, where the LASSO penalty will induce the shrinkage of the

estimates towards zero, but also sparsity, as some estimates are exactly zero (Tib-

shirani, 1996).

Several R packages offer built-in functions that perform automatic selection of

the tuning parameter. For this purpose, we use the package rqPen (Sherwood and

Maidman, 2017), that produces penalized quantile regression models for a range

of tuning parameters and then selects the one with minimum cross-validation

error.
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3.2.3.5 FPCA and functional quantile regression in a prediction setting

The scores are obtained by taking an inner product of each image with the

eigenfunctions estimated on the training set. For this reason, they can be ob-

tained for images from other datasets with the same formula, even if the proper-

ties of zero mean and variance equal to the eigenvalues apply only for the training

dataset. The scores are in turn produced within the FPCA step, where the estima-

tion of the eigenfunctions depends on the training data as well.

This workflow is aimed at deriving brain age prediction intervals for healthy

individuals. This means that FPCA and functional quantile regression should be

based on a dataset of control subjects. In order to get predictions for this dataset,

10-fold cross validation can be used, reducing in this way the risk of overfitting.

Age predictions for subjects with neurodegenerative diseases can be obtained

from the same normative model. In this case the full dataset of control subjects

can be used for FPCA and functional quantile regression and the brain age is to

be interpreted as the equivalent brain age of a healthy individual having the same

brain image.

The R code implementing the workflow is available at https://github.com/

marcopalma3/neurofundata.

3.2.3.6 Alternative models

The degree of smoothing in the basis expansion step can be controlled in dif-

ferent ways, by changing either the location or the numbers of knots. When the

number of knots is equal to the number of voxels, we recover the original data,

where the coefficient of the basis functions are just the observed values at each

voxel. The analysis of the “unsmoothed” images can still be based on standard

multivariate analysis techniques such as PCA and quantile regression, but it re-

quires an increased computational effort. The data matrix containing the im-

ages as rows is indeed large (in our case the memory needed to store it is more

than 6.4GB) and high performance computing tools are required to fit models

on these data. In addition, quantile regression under memory constraints is re-

ceiving attention only recently (Chen et al., 2019), therefore the calculation of the

prediction interval is not straightforward. A small amount of smoothing is recom-

mended to reduce both the storage issues and the computational time required

to train the model.
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Figure 3.1: Flowchart of the analysis from the brain images to the predicted inter-
vals.
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3.3 Data

The workflow proposed in Section 3.2.3 is applied on a dataset coming from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI, Mueller et al., 2005), that

supports the investigation about biological markers to be employed to detect signs

of Alzheimer’s Disease (AD) in the brain at early stages. The sample used in this

paper is made of 796 subjects, identified through an ID code, for which several de-

mographic and clinical variables are measured. In this analysis, we will consider

only the chronological age at the entry of the study (ranging from 59.90 to 89.60

years; mean age 75.60 ± 6.29) and their diagnosis: 180 subjects were diagnosed

with AD, 387 with MCI (Mild Cognitive Impairment, considered as an interme-

diate stage between healthy condition and AD) and 229 people were belonging

to a control group of cognitively normal (CN) subjects. The histogram of age by

diagnosis group is displayed in Figure 3.2.

Diagnosis N Min. 1st Qu. Median Mean 3rd Qu. Max.
Control 229 59.90 72.30 75.60 75.87 78.50 89.60
MCI 387 60.10 70.85 75.60 75.30 80.40 89.30
AD 180 59.90 70.98 76.15 75.90 81.58 89.10

Table 3.1: Summary statistics for each diagnosis group. N is the number of sub-
jects in each group. The second part of the table shows selected quantiles of age.

The functional part of the dataset consists of tensor-based morphometry im-

ages taken at the baseline of the study for each subject. In this dataset, the thresh-

old 1 is rescaled to 1000 for computer number format reasons. Information about

the preprocessing stages for the ADNI TBM dataset is available in Hua et al. (2013).

The analysis is based on the original 3D TBM scans (220×220×220, with voxel

size equal to 1 mm3). The conventional neurological orientation (“right is right”)

is used: the (x, y) axes of the images are set such that x increases from left to right

and y increases from posterior to anterior.

The mean functions for each diagnosis are shown in Figure 3.3. MCI and AD

patients share similar average brain volumes patterns (namely, expansion of the

lateral ventricles and shrinkage almost everywhere else) even if the intensity of

the expansion is higher for people with dementia. The expansion of the lateral

ventricles is also visible in the healthy control mean function, but it is less pro-

nounced. Conversely, the healthy control mean function shows other slightly ex-

panded brain areas, such that the cerebellum and several regions in the posterior

and frontal lobes. Further analyses based on the voxelwise variance functions per
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Figure 3.2: Histogram of age of the subjects in the sample, for each diagnosis. The
number of bins has been fixed using the Freedman-Diaconis rule (Freedman and
Diaconis, 1981).
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each group show that the lateral ventricles are the areas with the highest variabil-

ity in terms of volume expansion.

3.4 Results

3.4.1 Prediction accuracy

The preprocessed images are masked to remove unnecessary voxels for the

analysis. A 3D smooth mask is obtained by smoothing the raw mask with a Gaus-

sian kernel with standard deviation equal to 2 voxels (FWHM 4.7 mm) and thresh-

olding it at 0.5, to regularise the boundary, producing just over 2 million nonzero

voxels.

For the dataset at hand the B-splines projection with equidistant knots every

12 mm (equivalent to FWHM ≈ 15.33 mm) for each dimension allows to repre-

sent each image with R2 approximately equal to 0.96. The number of B-spline

functions in the tensor product that fall within the mask is 2694. In the current

implementation, the process of importing one image into R and obtaining its B-

spline coefficients takes approximately 30 seconds.

The eigendecomposition problem in Equation (2.21) solved for the dataset of

healthy control subjects returns M = 54 eigenfunctions (which represent at least

80% of the variability within the sample) of which the first 3 are plotted in Fig-

ure 3.4. In analogy with standard PCA, a basic interpretation can be provided.

The first eigenfunction clearly distinguishes the lateral ventricles from the rest of

the brain. Subjects with high scores for this eigenfunctions will show stronger ex-

pansion within the lateral ventricles with respect to the mean function. Due to

the similarities with the observed patterns in the mean function for the subjects

with disease, it is likely that the scores for this eigenfunction computed for all the

796 subjects in the dataset are correlated with the diagnosis and with the chrono-

logical age, for the known interplay of the effects of these two factors. The second

mode of variation refers instead to a more general expansion across the whole

brain: in other words, it discriminates between individuals with bigger brains and

those with smaller ones. For this reason, this component might account for some

sex-related effects, as males have on average larger overall absolute brain than

females (Ruigrok et al., 2014). The third eigenfunction weights negatively some

of the internal parts of the brain. This component might therefore roughly dis-

tinguish white matter from the cortex, even if this interpretation is not very clear

and can be influenced by the smoothing induced by the projection onto the ba-
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sis functions. The first 3 components account for 36.25% of the variance of the

images of the healthy control group.

We compute the scores for MCI and AD individuals as the product of the cen-

tered images and the eigenfunctions in Figure 3.4. For the control subjects, we

use 10-fold cross validation (with check function as loss function) to run FPCA,

produce scores and fit the models such the predictions are obtained on held-out

data. Quantile regression models for τ ∈ {0.05, 0.5, 0.95} are considered. Table 3.2

shows that the MAE and RMSE based on the difference between median brain-

predicted age and chronological age are lower for control subjects than the other

groups. This result is expected under the choice of a normative model that pre-

dicts brain age in absence of any diseases and indicates that the two subpopu-

lations (controls vs. cases) show different ageing characteristics (if they were be-

longing to the same population, the MAE and RMSE would have been similar).

Diagnosis N MAE RMSE Cor 95% CICor π̂ ∗-pos
Control 229 3.49 4.43 0.48 [0.37, 0.57] 0.86 0.05
MCI 387 4.99 6.12 0.46 [0.38, 0.54] 0.68 0.24
AD 180 5.16 6.27 0.38 [0.25, 0.50] 0.64 0.28

Table 3.2: Summary of the prediction results by diagnosis. Cor: correlation be-
tween predicted brain age and chronological age. CICor: confidence interval for
the correlation between predicted brain age and chronological age, obtained via
Fisher-z transformation (Myers et al., 2013, Section 19.2). π̂: sample coverage
(proportion of cases for which the 90% prediction interval contain the chrono-
logical age). ∗-pos: proportion of cases for which the chronological age is less
than the lower limit of the 90% prediction interval.

The MAE observed for the control group is 3.49, in line with other results ob-

tained in the literature for other MRI datasets and different age ranges (Cole et al.,

2019). In addition, as shown in Figure 3.5, the smoothed regression line for con-

trol subjects indicates that the average brainPAD (difference between predicted

and chronological age) is close to zero for the whole age range, while it departs

from it for the other groups in the predicted age range between 73 and 75. The

statistical and clinical relevance of the age threshold after which the regression

lines of the 3 groups overlap should be further evaluated. Prediction metrics do

not improve after debiasing using post-ℓ1 quantile regression.

We focus now our attention on the features of the 90% prediction intervals and

the sample coverage. We observe that the actual sample coverage for control sub-

jects is slightly lower than the nominal level. The groups with cognitive impair-

ment show lower coverage with respect to the control group: the chronological
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Figure 3.5: Plot of the brainPAD vs. predicted response. The coloured lines are lo-
cal regression lines obtained with loess (locally estimated scatterplot smoothing)
with span = 0.75 and 95% confidence bands.
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ages of around 1 in 3 subjects with diseases do not fall in the prediction inter-

vals obtained under the normative model. When we further analyse the direc-

tion of the discrepancy, we can define a “∗-positive brainPAD” group (for which

the chronological age is lower than the lower limit of the prediction interval, or

equivalently with positive brainPAD and chronological age outside the prediction

interval) and a “∗-negative brainPAD” one (composed of those subjects with neg-

ative brainPAD and chronological age outside the prediction interval). While the

share of ∗-negative subjects is approximately constant across the diagnosis, the

percentage of ∗-positive subjects for MCI and AD groups is approximately 5 times

the one for the control subjects. This result aligns with the literature, where it has

been shown that MCI and AD patients show higher apparent brain age (Cole et al.,

2019, Franke et al., 2012): for this reason the ∗-positive group is more interesting

for their potential correlation with other disease indicators. All the prediction in-

tervals are plotted in Figure 3.6, stratified by diagnosis and sorted by predicted

age. The prediction intervals for the control subjects are scattered closer to the

line of identity between predicted and chronological age and there are no relevant

trends in the residuals that are left unexplained by the regression models. The

variability of the width of the 90% prediction intervals is displayed in Figure 3.7:

the average width is similar for the 3 diagnosis groups, but there is higher vari-

ability in the width distribution of the MCI and AD subjects. Moreover, ∗-positive

brainPAD is mainly observed in the lower part of the age domain covered in the

dataset. This could be just a consequence of our regression approach, or it might

be due to the low number of subjects in the training set with chronological age

less than 70, which might produce issues in the estimation of extreme quantiles

of the conditional distribution of the outcome.

The brain maps displayed in Figure 3.8 are the functional coefficients obtained

from the scalar-on-image quantile regression trained on the whole control dataset.

They can be used to identify the regions that are responsible for the age predic-

tion for the different quantiles. The functional coefficient for τ = 0.05 shows that

the expansion of the lateral ventricles is the principal factor that leads to higher

predicted age (Preul et al., 2006, Apostolova et al., 2012) in the lower tail of the

chronological age distribution. Other areas seem to have more limited impact

on the prediction. In the coefficient obtained from the median regression, the

lateral ventricles still play a role in the prediction (especially the posterior part)

but expansion in several other areas is correlated to higher predicted age. Among

them we point out the central sulcus (perpendicular to the median longitudinal

fissure that divides the two hemispheres) that separates the primary motor cortex

46



3. QUANTIFYING UNCERTAINTY IN BRAIN-PREDICTED AGE USING

SCALAR-ON-IMAGE QUANTILE REGRESSION

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Control (N = 229) MCI (N = 387) AD (N = 180)

−20 0 20 −20 0 20 −20 0 20
Difference from chronological age

S
ub

je
ct

s

Figure 3.6: Brain age 90% prediction intervals, relative to chronological age. There
is one interval per subject, and subjects are sorted in descending order of pre-
dicted brain age (higher predicted ages at top). The black diamonds indicate the
subjects for which chronological age does not fall into the prediction interval; the
side indicates if the subject is in the ∗-negative (diamonds on the left) or ∗-positive
group (diamonds on the right).
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Figure 3.7: Left: distribution of the prediction interval width conditioned by diag-
nosis. Right: histogram of chronological age conditioned by ∗-positive indicator
(equal to 1 if the chronological age is less than the prediction at τ = 0.05, 0 other-
wise).

and the primary somatosensory cortex. In addition, the frontal lobe shows neg-

ative values for the functional coefficient, meaning that expansion in this part of

the brain is linked to a lower predicted age. This agrees with the literature: age-

related atrophy is more pronounced in the frontal lobe (Cabeza and Dennis, 2013,

Fjell et al., 2014, MacPherson and Cox, 2016) and less in the occipital lobe (Dennis

and Cabeza, 2011). For τ = 0.95, the brain map indicates that the upper part of

the cortex and the cerebellum are related to higher predicted age, while a larger

left temporal lobe (in blue in the lower axial slices, it plays a role in memory and

language control) is associated to younger brain age. Especially for these last two

maps, asymmetry between hemispheres appears in the relationship with brain

age.

3.4.2 Correlation with cognitive decline measures

A small number of cognitive decline measures available in ADNI has been used

to evaluate the clinical utility of the predictions obtained. The list of measures re-

ported in Table 3.3 includes genetic assessments (ApoE4) and various evaluations

of writing and speaking skills, visual attention and task switching. The outcomes

of interest in this section are both the brain-predicted age difference (brainPAD,

difference between predicted and chronological age, as defined in Cole et al.,

2017) and the binary ∗-positive indicator (equal to 1 if the chronological age is

less than the prediction at τ = 0.05, 0 otherwise).
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Variable Values
ApoE4 Apolipoprotein E - Number of ε4 alleles {0, 1, 2} ↗

ADAS11 AD Assessment Scale - 11-item variant {0, 1, . . . , 70} ↗
ADAS13 AD Assessment Scale - 13-item version {0, 1, . . . , 85} ↗
ADASQ4 AD Assessment Scale - Delayed Word Recall {0, 1, . . . , 10} ↗
MMSE Mini-Mental State Examination {0, 1, . . . , 30} ↘

DIGITSCOR Digit Symbol Substitution Test {0, 1, . . . , 83} ↘
TRABSCOR Trails B Making Test {0, 1, . . . , 996} ↗

Table 3.3: Cognitive decline measures used in the analysis. The arrows indicate
the change in the measures associated to an increase in dementia severity.

Figure 3.9 summarises the main findings in this validation analysis. A higher

ApoE4 value—linked to higher risk of dementia—is also related to higher pre-

dicted age difference on average (the p-values refer to one-sided tests). In ad-

dition, for the group with the highest ApoE4, more than 75% of the individuals

show higher predicted age than chronological.
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Figure 3.9: Left: association of brainPAD with ApoE4 value (Holm-corrected p-
values) for different visits, with evidence of positive association. Right: (A) Cor-
relation between baseline brainPAD and cognitive scores at different visits; (B)
t-statistic for the comparisons of means of cognitive scores between ∗-positive
group and the rest of the sample at different visits. The black lines are Student’s
t quantiles which correspond to different probabilities in the tails of the distribu-
tion.

The correlation between baseline brainPAD and cognitive scores at different

visits shows some association (uncorrected) for several measures, with ADAS mea-

sures and MMSE showing the strongest associations after 2 years. Nevertheless,
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no cognitive measure recorded at baseline is associated with the difference be-

tween predicted and chronological age. On the other hand, there is some evi-

dence that the average of the cognitive measures is different between the ∗-positive

group and the rest of the subjects across different time points. Also in this case

the direction of the relationship is consistent with the numerical definition of the

measures.

3.4.3 Sensitivity analysis

The prediction results are obtained under specific choices of several parame-

ters. In order to assess how these choices might affect the results, we perform a

sensitivity analysis using different values of the following parameters:

• PVE: proportion of variance explained (criterion to decide the number of

fPC to be included in the quantile regression models), PVE ∈ {0.65, 0.8, 0.95};

• KS: knot spacing, KS ∈ {6, 9, 12, 15};

• nominal coverage: desired width of the prediction intervals. Values consid-

ered:

– τ ∈ {0.1, 0.5, 0.9} for a 80% nominal coverage,

– τ ∈ {0.05, 0.5, 0.95} for a 90% nominal coverage.

For each combination of values, we get the projections for each image and then fit

the LASSO quantile regression. For the cases with KS = 6, the standard procedure

did not work because of a failure in the Cholesky decomposition of the weight

matrix Wϕ in Section 3.2.3, due to numerical tolerance issues. In these cases, the

pivoted Cholesky decomposition can be applied: due to the fact that the matrix

Wϕ is symmetric semipositive definite by construction, there is a permutation

matrix P for which P TWϕP can be factorised with an upper triangular matrix

(see Higham, 2009 for an introduction).

We report as main outcomes the mean absolute error and the actual relative

coverage (1− ιcov, where ιcov is the ratio between observed and nominal coverage)

obtained for the control subjects in Figure 3.10.

The MAE refers to the predictions obtained with τ = 0.5, so it is not affected by

the choice of nominal coverage. In general, the MAE remains rather stable across

combinations of PVE and knot spacing, suggesting that our results are robust to

the choices of these parameters. The lower MAE is always achieved for PVE = 0.8:
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Figure 3.10: Left: mean absolute error for control subjects as function of propor-
tion of variance explained and knot spacing. Right: Coverage relative difference of
prediction intervals induced by each choice of proportion of variance explained,
knot spacing and nominal coverage. Points are jittered horizontally for visualisa-
tion purposes.

this might suggest that a low PVE neglects important sources of variation while a

higher one introduces too many useless variables in the models. In terms of knot

spacing, 12 mm gives in almost all the cases the best results across PVE values.

Looking at the coverage for each setting of knot spacing, PVE and nominal cov-

erage, we first observe that there are no cases in which the observed coverage is

higher than the nominal level. This phenomenon of undercoverage gets more

pronounced for higher knot spacing values. Except for KS = 6, when the cov-

erage relative difference increases as the number of components in the quantile

regression increases, for the other KS values no clear pattern is visible. The rela-

tive difference seems not to be influenced by the prespecified nominal coverage.

The table in the Supplementary Material in Palma et al. (2020) includes also a

sanity check based on non-monotonic prediction intervals—those for which the

predicted age at the upper τ level is smaller than the one at the lower level. The

number of occurrences of this phenomenon is negligible in almost all the cases.

As an additional analysis, we have explored the prediction performances in

terms of MAE for the control group in two models which do not use the basis ex-

pansion step, using the R packages bigmemory (Kane et al., 2013) and bigstatsr

(Privé et al., 2018). The first model (M1) is a sparse linear regression with LASSO

regularisation applied on the unsmoothed data (represented by 1 column per

voxel in the data matrix). The second model (M2) is closer to our approach: a

PCA is performed on the covariance of the matrix of unsmoothed images, then

the scores corresponding to the first principal components selected (using a pro-
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portion of variance explained of at least 0.8) are plugged into a penalised quantile

regression model. M2 can be interpreted as a special case of our functional ap-

proach when the distance between adjacent knots is equal to 1 mm.

The difference in computational time between our approach (M0) and the

models M1 and M2 is not substantial. On one hand, the smoothing step in M0

is performed independently for each image in a parallelised setting therefore it

requires only a few minutes in total. On the other hand, in M1 and M2 we need

to load the matrix (6.4 GB in our case) in memory and run PCA with a large ma-

trix (which also requires inversion), which could take several minutes. In this case

there is a dependency on the number of basis functions used. The quantile regres-

sion step takes also less than a minute per model (the cross validation procedure

to find the LASSO parameter is the most computationally demanding aspect). For

what concerns the prediction performances, M0 achieves lower MAE for the con-

trol group with respect to M1 (MAE = 3.63) and M2 (MAE = 3.65).

3.5 Discussion and further research directions

The functional data paradigm represents a useful approach to the analysis of

complex data such as brain scans and offers a way to fit a global model for 3D

images. In this work we have discussed the basic aspects of functional data and

presented an application of quantile scalar-on-image regression (as extensions of

classical quantile regression) in the field of brain age studies. Following the exist-

ing literature, we have devised an efficient workflow that takes as input a tensor-

based morphometry image and returns a prediction interval. The advantages of

employing the whole images as covariates are that some common preprocessing

steps might be avoided (e.g. brain tissue segmentation) and there is no need to

summarise information at the ROI (regions of interest) level. In addition, quantile

regression gives a more detailed picture of the relationship between the covari-

ate and the response and returns an interval with the desired coverage when the

distribution of the dependent variable departs from normality. In contrast with

other existing models coming from a machine learning perspective, our method

outputs not only a point estimate but also a prediction interval. In addition, the

model allows to investigate the functional coefficient estimated, in order to visu-

alise the brain regions that influence most the predicted age.

Our modelling strategy introduces new features with respect to the standard

prediction-oriented approaches in the literature. While other approaches focus
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only on maximising prediction accuracy, we emphasise the detection of individ-

ual atypical ageing: the prediction intervals give a simple and preliminary assess-

ment of the relevance of the observed brainPAD. In other words, the same brain-

PAD could be indicative of potential neurodegenerative diseases for one subject,

while being less linked to such disease for another subject.

The results from the analysis of ADNI data are encouraging: the point (me-

dian) prediction performances in terms of MAE and RMSE for the control sub-

jects are comparable with the literature on the topic—even with deep learning

approaches applied on bigger ADNI datasets (Varatharajah et al., 2018)—while

being also more principled and interpretable. The correlation between chrono-

logical and predicted age results to be lower than the one found with other meth-

ods. The model trained on the control group highlights differences with respect to

the MCI and AD groups: individuals with cognitive impairment are predicted to

be older on average than their observed age, as observed in the literature (Franke

et al., 2012, Cole et al., 2017).

The model proposed is an example of penalised functional regression. In this

respect, some degree of regularisation can be applied at different stage of func-

tional data analysis, starting from smoothing (Ramsay and Silverman, 2005). At

the same time, the choice of the number of functional principal components to

be used in regression (by using the proportion of variance explained) is itself a pe-

nalisation. On top of this we added a further penalisation, driven this time by the

relationship between outcome and predictors, to account for the potential high

number of covariates given the sample size (following the indication provided in

Heinze et al., 2018). Our model represents a novelty in the literature as it easily

accommodates this aspect into a quantile regression model with 3D functional

covariates.

In addition to the bias induced by the regularisation, another potential issue

related to the functional coefficient is its sensitivity to the modelling strategy used.

As extensively studied in Happ et al. (2018), the smoothness induced by splines

could lead to different estimates with respect to other approaches (e.g. wavelet

basis expansion or random field methods). Further work can be done to confirm

the contribution of each brain region to the final prediction. Nevertheless, the

predictive ability - which is the first focus of our model - does not seem to be

harmed by this modelling choice.

Our approach is competitive in terms of speed compared to existing methods

(Franke et al., 2012, Cole, 2017). In particular, for a new image the model returns

the predicted interval in approximately a minute and the training phase of the
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model is expected to be shorter and less computationally intensive than training

a neural network, especially because the basis expansion step runs in parallel for

each image.

The modelling approach illustrated in this paper can be extended in multiple

ways, from both theoretical and practical perspectives. For what concerns the key

points of the workflow, in this paper we have chosen to project the images (and

the functional coefficients) using B-spline basis functions and sketched a possi-

ble strategy to select knot spacing. We have shown that some degree of smooth-

ing produces slightly better predictions with respect to no smoothing at all with

negligible computational cost. The benefit of this approach could more easily ap-

preciated when the number of images is much larger, in which case loading the

whole unsmoothed data into memory can be unfeasible.

The quantile regression approach is a technically easy-to-implement strategy

to build prediction intervals without assuming normality. Since we consider only

the best fit for each of the regression models, it could be of interest to study how

the uncertainty about the coefficients and the models could play a role in the cal-

culation of individual prediction intervals. The observed coverage in the control

group could also depend on the bias/variance trade-off introduced by the cross-

validation procedure (and in particular on the type of penalty and the number of

folds chosen). Further simulation study can be done to assess the extent of this

relationship.

In addition, further extensions of quantile regression could be considered. Ad-

ditive terms might be introduced in order to explore nonlinear effects of the imag-

ing covariate. Moreover, quantile boosting (Mayr et al., 2012) could provide better

prediction intervals by reducing the bias due to the estimation at extreme quan-

tiles. This approach has a higher computational cost but keeps the advantage

of interpretability, which is no longer available with other approaches such as

quantile regression forests described in Meinshausen, 2006. A potential issue for

the current formulation of our approach is the phenomenon of quantile crossing,

that occurs when the predicted quantiles are not monotonically increasing in τ

as the conditional quantile function is by construction. Although in 90% predic-

tion intervals the problem arises rarely (in our application it has been reported

for only 1 case out of 796), still this could introduce some bias. Monotonicity

can be forced after the estimation by using rearrangement or isotonic regression

(see e.g. Kato, 2012, Chernozhukov et al., 2010). An alternative modelling strategy

for quantile regression that ensures monotonicity of the function is provided in

Chen and Müller (2012): the quantile function is obtained indirectly by first es-
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timating the entire CDF of the response variable and then inverting it to recover

the quantile function at the level of interest. The key idea is to use a generalised

functional linear model to model the conditional distribution of Y |X as condi-

tional expected values of indicator functions. This “indirect” model is claimed

to provide better estimation of the quantile function with respect to the classical

quantile regression at extreme quantile levels for non-gaussian response variables

(Chen and Müller, 2012), although the flexibility induced by considering differ-

ent predictors at different quantile levels is lost. In addition, generalised additive

models for location, scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005)

can also provide a detail picture of the conditional distribution of the outcome

of interest. In GAMLSS the parameters of the distribution (not only the location,

as in GLM) can be written as (smooth) functions of the covariates. GAMLSS can

handle functional covariates (Brockhaus et al., 2018) and ensures monotonocity

of the quantile predictions, but the family of the conditional distribution of the

outcome must be specified in advance.

From the application point of view, it is currently very difficult to provide a

sensible comparison between different models. This is due to the large range of

possible approaches (from multivariate statistics to deep learning) applied to a

plethora of datasets with different sizes, age ranges and imaging modalities (T1-

weighted MRI to PET or fMRI). Cole et al. (2019) uses a MAE weighted by the age

range in the training set as a measure of comparison. That approach might be

too simplistic, as a 1-year absolute error for a 6-year child should probably be

weighted more than the same error for a 70-year old individual. A more adaptive

measure should be devised, or alternatively there should be an incentive towards

the use of a specific dataset as a benchmark. Big databases such as UK Biobank

(Sudlow et al., 2015) seem the right testing ground for all the methods available

in the literature. Our model could be applied on different imaging modalities, for

example voxel-based morphometry, in order to specify potential differences in

the effects due to white and gray matter.

Coming to more specific modelling-related issues, as observed from the plots

concerning the prediction intervals, a non negligible correlation is noticed be-

tween chronological age and the brain age differences (predicted minus chrono-

logical, called brainPAD in Cole et al., 2017, brainAGE—brain age gap estimate—

in Franke and Gaser, 2019 or δ in Smith et al., 2019). This undesirable effect arises

from the simple fact that by construction the residuals (which become the ob-

jects of interest when we want to explore the relationship with other variables

such as disease conversion) in a regression model are uncorrelated with respect
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to the predicted values, but not with the observed ones. Similar issues are also re-

ported in the deep learning approaches to brain age prediction (Cole et al., 2017,

Varatharajah et al., 2018). The work by Smith et al. (2019) identifies potential rea-

sons for this phenomenon and proposes some solutions. Among others, a view-

point that is conceptually grounded and at the same time can be embedded in our

model could be rephrasing the whole problem in terms of an errors-in-variables

framework. In particular, this accounts for the imaging covariate (consistently

with the functional data perspective) or its scores representation being measured

with some errors. At the same time, the response itself (chronological age) can

be considered as a noisy proxy for biological brain age (for which it is difficult or

even impossible to define a reference measure).

Another aspect left for future research is to extend the analysis of the clinical

utility of the prediction intervals obtained with our workflow by using a larger

battery of cognitive measures. The first basic measures selected in this work show

interesting and sensible results, especially for the correlation with the ∗-positive

binary variable. A desired feature of this indicator in a prognostic context should

be its correlation with conversion to dementia, in order to provide a sensible way

to early detect neurodegenerative diseases. Furthermore, a similarly defined “∗-

negative indicator” could be also explored in the same way in order to show po-

tential aspects of a healthy ageing process.

In addition, introducing other covariates in the model (such as sex, years of

education or physical activity measures) is rather straightforward and it could im-

prove the detection of discrepancies from normative ageing. On the other hand,

these covariates might potentially introduce confounding effects: the variability

due to non-imaging information could be already captured by one or more func-

tional principal components. Our approach can be also easily incorporated in

a longitudinal model where brain age trajectories could provide evidence of sta-

ble or accelerated brain ageing. This setting might be especially beneficial if ap-

plied to tensor-based morphometry images in ADNI, where data at latter visits

can be easily interpreted as changes in regional volumes with respect to the pre-

vious scans.
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Chapter 4

A whole-brain normative model

for 3-dimensional morphometry

images based on skewed

functional data analysis

4.1 Introduction

The study of shapes and volumes of brain regions represents a valid approach

to highlight differences between subjects (Ashburner and Friston, 2004). Many

phenomena, either non-pathological (like ageing) or pathological (e.g. Alzheimer’s

disease), are characterised by increasing atrophy at differential rates throughout

the brain lobes that can be observed (cross-sectionally between subjects or longi-

tudinally) through deformation of structural magnetic resonance images (sMRI).

Within the family of brain morphometry methods, tensor-based morphome-

try (TBM) is used to identify regional differences with respect to a common tem-
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plate (Hua et al., 2013). Each voxel in TBM images is associated to the relative

volumetric differences with respect to the template which can be interpreted as a

factor of expansion or shrinkage of the brain area. In particular, values above the

threshold of 1 in a brain area indicate that the subject shows an expanded volume

with respect to the common template: for example, a TBM value of 1.1 means

that the volume in the voxel of the subject image is 10% higher than the volume

in the same voxel in the common template. This multiplicative factor of expan-

sion/contraction corresponds to the determinant of the Jacobian matrix that for

each voxel encodes the deformation that maps the points in the template to the

original MRI scan of the subject (Ashburner and Friston, 2004, Chung, 2013).

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) provides a dataset

containing TBM brain images of adults to study the differences between a control

group and two groups of people with different levels of neurodegeneration (Mild

Cognitive Impairment, MCI or Alzheimer’s Disease, AD). An exploratory analysis

of 817 TBM images reveals spatial heterogeneity in the voxelwise distributions.

Figure 4.1 shows the empirical cumulative distributions of TBM values by diag-

nosis groups for two voxels selected at random in the brain, one of which be-

longs to the lateral ventricles and the other is outside this region. The patterns

observed are very different: for the voxel in the ventricles, the probability of ob-

serving higher extreme values (the comparison threshold with the template in this

dataset is 1000) increases towards the group with AD. The distributions for all the

groups do not appear to be symmetric. On the contrary, the voxel outside the

ventricles shows no clear differences between the cumulative distributions.

When looking at the summary statistics for all the voxels across all subjects, the

patterns between diagnosis groups are even more evident. Figure 4.2 shows the

relationship between voxelwise means and standard deviations for each group.

While most voxels show a mean around 1000, for some others higher mean and

variances are observed, especially for the groups with diseases. But even for the

cognitively normal subjects, the variability of the standard deviations is not con-

stant as the means increases. When we compute Pearson’s coefficient of skewness

on the whole dataset, Figure 4.3 suggests that, for the regions with mean higher

than 1000, the mean-standard deviation relationship is also linked to higher asym-

metry. Brain areas with higher mean (among which the lateral ventricles) tend to

exhibit more skewed distributions.

These considerations show that the characteristics of the voxelwise distribu-

tions are highly heterogeneous across the brain and could play a role in the sta-

tistical models for brain images. The statistical properties of the Jacobian values
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Figure 4.1: Top: empirical cumulative distribution functions of TBM Jacobian val-
ues by diagnosis group (right) for a voxel in the lateral ventricles. Bottom: empiri-
cal cumulative distribution functions of TBM Jacobian values by diagnosis group
(right) for a voxel outside the lateral ventricles.
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Figure 4.3: 2D histogram of the voxelwise mean and skewness across all subjects.
The number of bins is fixed to 600. A smooth regression line is added in red.
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in TBM have been studied in the literature. In Chung (2013) two alternatives are

presented: normal distributions were traditionally assumed (Chung et al., 2003),

while more recently in the literature (Leow et al., 2007, among others) have dis-

cussed mathematical arguments in favour of the log-normal distribution.

In this work, we provide a modelling strategy for 3D brain data showing skew-

ness in the voxelwise distributions. Following the approach illustrated in Staicu

et al. (2012) and extendend in Li et al. (2015), we integrate the analysis of voxel-

wise distributions into a functional data analysis (FDA, Ramsay and Silverman,

2005) framework, by using copulas to model the dependence structure between

voxels. Each voxelwise distribution is modelled using a skew-normal distribution

(Azzalini, 2013) whose flexibility allows to bypass the choice between normal and

log-normal distribution by means of a single skewness parameter. In practice,

the main objective of our analysis is to transform the original TBM images into

“z-maps” (Section 4.3) which are based on standard normal processes.

To use the z-maps for predictions of cognitive dysfunctions at the individual

level, we embed these approach into a normative model based on the reference

population of healthy subjects. In this way, we expect subjects with relevant neu-

rodegeneration to appear as extremes with respect to the normative population.

Several indices are also proposed to summarise the information of z-maps into a

single value (Section 4.4), which would ideally capture the extent of the departure

from the normative population and potentially represent a score of the severity of

the neurodegeneration.

The normative z-maps proposed here carry a more informative evaluation of

the original images. First, they directly encode not only the relationship between

the single image and the template, but also the one between the single image

and the mean image in the reference population. This represents a great advan-

tage in terms of the readability of the z-maps, where values closer to 0 indicate

brain volumes closer to the expected pattern observed in the reference popu-

lation. Second, observing for example a high Jacobian value does not indicate

by itself whether the corresponding brain area has an “outlying” expansion that

raises suspects of a disease, while through the z-maps this could be more easily

detected.

These z-maps can be used for multiple modelling scopes. Being not linked to

any specific scalar variable, these could be used for an exploratory analysis of the

normative population or to determine measures of deviation from the centre of

the population. The normative z-maps could also be corrected for other scalar

variables such as age and sex. In contrast with other normative models, with our
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approach we openly enforce smoothness of the z-maps, that represents both a

sensible choice in the brain imaging setting and at the same time brings a useful

computational gain.

The work is structured as follows. After a brief description of the benefits of

a normative model in the framework of personalised medicine in Section 4.2, we

describe the features of the statistical model in Section 4.3, breaking it into the

choice of a copula, a voxelwise distribution and the prediction for new subjects.

A range of application of the z-maps for different tasks is presented in Section 4.4,

accompanied by some results (Section 4.5) computed for a subset of ADNI data.

Finally, we discuss potential further developments of the model in Section 4.6.

4.2 Beyond case-control: normative modelling

Normative models are a novel statistical approach aimed at parsing the het-

erogeneity within a neuroimaging cohort. They can be used to produce individ-

ual predictions based on the choice of a reference population (Marquand et al.,

2016a, 2019).

The key point of normative modelling is that subjects with a certain disease

do not necessarily fit into one single group. For example, different subjects might

show some aspects of the disease which could require the definition of subgroups

of the disease or even a broader continuous spectrum of the pathology. In some

diseases, it could also be argued that the group with disease cannot be clearly

separated from the healthy population (Marquand et al., 2016b). In other words,

a disease could be studied as a deviation from an expected healthy pattern.

These different views about a disease as a condition with high heterogeneity

are not captured in the usual case-control approach, which is useful for compar-

ing the averages in the two clinical groups, but does not focus on the individual

variation (which is often seen as “residual” under that framework). An important

assumption in case-control studies is also that the diagnostic label for each sub-

ject is given—in other words, a clear-cut separation between the two groups is

considered. Normative models using healthy subjects as the reference popula-

tion rely instead just on the labels for the training set. The symptoms of a certain

disease can be used not to define thresholds between cases and controls, but as

an extreme value with respect to the reference population. Subjects with no previ-

ous diagnosis obtain in this framework a risk score that could be used to perform

inferences about the individual labels.
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In the neuroimaging setting, the normative modelling paradigm could bring

new insights on brain-related outcomes. First, in this setting the variability in

the healthy cohort is taken into account too, potentially highlighting differences

within that group too (while often the differences are overlooked in the group of

patients with diseases only). Second, this might be especially useful in AD studies,

where the neurodegeneration could be seen as a continuous process rather than

a step function with 2 or 3 levels. In addition, the normative approach could also

be used to highlight clusters of clinical interest: in particular for MCI, researchers

have been looking at different subgroups of the dysfunctions (Hanfelt et al., 2011,

Clark et al., 2013).

The normative modelling pipeline proposed in Marquand et al. (2016a) works

for any scalar measure of brain functions or structure and any covariate of inter-

est. The predictive confidence for each point is estimated, therefore accounting

for both the error within the normative population and the model uncertainty.

Then for each subject a normative probability map is computed, by means of a

z-score which quantifies the deviation from the normative model for each voxel.

The normative probability map is then summarised via an index based on ex-

treme value theory, which will highlight underestimation or overestimation, and

thresholded to identify abnormal brain region with respect to the healthy condi-

tion.

4.3 Statistical framework

4.3.1 Voxelwise analysis: the skew-normal distribution

Consider a reference sample Y1, . . . , YN . Let Yi be a realisation of a random

function for the i-th subject (i = 1, ..., N ), with Yi = {Yi(v), v ∈ V}. We assume

that Yi is a square integrable random function on the closed cube V .

For v ∈ V , suppose that

Ui(v) = FSN(Yi(v);µ(v), σ
2(v), γ1(v)) (4.1)

where FSN is the skew-normal cumulative distribution function with mean pa-

rameter µ(v), variance parameter σ2(v) and skewness parameter γ1(v)) for the

reference population. The probability integral transform in Equation (4.1) returns

Ui(v) ∈ (0, 1) ∀v ∈ V : it is a latent uniform process based on the FSN for the i-th

subject.
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In the skew-normal distribution literature (Azzalini, 2013, Arellano-Valle and

Azzalini, 2008) the set of parameters of FSN is called centred parameterisation

(CP) to distinguish it from the original direct parameterisation (DP); the two can

be mapped from one to the other. The centred parameterisation is easier to inter-

pret: the parameters are functions of the first three moments in population. CP

is also the standard choice in estimation, because it removes the problem of sin-

gularity of the Fisher information matrix when the DP shape parameter is equal

to 0, which in turn harms the asymptotic normality of the MLE estimates (Az-

zalini, 2013). The likelihood function for CP gets closer to a quadratic function

and produces estimators which are less correlated than the DP estimators (Monti

et al., 2003). An iterative procedure is needed to produce maximum likelihood es-

timates of the three parameters. The sample moments could be used as starting

points for the procedure.

In Azzalini, 2013 it is noted that the skewness parameter γ1 is constrained

within the set (−c1, c1), with

c1 =

√
2(4− π)

(π − 2)3/2
≈ 0.9953, (4.2)

while other distributions such as skew-t might be more appropriate for higher

observed sample skewness. The direction of the skewness is determined by the

sign of γ1(v): if positive, the distribution is skewed to the right. For skewness (and

equivalently shape parameter in DP) equal to 0, SN reduces to a normal distribu-

tion with the same mean and variance.

In practice, the domain V is discretised into V voxels v1, . . . , vV , therefore we

refer to the observed data for the i-th subject as Yi(vj), vj = 1, . . . , V .

4.3.1.1 Gaussian copula

Staicu et al. (2012) propose to use a copula approach to model dependencies

in the pointwise distribution of functional observations. The uniform marginal

distributions can be used within a copula framework. A copula is a joint cumu-

lative distribution of a random vector with uniform marginals. In our setting, the

random vector (Yi(v1), ..., Yi(vV )) is transformed into (Ui(v1), ..., Ui(vV )) using the

skew-normal distribution. Sklar’s theorem states that any multivariate distribu-

tion can be expressed as C(Ui(v1), . . . , Ui(vV )), where C is the copula and U is a

uniform random variable obtained using the probability integral transform (Sklar,

1959). This theorem allows to break the model into two separate components: the
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marginal univariate distributions and the copula which explains the dependen-

cies between them.

We can use a Gaussian copula to model the dependencies between voxel ran-

dom variables. A Gaussian copula for a random vector is the copula of some

multivariate Gaussian distribution, without necessarily implying that the random

vector itself is Gaussian.

In formal terms, let us consider the new Gaussian process for the i-th subject

and a voxel v

Zi(v) = η−1(Ui(v)) (4.3)

where η−1 is the inverse CDF of a standard normal. The Gaussian process is dis-

cretised into the V voxels and goes into the Gaussian copula

CGaussian
Ki

(u) = ηK(Zi(v1), ..., Zi(vV )) (4.4)

where ηK is a joint multivariate normal distribution with zero mean. Given that

the variable Zi(vj) are distributed as a standard normal, the matrix K with ele-

ments Ki(vj , vl) = Cov(Zi(vj), Zi(vl)) ∀j, l = 1, . . . , V is both the covariance and

Pearson correlation matrix of the multivariate distribution. K is therefore the

only parameter which defines the copula. This can be estimated with the method

of moments by using the estimated latent Gaussian process, that is K̂i(vj , vl) =

Cov(Ẑi(vj), Ẑi(vl)).

4.3.1.2 Functional principal component analysis

The covariance operator of the functional sample obtained with this procedure

(that is now made of zero-mean Gaussian processes) is the only parameter of in-

terest. Functional principal component analysis (FPCA, Ramsay and Silverman,

2005) can be used to represent it: each functional observation can be approxi-

mated using a (truncated) linear combination of eigenfunctions of the covariance

operator weighted by some scalar quantities called scores. The scores are uncor-

related with zero mean and variance equal to the eigenvalues of the covariance

operator. The number of functional principal components used to reconstruct

each Gaussian process Zi(v) is usually determined using the proportion of vari-

ance explained criterion. More theoretical and implementation details in a 3D

imaging application are available in Palma et al. (2020).
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4.3.2 Computational aspects

The maximisation of the likelihood of the skew-normal distribution can be

performed in a parallel setting as the spatial dependence is captured at a later

stage using the copula. Nevertheless, the number of voxels might still be large

enough to slow down the calculation of the parameters at the voxelwise level.

Instead of running the computation for every voxel, a grid of preselected vox-

els can be used. Let {κ1, . . . , κV ∗} be a subset of voxels (V ∗ ≪ V ). For these voxels,

the likelihood for the skew-normal distribution is maximised and the mean, stan-

dard deviation and skewness are computed. For the i-th subject in the reference

sample, the latent process Ui and subsequently the standard Gaussian z-values

can be computed as in (4.1) and (4.12).

The z-values for voxels outside the set with cardinality V ∗ can be estimated

using smoothing basis functions. A tensor product of univariate B-splines could

be considered. For each of the three dimensions, the degree of B-splines and the

number and position of knots must be determined. The simplest choice is to keep

the degree fixed for all the dimensions and set in advance a regular grid with the

same distance between knots. A Kronecker product of the basis functions will re-

turn a matrix where each 3D basis function is reported as a column vector and it

is evaluated for every voxel in the brain mask. Further details about implementa-

tion for 3D brain data are reported in Chapter 2.

Radial basis functions (RBF) could also be employed to overcome the separa-

tion of the 3 dimensions. Given a selected voxel (“centre”), the input of a radial ba-

sis function is not the location in space, but just the Euclidean distance of another

voxel from the centre. Radial basis functions are generally used for approximation

or interpolation of functions (Carr et al., 2001).

Radial basis function interpolation requires the choice of the basis functions

and the definition of the centres. The basis function h depends on the (Euclidean)

distance d between a centre and another voxel and it is symmetric around the

centre. The value of the basis function decreases as the distance from the centre

increases. For example, the (inverse) multiquadric h(d) =
1√

1 + (εd)2
or a Gaus-

sian kernel h(d) = exp ((−εd)2) could be used. The bandwidth of the basis func-

tion is controlled by one or more tuning parameters (ε for multiquadric, standard

deviation for Gaussian).

The standard choice for centres is the same grid of preselected voxels {κ}V ∗
k=1

where we have carried the likelihood estimation out. For the sake of simplicity, we

recommend to use a regular grid, where the distance (in the 3 directions) is pre-
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specified. This approach would guarantee that the distance between any voxels

and the closest centre is within a certain range which depends on the grid spac-

ing. Depending on the specific application, a grid with irregular spacing as in

Chebyshev discretisation could also be chosen to capture finer changes in some

areas. We recall that the observed value of the function at the k-th centre is Y (κk).

Following Carr et al. (2001), we define the interpolant s as a function with con-

straints s∗(κk) = Y (κk). To define s∗, we build the matrix

G =

(
H∗ 1

1T 0

)
(4.5)

where the V ∗×V ∗ symmetric matrixH∗ contains the evaluation of the radial basis

functions for any distance d between any pair of centres

H∗
kǩ

= h(d(κk, κǩ)) k, ǩ = 1, ..., V ∗. (4.6)

and 1 is the V ∗-dimensional vector whose elements are equal to 1. The problem

is now phrased in terms of a linear system: we are interested in finding the V ∗-

dimensional vector b and the scalar b0 such that

G

[
b

b0

]
=

[
Y (κ)

0

]
(4.7)

or analogously

Y (κk) = b0 +
V ∗∑
ǩ=1

bǩH
∗
kǩ
. (4.8)

The solution is now used to predict a value for all the voxels {vj}Vj=1:

(
H 1

)[ b
b0

]
(4.9)

where V is the number of voxels and

Hjk = h(d(vj − κk)) j = 1, . . . , V ; k = 1, . . . , V ∗. (4.10)

The gain in computational efficiency that stems from applying basis functions

on the grid instead of using all the voxels in the brain comes at a price. First, the

performance of smoothing basis functions relies on some shape parameters (such

as the standard deviation for Gaussian RBF) for which it is not easy to determine
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optimality criteria. In Fasshauer and Zhang (2007) it is observed that the best

parameter is chosen by trial-and-error or ad-hoc solutions in many cases; in ad-

dition, there is a trade-off principle for which choosing a small value for the shape

parameter increases accuracy but also the condition number of the interpolation

matrix. Furthermore, for high values of the shape parameter the so-called “bed-

of-nails” interpolant is obtained: the function sharply peaks at the centres but

decreases to 0 elsewhere. In the 3D grid case, we suggest to use a value for the

shape parameter that is below the grid spacing.

Another aspect of interpolation using radial basis function and polynomials is

Runge’s phenomenon, i.e. the approximation errors further from the centres are

higher at the boundary of the domain (Fasshauer and Zhang, 2007, Boyd, 2010).

In the 3D brain imaging setting, although the brain mask has irregular boundaries

in the three dimensions, this issue is not likely to be relevant, especially when the

grid spacing (and consequently the maximum distance between a voxel and the

closest centre) is moderate.

4.4 Applications

4.4.1 Prediction for new observations

Let Y ∗ be a realisation of a random function for a new subject who could either

belong or not to the reference population. We could use the parameters of the

reference population to compute

U∗(v) = FSN(Y
∗(v);µ(v), σ2(v), γ1(v)) (4.11)

and then using the normal CDF

Z∗(v) = η−1(U∗(v)). (4.12)

4.4.2 Subject-specific indices of “abnormality”

The normative z-maps (which are, in a broad sense, derived from the covariate-

free normative probability maps U(v), not based on any relationship between the

function and clinical predictors) give information about how the subject image

compares to the reference population. Voxel values closer to zero indicate that the

volume observed in the subject is close to the mean value observed in the refer-
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ence population, whereas more extreme voxel values are potentially informative

of non-healthy expansion/shrinkage of brain regions.

The z-maps could be therefore used for each subject to locate those brain areas

that depart from the mean of the normative population. This approach gives an

alternative way to read through the original voxel values, because it is now possi-

ble to assess whether high TBM values are an indication of individual abnormality

or they are actually not far from the average signal observed in the reference pop-

ulation.

Various scalar indices could be built in order to partially summarise the infor-

mation carried by the z-maps into a single value.

Dealing with Gaussian voxelwise distributions, the easiest approach is to count

the number (or proportion) of voxels for which the normative z-value is greater in

absolute value than a certain threshold. For example, n3 could be the number of

voxels for which |Z(v)| ≥ 3. A high value for this index suggests that in a relevant

part of the brain the observed TBM values are very far from the mean in the refer-

ence population and therefore might show evidence of deviation from the healthy

pattern. This index could also be turned into a proportion by dividing for V , the

total number of voxels.

An alternative approach (described in Marquand et al., 2016a) is based on ex-

treme value statistics. Each individual z-map is summarised by the (robust) mean

of an extreme block (e.g. from the 99th percentile of the distribution of z-values

for each subject). A parametric distribution from the generalised extreme value

(GEV) family is then fitted on the normative sample using these averages, then

for every subject the cumulative probability under the GEV distribution is used to

quantitatively assess the extent of the deviation. Under this approach, the spe-

cific application will drive the choice of the percentile defining the extreme block

and the choice of the tail (whether to deal with the highest, lowest or highest in

absolute value). In our setting, where the enlargement of the ventricles is bal-

anced by the shrinkage of the cortex, it seems likely that extremes in both sides

are carrying information, therefore the absolute block maxima approach seems

more appropriate.

Further indication can be obtained from the histogram of the individual z-

maps. By construction, the z-values are drawn from a standard normal distribu-

tion. In the grid-based approach, this holds for the voxels of the grid and through

smoothing for the rest of the brain, approximately. A histogram for a subject be-

longing to the normative population would therefore be looking like a standard

normal distribution too. Any departure from this distribution could be linked
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to a departure from the average in the normative population. If we exclude the

mean (if the difference between the reference population and other groups is lo-

calised in a small subset of voxels, these would probably not drive the mean far

from zero), the variance and skewness are likely to increase if extreme voxels are

observed. In addition, evidence of multimodality or quantities like the test statis-

tics for normality tests like Jarque–Bera, Anderson–Darling, Cramér–von Mises or

Lilliefors could help in detecting far-from-normal behaviours.

Finally, drawing from the functional data literature, the L2 norm of the z-map

∥Zi∥2 =

√∫
Zi(v)2dv (4.13)

can be employed an alternative summary quantity.

4.4.3 Z-maps as covariates in functional regression

Normative z-maps could also be used within a regression framework to predict

quantities of interest. For scalar outcomes, scalar-on-function regression (Morris,

2015) employs the whole function (for example through its basis representation

or FPCA scores) as the independent variable. In this way not only is smooth-

ness of functional slope coefficient maintained, but also a sparse solution can

be achieved. It is worth mentioning that the results of the regression model are

based on the reference population under study, as all z-maps are constructed on

that. Nevertheless, in the normative setting we can use the model trained on the

reference sample to predict the scalar outcome for any other subject. In this case,

the prediction is to be interpreted as the equivalent outcome of a healthy indi-

vidual having the same predictors (and as in (Palma et al., 2020) and the brain

age literature cited in Chapter 3, then check if the difference with respect to the

observed outcome could give insights on the disease status).

4.5 Data and results

We use the normative model to analyse a dataset coming from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), which consists of 817 adults (with age

ranging between 54.4 and 90.9 years). A diagnosis is provided for each of them:

229 subjects were considered as cognitively normal (CN), whereas 400 subjects

were showing mild cognitive impairment (MCI) and 189 were diagnosed with

73



4. A WHOLE-BRAIN NORMATIVE MODEL FOR 3-DIMENSIONAL MORPHOMETRY

IMAGES BASED ON SKEWED FUNCTIONAL DATA ANALYSIS

Alzheimer’s Disease. The sample used in Palma et al. (2020) represents a subset of

the data analysed in this work.

The imaging data used in this work are tensor-based morphometry images.

In a cross-sectional setting, a common MRI template called minimal deforma-

tion template (MDT) is obtained by averaging several anatomical MRI scans (Hua

et al., 2013), then each MRI scan is aligned to it. The deformation induced by this

alignment is mathematically described by a function that maps a 3-dimensional

point in the template to the corresponding one in the individual image. To eval-

uate volume differences with respect to the minimal deformation template in

terms of shearing, stretching and rotation, the Jacobian matrix of the deforma-

tion is considered. Its determinant evaluated at each voxel is a summary of local

relative volumes compared to the MDT. Further details about TBM are available

in Ashburner and Friston (2004).

A 3D preprocessed tensor-based morphometry (TBM) image taken at the base-

line of the study is available for each of the individuals in the sample. The dimen-

sions of the images are 220×220×220, with voxel size equal to 1 mm3. The thresh-

old that determines equality with respect to the template is 1000: values higher

than this threshold indicate that expanded volume with respect to the minimal

deformation template is observed in that specific voxel.

The mask used to subset only the part of the image that displays the brain is

built with the same characteristics as described in Palma et al. (2020): we use

a Gaussian kernel with standard deviation equal to 2 voxels (FWHM 4.7 mm)

and threshold it at 0.5. Each masked image is made of approximately 2 million

nonzero voxels.

We consider first the normative sample (training set) to be used to define the

skew-normal parameter estimates: it is made of 183 CN subjects (approximately

80% of the CN group), selected after stratification by age group and sex. We then

define the grid of voxels in which to carry out the skew-normal fitting procedure:

in this setting we use a regular grid with 8mm spacing in the three dimensions.

This returns 3949 voxels within the mask, approximately equal to 0.2% of all the

voxels within the mask. For these voxels, the skew-normal likelihood optimisation

(with centred parameterisation) is carried using the R package sn (Azzalini, 2020).

Radial basis functions (RBF) with Gaussian kernel and standard deviation equal

to 5.33 mm (66.67% of the grid spacing) are used to interpolate the SN param-

eter functions across the rest of the brains. For other values below 8mm tried

on the same dataset, the bed-of-nails behaviour is not reported, while for higher

grid spacing the interpolation quality is poor. A tensor product with univariate
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B-splines spaced every 8mm has been also used on the same training set. Some

analyses (not shown here) show that the number of B-splines functions is higher

than for RBF (10920 against 3949 basis functions) and seem to suggest also that

they do not improve the quality of the fit, especially at the boundaries of the mask

where approximation errors are higher. In this procedure, fitting the skew nor-

mal parameters on the grid takes approximately 3 minutes on a standard laptop.

Turning the original brain scans into z-maps based on the parameter function

takes approximately 1 minute per image: this step can be run in parallel.

The parameter functions are plotted in Figure 4.4. The mean and the standard

deviation are higher in the lateral ventricles than the rest of the brain. The skew-

ness is greater than 0 across almost the whole mask.

The z-maps computed using the skew-normal parameter values at the grid and

then smoothed across the rest of the brain are obtained for both the training and

test sets. The indices of deviation are then computed. For example, Figure 4.5

shows the boxplots of the uabs3 , an index of deviation obtained by taking the mean

of the top 1% z-values in absolute values. Some evidence of a trend between this

index and the severity of disease status is observed, although the results are not

confirmed in terms of statistical significance. In addition, this index does not de-

pend on a covariate like the ADAS13, a neuropsychological test often used in AD

studies to assess cognitive dysfunctions (the higher the score, the higher is the dis-

ease severity, see Kueper et al., 2018): the regression lines for the diseased groups

remains significantly above the one for cognitively normal subjects for lower val-

ues of ADAS13 in the study.

Focusing now on the normative population, we perform functional principal

component analysis on the z-maps of the training sample. The first 3 eigenfunc-

tions (Figure 4.6) highlight some areas which are usually linked to neurodegen-

eration within the control group as well. In particular, in the first eigenfunction

the cingulate cortex stands out with respect to the rest of the brain. This area

is involved in many executive and cognitive functions (Mann et al., 2011, Leech

and Sharp, 2014) and its atrophy has been documented as one feature of memory

deterioration (Lin et al., 2017) in healthy ageing (Fjell et al., 2009). Pronounced

gray matter loss in this region (and especially in the posterior cingulate area) is

also associated with higher risk of dementia (Choo et al., 2010, Peng et al., 2016).

The second eigenfunction clearly distinguishes the lateral ventricles (whose en-

largement is linked to shrinkage in the surrounding areas and it is of wide interest

when studying AD) and the third eigenfunction seems to highlight external cor-
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Figure 4.5: Top: Boxplots of uabs3 by diagnosis group. Bottom: Plot of uabs3 by
ADAS13 and diagnosis group.
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tex as opposed to internal brain areas (it could also be broadly linked to the tissue

difference between white and gray matter).

The z-maps are then used as the only functional covariates in a regression set-

ting. We add to the training normative sample a subset of MCI and AD subject and

predict both the diagnosis and ADAS13. The basis coefficients for each z-map are

used as covariates; in both models, an elastic-net penalty (Zou and Hastie, 2005)

with mixing parameter 0.5 is applied (whereas λ is chosen via cross-validation).

The functional coefficients obtained are displayed in Figure 4.7. Both of them

identify a positive slope coefficient in the lower lateral ventricles: increased ex-

pansion in these areas are linked with a higher probability of having the disease

and of showing higher values of ADAS13. As expected, large regions of the brain

appear to be not relevant in the models, therefore do not provide support for clas-

sification of subjects into the CN group or the others.

In the binary classification problem high sensitivity (91.5% of the subjects with

diseases are correctly identified as such) is achieved but the specificity is poor

(only 37% of CN subjects is classified as having no diseases). Additional analy-

ses made on z-maps corrected for age and sex (not shown here) provide similar

results.

4.6 Conclusions

The analysis of brain morphometry images is of large interest due to its abil-

ity to show and quantify signs of atrophy within different brain regions. We have

shown using a dataset of tensor-based morphometry images that the voxelwise

distributions of TBM values exhibit interesting patterns in terms of mean, stan-

dard deviation and skewness. In this work we have proposed a method to take

into account these characteristics by using a skew-normal distribution at the vox-

elwise level and a Gaussian copula to model the spatial dependence between

brain locations. We have linked this approach to a normative model to study

brain volumes in absence of neurodegeneration. The normative approach pro-

vides then a set of reference parameters on which to build individual brain maps,

which can then be summarised into single indices. By using this approach, we

aim at observing subjects with cognitive impairment as “extremes” with respect

to the reference population, providing individual risk scores rather than focussing

on the group differences between cognitively normal control subjects and pa-

tients with neurodegenerative diseases.
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To manifest the strengths of our model, we could further explore other re-

search questions. Within a binary classification exercises (presence vs. absence of

disease) we can look at the diagnosis given later in time, such as 12 or 24 months

after the image was taken, to see if the z-maps or the indices of abnormality at

baseline are able to capture early changes in advance with respect to what done

by e.g. neuropsychological scores. This would have a great impact especially in

a clinical setting, where prediction of future disease stages is currently an open

question.

Additional work can be also done for example on the indices of deviations.

The ones proposed so far all refer to the z-values at the voxelwise levels—in other

words, they can be defined just looking at the histograms of the z-maps. They are

extremely simple to build, but unfortunately they represent just a rough summary

of the z-maps, as they do not convey the important information about spatial dis-

tributions: knowing for example if the higher voxel values are observed in the lat-

eral ventricles rather than in other areas might be beneficial, especially when as-

sessing the risk of neurodegeneration due to Alzheimer’s disease. Spatially-aware

indices of deviation might be built by reusing the voxelwise standard deviations

as weights to be multiplied to the z-maps. In our case, this would give more

relevance to outlying values in the ventricles, which are linked to higher risk of

Alzheimer’s disease. Alternatively, context-dependent prior information should

be incorporated within the definition of those indices.

The choice of the voxelwise distributions is a crucial part of the analysis where

improvement can be achieved. We have proposed the skew-normal distribution

as its high flexibility is paid for only with an additional parameter with respect to

normal or log-normal distributions (which are the distributions that have been

usually proposed in the neuroimaging literature for this type of data), but the

copula modelling strategy works for any continuous distribution. For example,

a gamma distribution might be considered to specify the relationship between

mean and variance. The properties of this distribution family are likely to make

it a good candidate for the imaging variable at hand and would hint towards an

explanation in terms of multiplicative errors (just as the log-normal distribution,

see Firth, 1988). If high skewness is a concern, skew-t distribution could pro-

vide a good solution, although the analyst needs to take into account the fact that

it requires the estimation of four parameters. Another different approach could

be based on avoiding to define a distribution family and use a nonparametric

approach—as long as it allows to track the characteristics of the voxelwise distri-

butions in a parsimonious way.
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The problem of the voxelwise distribution can be tackled in a different way

by, for example, defining a parcellation scheme that could be used to separate

different areas of the brain to which to fit different probability distribution. In

this setting, higher flexibility is gained at the price of breaking the spatial rela-

tionships between brain regions. The parcellation scheme can be either prespec-

ified or data-driven: for example, the voxelwise distribution for voxels with values

less than or equal to a certain threshold can be different to the one for the values

higher than the same one. In other words, two types of variation (relationship

between summary statistics) can be considered. From a computational point of

view, this would mainly require a more flexible handling on the smoothing step

over the grid.

This normative model could also be extended in a longitudinal framework,

to track the evolution of both the normative population and the subject-specific

map. In brain imaging studies, the longitudinal evaluation of the normative pop-

ulation allows to account the changes due only to ageing, which represents a ma-

jor driver for non-pathological degeneration. To this aim, the parameter func-

tions could be estimated at each time point and smoothed over time. The subject-

specific indices of deviation would therefore be able to capture whether an indi-

vidual is showing additional changes that could be interpreted as signs of dis-

eases. Such a model would also require careful handling of the subjects within

the normative samples who are lost at follow-up or convert to disease. A more

extended version of the dataset used in this analysis is available on ADNI, con-

taining multiple longitudinal measurements (both for the imaging part and the

neuropsychological scores) that could be used in a similar framework.

Finally, other methodological extensions for functional data with spatial het-

erogeneity could arise from our approach. The indices of deviation from the

mean of the reference population call for a centre-outward ordering of the sub-

jects. Some tools already available in the literature such as functional data depth

(López-Pintado and Romo, 2009, Mosler and Polyakova, 2012) could be extended

to the case of 3D imaging data and applied in this context. This would also open

a new avenue for the use of this tools which has so far been explored mainly from

a theoretical perspective, although in this sense the computational efficiency be-

comes a much more crucial aspect of the whole analysis (obtaining depths for

such a high-dimensional setting would require relevant computing resources).

In addition, the normative model explored in this work could hint towards a

potential framework for 3D data simulation in the reference population. Indeed,

given the summary statistics functions computed on the real data, the z-maps
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could be simulated via random number generation from a standard normal. More

work could be done to find strategies that would ensure the simulated images to

be both smooth and plausible from a neuroscientific perspective.
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Chapter 5

Function-on-function regression

for large-scale brain imaging data

5.1 Introduction

Biomedical research is increasingly focused on individualised prediction of

complex outcomes which often cannot be summarised by a single number. In

neuroscience studies, often the attention is focused on objects like curves and

images which do not only show additional internal structure (such as spatial cor-

relation) but also require computationally efficient statistical analysis due to their

high-dimensionality.

These aspects play an even more fundamental role once the prediction of one

image is based on other brain images. This is the case highlighted in Tavor et al.

(2016), Parker Jones et al. (2017), Zheng et al. (2021) and other papers, where re-

searchers used brain functional connectivity recorded when the subject was at

rest to predict the brain activation of the same subject while performing an exper-

imental task. Rather than studying the average activation in a group of subjects,

their goal is to predict individual differences in the response to tasks, which could
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hint towards potential different cognitive processes involved in solving the task

itself. Those results obtained in a large selection of tasks from different cognitive

domains could enhance the research on more difficult-to-study tasks for which

activation localisation is not yet clear. In addition, this approach could open new

ways to study task-evoked responses in those patients which cannot collaborate

during the task itself (Tavor et al., 2016). A similar analysis carried on a popula-

tion of pre-surgical patients (where higher individual variability is observed with

respect to healthy controls) has also shown that the neural tissues associated with

a specific language task can be identified using resting-state data (Parker Jones

et al., 2017). The model proposed in Tavor et al. (2016) predicts the individual

task activation based on the parcellation of the brain cortex in non-overlapping

regions, using as distinct covariates information at the cortical as well as the sub-

cortical level. The choice of a parcellation over another (and the implicit choice of

modelling the signal with sharp boundaries instead of smooth transitions across

brain regions) can play a relevant role, which is in part reduced by aggregating

predictions obtained over multiple overlapping parcellation schemes (Dohmatob

et al., 2021). A generalised linear model (GLM) is then fitted to each parcel of the

cortex. The choice of the GLM, driven by computation efficiency, has been shown

to be only slightly outperformed by more complicated methods such as neural

networks and random forest bootstrap aggregation (Cohen et al., 2020).

We propose here an alternative approach based on functional data analysis

(FDA) to predict task activation maps from resting-state data. In functional data

analysis, the unit of interest is the whole “function” (in our case, a 3-dimensional

brain image) and not the single value at each voxel. In other words, we aim at rep-

resenting the underlying smooth brain signal and not its discretisation in voxels

which could be potentially an additional source of noise. In particular, the setting

of function-on-function regression is considered in this instance (Morris, 2015),

being both the covariates and the outcome in our prediction model observed on

the 3D domain.

Several approaches proposed for function-on-function regression rely on some

form of dimension reduction, as even stacking the functions as 1-dimensional

vectors becomes unfeasible when both the number of functions and the num-

ber of data points for each function are high (and this is standard in current neu-

roimaging applications, where different research projects are pushing towards the

collection of imaging data at very high resolution for an increasing number of

subjects). To this aim, basis expansions offer a useful solution. Splines or Fourier

basis functions are often used to express the functional response and predictors

85



5. FUNCTION-ON-FUNCTION REGRESSION FOR LARGE-SCALE BRAIN IMAGING DATA

into smaller sets of coefficients. The functional regression coefficient is then ob-

tained as a matrix of coefficients weighted by the same basis functions (Ramsay

and Silverman, 2005). The model could also be enriched by applying roughness

penalties on the basis expansion of the functional objects as well as regularisation

on the functional regression coefficient (Ivanescu et al., 2015).

The basis expansion can also be used as a preliminary step to express func-

tional data as a linear combination of data-driven, potentially interpretable func-

tions. This happens for example with functional principal component analysis

(FPCA, Ramsay and Silverman, 2005) which aims at identifying the main modes of

variation in the covariance operator in a functional dataset. Yao et al. (2005) pro-

posed to model both the predictor and the outcome using FPCA, then to regress

the response FPC scores on the predictor ones. FPCA requires to select an ap-

proximation truncation level (namely the number of FPC scores to be retained)

but in the regression setting there is no guarantee that the components which ex-

plain most of the variability in the functional covariates will be playing a role in

the prediction of the response (Febrero-Bande et al., 2017).

An alternative technique which jointly takes into account the outcome and

the covariates is functional partial least squares (FPLS). FPLS-based regression

coefficients are obtained by means of an iterative procedure which produces a se-

quence of orthogonal functions maximising the covariance between the response

and the predictors. Studied by Preda and Saporta (2005), Reiss and Ogden (2007),

Aguilera et al. (2010), and Delaigle and Hall (2012) in the setting of functional re-

gression with scalar response, PLS for function-on-function regression has been

shown by Preda and Schiltz (2011) to be linked to the multivariate PLS on the ba-

sis expansion coefficients. Beyaztas and Shang (2020) extended this framework

to the case of multiple functional predictors. Functional PLS, given its focus on

predictive power of the covariates with respect to the response, usually leads to a

lower-dimensional expansion with respect to FPCA (Delaigle and Hall, 2012).

In this work we apply FPLS function-on-function regression to predict the task

activation using multiple 3D imaging covariates which contain resting-state in-

formation. The model is applied on a subset of 521 subjects from the UK Biobank

repository. To the best of our knowledge, this is the first application of FPLS in

a 3-dimensional setting, as well as in a neuroimaging context. In the task acti-

vation prediction application, this approach differs from the existing literature as

it works on the whole-image level and does not require to choose a parcellation

scheme. This modelling strategy also allows us to retain the spatial structure of
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the signal by using smooth 3D basis functions without distinguishing cortical and

subcortical information.

The work is structured as follows. In Section 5.2, an overview of PLS for function-

on-function regression is provided, along with some aspects pertaining to the

choice of the 3D basis functions. The predictor and response images drawn from

the UK Biobank dataset are described in Section 5.3, while Section 5.4 illustrates

the main findings in terms of the predictions of the task-evoked response maps.

Lastly, Section 5.5 presents the conclusions and highlights further research direc-

tions.

5.2 Methods

5.2.1 PLS for functional regression

Functional PLS has gained attention in the field of functional data analysis

thanks to its ability to model in a reduced dimensionality the covariance between

the predictors and the outcome of interest. The functional random variables take

values in L2(T ), the space of square-integrable functions with domain T and fi-

nite second-order moments (Ramsay and Silverman, 2005).

The standard function-on-function regression model is of the form

Y ∗
i (t) =

M∑
m=1

∫
S
X∗

im(s)βm(s, t)ds+ ϵ∗i (t), (5.1)

where ∗ indicates centered variables.

The main structure of PLS for functional data illustrated here has been stud-

ied and applied in several papers, such as Preda and Schiltz (2011) and Beyaztas

and Shang (2020). The main idea is to decompose both X(t) and Y (t) in terms

of a series of uncorrelated random variables with mean zero, such that they at-

tain maximum predictive ability. To this aim, the squared covariance between the

outcome and the predictors is maximised, given the unit-norm constraints:

max
ζX ,ζY ∈L2,∥ζX∥=∥ζY ∥=1

Cov2
(∫

S
X∗(s)ζX(s)ds,

∫
T
Y ∗(t)ζY (t)dt

)
. (5.2)

The solution to this problem is given by an iterative procedure, of which we give

a sketch here (see Preda and Schiltz, 2011 for the details and Febrero-Bande et al.,

2017 for a more general version). At the ι-th step, the weight function ζ
(ι)
X (s) is
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computed by taking as input the covariance between X∗(ι−1)(s) and Y ∗(ι−1)(t)

(for ι = 1, these correspond to the original functions X∗(s) and Y ∗(t)). Let ρ(ι)

be the inner product between ζ
(ι)
X (s) and X∗(ι−1)(s) (this object is equal to the

eigenvector corresponding to the largest eigenvalue of a product of certain oper-

ators derived from X∗(ι−1)(s) and Y ∗(ι−1)(t)). Then the linear regression models

of X∗(ι−1)(s) and Y ∗(ι−1)(t) on ρ(ι) are computed. The weight function ζ
(ι)
Y (t) is

the OLS coefficient of the regression model for Y ∗(t). The error functions of these

regression models become the starting point of the next iteration.

Both the outcome and predictor functions are recorded in practice on a dis-

crete grid of points of cardinality JX and JY within the spaces S and T . Let

therefore Y ∗(t) = [Y ∗
i (t)], i = 1, . . . , N be the N × JY matrix that contains the

discretised version of the N functional responses. Let also X∗(s) = [X∗
im(s)],

i = 1, . . . , N ; m = 1, . . . ,M be the (NM) × JX matrix of the discretised ver-

sion of the M functional predictors (in this work we assume that all the predictor

functions share the same domain).

A common step in functional regression is to approximate the functional ob-

servations as a linear combination of basis functions. Let {ϕj(t)} and {χlm(s)} be

basis functions for Y ∗(t) and X∗
m(t) respectively. We can approximate each indi-

vidual observation using the following basis expansion:

ŷ∗i (t) =

KY∑
j=1

cijϕj(t)

x̂∗im(s) =

KXm∑
l=1

dilmχlm(s), m = 1, . . . ,M (5.3)

which in matrix form can be expressed as

Y ∗(t) = Cϕ(t)

X∗
m(s) = Dmχm(s), m = 1, . . . ,M. (5.4)

The matricesC andD contain the coefficients of the basis expansion which could

be estimated via ordinary least squares; the number of rows is N , the number of

subjects, while the number of columns is KY and KXm , respectively. Let us also

define the matrices Wϕ and Wχm as the inner products of the basis functions for
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Y (t) and Xm(t), namely

Wϕ =

∫
T
ϕ(t)ϕ(t)Tdt

Wχm =

∫
S
χm(s)χm(s)Tds, m = 1, . . . ,M. (5.5)

To exploit the main result in Preda and Schiltz (2011), we need to introduce the

matrices

Π = CW
1/2
ϕ and Λm = DmW 1/2

χm
, (5.6)

where the coefficient matrices C and D are postmultiplied by the square root

matrices of the matrices defined in Equation (5.5). Given

Λ =
[
ΛT

1 . . .Λ
T
M

]T
, (5.7)

Beyaztas and Shang (2020) show how to extend the result from Preda and Schiltz

(2011) to the case of regression with multiple functional predictors. The main

result is that the (functional) PLS regression of Y on X is equivalent to the PLS

regression of Π on Λ. This means that the functional PLS regression coefficient

βPLS(s, t) at each PLS step is a function of the PLS regression coefficient Ξ in the

regression model

Π = ΛΞ+ ε. (5.8)

In other words, a multivariate PLS algorithm can be used in a functional context.

The prediction of new observations from the test set can be achieved using Ξ̂.

Given a new observation with covariates X̃(s), we express those as linear combi-

nation of the same basis functions χm(s). We then compute the blocks of Λ̃ of the

form D̃mW
1/2
χm , m = 1, . . . ,M and predict

Π̃ = Λ̃Ξ̂. (5.9)

To obtain the uncentered version of Π̃ (needed to obtain Ỹ (t) in the same scale of

the original images) we add the mean of Π = CW
1/2
ϕ in the training set.

The matrix Π̃ — given the matrix Wϕ defined above — can be used to recon-

struct Ỹ (t), using the formula:

Ỹ (t) = Π̃W
−1/2
ϕ ϕ(t)

= C̃ϕ(t). (5.10)
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Therefore, using the same decomposition in Equation (5.6) we are able to obtain

the matrix C̃ of basis function coefficients, then the predicted outcomes Y (t) is

obtained as the product of the same matrix with the basis functions matrix.

5.2.1.1 Choice of basis functions

The validity of the theoretical framework of functional PLS described above

is established regardless of the dimensionality of the functional data, which is in-

stead taken care by choosing basis functions which allow for a more parsimonious

representation of the data.

In the context of 3D brain images, we use the tensor product of univariate B-

splines as described in Palma et al. (2020). A set of univariate B-splines is consid-

ered for each of the 3 dimensions. Depending on the needs of the analysis, the

location and the number of knots (the points at which the local polynomials are

joined together) as well as the degree of the splines can be selected separately for

each dimension.

In this application, B-splines with a prespecified knot spacing are built in each

dimensions, then a Kronecker product is taken to collect them into a matrix with

dimensions V (number of voxels) and B (number of basis functions). A further

check is made to keep only the voxels which fall within the mask and remove those

basis functions which take nonzero values only outside the mask. In this formu-

lation, the parameters to be selected are the degree of splines and the distance

between knots. These two parameters together control the smoothness of the re-

constructed image (that is, the prediction outcome of a regression model where

the basis functions are used as covariates and the original—vectorised—image as

the dependent variable).

5.3 Data

At the start of this research, a group of 521 subjects has been randomly sam-

pled from the UK Biobank repository (Miller et al., 2016, Alfaro-Almagro et al.,

2018) to conduct this analysis. For these subjects, both resting state and task acti-

vation images have been extracted. The acquisition information and the prepro-

cessing steps are described in the UK Biobank documentation (Smith et al., 2018).

In brief, for both resting-state and task functional MRI the images were acquired

with identical scanners with image resolution equal to 2.4 × 2.4 × 2.4 mm. The

resting-state scans had a duration of 6 minutes, with 490 time points recorded for
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each subject, and the data were preprocessed and registered to the standard MNI

space (the Montreal Neurological Institute template which is commonly used to

display brain imaging results).

5.3.1 Resting state fMRI (rfMRI)

In this study we use for each subject the dual regression images correspond-

ing to the group Independent Component Analysis (ICA) decomposition (with

Mtemp = 25 components).

The ICA spatial maps constitute a data-driven parsimonious parcellation of

the brain grey matter (Beckmann et al., 2009) that is common for an entire popu-

lation. For UK Biobank, the ICA components were computed on a subset of more

than 4000 subjects from the repository. These maps, used to identify the most

relevant resting-state networks, were then used with a dual regression procedure

(Nickerson et al., 2017), also known as back-projection (Calhoun et al., 2002), to

obtain noisy estimates of subject-specific maps corresponding to the indepen-

dent component maps. A brief overview of the procedure (which produces the

covariates used in this work) is presented here, based on the extensive descrip-

tion in Nickerson et al., 2017 and on the compact version in Mejia et al., 2020.

Given the estimated template ICA data matrix Ŝtemp of dimensions V ×Mtemp

whose columns are the vectorised ICA components, and the individual fMRI V ×
Wtime data matrix Zi (where V is the number of voxels and Wtime is the number

of time points), the first stage of dual regression returns an estimate of BTC , the

subject-specific time series for each component network by means of a linear re-

gression with multivariate outcome:

Zi = ŜtempBTC +E
(1)
i . (5.11)

In the second stage of dual regression, B̂TC is used as design matrix for another

linear regression model where the dependent variable is the dependent variable

is the same fMRI data matrix used previously (transposed):

ZT
i = B̂T

TCXi +E
(2)
i . (5.12)

The estimates of the second-stage dual regression images Xi (rearranged into

Mtemp 3D arrays) used in this study as covariates of the functional regression model

are available in the rfMRI_25.dr folder within the UK Biobank repository. For each

subject, the set of dual regression images is provided with a mask to to mark in–

91



5. FUNCTION-ON-FUNCTION REGRESSION FOR LARGE-SCALE BRAIN IMAGING DATA

brain voxels for the resting fMRI acquisition. The same mask across all dual re-

gression maps is used, restricting the number of voxels to 228,483.

5.3.2 Task fMRI

Task fMRI time series for the 521 subjects is available on UK Biobank. Each

individual time series is made of 332 points (for a duration of 4 minutes). In the

preprocessing phase, a Gaussian kernel of FWHM 5mm is applied to get smoother

images (Smith et al., 2018).

The contrast used in this analysis is “Faces-Shapes” (also defined as contrast 5

or cope5). It is classified as an emotion task (Hariri et al., 2002, Barch et al., 2013),

where the subject is asked to match shapes or faces with the same expressions

at the top and at the bottom of a screen. The faces have either angry or fearful

expressions.

In this analysis we use the fixed-effect z-statistic maps (obtained using FEAT,

fMRI Expert Analysis Tool, Woolrich et al., 2001) for each subjects. These maps

contain z-values based on the task-induced activation of brain areas. We use the

un-thresholded maps, standardised in MNI space. Each individual map comes

with a mask already designed to mark those voxels which lie within the brain

(therefore the ones useful for the analysis).

5.4 Results and discussion

5.4.1 Mask and basis expansion

To have the same set of basis functions across all images, we need to make

sure that the same mask applies within each imaging modality. For the task fMRI

images, we have built a common mask by selecting those voxels which appear in

at least 90% of the masks (so in 472 or more subjects). The number of voxels in

the common mask is 266,879. The voxels outside the common mask are excluded

from further analysis.

Once a mask for each imaging modality is defined, we proceed with the basis

expansion step. We follow the same procedure described in Palma et al. (2020) to

produce a 3-dimensional tensor product of B-splines basis set within the mask.

Given the matrix of evaluations of univariate B-splines for each dimension, the

Kronecker product is considered and the basis functions whose non-zero values

insist on the area outside the brain are discarded.

92



5. FUNCTION-ON-FUNCTION REGRESSION FOR LARGE-SCALE BRAIN IMAGING DATA

For the task fMRI maps, we first define the univariate B-splines functions de-

gree to 3 (cubic B-splines). We then perform a sensitivity analysis for a random

task activation map to display the effect of different choices of knot spacing onto

the image reconstruction (keeping the same degree). The metrics used are the

Pearson correlation and the mean absolute error (MAE) between the observed

and reconstructed task-related image. Results are shown in Table 5.1. As the

Knot spacing Number of bases RMSE MAE Corr
2 47240 6.22 3.26 0.99
4 8560 16.34 9.65 0.93
6 3463 22.00 13.09 0.86
8 1910 25.66 15.16 0.81

Table 5.1: Results from sensitivity analysis for the reconstruction of one random
task activation map from basis functions. The metrics are root mean squared er-
ror (RMSE), mean absolute error (MAE) and correlation between the raw image
and the one reconstructed as linear combination of basis functions.

knot spacing increases (and therefore the number of basis functions decreases)

the predicted image get slightly further from the original one. In order to find a

good compromise between the complexity of subsequent analysis (driven by the

number of basis functions) and the quality of the reconstruction, we decide to

place knots in each dimensions every 6 voxels, for a total of 3463 basis functions.

A similar approach could be employed for the DR maps. For these images, we

use a tensor product of univariate cubic B-splines with knot spacing equal to 6

voxels. The number of voxels within the mask for each DR map is 228,483. The

matrix of basis functions is made of 3095 columns.

It is worth mentioning that being two different imaging modalities (with dif-

ferent mask dimensions as well) there is no real advantage in picking the same

basis functions parameters for task and resting state images. This could instead

enhance the interpretability of the results in case the same mask between two

types of imaging is used.

5.4.2 Prediction with 4 covariates

We approximate the square root matrices built as in Beyaztas and Shang (2020)

by deriving the spectral decomposition of the matrix of inner products, then tak-

ing the square roots of the eigenvalues. A real valued symmetric matrices G can
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be raised to the power p by applying

Gp = HGS
p
GH

T
G, (5.13)

where SG is the diagonal matrix with the eigenvalues of G and HF contains the

eigenvectors of G. By storing in memory the eigendecomposition of both Wϕ

and Wχm (and setting to 0 the negative eigenvalues which arise for numerical

reasons) it is possible to compute both the square roots (p = 1
2 ) and the inverse

square roots (p = −1
2 ) of these matrices by reusing the same eigenvectors and

eigenvalues twice.

We select M = 4 DR maps as covariates in the functional PLS model. This

selection is based on previous knowledge on the phenomenon under study. In

the list of 25 ICA components1, we have selected a few referring to the default

mode network (component 1) and the visual network (component 2, component

9, component 20), which are more relevant for the task under study. For each

DR map corresponding to the ICA components mentioned above, we extract the

KXm = 3095 B-splines coefficients. The matrix Dm containing these coefficients

is then multiplied by the square root matrix W
1/2
χm to obtain Λm,m = 1, . . . , 4.

The sample is split in training (421 subjects) and test set (100 subjects). We

use the SIMPLS algorithm as coded in the function pls.regression of the R pack-

age plsgenomics (Boulesteix et al., 2018) and we consider the coefficient obtained

from the first 10 PLS component.

We use Pearson correlation between predicted and observed task maps for

each subject in the test set as the main prediction quality measure. The histogram

in Figure 5.1 shows that the average correlation is equal to 0.37 (with 75% of the

correlations above 0.30), with only a few of them being close to 0 or negative.

Although it does not clearly include the spatial structure of the data, the Pear-

son correlation between predicted and observed maps can be used as a single

summary of prediction quality. In Figure 5.2, for a subject in the test set with high

correlation between predicted and actual task map, we observe some agreement

in terms of the sign of the z-values in different areas in the brain. In particular,

in both images higher positive values are observed in the occipital lobe (where

primary visual areas are located, see second rows in Figure 5.2), while negative

values appear in the posterior parietal lobe.

1The list of the group-ICA resting state networks is available on https://www.fmrib.ox.ac.uk/
ukbiobank/. In this work, the indices of the components refer to the whole sequence of 25 compo-
nents, not to the subset of “good” components which does not include the 4 “artifactual” compo-
nents.
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We also carried out further analyses to evaluate the change in the prediction

performance after increasing the number of functional PLS components selected

to build the functional PLS regression coefficient. The mean and the standard

deviations of correlations in the test set appear to be stable after increasing the

number of components (results not shown here).

In addition, we extend our consideration to all the pairs of predicted-observed

task activation images in the test set. Ideally the individual differences between

task-activated brain maps should emerge when for the i-th subject the i-th pre-

dicted map agrees more with the corresponding observed image rather than the

observed images for other subjects. We first consider the cross-correlation of all

the observed images and the cross-correlation of all the predicted ones in Fig-

ure 5.3. Outside of the main diagonal, the cross-correlation of the functional

PLS predicted images is much higher than in the observed ones (on average, this

cross-correlation is approximately equal to 0.80, while for the observed images

is equal to 0.19). In Figure 5.4, we also look at the 100 × 100 matrix of cross-

correlations between actual images (columns) and predicted ones from functional

PLS (rows). The main diagonal of this matrix corresponds to the values in the his-

togram in Figure 5.1. We clearly observe vertical stripes which are due to the com-

bined effect of the higher cross-correlation between predictions and the higher

variability in the actual maps rather than in the predicted ones. This agrees with

the results described in the same task (and many others) in Tavor et al. (2016).

Nonetheless, differently from other work in the literature, the distribution of the

values outside the main diagonal is not different from the one of those in the main

diagonal. The histogram of prediction ranks (the position of the correlation on

the main diagonal within the list of sorted correlations for each subject), used

in the Supplementary Material in Parker Jones et al. (2017) to assess goodness of

fit, does not provide evidence of skewness towards the higher ranks (plot not re-

ported here).

In terms fo computational time, there are large differences between the dif-

ferent steps of the analysis. Obtaining the B-splines coefficients takes less than a

minute per image (and this step is parallelisable). The full spectral decomposi-

tion of both the matrices of inner product to obtain the weights matrices W take

approximately 3 minutes for the task data and 2 minutes for the resting state data

and the computational time depends on the number of basis chosen. The PLS fit-

ting step took approximately 7 minutes per PLS component in a standard laptop.
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Figure 5.1: Histogram of Pearson correlation between predicted and observed
brain maps in the test set (100 subjects). The mean is denoted by the red dia-
mond; the red line shows the variability (± 1 standard deviation)
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Figure 5.2: Top: axial slices of the observed (left) and predicted (right) task maps
for one randomly selected subject in the test set. The Pearson correlation between
them is equal to 0.415. Blue indicates negative values, while red is used for posi-
tive values. The midpoint is located at 0 (white) but the legend range of the actual
image is larger.
Bottom: axial slices of the observed (left) and predicted (right) quantile maps
thresholded at the 95th percentile. Light brown indicates areas with values above
the threshold.
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5.5 Conclusions

In this work we have employed partial least squares function-on-function re-

gression to predict a 3-dimensional outcome from multiple imaging covariates.

The regression model proposed can accommodate a large number of data points

per image by using spatially-informed basis functions such as tensor products of

univariate B-splines. The coefficients obtained from this expansion are then used

in a multivariate PLS algorithm and the functional regression coefficient is built

using PLS components. To predict the image outcome for a new subject, the func-

tional regression coefficient is simply multiplied by the observed covariates.

In our application, we aimed at predicting task activation images using func-

tional connectivity at rest, which was represented through dual regression maps

linked to 4 preselected ICA components. For the “Faces-Shapes” contrast, we

have observed moderate correlation between predicted and observed task activa-

tion maps for the large part of subjects in the test set. When cross-correlations be-

tween an individual predicted map and the maps observed for other subjects were

considered, no large differences with respect to the individual observed maps

were noticed. Predicted maps show in general a lower range and voxelwise vari-

ability (as also reported in Tavor et al., 2016), although the shape of brain regions

with high and low z-values showed a good matching with the corresponding ob-

served maps. To summarise, we have noticed some correlation between the ob-

servations and the outcomes of our model but not all the individual differences

in patterns of activation were detected.

This work can be extended in multiple ways. From a methodological point of

view, the evaluation of the choice of the parameters in the analysis (from the knot

spacing for the basis expansion of the predictors and the response, to the number

of PLS components that constitute the functional regression coefficient) needs

further sensitivity analysis. At the moment, several criteria exist in the literature

but there is no clear advantage of one over the others. The choice of the analyst

remains crucial to ensure a good quality of the results.

Furthermore, alternative basis functions could also be considered, in order to

improve the fitting on irregular domains as those observed in brain images (in

this direction, see the multivariate splines on triangulations in Yu et al., 2021) or

reduce the number of coefficients to be retained for the PLS step by means of

roughness penalties. In this sense, the computational efficiency is a core concept

that needs to be considered.
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Functional PLS is drawing increasing attention from theoretical and applied

perspectives thanks to the recent evolution of this subject in the statistical liter-

ature. Extending results to its multivariate counterpart is still beneficial to the

functional data approaches as well. In particular, alternative versions of func-

tional PLS (as in Delaigle and Hall, 2012, then extended in Zhou, 2021) have been

proposed, which are also based on non-iterative procedures. This would be highly

beneficial to speed up the computation.

In addition, there is room for work in automatic selection and sparsity con-

straints in PLS-based regression (following for examples the approaches proposed

in the multivariate statistics literature in de Micheaux et al., 2019, Sutton et al.,

2018). The core idea, translated in the 3D functional setting, is that regularisation

might help to discard entire covariates (or regions of them) when they are non-

informative for the prediction of the response image. This could represent an in-

teresting PLS algorithm with computationally efficient implementations able to

handle big data such as those from neuroimaging repositories like UK Biobank

and ADNI.

From the application point of view, many questions remain open. The phe-

nomenon of the much higher variability in the observed rather than in the pre-

dicted task-evoked response maps, reported in this work as well as in others with

different parcellation-based regression modelling approaches (as for example in

Tavor et al., 2016 and Parker Jones et al., 2017), seems not to have a clear imme-

diate explanation. On a positive side, often the main goal of the analysis is to

provide a thresholded task-activation map (which can be driven by a voxelwise

ranking, rather than the absolute values), but nevertheless this aspect needs fur-

ther investigation.

Our approach can be enriched with other kind of neuroimaging covariates,

both scalar or images. Zheng et al. (2021) approach the same task activation pre-

diction problem by using a different set of features with respect to dual regression

and focusing on residualised images. The functional PLS approach could eas-

ily include these alternative covariates. Furthermore, structural MRI scans, which

inform about the morphology of different brain regions, can be used as additional

covariates (although in Tavor et al., 2016 they do not appear to play a relevant role

in the prediction). Our modelling approach can be also followed by subsequent

analysis (for instance the thresholding of activation maps) and can be replicated

for other tasks and more generally other high-dimensional image-on-image re-

gression settings.
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Chapter 6

Conclusions

Functional data analysis is currently a fast-developing area of statistics which

benefits from advancement in multivariate analysis and nonparametric smooth-

ing. It represents a valid option for the analysis of high-dimensional data with

complex correlation structure, as commonly observed in neuroimaging settings.

In this work we have described several approaches based on functional data

analysis for 3-dimensional data. We have illustrated some workflows for the anal-

ysis of large-scale brain imaging data in real-world neuroscience problems. We

have also implemented those approaches in R in a flexible and customisable set

of functions. We have shown that computation efficiency can be achieved without

the need of imposing strict normality assumptions when either the data suggest

they may be inappropriate (skewed functional data analysis) or the specific ap-

plication might benefit from a more flexible modelling choice (functional quan-

tile regression). Even in a setting of multivariate functional data analysis (such as

functional partial least squares), we develop fast and scalable modelling strategies

in a case where loading all the data in memory can be prohibitive.
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In terms of neuroimaging applications, this thesis has proposed various mod-

els for structural as well as functional magnetic resonance imaging and addressed

questions which are currently of large interest in the brain science community.

This work contributes to the literature of the brain age problem by introduc-

ing a simple way of considering prediction variability and opens new potential

avenues in the direction of detecting early signs of diseases. The workflow pro-

posed takes as input a tensor-based morphometry image, but the application to

other imaging modalities is straightforward. The output of the model (scalar-on-

image quantile regression) is a prediction interval whose features are customis-

able to suit different needs in the clinical practice. We have shown that the predic-

tions obtained using this workflow are plausible if compared to the relationship

between chronological age and neurodegenerative diseases and the prediction

quality achieved is in line with more computationally intensive modelling strate-

gies. The main features of the regression coefficients estimated are also coherent

with the effect of ageing over the brain structure which are commonly reported

on the literature.

A further exploration of tensor-based morphometry images presented in this

work has allowed us to highlight some interesting features of this modality, which

have been modelled by means of a skewed probability distribution and a Gaus-

sian copula. In the normative modelling setup, for each subject a new normative

map has been generated, in order to detect spatial patterns of deviation with re-

spect to the healthy population. Some simple indices of deviations are useful to

detect some hints of neurodegeneration in the subjects in the test set, providing

the basis for the construction of individual risk scores.

This thesis shows also an application with functional imaging, i.e. tackling the

problem of assessing individual task response from resting-state data. A regres-

sion model based on functional partial least squares is able to accommodate sev-

eral imaging covariates with high dimensionality, via a B-splines basis expansion.

The result of this analysis show that moderate correlation is achieved between

predicted and observed task activation maps for a large number of subjects in the

test set. In addition, the areas of the brain which are predicted to be activated in

response to the task largely agree with what observed.

The analysis of 3D imaging data using FDA is a wide open research field and

this thesis has provided only an overview on a limited range of potential prob-

lems and solutions. In this thesis we have not explored the whole range of basis

functions available in the literature for nonparametric smoothing. We have relied

only on two simple approaches (B-splines tensor products and radial basis func-
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tions) that could give a good enough approximation of the original image to be

used in the next steps of the analysis. In principle, three main features play a role

in choosing how to smooth brain images: the multidimensional domain, the high

resolution and the irregularity of the mask. A good smoother should handle the

3D domain (for example as a product of univariate functions) in a computation-

ally efficient way (as the number of voxels is in the order of millions) and ideally

not lead to large reconstruction errors at the boundaries of the mask.

While many appealing solutions to this issue exist already in the literature, they

might be demanding even for a moderate number of voxels and therefore not

appealing as a first step in FDA. In addition, it would be also beneficial to have

parsimonious basis functions representations to speed up the model fitting pro-

cedures that come after the smoothing step. In this thesis the focus on simple

techniques often reduced the task to control the smoothness of the function (and

therefore the bias-variance trade-off of the image reconstruction) by imposing a

common discretisation step (or knot spacing) across all the domain of the images.

It is worth mentioning that, depending on the imaging modalities and acquisi-

tion, the preprocessing phase of brain images often already contains a smooth-

ing step, and the signal does not necessarily show the same level of smoothness

across the whole brain. This leaves a lot of room for improvement in this field: ap-

pealing approaches in this directions might be penalised and adaptive smoothing

(Marx and Eilers, 2005, Lindquist et al., 2010), or splines over triangulations (Yu

et al., 2021) which better describe the irregular domains, at whose boundaries

tensor product splines or kernel smoothing might perform poorly. These alterna-

tive smoothing techniques can then be embedded in the methods applied in this

thesis (and mainly the whole conceptual framework of FDA is valid for any choice

related to smoothing).

In addition to the sample size, the choice of the common discretisation step

plays a role in the computational aspects of the models proposed in this work.

The number of basis function coefficients has been kept in the order of a few

thousands in order to perform matrix operations (for example matrix inversions

and spectral decompositions) faster without being forced to use high performance

computing resources. Especially for functional partial least squares and in general

all multivariate FDA applications, this issue limits the choices of the statistician,

at the cost of higher reconstruction error or lower number of imaging elements to

be included. Functional variable selection could prove to be a useful resource in

this setting.
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Functional variable selection might be intended in different ways. When deal-

ing with more than one functional covariate, we could be interested in checking

whether an image has an impact on the estimation of a certain outcome, but we

could as well want to detect which regions of the image play a role in the model.

The applications of FDA addressed in this thesis were more prediction-oriented,

but actually large part of the literature in this field deals with estimation and infer-

ential problems. Functional domain selection (James et al., 2009, Park et al., 2016),

local inference for functional data (Olsen et al., 2020, Pini and Vantini, 2017) and

points of impact (Kneip et al., 2016) are just some examples that could help in this

direction. Several neuroimaging applications are aimed at establishing thresh-

olds to detect regions with significant effects as well (via random field theory for

example) while controlling the family wise error rate or the false discovery rate. If

similarities in scope exist, cross-fertilisation would be highly beneficial for both

the disciplines.

Lastly, multidimensional functional data analysis is still an increasing area of

research. While some modelling aspects are already under development, the need

for innovative visualisation tools is still alive: even a concept as simple as corre-

lation between 3D object requires at least some kind of interactive visualisation.

This issue would be decisive in view of a future wide-ranging use of FDA tools in a

clinical setting. In this direction, a higher engagement of statisticians with these

data coming from biomedical applications would be welcomed towards facing

one of the greatest battles of the next decades and building a better health for all.
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