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ABSTRACT
The prediction of the thermodynamic and kinetic properties of chemical reactions is increasingly being addressed by machine-learning (ML)
methods, such as artificial neural networks (ANNs). While a number of recent studies have reported success in predicting chemical reaction
activation energies, less attention has been focused on how the accuracy of ML predictions filters through to predictions of macroscopic
observables. Here, we consider the impact of the uncertainty associated with ML prediction of activation energies on observable properties of
chemical reaction networks, as given by microkinetics simulations based on ML-predicted reaction rates. After training an ANN to predict
activation energies, given standard molecular descriptors for reactants and products alone, we performed microkinetics simulations of three
different prototypical reaction networks: formamide decomposition, aldol reactions, and decomposition of 3-hydroperoxypropanal. We find
that the kinetic modeling predictions can be in excellent agreement with corresponding simulations performed with ab initio calculations,
but this is dependent on the inherent energetic landscape of the networks. We use these simulations to suggest some guidelines for when
ML-based activation energies can be reliable and when one should take more care in applications to kinetics modeling.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096027

I. INTRODUCTION
Chemical reaction networks (CRNs) are a powerful tool to

understand how macroscopic, experimentally measurable proper-
ties, such as reaction rates, reaction orders, product selectivities, and
branching ratios, emerge from microscopic characteristics, such as
reaction activation energies and relative molecular energetics.1–19

CRNs comprise a set of nodes (or vertices) representing discrete
molecular species (or related collections thereof) and a set of
edges connecting nodes that represent the chemical reactions inter-
connecting different chemical species. The entire CRN is typically
characterized by defining the connectivity, the relative energies of
the different nodes, and the reaction rates of each chemical reac-
tion; most commonly, one defines the activation energies of each
reaction and assumes that transition-state theory (TST) or related
analytical methods can be used to determine reaction rates.17,20–22

Once the CRN characteristics are fully defined, microkinetics
simulations can be used to predict the transient behavior for a given

set of initial species concentrations, allowing access to simulations
that can explain observed overall rate laws or product distributions
for complex chemical systems.14,18,23–28

CRNs can be created in different ways, for example, using
experimentally measured rate constants, activation energies from
ab initio electronic structure calculations, or a mixture of both meth-
ods; in this article, we focus exclusively on computational methods
for generating CRNs. In such cases, the procedure for generating
CRNs can be summarized as (i) generating species lists and charac-
terizing their relative energies, (ii) generating reaction lists defining
the set of allowed chemical reactions, (iii) calculating activation
energies for all chemical reactions, and (iv) calculating reaction rates
for all reactions.

The last few decades have seen enormous progress being made
in steps (i) and (ii), namely, automated computational generation
of species and chemical reactions. For example, the reaction mech-
anism generator (RMG1,29–32) has been used fruitfully to study a
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wide range of complex CRNs, such as unimolecular decomposition
and pyrolysis of organic species. The AutoMeKin33–37 code employs
molecular dynamics (MD) simulations to drive the search for chem-
ical reactions and transition states (TSs) and has similarly been
employed to study reactions ranging from organometallic cataly-
sis to ozonolysis. A number of other reaction generation schemes
have been proposed,2,3,7,38–43 such as graph-based sampling meth-
ods that drive chemical reactions in the discretized space formed
from molecular adjacency matrices,10,11 MD-type schemes that treat
reaction paths as dynamic objects with constrained end-points,12,44

and ab initio MD schemes that employ artificial pistons to periodi-
cally force reactive chemical species into close enough proximity to
enable chemical reactions to occur.45 A number of recent articles
have provided excellent overviews of the emerging available meth-
ods for automated generation of reactive species and reactions for
CRN construction, and this continues to be a continued growth area
in computational chemistry.7,40

In accurate modeling of CRNs, we are then left with the chal-
lenge of accurate evaluation of activation energies and reaction rates
[steps (iii) and (iv)] as the key challenges. As noted above, TST and
related analytical methods are almost universally employed in calcu-
lating reactions rates for computational investigations of CRNs; this
has the advantage of being computationally straightforward, typi-
cally requiring information about the relative energies of the TS and
the reactive minima. Furthermore, the underlying assumptions of
TST, such as the “no recrossing” assumption, typically introduce rel-
atively small errors when compared to errors in calculated activation
energies; this is a simple result of the fact that TST rates are exponen-
tially dependent on calculated activation energies. As a result, the
accurate determination of the TS and calculation of the correspond-
ing activation energy remain an important challenge in computa-
tional CRN analysis.7,33,36,37,39,46,47 Furthermore, we note that many
CRNs, notably those related to combustion processes or atmospheric
chemistry in urban environments, can contain enormous numbers
of molecular reactive species and chemical reactions;30,48–53 in such
cases, the sheer size of the computational task of evaluating activa-
tion energies is a bottle-neck, particularly if one requires accurate ab
initio evaluations.

The challenges of accurate prediction of activation barriers
for large datasets of chemical reactions in an automated, high-
throughput manner are an ideal setting for machine-learning (ML).
Similar to methods for computational reaction discovery, the last
decade or so has seen a growth in strategies for ML prediction of acti-
vation energies for chemical reactions.54–58 In large part, this activity
has been driven by the increasing availability of high-quality and
publicly available datasets containing large numbers (typically sev-
eral thousand or more) of individual chemical reactions described
through reactant and product structures and the corresponding
activation energies and reaction energetics.54,59,60

Given such a training set, each reaction is typically char-
acterized (or vectorized) using one of a wide range of possible
descriptors aimed at capturing the chemically relevant features
of the reaction, such as connectivity and atom-types of reactive
sites, type of reaction, and thermodynamic properties such as reac-
tion energy changes [following widely known relations such as
the Bronsted–Evans–Polanyi (BEP) relation connecting activation
energy and reaction energetics58,61–65]. In this context, a wide range
of descriptors have been employed, including sub-fragment-based

strategies, such as Morgan fingerprints, connectivity-based schemes,
or mixtures of descriptors containing both connectivity and geo-
metric information.59,66–70 Most commonly, in order to avoid the
computational expense and challenge of locating TSs for all rele-
vant reactions in a CRN, reaction descriptors are calculated using
information for just the reactant and product molecular species
alone.

After descriptor calculation for the target dataset, ML strategies,
such as artificial neural networks (ANNs) or kernel regression meth-
ods,71 can be used to generate predictive models to approximate
activation energies, given input reactant and product structures in
the form of simplified molecular-input line-entry system (SMILES)
strings or molecular geometries. Subsequently, the trained ANN or
regression method can be used to predict activation barriers for
related chemical reactions; as such, it is clear that ML strategies,
given appropriate training data, can be used to dramatically accel-
erate the calculation of activation energies in CRNs, circumventing
the necessity of computationally demanding ab initio calculations
and TS-location schemes.

The general strategy outlined above has been successfully
employed in studies of a variety of different chemical systems, rang-
ing from organic chemical reactions to heterogeneous catalysis.
From these previous studies, performed with a variety of different
descriptors, regression strategies, and training datasets, it is found
that the typical accuracy currently attainable through ML strategies
for activation energy prediction is in the range 2–6 kcal mol−1 [rel-
ative to the “correct” barriers typically given by density functional
theory (DFT)].

Following our previous work on reaction discovery10–12,44 and
our ambition to integrate our reaction discovery schemes with auto-
mated generation and microkinetics modeling of CRNs, the purpose
of this article is to test the extent to which current ML-predicted
activation energies are sufficiently accurate to reproduce emergent
CRN kinetics. Here, we perform microkinetics simulations of three
different examples of CRNs, chosen to represent different character-
istics; in each case, we compare the kinetics for CRNs generated with
(i) ab initio-predicted activation energies and (ii) ML-predicted
activation energies in order to assess the conditions and CRN char-
acteristics under which ML predictions of activation energies are
“good enough.” By comparing CRN microkinetics for both ML
activation energy prediction and ab initio barriers, we hope that
these simulations might help further establish the utility of ML in
challenging simulations of CRNs.

In Sec. II, we first describe our approach to ANN fitting of acti-
vation energies using Morgan fingerprints and ANNs. In Sec. III,
we subsequently demonstrate the characteristics and accuracy of the
trained ANN before deploying the ANN activation energy predic-
tions in microkinetics simulations of formamide decomposition,72

aldol reactions,43 and decomposition of 3-hydroperoxypropanal.32

Finally, we conclude by highlighting what our results suggest for the
further deployment of ML in CRNs.

II. THEORY

In this section, we begin by outlining our approach to activa-
tion energy prediction using ANNs; as noted above, our regression
strategy here is comparable to a number of previous studies
and employs readily available molecular descriptors and training
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datasets. In other words, by definition, our approach is representa-
tive of the broad state-of-play in using ANNs to predict activation
energies for typical organic reactions.

After outlining our ANN strategy, we briefly describe how
the predicted activation energies feed into microkinetics simula-
tions of CRNs; we also highlight how predicted uncertainties are
incorporated into our microkinetics predictions.

A. ANN prediction of activation energies
We begin by describing the procedure followed here to train

an ANN to predict activation energies of organic chemical reac-
tions. In general, we follow similar strategies as have been deployed
previously, focusing on using Morgan (extended-connectivity)
fingerprints66,67 as molecular descriptors for reactants and products
and using a well-known organic chemistry DFT dataset for training
and testing.60 As noted above, the point of this article is to investigate
whether such “standard” approaches are good enough for predictive
microkinetics modeling and what can be learned from this approach.

In this article, we follow a path that has been broadly employed
previously in seeking to predict activation energies for chemical
reactions with defined reactants and products (Fig. 1); importantly,
the ANN will be trained using only reaction end-point data, includ-
ing connectivity properties for the reaction end-points and the
ab initio-calculated reaction energy change. Following previous
work, these properties are encoded in a feature vector (described
in the following); subsequently, a feature vector for the reaction is
obtained as the difference between the product and reactant fea-
ture vectors, providing an encoding of the structural and energetic
changes induced by the reaction itself. This final reaction feature
vector is then used as input to an ANN with the aim of predicting
the corresponding activation energy. A schematic overview of the
general ANN setup is shown in Fig. 1.

We note here that a number of previous investigations have
similarly deployed ANNs or related regression strategies to pre-
dict activation energies for similar chemical reactions.54–56,73,74 In
a recent article, Singh and co-workers73 developed a multi-feature
neural network model and discovered that they were able to pre-
dict activation barriers with mean absolute errors (MAEs) as low as

FIG. 1. Schematic representation of ML prediction for activation energies used in
this article. For a given set of reactants and products, separate molecular finger-
prints are calculated, dR and dP , and then combined into a reaction-difference
fingerprint D [Eq. (1)]. With the addition of the reaction energy, this difference
fingerprint is then used as the input vector to an ANN with the output giving an
estimate of the activation energy. The weights in the ANN are trained using a
database of entries containing reactant/product SMILES strings and corresponding
DFT activation energies.

5.07 kcal mol−1. Similarly, Choi and co-workers55 exploited molec-
ular fingerprints and decision trees to determine activation energies,
achieving a mean absolute error of 2.0 kcal mol−1. A survey of these,
and other, previous investigations reveals that it is broadly possi-
ble to obtain ANNs that can predict activation energies for diverse
chemical reactions with a typical root-mean-square error (RMSE)
error of 2.8 kcal mol−1 and mean absolute error (MAE) of 2.5 kcal
mol−1. A key aim of this article is to generate an ANN with compa-
rable predictive capability and then to explore how useful this level
of accuracy is in predicting emergent kinetics of CRNs. In pass-
ing, we note that we have also tried to employ Gaussian process
regression (GPR) to fit activation energies using the same dataset
and fingerprints as described in the following; however, we found
that the predictive performance was typically lower than that offered
by ANNs for this particular application, and we chose to focus here
exclusively on ANNs.

In our ANN approach, we use standard ANN architectures,
datasets, and feature vectors, which are widely available; these
different aspects are described in Secs. II A 1–II A 3.

1. Dataset for ANN training
As described above, our main simulation focus in the following

is in modeling three different CRNs with different overall struc-
tures; however, each of these CRNs is based around organic chemical
reactions with no transition metals present. In order to train an
ANN to predict activation energies for these systems, we require
a training dataset that spans a similar range of chemical reaction
space. Recently, Grambow and co-workers60 have published such
a dataset based solely on DFT calculations. This dataset comprises
over 16 000 gas-phase organic molecular reactions for species con-
taining up to seven heteroatoms (C, N, and O); for each reaction,
the dataset contains the reaction energy change and the TS energy
(as determined by the growing-string method), all calculated at the
DFT B97-D3/def2-mSVP level. We note that a comparable dataset
based on the alternative DFT function ωB97X-D3 is also avail-
able for organic chemical reactions; however, the B97-D3 dataset
employed here is larger and was therefore viewed as more appropri-
ate for our purpose. Furthermore, we note that the fitting and testing
methodology discussed here is not particularly tied to any specific
functional.

To make full use of this dataset, we incorporate both the for-
ward and backward mechanisms, resulting in a database of over
32 000 organic reactions, which can be used for ANN training and
testing. However, we emphasize that while our training set includes a
mixture of forward and backward reactions, the test set only include
examples of forward reactions; this approach prevents the same reac-
tions being included in both training- and test-sets, enabling more
reliable assessment of ANN accuracy.

2. Molecular descriptors
To effectively learn activation energies, chemical reaction fea-

tures must be encoded in a form suitable for an ANN; we need
a compact descriptor set that captures the characteristics of the
reactants, products, and associated energy changes for a given chem-
ical reaction. While recent work has developed graph-convolutional
neural networks (GCNNs)75 and quantum-chemically derived reac-
tivity descriptors, the approach we take here is to focus on simpler,
readily available molecular descriptors that can be directly calculated

J. Chem. Phys. 157, 014109 (2022); doi: 10.1063/5.0096027 157, 014109-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

from input reactant and product structures without further external
input.

Connectivity-based models offer a simple, yet robust represen-
tation of chemical structures; as noted above, these can be subtracted
to generate a “reaction fingerprint.” The descriptor we use here
is the Morgan (or extended-connectivity) fingerprint, implemented
using the RDKit package.76 Morgan fingerprints are calculated based
only on 2D molecular structural information, providing a vec-
tor representation of substructures for any given molecular input.
Using a 1024-bit vector encoding and a maximum of five atoms
per substructure, these 2D fingerprints were generated directly
from SMILES. To ensure that reactions are correctly indexed, we
specifically use atom-mapped SMILES. A key advantage of Mor-
gan fingerprints is that they require very little optimization of their
hyper-parameters in order to capture structural changes during the
course of a reaction.

The Morgan fingerprint calculation produces a feature vector,
d, for a given input molecular structure; in the case of chemi-
cal reactions, we are interested in the impact of the change in the
molecular structure, which is most closely related to the activation
energies being predicted. As such, for each reaction i considered in
the training- or test-sets (discussed in the following), the feature
vector used as input in the ML models is a difference vector, Di,
defined as

Di = dP
i − dR

i , (1)

where dR
i and dP

i are, respectively, the feature vectors for the
reactants or products (Fig. 1).

An important extension to this basic strategy is the inclusion
of the reaction energy change as an additional descriptor. As is
well-known from the Bronsted–Evans–Polyani (BEP) relation,61,62

the activation energy is usually strongly correlated with the reaction
energy; in other words, we expect the reaction energy to be a good
descriptor for prediction of activation energies, as has also been con-
firmed by previous investigations.58,63–65 Although the focus of this
study is to predict activation energies, we note that our ML strat-
egy in the following could, in principle, be applied to predict the
reaction energies also, potentially avoiding geometry optimization
calculations altogether; however, here, we focus simply on activa-
tion energy prediction, assuming that geometry optimization for
reaction end-points is relatively straightforward in most anticipated
applications.

3. ANN architecture
For this article, we investigated the performance of several ML

models for predicting activation energies. In all cases, we estimated
activation energies using the difference vector [Eq. (1)] and the
ab initio reaction energies as inputs. In particular, we considered
kernel ridge regression, decision trees such as random forests, Gaus-
sian process regression, and ANNs. Ultimately, we chose to use
ANNs due to small improvements in testing errors relative to the
other regression methods for this specific application.

ANNs were built using the scikit-learn package.77 We par-
titioned the Grambow dataset of 32 730 total reactions (including
both forward and backward reactions) into an 80:20 training–test
split. This was performed randomly in accordance with k-fold cross
validation,78 where k = 5; a total of three different ANNs were

trained and used to deliver ensemble-averaged predictions of acti-
vation energies. This allows us to evaluate the performance of
our ML model’s ability to predict out-of-sample activation ener-
gies. We optimized the ANN architecture using scikit-learn’s
GridSearchCV function, which identified 200 nodes in two hidden
layers as the optimal choice for our ANN model. ANN weights were
optimized using the Adam optimizer with an initial learning rate of
0.001 and a Rectified linear unit (ReLU) activation function.

As an aside, we note that the ANN prediction errors in the
training- and test-sets are significantly reduced if the reaction energy
descriptor is not normalized. Again, we believe that this reflects the
underlying strong correlation between reaction energy and activa-
tion energy, which is reinforced when normalization is not applied
to the input reaction energies. As discussed in the following, the per-
formance of our ML model is evaluated using standard error metrics,
such as the MAE, RMSE, and R2.

B. Microkinetics simulations
For each of the CRNs considered in the following, we perform

ML predictions of activation energies for all relevant chemical reac-
tions defined in the network; we note that the input relative energies
of reactants and products are known from prior calculations, as
discussed in the following.

Subsequently, we use standard TST to approximate the cor-
responding reaction rates of all reactions in each studied CRN.
Following on from the discussion of ANN training above, it is
important to note that the TST rates calculated are not necessar-
ily those that might be calculated using standard ab initio methods.
In particular, our ANN is trained to predict activation enthalpies
ΔH†, whereas the typical TST rate calculation employs the Gibbs
activation energy, ΔG†,

k(T) = kBT
h

e−
ΔG†
kBT .

Therefore, by training our ANN against a specific set of enthalpies,
we inherently ignore the entropic contribution to activation free
energies; in addition, the temperature-dependence of this contri-
bution is also obviously ignored. This is, of course, a necessary
approximation driven by the availability of appropriate training
sets; however, as shown in the following, we find that our ANN is
surprisingly robust in predicting activation energies.

With the rates and relative energies in the CRN in hand,
we proceed to perform microkinetics simulations using the well-
known stochastic simulation algorithm (SSA) developed extensively
by Gillespie.14,26–28 Here, given the list of current species con-
centrations and the set of reaction rates, a probabilistic strategy
is adopted to select the next reaction to occur, and the simula-
tion time is advanced accordingly; repeating this approach yields
a stochastic trajectory of time-dependent species concentrations,
with repeated runs, enabling calculation of average time-evolution
of concentrations and related uncertainties.

In addition to exploring the impact of ML-predicted activation
energies, in this article, we explicitly study the impact of activation
energy uncertainties also. These simulations are possible because we
are using ANNs to predict activation energies. When using DFT
predictions of activation energies, the correct “reference point” to
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calculate uncertainties is unknown; however, in the case of ANNs,
one can straightforwardly generate approximate uncertainties in
predicted activation energies, enabling one to evaluate the impact
of errors in microkinetics simulations of CRNs.

To calculate the uncertainties in predicted activation energies,
we simply use an ensemble of trained ANNs when making pre-
dictions. Each ANN is trained in the same way and has the same
structure (as described in the following) but starts from a different
initial set of connection weights; weight optimization during train-
ing then produces a set of ANNs that all predict the target activation
energies but each with a different set of weights.

When determining activation energies for each of the CRNs in
the following, we use the ensemble-averaged prediction; similarly,
the variance σ2 in each activation energy can also be evaluated using
the ANN ensemble, as can the covariance matrix C describing corre-
lation between different reactions. With the mean ANN prediction,
it is straightforward to perform traditional microkinetics simula-
tions of CRNs to predict the time-evolution of species concentra-
tions; given that prior ab initio activation energies are available for
each CRN studied in the following, the ANN-based microkinetics
can be compared to DFT-based results, enabling evaluation of the
impact of ML predictions. Furthermore, in the ANN-based simula-
tions, the uncertainties in activation energies are incorporated here
in a straightforward way; in particular, for each CRN, we perform
a series of three independent simulations, each using a different
set of activation energies for each CRN drawn from a multivariate
Gaussian distribution given by

P(E) = Ne−[(E−⟨E⟩)
TC−1(E−⟨E⟩)].

Here, E is the set of activation energies sampled from the multi-
variate Gaussian distribution P(E), ⟨E⟩ is the set of ANN-predicted
mean activation energies, and N is the corresponding normalization
factor. Before each SSA simulation, activation energies are sampled
from P(E) using a standard Metropolis Monte Carlo procedure. In
this way, averaging over barrier heights and accounting for covari-
ance among the different barrier heights, our ANN-based microki-
netics simulations offer a first-order account of ANN predictive
uncertainty and its impact on microkinetics in CRNs.

III. APPLICATIONS AND DISCUSSION
In this section, we begin by demonstrating the accuracy of acti-

vation energy prediction using our ANN architecture. Subsequently,
we consider the impact of ANN activation energy prediction (and
uncertainties) in three different organic chemistry CRNs, each with
different characteristics.

A. ANN prediction accuracy
Figure 2 shows performance metrics for our ANNs; after train-

ing, the ensemble-averaged MAE and RMSE for a test-set of 6546
reactions were 2.78 and 3.82 kcal mol−1, respectively. The corre-
lation plot in Fig. 2(a) shows a positive linear regression profile
for the activation energies in both the training- and test-sets of
reactions (R2 = 0.97). These results clearly demonstrate good corre-
lation between ML- and DFT-calculated activation energies in the
training- and test-sets and show no evidence of consistent over-
or under-estimation of barriers. Relative to DFT results, the vast

majority of the errors fall into the ±20 kcal mol−1 error range with
most reactions reporting error values of under ±10 kcal mol−1. Fur-
thermore, in Fig. 2(b), we illustrate how ANN accuracy changes
with training-set size. Both the test and training curves converge
at around 16 000 training points with MAEs of 2.78 and 2.74 kcal
mol−1, respectively. The R2 accuracy reaches a maximum value at
roughly the same point. Our model’s overall accuracy and perfor-
mance are therefore not impacted by adding more training samples
beyond about 16 000 reactions.

Overall, our analysis of barrier predictions appears to be com-
parable to the levels of accuracy obtained in previous studies using
a variety of different ML architectures. For example, as noted above,
previous investigations have obtained RMSE and MAE prediction
errors of around 2–6 kcal mol−1, which is clearly comparable to our
results. As such, our trained ANN is broadly representative of typi-
cal accessible prediction accuracy; our results in the following assess
the impact of this level of accuracy.

B. ANN predictions for microkinetics simulations
Having verified that our ANN predicts activation energies for

organic chemical reactions that are comparable to previous studies,
we now consider the impact of ANN predictions on microkinetic
modeling.

To do so, we consider three different CRNs, which have been
previously studied and which were either generated “by hand” or by
using automated reaction discovery tools. To be truly useful, ANN
predictions of activation energies should ideally be applicable to het-
erogeneous calculation setups; in other words, the accuracy of ANN
predictions should not be tied to any particular reaction discovery
method or ab initio electronic structure method for energy eval-
uation. As such, our approach to testing our ANN predictions is
to take reaction energetics and molecular structures from previous
CRNs generated by using either DFT or coupled-cluster with singles,
double and perturbative triples [CCSD(T)]; our simulations in the
following will then test whether ANN predictions of activation ener-
gies are useful, without requiring complete re-calculation of energies
and other properties of all species in a given known CRN.

The CRNs studied here are (i) decomposition of formamide,
(ii) aldol reaction between vinyl alcohol (H2C=CHOH) and
formaldehyde (H2CO), and (iii) unimolecular decomposition of
3-hydroperoxypropanal. These CRNs were chosen because they
each have different overall structures and complexity but also have
available ab initio electronic structure calculations for comparison
with ML predictions. First, the formamide network is a simple
“linear” CRN with a set of four coupled chemical reactions, lead-
ing along two pathways to the same reaction product; furthermore,
the set of activation barriers for all reactions is quite comparable
in magnitude (Table I, see in the following). The aldol network
has a more centralized structure with multiple possible products.
Finally, the unimolecular decomposition of 3-hydroperoxypropanal
is another example of a CRN with a centralized structure, repre-
senting an organic decomposition mechanism starting from a single
molecule and leading to 16 possible products; in this case, the activa-
tion energies in the CRN are such that one reaction lies about 20 kcal
mol−1 lower than the rest of the reactions (Table III).

Using the ANN setup described above, we predicted the activa-
tion energies for all relevant reactions in these CRNs. Figure 3 gives
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FIG. 2. Trained ANN model using the
Morgan fingerprint molecular descriptor.
(a) Correlation plot of DFT-calculated
and ANN-predicted activation energies.
The performance of the fingerprint model
for the train (purple circles) and test
(orange circles) sets are quantified by
key error metrics such as the mean
absolute error (MAE), root mean squared
error (RMSE), and the coefficient of
determination (R2) (pink square), shown
here in (b) the learning curve. Note that
the dotted line in the training curve rep-
resents the standard 1 kcal mol−1 target
for chemical accuracy.

TABLE I. CCSD(T) calculations and ANN predictions of activation energies for reac-
tions in the formamide (NH2CHO) decomposition CRN as well as the standard
deviation (σ) of the ensemble average. The value Δ is simply the difference between
ANN-predicted and ab initio computed activation energies. All values are given in
kcal mol−1, and the CCSD(T) literature results appear in Fig. 5 in the article by
Nguyen et al.72

Reaction index CCSD(T) ML Δ σ

1 43.90 41.81 −2.09 0.52
2 77.00 84.75 7.75 2.50
3 72.20 61.30 −10.90 0.86
4 38.90 40.71 1.81 1.46

FIG. 3. Computed vs machine-learning predicted barriers for three different sets
of organic reactions. The decomposition of formamide72 (blue squares), the aldol
reaction between vinyl alcohol and formaldehyde43 (red triangles), and the uni-
molecular decomposition of 3-hydroperoxypropanal32 (green circles). The vertical
error bars represent the standard deviations of the predicted barriers.

an overview of the ANN activation energy predictions for the three
different CRNs considered here; in addition, the uncertainties on the
ANN predictions are also shown. In each case, we compare the ANN
predictions to the barrier heights obtained in previous ab initio cal-
culations [either DFT or CCSD(T)]; a list of the calculated barrier
heights, uncertainties, and reaction identities is also included in the
supplementary material.

First, from Fig. 3, it is clear that the ANN approximation of
activation energies is reasonably accurate. There is clearly good
agreement between the activation energies predicted by ab initio
calculations in previous work and in the ANN predictions; the cal-
culated coefficient of determination is R2 = 0.91. Furthermore, we
find that the level of agreement is maintained across a broad range
of chemically relevant activation barriers, namely, from about 35 to
100 kcal mol−1. Perhaps most surprisingly, the level of agreement
between ANN predictions and ab initio results is good despite the
fact that the reaction energies that were used to generate the ANN
inputs for these reactions were different from the method used in the
original training data; for example, in the formamide CRN, the ini-
tial reaction energetics were calculated using CCSD(T), not the same
DFT B97-D3/def2-mSVP level-of-theory as used for the training set.

1. Analysis of reaction ordering
Before proceeding to discuss the microkinetics simulation

results, it is useful to investigate whether the use of ANN predictions
of activation barriers actually changes the preference for different
reactions in each CRN. In the best-case, one might hope that the
barrier-ordered list of reactions is the same in both ab initio cal-
culations and ANN prediction calculations; in the worst-case, it is
possible that changes in activation energies could lead to switching
of preferred pathways through a CRN.

Figure 4 shows the activation energies for each CRN plotted
by the reaction index; these plots enable identification of reactions
for which “switches” in barrier heights between ab initio and ANN
results are evident. For the formamide CRN, it is clear that the ANN
predictions closely follow the trend in the activation energies for the
four predicted reactions; for example, reaction 2 is found to have
the largest barrier in both ANN and ab initio predictions, whereas
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FIG. 4. Comparison of ab initio and ANN activation energy predictions for (a) formamide CRN, (b) aldol CRN, and (c) CRN describing unimolecular decomposition of
3-hydroperoxypropanal. Ensemble standard deviations for ANN predictions are illustrated; the lines are intended as a guide for the eye only.

reactions 1 and 4 are much lower (and predicted to be essentially
the same in both ANN and ab initio calculations). In contrast, the
barrier heights for the aldol reaction show some significant differ-
ences; for example, the DFT calculations predict that reaction 3 has
the lowest activation energy, whereas the ANN predicts that reac-
tion 6 has the lowest activation energy. It is worth noting, however,
that the range of activation energies spanned by this CRN is quite
small, and all predictions by the ANN sit within the expected range
for this CRN. Finally, the ANN predictions for the unimolecular
decomposition reaction are found to be very good indeed. In par-
ticular, reaction 11 is clearly the lowest-energy barrier in both DFT
and ANN predictions with the trend in the remaining higher barriers
being well-reproduced by the ANN.

From Fig. 4, we might therefore expect that the ANN-based
kinetics simulations of the formamide and unimolecular decom-
position CRNs would be broadly in agreement with the kinetics
generated by the ab initio data, whereas the simulations of the aldol
CRN might be expected to be quite different between these two dif-
ferent activation energy sets. This is indeed found to be the case, but
the kinetics results in the following provide much more insight than
what might be evident from Fig. 4 alone.

2. Analysis of ANN ensemble uncertainties
As noted above, we use an ensemble of ANNs to predict

activation energies; this also enables evaluation of the covariance
matrix, which is used in some of the microkinetic simulations in
the following. Broadly, one might expect the standard deviations in
the ANN-predicted activation energies to correlate with the errors
between the average ANN predictions and the ab initio calculations;
in other words, when activation energies are poorly reproduced, one
would hope that the ensemble of ANNs recognize this in a larger
uncertainty among the predictions.

Figure 5 shows the correlation between the standard deviations
σ from the ANN ensemble and the absolute magnitude of the devia-
tion Δ = EML − Eab − initio. For both the formamide and unimolecular
decomposition CRNs, we see a broad correlation between these
properties; this is most evident for the unimolecular decomposition
CRN, where we typically find that reactions with small uncertainties
are accurately predicted. However, we do find that the ANN ensem-
ble uncertainties tend to underestimate the true error relative to the
ab initio results. For the aldol CRN, the correlation is less clear-cut;

it seems that the ANN ensemble uncertainties are generally much
lower than the true errors in the predicted barriers, consistent with
the discussion of Fig. 4. The reactions encompassed by the aldol
CRN, and the system-size, seem comparable to the formamide or
unimolecular decomposition CRNs, so one might expect similar cor-
relation; however, we also note that the ANN predictions for each of
the CRNs are being compared against different ab initio methods,
which complicates the comparison here. However, for the purposes
of this article, we simply note that there is some broad correlation
between uncertainties and true errors although the ANN uncertain-
ties generally appear to be underestimated. It is also worth noting
that given the approach taken to training an ANN ensemble here
(i.e., same structures but different weights), it is perhaps not sur-
prising that the ANN uncertainties are underestimated; of course,
methods such as GPR would be expected to give more reliable error
estimates, but we have already noted above that the overall perfor-
mance of GPR for the particular regression task studied here was not
as good as ANN.

FIG. 5. Comparison of ANN-predicted uncertainties (σ) with errors between ANN-
predicted activation energies and ab initio activation energies (Δ). Results are
shown for each of the three CRNs studied here.
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C. Kinetics simulations
In the following, we consider the results of microkinetic simula-

tions performed for each of the three CRNs with activation energies
determined through three different routes, namely, (i) ab initio
calculations, (ii) ANN prediction, and (iii) ANN prediction with
account of activation energy covariance.

1. Formamide reaction network
First, we consider the CRN for formamide (NH2CHO) decom-

position; as noted previously, this molecule has been extensively
studied as part of prebiotic pathways toward complex biomolecules.
Here, the molecular geometries were taken from a previous study
that employed CCSD(T) calculations to obtain relative energies of
intermediates and TSs for a sequence of decomposition reactions.
We particularly focus here on decomposition of formamide into
HNCO +H2.

Despite the relative simplicity of this system, these simulations
immediately reveal key problems with ANN strategies of the type
employed here. The originally studied CCSD(T) reaction network
contains a total of seven reaction barriers; however, a number of
these are barriers to conformational isomerizations in which the
bonding of intermediate structures does not change but the rel-
ative torsion angles do. In using connectivity-based fingerprints,
such as the Morgan fingerprint scheme employed here, the finger-
prints calculated for different conformers are equivalent such that
the ANN cannot be used to accurately predict the associated activa-
tion energies. This is a significant and well-known disadvantage of
descriptors based solely on connectivity information, meaning that
activation energies for conformational interconversions cannot be
reliably predicted by ANNs trained using these fingerprints alone.
We note that in developing the ANN described above, we have tried
to use alternative fingerprints, such as the well-known smooth over-
lap of atomic position (SOAP) descriptors;79 such descriptors do
capture the differences between different three-dimensional confor-
mations, but we have found so far that their predictive performance
in activation energy determination was not as good as the Morgan
fingerprints used here. Further optimization of this approach might
be expected to improve performance but sits outside the scope of this
article.

To account for this conformational problem, the CRN stud-
ied here comprises four (rather than seven) reactions, which lead
to H2 +HNCO along two double-step mechanisms from NH2CHO.
The reactions corresponding to conformational changes have been
removed; in this case, this is somewhat further justified by the fact
that these reactions have generally lower barriers than those related
to chemical reactions (bonding changes) such that one can make
the assumption that the multiple conformations equilibrate within
themselves and are replaced by a single effective conformer.

To predict activation energies using our trained ANN, the
molecular geometries for reactants and products for each reaction
in the CRN were obtained from previous work using CCSD(T) cal-
culations; these were subsequently used as input for our ANN. As
noted above, our trained ANN also requires input of the reaction
energy for each target reaction for prediction; these values were
taken directly from the previous investigation.72

The ANN-predicted activation energies for the series of for-
mamide reactions considered here are shown in Table I. As also

evident from Fig. 3, the agreement between the ML-predicted bar-
riers and those obtained by CCSD(T) is very good; furthermore,
the calculated (ensemble-averaged) standard deviation in the ML-
predicted barrier heights is also quite low, found to be less than or
equal to 2.5 kcal mol−1 in all cases. These results indicate that the
ANN-predicted barriers are surprisingly robust to changes in the
electronic structure method; our ANN was trained using reaction
energetics obtained using DFT, but we find here that the predic-
tions made using CCSD(T) reaction energies as input are just as
good. This is a useful observation, suggesting transferability across
different electronic structure methods for input.

Figure 6 shows the time-dependence of the concentration of the
initial formamide reactant [Fig. 6(a)] and the intermediate struc-
ture NHCHOH [Fig. 6(b)] during SSA simulations at short times
(up to 2 × 10−4 s). Here, the initial concentration of formamide was
(arbitrarily) chosen as 1.33 mol dm−3. Different SSA simulations
were performed using (i) the original CCSD(T)-calculated barri-
ers, (ii) ANN-predicted barriers with no account for uncertainties
(i.e., simply using the averaged predicted barrier), and (iii) ANN-
predicted barriers with covariance accounted for as described in
Sec. II. In total, three independent SSA simulations were performed
in each case; the results of Fig. 6 show the averaged concentrations

FIG. 6. Time-dependent concentrations for formamide (NH2CHO) decomposition
reactions at T = 800 K. Activation energies were determined using CCSD(T)
calculations (purple squares), ML (green circles), and ML with covariance (red
circles). Results are shown for the populations of (a) NH2CHO and (b) NHCHOH.
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and the associated uncertainties. It is important to note that the
described microkinetic simulation setup reflects an idealized system,
predominantly chosen for computational convenience rather than
representing real-world experimental conditions. However, for the
purposes of this article, it is less relevant as it does not impact the
comparisons made between DFT computed and ML error-qualified
kinetics.

In keeping with the accuracy of the ML-predicted activation
energies in Fig. 3, the ab initio and ML time–concentration plots
are in good agreement, especially when considering the small con-
centration changes involved. For example, the timescales associated
with the decay of the initial reactant generally agree well across the
different methods. Additionally, the impact of uncertainties appears
to have a relatively small influence on the overall kinetics; this is per-
haps unsurprising, given that errors in the ANN-predicted barriers
(Table I) are less than 2.5 kcal mol−1.

However, looking at the results of Table I, it is clear that the
good agreement between the microkinetic properties predicted by
ab initio calculations and ML predictions observed in Fig. 6 masks
some of the underlying prediction errors. In particular, the errors
in the ML-predicted activation energies for reactions 2 and 3 are
around 8 and 10 kcal mol−1, respectively; these are significant errors
in the ANN.

To explain this discrepancy, we should examine the overall
ranking of reactions within this scenario (Fig. 4). In this case, we
find that the overall ordering of activation energy magnitudes for
the different reactions remains unchanged with reaction 2 being pre-
dicted to have the highest barrier and reaction 4 is predicted to have
the lowest barrier, thereby maintaining the overall kinetics observed
in this reaction. Further consideration of the flux through different
reactions reveals that the formamide network exhibits a preference
for progressing via reactions 1 and 2 (as seen in Table I) to generate
the final product of H2 +HNCO. Therefore, the short-time kinetics
is in good agreement between the different methods predominantly
because of the good agreement in the lowest-energy barrier, reaction
1 (Table I).

It is worth noting that although there are clear overall simi-
larities in the qualitative behavior for the standard ML-based SSA
simulations and those that incorporate uncertainty through the
covariance matrix, there are also some differences in the quantitative
behavior. We attribute this to the simulation approach taken here. In
particular, for the simulations employing uncertainty, we are sam-
pling activation energies from a multivariate Gaussian distribution
and subsequently using these activation energies to approximate
reaction rates via TST. In other words, we are calculating a function
of the sampled activation energies; as such, given that the average
value of a function sampled over an input distribution is not nec-
essarily the same as the function calculated for the average input
[i.e., ⟨ f (x)⟩ ≠ f (⟨x⟩), in general], then it is not surprising that some
differences are apparent here.

In summary, the findings for the formamide are encouraging;
the predicted barriers given by ANN are in good agreement with
those obtained from CCSD(T) calculations, and both the short-time
and long-time kinetics of the CRN are in broadly good agreement
also. These findings will inevitably be influenced by the size of the
CRN and should therefore be examined more thoroughly using
larger, heterogeneous reaction networks. To that end, Secs. III C 2
and III C 3 study more complex CRNs.

2. Aldol reactions
In the second CRN considered here, focusing on the aldol

reaction, molecular geometries for reactants and products were
obtained from a previous DFT investigation. Here, we extracted
DFT-optimized geometries and DFT-calculated reaction energies
for a set of ten reactions; subsequent predictions by our trained ANN
using the DFT energetics available from previous work then resulted
in the set of activation energies shown in Fig. 3 and in Table II.

As discussed above, there is generally quite good agreement
between the ANN activation energies and those obtained previously
by DFT studies. However, it is noticeable that there are some quite
significant activation energy differences of up to 14 kcal mol−1; as
we show in the following, in contrast to the formamide CRN (where
the agreement between ab initio and ML-based microkinetics was
quite good), these errors can lead to significant differences in the
microkinetics predictions.

After activation energy prediction, three different sets of SSA
simulations were performed (using ML predictions, ML predictions
with sampling over covariance, and DFT activation energies), as
described above. Here, the initial concentrations of both vinyl alco-
hol (H2C=CH–OH) and formaldehyde (CH2O) were 1.33 mol dm−3

with all other species in the CRN beginning with zero concentration.
All SSA simulations were performed for t = 0.5 s, and results were
averaged over three independent simulations.

Figure 7 shows the time-dependent concentrations of the reac-
tants [Figs. 7(a) and 7(b)] as well as two different products [Figs. 7(c)
and 7(d)] from SSA simulations of the aldol CRN. The species in (c)
and (d) correspond to the products of reactions 2 and 7, respectively
(Table II).

Again, we find quite good agreement between ML and DFT-
based kinetic predictions with similar kinetic timescales associated
with the decay or growth of reactants and products, respectively.
However, in contrast to the previous formamide CRN, we observe
a greater degree of error when covariance sampling over activation
energies is used in the ML predictions; in particular, the populations
observed after 0.5 s simulation time are quite different when covari-
ance sampling is used in the ML-based SSA simulations. This is a
direct result of the larger observed variances observed for this CRN

TABLE II. A DFT calculation and ML prediction of Aldol reaction activation energies
as well as the standard deviation (σ) of the estimates. The value Δ is simply the
difference between ab initio and ANN-predicted activation energies. All values are in
kcal mol−1, and the DFT literature results are from Fig. 5 in Maeda et al.43

Reaction index DFT ML Δ σ

1 41.06 48.97 7.91 3.31
2 60.87 58.02 −2.85 1.43
3 36.97 49.41 12.44 1.94
4 38.36 49.27 10.91 1.94
5 45.20 54.45 9.25 4.95
6 50.17 40.60 −9.57 4.18
7 59.23 63.60 4.37 2.95
8 58.37 50.64 −7.73 0.95
9 57.77 43.16 −14.61 2.15
10 45.89 59.64 13.75 1.33
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FIG. 7. Time-dependent concentrations
for aldol reactions at T = 800 K. Acti-
vation energies were determined using
DFT calculations at the B3LYP/6-31G
level (purple squares), ML (green cir-
cles), and ML with covariance (red cir-
cles). Results are shown for the popula-
tions of (a) vinyl alcohol (H2C=CH–OH),
(b) formaldehyde (H2CO), (c) product
species 4, and (d) product species 9 (see
the supplementary material).

(Table II), where we find standard deviations ranging from 0.95 to
4.95.

Perhaps most significantly, we find the kinetics of this CRN
are strongly impacted by the ML predictions but not necessarily
in a straightforward manner; this is a consequence of the cou-
pled nature of reactions in the CRN. For example, reaction 3 has
a lower barrier in ab initio calculations than predicted by ANN;
however, we find that the populations predicted in the DFT-based
and ML-based kinetics simulations for this structure are quite sim-
ilar with an equilibrium between forward and backward reactions
quickly established. A similar observation is found for reaction 2
(forming product species 4; Fig. 7), but in this case, the simu-
lations including covariance are found to give larger concentra-
tions than other methods. Similarly, the concentration of product
species 9 [Fig. 7(c)], formed by reaction 7, is quite different in
the DFT simulations compared to other methods; we note that
species 9 is the thermodynamically stable product in this CRN
such that the species concentrations in Fig. 7 reflect the differ-
ence in activation energies with less influence from the backward
reaction.

Overall, the aldol CRN demonstrates more significant differ-
ences between the ML and DFT kinetics modeling, predominantly as
a result of differences reflected in Fig. 4; however, we note that this
picture is complicated by the backward reactions in the CRN also.
Despite this, we note that the order-of-magnitude difference in the

species concentrations in Fig. 7 is broadly in agreement (although,
again, this is not universally guaranteed).

3. Unimolecular decomposition
of 3-hydroperoxypropanal

The final CRN studied here was the unimolecular decomposi-
tion of 3-hydroperoxypropanal, a CRN which had been previously
generated by simulations using KinBot,80 an automatic PES explo-
ration program. Using molecular geometries obtained from previ-
ous investigations of this CRN, ANN-predicted activation energies
were obtained using previous DFT reaction energetics as input. In
total, the CRN comprised 16 selected reactions, as described in the
supplementary material.

The original DFT and ANN-predicted activation energies are
shown in Table III. As expected from Fig. 3, the ANN-predicted
barriers are in reasonably good agreement with those obtained from
previous DFT calculations; again, we note that this underlines the
robust nature of the ANN predictions, given the fact that the input
DFT data were obtained using B3LYP/6-31+G∗, whereas the ANN
training data were calculated at the B97-D3/def2-mSVP level. How-
ever, it is noticeable that some of the barrier predictions given by the
ANN differ from the DFT results by up to 13 kcal mol−1.

Following ANN prediction, three sets of SSA simulations
were performed as described above. The initial concentration of
3-hydroperoxypropanal was 1.33 mol dm−3 with all other species

J. Chem. Phys. 157, 014109 (2022); doi: 10.1063/5.0096027 157, 014109-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0096027
https://www.scitation.org/doi/suppl/10.1063/5.0096027


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE III. DFT calculations and ANN predictions of activation energies for selected
reactions in CRN describing unimolecular decomposition of 3-hydroperoxypropanal.
Here, σ is the standard deviation in the ensemble ANN predictions, and Δ is simply
the difference between ab initio and ANN-predicted activation energies. All values are
in kcal mol−1, and the DFT literature results are from Figs. 5–7 in the supplementary
material of Grambow et al.32

Reaction index DFT ML Δ σ

1 85.80 75.16 −10.64 5.26
2 91.50 86.98 −4.52 1.80
3 100.60 94.43 −6.17 1.49
4 92.80 106.43 13.63 5.10
5 70.30 79.23 8.93 3.20
6 65.10 72.62 7.52 5.55
7 75.40 79.60 4.20 7.62
8 78.40 77.47 −0.93 7.70
9 76.40 85.09 8.69 2.03
10 75.50 71.98 −3.52 1.65
11 34.90 44.18 9.28 2.70
12 65.90 55.55 −10.35 3.53
13 88.30 90.17 1.87 1.61
14 56.60 60.23 3.63 2.59
15 63.40 59.94 −3.46 2.08
16 55.40 62.69 7.29 3.50

having zero initial concentrations. The SSA simulations were prop-
agated for a maximum of 0.5 s, and the results were averaged over
five independent calculations.

Figure 8 shows the time-dependence of the concentrations of
3-hydroperoxypropanal [i.e., the reactant species, shown here in
Figs. 8(a) and 8(b)] and the product, 1,2-dioxolan-3-ol [Figs. 8(c)
and 8(d)]; we note that the reaction forming 1,2-dioxolan-3-ol from
3-hydroperoxypropanal is the reaction with the lowest activation
barrier predicted by both DFT and our ANN (i.e., reaction 11 in
Table III). According to the original literature study,32 this was
also found to be the major reaction pathway, confirmed by several
transition-state finding methods.

Most importantly, in broad contrast to the simulations of
formamide and aldol CRNs, it is clear that there is a very large
difference in the CRN kinetics predicted using ANN and DFT acti-
vation energies. In particular, in simulations using DFT-predicted
activation energies [Figs. 8(b) and 8(d)], the reaction effectively
proceeds to completion after 10−3 s with all of the initial 3-
hydroperoxypropanal converted into 1,2-dioxolan-3-ol. In contrast,
the kinetics simulations performed using ANN-predicted barriers
exhibit a much longer kinetic timescale; here, the reaction is (mostly)
complete after about 0.3 s. However, we note that in both DFT-
and ANN-based kinetics simulations, there is no difference in the
final reaction products or the concentration of other product species
(which are all essentially zero). As such, this is a clear example of the

FIG. 8. Time-dependent concentrations
for the unimolecular decomposition of
3-hydroperoxypropanal at T = 800 K.
Activation energies were determined
using DFT calculations at the B3LYP/6-
31+G∗ level (purple squares), ML
(green circles), and ML with covari-
ance (red circles). Results are shown
for the populations of (a) and (b) 3-
hydroperoxypropanal using ANN and
DFT-calculated barriers, respectively, for
(c) and (d) unimolecular reaction 11
using ANN and DFT-calculated barriers,
respectively.
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ANN-predicted CRN exhibiting strongly different timescales to that
observed in DFT-based simulations.

To explain this stark difference, we considered the predicted
barriers in more detail. The main reaction product being formed
in this network is 1,2-dioxolan-3-ol, which is generated by 3-
hydroperoxypropanal decomposing via reaction 11 in Table III,
identified in literature as being the first step in the Korcek
mechanism.81

It is clear that reaction 11 has a much lower activation energy by
20–30 kcal mol−1 relative to all other reactions in the CRNs. As such
and based on the SSA simulation results, it is clear that the CRN is
dominated by this single reaction such that the timescale associated
with Fig. 8 can be related directly to the rate of this reaction alone.

On the basis of TST, the relative difference in the rate of the
important reaction 11 when using either DFT or ANN activation
energies should be given by

krel = e−
ΔΔG†

kBT ,

where ΔΔG† = G†
DFT −G†

ANN is the relative activation energy differ-
ence arising from predictions given by DFT and ANN. Using the
activation energies from Table III, we find krel = 3 × 10−3. This is
a significant difference in timescale, which correlates strongly with
the observed difference in the kinetic timescales observed in the SSA
simulations of Fig. 8.

D. Summary
The determination of activation barriers using standard quan-

tum chemistry tools, such as TS-finding methods, is a laborious
task—particularly if one is interested in large-scale CRNs. Here, we
have studied an alternative data driven scheme using ML to pre-
dict activation energies for reactions at a fraction of the cost offered
by most ab initio calculations. To investigate the impact of ML-
predicted activation energies, we have performed a series of microki-
netics simulations of CRNs in which the activation energies for
the component reactions were obtained by both ANN predictions
and ab initio calculations; our ANN was trained using a training
set comprising ∼32 000 organic reactions and was found to exhibit
RMSE/MAE prediction errors of 3.82 and 2.78 kcal/mol, respec-
tively. Importantly, this level of performance is directly compara-
ble to many other recent investigations into predicting activation
energies using ML schemes.

Our microkinetics simulations investigated three different
CRNs with different underlying structure and activation-barrier
characteristics. ML-driven simulations of the formamide CRN were
able to generally reproduce the observed kinetics for the same CRN
when employing ab initio-based activation energies; however, for
the aldol and unimolecular decomposition CRNs, we found clear
differences between ANN and ab initio activation energy predic-
tions. In the case of the aldol network, as shown in Fig. 4, we
found that the ANN can predict a different ordering of activa-
tion energies such that different reactions become more favorable
compared to the kinetics simulations performed with ab initio
barriers. The results for kinetics simulations of the unimolecular
decomposition of 3-hydroperoxypropanal also exhibited significant
differences between CRNs generated with either ANN-predicted
or ab initio-calculated activation energies with the ab initio results

leading to kinetic timescales that were a few orders-of-magnitude
faster than the ANN-generated CRN. We have tracked this dif-
ference to the characteristics of the underlying CRN; in the uni-
molecular decomposition of 3-hydroperoxypropanal, even though
the CRN used here comprises 16 different reactions, only one of
these reactions has any bearing on the observed kinetics. As such,
any variation in this one barrier caused by the inherent approx-
imation and uncertainty in the ANN will be observed to have a
significant impact on the emergent kinetics; this is exactly what we
observe with the ANN over-predicting this key activation energy
and so leading to a significantly longer timescale in the predicted
kinetics.

Together, our kinetics simulations highlight five key points:

1. First, ANNs, even the relatively straightforward implemen-
tation employed here, can often be used to reliably predict
activation energies to a sufficient level of accuracy to enable
qualitatively correct kinetic modeling of complex CRNs; this is
a highly encouraging result if one is interested in using ANNs
as part of automated workflows to construct and simulate
large-scale CRNs.

2. Second, however, one must be careful in using ANN predic-
tions in systems that are dominated by a few key reactions;
as we have shown in the case of the unimolecular decomposi-
tion of 3-hydroperoxypropanal, CRNs that are dominated by
a small number of reactions will (in this case, one key reac-
tion) exhibit a higher degree of sensitivity to uncertainties
associated with ANN predictions.

3. We have found in our simulations that errors in ANN predic-
tions can significantly alter the underlying kinetic mechanism
exhibited by the CRN; this was most evident in the case of the
aldol CRN although we note that the remaining two CRNs did
not exhibit this property.

4. Fourth, we noted that the choice of descriptors can have a clear
impact on the capability of an ANN in activation energy pre-
diction to the extent that some reactions might not even be
accessible to predictions; this is an obvious consequence of
choosing to use connectivity-based fingerprints in this arti-
cle such that conformation transitions in the formamide CRN
could not be captured but suggests that careful consideration
should be given to descriptors and whether they are relevant
to the system at hand.

5. Fifth, and finally, we found that the uncertainties predicted by
the ANN ensemble are broadly in line with the errors between
the ANN activation energies and the true ab initio activation
energies; however, we also found that the ANN uncertain-
ties are typically much smaller than the true error magnitude,
and performance is not equal across different CRNs. As such,
based on our experience here, the ANN ensemble uncer-
tainties typically act as a lower bound on the true errors.
However, this inaccuracy in uncertainty predictions has been
found to be typical of ANN studies, as discussed in previous
literature;82–84 methods such as using a bootstrap ensemble
of ANNs may help in quantifying better estimates of uncer-
tainty in such cases.83 In addition, we note that other sources
of uncertainty, for example, relating to optimization of the
ANN neural network architecture, would not be expected to
be accurately represented by our current approach; further-
more, inherent uncertainties associated with construction of

J. Chem. Phys. 157, 014109 (2022); doi: 10.1063/5.0096027 157, 014109-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

the training set (such as consideration of conformational flex-
ibility) itself will also undoubtedly play a role. In short, while
our current approach represents one standard route to incor-
porating uncertainty, it is clear this is a topic that extends
beyond the scope of the “zero-order” strategy tested here.

Together, these observations highlight the enormous potential
for ANNs in modeling complex CRNs but also serve to high-
light simple situations where one should take care in practical
applications.

IV. CONCLUSIONS
The last few years have seen a dramatic increase in the number

of different methods for automated curation and characterization of
complex CRNs as well as datasets and ML strategies for predicting
activation energies for the reactions in CRNs. The ultimate goal of
much of this work is to simplify the creation of CRN models for
kinetics simulations; ML is set to transform this field by dramatically
simplifying this workflow.

In this article, we have investigated the extent to which cur-
rent ML strategies for activation energy prediction are “good
enough” to be useful in microkinetics simulations of CRNs. Here,
we have trained an ANN using a readily available organic chemistry
dataset containing reactant/product structures, reaction energetics,
and activation barriers; our resulting ANN model is comparable
in its accuracy to previous similar ML studies. Importantly, our
ANN approach uses standard “out-of-the-box” fingerprints and
ANN architecture; as such, it represents a strategy that should be
widely applicable (provided sufficient training data are available).
Using ANN-predicted activation energies and uncertainties, we sub-
sequently performed microkinetics simulations of three different
CRNs with different characteristics and demonstrated the influence
that over-prediction of activation barriers of competing reactions
can have on overall observed kinetics.

This article has also highlighted a number of requirements and
areas for further work in order to continue the growth in applica-
tion of ML to studies of complex CRNs. The availability of reliable
and consistent training data spanning a wide range of chemical reac-
tion spaces seems to be desirable; datasets such as that curated by
Grambow and co-workers (and employed here) are an enormously
useful resource to the wider community. On a related note, the
development of improved automated TS-location methods would
make a significant impact on data curation as well. Finally, we note
that experimental kinetic data are also highly desirable in CRN
studies, providing a further possible route to benchmarking and
validation of auto-generated computational CRNs. However, the
results demonstrated here show that ML-based predictions of acti-
vation energies can be qualitatively correct in analyzing relative
trends across different reaction sets; as such, these fast approxi-
mation schemes are increasingly well-suited to function as part of
high-throughput CRN generation tools in which ML predictions can
be used to quickly limit the growth of a CRN during reaction dis-
covery simulations. We are currently integrating this strategy within
our graph-based simulations in this domain. In summary, however,
it seems clear that ML predictions of chemical reaction characteris-
tics will continue to improve in the immediate future, offering new
routes to studying large-scale, complex CRNs.

SUPPLEMENTARY MATERIAL

The supplementary material contains further details of reac-
tions used in constructing the three CRNs studied here as well as
details of ANN predictions for these reactions.
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