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Abstract

An increasingly urgent task in analysis of network data is to develop statistical
models that include contextual information in the form of covariates while respecting
degree heterogeneity and network sparsity. We study various stochastic network
models with parameters that explicitly account for these stylized features of real-
world networks.

To set the tone of the thesis, we highlight in Chapter 1 the fallacy of data-
selective inference – a common practice of artificially truncating an observed network
by throwing away any nodes that are not well-connected. This constitutes a form
of sampling bias, which we quantify theoretically for the Erdős-Rényi model and
empirically for the Stochastic Block Model.

We introduce the sparse β-model with covariates (SβM-C) in Chapter 2. By
assuming sparsity of the degree heterogeneity parameter, SβM-C is capable of fit-
ting sparse, undirected networks, enabling us to avoid data-selective inference. For
parameter estimation, we propose the use of a penalized likelihood method with
an `1-penalty on the nodal parameters. This gives rise to a convex optimization
formulation which immediately connects our estimation procedure to the LASSO
literature. We provide finite sample bounds on the excess risk and the `1-error of the
resulting estimator and develop a central limit theorem for the parameter associated
with the covariates.

In Chapter 3 we zoom in on the special case of SβM-C when no degree het-
erogeneity parameter is present. We call this the sparse Erdős-Rényi model with
covariates (ER-C) and show that it can model networks of almost arbitrary spar-
sity.

We extend SβM-C to directed networks by introducing the parameter-Sparse
Random Graph Model (SRGM) in Chapter 4. We prove that an `1-penalized esti-
mator is model selection consistent for SRGM. We further recover results similar
to the ones we established for SβM-C. Special focus is placed on the interplay of
the network sparsity, the parameter sparsity and the penalty we use. This allows us
to paint a nuanced picture of the effect of different sparsity regimes on parameter
estimation.

Chapter 6 presents the results of a collaboration with Tata Steel in Europe and
can be read independently from the rest of this thesis. In it we present the initial
Guided Analytics for parameter Testing and controlband Extraction (iGATE) frame-
work, a novel feature selection procedure for industry applications that combines
expert knowledge with statistical techniques.

vii



Preface

This PhD project has been funded by an Industrial Cooperative Awards in Science

& Technology (ICASE) studentship and funding was partially provided by Tata

Steel in Europe. As a result, there are two main outputs from this research, to each

of which one part of the present thesis is dedicated. One one hand, I have been

working on the application of methods from high-dimensional statistics to sparse

random networks with covariates. On the other hand, I have been working with

Tata Steel on creating a software application for finding influential parameters in

manufacturing processes. The theoretical work on sparse random networks makes up

the bulk of the present thesis, both in length as well as statistical novelty. Therefore,

the emphasis of this thesis is on the former project. A short overview of the two

projects is given below.

Sparse random networks with covariates

This work is presented in Part I and is mostly based on the work in Stein & Leng

(2020, 2021). The focus of my theoretical work has been researching the mathe-

matical properties of novel sparse random network models. Particular attention has

been given to developing a mathematical theory for network models that capture

three stylized features commonly observed in real-world networks:

1. Sparsity, which roughly means that the number of observed edges in a network

scales sub-quadratically in the number of nodes,

2. Degree-heterogeneity, which refers to the phenomenon that real-world networks

tend to have heavy-tailed degree distributions, or, broadly speaking, the model

allows for the emergence of “hub-nodes” with many connections,

3. Homophily, which is the phenomenon that nodes that are similar to one another

are more likely to form a connection.

Part I is organized as follows. In Chapter 1 the necessary definitions and notation

are provided. Furthermore, Section 1.2 is dedicated to highlighting the commonly

observed fallacy of focusing exclusively on dense sub-graphs of observed networks

when analysing network data. This fallacy has been named data-selective inference

viii



in Stein & Leng (2021). It constitutes a form of sampling bias, which has been

quantified mathematically for the Erdős-Rényi model and via simulation for the

Stochastic Block Model in Stein & Leng (2021). Section 1.2 sets the tone for the

remainder of Part I and showcases the necessity for statistical network models to

allow for sparse networks from the outset. In Section 1.3 we will discuss how the

main models of interest of this thesis fit into the broader field of stochastic network

theory.

Chapters 2 and 3 are in large part from Stein & Leng (2020) and are a step

towards tackling the problem of data-selective inference for undirected networks.

Chapter 2 introduces the sparse β-model with covariates (SβM-C) an extension

of the sparse β-model (SβM) introduced in Chen et al. (2020). SβM is a novel

generative network model for sparse random networks with degree heterogeneity.

SβM-C extends this model by incorporating covariates on the node or edge level,

which allows it to model homophily. The addition of covariates into the likelihood

of SβM breaks the estimation procedure advocated by Chen et al. (2020), calling

for a novel approach for estimating the model parameters. The sparse Erdős-Rényi

model witch covariates (ER-C) is a special case of SβM. Since the theory developed

for ER-C can be of independent interest, it is treated in its own chapter (Chapter

3).

Chapter 4 presents an extension of SβM-C to directed networks and is based

on Stein & Leng (2021). Some of the results from SβM-C, notably the results on

consistency and asymptotic normality, carry over to its directed version without

much effort and some of the proofs are – sometimes line by line – the same. Therefore,

those proofs have been relegated to the appendix. Methodological novelty is added

in Stein & Leng (2021) via a theorem on model selection consistency, which is

presented in Section 4.2.1.

It is worth noting that after having read Chapter 1 and having familiarized

oneself with the necessary definitions and notation, the reader may choose to read

Chapters 2, 3 and 4 in any order as each chapter is self-contained.

In January 2021 the paper Stein & Leng (2020) received an Honourable Mention

award in the 2021 Student Paper Competition of the Statistical Learning and Data

Science Section of the American Statistical Association. In March 2021 the author

was awarded the IMS Hannan Graduate Student Travel Award by the Institute of

Mathematical Statistics for the paper Stein & Leng (2020). In September 2021, the

author received an Honourable Mention in the 2021 Doctoral Researcher Awards in

the category Natural & Life Sciences for the work in Stein & Leng (2020).
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A guided analytics tool for feature selection in steel man-

ufacturing

Part II is a summary of the work I have been doing with Tata Steel in Europe. I

have been working very closely with them on several applied data science projects

over the course of my PhD. The main output of that work was the creation of the

initial Guided Analytics for parameter Testing and controlband Extraction (iGATE)

tool. The details of iGATE have been published in Stein et al. (2021) and the

core functionality has been made freely available in the igate package for the R

programming language (Stein 2019). The work on iGATE is presented in Chapter

6, the content of which has been taken from Stein et al. (2021).

iGATE is a feature selection framework that finds influential process parame-

ters and their optimal ranges. At Tata Steel in Europe it has been made available

to process operators in the form of a graphical user interface hosted on a server,

accessible to anybody within the company. Process operators, who usually possess

indispensable domain knowledge, but may not have been trained in statistics, can

navigate through the analysis, modifying the results according to their expertise.

The results of the analysis are verified by them and in the end a report is automati-

cally generated of the conducted analysis. iGATE streamlines data science projects

by combining the power of suitable statistical tools with process-expertise, whilst

dramatically reducing the time needed for an analysis.
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Part I

Sparse random networks with

covariates
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Chapter 1

Preliminaries: Motivation and

definitions

Organization of this chapter

In Section 1.1 we discuss the most commonly observed properties of real-
world networks we would like to capture in a stochastic network model. We
informally introduce the sparse β-model with covariates (SβM-C) and the
parameter-Sparse Random Graph Model (SRGM), which are the main objects
of interest of Chapters 2 and 4 respectively. We introduce definitions in Section
1.1.1 and notation in Section 1.1.2. A large portion of this chapter is taken up
by Section 1.2 which discusses the fallacy of what was called data-selective in-
ference in Stein & Leng (2021): The commonly observed practice of “arguing
away” the sparsity in observed networks by discarding any small connected
components before fitting a model to the observed data, thus artificially trun-
cating the network sample. We examine the bias resulting from data-selective
inference in the Erdős-Rényi model theoretically and in the Stochastic Block
Model empirically. This serves as motivating example for why we care about
developing stochastic network models that incorporate sparsity from the out-
set. Sections 1.1 and 1.2 are largely based on the introductory sections of Stein
& Leng (2021).
This is followed by a review of various random network models in Section 1.3.
Finally, in Section 1.4 we review the most important aspects of LASSO theory,
which will provide us with the mathematical tools needed for proving many
of the theorems in this thesis. All proofs are relegated to Section 1.5.

1.1 Random networks

The study of relationships between entities in data is taking a central role in modern

science and society. Over the past few decades, this trend has been largely driven

by the rapid deployment of information systems and measurement technology. This

gave rise to increasing availability of data about interacting components. Often,

these interactions are conveniently represented as graphs that exhibit entities as

nodes and interactions as edges. Biological, social, financial, computer and trans-

portation networks are all examples of this network data deluge. To understand the

stochastic nature of these data, statistical analysis of networks has seen an increas-
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ing research interest in both theory and applications. We refer to Kolaczyk (2009)

for a book-length introduction, and Goldenberg et al. (2009) and Fienberg (2012)

for reviews of various network models, as well as Kolaczyk (2017) for emerging

challenges and issues.

This thesis concerns a series of new random graph models for describing net-

works. Informally, a network represents the relationships between entities. We call

the entities nodes and represent a relationship between two nodes by an edge con-

necting the two. A network is directed, if we distinguish between a connection from

node i to node j and a connection from j to i. It is called undirected of no such

distinction is made. The degree of node i in an undirected network is the number of

edges connected to i. In a directed network the out- (in-) degree of i is the number

of edges originating from (ending at) i. See Section 1.1.1 for the formal definitions.

As a motivating example, Figure 1.1 depicts the friendship network between the

71 lawyers of a law firm (Lazega 2001): An edge from node i to node j exists if and

only if lawyer i indicated in a survey that they socialized with lawyer j outside of

work. While it may seem intuitive to treat friendships as undirected – and indeed we

will choose to do so at a later point (c.f. Section 2.6) – not all friendships indicated

in the survey were reciprocated. Therefore, Figure 1.1 shows the directed network

as obtained from the survey.

Many network datasets come with covariate information. For the lawyer dataset,

these covariates include a lawyer’s status (partner or associate), their gender (man

or woman), which of three offices they worked in, the number of years they had

spent with the firm, their age, their practice (litigation or corporate) and the law

school they attended (Harvard and Yale, UConn or other). The main interest here

is to understand how these covariates affect link formation.

To develop a realistic model for the lawyer network, we start by summarizing its

main features. These features are also commonly observed in many real-life networks.

1. Degree heterogeneity, which refers to the different tendency that nodes in a net-

work have in forming connections. Degree heterogeneity is a hallmark of networks

in observational studies, often manifested as nodes having – sometimes vastly –

different degrees. To appreciate degree heterogeneity in the lawyer data, note that

the maximum and minimum out-degrees are 25 and zero respectively, with 22 and

zero for the in-degrees.

2. Sparsity. Real-life networks are typically sparse, in the sense that the observed

number of connections does not scale proportionally to the total number of pos-

sible links. In Figure 1.1, for example, the average in- (and out-) degree is 8.1,

whereas the maximum possible value is 70. The sparsity of a network is often

reflected in it having nodes that are not well connected. In the lawyer data there

3



Figure 1.1: Lazega’s lawyer friendship network. The area of the nodes is proportional to their
in-degrees. For better visibility, all nodes with an in-degree of five or less are plotted with the same
size. The 71 lawyers are colour-coded by their age group: The lawyers aged 20–29 are represented
in orange at the top-right corner of the plot. Going anti-clockwise, they are followed by those aged
30–39 in light blue, those aged 40–49 in green, those aged 50–59 in yellow and finally those aged
60 or older in dark blue. The eight nodes in black correspond to lawyers with either zero in- or
out-degree.

are eight nodes having either no incoming edges or no outgoing edges, as coloured

in black in Figure 1.1.

3. Covariates. Covariates are often useful for explaining linking patterns. For our

motivating data, whether two lawyers are connected by a friendship depends nat-

urally on their covariates. For example, lawyers working in the same office or

practice tend to befriend each other. Developing regression models that incorpo-

rate covariates is at the core of statistical modelling. In network science, however,

we have only started to see statistical models very recently that involve covariates.

See the rest of this chapter for references.

We will study in depth two novel random network models that can effectively

capture all the above features. For undirected networks we study the sparse β-

model with covariates (SβM-C) which was introduced in Stein & Leng (2020), in

Chapter 2. For directed networks, we study the parameter-Sparse Random Graph

Model (SRGM) introduced in Stein & Leng (2021), in Chapter 4.

Let us fix some ideas for the SβM-C and the SRGM. Let n denote the number

of nodes. For the undirected SβM-C assume that we have observed data organized

as {Aij , Zij}ni,j=1,i 6=j , Aij = Aji, Zij = Zji, where A = (Aij)
n
i,j=1 ∈ Rn×n is the

symmetric adjacency matrix with Aij = 1 if node i and j are connected and Aij = 0

otherwise, and Zij ∈ Rp are covariates associated with nodes i and j. Our model

assumes that, given the Zij , links are independently made with the probability of a

connection between node i and j being

P (Aij = 1|Zij) = pij =
exp(βi + βj + µ+ ZTijγ)

1 + exp(βi + βj + µ+ ZTijγ)
, i < j, (1.1)

4



where β = (β1, . . . , βn)T ∈ Rn and βi is associated with the ith node, taking the

role of the heterogeneity parameter. Furthermore, γ ∈ Rp is the parameter for the

covariates and µ ∈ R is a parameter common to all the nodes. For identifiability, we

assume mini{βi} = 0. Central to our model is the idea that the vector β is sparse,

although we do not assume that its support is known. This model is a generalization

of the sparse β-model (SβM) proposed in Chen et al. (2020) that does not consider

covariates (see Section 1.3.3). As such, we name this model SβM with covariates,

or SβM-C. In the directed SRGM, we have a similar setup and directed links are

independently made with the probability of observing a link from node i to node j

specified as

P (Aij = 1|Zij) = pij =
exp(αi + βj + µ+ γTZij)

1 + exp(αi + βj + µ+ γTZij)
, i 6= j, (1.2)

where now we may have Aij 6= Aji, Zij 6= Zji. For identifiability, we assume

mini{αi} = minj{βj} = 0. Importantly, we again assume that the two parame-

ters α = (α1, . . . , αn)T and β = (β1, . . . , βn)T are sparse. Without the sparsity

constraints on α and β, the SRGM becomes the model in Yan et al. (2019) by ab-

sorbing µ into αi and βj as µ/2+αi and µ/2+βj , respectively. The SβM-C in (1.1)

and the SRGM in (1.2) possess the following attractive properties.

1. Explicit handling of degree heterogeneity via node-specific parameters βi and

αi. In particular, in SβM-C we interpret βi > 0 as the (excess) popularity to

form connections, relative to µ. In SRGM, αi > 0 is interpreted as the (excess)

sociability of node i to form outgoing links and βi > 0 as its (excess) popularity

to attract connections, relative to µ. In this sense, α and β are local parameters.

2. Modelling of sparse networks in two ways. Firstly, they include µ, which can be

interpreted as the global density parameter. Allowing µ→ −∞, as n→∞ (and

thus pij → 0 at least for some i, j), will generate sparse networks as discussed

in Chapter 2. Secondly, by imposing a sparsity assumption on α and β, both

models can have a much smaller number of heterogeneity parameters than the

maximal possible n (respectively 2n). This avoids over-parametrization, one of

the major bottlenecks for modelling sparse networks, as discussed in Section

1.3. Intuitively, the fewer parameters to estimate, the sparser the network that

SβM-C and SRGM can fit.

3. Handling covariates by including the term γTZij . When a covariate encodes the

similarity of a node attribute, a positive γ implies homophily, the tendency of

nodes similar in attributes to connect.

4. When heterogeneity and covariate parameters are zero, the models in (1.1) and

(1.2) can be interpreted as null models in which a link between any pair of nodes

is formed with the same probability exp(µ)/(1 + exp(µ)). SβM-C and SRGM

5



build on this null model by including a regression component in the covariates

and node-specific non-negative effects for the vertices.

Regarding point 2 above, in the extreme case when all the heterogeneity param-

eters are zero, we only have 1 + p parameters to estimate. In Chapter 3 we show

that statistical inference can be conducted for this sub-model of SβM-C as long as

the total number of links of a network is in the order O(nξ) for any ξ ∈ (0, 2]. That

is, this sub-model can model networks that are almost arbitrarily sparse.

A major methodological contribution of SβM-C and SRGM is that they are

general models that handle all three main features of a real-life network (degree

heterogeneity, sparsity and covariates) in the undirected and directed setting. From

a computational viewpoint, they are extremely attractive since the estimation of

its parameters leverages the fast computation extensively developed for penalized

likelihood, as we discuss in Chapters 2 and 4.

From a purely technical point of view, one of the main feats of SβM-C and

SRGM is their ability to provide valid inference on γ in the presence of vanishing

link probabilities. While allowing for pij → 0 may seem like a minor modification

to existing theory, this has far-reaching consequences. Very broadly speaking, prov-

ing the asymptotic normality of an estimator in many cases relies on a Taylor or

Mean Value Theorem expansion of the loss function, followed by the inversion of

the Hessian of the loss function. This fundamental idea can be found (with some

variations) in a myriad of applications, ranging traditional M -estimation (van der

Vaart 1998), to LASSO theory (van de Geer et al. 2014), to inference in networks

(Yan et al. 2019). For this strategy to succeed, it is routinely assumed that the min-

imum eigenvalue of the Hessian is bounded away from zero, uniformly in n. In the

case random networks, however, the Hessian depends on the link probabilities pij

and if we allow pij → 0 for many i and j, such a uniform lower bound assumption

becomes invalid (see Sections 2.4 and 4.2.3 for details). However, allowing pij → 0

is a necessary condition for modelling sparse networks, since otherwise each degree

will scale in the order of n. This is one of the reasons why inference results in sparse

network regimes are scarce. By choosing our rates carefully, we are able to deal with

this difficulty and open up our models to sparse settings. The ability to do inference

with an asymptotically non-invertible Hessian and vanishing link probabilities is a

significant improvement over many existing methods and a prerequisite for dealing

with sparse networks. In this vein, our results substantially generalize those in the

literature (Ravikumar et al. 2010, van de Geer & Bühlmann 2011) in a different

context (network modelling versus regression modelling).

We now briefly recall some of the most common definitions and notation we will

need.
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1.1.1 Definitions

Definition 1.1 (Undirected graph). An undirected graph G = (V,E) on n ∈ N

nodes is a tuple consisting of a node set V with cardinality |V | = n and an edge set

E ⊆ {{i, j} : i, j ∈ V, i 6= j}. Hence, an edge e ∈ E between nodes i and j of G is a

set {i, j}, i, j ∈ V .

Definition 1.2 (Directed graph). A directed graph G = (V,E) on n ∈ N nodes

is a tuple consisting of a node set V with cardinality |V | = n and an edge set

E ⊆ V × V \{(i, i) : i ∈ V }. Hence, an edge e = (i, j) ∈ E from node i to j of G is

a tuple and (i, j) 6= (j, i).

Except where stated otherwise, we implicitly assume the number of nodes in

the graph is n and for convenience we take V = [n] := {1, . . . , n}. In particular, by

definition of the edge sets E for undirected and directed graphs we are forbidding

the existence of self-loops, that is, a node connecting to itself, as well as multi-edges,

that is, the existence of several edges between the same pair of nodes. We use node

and vertex interchangeably, as well as edge, link or connection.

Denote by Gn (respectively
−→
G n) the set of all undirected (respectively directed)

graphs on n nodes. Since for any n ∈ N, Gn and
−→
G n are finite sets, we will always

consider their power sets as canonical σ-algebra on them. In particular, the use of

the power set as σ-algebra is implicit in the following definition.

Definition 1.3 (Random network). An undirected random network on n nodes is

a random variable taking values in Gn. A directed random network on n nodes is a

random variable taking values in
−→
G n.

When we refer to a network we will always refer to a random network in one

of the two senses above. When simply speaking of a network without specifying

whether it is directed or undirected, it will either be clear from the context what is

meant or the distinction will not matter for the argument being made.

Definition 1.4 (Adjacency matrix). Given a graph G = (V,E) (undirected or

directed) we can identify G with its binary adjacency matrix A ∈ Rn×n, where we

let Ai,j = 1, if {i, j} ∈ E if G is undirected and Aij = 1 if (i, j) ∈ E if G is directed

and Ai,j = 0 otherwise. By definition, Ai,i = 0 for all i and if G is undirected, the

matrix A is symmetric.

We will identify a network with its adjacency matrix without further mention.

Definition 1.5 (Degree, total degree, degree distribution). In an undirected net-

work A the degree of node i is denoted di =
∑n

j=1Ai,j and the number of edges, or
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total degree of A, by d+ =
∑n

i=1 di/2 = |E|. The degree distribution of A is the dis-

tribution of the values di and is fully characterized by the vector d = (d1, . . . , dn)T .

For a directed network A we denote by bi =
∑n

j=1,j 6=iAij the out-degree of vertex

i and by di =
∑n

j=1,j 6=iAji the in-degree of vertex i. The vector d = (d1, . . . , dn)T

is called in-degree sequence and the vector b = (b1, . . . , bn)T is called out-degree

sequence. Since an out-edge from i to j is also an in-edge of j coming from i, it is

immediate that d+ :=
∑n

i=1 di =
∑

i=1 bi =: b+.

Definition 1.6 (Edge density). The edge density of a random network is the pro-

portion of all possible edges that are observed. That is, for a network G with total

degree d+, the edge density of G is given by d+/N , where N =
(
n
2

)
in case of undi-

rected networks and N = n(n − 1) for directed networks. The edge density of a

random network is itself a random variable.

We are interested in the regime where the number of nodes n becomes large. We

define the notion of sparse and dense networks with respect to the limit n → ∞.

Before defining sparse networks, recall the well-known Landau notation.

Definition 1.7 ((Stochastic) Landau notation). Let X1, X2, . . . be real-valued ran-

dom variables. Let x1, x2, . . . be real numbers. We write

1. xn = o(1), if xn → 0, as n→∞.

2. xn = O(1), if supn∈N |xn| <∞.

3. Xn = oP (1), if Xn
P→ 0, as n→∞.

4. Xn = OP (1), if (Xn)n∈N is bounded in probability, that is, if for any ε > 0 there

exists a compact set Kε ⊆ R, such that P (Xn ∈ Kε) ≥ 1− ε, for all n ∈ N.

More generally, let a1, a2, . . . be strictly positive real numbers. We write xn = o(an),

if xn/an = o(1) and Xn = oP (an), if Xn/an = oP (1). Analogously for the big-O

notation.

Definition 1.8 (Sparse networks). A sequence of networks (Gn)n∈N with total

degree d+ = d+(n) is called sparse, if there is a ξ ∈ [0, 2) such that E[d+] = o(nξ).

Remark. In words, we call a networks sparse if the expected total degree scales

“properly” sub-quadratically with respect to n. By “properly” we mean the following:

For example, consider a network in which E[d+] scales as n2 · log(n)−C for some

C > 0. Even though technically E[d+] scales sub-quadratically in n in the sense

that E[d+] = o(n2), we would still consider such a network dense, because E[d+]

“essentiality” still behaves like n2. For a network to be considered sparse, the order

in n has to be strictly less than two.

The above definition is asymptotic in n. Thus, it does not apply to any single

realization of a network and when we speak of sparse/ dense networks, we implicitly
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mean their behaviour in the limit n → ∞. Also, any network model with link

probabilities pij > ε > 0, where ε is a constant independent of n, will inevitably be

a dense model. Indeed, in that case E[d+] ≥ ε · N , where N =
(
n
2

)
for undirected

and N = n(n− 1) for directed networks, which scales as n2.

We are primarily concerned with inference about model parameters. Aside from

being sparse, the “shape” of the networks, in particular the global connectivity

structure of it, is of secondary interest. Nonetheless, we will touch upon these things

in Sections 1.2 and 3.3 and it will be useful to have the following definitions at our

disposal when we do. We only focus on the undirected case here.

Definition 1.9 (Connected nodes and connected components). In an undirected

graph G = (V,E) we say that two nodes i, j ∈ V are connected if there exists a

path from i to j in E. That is, there are edges ek = {vk,1, vk,2} ∈ E, k = 1, . . . ,K

for some K ∈ N, with vk,2 = vk+1,1, k = 1, . . . ,K − 1 and i = v1,1, j = vK,2. The

connected component C(i) of i consists of i and all nodes connected to i:

C(i) := {i} ∪ {j ∈ V : j is connected to i}.

We call G = (V,E) connected, if for any pair i, j ∈ V there exists a path in E from

i to j. We call G disconnected otherwise.

A commonly observed phenomenon in real world networks is the existence of

a unique giant component ; that is, a unique largest connected component, the size

of which grows linearly in n. For the Erdős-Rényi model (defined in Section 1.2)

the behaviour of the giant component is well understood, see Section 1.2 and the

references therein. We may leverage the existing results for the Erdős-Rényi model

to show that – under weak general conditions – in any undirected random network

model with independent edges, a giant component will exist. This is formalized in

the following Lemma, which is proved in Section 1.5.

Lemma 1.10. Let M be any undirected random network model on n nodes with

independent edges for which the probability of observing an edge between nodes i

and j is denoted pij. Denote by CM the largest connected component of M . Assume

that there exists some λ > 1 such that, for all i, j, almost surely,

pij ≥
λ

n
.

Let ζλ be the survival probability of a Poisson branching process with mean offspring

λ. Then, for every ε > 0, as n→∞,

P
(
|CM | > (ζλ − ε)n

)
→ 1.
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This claim remains true if links are only made independently, conditionally on hav-

ing observed covariates Zij as long as the resulting probabilities are almost surely

bounded below by the same rate. That is, as long as P (Aij = 1|Zij) ≥ λ/n, almost

surely.

Put differently: Lemma 1.10 tells us that in any undirected random network

with (conditionally) independent edges and link probabilities not dropping to zero

too quickly, we will observe a giant component with size scaling linearly in n with

high probability.

1.1.2 Mathematical notation

For any n ∈ N, let [n] := {1, . . . , n}. For any set S, denote its cardinality by |S|.

Unless stated otherwise all vectors are column vectors and for a vector v ∈ Rn,

we use vT to denote its transpose and denote its entries as v = (v1, . . . , vn)T . S(v)

denotes its support, that is, S(v) = {i : vi 6= 0}. Let ‖ . ‖1, ‖ . ‖2.‖ . ‖∞ denote the

vector `1-, `2- and `∞-norm respectively and ‖ . ‖0 denotes the `0-“norm”, ‖v‖0 =

|S(v)|. For any subset S ⊂ [n], we denote by vS the vector v with components not

belonging to S set to zero. That is, vS,i = vi1(i ∈ S), where 1 is the indicator

function. For convenience of notation, when dealing with a vector v ∈ R(n2), we

will number its elements as v = (vij)i<j . Similarly, when dealing with a vector

v ∈ RN , N = n(n− 1), we will number its elements as v = (vij)i 6=j .

For a matrix A ∈ Rd×d and sets S, T ⊆ [d], let AS,T ∈ R|S|×|T | be the sub-matrix

of A obtained by only taking the rows belonging to S and columns belonging to T .

Define A−,S := A[d],S ∈ Rd×|S| and AS,− := AS,[d] ∈ R|S|×d. For any square matrix

A, maxeval(A) and mineval(A) denote its maximum and minimum eigenvalue.

We use C for some generic, strictly positive constant that may change between

displays.

By an ∼ bn we mean 0 < lim infn→∞ an/bn ≤ lim supn→∞ an/bn < ∞ for two

sequences of positive numbers an and bn. For any a, b ∈ R we use the notation

a ∧ b = min{a, b} and a ∨ b = max{a, b}. Write R+ = [0,∞).

1.2 Data-selective inference

In this section we seek to demonstrate why it is essential to allow for sparsity in

stochastic network models. This section is meant to serve as a motivation for the

study of SβM-C and SRGM.
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1.2.1 Theory of data-selective inference

Statistical models are motivated by data in real life. For many statistical network

models a common practice has emerged in the way scientists apply them to network

data: Before the analysis they will often discard the (usually non-negligible) frac-

tion of nodes that are either disconnected from the largest connected component

or do not have very many connections. This may be done due to convenience or,

more significantly, due to the nature of the model and its associated algorithms not

working in case of disconnected or very sparse networks. Often it is argued that

the remaining well-connected nodes and edges are the only nodes and edges that

matter.

Take the lawyer network from Section 1.1 as an example: The eight nodes with

zero in- or out-degrees (c.f. Figure 1.1) were excluded from the analysis in Yan

et al. (2019). More examples can be found in Section 1.2.3. The resulting data-

selective inference – the exercise of fitting a model to a sub-network excluding

nodes based on their links – is a special case of biased sampling, because nodes in

a giant component or well-connected nodes are systematically favoured over other

nodes. This immediately raises the following fundamental question:

Does data-selective inference provide valid inference?

An argument to avoid the question above would be to simply assume that the

intended statistical model only works for the nodes in a giant component or those

nodes that are well connected. While this argument is acceptable for mathematical

convenience, it is not logically coherent or correct from a statistical or practical

point of view. The selection of nodes is based entirely on the links – the response

variable in a network model – and thus is non-random. Intuitively, biased sampling

in such data-selective inference may produce artificial signal that does not exist at

all or mitigate existing signals or both, leading to problematic or even completely

wrong findings. The fact that a non-negligible fraction of non-random nodes are

removed before the analysis suggests that systematic bias will occur as a result.

The practice of ignoring selected nodes for modelling a network appears to origi-

nate from physics and computer science communities where the intention was to find

meaningful clusters of nodes and hence is not based on statistical models (Girvan

& Newman 2002, Newman 2006). Later, statisticians injected rigour into this line

of research, notably by introducing likelihood-based estimators for statistical net-

work models (Bickel & Chen 2009). On one hand, statistical modelling is extremely

attractive because it provides a proper probabilistic framework for statistical in-

ference and allows easy generalization of a model to more complex situations. On

the other hand issues inevitably arise, such as sampling and asymptotics, including
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consistency and limiting distributions as the size of a network grows. In particular,

it is no longer appropriate for a statistical framework to ignore the non-random

sampling issue in data-selective inference that removes nodes based on their links.

We now quantify the bias caused by data-selective inference. In what follows,

we assume that an observed network is the realization of some statistical network

model f ∈ F , with F a family of candidate models. Crucially, we will assume that

f would have produced the whole network, including any isolated vertices or small

components. Given a realized network from the model, we want to quantify the bias

of the estimator of the unknown parameter(s) in f , if we only use those nodes in

the giant component.

Motivated by the lawyer data and several other widely used datasets in the

literature as discussed in Section 1.2.3, we will specify the parameter(s) in f such

that a fixed proportion of nodes are not in the giant component. We will derive

theoretically the bias of data-selective inference in the Erdős-Rényi model (Erdős &

Rényi 1959, 1960) and use simulation to study the bias in estimating the parameters

in a simple Stochastic Block Model (Holland et al. 1983). The Erdős-Rényi model is

interesting because the insights we gain into this model provide the foundation for

the study of more general graphs. On the other hand, the Stochastic Block Model

is one of the most popular network models that is widely applied, studied and

extended in the literature, see for example Abbe (2018) for an overview of recent

developments and the references in Section 1.2.3.

The Erdős-Rényi model. In the Erdős-Rényi model undirected edges are inde-

pendently formed with the same probability p. A sufficient condition for a realized

network from this model to have a giant component with probability tending to one

is to take p = p(n) = λ/n for some fixed λ > 1 (van der Hofstad 2016, Chapter

4). We will denote this family of models by ER(λ/n) and we are interested in esti-

mating p, given a network generated from this model. The expected degree of each

node is λ · (n− 1)/n and consequently ER(λ/n) produces sparse networks with the

expected total degree scaling linearly in n.

Denote by ηλ the unique solution with ηλ < 1 to the equation

ηλ = eλ·(ηλ−1), (1.3)

which exists if and only if λ > 1. We can interpret ζλ = 1 − ηλ as the survival

probability of P(λ), the Poisson branching process with mean offspring λ, whose

behaviour is closely linked to the connectivity behaviour of ER(λ/n) (van der Hof-

stad 2016, Chapters 3 and 4). In particular, it is known that for λ > 1, ER(λ/n)

will produce a unique giant component with size tightly concentrating around ζλ ·n
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Figure 1.2: Asymptotic bias (1 + ηλ)/(1− ηλ) of p̂max as a function of λ. For better visibility we
only display values of λ ranging from 1.3 to 7 since the bias diverges to +∞ when λ approaches 1.

(van der Hofstad 2016, Theorem 4.8).

Consider the estimation of p by based solely on the sub-graph Gmax of ER(λ/n)

induced by the giant component. That is, Gmax = (Cmax, E(Cmax)), where Cmax

denotes the giant component and E(Cmax) contains only those edges between the

nodes in Cmax. Denote by p̂max the maximum likelihood estimator of p based on

Gmax:

p̂max =
|E(Cmax)|(|Cmax|

2

) . (1.4)

We have the following result, which is proved in Section 1.5.

Proposition 1.11. Fix any λ > 1 and consider the models ER(λ/n). Let Gmax =

(Cmax, E(Cmax)) be the sub-graph of ER(λ/n) induced by the giant component. Let

p = p(n) = λ/n, p̂max as in (1.4) and ηλ as in (1.3). Then,

p̂max

p

P−→ 1 + ηλ
1− ηλ

.

A few remarks are in order. Firstly, (1 + ηλ)/(1 − ηλ) > 1 for any fixed λ > 1.

Thus, the incurred bias, that is, the asymptotic factor by which we are overestimat-

ing p, will not disappear as n grows large. Figure 1.2 shows how the asymptotic bias

(1 + ηλ)/(1 − ηλ) deviates from one as a function of λ. Secondly, we see that the

bias increases when λ decreases. Indeed, the larger λ, the more nodes in the giant

component and the smaller the probability ηλ and thus the smaller the bias. On the

other hand, as λ → 1, it is easy to see that ηλ → 1, making the bias in Proposi-

tion 1.11 approach +∞. For the limit case λ = 1, Cmax will have size of order n2/3

(van der Hofstad 2016, Chapter 5), which in light of the proposition means that we

must abandon all hope of recovering p if we only focus on the giant component.

Proposition 1.11 follows readily from results in the random network literature.

However, to the best of our knowledge, in the present form it has been stated for

the first time in Stein & Leng (2021). In particular, the results we draw upon for
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its proof are mostly rooted in probability theory and appear to not have been used

before to explicitly quantify the biases incurred by statistical procedures.

The Stochastic Block Model. This model, introduced in Holland et al. (1983),

postulates that nodes in a network can be grouped into communities where the

probability of any pair of nodes making connections depends only on their commu-

nity membership. We focus on what is called the symmetric Stochastic Block Model

with two communities, for which the probability matrix of making connections is

P =
1

n

(
a b

b a

)
,

where a, b > 0 are constants. For this model, a pair of nodes link with probability

a/n within the same community and with probability b/n between communities.

The scaling 1/n ensures that a resulting network from this model will have a giant

component with smaller-than-one proportion of the nodes with high probability. See

Figure 1.3a for the proportion of the nodes in the giant component produced under

this parametrization. The symmetric Stochastic Block Model is widely studied and

relatively well understood as reviewed by Abbe (2018). Because of the sparsity of

any resulting network, many clustering methods for community detection including

spectral methods based on the adjacency matrix or the graph Laplacian, as well as

their semi-definite relaxations, do not work well under this parametrization. Indeed,

Zhang & Zhou (2016) showed that under our scaling no consistent algorithm exists

that achieves vanishingly small misclassification. In view of this, we take an oracle

approach by assuming that the community membership of each node is known a

priori, and focus on what happens if we estimate P when nodes not in the giant

component are removed as in data-selective inference.

In our simulation, we fix the number of nodes to be n = 10,000 and set the size

of each community as n/2. We consider a fine grid of values (a, b) by taking their

values from 0.05 to 8.05 in steps of 0.05, resulting in 25,921 distinct combinations.

For each such pair (a, b) we sample a network from the symmetric Stochastic Block

Model and calculate the maximum likelihood estimate for P using only the nodes in

the giant component. We repeat this process M = 1,000 times for every pair (a, b).

Denote the estimator as P̂ . We measure the bias of P̂ as the ratio ρ = ‖P̂‖2/‖P‖2,

where ‖P‖2 = (a+ b)/n is the spectral norm of the 2× 2 matrix. We have purpose-

fully chosen a large n and M so that the resulting averages of the estimates will be

close to their true limit. Figure 1.3a shows the average proportion of nodes in the

giant component for each pair (a, b) and Figure 1.3b the average value of ρ. When

the proportion in Figure 1.3a is one, the giant component contains all the nodes.

The closer the average value of ρ is to one, the less biased the estimates are.
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Figure 1.3: For better visibility we have truncated by only including points for which a + b ≥
2.5. Also note the use of an exponential colour scaling in both plots for better visibility. (a):
Mean proportion of nodes in the giant component for each pair (a, b), averaged over M = 1,000
repetitions. On the border a + b = 2.5 the proportion of nodes in the giant is 37%. (b): Mean
spectral ratio ρ when estimates are based on the giant component only, averaged over M = 1,000
repetitions. The red line corresponds to a + b = 2 and an average bias factor of 60.57. The
black lines correspond to (from bottom left to top right) a + b = 4, 6, 8, 10, 12 with bias factors
ρ = 1.51, 1.13, 1.04, 1.014, 1.005 respectively.

The simulations show that the incurred bias and the size of the giant component

behave similarly when a + b is a constant. We highlight the bias of the parameter

estimates more closely. When a+ b = 2.5 the giant component on average contains

37% of all nodes and we overestimate ‖P‖2 by a factor of 4.4. This may not exactly

come as a surprise: If we discard a large proportion of nodes, it can be expected that

the resulting estimates are inaccurate. A more interesting and critical behaviour is

observed as we make our way from the bottom left to the top right corner of the

plots in Figure 1.3.

For a+b = 4 (bottom black line in Figure 1.3b), the giant component on average

contains around 80% of all nodes, with an average bias ρ = 1.5. For a+b = 6 (second

black line in Figure 1.3b), the giant component contains on average 94% of all nodes,

while the average estimated ρ is 1.13, still significantly larger than one. Even for

a + b = 8 (middle black line in Figure 1.3b), when the giant component contains

on average 98% of all nodes, we still overestimate ‖P‖2 by a factor of 1.04. Only

once a + b ≥ 10.70, where the giant component contains 99.5% of all nodes, is the

incurred bias smaller than 1%.

The above results illustrate that even if the statistician has perfect knowledge

of the underlying communities, and even if only a seemingly insignificant fraction

of, say, 1% of the nodes is removed, parameter estimation based solely on the giant

component will be biased regardless of the network size. This casts severe doubt

on the suitability of the Stochastic Block Model and its variants for fitting many

popular datasets if only the nodes in giant components are retained. Having bi-

ased estimators will have consequences in all aspects of any downstream statistical
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inference including consistency, model selection, hypothesis testing, and so on; see

Section 1.2.3 for some results that may be affected.

1.2.2 Model-selective inference for the lawyer data

We return to our motivating example by comparing our estimates of the regres-

sion coefficients with those in Yan et al. (2019). For the seven covariates in this

dataset, we followed Yan et al. (2019) in using the absolute differences of the con-

tinuous variables and the indicators whether the categorical variables are equal as

our covariates.

Practically, to fit their model, the authors in Yan et al. (2019) had to remove the

eight nodes in black in Figure 1.1 that have zero in-degree or out-degree. Otherwise

their maximum likelihood estimates (MLEs) would be −∞ for αi if node i has no

outgoing connections or for βi if the node has no incoming connections. We remark

that this means that their estimates can be biased, as discussed. Another interesting

aspect of the model in Yan et al. (2019) lies in the inference for the fixed-dimensional

parameter γ. Because the rate of convergence of its MLE is slowed down by the

MLE of the growing-dimensional heterogeneity parameters α and β, the estimator

of γ requires a bias correction to be asymptotically normal. In contrast, by making a

sparsity assumption on α and β in SRGM, we estimate the parameters via penalized

likelihood and prove that inference for the estimated γ can be read off after fitting

the model via a model selection procedure, as seen in Theorem 4.5 and thus is

straightforward. This result is remarkable, because in high-dimensional statistics, it

is often found that a different debiasing procedure must be conducted for the valid

inference for the estimated parameters due to the bias incurred by regularization

(Zhang & Zhang 2014).

To summarize: For SRGM, rather than throwing away data at the beginning of

the modelling process as in data-selective inference, we fit a model to all the data by

judiciously assigning heterogeneity parameters to the nodes using a model selection

criterion. For this reason, we refer to our modelling framework as model-selective

inference.

When the Bayesian information criterion (BIC) is used to choose the tuning

parameter in the penalized likelihood estimation, SRGM gives a model with 7 non-

zero αi’s and 7 non-zero βi’s. Four pairs of these non-zeros come from the same

nodes. In Table 1.1 we present the estimated γ and their standard errors when our

model and the model in Yan et al. (2019) are fitted to the lawyer dataset. Although

generally similar, we see a few differences. Firstly, we see that the standard errors

of our estimates are smaller than those in Yan et al. (2019), reflecting that our
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estimates are based on a larger sample size (a network with 71 nodes compared

to one with 63 nodes in the latter paper) with fewer parameters (22 versus 132).

Secondly, the effect of age difference is not significant in our model whereas it is in

the model in Yan et al. (2019). To explore the age effect visually, we colour-coded the

lawyers by their age group in Figure 1.1. Plenty of connections were made between

age groups and “across the circle”, i.e. between lawyers with a large difference in

age, suggesting that age may not have played an important role. Indeed, a third

(33.9%) of all friendships were formed between lawyers with an age difference of ten

or more years. Thirdly, we estimate the effect of attending the same law school as

positive, while Yan et al.’s model states the opposite. The former conforms better

to our intuition about social networks.

SRGM Yan et al. (2019)
Covariate Estimate SE Estimate SE
Same status 1.52 0.10 1.76 0.16
Same gender 0.44 0.09 0.96 0.14
Same office 2.02 0.10 3.23 0.18
Same practice 0.58 0.09 1.11 0.12
Same law school 0.29 0.10 −0.48 0.12
Difference in years with firm −0.01 0.006 −0.064 0.014
Difference in age 0.003 0.006 −0.027 0.011

Table 1.1: Estimated regression coefficients and their standard errors (SE) for Lazega’s lawyer
friendship network.

1.2.3 Data-selective inference in the literature

Many papers in the literature chose to ignore the modelling of those nodes in smaller

components, or isolated nodes, or nodes with small degrees. Many real-life networks

have such nodes. Sometimes, ignoring these nodes is due to restrictions on a model

from the outset, for example, the degree-corrected Stochastic Block Model (Karrer

& Newman 2011) and the β-model (Chatterjee et al. 2011) cannot handle nodes with

zero degree. As we have argued in Section 1.2.1, this practice is highly problematic.

Here we list several popular datasets in which data-selective inference is routinely

performed. The first is the lawyer dataset previously discussed, for which Yan et al.

(2019) chose to work with 63 out of 71 nodes (i.e. 11% of the nodes are removed).

Below are two of statisticians’ favourite datasets:

• Political blog data. This is a dataset recorded during the 2004 U.S. Presidential

Election in the form of a directed network of hyperlinks between 1,494 political

blogs (Adamic & Glance 2005). Depending on their political views, these blogs can

be liberal or conservative. Often converted to an undirected graph for analysis, this

dataset has become a testbed for many network models especially the Stochastic

Block Model and its generalizations. In practice, most papers chose to focus on

1,222 blogs that appear in a giant component or 1,224 nodes which have at least
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one connection. Either way, this amounts to removing about 18% of the nodes in

this network. See Amini et al. (2013), Olhede & Wolfe (2014), Jin (2015), Cai &

Li (2015), Caron & Fox (2017), Chen & Lei (2018), Huang & Feng (2018), Ma,

Ma & Yuan (2020), among many others.

• Statistician citation network. This dataset, collected by Ji & Jin (2016), contains

rich citation information about all papers published between 2003 and 2012 in four

statistics journals. The original dataset has 3,607 authors or nodes based on which

various networks have been constructed, but almost all attempts to use this data

have chosen to examine subnetworks with fewer than 3,607 nodes. Ji & Jin (2016)

applied various community detection methods to three networks constructed from

this dataset. The first one is a co-authorship network with 236 nodes (7% of all

nodes), in which a link is formed between two authors if they wrote at least 2

papers together. See also Jin et al. (2021). The second one is another co-authorship

network with 2,236 nodes (63% of all nodes), in which a link is formed between

two authors if they wrote at least 1 paper together. The third one is a directed

citation network with 2,654 authors (74% of all nodes). See also Zhang et al.

(2021). Other attempts to use this dataset include Li et al. (2020) in which a

network with 706 authors (20% of all nodes) was formed by repeatedly deleting

nodes with less than 15 mutual citations and their corresponding edges. Jin et al.

(2021) examined a citee network with 1,790 (50% of all nodes) constructed by

tying an edge between two authors if they have been cited at least once by the

same author other than themselves.

In addition to the datasets above, there is a growing body of works opting for data-

selective inference by removing nodes before their analysis. Among many others, see

Chen et al. (2018) and Ma, Ma & Yuan (2020) for the Simmons College and Caltech

data, two datasets on friendship networks in universities, Sengupta & Chen (2018)

for the British MPs network (where 329 out of 360 MPs belonging to the giant

component were analysed), and Ma, Su & Zhang (2020) for Pokec social network

for which only those nodes with no fewer than 10 links were retained for analysis.

We emphasize that a notable feature of the analyses in these papers is that non-

negligible portions of the nodes are excluded.

We now illustrate the fallacy of data-selective inference with the Stochastic Block

Model when it is applied to detecting communities in the political blogs network, to

highlight a wider problem in statistical modelling of networks. If one assumes that

this model generates all the 1,494 nodes, the mere existence of more than 200 nodes

not in the giant component suggests imposing a scaling of 1/n on the connectivity

probability matrix of the data generating process. This is similarly done in Section

1.2.1 to ensure that the resulting giant component contains a positive fraction of
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the vertices. Under this regime, however, there is no way to separate all the vertices

and thus no algorithm can provide consistent community detection or parameter

estimation. If instead one focuses on the giant component and assumes consistent

community estimation for the nodes in the giant component, the connectivity prob-

ability matrix will be estimated with bias, as we have illustrated. The estimation

bias of course is just the tip of a larger problem in biased sampling. By focusing on

a non-random sample, we have no idea whether an intended model truly reflects the

data generating process, or rather is merely an artefact of biased sampling. Equally

importantly, the bias problem incurred via this data-selective inference will have

knock-on effects of all aspects of any downstream analysis, including goodness-of-

fit measures of a model, hypothesis testing and model selection; see, for example,

Bickel & Sarkar (2016), Lei (2016), Wang & Bickel (2017), and Hu et al. (2020), for

additional use of data-selective inference for data analysis.

Thus, there is a fundamental choice that we statisticians need to make. If we

assume the Stochastic Block Model generates the whole network including all the

nodes in the political blog, consistent community detection and parameter estima-

tion will be impossible. On the other hand, if we make the unrealistic assumption

that the model generates only a subnetwork consisting of those nodes in the giant

component, we face the problem of data-selective inference. Although this fallacy

seems ubiquitous in statistical applications of many network models, to the best of

our knowledge Stein & Leng (2021) was the first attempt at a systematic study of

the effect of omitting nodes due to their degrees on model fitting.

1.3 Different random network models

In this section we give a review of various random network models and show how

SβM-C and SRGM can be seen as natural extensions from existing models.

1.3.1 The Erdős-Rényi model

The simplest random network model is the Erdős-Rényi model (Erdős & Rényi 1959,

1960, Gilbert 1959), which we already encountered in Section 1.2.1. It is arguably

the most studied random graph model in probability theory. In it, the presence of

each edge is modelled as an independent Bernoulli random variable with success

probability p ∈ [0, 1]. We denote the law of the Erdős-Rényi model on n nodes

with link probability p by ER(n, p). For most theoretical investigations p = p(n) is

assumed to be a function in n and the behaviour of ER(n, p) is studied as n→∞.

Despite its apparent simplicity, the Erdős-Rényi model has a very rich and complex

theory and even today is still subject of active research. In particular, we have a
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theory for it in the dense as well as sparse graph regimes. We refer to van der Hofstad

(2016), especially Chapters 4 and 5, for a thorough discussion of the most important

properties. To be accurate, it should be pointed out that Erdős and Rényi did not

actually study ER(n, p), but the closely related model in which the number of edges

m is fixed first and then a graph is drawn uniformly at random from all graphs on

n nodes with m edges. It can be shown that the two models are equivalent in a

certain sense, see the aforementioned references.

Perhaps unsurprisingly, the Erdős-Rényi model is not very good at modelling

real-world networks. One of its most glaring shortcomings is that the degree distri-

butions it produces will look almost like realizations from a Poisson random variable

with parameter λ = p · n, see van der Hofstad (2016), Theorem 5.12, for a precise

mathematical statement1. This is problematic, because Poisson distributions have

very thin tails. As we have seen in the previous section, one of the distinctive features

of real-world networks, is that they exhibit degree heterogeneity. That is, their em-

pirical degree distribution usually has heavy tails and frequently contains hub nodes

with many connections, which cannot be modelled by the Erdős-Rényi model.

Example. Let us consider an example to illustrate this point. Consider once more

Lazega’s friendship network (Lazega 2001), that we already encountered in the pre-

vious sections. Since each lawyer answered the survey questions individually, the

original network is directed in nature and in some cases, an outgoing friendship

arrow is not reciprocated by the recipient. For our purposes, we only keep those

connections in which both lawyers indicated being friends with one another. This

leaves us with an undirected network between n = 71 nodes with an edge den-

sity of 0.07. The minimum degree is zero and the maximum degree is 16. On the

other hand, if we sample from an Erdős-Rényi model with the same edge density,

p = 0.07, the degree distribution we obtain is much more concentrated with much

thinner tails, as illustrated in Figure 1.4. We plotted the number of lawyers with d

friends for d = 0, . . . , 16 (yellow line). For comparison, we drew 10,000 realizations

from the Erdős-Rényi model with parameters n = 71, p = 0.07 and recorded the

average number of nodes with degree d, d = 0, . . . , 17 (red line; 17 was the largest

observed degree). Finally, we considered the Poisson distribution with parameter

λ = p · n ≈ 5.03, Poi(λ), which is the theoretical limiting distribution of the degree

distribution of ER(n, p) in the sense of van der Hofstad (2016), Theorem 5.12. We

indicated the number of times we would expect to see the value d, d = 0, . . . , 17,

when drawing n = 71 times from Poi(λ). As we can see, the empirical degrees from

ER(n, p) indeed behave very similarly to the distribution Poi(λ). The observed
1In a bit more detail: Theorem 5.12 says, if we pick a node at random, the empirical probability

of this node having degree k will converge to the probability of observing k when drawing from a
Poi(λ) random variable, for all k.
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Figure 1.4: Comparison of the degree distribution of the lawyer friendship network (yellow,
labelled “Lawyer”), the empirical degree distribution of ER(n, p), averaged over 10,000 draws from
that model (red, “ER”) and the theoretical limiting distribution Poi(λ) (blue, “EPoi”). The degree
distribution of ER(n, p) aligns very well with the theoretical limit. Real-world networks tend to
have heavier tails, however.

degrees in the Lawyer network, however, behave nothing like these distributions,

exhibiting much heavier tails.

1.3.2 Towards degree heterogeneity: The β-model

To generalize the Erdős-Rényi model to include degree heterogeneity, one intuitive

idea is to assign node-specific parameters, one for each node. This gives rise to the

β-model. Although this model can be dated back to Holland & Leinhardt (1981),

the name “β-model” was coined much more recently in Chatterjee et al. (2011).

Given a degree heterogeneity parameter β ∈ Rn, links between nodes i and j in the

β-model are made independently with probability

pij =
exp(βi + βj)

1 + exp(βi + βj)
, i < j.

Chatterjee et al. (2011) showed that the maximum likelihood estimator (MLE)

of the heterogeneity parameter β in this model is consistent, when the observed

network is dense. Since then, the β-model has attracted a lot of attention. Yan &

Xu (2013) proved the asymptotic normality of that MLE and Rinaldo et al. (2013)

derived necessary and sufficient conditions for the existence of the MLE of the β-

model parameters based on the polytope of degree sequences. Karwa & Slavković

(2016) proved that inference in the β-model is possible under privacy constraints

and provided a quadratic-time algorithm for checking the existence of the MLE.

Yan, Qin & Wang (2016) derived the asymptotic properties of an estimator based

on moment equations. Yan, Leng & Zhu (2016) studied a directed version of the β-

model and provided asymptotic normality results for the MLE in that model. Their
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model assumes that each node i has two parameters, an outgoingness parameter

αi and in incomingness parameter βi. In their model, directed links are formed

independently with the probability of observing a directed edge from i to j given as

pij =
exp(αi + βj)

1 + exp(αi + βj)
, i 6= j.

Thus, their model is the canonical extension of the β-model to directed networks.

Lemma 1.12 below, originally found in Chatterjee et al. (2011), might explain

why researchers are so interested in the β-model and versions thereof. Observe the

following. For given β, denote the law of the β-model by Pβ . Then, given a graph G

with degree sequence d = (d1, . . . , dn)T , the probability of observing G under Pβ is

Pβ(G) =
exp (

∑n
i=1 βidi)∏

i<j(1 + exp(βi + βj))
.

That is, the β-model has the form of an exponential family with the degree sequence

as sufficient statistic. Indeed, the β-model is arguably the simplest member of the

so-called Exponential random graph models, which are random graph models with

exponential family form. The above equation tells us immediately that all the in-

formation about the parameter of interest, β, is contained in the degree sequence of

the observed graph, see Chatterjee et al. (2011), Chatterjee & Diaconis (2013) for

an in-depth treatment.

Lemma 1.12 (Theorem 1.4 in Chatterjee et al. (2011)). Fix n ∈ N. Let R be the

the set of all the expected degree sequences of random graphs following the law Pβ as

β ranges over Rn. Let D denote the set of all possible degree sequences of undirected

graphs on n nodes. Then,

conv(D) = R̄,

where conv(D) denotes the convex hull of D and R̄ is the topological closure of R.

Keep in mind that D is a strict subset of {0, 1, . . . , n − 1}n.2 Lemma 1.12 tells

us that for fixed n and any possible degree sequence d ∈ D, we can always find

a β ∈ Rn, such that the expected degree sequence under Pβ is arbitrarily close to

d. From a probability theory point of view, if we are solely concerned about the

flexibility of our model to produce samples which exhibit degree heterogeneity for

a fixed value of n, we cannot really ask for more.

There is a caveat, however. Lemma 1.12 holds for a fixed n only. From the point of

view of a statistician tasked with inferring properties of the data generating process
2Indeed, it is for example immediate that the sum of all degrees must always be an even number,

such that any vector in {0, 1, . . . , n−1}n whose elements sum to an odd number cannot be contained
in D. Thus D is a slightly more complex object than simply the hypercube grid {0, 1, . . . , n− 1}n.
See, for example, Rinaldo et al. (2013) and Karwa & Slavković (2016) for discussions of the polytope
of degree sequences.
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given a sample, we are most frequently concerned with the limiting behaviour of our

procedures as n tends to infinity. Since the β-model and its variants associate each

node with its own parameters, they are high-dimensional and over-parametrized

in nature. As a result, consistency and asymptotic normality for the MLE in the

β-model is only known to hold for dense networks (Chatterjee et al. 2011, Yan &

Xu 2013). In particular, the MLE for βi will be −∞ if node i has degree zero. This

makes it necessary to remove isolated nodes before fitting the β-model to network

data, immediately calling into question any findings obtained from such a procedure

due to the issue of data-selective inference, as we have argued in Section 1.2.1.

Remark. Another popular idea for incorporating degree heterogeneity is to assume

that nodes in a network can be clustered into communities and that the probability

of two nodes making connections only depends on their corresponding communities.

This gives rise to the Stochastic Block Model we encountered in Section 1.2. Com-

munity detection is a vast field of random network theory in its own right and is of

no further concern to us.

1.3.3 Towards sparsity: The sparse β-model

For sparse networks, Chen et al. (2020) recently proposed a sparse β-model (SβM)

by assuming that the heterogeneity parameter β has entries equal to zero after

introducing a location-shift global sparsity parameter µ. In detail, they considered

the model in which links between nodes are formed independently with probability

pij =
exp(βi + βj + µ)

1 + exp(βi + βj + µ)
, i < j,

where µ is a global sparsity parameter and we allow µ → −∞, as n → ∞. For

reasons of identifiability mini βi = 0 was imposed. Notice that, for β = 0, SβM

becomes the Erdős-Rényi model with parameter exp(µ)/(1 + exp(µ)), for which a

theory of sparse networks exists, but which cannot model degree heterogeneity. On

the other hand, if we absorb µ into β as βi + µ/2 for all i, it becomes the β-model,

which can model arbitrary degree sequences, but for which inference is only possible

in the dense graph regime. Thus, we may interpret SβM as interpolating these two

models, resulting in a network model that can model sparse networks as well as

degree heterogeneity.

Recall that a necessary condition for a model to produce sparse networks is that

some pij go to zero (cf. the remark after Definition 1.8). Implicit in the assumption

mini βi = 0 is that many entries of β may be zero. In fact, Chen et al. (2020) assume

β in SβM to be sparse. As a result, if βi = βj = 0 for some nodes i, j and µ→ −∞,

then pij → 0. Hence, if β is sparse enough and µ→ −∞ fast enough, the resulting
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networks will be sparse. See Chen et al. (2020) for the details.

An interesting aspect about SβM is the procedure advocated in Chen et al.

(2020) for fitting it to data and how they propose to achieve the sparsity of their

estimator in practice. They employed a penalized likelihood method for estimating

the parameters in their model using an `0-penalty on β. The use of `0-penalties

is generally not feasible, because they require an optimization over all subsets of

possible indices, which is computationally intractable. For SβM, however, Chen

et al. (2020) observed that the MLEs of the βi are roughly ranked according to

the corresponding degrees of nodes, meaning that for a given sparsity level s, they

simply have to assign non-zero β to the s nodes with largest degrees. Thus, they

only had to iterate over the n− 1 possible values for s to find the model that gave

the best fit. See the original paper, especially the monotonicity lemma (Lemma 1

in Chen et al. (2020)) for the details.

1.3.4 Understanding the drivers of network formation: Homophily

Aside from degree heterogeneity, homophily is another stylized feature of many

real-world networks (Kolaczyk 2009, Newman 2018). It refers to similar nodes being

more likely to connect to one another than dissimilar ones, based on node attributes

or covariates. In the eyes of a more application oriented statistician one of the

most pressing questions when analysing real-world networks usually is assessing

the influence of specific covariates on network formation by including a regression

component into their network models.

Thus, when one has a powerful model such as the β-model at one’s disposal, it

seems natural to want to include covariates into it. Graham (2017) was the first to

include nodal-covariates into the β-model. In our notation, his model is equivalent

to the model where we observe some covariates Zij ∈ Rp between nodes i and j and

given these covariates, links are formed independently with probability

P (Aij = 1|Zij) =
exp(βi + βj + ZTijγ)

1 + exp(βi + βj + Zγij)
.

It was shown that the MLE for the heterogeneity and covariate parameters are only

consistent under dense graph sequences, though a separate estimator for the co-

variate parameter based on conditioning is consistent for dense and sparse graphs.

Jochmans (2018) derived results for estimating the parameter associated with co-

variates in directed networks by profiling out the degree heterogeneity parameter.

Yan et al. (2019) investigated the issue of statistical inference for these two sets of

parameters in dense directed networks when covariates are present.
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1.3.5 Combining sparsity, degree heterogeneity and homophily

Given the discussion in the previous sections, it is easy to see why we want to study

a model like SβM-C. Recall its definition in (1.1): We see how SβM-C emerges

naturally from the models discussed in this section so far: We want to have a heavy-

tailed degree distribution, which is why we include a degree heterogeneity parameter

β. We also want to have sparsity, for which a necessary condition is for some of the

pij to go to zero, which is why we introduce the global sparsity parameter µ, for

which we allow µ → −∞, effectively interpolating the Erdős-Rényi model and the

β-model. Finally, we want our model to be able to capture homophily, which is why

we include covariates and weigh them by γ. Analogously, SRGM arises naturally as

directed extension from the models discussed.

1.4 LASSO theory

We briefly review the literature on using the LASSO for logistic regression relevant

for this thesis. For reasons of space we restrict ourselves to presenting the main ideas,

referring the reader to the books van de Geer & Bühlmann (2011) and Wainwright

(2019) for a thorough introduction to this vast topic.

LASSO stands for least absolute shrinkage and selection operator and is now

loosely referred to as a general procedure for simultaneous variable selection and

parameter estimation when a loss function is regularized by constraining the `1-

norm of the parameters. The usual setup for most LASSO type problems is that

we observe some data (yi, Xi)
n
i=1, where yi ∈ R is a univariate outcome or response

variable and Xi ∈ Rp are p-dimensional covariates or predictors, which can be either

fixed or random. It is generally assumed that the samples (yi, X
T
i )T are independent.

It is assumed that the response yi is related to the predictors Xi somehow via a

parametric model. The simplest such model is the linear model, in which we assume

yi = XT
i β + εi, i = 1, . . . , n,

where εi are i.i.d. mean-zero, error terms independent of {Xi}ni=1 and β ∈ Rp is

the parameter of interest. Extensions to generalized linear models or more complex

parametric models are possible. Of special interest to us will be the case of logistic

regression, in which the yi take values in {0, 1} and

P (yi = 1|Xi) =
exp(XT

i β)

1 + exp(XT
i β)

.

In standard statistical theory, an estimator β̂ for β to these problems is found
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by minimizing some convex loss function L, typically the squared error loss, the

negative log-likelihood etc. In LASSO theory it is assumed that the statistician has

some additional information that leads them to believe that some (often: many) of

the entries βi of β are zero. However, they do not know which ones, nor how many.

Assuming a sparse β also allows treatment of the case where there are many more

predictors than observations, p � n, in which case many standard algorithms fail.

Thus, what the statistician would like to have is some procedure that reliably tells

them which βi are unequal to zero and what their value is. What they really would

like to do is restrict the number of non-zero entries, for example via employing an

`0-penalty in their minimization procedure:

min
β
L(y,X, β), subject to ‖β‖0 ≤ s,

for some s < p, s ∈ N. The problem with this approach is that the parameter space

constructed via the constraint ‖β‖0 ≤ s is not convex, making the above problem

computationally intractable. It can be shown that if we replace the `0-constraint by

a constraint on the `1-norm,

min
β
L(y,X, β), subject to ‖β‖1 ≤ s̃,

for some possibly different parameter s̃, we do obtain a convex optimization problem,

while retaining the property that a solution to above problem will have some of its

entries set to zero, see the aforementioned references. The `1-constraint thus is a

convex proxy for the `0-constraint, which we actually would like to solve, but cannot.

It follows from standard results in convex optimization (Bertsekas 1995, Chapter

5.3), that this `1-constrained problem is equivalent to solving the problem

min
β
L(y,X, β) + λ‖β‖1, (1.5)

for an appropriate penalty parameter λ > 0. Equation (1.5) is the typical form of a

LASSO problem and we call a solution to (1.5) LASSO estimator.

An advantage of the LASSO constraint is that estimated parameters will be

automatically sparse for a suitably chosen tuning parameter λ. Thus, LASSO per-

forms model selection and parameter estimation simultaneously. Originally devel-

oped for Gaussian linear regression in Tibshirani (1996), the LASSO methodology

was studied for generalized linear models by van de Geer (2008) in which a non-

asymptotic oracle inequality for the empirical risk minimizer was provided. Among

others, Buena (2008) studied the asymptotic consistency of variable selection for

LASSO logistic regression by providing sufficient conditions to identify the true

model at a given level of confidence. The LASSO methodology now represents a
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widely used toolbox for high-dimensional data analysis for data sets that can have

more variables than observations.

A caveat of LASSO methodology is that due to the shrinkage incurred by using

the `1-penalty, we are at the same time biasing our estimates for the non-zero

entries of β. Thus, it is notoriously difficult to derive the limiting distribution of our

estimates, making it hard to arrive at inference results for our parameter estimates

such as confidence intervals. Zhang & Zhang (2014) and van de Geer et al. (2014)

proposed to overcome the bias due to shrinkage in estimation by debiasing. The main

tool for this is to construct an approximate inverse of the Gram matrix using node-

wise LASSO regression (Meinshausen & Bühlmann (2006)). See also Javanmard &

Montanari (2014a) and Javanmard & Montanari (2014b), as well as Kock & Tang

(2019), a related paper to our context that derived uniform inference results for

high-dimensional dynamic panel data models.
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1.5 Proofs of Section 1.2

We prove Lemma 1.10 and Proposition 1.11. Both follow from the following deep

result on the phase transition of ER(λ/n), which can be found in van der Hofstad

(2021).

Theorem 1.13 (Phase transition in Erdős-Rényi random graphs, Theorem 2.33

in van der Hofstad (2021), abbreviated). Fix λ > 0 and let Cmax be the largest

connected component of the Erdős-Rényi graph ER(λ/n). Then,

|Cmax|
n

P−→ ζλ, (1.6)

where ζλ is the survival probability of a Poisson branching process with mean off-

spring λ. In particular ζλ > 0 precisely when λ > 1. Further, for λ > 0, with

ηλ = 1− ζλ,
|E(Cmax)|

n

P−→ 1

2
λ(1− η2

λ). (1.7)

The proof of Lemma 1.10 follows from Theorem 1.13 together with a coupling

argument.

Proof of Lemma 1.10. Denote the law ofM by P = (pij)ij . We construct a coupling

between P and the law of ER(λ/n) as follows. Start out with n nodes, numbered

1, . . . , n, without any connections between them.

1. For each pair of nodes i < j, draw an independent uniform random variable,

Uij ∼ U([0, 1]).

2. Place a link between nodes i and j precisely when Uij ≤ λ/n. Thus, P (i↔ j) =

P (Uij ≤ λ/n) = λ/n and the resulting graph has distribution ER(λ/n).

3. On another copy of the set {1, . . . , n} place a link between nodes i and j precisely

when Uij ≤ pij , using the same realizations of Uij . The resulting graph has

distribution P .

By construction of the coupling, the realization of M will contain the same edges

as the realization of ER(λ/n) and possibly some more edges. This implies |CM | ≥

|Cmax|, almost surely. Let ε > 0. By (1.6),

P
(
|CM | ≤ (ζλ − ε)n

)
= P

(
ζλ −

|CM |
n
≥ ε
)

≤ P
(
ζλ −

|Cmax|
n
≥ ε
)

≤ P
(∣∣∣∣ζλ − |Cmax|

n

∣∣∣∣ ≥ ε)→ 0.

For edges formed conditionally independent given some covariates Zij the proof
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remains the same since the lower bound of λ/n holds almost surely, independent of

the value of Zij . This proves the claim.

We now prove Proposition 1.11, which also follows from Theorem 1.13.

Proof of Proposition 1.11. Proposition 1.11 follows from Theorem 1.13 by repeated

application of Slutzky’s Theorem. By (1.6) and Slutzky,

|Cmax| − 1

n

P−→ ζλ.

Thus, by Slutzky, (
|Cmax|

2

)
· 1

n2

P−→ 1

2
· ζ2
λ.

Now, a final application of Slutzky’s Theorem together with (1.6) and (1.7) yields,

p̂max

p
=
|E(Cmax)|(|Cmax|

2

) · n
λ

=
|E(Cmax)|

n
· n2(|Cmax|

2

) · 1

λ

P−→
(1− η2

λ)

ζ2
λ

=
1 + ηλ
1− ηλ

,

where we used the definition of ζλ in the last step.
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Chapter 2

A sparse β-model with covariates

Organization of this chapter

In Section 2.1 we formally introduce the sparse β-model with covariates (SβM-
C). In Section 2.2 we propose the use of a penalized likelihood method with an
`1-penalty on the nodal parameters for parameter estimation. We study the
finite-sample error bounds on the excess risk and the `1-error of our estimator
(Theorem 2.4).
We then zoom in on the first of two special cases of SβM-C. In Section 2.3,
we show how the results from Section 2.2 can be applied to the SβM without
covariates, i.e. the model studied in Chen et al. (2020). We compare our rates
of convergence to theirs. In Section 2.4, we derive a central limit theorem for
our estimator of the homophily parameter γ. We present extensive simulation
results in Section 2.5 and apply our model to Lazega’s lawyer friendship data
and the world trade network in Section 2.6. All proofs are relegated to Section
2.7. The content of this chapter is taken from Stein & Leng (2020).

2.1 Random networks and high-dimensional statistics

We formally introduce the sparse β-model with covariates (SβM-C). By allowing

its link probabilities to go to zero, SβM-C can model sparse networks. On the

computational side we will set up our model in the language of LASSO estimation,

making our estimation approach very fast and scalable. Crucially, this estimation

procedure can handle networks that are disconnected or even have isolated nodes.

This allows us to perform model-selective inference, fitting our model to the entire

network, thus avoiding the biases incurred by data-selective inference (c.f. Section

1.2).

Recall the model definition (1.1): We observe data {Aij , Zij}ni,j=1,i<j , where A =

(Aij)ij ∈ Rn×n is a symmetric adjacency matrix and Zij ∈ Rp are p-dimensional

covariates associated with nodes i and j. Given the covariates, undirected links are

independently made with the probability of a connection between node i and j being

P (Aij = 1|Zij) = pij =
exp(βi + βj + µ+ ZTijγ)

1 + exp(βi + βj + µ+ ZTijγ)
,
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where β = (β1, . . . , βn)T ∈ Rn is the heterogeneity parameter, γ ∈ Rp is the pa-

rameter for the covariates, and µ ∈ R is the global sparsity parameter for which we

allow µ→ −∞, as n→∞. For identifiability we assume mini βi = 0.

For brevity, we denote the parameters collectively as θ = (βT , µ, γT )T and its

true value as θ0 = (βT0 , µ0, γ
T
0 )T . We write S0 = S(β0) for the support of β0. For

ease of presentation, we introduce the shorthand notation s0 = |S0| and S0,+ :=

S0 ∪ {n+ 1, n+ 2, . . . n+ 1 + p} with cardinality s0,+ = |S0,+| = s0 + p+ 1 to refer

to all active indices including those of µ and γ.

We focus on the finite-dimensional covariate case by assuming that p, the dimen-

sion of the covariates Zij , is fixed. We assume that Zij are independent realizations

from centred, uniformly bounded random variables. We do not require Zij to be

i.i.d. and Zij may have correlated entries. These assumptions imply in particular

the existence of constants κ, c > 0 such that |ZTijγ0| ≤ κ and |Zij,k| ≤ c for all

1 ≤ i < j ≤ n, k = 1, . . . , p. We assume further that γ0 lies in a compact, convex

set Γ ⊂ Rp, which means we may choose a universal κ independent of γ0. We let

Θ := Rn+ × R× Γ denote the parameter space.

The reader may have spotted a potential issue with this model setup: On one

hand, we are assuming that the Zij are independent random variables. On the other

hand, we frequently would like to consider covariates of the form Zij = g(Xi, Xj),

with g(Xi, Xj) = −‖Xi − Xj‖ or similar, where Xi, Xj are nodal covariates. This

would entail that the Zij are, in fact, dependent. To get out of this predicament,

many authors (Graham 2017, Yan et al. 2019, Ma, Ma & Yuan 2020, to name but

a few) opt for assuming that the Zij are fixed design points, which allows them to

gracefully avoid having to deal with this issue. To make the present work a bit more

interesting and different from existing approaches, we have chosen to treat the Zij

as random and independent. We would like to point out, however, that in case of

fixed design, we would obtain the same results, error rates, etc. and many of the

proofs would remain exactly the same or even become simpler.

We highlight that the model in (1.1) as well as the original SβM introduced in

Chen et al. (2020) is sparse in terms of its parametrization and the density of the

resulting network. The latter is a natural consequence of the former and thus the

word “sparse” in SβM-C refers to the former. For example, when β is sparse with

finite support, by allowing µ → −∞ at appropriate rates, the networks generated

from this model will be sparse. When β = 0, model (1.1) becomes what we call a

sparse Erdős-Rényi model with covariates (ER-C). We show in Chapter 3 that this

special version of SβM-C can model any network whose expected number of edges

scales as O(n2−ξ) with ξ ∈ [0, 2). That is, the network modelled by this special case

of SβM-C can be almost arbitrarily sparse.
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2.1.1 Main results

The main methodological contribution comes from the SβM-C as the first model ca-

pable of capturing node heterogeneity differentially while accounting for covariates.

In the literature, closely related models allowing node-specific parameters either ig-

nore covariates and thus homophily (Chen et al. 2020), or overly parametrize by

assigning parameters indistinguishably to all the nodes (Graham 2017, Yan et al.

2019, e.g.), leading to theoretical and practical difficulties in applying these models,

as we have argued in Chapter 1. In particular, by associating each node with its

own parameter(s), these overly parametrized models require a network to be dense

for the purposes of estimation and statistical inference. By differentially modelling

node-specific parameters, SβM-C can drastically reduce the number of parameters

needed and thus model networks that are sparse.

The first main result we will show is the consistency of an `1-penalized esti-

mator (2.2) for SβM-C in terms of excess risk and `1-norm. Despite the somewhat

superficial similarity of our estimator to the penalized logistic regression with an `1-

penalty, great care needs to be taken when applying results from LASSO theory to

our estimator. Firstly, the parts of the design matrix of our model associated with β

and µ are deterministic while those for γ are random, making some assumptions on

the eigenvalues of the design matrix typically seen in LASSO type problems invalid.

Secondly, our approach differs from classical LASSO theory for logistic regression

insofar that we do not assume that the linking probabilities pij between two nodes

stay uniformly bounded away from zero. This is often assumed in LASSO theory for

easier derivations; see, for example, van de Geer & Bühlmann (2011), Theorem 6.4;

Buena (2008), Theorem 2.4; or van de Geer (2008), Theorem 2.1. Were we to impose

such a condition, however, the expected degree of each node would scale linearly in

the number of nodes, automatically putting us in the dense graph regime (c.f. the

remark after Definition 1.8). Instead, we allow the link probability for any dyad to

go to zero at a certain rate as the number of nodes tends to infinity. This has far

reaching consequences, especially for the derivation of the limiting distribution of

our estimator for γ (Theorem 2.7), as we have indicated in Section 1.1 and discuss

in detail in Section 2.4.

Importantly, our approach also differs from classical LASSO theory in that the

various parameters in SβM-C have differing effective sample sizes, resulting in dif-

ferent rates of convergence. Loosely speaking, the effective sample size for each βi

depends on the number of possible connections that the ith node has, while µ and γ

are global parameters relevant to all edges. Remarkably, we are still able to recover

almost the classical LASSO rate of convergence for excess risk and `1-error, up to

an additional factor having an explicit relation to the expected edge density of the
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network. This factor is the price we pay for allowing the link probabilities to tend

to zero.

The second main result is to prove a central limit theorem for our estimator of the

homophily parameter γ, which, for statistical inference, is often of major interest,

as the heterogeneity parameter β can be seen as a nuisance parameter. Due to

the shrinkage of the parameter estimates, approaches using the LASSO procedure

generally produce biased estimators, which makes deriving limiting distributions

and inference results difficult. A great deal of work has resorted to debiasing the

LASSO estimator, see the discussion in Section 1.4. Our results show that, quite

remarkably, for inference on the covariate parameter γ, no debiasing is necessary.

Specifically, the columns of the design matrix for β and those for µ and γ become

asymptotically orthogonal as n increases. As a result, the bias incurred by shrinkage

estimation does not affect the derivation of standard central limit theory for the

estimated γ. See Section 2.4 for details.

As byproducts of our theory, we develop the theory for the first of two special

cases of SβM-C. We provide results analogous to Chen et al. (2020) in Section 2.3

when covariates are not considered, by replacing the `0-penalty on β used by Chen

et al. (2020) by an `1-penalty. The second special case, a simplified model of SβM-C

when the heterogeneity parameter is not present, i.e. when β = 0, is treated in

Chapter 3.

2.2 Sparse β-model with covariates

Given an observed adjacency matrix A and the associated covariates {Zij}i 6=j , the

negative log-likelihood of SβM-C at θ = (βT , µ, γT ) is easily seen to be

L(θ) = −
n∑
i=1

βidi−d+µ−
∑
i<j

(ZTijγ)Aij+
∑
i<j

log(1+exp(βi+βj+µ+ZTijγ)). (2.1)

It is easily seen by differentiating that θ0 = arg minθ∈Θ E[L(θ)].

Our model is high-dimensional with n + p + 1 unknown parameters, where the

heterogeneity parameter β admits a sparse representation with an unknown sup-

port. This fact immediately motivates the use of a penalized likelihood approach for

estimation. As discussed in Section 1.4 in a situation like this it would be tempting

to estimate the parameters of the model via regularized likelihood by penalizing the

`0-norm of β. For the sparse β-model without covariates, Chen et al. (2020) found

that this non-convex optimization problem is computationally tractable, thanks to a

key monotonicity lemma stating that the elements of the estimated β are ranked ac-

cording to the degrees of the nodes. The arguments leading to the conclusion of this
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lemma, however, do not extend to the current setting where covariates are included.

This effectively means that the `0-norm penalized likelihood becomes a combina-

torial problem for the SβM-C and an exhaustive search, which is computationally

intractable, in the model space is inevitable.

As discussed in Section 1.4, one approach popular in high-dimensional data

analysis is to replace the `0-penalty on β by an `1-penalty, which serves as a convex

proxy for the `0-penalty. This leads us the following problem, where our estimator

is obtained by solving

min
β∈Rn+,µ∈R,γ∈Rp

1(
n
2

)L(β, µ, γ) + λ‖β‖1, (2.2)

where L(β, µ, γ) is the negative log-likelihood defined in (2.1) and λ is a tuning

parameter. This formulation immediately connects our approach to the LASSO

methodology (Tibshirani 1996, c.f. Section 1.4), enabling us to draw upon the vast

literature on high-dimensional data analysis, especially for logistic regression.

On the computational side, the formulation in (2.2) is the same as penalized

logistic regression with the LASSO penalty. Thus, to solve it in practice, we can

invoke standard algorithms developed for LASSO and thus the estimation of the

parameters of SβM-C can be done extremely fast. In particular, we can use the

functions in the glmnet R package (Friedman et al. 2010) by properly setting up

the design matrix and the constraints on β. Experience shows that this algorithm

can effectively compute the estimator for a network with the number of nodes up

to a few thousand.

2.2.1 Theory

Since we aim to develop a theory for sparse networks, we allow µ0 → −∞ as n→∞.

As a result, some link probabilities may go to zero as n→∞. In order to perform

consistent estimation, it is clear that we need to restrict the rate at which this

may happen. Therefore, we assume there is a non-random sequence 1/2 ≥ ρn,0 >

0, ρn,0 → 0, as n→∞, such that almost surely for all i, j:

1− ρn,0 ≥ pij ≥ ρn,0.

Since a smaller ρn,0 allows sparser networks, we refer to ρn,0 as the network sparsity

parameter. Applying logit(x) = log(x/(1−x)) to the inequality above we get for all

i, j,

−logit(ρn,0) = logit(1− ρn,0) ≥ β0,i + β0,j + µ0 + γT0 Zij ≥ logit(ρn,0),
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which is equivalent to

|β0,i + β0,j + µ0 + γT0 Zij | ≤ −logit(ρn,0) =: rn,0, ∀i, j.

Since ρn ≤ 1/2, we have rn,0 ≥ 0. The previous inequality can also be expressed in

terms of the design matrix D associated with the corresponding logistic regression

problem (see below for the exact formulation) and is equivalent to ‖Dθ0‖∞ ≤ rn,0.

This motivates the following estimation procedure: Given a sufficiently large con-

stant rn, we define the local parameter space

Θloc = Θloc(rn) := {θ ∈ Θ : ‖Dθ‖∞ ≤ rn} (2.3)

and propose to perform estimation via

θ̂ = (β̂T , µ̂, γ̂T )T = arg min
θ=(βT ,µ,γT )T∈Θloc

1(
n
2

)L(β, µ, γ) + λ‖β‖1. (2.4)

As we have seen in the equations above, any rn > 0 used in the definition of Θloc

corresponds to some ρn which uniformly lower bounds the connection probability

and thus can be seen as a proxy for the permissible sparsity of our network. This

type of restriction on the parameter space is similar to what was done in Chen

et al. (2020), although they restricted the parameter values of β and µ directly. The

condition in (2.3) is slightly more general and somewhat more natural. Noting that

Θloc is convex, we have a convex optimization problem in (2.4).

In (2.4) we replaced the condition mini βi = 0 by the less strict condition β ∈ Rn+.

The following Lemma shows that this is viable: As long as the observed graph is

neither empty nor complete and λ > 0, a solution β̂ to (2.4) always exists and

automatically fulfils min1≤i≤n β̂i = 0.

Lemma 2.1. Assume that 0 < d+ <
(
n
2

)
. Then, for any 0 < λ < ∞ there exists a

minimizer for the optimization problem (2.4) and any solution θ̂ = (β̂T , µ̂, γ̂T )T of

(2.4) must satisfy min1≤i≤n β̂i = 0.

Following the empirical risk literature (cf. Greenshtein & Ritov (2004), Koltchin-

skii (2011)) we will analyse the performance of our estimator in terms of excess risk.

We define the (global) excess risk as

E(θ) :=
1(
n
2

)E[L(θ)− L(θ0)].

Since we define the local parameter space Θloc with respect to some rate rn, in our

derivations we must account for the fact that this rn may be smaller than the true

rn,0. In that case there is no way for us to find the true parameter θ0 and the best
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we can hope to achieve is to find the best local approximation θ∗ of the truth θ0,

which we define as

θ∗ = arg min
θ∈Θloc

1(
n
2

)E[L(θ)].

Note that the truth θ0 fulfils

θ0 = arg min
θ∈Θ

1(
n
2

)E[L(θ)] = arg min
θ∈Θloc(rn,0)

1(
n
2

)E[L(θ)].

Hence, if rn,0 ≤ rn, θ∗ = θ0. In general, however, estimating θ∗ is the best we can

achieve when solving (2.4). Thus, we introduce the notion of local excess risk as

in Chen et al. (2020), which measures how close a parameter θ is to the best local

approximation θ∗ in terms of excess risk:

Eloc(θ) := E(θ)− E(θ∗).

Clearly, θ∗ also fulfils θ∗ = arg minθ∈Θloc
E(θ) and we may consider the excess risk

of the best local approximation, E(θ∗), as the approximation error of our model. It

accounts for the fact that our model might be misspecified, in the sense that the

parameter rn is not large enough. As is usual in LASSO theory (cf. van de Geer &

Bühlmann (2011), Chapter 6), it is tacitly assumed that this approximation error

is small, i.e. we assume that rn is sufficiently large. Note that the global excess risk

of our estimator θ̂ decomposes as

E(θ̂) = E(θ∗) + Eloc(θ̂),

where we can consider the approximation error E(θ∗) as a deterministic bias.

As is commonly assumed in LASSO theory (cf. van de Geer & Bühlmann (2011),

Chapter 6), we assume that the unpenalized parameters of θ∗ are active. That is,

µ∗ 6= 0, γ∗i 6= 0, i = 1, . . . , p. Denote the set of true active indices by S∗ = S(β∗) =

{i : β∗i > 0} with cardinality s∗ = |S∗|. For ease of notation, we introduce the set

S∗+ = S∗ ∪ {n + 1, n + 2, . . . n + 1 + p} with cardinality s∗+ = |S∗+| = s∗ + p + 1 to

refer to all active indices including those of µ and γ.

We set up our problem in the language of LASSO theory for logistic regression.

For each pair i < j, denote by Xij ∈ Rn the vector containing one at the ith and

jth position and zeros everywhere else. Define the matrices

X =


XT

12

. . .

XT
ij

. . .

XT
(n−1),n

 ∈ R(n2)×n, Z =


ZT12

. . .

ZTij
. . .

ZTn−1,n

 ∈ R(n2)×p.
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Let 1 ∈ R(n2) be the vector containing only ones. Then the design matrix of (1.1)

can be written as

D =
[
X 1 Z

]
∈ R(n2)×(n+p+1),

where D, consisting of the matrices X,1 and Z written next to each other, is the

analogue to the design matrix in logistic regression. We number the rows of D as

D = (DT
ij)i<j . Here we see a crucial feature of our design matrix D: While each

column corresponding to the parameters µ and γ appears in the link probability of

all
(
n
2

)
node pairs, each βi only appears in (n− 1) such probabilities. That means,

while the effective sample size for µ and γ is
(
n
2

)
, it is only n − 1 for each entry of

β, i.e. of order n smaller. This is also reflected in the different rates of convergence

we obtain in Theorem 2.4 below. See Figure 2.1 for an example.

X =



1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1


, 1 =



1
1
1
1
1
1
1
1
1
1


, Z =



0.1530 0.1301
−0.1851 0.1384
0.0603 0.2401
0.0872 0.0784
−0.0318 −0.1978

0.2454 0.0473
−0.0628 0.2462
−0.3601 0.2064
−0.0665 −0.1280
−0.0461 −0.0814


Figure 2.1: Example of the blocks in the design matrix D for n = 5 and p = 2. While the columns
in X, associated with β, have n− 1 non-zero entries, those columns in 1 and Z, associated with µ
and γ, have

(
n
2

)
.

2.2.2 A compatibility condition

A crucial assumption in LASSO theory is the so-called compatibility condition

(van de Geer & Bühlmann 2011, van de Geer et al. 2014). It relates the quanti-

ties ‖(θ̂ − θ∗)S∗+‖1 and

1(
n
2

)∑
i<j

E[(β̂i − β∗i + β̂j − β∗j + µ̂− µ∗ + (γ̂ − γ∗)TZij)2]

in a suitable sense made precise below and is crucial for deriving consistency results.

Notice that the above quantity can be written as

(θ̂ − θ∗)T
(

1(
n
2

)E[DTD]

)
(θ̂ − θ∗),

where 1

(n2)
E[DTD] is the population Gram matrix of our design matrix D. In the

SβM-C however, the classical compatibility condition as for example defined for

generalized linear models in van de Geer et al. (2014) does not hold. The reason for

this is that β and (µ, γT )T have different effective sample sizes. We need to account
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for this fact and therefore have to use a sample size adjusted Gram matrix. To that

end, we introduce the matrix

T =

[√
n− 1In 0

0
√(

n
2

)
Ip+1

]
,

where Im is the m×m identity matrix and we use 0 to denote the zero block matrix

of appropriate dimensions. We define the sample size adjusted Gram matrix Σ as

Σ := T−1E[DTD]T−1 =
1(
n
2

)

n
2X

TX
√
n√
2
XT1 0

√
n√
2
1TX 1T1 0
0 0 E[ZTZ]

 .
We consider the limit of the matrix Σ entrywise.

Definition 2.2 (Compatibility Condition). We say the compatibility condition

holds if the sample size adjusted Gram matrix Σ has the following property: There

is a constant b such that for every θ ∈ Rn+1+p with ‖θS∗c+
‖1 ≤ 3‖θS∗+‖1 we have

‖θS∗+‖
2
1 ≤

s∗+
b
θTΣθ.

To prove that Σ has this property, we will use techniques similar to the ones

used in Kock & Tang (2019). Their matrix structure is somewhat simpler than ours

as they obtain an identity matrix where we obtain a special Toeplitz matrix. More

precisely, we will first show that the compatibility condition holds for the matrix

ΣA :=

 1
n−1X

TX 0 0
0 1 0
0 0 E[ZTZ/

(
n
2

)
]

 ∈ R(n+1+p)×(n+1+p).

To show that the compatibility condition also holds with high probability for Σ,

it will then suffice to show that Σ and ΣA are sufficiently close to each other in

an appropriate sense. To this end, it is sufficient to impose the following eigen-

value restriction, which effectively quantifies how strongly the columns of Z may be

correlated.

Assumption 2.1. There are universal constants C > cmin > 0, independent of n,

such that for all n ∈ N, the minimum eigenvalue λmin = λmin(n) and the maximum

eigenvalue λmax = λmax(n) of 1

(n2)
E[ZTZ] fulfil cmin ≤ λmin ≤ λmax ≤ C < ∞.

Without loss of generality we assume cmin < 1/2.

We summarize these results in the following proposition the proof of which is

given in Section 2.7.1.2.
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Proposition 2.3. Under Assumption 2.1, for s∗ = o(
√
n) and n large enough, we

have for every θ ∈ Rn+1+p with ‖θS∗c+
‖1 ≤ 3‖θS∗+‖1, that

‖θS∗+‖
2
1 ≤

2s∗+
cmin

θTΣθ.

Proposition 2.3 requires s∗+ = o(
√
n). The “n large enough”-condition is made

precise in the proof and requires that n be such that 1/
√
n < 1/s∗+, which is implied

by s∗+ = o(
√
n) and sufficiently large n. Let us put this in the context of general

LASSO theory. In general LASSO theory, to show that the `1-error goes to zero in

probability for increasing n, it is imposed that the sparsity s of the true parameter

fulfils

s ·

√
log( number of columns of design matrix )

effective sample size
n→∞−→ 0,

see for example van de Geer & Bühlmann (2011), Chapter 6. In our case the sparsity

refers to β and we thus should expect that the restrictions we have to impose on

s∗ are based on the sample size associated with β. To make our conditions on s∗

precise, define η := 2rn + 2‖β∗ − β0‖∞ + |µ∗ − µ0|+ 2κ and let

Kn = Kn(η) =
2(1 + exp(rn,0 + η))2

exp(rn,0 + η)
. (2.5)

Notice that η essentially quantifies the approximation error we commit. We make

the following assumption on s∗.

Assumption 2.2. s∗ = o

( √
n√

log(n)·Kn

)
.

That means, up to an additional factor Kn – which is the price we have to pay

for allowing our link probabilities to go to zero – the permissible sparsity for β∗

is the permissible sparsity in classical LASSO theory for an effective sample size

of order n. Clearly, Assumption 2.2 is stronger than the condition s = o(
√
n) in

Proposition 2.3, which thus is not a major restriction.

2.2.3 Consistency

In our proof for consistency of the estimator θ̂, we reformulate our likelihood problem

in the language of the sample size adjusted design matrix. This new formulation is

entirely equivalent to the previous one in (2.4), but gives a different interpretation

to the sample size adjusted Gram matrix. We use it mostly to ease notation in our
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proofs. In particular, we introduce vectors X̄ij =
√
n√
2
Xij and define

X̄ =

√
n√
2
X =


X̄T

12

. . .

X̄T
ij

. . .

X̄T
(n−1),n

 ∈ R(n2)×(n+1), D̄ =
[
X̄|1|Z

]
.

We may consider D̄ as a sample size adjusted design matrix, in the sense that

Σ =
1(
n
2

)E[D̄T D̄].

Likewise, we introduce sample size adjusted parameters. Here, we are effectively

blowing up those columns of the design matrix corresponding to β to compensate

for the fact that β has effective sample size of order n smaller than µ and γ. The

details can be found in Section 2.7.1.3. Naturally, these changes will also result in a

sample size adjusted penalty parameter λ̄. For now, we simply remark that λ̄ =
√
n√
2
λ

and refer the reader to Section 2.7.1.3 for the details.

We now state our first main theorem. Its proof is developed in Sections 2.7.1.2–

2.7.1.8.

Theorem 2.4. Assume Assumptions 2.1 and 2.2. Fix a confidence level t and let

an :=

√
2 log(2(n+ p+ 1))(

n
2

) (1 ∨ c).

Choose λ0 = λ0(t, n) as

λ0 = 8an + 2

√
t(
n
2

)(11(1 ∨ (c2p)) + 8
√

2(1 ∨ c)
√
nan) +

2
√

2t(1 ∨ c)
√
n

3
(
n
2

) .

Let λ̄ =
√
n√
2
λ ≥ 8λ0 and let Kn be defined as in (2.5). Then, with probability at least

1− exp(−t) we have

E(θ̂) + λ̄

(√
2√
n
‖β̂ − β∗‖1 + |µ̂− µ∗|+ ‖γ̂ − γ∗‖1

)
≤ 6E(θ∗) + 32

s∗+Knλ̄
2

cmin
.

Theorem 2.4 has especially interesting implications if no approximation error is

committed, that is in the case that θ∗ = θ0, for which it is sufficient that rn,0 ≤ rn.

Corollary 2.5. Under the assumptions and with the definitions in Theorem 2.4,

assume that no approximation error is made, i.e. θ∗ = θ0. Then, with probability at
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least 1− exp(−t) we have

E(θ̂) + λ̄

(√
2√
n
‖β̂ − β∗‖1 + |µ̂− µ∗|+ ‖γ̂ − γ∗‖1

)
≤ C

s∗+λ̄
2

ρn,0

with constant C = 128/cmin.

Corollary 2.5 is proved in Section 2.7.1.8. It gives us an explicit formula for how

the sparsity of our network will affect our rate of convergence, which is particularly

nice, since in many related works the conditions on network density enter the rate

of convergence only indirectly as assumptions on the norm of the true parameter

vector, see for example Chatterjee et al. (2011), Yan & Xu (2013). Also, notice that

this is essentially the rate of convergence we would expect in the classical LASSO

setting for logistic regression up to an additional factor ρ−1
n,0. Let us consider the

implications of Theorem 2.4 in more detail.

Note that λ0 �
√

log(n)/
(
n
2

)
. Hence, we may choose λ̄ also of order

√
log(n)/

(
n
2

)
.

Recall that in the classical LASSO setting for logistic regression (cf. van de Geer &

Bühlmann (2011)), when no approximation error is committed, when probabilities

stay bounded away from zero and when we have the same effective sample size for

each parameter, we obtain the rates

OP

(
sparsity · log(number of columns of design matrix)

effective sample size

)
for the excess risk and

OP

(
sparsity ·

√
log(number of columns of design matrix)

effective sample size

)

for the `1-error. In the setting of Corollary 2.5, we obtain

E(θ̂) = OP

(
s∗+ ·

1

ρn,0
· log(n)(

n
2

) )
,

√
2√
n
‖β̂ − β0‖1 + |µ̂− µ0|+ ‖γ̂ − γ0‖1 = OP

(
s∗+ ·

1

ρn,0
·

√
log(n)(

n
2

) )
,

‖β̂ − β0‖1 = OP

(
s∗+ ·

1

ρn,0
·
√

log(n)√
n− 1

)
.

That is, up to an additional factor 1/ρn,0, we obtain the LASSO rate of convergence

for sample size
(
n
2

)
for the global excess risk. By the second line of the display above,

we have immediately µ̂ P→ µ0 and γ̂ P→ γ0 at the rate expected from a LASSO type

estimator with effective sample size
(
n
2

)
(up to an additional factor). Furthermore,

the third line implies that, again, up to an additional factor, for the error of β̂,

we obtain the rate of convergence we would expect for a LASSO type estimator
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with sample size n− 1. In particular, the assumptions we have to impose to obtain

`1-consistency include the case ‖β0‖∞ = o(log(log(n))), which is the condition that

had to be imposed in the original β-model for their strong consistency result (cf. Yan

& Xu (2013), Theorem 1).

2.3 Sparse β-model without covariates

By letting p = 0, γ = 0 and consequently κ = 0, the results for the SβM-C derived

in the previous section have implications for the SβM without covariates introduced

in Chen et al. (2020). In SβM, the negative log-likelihood is given by

L(β, µ) = −
∑
i

βidi − d+µ+
∑
i<j

log(1 + eβi+βj+µ)

and our design matrix is simply D =
[
X|1

]
∈ R(n2)×(n+1). The definitions of ρn,0

and rn,0 do not change, as we can simply set γ = 0 in their original definitions. In

this section we will abuse notation slightly by reusing the names from SβM-C, but

redefining them to have the components corresponding to γ removed. For example,

we will use θ = (βT , µ)T for a generic parameter, θ0 = (βT0 , µ0)T to denote the

truth, S∗+ = S∗ ∪ {n + 1} to denote the sparsity including the µ component etc.

This slight abuse of notation is justified as it makes the connection to the respective

objects in the model with covariates clearer. Our estimator reduces to

θ̂ = (β̂T , µ̂)T = arg min
(βT ,µ)T∈Θloc

1(
n
2

)L(β, µ) + λ‖β‖1,

where by slight abuse of notation, for this section only, we define Θloc = Θloc(rn) :=

{θ = (βT , µ)T ∈ Rn+ × R : ‖Dθ‖∞ ≤ rn}, for the reduced design matrix D defined

above and a rate rn.

We make definitions completely analogous to the case in which we observe co-

variates. We adapt the definitions of the excess risk E(θ) in the canonical way by

letting the components corresponding to γ and Zij equal zero. We define the best

local approximation θ∗ as

θ∗ = arg min
θ∈Θloc

E(θ)

and as before, we assume that all unpenalized parameters, i.e. µ∗ in this case,

are active. Since the sparsity assumptions of our parameter only concern β, it is

natural that we should need the same assumptions on s∗+ as before, most notably

Assumption 2.2. We have the analogue to Theorem 2.4.
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Theorem 2.6. Assume Assumption 2.2. Fix a confidence level t and let

an =

√
log(2(n+ 1))(

n
2

)
and

λ0 = 8an + 2

√
t(
n
2

)(9 + 8
√

2nan) +
2
√

2t
√
n

3
(
n
2

) .

Let λ̄ =
√
n√
2
λ ≥ 8λ0 and define η and Kn as in (2.5) with κ set to zero. Then, with

probability at least 1− exp(−t) we have

E(θ̂) + λ̄

(√
2√
n
‖β̂ − β∗‖1 + |µ̂− µ∗|

)
≤ 6E(θ∗) + 4s∗+Knλ̄

2. (2.6)

A proof, which follows almost immediately from the case in which we do observe

covariates, is given in Section 2.7.1.8. It is interesting to put this result into context

by comparing it with Theorem 2 in Chen et al. (2020). The parameter space over

which Chen et al. (2020) are optimizing is not convex and the analogous notion of

best local approximation we are using need not be well-defined in their setting. Thus,

it is not possible to derive `1-error bounds for their estimator, as we do in Theorem

2.6. Nonetheless and quite remarkably, they are able to prove an existence criterion

for their `0-constrained estimator and a high-probability, finite sample bound on its

excess risk. To compare their results to ours, we consider a special case that they

discuss at length. They consider the situation in which µ0 = −ξ · log(n) +O(1) for

some ξ ∈ [0, 2) and β0,i = α · log(n) +O(1) for some α ∈ [0, 1) and all i ∈ S0 . It is

easy to see that under these assumptions we have ρn,0 ∼ n−ξ. Consider the regime

in which no approximation error is committed. Then, using an analogous argument

as in the proof of Corollary 2.5,Kn is of order ρ−1
n,0. Recalling Assumption 2.2, we see

that to obtain `1-consistency of our estimator, we need ξ < 1/2, which restricts the

degree of network sparsity that our estimator can handle. Chen et al. (2020) need

no such condition and only need to balance the global sparsity parameter ξ with the

local density parameter α, by imposing 0 ≤ ξ − α < 1, to have convergence of their

excess risk to zero. This illustrates that to obtain our more refined consistency result

in terms of `1-error, we understandably need to impose stricter assumptions on the

permissible sparsity. We now compare the bounds on the excess risk. Note that Chen

et al. (2020) scale their excess risk by E[d+]−1 ∼ n−2+ξ, rather than
(
n
2

)
∼ n2 as

we do. To put the excess risk on the same scale, we denote by E(r)(θ̂) = nξE(θ̂) the

excess risk rescaled to their setting. With this notation, we see that by Theorem 2.6

the error rate for the rescaled excess risk of our `1-constrained estimator becomes

E(r)(θ̂) = OP (s∗+ · log(n) · n−2+2ξ),
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which by Assumption 2.2 is op(
√

log(n)·n−3/2+ξ). From Chen et al. (2020), Theorem

2, it is seen that the rate for the excess risk of their `0-constrained estimator is

OP (log(n) · n−1+ξ/2).

Thus, in the regime ξ ∈ [0, 1/2) necessary for `1-consistent parameter estimation, our

estimator will always achieve a rate faster than the one in Chen et al. (2020). When

we leave this regime, however, consistent estimation with respect to the `1-norm

may no longer be possible and the estimator in Chen et al. (2020) can outperform

our estimator with regards to the excess risk.

2.4 Inference for the homophily parameter

We derive the asymptotic normality of our estimator γ̂ when θ∗ = θ0. We will see

that the same arguments used for deriving the limiting distribution for γ̂ also work

for µ̂ and as a by-product we also obtain an analogous result for µ̂.

Our strategy will be inverting the Karush-Kuhn-Tucker (KKT) conditions, sim-

ilar to van de Geer et al. (2014). The estimation in (2.4) is a convex optimization

problem. Hence, by subdifferential calculus, we know 0 has to be contained in the

subdifferential of 1

(n2)
L(θ) + λ‖β‖1 at θ̂. That is, there exists some v ∈ Rn+1+p such

that

0 =
1(
n
2

)∇ L(θ)|θ=θ̂ + λv, (2.7)

where ∇ L(θ)|θ=θ̂ is the gradient of L(θ) evaluated at θ̂ and for i = 1, . . . , n, vi = 1

if β̂i > 0 and vi ∈ [−1, 1] if β̂i = 0, and vi = 0 for i = n+ 1, . . . , n+ 1 + p.

To ease notation a little we write ϑ = (µ, γT )T . Thus, denoting ∇ϑ L(θ)|θ=θ̂ ∈

Rp+1 the gradient of L with respect to the unpenalized parameters (µ, γT )T only,

evaluated at θ̂, we have

0 = ∇ϑ L(θ)|θ=θ̂ . (2.8)

Denote by H(θ̂) := Hϑ×ϑ(θ)|θ=θ̂ the Hessian of 1

(n2)
L(θ) with respect to ϑ only,

evaluated at θ̂. Denote pij(θ) =
exp(βi+βj+µ+γTZij)

1+exp(βi+βj+µ+γTZij)
. Consider the entries of H(θ̂).

For all k, l = 1, . . . , (p+ 1),

H(θ̂)k,l =
1(
n
2

)∂ϑkϑlL(θ̂) =
1(
n
2

)∑
i<j

Dij,n+kDij,n+lpij(θ̂)(1− pij(θ̂)),

where DT
ij is the (i, j)-th row of the design matrix D. In particular Dij,n+k = 1 if

k = 1 and Dij,n+k = Zij,k−1 for k = 2, . . . , (p + 1). We have the following matrix

representation of H(θ̂). Let Dϑ = [1|Z] be the part of D corresponding to ϑ with
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rows DT
ϑ,ij = (1, ZTij), i < j. Let Ŵ = diag(

√
pij(θ̂)(1− pij(θ̂)), i < j) ∈ R(n2)×(n2).

Then

H(θ̂) =
1(
n
2

)DT
ϑ Ŵ

2Dϑ.

Let W0 = diag(
√
pij(θ0)(1− pij(θ0)), i < j) and define the population version:

E[H(θ0)] =
1(
n
2

)E[DT
ϑW

2
0Dϑ].

To be consistent with commonly used notation (e.g. van de Geer et al. (2014)), call

Σ̂ϑ = H(θ̂) and Σϑ = E[H(θ0)] and Θ̂ϑ := Σ̂−1
ϑ ,Θϑ := Σ−1

ϑ .

We will need to invert Σ̂ϑ and Σϑ and show that these inverses are close to each

other in an appropriate sense. It is commonly assumed in LASSO theory (cf. van de

Geer et al. (2014)) that the minimum eigenvalues of these matrices stay bounded

away from zero. In our case, however, such an assumption is invalid.

Indeed, using ρn ≤ 1/2, we find that for all i < j, pij(θ0)(1− pij(θ0)) ≥ 1/2 · ρn.

Furthermore, by Assumption 2.1, the minimum eigenvalue λmin of E[ZTZ/
(
n
2

)
] stays

uniformly bounded away from zero for all n. Then, for any n ∈ N and v ∈ Rp+1\{0}

with components v = (v1, v
T
R)T , v1 ∈ R, vR ∈ Rp, we have

vTΣϑv ≥
1

2
ρnv

T 1(
n
2

)E[DT
ϑDϑ]v =

1

2
ρnv

T

(
1 0
0 1

(n2)
E[ZTZ]

)
v

=
1

2
ρn

(
v2

1 + vTR
1(
n
2

)E[ZTZ]vR

)
≥ 1

2
ρn(v2

1 + λmin‖vR‖22) ≥ 1

2
ρn(1 ∧ λmin)‖v‖22 > 0.

Hence, for finite n all eigenvalues of Σϑ are strictly positive and consequently Σϑ

is invertible. However, since we allow ρn,0 → 0, we are unable to achieve a strictly

positive lower bound that is uniform in n.

Using similar techniques as in the proof of Proposition 2.3 in Section 2.7.1.2 we

can show that with high probability the minimum eigenvalue of DT
ϑDϑ/

(
n
2

)
is also

strictly larger than zero and thus for any v ∈ Rp+1\{0} and any finite n (the exact

derivations are given in Section 2.7.2.1),

1(
n
2

)vTDT
ϑ Ŵ

2Dϑv ≥ Cρnmineval

(
1(
n
2

)ZTZ) ‖v‖22 > 0.

Thus, for every finite n, Σ̂ϑ is invertible with high probability. Since these lower

bounds tend to zero with increasing n, a careful argument is needed and we have

to impose stricter assumptions than for our consistency result alone.

Assumption 2.3. s∗+
√

log(n)√
nρ2
n
→ 0, n→∞.
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Assumption 2.3 is a slightly stricter version of the previously imposed Assump-

tion 2.2. Previously we only needed a factor of 1/ρn to ensure that the `1-error for

β̂ in Theorem 2.13 goes to zero. Notice, though, that Assumption 2.3 still allows

sparsity rates for ρn,0 of small polynomial order. More precisely, up to a log-factor

and depending on the rate of s∗+, ρn,0 may still go to zero at a speed of order up to

n−1/4.

Theorem 2.7. Under Assumptions 2.1 and 2.3, when θ∗ = θ0 and with λ chosen

as in Theorem 2.4, we have for any k = 1, . . . , p, as n→∞,√(
n

2

)
γ̂k − γ0,k√
Θ̂ϑ,k+1,k+1

d−→ N (0, 1).

We also have for our estimator of the global sparsity parameter, µ̂, as n→∞,√(
n

2

)
µ̂− µ0√

Θ̂ϑ,1,1

d−→ N (0, 1).

Theorem 2.7 does not require a debiasing of the parameters µ̂ and γ̂. It is well

known in the LASSO literature, that using an `1-penalized likelihood approach will

produce biased estimates for the penalized parameters due to the shrinking of the

parameter estimates enforced by the penalty (c.f. Section 1.4). Due to this bias, it

is generally not possible to derive limiting distributions for LASSO type estima-

tors and a debiasing procedure is needed in order derive distributional limit results

(van de Geer et al. 2014). This bias is made explicit in equation (2.7): The penalized

parameter values do not fulfil the first-order estimating equations exactly, but rather

a bias of the form λv is incurred as prescribed by subdifferential calculus. While the

unpenalized parameter estimates ϑ̂ = (µ̂, γ̂T )T do fulfil the first-order estimating

equations exactly, in standard settings this alone would still not be enough to en-

sure the asymptotic normality of ϑ̂. However, in our special case, this is enough to

allow us to derive a limiting distribution without a debiasing step. More precisely,

deriving the limiting distribution of ϑ relies on a Taylor expansion of the negative

log-likelihood L. To derive Theorem 2.7 it is necessary that in said Taylor expansion

the bias incurred from the part of the likelihood relating to β vanishes in probability.

This essentially is a condition on the asymptotic correlation between the columns

of the design matrix D corresponding to β and those corresponding to µ and γ.

Due to each column in X – the deterministic part of the design matrix relating to

β – being very sparse and having only n− 1 non-zero entries, this bias vanishes fast

enough to allow Theorem 2.7. The exact details of this are given in Section 2.7.2.5.
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2.5 Simulation: SβM-C

We illustrate the finite sample performance of our estimator (2.4) with an extensive

set of Monte Carlo simulations. We only show results for SβM-C and the estimator

(2.4), as – where applicable – the results in the case without covariates are very sim-

ilar. We check the `1-convergence of our parameter estimates to the true parameter,

as well as the asymptotic normality of γ̂.

Since our estimation involves the choice of a tuning parameter, we explored the

use of the Bayesian Information Criterion (BIC) as well as a heuristic based on

the theory developed in the previous sections for model selection. While the former

criterion is purely data-driven, the use of latter is to ensure that our theoretical re-

sults are about right in terms of the rates. To make the dependence of our estimator

(2.4) on the penalty parameter explicit, we denote the solution of (2.4) when using

penalty λ by θ̂(λ) = (β̂(λ)T , µ̂(λ), γ̂(λ)T )T and write s(λ) = |{i : β̂i(λ) > 0}| for its

sparsity. The value of the BIC at λ is given by

BIC = 2L(θ̂(λ)) + s(λ) log(n(n− 1)/2)

and the penalty λ was chosen to minimize BIC.

To motivate the heuristic approach to tuning parameter selection, recall that

Theorem 2.4 suggests that based on a confidence level t picked by us, we should

first define a λ0. The consistency results derived hold for any λ̄ ≥ 8λ0, where λ̄

is the penalty in the rescaled penalized likelihood problem, which relates to the

penalty λ in the original penalized problem (2.4) as λ̄ =
√
n/
√

2 · λ. Looking at

the proof of Theorem 2.4, we see that the factor eight in the relation between λ0

and λ̄ is a technical artefact we had to introduce to prove that the sample size

adjusted estimator ˆ̄θ as defined in Section 2.7.1.3 was close enough to the sample

size adjusted best local approximation θ̄∗ (c.f. Section 2.7.1.6). If we assume that our

estimator is close enough to the truth, we may ignore that factor and set λ =
√

2√
n
λ0.

We pick t = 2 and set c to the maximum observed covariate value. It is known that

in high-dimensional settings the penalty values prescribed by mathematical theory

in practice tend to over-penalize the parameter values, see, for example, Yu et al.

(2019). Decreasing the penalty by removing the factor eight is thus in line with

these empirical findings.

We fixed p = 2, set γ0 = (1, 0.8)T and generated the covariates from a cen-

tred Beta (2, 2) distribution as Zij,k ∼ Beta(2, 2) − 1/2. We considered networks

of sizes n = 300, 500, 800 and 1,000 in which the sparsity of β0 is set as 7, 9, 10,

and 12 respectively. We tested our estimator on three different model configurations

with different combinations of β0 and µ0, resulting in networks with varying de-
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grees of sparsity. For each simulation configuration, 1,000 data sets were simulated.

Specifically,

Model 1: We picked β0 = (1.2, 0.8, 1, . . . , 1, 0, . . . , 0)T , where the number of ones

increases with the network size to match the aforementioned sparsity level, and set

µ0 = −0.5 log(log(n));

Model 2: β0 = log(log(n)) ·(1.2, 0.8, 1, . . . , 1, 0, . . . , 0)T and µ0 = −1.2 · log(log(n));

Model 3: β0 = log(log(n)) · (2, 0.8, 1, . . . , 1, 0, . . . , 0)T and µ0 = −0.5 · log(n).

In these three models, we allow µ0 to get progressively more negative to generate

networks that are increasingly sparse, and allow the sparsity of β to increase with

network size n. The median edge density and the minimum and maximum link

probabilities pij for each model and network size are reported in Table 2.1. All

three models get progressively sparser with increasing n. Model 3 gives the sparsest

networks when n = 1,000, with only around 3.6% of all possible edges being present

on average.

n Median edge density min pij max pij

Model 1
300 0.309 0.145 0.903
500 0.298 0.140 0.899
800 0.288 0.136 0.896
1000 0.285 0.134 0.894

Model 2
300 0.127 0.048 0.933
500 0.115 0.043 0.938
800 0.103 0.040 0.943
1000 0.099 0.038 0.944

Model 3
300 0.068 0.023 0.963
500 0.052 0.018 0.964
800 0.040 0.014 0.963
1000 0.036 0.013 0.962

Table 2.1: Network summary statistics for networks sampled from models 1 - 3

(a) MAE for β0 (b) Absolute error for µ0. (c) `1-error for γ0.

Figure 2.2: Errors for estimating θ0 in Model 1 across various network sizes and 1,000 repetitions.
Comparison between model selection via BIC and a heuristic approach. The results for BIC are
displayed in red (left boxes), those for the pre-determined λ in green (right boxes).

Consistency. We calculated the mean absolute error (MAE) for estimating β0,

the absolute error for estimating µ0 and the `1-error for estimating γ0. For Model

1 the results are shown in Figures 2.2a–2.2c. While BIC performs slightly better

for estimating β0 and µ0 for smaller network sizes, our heuristic performs better
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(a) MAE for β0 (b) Absolute error for µ0. (c) `1-error for γ0.

Figure 2.3: Errors for estimating θ0 in Model 2. BIC in red (left boxes), heuristic in green (right
boxes).

(a) MAE for β0 (b) Absolute error for µ0. (c) `1-error for γ0.

Figure 2.4: Errors for estimating θ0 in Model 3. BIC in red (left boxes), heuristic in green (right
boxes).

for larger network sizes. The `1-error for estimating γ is almost the same between

both model selection schemes across all network sizes. For both methods we see

that the errors decrease with increasing network size. Model 2 gives similar results

with slightly smaller errors produced by BIC for β0 and µ0 for smaller networks

and similar or slightly better errors produced by the heuristic for large networks

(Figures 2.3a, 2.3b). The error for γ0 is similar between both methods (Figure

2.3c). For Model 3, the errors for parameter estimation are shown in Figures 2.4a

– 2.4c. The errors are generally larger than in the other network models, which is

to be expected due to the much higher sparsity of the network. For this very sparse

case, BIC is performing better than the heuristic. The heuristic consistently selects

higher penalty values than BIC and we can see how this results in worse estimates

for very sparse networks. Also, for the heuristic we choose one predefined penalty

value for any network of a given size n, while BIC can adapt to the observed sparsity.

This illustrates the point made by Yu et al. (2019), that the penalty prescribed by

mathematical theory tends to over-penalize the model. It is to be noted, though, that

even in this very sparse regime both model selection techniques produce reasonable

estimates that are close to the truth.

Asymptotic normality. We calculated the standardized γ-values√(
n

2

)
γ̂k − γ0,k√
Θ̂ϑ,k+1,k+1

, k = 1, 2,

which by Theorem 2.7 asymptotically follow a N (0, 1) distribution. This allowed us
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to construct approximate 95%-confidence intervals for γ0,k as

CIk =

(
γ̂k − z1−α/2 ·

√
Θ̂ϑ,k+1,k+1(

n
2

) , γ̂k + z1−α/2 ·

√
Θ̂ϑ,k+1,k+1(

n
2

) )
, k = 1, 2,

where z1−α/2 is the 1 − α/2 quantile of the standard-normal distribution and we

used α = 0.05. We present the empirical coverage of these intervals and their median

length for the different network sizes. Table 2.2 shows the results for γ0,1 across the

different models and sample sizes. The results for γ0,2 are similar and are omitted

to save space. The coverage is very close to the 95%-level across all network sizes

and all models and independent of which model selection criterion we use. This

empirically illustrates the validity of the asymptotic results derived in Theorem 2.7.

The median length of the confidence interval decreases with increasing network size

and is similar between BIC and the heuristic. This is what we would expect since

the estimates for γ0 are very similar between both methods as shown in Figures 2.2c,

2.3c, and 2.4c. Comparing the length of the confidence intervals between Models 1,

2 and 3, we see that as the models become sparser, the median length increases,

which is also to be expected.

n Coverage CI Coverage CI
Pre-determined λ BIC

Model 1
300 0.949 0.182 0.950 0.182
500 0.944 0.110 0.944 0.110
800 0.953 0.069 0.954 0.069
1000 0.945 0.056 0.942 0.056

Model 2
300 0.927 0.251 0.937 0.252
500 0.958 0.158 0.961 0.158
800 0.940 0.103 0.940 0.103
1000 0.945 0.083 0.947 0.083

Model 3
300 0.931 0.333 0.939 0.335
500 0.937 0.225 0.942 0.226
800 0.939 0.159 0.942 0.159
1000 0.941 0.133 0.942 0.134

Table 2.2: Empirical coverage under nominal 95% coverage and median lengths of confidence
intervals.

2.6 Data analysis

We illustrate our results by applying our estimator to two real world data sets.

Lazega’s lawyer friendship data. We already encountered this dataset in Chap-

ter 1. As a reminder, the 71 lawyers of a law firm were asked to indicate with

whom in the firm they regularly socialized outside of work. This is a frequently
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used network data set that was also analysed, for example, in Snijders et al. (2006),

Jochmans (2018) and Yan et al. (2019). For our analysis we focus on mutual friend-

ships between lawyers as in Snijders et al. (2006), that is, we place an undirected

edge between two lawyers when they both indicated to socialize with one another.

The degrees of the resulting network range from 0 to 16, with eight isolated nodes.

The average degree is 4.96 and the edge density is 7%. It is to note that we did

not remove the isolated nodes before doing inference. Alongside the network, the

following variables were collected: The status of the lawyer (partner or associate),

their gender (man or woman), which of three offices they worked in, the years they

had spent with the firm, their age, their practice (litigation or corporate) and the

law school they had visited (Harvard and Yale, UConn or other).

We fitted the SβM-C to this data set, by using as covariates between two nodes

the positive absolute difference between these seven variables, where for categorical

variables the difference is defined as the indicator whether the values are equal.

Since our simulations suggest that BIC performs better for smaller networks, we

used it for model selection. Model selection with the heuristic results in a slightly

larger penalty and slightly different estimates, but overall very similar results. We

constructed confidence intervals for the estimated covariate values at the 95%-level.

The estimates and confidence intervals for the covariates are shown in Table 2.3.

Covariate Point estimate Confidence Interval
Same status 0.91 (0.54, 1.28)
Same gender 0.46 (0.12, 0.81)
Same office 2.21 (1.81, 2.60)
Difference years with firm −0.073 (−0.11,−0.04)
Difference age −0.031 (−0.060,−0.002)
Same practice 0.57 (0.25, 0.89)
Same law school 0.30 (−0.03, 0.62)

Table 2.3: Covariate weights for Lazega’s lawyer friendship network and 95% confidence intervals.

In terms of magnitude of estimated weight as well as, more importantly, the

sign of each weight, these findings are in line with what we would expect and with

the results in the aforementioned papers. In order of importance, working in the

same office, having the same status, being of the same practice and having the same

gender have a positive effect on friendship formations, whereas a big difference in

tenure or age has a negative effect on friendship formation. While our point estimate

for having gone to the same law school is positive, its confidence interval extends to

the negative real line and we thus cannot make a definite statement about its effect

on friendship formation. This effect is also present when doing model selection with

our heuristic. To appreciate how the covariates influence the connection pattern, we

visualize the network in Figure 2.5 by examining the effect of office in Figure 2.5a

and that of status in Figure 2.5b respectively. We can see indeed that these two
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(a) Lawyer network by office. (b) Lawyer network by status.

Figure 2.5: Lazega’s friendship network among 71 lawyers. The size of the nodes is proportional
to their degree. For better visibility we set the size of all nodes with a degree of five or lower to the
size corresponding to a degree of five. In 2.5a the different colours indicate different offices (blue:
Boston, yellow: Hartford, black: Providence; only four lawyers are based in the small Providence
office) and in 2.5b different statuses (red: partner, green: associate). The positions of the vertices
are the same in both plots.

covariates have played important roles in shaping how connections were made.

Trade partnerships network. For our second data set, we analysed mutually

important trade partnerships between 136 countries/regions in 1990. This data was

originally analysed by Silva & Tenreyro (2006) and further analysed in Jochmans

(2018). Even back in 1990 almost every country would trade with every other coun-

try, which is why we focus only on those trade partnerships in which the trade

volume exceeds a certain limit. More precisely, we place an undirected edge be-

tween two countries if the trade volume makes up at least 3% of the importing

countries total imports or if it makes up at least 3% of the exporting countries total

exports. This leaves us with an undirected network with 136 nodes and 1,279 edges

(edge density of 13.9%). The minimum degree of the resulting network was 3 (Do-

minican Republic), the maximum degree was 126 (USA), and the median degree

was 13. We visualize the resulting network in Figure 2.6.

We analyse the same covariates as Jochmans (2018). That is, we have indicator

variables common language and common border that take the value one if countries

i and j share a common language or border and zero otherwise, log distance which

is the log of the geographic distance between the countries, colonial ties which is

one if at some point i colonized j or vice versa and zero otherwise, and preferential

trade agreement which is an indicator whether or not a preferential trade agreement

exists between the countries. Again, we chose BIC for model selection for the reasons

outlined above. The results are summarized in Table 2.4. These results are in line

with what one would expect. Having a preferential trade agreement has the strongest
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Figure 2.6: The world trade network in 1990 between 136 countries/regions. The size of the nodes
is proportional to their degree. For better visibility we set the size of all nodes with a degree of 10
or lower to the size corresponding to a degree of 10. The six large, highly connected nodes in the
middle correspond to: USA, Japan, Germany, France, United Kingdom and Italy.

positive effect on mutual trade between countries. Speaking the same language,

sharing a border or having colonial ties also has a positive effect, while a large

geographical distance has a strong negative effect.

Covariate Estimated weight Confidence Interval
Log distance −1.03 (−1.04,−1.02)
Common border 0.45 (0.10, 0.79)
Common language 0.31 (0.09, 0.54)
Colonial ties 0.42 (0.17, 0.66)
Preferential trade agreement 0.81 (0.36, 1.27)

Table 2.4: Covariate estimation for world trade data and 95% confidence intervals.

The confidence intervals for the categorical variables are all much larger than

the one for the continuous variable log distance between countries. This is due to the

fact that all the columns corresponding to categorical covariates are quite sparse,

while the column corresponding to log distance contains only non-zero entries. Out

of 9,180 dyads only 142 are part of a preferential trade agreement and only 180

share a common border. Consequently the confidence intervals corresponding to

these covariates are largest. Furthermore, 1,565 node pairs have colonial ties with

one another and 1,925 speak a common language. While the columns corresponding

to these covariates are thus much more populated, they are still relatively sparse

when compared to the total number of dyads.

BIC selected 32 active β-entries, which are visualized on a map in Figure 2.7.

We presented the top half of these countries/regions with their degree and GDP in

Table 2.5. The ranking of the β values correlates with our intuition of the economic

power of the countries. However, we also pick up underlying network formation

mechanisms that go beyond sheer economic power and that are neither explainable
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by only looking at network summary statistics (such as degree of a node) nor by

only looking at economic metrics such as a country’s GDP. More precisely, we note

that the top six positions are occupied by six of the G7 countries, which serves to

show that SβM-C works well for identifying the most important nodes in a network.

Note however, that Japan has the largest β, albeit having a smaller degree (122) and

a significantly smaller GDP than the USA (degree = 126), which comes in second

place. In general, the order of degrees no longer aligns exactly with the order of

the β-values as would have been predicted by the monotonicity lemma for the SβM

without covariates in Chen et al. (2020). We observe this pattern for non-active

β-values as well. Norway, for example, has a β-value of zero, even though its degree

of 17 and GDP of US$1.22× 1011 exceeds the degree and the GDP of several nodes

with positive β-value. Looking at Norway’s neighbouring nodes, we see that it was

trading mostly with countries that either are close geographically or have a large

β-value themselves (such as USA and Japan), meaning that the observed covariates

are sufficient to explain the linking behaviour of Norway. This illustrates that the

SβM-C is able to pick up subtleties in network formation that one might miss if one

relied solely on network summary statistics such as the degree of a node or solely

on non-relational summary statistics such as a country’s GDP.

Figure 2.7: World map of the estimated β values in the world trade network in 1990 between 136
countries. The colour of the country corresponds to the magnitude of the estimated β. Countries
in grey either have an estimated β value of zero or were not present in the data set
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Country/Region β̂ Degree GDP (US$)
Japan 5.85 122 4.95e+12
USA 5.82 126 6.51e+12
Germany 5.17 120 2.27e+12
France 4.16 103 1.47e+12
UK 4.15 104 1.04e+12
Italy 3.92 95 1.03e+12
Netherlands 3.15 73 3.75e+11
Belgium-Lux 2.60 59 2.56e+11
Korea Republic 2.11 34 3.42e+11
Singapore 2.06 37 5.39e+10
Hong Kong 2.05 40 1.07e+11
Spain 1.80 41 5.46e+11
Thailand 1.78 33 1.11e+11
China 1.58 30 3.98e+11
Russian Federation 1.53 28 5.43e+11
India 1.33 32 2.75e+11

Table 2.5: The top 16 active β values for the world trade network.
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2.7 Proofs of Chapter 2

2.7.1 Proof of consistency results

2.7.1.1 Proof of Lemma 2.1

Proof of Lemma 2.1. We first show that a solution exists. Using duality theory from

convex optimization (cf. Bertsekas (1995), Chapter 5), we know that for any λ > 0

there exists a finite s > 0 such that the penalized likelihood problem is equivalent

to the primal optimization problem

min
β,µ,γ

1(
n
2

)L(β, µ, γ),

subject to: (βT , µ, γT )T ∈ Θloc,

n∑
i=1

|βi| ≤ s.
(2.9)

Let β = (β1, . . . , βn)T , γ = (γ1, . . . , γp)
T be fixed. To obtain an estimate for µ, we

minimize the function

gβ,γ(µ) =
1(
n
2

)L(β, µ, γ)

=
1(
n
2

)(− n∑
i=1

βidi − d+µ−
∑
i<j

(ZTijγ)Aij

+
∑
i<j

log(1 + exp(βi + βj + µ+ ZTijγ))

)
.

It has derivative

g′β,γ(µ) =
1(
n
2

)
−d+ +

∑
i<j

eβi+βj+µ+ZTijγ

1 + eβi+βj+µ+ZTijγ

 .

We observe that

lim
µ→∞

g′β,γ(µ) =
1(
n
2

) (−d+ +

(
n

2

))
> 0

and

lim
µ→−∞

g′β,γ = −d+
1(
n
2

) < 0.

Furthermore, g′β,γ is continuous and strictly increasing in µ. Hence, there exists a

unique value µ∗ = µ∗(β, γ), such that g′β,γ(µ∗) = 0. Since

g′′β,γ(µ) =
∑
i<j

eβi+βj+µ+ZTijγ

(1 + eβi+βj+µ+ZTijγ)2
> 0

for all µ, µ∗ is a minimizer of gβ,γ . Since g′′β,γ is invertible, we can apply the implicit

function theorem with function F (β, γ, µ) = g′β,γ(µ), which gives us that the corre-

56



sponding function µ∗ = µ∗(β, γ) is continuously differentiable. Plugging in µ∗(β, γ)

for µ in (2.9), we are left with the minimization problem

min
β,γ
L(β, µ∗(β, γ), γ),

s.t.: (βT , µ∗(β, µ), γT )T ∈ Θloc,

n∑
i=1

|βi| ≤ s.
(2.10)

Since Γ is compact, we are minimizing a continuous function over a compact set in

(2.10). Hence it attains a minimum L∗. By the definition of µ∗, L∗ must also be a

solution of (2.9).

For the second claim of the Lemma, suppose there is an 1 ≤ i0 ≤ n such that

β̂i0 = min1≤i≤n β̂i > 0. Consider the following vector θ̃ = (β̃T , µ̃, γ̃T )T : for all k let

β̃k = β̂k− β̂i0 and µ̃ = µ̂+ 2β̂i0 , while keeping γ̃ = γ̂. Then, β̃k ≥ 0 for all k, i.e. θ̃ is

a feasible point for the penalized likelihood problem (2.4). Furthermore mink β̃k = 0

and L(θ̃) = L(θ̂). However,

‖β̃‖1 =
n∑
i=1

|β̂i − β̂i0 | < ‖β̂‖1,

where the inequality follows from the minimality of β̂i0 . This gives

L(θ̃) + ‖β̃‖1 < L(θ̂) + ‖β̂‖1.

A contradiction to the optimality of θ̂.

2.7.1.2 Proof of Proposition 2.3

The compatibility condition is clearly equivalent to the condition that

κ2(Σ, s∗) := min
θ∈Rn+1+p\{0}
‖θS∗c+

‖1≤3‖θS∗+‖1

θTΣθ
1
s∗+
‖θS∗+‖

2
1

≥ C > 0,

for all n and some universal C. Recall the definition of ΣA. The key to proving

Proposition 2.3 is to show that Σ is close to ΣA in an appropriate sense and that

ΣA fulfils κ2(ΣA, s
∗) ≥ C > 0 for all n and some universal C > 0. We then show

that κ2(Σ, s∗) is also bounded away from zero. Let us analyse the top left block

matrix of ΣA, i.e. 1/(n− 1) ·XTX:

1

n− 1
XTX =


1 1

n−1
1

n−1 . . . 1
n−1

1
n−1 1 1

n−1 . . . 1
n−1

...
. . . . . . . . .

...
1

n−1
1

n−1 . . . . . . 1

 ,
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that is, 1/(n − 1) · XTX has all ones on the diagonal and 1/(n − 1) everywhere

else. This is a special kind of Toeplitz matrix; a circulant matrix to be precise. It is

known (c.f. Kra & Simanca (2012)), that every circulant matrixM has an associated

polynomial p and that the eigenvalues ofM are given by p(ξj), j = 0, . . . , n−1, where

ξj , j = 0, . . . , n− 1, denote the nth roots of unity, ξj = exp (ι2πj/n), where ι is the

imaginary unit and ξ0 = 1. The associated polynomial of the matrix 1/(n−1)XTX

is

p(x) = 1 +
1

n− 1
(x+ x2 + · · ·+ xn−1)

and thus the eigenvalues of 1/(n− 1)XTX are

p(1) = 2, p(ξj) = 1 +
1

n− 1
(−1) =

n− 2

n− 1
, j = 1, . . . , n− 1,

where the eigenvalue (n − 2)/(n − 1) has multiplicity n − 1. Hence, for any vector

θ = (βT , µ, γT )T ,

θTΣAθ = βT
(

1

n− 1
XTX

)
β + µ2 +

1(
n
2

)γTE[ZTZ]γ

≥ n− 2

n− 1
βTβ + µ2 +

1(
n
2

)γTE[ZTZ]γ,

where for the inequality we have used that for any positive definite, symmetric

matrixM with smallest eigenvalue λ and any vector x 6= 0 of appropriate dimension,

we have xTMx ≥ λxTx. Thus, for any θ,

θTΣAθ
1
s∗+
‖θS∗+‖

2
1

≥
n−2
n−1β

Tβ + µ2 + 1

(n2)
γTE[ZTZ]γ

1
s∗+
‖θS∗+‖

2
1

≥
n−2
n−1‖β‖

2
2 + µ2 + 1

(n2)
γTE[ZTZ]γ

‖β‖22 + µ2 + ‖γ‖22
, by Cauchy-Schwarz

≥
n−2
n−1(‖β‖22 + µ2) + 1

(n2)
γTE[ZTZ]γ

‖β‖22 + µ2 + ‖γ‖22
, since 1 ≥ (n− 2)/(n− 1)

=
n− 2

n− 1
·
‖β‖22 + µ2 + n−1

n−2
1

(n2)
γTE[ZTZ]γ

‖β‖22 + µ2 + ‖γ‖22
.

We now use that for any a, b, c ∈ R+, we have a+b
a+c ≥ min{1, b/c}. This is easily

seen by considering the cases min{1, b/c} = 1 and min{1, b/c} = b/c separately and

rearranging. Thus,

θTΣAθ
1
s∗+
‖θS∗+‖

2
1

≥ n− 2

n− 1
min

{
1,
n− 1

n− 2

1(
n
2

) γTE[ZTZ]γ

‖γ‖22

}

= min


n− 2

n− 1
,

γT
(

1

(n2)
E[ZTZ]

)
γ

‖γ‖22

 ≥ min

{
n− 2

n− 1
, λmin

}
,
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where λmin is the minimum eigenvalue of 1

(n2)
E[ZTZ]. By Assumption 2.1, for n ≥ 3,

κ2(ΣA, s
∗) = min

θ∈Rn+1+p\{0}
‖θS∗c+

‖1≤3‖θS∗+‖1

θTΣAθ
1
s∗+
‖θS∗+‖

2
1

≥ cmin > 0. (2.11)

Now, we show that with high probability κ(Σ, s∗) ≥ κ(ΣA, s
∗), which implies that

the compatibility condition holds with high probability for Σ. To that end, we have

the following auxiliary Lemma found in Kock & Tang (2019). For completeness, we

give the short proof of it. The notation is adapted to our setting.

Lemma 2.8 (Lemma 6 in Kock & Tang (2019)). Let A and B be two positive semi-

definite (n + 1 + p) × (n + 1 + p) matrices and δ = maxij |Aij − Bij |. For any set

S∗ ⊂ {1, . . . , n} with cardinality s∗, one has

κ2(B, s∗) ≥ κ2(A, s∗)− 16δ(s∗ + p+ 1).

Proof. Denote by S∗+ = S∗ ∪ {n + 1, . . . , n + 1 + p} and s∗+ = s∗ + (1 + p). Let

θ ∈ Rn+1+p\{0}, with ‖θS∗c+
‖1 ≤ 3‖θS∗+‖1. Then,

|θTAθ − θTBθ| = |θT (A−B)θ| ≤ ‖θ‖1‖(A−B)θ‖∞ ≤ δ‖θ‖21

= δ(‖θS∗+‖1 + ‖θS∗c+
‖1)2 ≤ δ(‖θS∗+‖1 + 3‖θS∗+‖1)2

≤ 16δ‖θS∗+‖
2
1.

Hence, θTBθ ≥ θTAθ − 16δ‖θS∗+‖
2
1 and thus

θTBθ
1
s∗+
‖θS∗+‖

2
1

≥ θTAθ
1
s∗+
‖θS∗+‖

2
1

− 16δs∗+ ≥ κ2(A, s∗)− 16δs∗+.

Minimizing the left-hand side over all θ 6= 0 with ‖θS∗c+
‖1 ≤ 3‖θS∗+‖1 proves the

claim.

Thus, to control κ2(Σ, s∗), we need to control the maximum element-wise dis-

tance between Σ and ΣA: maxij |Σij − ΣA,ij |. We will show that in the setting of

Proposition 2.3,

max
ij
|Σij − ΣA,ij | ≤

cmin

32s∗+
,

and thus, by Lemma 2.8, we have κ2(Σ, s∗) ≥ κ2(ΣA, s
∗)− cmin

2 ≥ cmin
2 > 0, i.e. the

compatibility condition holds for Σ.

Proof of Proposition 2.3. To make referencing of sections of Σ easier, we number its
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blocks as follows

Σ =
1(
n
2

)



n

2
XTX︸ ︷︷ ︸
1©

√
n√
2
XT1︸ ︷︷ ︸
2©

0︸︷︷︸
3©

√
n√
2
1TX︸ ︷︷ ︸
4©

1T1︸︷︷︸
5©

0︸︷︷︸
6©

0︸︷︷︸
7©

0︸︷︷︸
8©

E[ZTZ]︸ ︷︷ ︸
9©


For i, j = 1, . . . , n, we have Σij = ΣA,ij (block 1©). The entry at position (n +

1), (n+ 1) (block 5©) is also equal and so are blocks 3©, 6©, 7©, 8© and 9©. For the

entries at positions i, j with i = n + 1 and j = 1, . . . , n as well as positions with

i = 1, . . . , n and j = n+ 1 (blocks 2© and 4©), we have:

Σij − ΣA,ij = Σij =
(n− 1)

√
2

(n− 1)
√
n

=

√
2√
n
≤ cmin

32s∗+

for n � 0, since we assume that s∗ = o(
√
n). The claim now follows from Lemma

2.8.

In the SβM without covariates we define the matrices Σ and ΣA completely

analogously to the SβM-C by removing the blocks corresponding to the covariates

Z.

Σ =
1(
n
2

) [ n
2X

TX
√
n√
2
XT1

√
n√
2
1TX 1T1

]
, ΣA :=

[
1

n−1X
TX 0

0 1

]
.

To be consistent with our numbering scheme from before, we number these four

blocks from top left to bottom right as 1©, 2©, 4© and 5©, skipping 3©.

Lemma 2.9 (Compatibility condition for SβM). Under Assumption 2.2 and for n

large enough, the compatibility condition holds for the sample size adjusted Gram

matrix Σ in SβM. That is, for every θ ∈ Rn+1 with ‖θS∗c+
‖1 ≤ 3‖θS∗+‖1,

‖θS∗+‖
2
1 ≤

1

4
s∗+θ

TΣθ.

Proof. Following the exact same steps as above for the SβM-C, we find for any

θ = (βT , µ)T

κ2(ΣA, s
∗
+) =

θTΣAθ
1
s∗+
‖θS∗+‖

2
1

=
n− 2

n− 1
>

1

2
> 0, (2.12)

for any n ≥ 3. Using line by line the same arguments as in the proof of Proposition

2.3 we prove that the compatibility condition holds for the sparse β model without
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covariates. More precisely, by Lemma 2.8, we know that κ2(Σ, s∗+) ≥ κ2(ΣA, s
∗
+)−

16δs∗+, where δ = maxij |Σij −ΣA,ij |. Looking back at the proof of Proposition 2.3,

we only need the part of it that deals with blocks 2© and 4©, since Σ and ΣA coincide

in the blocks 1© and 5©. Doing the same calculation as in said proof, we see that for

any entry (i, j) in blocks 2© or 5©,

|Σij − ΣA,ij | ≤
√

2√
n
.

Under Assumption 2.2, that is s∗ = o

( √
n√

log(n)·Kn

)
where we define Kn with the

components corresponding to γ set to zero, this expression will be smaller than 1
64s∗+

for n large enough. Thus, for n large enough, by Lemma 2.8 and inequality (2.12),

κ2(Σ, s∗+) ≥ 1/2− 1/4 = 1/4.

Notice that the bound 1/4 in the lemma above are somewhat arbitrary and an

artefact of how we pick our constants in the proof of that Lemma.

2.7.1.3 A rescaled penalized likelihood problem

We mentioned in Section 2.2 that it is possible to present an equivalent formulation

of problem (2.4) in terms of a rescaled likelihood problem using the sample size

adjusted design matrix D̄. We will rely heavily on this formulation which we now

make precise.

Recall that in the definition of D̄ we effectively blew up the entries belonging to

β. The blow-up factor was chosen precisely such that we can now reformulate our

problem as a problem in which each parameter effectively has sample size
(
n
2

)
. That

is, our original penalized likelihood problem can be rewritten as

ˆ̄θ = ( ˆ̄β, µ̂, γ̂) = arg min
β̄,µ,γ

1(
n
2

)(− n∑
i=1

√
n√
2
β̄idi − d+µ−

∑
i<j

(ZTijγ)Aij

+
∑
i<j

log

(
1 + exp

(√
n√
2
β̄i +

√
n√
2
β̄j + µ+ ZTijγ

)))

+ λ̄‖β̄‖1,

(2.13)

where λ̄ =
√
n√
2
λ and the argmin is taken over Θ̄loc = {θ̄ ∈ Θ : ‖D̄θ̄‖∞ ≤ rn}. Note

that Θ̄loc is convex. Given a solution ( ˆ̄β, µ̂, γ̂) for a given λ̄ to this modified problem

(2.13), we obtain a solution to our original problem (2.4) with penalty λ = λ̄
√

2/
√
n,

by setting

(β̂, µ̂, γ̂) =

(√
n√
2

ˆ̄β, µ̂, γ̂

)
.
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For a compacter way of writing, introduce the following notation: For any parameter

θ = (βT , µ, γT )T ∈ Θ, we write

θ̄ =

(√
2√
n
β, µ, γ

)
, and β̄ =

√
2√
n
β.

In particular we use θ̄0 = (β̄T0 , µ0, γ
T
0 )T , β̄0 =

√
2√
n
β0, to denote the rescaled truth and

θ̄∗ = (β̄∗T , µ∗, γ∗T )T , β̄∗ =
√

2√
n
β∗ to denote the rescaled best local approximation.

Note that for any θ ∈ Θ, Dθ = D̄θ̄ and hence the bound rn is the same in the

definitions of Θloc and Θ̄loc. Also, since rescaling the set Rn+ still results in Rn+,

there is no need to introduce a set Θ̄. Note that θ ∈ Θloc if and only if θ̄ ∈ Θ̄loc.

For any θ̄ = (β̄T , µ, γ)T , denote the negative log-likelihood function correspond-

ing to the rescaled problem (2.13) as

L̄(θ̄) = −
n∑
i=1

√
n√
2
β̄idi − d+µ−

∑
i<j

(ZTijγ)Aij

+
∑
i<j

log

(
1 + exp

(√
n√
2
β̄i +

√
n√
2
β̄j + µ+ ZTijγ

))
.

Then, clearly L̄(θ̄) = L(θ) and

Ē(θ̄) :=
1(
n
2

)(E[L̄(θ̄)]− E[L̄(θ̄∗)]) = E(θ).

Thus, θ̄∗ fulfils

θ̄∗ = arg min
θ∈Θ̄loc

Ē(θ̄),

i.e. θ̄∗ is the best local rescaled solution.

To give us a more compact way of writing, for any θ ∈ Θ we introduce functions

fθ : Rn+1+p → R, fθ(v) = vT θ and denote the function space of all such fθ by

F := {fθ : θ ∈ Θ}. We endow F with two norms as follows. Denote the law of the

rows of D̄ on Rn+1+p, i.e. the probability measure induced by (X̄T
ij , 1, Z

T
ij)

T , i < j,

by Q̄. That is, for a measurable set A = A1 ×A2 ⊂ Rn+1 × Rp,

Q̄(A) =
1(
n
2

)∑
i<j

P (D̄ij ∈ A) =
1(
n
2

)∑
i<j

δ̄ij(A1) · P (Zij ∈ A2),

where δ̄ij(A1) = 1 if (X̄T
ij , 1)T ∈ A1 and zero otherwise, is the Dirac-measure. We

are interested in the L2 and L∞ norm on F with respect to the measure Q̄ on

Rn+1 × Rp. Denote the L2(Q̄)-norm of f ∈ F simply by ‖ . ‖Q̄ and let EZ be the
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expectation with respect to Z:

‖f‖2Q̄ := ‖f‖2L2(Q̄) =

∫
Rn+1×Rp

f(v)2Q̄(dv) =
1(
n
2

)∑
i<j

EZ [f((X̄T
ij , 1, Z

T
ij)

T )2]

and define the L∞(Q̄)-norm as usual as the Q̄-a.s. smallest upper bound of f :

‖f‖Q̄,∞ = inf{C ≥ 0 : |f(v)| ≤ C for Q̄-almost every v ∈ Rn+1+p}.

In particular, for any fθ ∈ F, θ ∈ Θloc: ‖fθ‖∞ ≤ supZij ‖Dθ‖∞ ≤ rn.

We make the analogous definitions for the unscaled design matrix. Define the

probability measure induced by the rows of D on Rn+1+p as Q. It is easy to see that

we can switch between these norms as follows. Given a parameter θ and its rescaled

version θ̄, then clearly

‖fθ̄‖Q̄ = ‖fθ‖Q, ‖fθ̄‖Q̄,∞ = ‖fθ‖Q,∞.

Also note that for any θ̄

‖fθ̄‖2Q̄ = EZ

 1(
n
2

)∑
i<j

(D̄T
ij θ̄)

2

 = θ̄TΣθ̄. (2.14)

We have the following corollary which follows immediately from Proposition 2.3.

Corollary 2.10. Under Assumption 2.1, for s∗ = o(
√
n) and n large enough, for

every θ̄ = θ̄1 − θ̄2, θ̄1, θ̄2 ∈ Θ̄loc with ‖θ̄S∗c+
‖1 ≤ 3‖θ̄S∗+‖1, we have

‖θ̄S∗+‖
2
1 ≤

2s∗+
cmin
‖fθ̄1 − fθ̄2‖

2
Q̄.

Proof. Follows from Proposition 2.3 and identity (2.14).

2.7.1.4 Two basic inequalities

A key result in the consistency proofs in classical LASSO settings is the so called

basic inequality (cf. van de Geer & Bühlmann (2011), Chapter 6). We give two

formulations of it, one for the original penalized likelihood problem (2.4) and one,

completely analogous result, for the rescaled problem (2.13). To that end, let Pn

denote the empirical measure with respect to our observations (Aij , Zij)i,j , that is,

for any suitable function g, Png :=
∑

i<j g(Aij , Zij)/
(
n
2

)
. In particular, if we let for

each θ ∈ Θ,

lθ(Aij , Zij) = −Aij(βi + βj + µ+ γTZij) + log(1 + exp(βi + βj + µ+ γTZij)),
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then Pnlθ = L(θ)/
(
n
2

)
. Similarly, we define P = EPn. In particular, Plθ = EPnlθ =

E[L(θ)/
(
n
2

)
], where we suppress the dependence on n in our notation.

We define the empirical process as

{vn(θ) = (Pn − P )lθ : θ ∈ Θ} .

Which can also be written in rescaled form as

v̄n(θ̄) :=
1(
n
2

)(L̄(θ̄)− E[L̄(θ̄)]) = vn(θ).

Lemma 2.11 (Basic Inequality). For any θ = (βT , µ, γT )T ∈ Θloc we have

E(θ̂) + λ‖β̂‖1 ≤ −[vn(θ̂)− vn(θ)] + E(θ) + λ‖β‖1.

Proof. Plugging in the definitions, the above equation is equivalent to

1(
n
2

) (E[L(θ̂)]− E[L(θ0)]
)

+ λ‖β̂‖1

≤ − 1(
n
2

)L(θ̂) +
1(
n
2

)E[L(θ̂)] +
1(
n
2

)L(θ)− 1(
n
2

)E[L(θ)]

+ λ‖β‖1 +
1(
n
2

) (E[L(θ)]− E[L(θ0)]) .

Rearranging shows that this is true if and only if

1(
n
2

)L(θ̂) + λ‖β̂‖1 ≤
1(
n
2

)L(θ) + λ‖β‖1,

which is true by definition of θ̂.

Remark. For any 0 < t < 1 and θ ∈ Θloc, let θ̃ = tθ̂ + (1− t)θ. Since Γ is convex,

θ̃ ∈ Θloc and since θ 7→ lθ and ‖ . ‖1 are convex functions, we can replace θ̂ by θ̃ in

the basic inequality and still obtain the same result. Plugging in the definitions, we

see that the basic inequality is equivalent to the following:

E(θ̃) + λ‖β̃‖1 ≤ −[vn(θ̃)− vn(θ)] + λ‖β‖1 + E(θ)

⇐⇒ 1(
n
2

)L(θ̃) + λ‖β̃‖1 ≤
1(
n
2

)L(θ) + λ‖β‖1

and by convexity

1(
n
2

)L(θ̃) + λ‖β̃‖1 ≤
1(
n
2

) tL(θ̂) +
1(
n
2

)(1− t)L(θ) + tλ‖β̂‖1 + (1− t)λ‖β‖1

≤ 1(
n
2

)L(θ) + λ‖β‖1,
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where the last inequality follows by definition of θ̂. In particular, for any M > 0,

choosing

t =
M

M + ‖θ̂ − θ‖1
,

gives ‖θ̃ − θ‖1 ≤M .

Lemma 2.12. For any θ̄ ∈ Θ̄loc we have

Ē(ˆ̄θ) + λ̄‖ ˆ̄β‖1 ≤ −[v̄n(ˆ̄θ)− v̄n(θ̄)] + Ē(θ̄) + λ̄‖β̄‖1.

Since the proof of Lemma 2.11 only relies on the argmin property of θ̂, the proof

of Lemma 2.12 is line by line the same as for Lemma 2.11. We also get the same

property for convex combinations of ˆ̄θ and θ̄: For any t ∈ (0, 1) the rescaled basic

inequality Lemma 2.12 holds for ˆ̄θ replaced by θ̃ = t ˆ̄θ + (1− t)θ̄ ∈ Θ̄loc.

2.7.1.5 Lower quadratic margin for E

In this section we will derive a lower quadratic bound on the excess risk E(θ) if

the parameter θ is close to the truth θ0. This is a necessary property for the proof

to come and is referred to as the margin condition in classical LASSO theory (cf.

van de Geer & Bühlmann (2011)). We will conduct our derivations for the original

parameter space Θloc. Since L(θ) = L̄(θ̄) and E(θ) = Ē(θ̄), we will find that the

same results hold in the rescaled model.

The proof mainly relies on a second-order Taylor expansion of the function lθ of

introduced in Section 2.7.1.4. Given a fixed θ, we treat lθ as a function in θTx and

define new functions lij : R→ R, i < j,

lij(a) = E[lθ(Aij , a)|Zij ] = −pija+ log(1 + exp(a)),

where pij = P (Aij = 1|Zij) and by slight abuse of notation we use lθ(Aij , a) :=

−Aija+ log(1 + exp(a)). Taking derivatives, it is easy to see that

fθ0((XT
ij , 1, Z

T
ij)

T ) ∈ arg min
a
lij(a).

Note that we are using the actual truth θ0 in the above equation, not the best local

approximation θ∗. Write f0 = fθ0 .

All lij are clearly twice continuously differentiable with derivative

∂2

∂a2
lij(a) =

exp(a)

(1 + exp(a))2
> 0,∀a ∈ R.
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Using a second-order Taylor expansion around a0 = f0((XT
ij , 1, Z

T
ij)

T ) we get

lij(a) = lij(a0) + l′(a0)(a− a0) +
l′′(ā)

2
(a− a0)2 = lij(a0) +

l′′(ā)

2
(a− a0)2,

with an ā between a and a0. Note that exp(a)
(1+exp(a))2 is symmetric and monotone

decreasing for a ≥ 0. Then, for any η > 0 and any a with |a− a0| ≤ η, we get

lij(a)− lij(a0) =
exp(ā)

(1 + exp(ā))2

(a− a0)2

2

=
exp(|ā|)

(1 + exp(|ā|))2

(a− a0)2

2
, by symmetry

≥ exp(|a0|+ η)

(1 + exp(|a0|+ η))2

(a− a0)2

2
, since |ā| ≤ |a0|+ η

=
exp(|f0((XT

ij , 1, Z
T
ij)

T )|+ η)

(1 + exp(|f0((XT
ij , 1, Z

T
ij)

T )|+ η))2

(a− a0)2

2
.

(2.15)

In particular, for any θ with |fθ((XT
ij , 1, Z

T
ij)

T )− f0((XT
ij , 1, Z

T
ij)

T )| ≤ η, we have

lij(fθ((X
T
ij , 1,Z

T
ij)

T ))− lij(f0((XT
ij , 1, Z

T
ij)

T ))

≥
exp(|f0((XT

ij , 1, Z
T
ij)

T )|+ η)

(1 + exp(|f0((XT
ij , 1, Z

T
ij)

T )|+ η))2

·
(fθ((X

T
ij , 1, Z

T
ij)

T )− f0((XT
ij , 1, Z

T
ij)

T ))2

2

≥ exp(rn,0 + η)

(1 + exp(rn,0 + η))2

(fθ((X
T
ij , 1, Z

T
ij)

T )− f0((XT
ij , 1, Z

T
ij)

T ))2

2
.

Define

τ =
exp(rn,0 + η)

2(1 + exp(rn,0 + η))2

and notice that for Kn defined in (2.5) we have

Kn = Kn(η) =
1

τ
.

Define a subset Flocal ⊂ F as Flocal = {fθ ∈ F : ‖fθ − f0‖∞ ≤ η}. For all fθ ∈ Flocal:

E(θ) =
1(
n
2

)∑
i<j

E[lθ(Aij , (X
T
ij , Z

T
ij)

T )− lθ0(Aij , (X
T
ij , Z

T
ij)

T )]

=
1(
n
2

)∑
i<j

E[(lij(fθ((X
T
ij , Z

T
ij)

T ))− lij(f0((XT
ij , Z

T
ij)

T )))]

≥ 1(
n
2

)∑
i<j

τE[(fθ((X
T
ij , Z

T
ij)

T )− f0((XT
ij , Z

T
ij)

T ))2]

≥ 1

Kn
‖fθ − f0‖2Q.

Thus, we have obtained a lower bound for the excess risk given by the quadratic

function Gn(‖fθ − f0‖) where Gn(u) = 1/Kn · u2. Since E(θ) = Ē(θ̄) and ‖fθ‖2Q =
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‖fθ̄‖2Q̄ and ‖fθ‖Q,∞ = ‖fθ̄‖Q̄,∞, we obtain the same result for the rescaled problem

(2.13): For any θ̄ ∈ Θ̄loc with ‖fθ̄ − fθ̄0‖Q̄,∞ ≤ η, we have

Ē(θ̄) ≥ 1

Kn
‖fθ̄ − fθ̄0‖

2
Q̄.

Recall that the convex conjugate of a strictly convex function G on [0,∞) with

G(0) = 0 is defined as the function

H(v) = sup
u
{uv −G(u)}, v > 0

and in particular, if G(u) = cu2 for a positive constant c, we have H(v) = v2/(4c).

Hence, the convex conjugate of Gn is

Hn(v) =
v2Kn

4
.

Keep in mind that by definition for any u, v: uv ≤ G(u) +H(v).

2.7.1.6 Consistency on a special set

We will show that the penalized likelihood estimator is consistent in the sense that

it converges to the best possible approximation θ∗. We will show that consistency

holds on a special set I. It then suffices to show that P (I)→ 1.

The proof follows in spirit van de Geer & Bühlmann (2011), Theorem 6.4. It

uses the language of rescaled likelihood problem (2.13). We define some objects

that we will need for the proof of consistency. We want to use the quadratic margin

condition derived in Section 2.7.1.5. Recall that we defined η := 2rn+2‖β∗−β0‖∞+

|µ∗ − µ0|+ 2κ in Section 2.2. Then, for any θ̄ ∈ Θ̄loc we have

‖fθ̄ − fθ̄0‖Q̄,∞ = ‖fθ − fθ0‖Q,∞ ≤ ‖fθ − fθ∗‖Q,∞ + ‖fθ∗ − fθ0‖Q,∞

≤ ‖fθ‖Q,∞ + ‖fθ∗‖Q,∞

+ inf{C : max
i<j
|β∗i + β∗j + µ∗ − β0,i − β0,j − µ0 + (γ∗ − γ0)TZij |

≤ C, a.s.}

≤ 2rn + 2‖β∗ − β0‖∞ + |µ∗ − µ0|+ 2κ = η.

That is, the quadratic margin condition holds for any θ̄ ∈ Θ̄loc. With that definition

of η, we have for Kn defined in (2.5),

Kn ≤ 2
(1 + exp(rn,0 + 2rn + 2‖β∗ − β0‖∞ + |µ∗ − µ0|+ 2κ))2

exp(rn,0 + 2rn + 2‖β∗ − β0‖∞ + |µ∗ − µ0|+ 2κ)
.

67



Define

ε∗ =
3

2
Ē(θ̄∗) +Hn

(
4
√

2s∗+λ̄√
cmin

)
.

Remember that Ē(θ̄∗) = E(θ∗) corresponds to the approximation error of our model.

Let for any M > 0

ZM := sup
θ̄∈Θ̄loc,

‖θ̄−θ̄∗‖1≤M

|v̄n(θ̄)− v̄n(θ̄∗)|,

where v̄n denotes the rescaled empirical process. Recall that for any rescaled θ̄ we

have v̄n(θ̄) = vn(θ). and by construction θ̄ ∈ Θ̄loc if and only if θ ∈ Θloc. Hence, the

set over which we are maximizing in the definition of ZM can be expressed in terms

of parameters θ on the original scale as{
θ = (βT , µ, γT )T ∈ Θloc :

√
2√
n
‖β − β∗‖1 + |µ− µ∗|+ ‖γ − γ∗‖1 ≤M

}
.

Set

M∗ := ε∗/λ0,

where λ0 is a lower bound on λ̄ that will be made precise in the proof showing that

I has large probability. Define

I := {ZM∗ ≤ λ0M
∗} = {ZM∗ ≤ ε∗}. (2.16)

Theorem 2.13. Let Assumptions 2.1 and 2.2 hold and let λ̄ ≥ 8λ0. Then, on the

set I, we have

E(θ̂) + λ̄

(√
2√
n
‖β̂ − β∗‖1 + |µ̂− µ∗|+ ‖γ̂ − γ∗‖1

)
≤ 6E(θ∗) + 4Hn

(
4
√

2s∗+λ̄√
cmin

)
.

Proof of Theorem 2.13. We assume that we are on the set I throughout. Set

t =
M∗

M∗ + ‖ ˆ̄θ − θ̄∗‖1

and θ̃ = (β̃T , µ̃, γ̃T )T = t ˆ̄θ + (1− t)θ̄∗. Then,

‖θ̃ − θ̄∗‖1 = t‖ ˆ̄θ − θ̄∗‖ ≤M∗.

Since ˆ̄θ, θ̄∗ ∈ Θ̄loc and by the convexity of Θ̄loc, θ̃ ∈ Θ̄loc, and by the remark after
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Lemma 2.12, the basic inequality holds for θ̃:

Ē(θ̄) + λ̄‖β̃‖1 ≤ −(v̄n(θ̃)− v̄n(θ̄∗)) + Ē(θ̄) + λ̄‖β̄∗‖1

≤ ZM∗ + λ̄‖β̄∗‖1 + Ē(θ̄∗)

≤ ε∗ + λ̄‖β̄∗‖1 + Ē(θ̄∗).

From now on, write Ẽ = Ē(θ̃) and E∗ = Ē(θ̄∗). Note, that ‖β̃‖1 = ‖β̃S∗c‖1 + ‖β̃S∗‖1
and thus, by the triangle inequality,

Ẽ + λ̄‖β̃S∗c‖1 ≤ ε∗ + λ̄(‖β̄∗‖1 − ‖β̃S∗‖1) + E∗

≤ ε∗ + λ̄(‖β̄∗ − β̃S∗‖1) + E∗

≤ ε∗ + λ̄(‖β̄∗ − β̃S∗‖1 + ‖(µ∗, γ∗T )T − (µ̃, γ̃T )T ‖1) + E∗

= ε∗ + λ̄‖(θ̃ − θ̄∗)S∗+‖1 + E∗

≤ 2ε∗ + λ̄‖(θ̃ − θ̄∗)S∗+‖1.

(2.17)

Case i) If λ̄‖(θ̃ − θ̄∗)S∗+‖1 ≥ ε
∗, then

λ̄‖β̃S∗c‖1 ≤ Ẽ + λ̄‖β̃S∗c‖1 ≤ 3λ̄‖(θ̃ − θ̄∗)S∗+‖1. (2.18)

Since ‖(θ̃ − θ̄∗)S∗c+
‖1 = ‖β̃S∗c‖1, we may thus apply the compatibility condition,

Corollary 2.10 (note that β̄∗ = β̄∗S∗) to obtain

‖(θ̃ − θ̄∗)S∗+‖1 ≤
√

2s∗+√
cmin
‖fθ̃ − fθ̄∗‖Q̄,

where we have used that θ 7→ fθ is linear and hence fθ̃−θ̄∗ = fθ̃ − fθ̄∗ Observe that

‖θ̃ − θ∗‖1 = ‖β̃S∗c‖1 + ‖(θ̃ − θ∗)S∗+‖1. (2.19)

Hence,

Ẽ + λ̄‖θ̃ − θ̄∗‖1 = Ẽ + λ̄(‖β̃S∗c‖1 + ‖(θ̃ − θ̄∗)S∗+‖1)

≤ ε∗ + 2λ̄‖(θ̃ − θ̄∗)S∗+‖1 + E∗

≤ ε∗ + E∗ + 2λ̄

√
2s∗+√
cmin
‖fθ̃ − fθ̄∗‖Q̄.

Recall that for a convex function G and its convex conjugate H we have uv ≤

G(u) +H(v). Since θ̃, θ̄∗ ∈ Θ̄loc, it holds ‖fθ̃ − fθ̄0‖∞ ≤ η, ‖fθ̄∗ − fθ̄0‖∞ ≤ η. Thus,
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we obtain

2λ̄

√
2s∗+√
cmin
‖fθ̃ − fθ̄∗‖Q̄ = 4λ̄

√
2s∗+√
cmin

‖fθ̃ − fθ̄∗‖Q̄
2

≤ 4λ̄

√
2s∗+√
cmin

‖fθ̃ − fθ̄0‖Q̄ + ‖fθ̄∗ − fθ̄0‖Q̄
2

≤ Hn

(
4λ̄

√
2s∗+√
cmin

)
+Gn

(‖fθ̃ − fθ̄0‖Q̄ + ‖fθ̄∗ − fθ̄0‖Q̄
2

)

≤ Hn

(
4λ̄

√
2s∗+√
cmin

)
+
Gn(‖fθ̃ − fθ̄0‖Q̄)

2
+
Gn(‖fθ̄∗ − fθ̄0‖Q̄)

2

≤ Hn

(
4λ̄

√
2s∗+√
cmin

)
+
Ẽ
2

+
E∗

2
,

where we have used the convexity of Gn in the second-to-last inequality and the

margin condition in the last inequality. It follows

Ẽ + λ̄‖θ̃ − θ̄∗‖1 ≤ ε∗ +
3

2
E∗ +Hn

(
4λ̄

√
2s∗+√
cmin

)
+
Ẽ
2

= 2ε∗ +
Ẽ
2

and therefore
Ẽ
2

+ λ̄‖θ̃ − θ̄∗‖1 ≤ 2ε∗. (2.20)

Finally, this gives

‖θ̃ − θ̄∗‖1 ≤
2ε∗

λ̄
=

2λ0M
∗

λ̄
≤︸︷︷︸

λ̄≥4λ0

M∗

2
.

From this, by using the definition of θ̃, we obtain

‖θ̃ − θ̄∗‖1 = t‖ ˆ̄θ − θ̄∗‖1 =
M∗

M∗ + ‖ ˆ̄θ − θ̄∗‖1
‖ ˆ̄θ − θ̄∗‖1 ≤

M∗

2
.

Rearranging gives

‖ ˆ̄θ − θ̄∗‖1 ≤M∗.

Case ii) If λ̄‖(θ̄∗ − θ̃)S∗+‖1 ≤ ε
∗, then from (2.17)

Ẽ + λ̄‖β̃S∗c‖1 ≤ 3ε∗.

Using once more (2.19), we get

Ẽ + λ̄‖θ̃ − θ̄∗‖1 = Ẽ + λ̄‖β̃S∗c‖1 + λ̄‖(θ̃ − θ̄∗)S∗+‖1 ≤ 4ε∗. (2.21)

Thus,

‖θ̃ − θ̄∗‖1 ≤ 4
ε∗

λ̄
= 4

λ0

λ̄
M∗ ≤ M∗

2
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by choice of λ ≥ 8λ0. Again, plugging in the definition of θ̃, we obtain

‖ ˆ̄θ − θ̄∗‖1 ≤M∗.

Hence, in either case we have ‖ ˆ̄θ− θ̄∗‖1 ≤M∗. That means, we can repeat the above

steps with ˆ̄θ instead of θ̃: Writing Ê := Ē(ˆ̄θ), following the same reasoning as above

we arrive once more at (2.17):

Ê + λ̄‖ ˆ̄βS∗c‖1 ≤ 2ε∗ + λ̄‖β̄∗ − ˆ̄βS∗‖1 ≤ 2ε∗ + λ̄‖(ˆ̄θ − θ̄∗)S∗+‖1.

From this, in case i) we obtain (2.18) which allows us to use the compatibility

assumption to arrive at (2.20):

Ê
2

+ λ̄‖ ˆ̄θ − θ̄∗‖1 ≤ 2ε∗,

resulting in

Ê + λ̄‖ ˆ̄θ − θ̄∗‖1 ≤ 4ε∗.

In case ii) on the other hand, we arrive directly at (2.21), and hence

Ê + λ̄‖ ˆ̄θ − θ̄∗‖1 ≤ 3ε∗.

Plugging in the definitions of ˆ̄θ and θ̄∗ and using the fact that Ê = Ē(ˆ̄θ) = E(θ̂)

proves the claim.

In the SβM without covariates we have an analogous result. Extend the defini-

tions of I, ZM to the SβM canonically by letting p = 0, γ = 0, κ = 0, Zij = 0, i < j.

By Lemma 2.9 the compatibility condition holds for the SβM. The proof of the

following corollary follows almost line by line as the proof of Theorem 2.13.

Corollary 2.14. Assume that in the SβM Assumption 2.2 holds and that λ ≥ 8λ0,

with λ0 as in Theorem 2.13. Then, on the set I defined in (2.16), we have

E(θ̂) + λ̄

(√
2√
n
‖β̂ − β∗‖1 + |µ̂− µ∗|

)
≤ 6E(θ∗) + 4Hn

(
4
√

2s∗+λ̄√
cmin

)
.

Proof. Analogous to the proof of Theorem 2.13.

2.7.1.7 Controlling the special set I

We show that I has measure tending to one. We first recall some probability in-

equalities that we will need.

Concentration inequalities
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This is based on Chapter 14 in van de Geer & Bühlmann (2011). Throughout let

Z1, . . . , Zn be a sequence of independent random variables in some space Z and G

be a class of real valued functions on Z.

Definition 2.15. A Rademacher sequence is a sequence ε1, . . . , εn of i.i.d. random

variables with P (εi = 1) = P (εi = −1) = 1/2 for all i.

Theorem 2.16 (Symmetrization Theorem as in van der Vaart & Wellner (1996),

abridged). Let ε1, . . . , εn be a Rademacher sequence independent of Z1, . . . , Zn. Then

E

(
sup
g∈G

∣∣∣∣∣
n∑
i=1

{g(Zi)− E[g(Zi)]}

∣∣∣∣∣
)
≤ 2E

(
sup
g∈G

∣∣∣∣∣
n∑
i=1

εig(Zi)

∣∣∣∣∣
)
.

Theorem 2.17 (Contraction Theorem as in Ledoux & Talagrand (1991)). Let

z1, . . . , zn be non-random elements of Z and let F be a class of real-valued func-

tions on Z. Consider Lipschitz functions gi : R→ R with Lipschitz constant L = 1,

i.e. for all i

|gi(s)− gi(s′)| ≤ |s− s′|,∀s, s′ ∈ R.

Let ε1, . . . , εn be a Rademacher sequence. Then for any function f∗ : Z → R we

have

E

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi{gi(f(zi))− gi(f∗(zi))}

∣∣∣∣∣
)
≤ 2E

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi{f(zi)− f∗(zi)}

∣∣∣∣∣
)
.

The last theorem we need is a concentration inequality due to Bousquet (2002).

We give a version as presented in van de Geer (2008).

Theorem 2.18 (Bousquet’s concentration theorem). Suppose Z1, . . . , Zn and all

g ∈ G satisfy the following conditions for some real valued constants ηn and τn

‖g‖∞ ≤ ηn, ∀g ∈ G

and
1

n

n∑
i=1

Var(g(Zi)) ≤ τ2
n, ∀g ∈ G.

Define

Z := sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E[g(Zi)]

∣∣∣∣∣ .
Then for any z > 0

P

(
Z ≥ E[Z] + z

√
2(τ2

n + 2ηnE[Z]) +
2z2ηn

3

)
≤ exp(−nz2).

Remark. Looking at the original paper of Bousquet (2002), their result looks quite

different at first. To see that the above falls into their framework, set the variables
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in Bousquet (2002) as follows

f(Zi) = (g(Zi)− E[g(Zi)])/(2ηn), Z̃k = sup
f
|
∑
i 6=k

f(Zi)|,

fk = arg sup
f
|
∑
i 6=k

f(Zi)|, Z̃ ′k = |
n∑
i=1

fk(Zi)| − Z̃k

Z̃ =
2ηn
n

Z.

Now apply Theorem 2.1 in Bousquet (2002), choosing for their (Z,Z1, . . . , Zn) the

above defined (Z̃, Z̃1, . . . , Z̃n), for their (Z ′1, . . . , Z
′
n) the above defined (Z̃ ′1, . . . , Z̃

′
n)

and setting u = 1 and σ2 = τ2
n

4η2
n
in their theorem: The result is exactly Theorem

2.18 above.

The proof of the next lemma can be found in van de Geer & Bühlmann (2011),

Lemma 14.14 (here we use the special case of their lemma for m = 1).

Lemma 2.19. Let G = {g1, . . . , gp} be a set of real valued functions on Z satisfying

for all i = 1, . . . , n and all j = 1, . . . , p

E[gj(Zi)] = 0, |gj(Zi)| ≤ cij

for some positive constants cij. Then

E

[
max

1≤j≤p

∣∣∣∣∣
n∑
i=1

gj(Zi)

∣∣∣∣∣
]
≤ [2 log(2p)]1/2 max

1≤j≤p

[
n∑
i=1

c2
ij

]1/2

.

The expectation of ZM

Recall the definition of ZM

ZM := sup
θ̄∈Θ̄loc,

‖θ̄−θ̄∗‖1≤M

|v̄n(θ̄)− v̄n(θ̄∗)|,

where v̄n denotes the rescaled empirical process. Recall that there is a constant

c ∈ R such that uniformly |Zij,k| ≤ c, 1 ≤ i < j ≤ n, k = 1, . . . , p.

Lemma 2.20. For any M > 0 we have in the SβM-C

E[ZM ] ≤ 8M(1 ∨ c)

√
2 log(2(n+ p+ 1))(

n
2

)
and in the SβM without covariates

E[ZM ] ≤ 8M

√
log(2(n+ 1))(

n
2

) .
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Proof. We only give the proof for the SβM-C. The proof for the case without co-

variates is exactly the same with the corresponding parts set to zero. Let εij , i < j,

be a Rademacher sequence independent of Aij , Zij , i < j. We first want to use

the Symmetrization Theorem 2.16: For the random variables Z1, . . . , Zn we choose

Tij = (Aij , X̄
T
ij , 1, Z

T
ij)

T ∈ {0, 1} × Rn+1+p. For any θ̄ ∈ Θ̄loc consider the functions

gθ̄(Tij) =
1(
n
2

) {−AijD̄T
ij(θ̄ − θ̄∗) + log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗))
}

and the function set G = G(M) := {gθ̄ : θ̄ ∈ Θ̄loc, ‖θ̄ − θ̄∗‖1 ≤M}. Note, that

v̄n(θ̄)− v̄n(θ̄∗) =
∑
i<j

{gθ̄(Tij)− E[gθ̄(Tij)]}.

Then, the Symmetrization Theorem gives us

E[ZM ] = E

 sup
gθ̄∈G

∣∣∣∣∣∣
∑
i<j

gθ̄(Tij)− E[gθ̄(Tij)]

∣∣∣∣∣∣


≤ 2E

 sup
gθ̄∈G

∣∣∣∣∣∣
∑
i<j

εijgθ̄(Tij)

∣∣∣∣∣∣
 .

Next, we want to apply the Contraction Theorem 2.17. Denote T = (Tij)i<j and let

ET be the conditional expectation given T . We need the conditional expectation at

this point, because Theorem 2.17 requires non-random arguments in the functions.

This does not hinder us, as later we will simply take iterated expectations, cancelling

out the conditional expectation, see below. For the functions gi in Theorem 2.17 we

choose

gij(x) =
1

2
{−Aijx+ log(1 + exp(x))}

Note, that log(1 + exp(x)) has derivative bounded by one and thus is Lipschitz

continuous with constant one by the Mean Value Theorem. Thus, all gij are also

Lipschitz continuous with constant 1:

|gij(x)− gij(x′)| ≤
1

2
{|Aij(x−x′)|+ | log(1 + exp(x))− log(1 + exp(x′))|} ≤ |x−x′|.

For the function class F in Theorem 2.17 we choose F = FM := {fθ̄ : θ̄ ∈ Θ̄loc, ‖θ̄−

74



θ̄∗‖1 ≤M} and pick f∗ = fθ̄∗ . Then, by Theorem 2.17

ET

 sup
θ̄∈Θ̄loc,

‖θ̄−θ̄∗‖1≤M

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

εij(gij(fθ̄((X̄
T
ij , 1, Z

T
ij)

T ))− gij(fθ̄∗((X̄T
ij , 1, Z

T
ij)

T )))

∣∣∣∣∣∣


≤ 2ET

 sup
θ̄∈Θ̄loc,

‖θ̄−θ̄∗‖1≤M

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

εij(fθ̄((X̄
T
ij , 1, Z

T
ij)

T )− fθ̄∗((X̄T
ij , 1, Z

T
ij)

T ))

∣∣∣∣∣∣
 .

Recall that we can express the functions fθ̄ = fβ̄,µ,γ as

fβ̄,µ,γ( . ) = µen+1( . ) +
n∑
i=1

β̄iei( . ) +

p∑
i=1

γien+1+i( . ),

where ei( . ) is the projection on the ith coordinate. Consider any θ̄ = (θ̄i)
n+1+p
i=1 =

(β̄T , µ, γT )T ∈ Θ̄loc with ‖θ̄ − θ̄∗‖1 ≤ M . We simply write ek(Xij , 1, Zij) for the

projection of the the vector (XT
ij , 1, Z

T
ij)

T ∈ Rn+p+1 to its kth component, i.e. instead

of ek((XT
ij , 1, Z

T
ij)

T ). Then,

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

εij(fθ̄((X̄
T
ij , 1, Z

T
ij)

T )− fθ̄∗((X̄T
ij , 1, Z

T
ij)

T ))

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

εij

(
n+p+1∑
k=1

(θ̄k − θ̄∗k)ek(X̄ij , 1, Zij)

)∣∣∣∣∣∣
≤ 1(

n
2

) n+p+1∑
k=1

|θ̄k − θ̄∗k| max
1≤l≤n+p+1

∣∣∣∣∣∣
∑
i<j

εijel(X̄ij , 1, Zij)

∣∣∣∣∣∣


≤M max
1≤l≤n+p+1

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

εijel(X̄ij , 1, Zij)

∣∣∣∣∣∣ .
The last expression no longer depends on θ̄. To bind the right hand side in the last

expression we use Lemma 2.19: In the language of the lemma, choose Z1, . . . , Zn

as Tij = (εij , X̄
T
ij , 1, Z

T
ij)

T . We choose for the p in the formulation of the Lemma

n+ p+ 1 and pick for our functions

gk(Tij) =
1(
n
2

)εijek(X̄ij , 1, Zij), k = 1, . . . , n+ p+ 1.

Note that E[gk(Tij)] = 0. We want to employ Lemma 2.19 which requires us to

bound |gk(Tij)| ≤ cij,k for all i < j and k = 1, . . . , n+1+p. For any fixed 1 ≤ k ≤ n

we have

|gk(Tij)| ≤


√
n√

2(n2)
=

√
2

(n−1)
√
n
, i or j = k

0, otherwise.
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The first case occurs exactly (n− 1) times for each k. Thus, for any k ≤ n,

∑
i<j

c2
ij,k =

( √
2

(n− 1)
√
n

)2

(n− 1) =
1(
n
2

) .
If k = n+ 1, |gk(Tij)| = 1/

(
n
2

)
and hence

∑
i<j

c2
ij,n+1 =

1(
n
2

) .
Finally, if k > n+ 1, |gk(Tij)| ≤ c/

(
n
2

)
and therefore,

∑
i<j

c2
ij,k ≤

c2(
n
2

) .
In total, this means

max
1≤k≤n+1+p

∑
i<j

c2
ij,k ≤

1 ∨ c2(
n
2

) .

Therefore, an application of Lemma 2.19 results in

E

[
max

1≤l≤n+p+1

∣∣∣∣∣ 1(
n
2

)∑
i<j

εijel(X̄ij , Zij)

∣∣∣∣∣
]

≤
√

2 log(2(n+ 1 + p)) max
1≤k≤n+1+p

∑
i<j

c2
ij,k

1/2

≤
√

2 log(2(n+ 1 + p))

√
1 ∨ c2(
n
2

)
=

√
2 log(2(n+ 1 + p))(

n
2

) (1 ∨ c).
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Putting everything together, we obtain

E[ZM ] ≤ 2E

 sup
θ̄∈Θ̄loc,

‖θ̄−θ̄∗‖1≤M

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

εij(−Aij(fθ̄(X̄ij , Zij)− fθ̄∗(X̄ij , Zij)))

∣∣∣∣∣∣


= 2E

ET
 sup

θ̄∈Θ̄loc,
‖θ̄−θ̄∗‖1≤M

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

εij(−Aij(fθ̄(X̄ij , Zij)− fθ̄∗(X̄ij , Zij)))

∣∣∣∣∣∣



≤ 8E

ET
 sup

θ̄∈Θ̄loc,
‖θ̄−θ̄∗‖1≤M

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

εij(fθ̄(X̄ij , Zij)− fθ̄∗(X̄ij , Zij))

∣∣∣∣∣∣



≤ 8ME

ET
 max

1≤l≤n+p+1

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

εijel(X̄ij , Zij)

∣∣∣∣∣∣


≤ 8M

√
2 log(2(n+ 1 + p))(

n
2

) (1 ∨ c).

This concludes the proof.

Next, we will show that ZM does not deviate too far from its expectation. The

proof relies on the Concentration Theorem due to Bousquet, Theorem 2.18.

Corollary 2.21. Pick any confidence level t > 0. In the SβM-C let

an :=

√
2 log(2(n+ p+ 1))(

n
2

) (1 ∨ c).

and choose λ0 = λ0(t, n) as

λ0 = 8an + 2

√
t(
n
2

)(11(1 ∨ (c2p)) + 8
√

2(1 ∨ c)
√
nan) +

2
√

2t(1 ∨ c)
√
n

3
(
n
2

) .

In the SβM without covariates set

an =

√
log(2(n+ 1))(

n
2

) , λ0 = 8an + 2

√
t(
n
2

)(9 + 8
√

2nan) +
2
√

2t
√
n

3
(
n
2

) .

In either case we have

P (ZM > λ0M) ≤ exp(−t).

Proof. Again, we only give the proof for the case with covariates. The case without

covariates is completely analogous by setting the corresponding parts to zero. We

want to apply Bousquet’s Concentration Theorem 2.18. For the random variables Zi

in the formulation of the theorem we choose once more Tij = (Aij , X̄ij , 1, Zij), i < j,
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and as functions we consider

gθ̄(Tij) = −AijD̄T
ij(θ̄ − θ̄∗) + log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗)),

G = GM := {gθ̄ : θ̄ ∈ Θ̄loc, ‖θ̄ − θ̄∗‖1 ≤M}.

Then, by definition we have

ZM = sup
gθ̄∈G

1(
n
2

)
∣∣∣∣∣∣
∑
i<j

{gθ̄(Tij)− E[gθ̄(Tij)]}

∣∣∣∣∣∣ .
To apply Theorem 2.18, we need to bound ‖gθ̄‖∞. Recall that we denote the dis-

tribution of [X̄|1|Z] by Q̄ and ‖gθ̄‖∞ is defined as the Q̄-almost-sure smallest up-

per bound on the value of gθ̄. For any gθ̄ ∈ G, using the Lipschitz continuity of

log(1 + exp(x)):

|gθ̄(Tij)| ≤ |D̄T
ij(θ̄ − θ̄∗)|+ | log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗))|

≤ 2|D̄T
ij(θ̄ − θ̄∗)|

≤ 2‖β − β∗‖1 + |µ− µ∗|+ c‖γ − γ∗‖1.

Thus,

‖gθ̄‖∞ ≤ 2‖β − β∗‖1 + |µ− µ∗|+ c‖γ − γ∗‖1

≤ 2(1 ∨ c)‖θ − θ∗‖1

≤
√

2(1 ∨ c)
√
nM =: ηn.

For the last inequality we used that for any θ with ‖θ̄ − θ̄∗‖1 ≤ M it follows that

‖θ − θ∗‖1 ≤
√
n/
√

2M , which is possibly a very generous upper bound. This does

not matter, however, as the term associated with the above bound will be negligible,

as we shall see.

The second requirement of Theorem 2.18 is that the average variance of gθ̄(Tij)

has to be uniformly bounded. To that end we calculate

1(
n
2

)∑
i<j

Var(gθ̄(Tij))

=
1(
n
2

)∑
i<j

Var(−AijDT
ij(θ − θ∗))

+
1(
n
2

)∑
i<j

Var(log(1 + exp(D̄T
ij θ̄))− log(1 + exp(D̄T

ij θ̄
∗)))

+
2(
n
2

)∑
i<j

Cov(−AijDT
ij(θ − θ∗), log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗))).
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Let us look at these terms in term. For the first term, we obtain

1(
n
2

)∑
i<j

Var(−AijDT
ij(θ − θ∗)) ≤

1(
n
2

)∑
i<j

E[(−AijDT
ij(θ − θ∗))2]

≤ E

 1(
n
2

)∑
i<j

(DT
ij(θ − θ∗))2

 .
For the second term we get

1(
n
2

)∑
i<j

Var(log(1 + exp(D̄T
ij θ̄))− log(1 + exp(D̄T

ij θ̄
∗)))

≤ 1(
n
2

)∑
i<j

E[(log(1 + exp(D̄T
ij θ̄))− log(1 + exp(D̄T

ij θ̄
∗)))2]

≤ E

 1(
n
2

)∑
i<j

(DT
ij(θ − θ∗))2

 .
The last term decomposes as

2(
n
2

)∑
i<j

Cov(−AijDT
ij(θ − θ∗), log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗)))

=
2(
n
2

)∑
i<j

E[−AijDT
ij(θ − θ∗) · (log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗)))]

− 2(
n
2

)∑
i<j

E[−AijDT
ij(θ − θ∗)] · E[log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗))]

For the first term in that decomposition we have

2(
n
2

)∑
i<j

∣∣E[−AijDT
ij(θ − θ∗) · (log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗)))]

∣∣
≤ 2(

n
2

)∑
i<j

E[|DT
ij(θ − θ∗)| · | log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗))|]

≤ 2(
n
2

)∑
i<j

E[|DT
ij(θ − θ∗)|2]

and for the second term, using the same arguments, we get

2(
n
2

)∑
i<j

E[−AijDT
ij(θ − θ∗)] · E[log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗))]

≤ 2(
n
2

)∑
i<j

E[|DT
ij(θ − θ∗)|]2,
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meaning that in total

2(
n
2

)∑
i<j

∣∣Cov(−AijDT
ij(θ − θ∗), log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄
∗)))

∣∣
≤ 2(

n
2

)∑
i<j

E[|DT
ij(θ − θ∗)|2] +

2(
n
2

)∑
i<j

E[|DT
ij(θ − θ∗)|]2.

In total, we thus get

1(
n
2

)∑
i<j

Var(gθ̄(Tij)) ≤ 4 · E

 1(
n
2

)∑
i<j

(DT
ij(θ − θ∗))2

+
2(
n
2

)∑
i<j

E[|DT
ij(θ − θ∗)|]2.

(2.22)

Furthermore,

1(
n
2

)∑
i<j

(DT
ij(θ − θ∗))2

=
1(
n
2

)∑
i<j

(βi + βj + µ− β∗i − β∗j − µ∗ + (γ − γ∗)TZij)2

≤ 4(
n
2

)∑
i<j

{
(βi − β∗i )2 + (βj − β∗j )2 + (µ− µ∗)2 + ((γ − γ∗)TZij)2

}
,

where the inequality follows from the Cauchy-Schwarz inequality. Recall that for

any x ∈ Rp, ‖x‖2 ≤ ‖x‖1 ≤
√
p‖x‖2 and note that

|(γ − γ∗)TZij | ≤ c‖γ − γ∗‖1 ≤ c
√
p‖γ − γ∗‖2.

Then, from the above

1(
n
2

)∑
i<j

(DT
ij(θ − θ∗))2

≤ 4(
n
2

)∑
i<j

{
(βi − β∗i )2 + (βj − β∗j )2 + (µ− µ∗)2 + c2p‖γ − γ∗‖22

}
= 4

(
(µ− µ∗)2 + c2p‖γ − γ∗‖22 +

1(
n
2

)(n− 1)‖β − β∗‖22

)

= 4

(µ− µ∗)2 + c2p‖γ − γ∗‖22 +

∥∥∥∥∥
√

2√
n

(β − β∗)

∥∥∥∥∥
2

2


= 4

(
(µ− µ∗)2 + c2p‖γ − γ∗‖22 + ‖β̄ − β̄∗‖22

)
≤ 4(1 ∨ (c2p))‖θ̄ − θ̄∗‖22

≤ 4(1 ∨ (c2p))‖θ̄ − θ̄∗‖21

≤ 4(1 ∨ (c2p))M2.

(2.23)
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Notice that for the second term in (2.22) we have

2(
n
2

)∑
i<j

E[|DT
ij(θ − θ∗)|]2 =

2(
n
2

)∑
i<j

(βi − β∗i + βj − β∗j + µ− µ∗ + (γ − γ∗)TE[Zij ])
2

=
2(
n
2

)∑
i<j

(βi − β∗i + βj − β∗j + µ− µ∗)2

≤ 6(
n
2

)∑
i<j

{
(βi − β∗i )2 + (βj − β∗j )2 + (µ− µ∗)2

}
,

so that we may use the same steps as in (2.23) to conclude that

2(
n
2

)∑
i<j

E[|DT
ij(θ − θ∗)|]2 ≤ 6M2 ≤ 6(1 ∨ (c2p))M2.

Such that in total,

1(
n
2

)∑
i<j

Var(gθ̄(Tij)) ≤ 22(1 ∨ (c2p))M2 =: τ2
n.

Applying Bousquet’s concentration theorem 2.18 with ηn, τn defined above, we ob-

tain for all z > 0

exp

(
−
(
n

2

)
z2

)
≥ P

(
ZM ≥ E[ZM ] + z

√
2(τ2

n + 2ηnE[ZM ]) +
2z2ηn

3

)
= P

(
ZM ≥ E[ZM ]

+ z

√
2(22(1 ∨ (c2p))M2 + 2

√
2(1 ∨ c)

√
nME[ZM ])

+
2
√

2z2(1 ∨ c)
√
nM

3

)
.

(2.24)

From Lemma 2.20, we know

E[ZM ] ≤ 8M

√
2 log(2(n+ p+ 1))(

n
2

) (1 ∨ c) = 8Man.

Using this, we obtain from (2.24)

exp

(
−
(
n

2

)
z2

)
≥ P

(
ZM ≥ 8Man + z

√
2(22(1 ∨ (c2p))M2 + 16

√
2(1 ∨ c)

√
nM2an)

+
2
√

2z2(1 ∨ c)
√
nM

3

)

= P

(
ZM ≥M

(
8an + 2z

√
11(1 ∨ (c2p)) + 8

√
2(1 ∨ c)

√
nan +

2
√

2z2(1 ∨ c)
√
n

3

))
.
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Now, pick z =
√
t/
(
n
2

)
to get

exp(−t) ≥

P

(
ZM ≥M

(
8an + 2

√
t(
n
2

)(11(1 ∨ (c2p)) + 8
√

2(1 ∨ c)
√
nan) +

2
√

2t(1 ∨ c)
√
n

3
(
n
2

) ))
,

which is the claim.

2.7.1.8 Proof of Theorems 2.4 and 2.6 and Corollary 2.5

Proof of Theorem 2.4. Follows immediately from Theorem 2.13 and Corollary 2.21.

Proof of Corollary 2.5. We consider the case in which no approximation error is

committed, that is rn,0 ≤ rn. Let ρn be the lower bound on the link probabilities

corresponding to rn. In that case θ∗ = θ0 and hence E(θ∗) = 0. By increasing rn,0

if needed, we may assume without loss of generality that rn,0 = rn and ρn,0 = ρn.

Also, the definition of η may be simplified. Looking back at the derivation of Kn

in (2.15) we see that for a0 = f0((XT
ij , 1, Z

T
ij)

T ) and a = fθ̂((X
T
ij , 1, Z

T
ij)

T ), we have

|a0|, |a| ≤ rn,0. Thus, for the intermediate point ā between a0 and a we must also

have |ā| ≤ rn,0 and we may use that upper bound in (2.15) instead of |ā| ≤ |a0|+ η.

Kn then simplifies to

Kn = 2
(1 + exp(rn,0))2

exp(rn,0)
= 2

(1 + exp (−logit(ρn,0)))2

exp (−logit(ρn,0))
≤ 4

ρn,0
.

Thus, under the conditions of Theorem 2.4, we have with high probability

E(θ̂) + λ̄

(√
2√
n
‖β̂ − β∗‖1 + |µ̂− µ∗|+ ‖γ̂ − γ∗‖1

)
≤ C

s∗+λ̄
2

ρn,0
.

with constant C = 128/cmin.

Proof of Theorem 2.6. Follows immediately from Corollary 2.14 and Corollary 2.21.

2.7.2 Proof of inference results

2.7.2.1 Inverting population and sample Gram matrices

Recall that by Assumption 2.1, the minimum eigenvalue λmin of 1

(n2)
E[ZTZ] stays

uniformly bounded away from zero for all n. Consequently the minimum eigenvalue

of 1

(n2)
E[DT

ϑDϑ] is lower bounded by (1 ∧ λmin) > 0 which is bounded away from
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zero uniformly in n. We show that under Assumption 2.1, with high probability,

the minimum eigenvalue of 1

(n2)
DT
ϑDϑ is bounded away from zero. More precisely,

recall the definition of κ(A,m) for square matrices A and dimensions m. We want

to consider the expression κ2

(
1

(n2)
E[DT

ϑDϑ], p+ 1

)
which simplifies to

κ2

(
1(
n
2

)E[DT
ϑDϑ], p+ 1

)
:= min

v∈Rp+1\{0}

vT 1

(n2)
E[DT

ϑDϑ]v

1
p+1‖v‖

2
1

and compare it to κ2

(
1

(n2)
DT
ϑDϑ, p+ 1

)
. By Assumption 2.1 and the argument

above, we have

κ2

(
1(
n
2

)E[DT
ϑDϑ], p+ 1

)
≥ C > 0

for a C independent of n. With δ = maxkl

∣∣∣∣( 1

(n2)
DT
ϑDϑ

)
kl

−
(

1

(n2)
E[DT

ϑDϑ]

)
kl

∣∣∣∣, by
Lemma 2.8, we have

κ2

(
1(
n
2

)DT
ϑDϑ, p+ 1

)
≥ κ2

(
1(
n
2

)E[DT
ϑDϑ], p+ 1

)
− 16δ(p+ 1).

By looking at the proof of Lemma 2.8, we see that in this particular case we do

not even need the factor 16(p+ 1) on the right hand side above, but this does not

matter anyway, so we keep it.

Lemma 2.22.

δ = max
kl

∣∣∣∣∣
(

1(
n
2

)DT
ϑDϑ

)
kl

−

(
1(
n
2

)E[DT
ϑDϑ]

)
kl

∣∣∣∣∣ = OP

((
n

2

)−1/2
)
.

Proof. To make referencing sub-matrices of 1/
(
n
2

)
DT
ϑDϑ and its expectation easier,

write

B :=
1(
n
2

)DT
ϑDϑ =

1(
n
2

)

1T1︸︷︷︸
5©

1TZ︸︷︷︸
6©

ZT1︸︷︷︸
8©

ZTZ︸ ︷︷ ︸
9©

 , A :=
1(
n
2

)E[DT
ϑDϑ] =

1(
n
2

)

1T1︸︷︷︸
5©

0︸︷︷︸
6©

0︸︷︷︸
8©

E[ZTZ]︸ ︷︷ ︸
9©


where we have chosen our numbering to be consistent with the notation used in

the proof of Proposition 2.3. The matrices A and B are equal in block 5©. For i, j

corresponding to the blocks 6© and 8©, Bij−Aij = Bij is the sum of all the entries of

some column Zk of the matrix Z for an appropriate k. That is, there is a 1 ≤ k ≤ p

such that

Bij −Aij =
1(
n
2

)ZTk 1 =
1(
n
2

)∑
s<t

Zk,st.

Thus, by assumption, E[Bij−Aij ] = 0. We know that for each k, s, t : Zk,st ∈ [−c, c].
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Hence, by Hoeffding’s inequality, for all η > 0,

P (|Bij −Aij | ≥ η) = P

(∣∣∣∣∣∑
s<t

Zk,st

∣∣∣∣∣ ≥
(
n

2

)
η

)

≤ 2 exp

(
−

2
(
n
2

)2
η2∑

i<j(2c)
2

)
= 2 exp

(
−
(
n

2

)
η2

2c2

)
.

For i, j from block 9©, a typical element has the form

Bij −Aij =
1(
n
2

)∑
s<t

{Zk,stZl,st − E[Zk,stZl,st]} ,

for appropriate k, l. In other words, Bij − Aij is the inner product of two columns

of Z, minus their expectation, scaled by 1/
(
n
2

)
. Since Zk,stZl,st ∈ [−c2, c2] for all

k, l, s, t, we have that for all k, l, s, t: Zk,stZl,st−E[Zk,stZl,st] ∈ [−2c2, 2c2]. Thus, by

Hoeffding’s inequality, for all η > 0,

P (|Bij −Aij | ≥ η) = P

(∣∣∣∣∣∑
s<t

{Zk,stZl,st − E[Zk,stZl,st]}

∣∣∣∣∣ ≥
(
n

2

)
η

)

≤ 2 exp

(
−
(
n

2

)
η2

8c4

)
.

Thus, with c̃ = c2 ∨ (2c4), we have for any entry in blocks 6©, 8©, 9© and any η > 0,

P (|Bij −Aij | ≥ η) ≤ 2 exp

(
−
(
n

2

)
η2

2c̃

)
.

The claim will follow from a union bound: Because block 6© is the transpose of

block 8©, it is sufficient to control one of them. By symmetry of block 9© it suffices

to control the upper triangular half, including the diagonal, of block 9©. Thus, we

only need to control the entries Bij −Aij for i, j in the following index set

A = {(i, j) :

i, j belong to block 8© or the upper triangular half or diagonal of block 9©}.

Keep in mind that block 8© has p elements, while the upper triangular part of block
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9© plus its diagonal has
(
p
2

)
+ p =

(
p+1

2

)
elements. Thus, for any η > 0,

P

(
max
ij
|Bij −Aij | ≥ η

)
≤

∑
(i,j)∈A

P (|Bij −Aij | ≥ η)

≤ 2p exp

(
−
(
n

2

)
η2

2c2

)
+ 2

(
p+ 1

2

)
exp

(
−
(
n

2

)
η2

8c4

)
≤ 2

(
p+

(
p+ 1

2

))
exp

(
−
(
n

2

)
η2

2c̃

)
= p(p+ 3) exp

(
−
(
n

2

)
η2

2c̃

)
.

This proves the claim.

Thus, for n large enough, we have with high probability δ ≤ (1∧λmin)
32(p+1) . Then, by

Lemma 2.8, with high probability and uniformly in n,

κ2

(
1(
n
2

)DT
ϑDϑ, p+ 1

)
≥ κ2

(
1(
n
2

)E[DT
ϑDϑ], p+ 1

)
− 16δ(p+ 1) ≥ (1 ∧ λmin)

2
> 0.

Yet, if κ2

(
1

(n2)
DT
ϑDϑ, p+ 1

)
≥ C > 0 uniformly in n, then also for any v 6= 0,

vT 1

(n2)
DT
ϑDϑv ≥ C‖v‖22. But we also know that the minimum eigenvalue of 1

(n2)
DT
ϑDϑ

is the largest possible C such that this bound holds (it is actually tight with equality

for the eigenvectors corresponding to the minimum eigenvalue). Therefore, with high

probability, the minimum eigenvalue of 1

(n2)
DT
ϑDϑ stays uniformly bounded away

from zero. Thus, for any v ∈ Rp+1\{0} and any finite n:

1(
n
2

)vTDT
ϑ Ŵ

2Dϑv ≥ min
i<j
{pij(θ̂)(1− pij(θ̂))}

(
vT

1(
n
2

)DT
ϑDϑv

)
≥ Cρn‖v‖22 > 0.

Thus, mineval
(

1

(n2)
DT
ϑ Ŵ

2Dϑ

)
≥ Cρnmineval

(
1

(n2)
DT
ϑDϑ

)
> 0. That means, for

every finite n, 1

(n2)
DT
ϑ Ŵ

2Dϑ is invertible with high probability.

2.7.2.2 Goal and approach

Goal: We want to show that for k = 1, . . . , p+ 1,√(
n

2

)
ϑ̂k − ϑ0,k√

Θ̂ϑ,k,k

→ N (0, 1).

Approach: Recall the definition of the “one-sample-version” of L, i.e. lθ : {0, 1} ×

Rn+1+p → R, for θ = (βT , µ, γT )T ∈ Θ,

lθ(y, x) := −yθTx+ log(1 + exp(θTx).
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Then, the negative log-likelihood is given by

L(θ) =
∑
i<j

lθ(Aij , (X
T
ij , 1, Z

T
ij)

T )

and

∇L(θ) =
∑
i<j

∇lθ(Aij , (XT
ij , 1, Z

T
ij)

T ), HL(θ) =
∑
i<j

Hlθ(Aij , (X
T
ij , 1, Z

T
ij)

T ),

where H denotes the Hessian with respect to θ. Consider lθ as a function in θTx

and introduce:

l(y, a) := −ya+ log(1 + exp(a)), (2.25)

with second partial derivative: l̈(y, a) = ∂a2 l(y, a) = exp(a)
(1+exp(a))2 . Note, that ∂a2 l(y, a)

is Lipschitz continuous (it has bounded derivative |∂a3 l(y, a)| ≤ 1/(6
√

3); Lipschitz

continuity then follows by the Mean Value Theorem). Doing a first-order Taylor

expansion in a of l̇(y, a) = ∂al(y, a) in the point (Aij , D
T
ijθ0) evaluated at (Aij , D

T
ij θ̂),

we get

∂al(Aij , D
T
ij θ̂) = ∂al(Aij , D

T
ijθ0) + ∂a2 l(Aij , α)DT

ij(θ̂ − θ0), (2.26)

for an α between DT
ij θ̂ and DT

ijθ0. By Lipschitz continuity of ∂a2 l, we also find

|∂a2 l(Aij , α)DT
ij(θ̂ − θ0)−∂a2 l(Aij , D

T
ij θ̂)D

T
ij(θ̂ − θ0)|

≤ |α−DT
ij θ̂||DT

ij(θ̂ − θ0)| ≤ |DT
ij(θ̂ − θ0)|2,

(2.27)

where the last inequality follows, because α is between DT
ij θ̂ and DT

ijθ0.

Consider the vector Pn∇lθ̂: By (2.26), with αij between DT
ij θ̂ and DT

ijθ0,

Pn∇lθ̂ =
1(
n
2

)∑
i<j

(
∂θk l(Aij , D

T
ij θ̂)
)
k=1,...,n+1+p

, as (n+ 1 + p)× 1-vector

=
1(
n
2

)∑
i<j

l̇(Aij , D
T
ij θ̂)Dij

=
1(
n
2

)∑
i<j

(l̇(Aij , D
T
ijθ0) + l̈(Aij , αij)D

T
ij(θ̂ − θ0))Dij

which by (2.27) gives

= Pn∇lθ0 +
1(
n
2

)∑
i<j

Dij

{
l̈(Aij , D

T
ij θ̂)D

T
ij(θ̂ − θ0) +O(|DT

ij(θ̂ − θ0)|2)
}
.
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Since l̈(Aij , DT
ij θ̂) = pij(θ̂)(1−pij(θ̂)) and we thus have

∑
i<j l̈(Aij , D

T
ij θ̂)DijD

T
ij(θ̂−

θ0) = DT Ŵ 2D(θ̂ − θ0):

= Pn∇lθ0 + PnHlθ̂(θ̂ − θ0) +O

 1(
n
2

)∑
i<j

Dij |DT
ij(θ̂ − θ0)|2


= Pn∇lθ0 +

1(
n
2

)DT Ŵ 2D(θ̂ − θ0) +O

 1(
n
2

)∑
i<j

Dij |DT
ij(θ̂ − θ0)|2

 ,

where the O notation is to be understood componentwise. Above, we have equality

of two ((n + 1 + p) × 1)-vectors. We are only interested in the portion relating to

ϑ = (µ, γT )T , that is, in the last p+1 entries. Introduce the ((n+1+p)×(n+1+p))-

matrix

M =

(
0 0
0 Θ̂ϑ

)
,

where 0 are zero-matrices of appropriate dimensions. Multiplying the above with

M on both sides gives:

MPn∇lθ̂ = MPn∇lθ0 +M
1(
n
2

)DT Ŵ 2D(θ̂−θ0)+MO

 1(
n
2

)∑
i<j

Dij |DT
ij(θ̂ − θ0)|2

 .

(2.28)

Let us consider these terms in turn: Multiplication by M means that the first n

entries of any of the vectors above are zero. Hence we only need to consider the last

p + 1 entries. The left-hand side of (2.28) is equal to zero by (2.8). The last p + 1

entries of the first term on the right-hand side are Θ̂ϑPn∇ϑlθ0 . For the second term

on the right hand side, notice that

1(
n
2

)DT Ŵ 2D =
1(
n
2

)
XT Ŵ 2X XT Ŵ 21 XT Ŵ 2Z

1T Ŵ 2X 1T Ŵ 21 1T Ŵ 2Z

ZT Ŵ 2X ZT Ŵ 21 ZT Ŵ 2Z

 .
Θ̂ϑ = Σ̂−1

ϑ and Σ̂ϑ is the lower-right (p+ 1)× (p+ 1) block of above matrix. Thus,

M
1(
n
2

)DT Ŵ 2D =

[
0 0

Θ̂ϑ
1

(n2)
DT
ϑ Ŵ

2X I(p+1)×(p+1)

]
.

Then, for the last p+ 1 entries of M 1

(n2)
DT Ŵ 2D(θ̂ − θ0),

(
M

1(
n
2

)DT Ŵ 2D(θ̂ − θ0)

)
last p+1 entries

= Θ̂ϑ
1(
n
2

)DT
ϑ Ŵ

2X(β̂ − β0) +

(
µ̂− µ0

γ̂ − γ0

)
.
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Thus, (2.28) implies

0 =Θ̂ϑPn∇γlθ0 + Θ̂ϑ
1(
n
2

)DT
ϑ Ŵ

2X(β̂ − β0) +

(
µ̂− µ0

γ̂ − γ0

)

+O

Θ̂ϑ
1(
n
2

)∑
i<j

(
1

Zij

)
|DT

ij(θ̂ − θ0)|2
 ,

which is equivalent to(
µ̂− µ0

γ̂ − γ0

)
=− Θ̂ϑPn∇ϑlθ0 − Θ̂ϑ

1(
n
2

)DT
ϑ Ŵ

2X(β̂ − β0)

+O

Θ̂ϑ
1(
n
2

)∑
i<j

(
1

Zij

)
|DT

ij(θ̂ − θ0)|2
 .

(2.29)

Our goal is now to show that for each component k = 1, . . . , p+ 1,√(
n

2

)
ϑ̂k − ϑ0,k√

Θ̂ϑ,k,k

d−→ N (0, 1).

as described in the Goal section. To that end, by (2.29), we now need to solve the

following three problems: Writing Θ̂ϑ,k for the kth row of Θ̂ϑ,

1.
√(

n
2

) Θ̂ϑ,kPn∇ϑlθ0√
Θ̂ϑ,k,k

d−→ N (0, 1),

2. 1√
Θ̂ϑ,k,k

Θ̂ϑ,k
1

(n2)
DT
ϑ Ŵ

2X(β̂ − β0) = oP

((
n
2

)−1/2
)
.

3. O

(
1√

Θ̂ϑ,k,k
Θ̂ϑ,k

1

(n2)

∑
i<j

(
1

Zij

)
|DT

ij(θ̂ − θ0)|2
)

= oP

((
n
2

)−1/2
)

2.7.2.3 Bounding inverses

The problems (1) - (3) above suggest that it will be essential to bound the norm and

the distance of Θ̂ϑ and Θϑ in an appropriate manner. For any invertible matrices

A,B ∈ Rm×m we have

A−1 −B−1 = A−1(B −A)B−1. (2.30)

Thus, for any sub-multiplicative matrix norm ‖ . ‖, we get

‖A−1 −B−1‖ ≤ ‖A−1‖‖B−1‖‖B −A‖. (2.31)

We are particularly interested in the matrix ∞-norm, defined as

‖A‖∞ := sup

{
‖Ax‖∞
‖x‖∞

, x 6= 0

}
= sup {‖Ax‖∞, ‖x‖∞ = 1} = max

1≤i≤m

m∑
j=1

|Ai,j |,
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It is well-known, that any such matrix norm induced by a vector norm is sub-

multiplicative (‖AB‖∞ ≤ ‖A‖∞‖B‖∞) and consistent with the inducing vector

norm (‖Ax‖∞ ≤ ‖A‖∞‖x‖∞ for any x ∈ Rm). We first want to bound the matrix

∞-norm in terms of the largest eigenvalue.

Lemma 2.23. For any symmetric, positive semi-definite (m × m)-matrix A with

maximal eigenvalue λ > 0, we have ‖A‖∞ ≤
√
mλ.

Proof.

‖A‖∞ = sup {‖Ax‖∞, ‖x‖∞ = 1}

≤ sup {‖Ax‖2, ‖x‖∞ = 1} , ‖Ax‖∞ ≤ ‖Ax‖2

= sup

{
‖Ax‖2
‖x‖2

‖x‖2, ‖x‖∞ = 1

}
≤
√
m sup

{
‖Ax‖2
‖x‖2

, ‖x‖∞ = 1

}
, if ‖x‖∞ = 1, then ‖x‖2 ≤

√
m,

≤
√
m sup

{
‖Ax‖2
‖x‖2

, x 6= 0

}
=
√
m‖A‖2 =

√
mλ,

where ‖A‖2 is the spectral norm of A and we have used that for a symmetric matrix,

the spectral norm is equal to the modulus of its largest eigenvalue.

Also, recall that the inverse of a symmetric matrix A is itself symmetric:

I = AA−1 = ATA−1 ⇒ I = (A−1)TAT = (A−1)TA⇒ (A−1)T = A−1,

where the last implication follows from the uniqueness of the inverse. Hence, Θ̂ϑ

and Θϑ are symmetric and we may apply Lemma 2.23. Using that maxeval(Σ−1
ϑ ) =

mineval(Σϑ)−1, we get

‖Θϑ‖∞ ≤
√
p ·maxeval(Σ−1

ϑ ) ≤ C 1

ρn
,

and with high probability

‖Θ̂ϑ‖∞ ≤
√
p ·maxeval(Σ̂−1

ϑ ) ≤ C 1

ρn
,

with some absolute constant C. Finally, by (2.31),

‖Θ̂ϑ −Θϑ‖∞ ≤ ‖Θ̂ϑ‖∞‖Θϑ‖∞‖Σ̂ϑ − Σϑ‖∞ ≤
C

ρ2
n

‖Σ̂ϑ − Σϑ‖∞.
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It remains to control ‖Σ̂ϑ − Σϑ‖∞. We have

Σ̂ϑ − Σϑ =
1(
n
2

) (DT
ϑ Ŵ

2Dϑ − E[DT
ϑW

2
0Dϑ]

)
=

1(
n
2

) (DT
ϑ (Ŵ 2 −W 2

0 )Dϑ

)
︸ ︷︷ ︸

(I)

+
1(
n
2

) (DT
ϑW

2
0Dϑ − E[DT

ϑW
2
0Dϑ]

)
︸ ︷︷ ︸

(II)

.

Recall that ŵ2
ij = pij(θ̂)(1 − pij(θ̂)) =

exp(DTij θ̂)

(1+exp(DTij θ̂))
2

= ∂a2 l(Aij , D
T
ij θ̂), with the

function l defined in (2.25). Also recall that ∂a2 l is Lipschitz with constant one, by

the Mean Value Theorem and the fact that it has derivative ∂a3 l bounded by one.

Thus, considering the (k, l)-th element of (I) above, we get:

∣∣∣∣∣ 1(
n
2

) (DT
ϑ (Ŵ 2 −W 2

0 )Dϑ

)
kl

∣∣∣∣∣ =

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

Dij,n+kDij,n+l(ŵ
2
ij − w2

0,ij)

∣∣∣∣∣∣
≤ C 1(

n
2

)∑
i<j

|ŵ2
ij − w2

0,ij |, by uniform boundedness of Zij

≤ C 1(
n
2

)∑
i<j

|DT
ij(θ̂ − θ0)|, by Lipschitz continuity

≤ C(
n
2

)∑
i<j

{
|β̂i − β0,i|+ |β̂j − β0,j |+ |µ̂− µ0|+ |ZTij(γ̂ − γ0)|

}

≤ C(
n
2

)
∑
i<j

|β̂i − β0,i|+ |β̂j − β0,j |

︸ ︷︷ ︸
=(n−1)‖β̂−β0‖1

+C|µ̂− µ0|+ C‖γ̂ − γ0‖1

≤ C
{

1

n
‖β̂ − β0‖1 + |µ̂− µ0|+ ‖γ̂ − γ0‖1

}
= OP

(
s∗+

√
log(n)(

n
2

) ρ−1
n

)
,

where the last equality holds under the conditions of Theorem 2.4. Since the dimen-

sion of (I) is (p + 1) × (p + 1) and thus remains fixed, any row of (I) has `1-norm

of order OP
(
s∗+

√
log(n)

(n2)
ρ−1
n

)
and thus

‖(I)‖∞ = OP

(
s∗+

√
log(n)(

n
2

) ρ−1
n

)
.

Taking a look at the (k, l)-th element in (II):∣∣∣∣∣ 1(
n
2

)(DT
ϑW

2
0Dϑ − E[DT

ϑW
2
0Dϑ])kl

∣∣∣∣∣
=

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

{
Dij,n+kDij,n+lw

2
0,ij − E[Dij,n+kDij,n+lw

2
0,ij ]
}∣∣∣∣∣∣ .
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Note that the random variablesDij,n+kDij,n+lw
2
0,ij are bounded uniformly in i, j, k, l.

Thus, by Hoeffding’s inequality, for any t ≥ 0,

2 exp

(
−C
(
n

2

)
t2
)

≥ P

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

{
Dij,n+kDij,n+lw

2
0,ij − E[Dij,n+kDij,n+lw

2
0,ij ]
}∣∣∣∣∣∣ ≥ t

 .

This means,
∣∣∣∣ 1

(n2)

(
DT
ϑW

2
0Dϑ − E[DT

ϑW
2
0Dϑ]

)
kl

∣∣∣∣ = OP

((
n
2

)−1/2
)
. Again, since the

dimension p+ 1 is fixed, we get by a simple union bound

‖(II)‖∞ = OP

((
n

2

)−1/2
)
.

In total, we thus get

‖Σ̂ϑ − Σϑ‖∞ = OP

s∗+
√

log(n)(
n
2

) ρ−1
n +

1√(
n
2

)
 = OP

(
s∗+

√
log(n)(

n
2

) ρ−1
n

)
.

We can now obtain a rate for ‖Θ̂ϑ −Θϑ‖∞:

‖Θ̂ϑ −Θϑ‖∞ ≤
C

ρ2
n

‖Σ̂ϑ − Σϑ‖∞ = OP

(
s∗+

√
log(n)(

n
2

) ρ−3
n

)
.

By Assumption 2.3, we have s∗+
√

log(n)√
nρ2
n
→ 0, n → ∞, which in particular also

implies that the above is oP (1). In particular we have now managed to prove for

k = 1, . . . , p+ 1,

• ‖Θ̂ϑ,k −Θϑ,k‖1 = oP (1),

• Θ̂ϑ,k,k = Θϑ,k,k + op(1).

2.7.2.4 Problem 1

We can now take a look at the problems (1) - (3) outlined above. For problem (1),

we want to show: √(
n

2

)
Θ̂ϑ,kPn∇ϑlθ0√

Θ̂ϑ,k,k

→ N (0, 1).

Step 1: Show that

Θ̂ϑ,kPn∇ϑlθ0 = Θϑ,kPn∇ϑlθ0 + oP

((
n

2

)−1/2
)
. (2.32)
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We have

|(Θ̂ϑ,k −Θϑ,k)Pn∇ϑlθ0 | ≤ ‖Θ̂ϑ,k −Θϑ,k‖1

∥∥∥∥∥∥ 1(
n
2

)∑
i<j

(
1

Zij

)
(pij(θ0)−Aij)

∥∥∥∥∥∥
∞

≤ ‖Θ̂ϑ −Θϑ‖∞

∥∥∥∥∥∥ 1(
n
2

)∑
i<j

Dϑ,ij(pij(θ0)−Aij)

∥∥∥∥∥∥
∞

.

Consider the vector
∑

i<j Dϑ,ij(pij(θ0) − Aij) ∈ Rp+1. The kth component of it

has the form
∑

i<j(pij(θ0) − Aij) for k = 1 and
∑

i<j Zij,k−1(pij(θ0) − Aij), k =

2, . . . , p+ 1. These components are all centred:

E[Dϑ,ij,k(pij(θ0)−Aij)] = E[Dϑ,ij,kE[(pij(θ0)−Aij)|Zij ]] = E[Dϑ,ij,k · 0] = 0.

Also, |Dϑ,ij,k(pij(θ0)−Aij)| ≤ c, where c > 1 is a universal constant bounding |Zij,k|

for all i, j, k. Thus, by Hoeffding’s inequality, for any t > 0,

P

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

Dϑ,ij,k(pij(θ0)−Aij)

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−2

(
n
2

)
t2

c2

)

and thus,
1(
n
2

)∑
i<j

Dϑ,ij(pij(θ0)−Aij) = OP

((
n

2

)−1/2
)
.

Since we have ‖Θ̂ϑ −Θϑ‖∞ = oP (1), by Section 2.7.2.3, Step 1 is now concluded.

Step 2: Show that

Θ̂ϑ,k,k = Θϑ,k,k + oP (1).

Since ‖Θ̂ϑ −Θϑ‖∞ = oP (1), by Section 2.7.2.3, for all k

|Θ̂ϑ,k,k −Θϑ,k,k| ≤ ‖Θ̂ϑ −Θϑ‖∞ = oP (1)

and Step 2 is concluded.

Step 3: Show that ∣∣∣∣ 1

Θϑ,k,k

∣∣∣∣ ≤ C <∞,

for some universal constant C > 0. Then, we may conclude from Step 1 and Step 2

that √(
n

2

)
Θ̂ϑ,kPn∇ϑlθ0√

Θ̂ϑ,k,k

=

√(
n

2

)
Θϑ,kPn∇ϑlθ0√

Θϑ,k,k

+ oP (1).

To prove Step 3, notice that Θϑ is symmetric and hence has only real eigenvalues.

Therefore it is unitarily diagonalizable and for any x ∈ Rp+1, we have xTΘϑx ≥
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mineval(Θϑ)‖x‖22. We also know that

mineval(Θϑ) =
1

maxeval(Σϑ)
.

Under Assumption 2.1 we can deduce an upper bound on the maximum eigenvalue

of Σϑ: For any x ∈ Rp,

xTΣϑx = xT
1(
n
2

)E[DT
ϑW

2
0Dϑ]x ≤ xT 1(

n
2

)E[DT
ϑDϑ]x ≤ (1 ∨ λmax)‖x‖22,

where we used that any entry in W 2
0 is bounded above by one. Since xTΣϑx ≤

maxeval(Σϑ)·‖x‖22 and since this bound is tight, by Assumption 2.1, maxeval(Σϑ) ≤

(1 ∨ λmax) ≤ C <∞ for some constant C > 0.

In particular, since Θϑ,k,k = eTk Θϑek, we get

Θϑ,k,k ≥ mineval(Θϑ)‖ek‖22 =
1

maxeval(Σϑ)
≥ C > 0,

uniformly for all n. Consequently,

0 <
1

Θϑ,k,k
≤ C <∞.

Step 3 is thus concluded.

Step 4: Finally, show that√(
n

2

)
Θϑ,kPn∇ϑlθ0√

Θϑ,k,k

d−→ N (0, 1),

For brevity, write pij for the true link probabilities pij(θ0). Keep in mind that Θϑ,k

denotes the kth row of Θϑ, while Dϑ,ij denote ((p+1)×1)-column vectors. We want

to apply the Lindeberg-Feller Central Limit Theorem (CLT). The random variables

we study are the summands in

√(
n

2

)
Θϑ,kPn∇ϑlθ0 =

∑
i<j

 1√(
n
2

)Θϑ,kDϑ,ij(pij −Aij)

 .

These random variables are centred:

E

 1√(
n
2

)Θϑ,kDϑ,ij(pij −Aij)

 = E

 1√(
n
2

)Θϑ,kDϑ,ijE[pij −Aij |Zij ]


= E

 1√(
n
2

)Θϑ,kDϑ,ij · 0

 = 0.

For the Lindeberg-Feller CLT we need to sum up the variances of these random
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variables. We claim that

∑
i<j

Var

 1√(
n
2

)Θϑ,kDϑ,ij(pij −Aij)

 = Θϑ,k,k.

Indeed, consider the vector-valued random variable
∑

i<j

{
1√
(n2)

Dϑ,ij(pij −Aij)

}
∈

Rp+1. It has covariance matrix

E

∑
i<j

 1√(
n
2

)Dϑ,ij(pij −Aij)

∑
i<j

 1√(
n
2

)Dϑ,ij(pij −Aij)


T


= E

∑
i<j

1√(
n
2

)Dϑ,ij(pij −Aij)
1√(
n
2

)DT
ϑ,ij(pij −Aij)

 , independence across i, j

=
1(
n
2

)∑
i<j

[
E[Dϑ,ij,kDϑ,ij,l(pij −Aij)2]

]
k,l=1,...,p+1

, as ((p+ 1)× (p+ 1))-matrix

=
1(
n
2

)E[DT
ϑW

2
0Dϑ]

= Σϑ.

Thus, by independence across i, j,

∑
i<j

Var

 1√(
n
2

)Θϑ,kDϑ,ij(pij −Aij)

 = Var

Θϑ,k

∑
i<j

1√(
n
2

)Dϑ,ij(pij −Aij)


= Θϑ,kΣϑΘT

ϑ,k = Θϑ,k,k,

where for the last equality we have used that Θϑ is the inverse of Σϑ and thus,

ΣϑΘT
ϑ,k = ek. Now, we need to show that the Lindeberg condition holds. That is,

we want for any ε > 0,

lim
n→∞

1

Θϑ,k,k

∑
i<j

E

[ 1√(
n
2

)Θϑ,kDϑ,ij(pij −Aij)


2

1

(
|Θϑ,kDϑ,ij(pij −Aij)| > ε

√(
n

2

)
Θϑ,k,k

)]
= 0.

(2.33)

We have

|Θϑ,kDϑ,ij(pij −Aij)| ≤ p · c · ‖Θϑ,k‖1 ≤ C‖Θϑ‖∞ ≤ Cρ−1
n .

We know from Step 3 that ΘZ,k,k ≥ C > 0 for some universal C. Then, as long as

ρ−1
n goes to infinity at a rate slower than n, which is enforced by Assumption 2.3,
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we must have for n large enough

|Θϑ,kDϑ,ij(pij −Aij)| < ε

√(
n

2

)
Θϑ,k,k

uniformly in i, j. Thus, the indicator function and therefore each summand in (2.33)

is equal to zero for n large enough. Hence, (2.33) holds. Then, by the Lindeberg-

Feller CLT, √(
n

2

)
Θϑ,kPn∇ϑlθ0√

Θϑ,k,k

d−→ N (0, 1).

Now, by Steps 1-4 and Slutzky’s Theorem√(
n

2

)
Θ̂ϑ,kPn∇ϑlθ0√

Θ̂ϑ,k,k

=

√(
n

2

)
(Θϑ,k + oP (1))Pn∇ϑlθ0√

(Θϑ,k,k + oP (1))

=

√(
n

2

)
Θϑ,kPn∇ϑlθ0√
(Θϑ,k,k + oP (1))

+

√(
n

2

)
oP (1)Pn∇ϑlθ0√
(Θϑ,k,k + oP (1))

d−→ N (0, 1).

This concludes solving Problem 1.

2.7.2.5 Problem 2

For Problem 2 we must show

1√
Θ̂ϑ,k,k

Θ̂ϑ,k
1(
n
2

)DT
ϑ Ŵ

2X(β̂ − β0) = oP

((
n

2

)−1/2
)
.

Since we have ‖Θ̂ϑ−Θϑ‖∞ = oP (1), we do not need to worry about Θ̂
−1/2
Z,k,k, because

Θ̂Z,k,k = ΘZ,k,k + oP (1) and Θ
−1/2
Z,k,k ≤ C <∞, i.e. Θ̂

−1/2
Z,k,k = OP (1). By Theorem 2.4

we also have a high-probability error bound on ‖β̂ − β0‖1. We have,∣∣∣∣∣Θ̂ϑ,k
1(
n
2

)DT
ϑ Ŵ

2X(β̂ − β0)

∣∣∣∣∣ ≤
∥∥∥∥∥ 1(

n
2

)XT Ŵ 2DϑΘ̂T
ϑ,k

∥∥∥∥∥
∞

‖β̂ − β0‖1.

Notice that in the display above we have the vector `∞-norm. Also,∥∥∥∥∥ 1(
n
2

)XT Ŵ 2DϑΘ̂T
ϑ,k

∥∥∥∥∥
∞

≤ ‖Θ̂T
ϑ,k‖∞

∥∥∥∥∥ 1(
n
2

)XT Ŵ 2Dϑ

∥∥∥∥∥
∞

.

Here we used the compatibility of the matrix `∞-norm with the vector `∞-norm.

The first term is the vector norm, the second the matrix norm. We know,

‖Θ̂T
ϑ,k‖∞ ≤ ‖Θ̂ϑ‖∞ ≤ Cρ−1

n ,

95



where on the left hand side we have the vector norm and in the middle display the

matrix norm. Finally, 1

(n2)
XT Ŵ 2Dϑ is a (n× (p+ 1))-matrix. The (k, l)-th element

looks like ∣∣∣∣∣∣ 1(
n
2

) n∑
i=1,i 6=l

Dϑ,il,kŵ
2
il

∣∣∣∣∣∣ ≤ 1(
n
2

) · (n− 1) · C =
C

n
.

Thus, the `1-norm of any row of 1

(n2)
XT Ŵ 2Dϑ is bounded by C/n and thus

∥∥∥∥∥ 1(
n
2

)XT Ŵ 2Dϑ

∥∥∥∥∥
∞

≤ C

n
.

Recall that ‖β̂ − β0‖1 = OP

(
s∗+

√
log(n)√
n

ρ−1
n

)
by Theorem 2.4. Then,

∣∣∣∣∣Θ̂ϑ,k
1(
n
2

)XT Ŵ 2Dϑ(β̂ − β0)

∣∣∣∣∣ ≤ ‖Θ̂T
ϑ,k‖∞

∥∥∥∥∥ 1(
n
2

)DT
ϑ Ŵ

2X

∥∥∥∥∥
∞

‖β̂ − β0‖1

= OP

(
s∗+
ρ2
n · n

·
√

log(n)√
n

)
.

Multiplying by
√(

n
2

)
= O(n), gives

√(
n

2

) ∣∣∣∣∣Θ̂ϑ,k
1(
n
2

)DT
ϑ Ŵ

2X(β̂ − β0)

∣∣∣∣∣ = OP

(
s∗+
ρ2
n

·
√

log(n)√
n

)
,

which is oP (1) under Assumption 2.3.

2.7.2.6 Problem 3

Finally, we must show

O

 1√
Θ̂ϑ,k,k

Θ̂ϑ,k
1(
n
2

)∑
i<j

(
1

Zij

)
|DT

ij(θ̂ − θ0)|2
 = oP

((
n

2

)−1/2
)
.

Again, since Θ̂ϑ,k,k = Θϑ,k,k + oP (1) and Θϑ,k,k ≥ C > 0 uniformly in n, we do not

need to worry about the factor 1√
Θ̂ϑ,k,k

and it remains to show

O

Θ̂ϑ,k
1(
n
2

)∑
i<j

Dϑ,ij |D>ij(θ̂ − θ0)|2
 = oP

((
n

2

)−1/2
)
.
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We have∣∣∣∣∣∣Θ̂ϑ,k
1(
n
2

)∑
i<j

Dϑ,ij |D>ij(θ̂ − θ0)|2
∣∣∣∣∣∣ ≤ 1(

n
2

)∑
i<j

|Θ̂ϑ,kDϑ,ij ||DT
ij(θ̂ − θ0)|2

≤ C‖Θ̂ϑ,k‖1
1(
n
2

)∑
i<j

|DT
ij(θ̂ − θ0)|2

≤ C 1

ρn

1(
n
2

)∑
i<j

|DT
ij(θ̂ − θ0)|2,

where for the last inequality we have used ‖Θ̂ϑ,k‖1 ≤ ‖Θ̂ϑ‖∞ ≤ C 1
ρn
. Remember

from (2.23) that
1(
n
2

)∑
i<j

|DT
ij(θ̂ − θ0)|2 ≤ C‖ ˆ̄θ − θ̄0‖21,

where we make use of the fact that θ∗ = θ0 if there is no approximation error (as

assumed by Theorem 2.7) and that D̄θ̄ = Dθ. From Theorem 2.4 we know that

under the assumptions of Theorem 2.7, ‖ ˆ̄θ − θ̄0‖1 = OP

(
s∗+

√
log(n)

(n2)
ρ−1
n

)
. Thus,

√(
n

2

) ∣∣∣∣∣∣Θ̂ϑ,k
1(
n
2

)∑
i<j

Dϑ,ij |DT
ij(θ̂ − θ0)|2

∣∣∣∣∣∣ = OP

(s∗+)2 log(n)√(
n
2

) ρ−3
n

 .

We see that this is oP (1) by applying Assumption 2.3 twice. Problem 3 is solved.

Proof of Theorem 2.7. Theorem 2.7 now follows from the solved problems (1) - (3).
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Chapter 3

A sparse Erdős-Rényi model with

covariates

Organization of this chapter

We introduce the sparse Erdős-Rényi with covariates (ER-C), which is a spe-
cial case of SβM-C, where the degree heterogeneity parameter has been set to
zero. We formally introduce this model in Section 3.1. We prove the asymp-
totic normality of its MLE in Theorem 3.1 and show that this model can
generate networks with almost arbitrary levels of sparsity. This is followed by
an extensive set of simulation studies in Section 3.2. We take a brief detour in
Section 3.3 and discuss the connectivity patterns in ER-C. All the proofs are
relegated to Section 3.4. The content of Sections 3.1 and 3.2 is from Stein &
Leng (2020).

3.1 SβM-C without β

We zoom in on a second special case of SβM-C when the heterogeneity parameter

β equals zero. This model retains many of the favourable properties of SβM-C and

can model networks of almost arbitrary sparsity. In particular, it can avoid the issue

of data-selective inference for almost any degree of sparsity.

When β = 0, the linking probabilities in SβM-C become

P (Aij = 1|Zij) = pij =
exp(µ+ ZTijγ)

1 + exp(µ+ ZTijγ)
. (3.1)

We remark that the setup in latter case is different to the usual logistic regression

as we allow µ → −∞ and thus allow for sparse networks. The model in (3.1) can

be seen as an extension of the Erdős-Rényi model by incorporating covariates, with

an emphasis on modelling sparse networks. For this reason, we call it the sparse

Erdős-Rényi model with covariates (ER-C). To the best of our knowledge, a model

of this type has not been studied in the literature before Stein & Leng (2020) and

thus the results below can be of independent interest.
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We study the properties of the MLE of µ and γ under the sparse network regime.

Towards this, following Chen et al. (2020), we encode the sparsity of model (3.1)

explicitly by assuming a reparametrization of the global sparsity parameter µ of the

form

µ = −ξ log(n) + µ†,

where ξ ∈ [0, 2) effectively takes the role of ρn,0 from the previous chapter and

µ† ∈ [−M,M ] for a fixed M <∞ independent of n. As before, we assume that the

entries Zij,k are uniformly bounded almost surely and that the homophily parameter

γ lies in a compact, convex set Γ ⊆ Rp. To appreciate this reformulation, notice that

the expected total number of edges of ER-C is of order O(n2−ξ). When ξ = 0, ER-C

becomes a standard logistic regression model with fixed parameters. It can generate

almost arbitrarily sparse networks when ξ > 0.

We denote the true parameters µ†0 and γ0 respectively. Similar to Section 2.3,

we abuse notation slightly and denote a generic parameter as θ = (µ†, γ), the true

parameter as θ0 = (µ†0, γ0) and our estimator (defined below) as θ̂ = (µ̂†, γ̂). We

think this abuse of notation is justified as it allows a consistent notation with the

previous chapter. We make the following assumptions.

Assumption 3.1. θ0 = (µ†0, γ
T
0 )T lies in the interior of [−M,M ]× Γ.

Assumption 3.2. The Zij are i.i.d. realizations of the same random variable. The

covariance matrix of Z12, that is, the matrix E[Z12Z
T
12], is strictly positive definite

with minimum eigenvalue λmin > 0.

Assumption 3.2 is analogous to Assumption 2.1 in the case with non-zero β.

We remark that the i.i.d. condition is used to simplify parts of the proofs and can

be relaxed at the expense of lengthier proofs. We consider the following function

which is proportional to the negative log-likelihood of the ER-C up to a summand

independent of θ,

L†(µ†, γ) = −d+µ
† −

∑
i<j

(γTZij)Aij +
∑
i<j

log
(

1 + n−ξ exp(µ† + γTZij)
)
. (3.2)

In the ER-C, the dimension of the parameter is fixed as p + 1. Therefore, it is

not necessary to employ a penalized likelihood approach as in the SβM-C and we

estimate θ0 via maximum likelihood:

θ̂ = (µ̂†, γ̂T )T = arg min
θ=(µ†,γT )T

L†(µ†, γ), (3.3)

where the argmin is taken over [−M,M ] × Γ. The design matrix D now takes the

simplified form

D =
[
1 Z

]
∈ R(n2)×(p+1).
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As before, we enumerate the rows of D as DT
ij , i < j, where each Dij is treated as

a column vector, i.e. D = [DT
ij ]i<j . Define the matrix Σ ∈ R(p+1)×(p+1) as

Σ := E
[
(D12D

T
12) exp(µ†0) exp(γT0 Z12)

]
,

which is invertible by Assumption 3.2. We have the following central limit theorem

for θ̂, the proof of which can be found in Section 3.4. Denote by N (0, B) the law of

the multivariate normal distribution with zero mean vector and covariance matrix

B.

Theorem 3.1. Under Assumptions 3.1 and 3.2, it holds, as n→∞,√(
n
2

)
nξ

(θ̂ − θ0)
d−→ N (0,Σ−1).

Since the expected number of observed edges in the ER-C is of order n2−ξ, the

factor
√(

n
2

)
/nξ in Theorem 3.1 corresponds to the square root of the effective sample

size. This means, having the link probabilities go to zero reduces the information

we gain about θ0 and this information loss is made explicit in a rate of convergence

slower than what we would obtain in a classical parametric setting. This finding is

in line with the results in Chen et al. (2020), Proposition 1 and Theorem 1, in which

a similar phenomenon was observed for SβM.

While Theorem 3.1 can be interesting from a theoretical point of view, in prac-

tice, the sparsity-rate parameter ξ will not be known, which makes solving (3.3)

and finding the MLE (µ̂†, γ̂) impossible. It is possible, though, to circumvent this

problem with the following argument.

From Theorem 3.1 we obtain for any k = 1, . . . , (p+ 1),√(
n
2

)
nξ
·
θ̂k − θ0,k√

Σ−1
k,k

d−→ N (0, 1),

where N (0, 1) denotes the law of the univariate standard-normal distribution. We

also may make use of the the identity

µ̂ = −ξ log(n) + µ̂†, (3.4)

where µ̂ is the MLE of the global sparsity parameter before reparametrization. In

particular, µ̂ can be found without knowledge of ξ. Define the matrix

Σ̂ =
1(
n
2

)DTdiag
(

exp(µ̂+ γ̂TZij)

(1 + exp(µ̂+ γ̂TZij))2
, i < j

)
D.
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In Section 3.4 we show nξΣ̂ = Σ + oP (1), which allows us to show (nξΣ̂)−1
k,k =

Σ−1
k,k + oP (1) for all k = 1, . . . , (p+ 1). Then, by Slutzky’s Theorem,

√(
n

2

)
·
θ̂k − θ0,k√

Σ̂−1
k,k

=

√(
n
2

)
nξ
·
θ̂k − θ0,k√
n−ξΣ̂−1

k,k

=

√(
n
2

)
nξ
·

θ̂k − θ0,k√
Σ−1
k,k + oP (1)

d−→ N (0, 1).

In other words, the matrix Σ̂ will be singular in the limit as the link probabilities

pij go to zero. The rate nξ is precisely the rate with which we need to multiply Σ̂

to stabilize it and make it converge to the non-singular matrix Σ, whose inverse

is the asymptotic covariance matrix in Theorem 3.1. Thus allowing us to derive

the component-wise limiting distribution of each θ̂k without the knowledge of ξ. In

particular, looking at the case k = 2, . . . , (p+1), we are able to calculate confidence

intervals for the components of γ without having to know ξ. In summary, Theorem

3.1 allows the following corollary which is proved in Section 3.4.

Corollary 3.2. Under Assumptions 3.1 and 3.2, as n→∞, for k = 1, . . . , p,√(
n

2

)
·
γ̂k − γ0,k√
Σ̂−1
k+1,k+1

d−→ N (0, 1).

Simulation results corroborating the claims in Corollary 3.2 are shown in Section

3.2.

3.2 Simulation: ER-C

We illustrate the finite sample performance of the MLE (3.3). We focus on inference

for γ in the more realistic case of unknown ξ. That is, we use the identity (3.4)

to estimate µ0 rather than µ†0. Our emphasis is on illustrating that the MLE can

be used to perform inference in extremely sparse network settings. To that end

we fixed p = 20 and a true parameter vector (µ†0, γ
T
0 )T and varied the sparsity

parameter ξ. The exact model setup was as follows. We sampled the covariate values

Zij,k, k = 1, . . . , p, i < j from a centred Beta (2, 2) distribution. We used µ†0 = 1

and γ0 = (1.5, 1.2, 0.8, 1, . . . , 1)T . For ξ we used the values ξ = 0.3, 1.0, 1.5. We

sampled networks of sizes n = 300, 500, 800, 1000, and for each configuration we

drew 1,000 realizations of the ER-C and analysed the performance of the MLE

(3.3). Table 3.1 gives the median observed edge densities and median minimum and

maximum link probabilities across all 1,000 repetitions. The sparsest case ξ = 1.5

is close to the maximum theoretically permissible sparsity and results in extremely

sparse networks. For n = 1,000, on average, only 73 out of the almost half million

possible edges are observed in this setting.

101



n Median edge density min pij max pij

ξ = 0.3
300 0.358 7.5× 10−3 0.9698
500 0.330 5.1× 10−3 0.9712
800 0.304 3.8× 10−3 0.9724

1,000 0.292 3.2× 10−3 0.9730
ξ = 1.0

300 1.48× 10−2 1.4× 10−4 0.3724
500 9.03× 10−3 6.6× 10−5 0.3058
800 5.69× 10−3 3.5× 10−5 0.2515

1,000 4.56× 10−3 2.6× 10−5 0.2211
ξ = 1.5

300 8.70× 10−4 8.1× 10−6 0.0331
500 4.17× 10−4 3.0× 10−6 0.0193
800 2.03× 10−4 1.2× 10−6 0.0117

1,000 1.46× 10−4 8.0× 10−7 0.0089

Table 3.1: Network density in the ER-C for different n and ξ. The columns min pij and max pij
give the median minimum and median maximum link probability between two nodes i and j across
all 1,000 repetitions.

The asymptotic normality for each component of γ̂ allows us to construct con-

fidence intervals at the 95%-level as prescribed by Corollary 3.2. We assess the

performance of our MLE by calculating the empirical coverage for each component.

There is no significant difference in the empirical coverage or the average length

of the confidence intervals between the various components of γ, which is why we

only present them for γ0,1 in Table 3.2. As we can see, coverage is very close to the

nominal confidence level of 95% and the length of the confidence intervals decreases

with increasing network size. As expected, confidence intervals are larger for sparse

networks. For ξ = 1.5 we observe very wide confidence intervals, which is due to the

very low effective sample size.

Coverage CI Coverage CI Coverage CI
n ξ = 0.3 ξ = 1.0 ξ = 1.5

300 0.941 0.193 0.956 0.711 0.944 2.892
500 0.955 0.118 0.938 0.541 0.967 2.505
800 0.943 0.075 0.950 0.424 0.951 2.235
1000 0.949 0.061 0.935 0.379 0.948 2.107

Table 3.2: Empirical coverage under nominal 95% coverage and median lengths of confidence
intervals for γ1. The results are similar for the other components of γ.

3.3 A quick aside: Connectivity threshold in the ER-C

We mostly focus on inference of the model parameters driving network formation.

What we do not touch upon is what the generated networks “look like” other than

being sparse. This is for good reason, since the study of the connectivity properties

of random networks is a very broad and complex field in its own right. Nonetheless,

in the special case of ER-C, it is possible to draw upon some of the deep results
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derived for the connectivity behaviour in the Erdős-Rényi model, using a coupling

argument. This allows us to derive similar results for ER-C almost “for free”. The

proof is quite elegant and simple and presented in Section 3.4.3.

Recall that a undirected, simple graph G = (V,E) is called connected, if for any

pair i, j ∈ V there exists a path in E from u to j. We call G disconnected otherwise.

We make the following claim.

Theorem 3.3. As n grows, the realizations of ER-C are connected with probability

approaching one if ξ ∈ [0, 1). Also, realizations of ER-C will be disconnected with

probability approaching one if ξ ≥ 1.

To prove Theorem 3.3, we make use of an analogous result in the classical Erdős-

Rényi model. Denote by ER(n, p) the law of the Erdős-Rényi model with n nodes

and link probability p. Define λ = λ(n) = np. The connectivity of the ER(n, p)

depends almost entirely on the value of λ, see for example van der Hofstad (2016),

Chapters 4 and 5. In particular, the following holds.

Theorem 3.4 (Connectivity Threshold, Theorem 5.8 in van der Hofstad (2016)).

For λ − log(n) → ∞, the Erdős-Rényi random graph is with high probability con-

nected, while for λ − log(n) → −∞ the Erdős-Rényi random graph is with high

probability disconnected.

Our strategy for proving Theorem 3.3 will be to couple the law of ER-C to the

law of ER(n, p) for appropriately chosen p, which allows us to make use of Theorem

3.4. We then show that under this coupling, a realization from ER-C will contain at

least the same edges as a realization from ER(n, p). This phenomenon is referred to

as monotonicity in the edge probabilities in the literature (cf. van der Hofstad (2016),

Section 4.1.1). Thus, if ER(n, p) is connected with high probability, the same must

hold for ER-C. Reversing the roles of ER-C and ER(n, p) allows us to prove the

statement about disconnected networks.

To give a visual interpretation of Theorem 3.3, we sample from the ER-C on n =

300 nodes, with p = 5, µ† = 1, γ0 = (1.5, 1.2, 0.8, 1, 1)T and varying ξ = 0.8, 1, 1.2.

Figure 3.1 shows a realization of each of these three models. For ξ = 0.8 we observe

a single connected component. In the threshold case for ξ = 1 there still is a giant

component present, but we also observe many isolated nodes, while for ξ = 1.2 the

graph breaks apart into many small pieces. The observed edge densities are: 4.34%

for ξ = 0.8, 1.50% for ξ = 1 and 0.59% for ξ = 1.2. Hence, although the graph is

connected for ξ = 0.8, it is still very sparse. Take note of how quickly this phase

transition happens: In an Euclidean sense ξ = 0.8 and ξ = 1.2 are not too far apart.

However, the networks they produce differ vastly in their geometric properties.
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Figure 3.1: ER-C on n = 300 nodes, with p = 5, µ† = 1, γ0 = (1.5, 1.2, 0.8, 1, 1)T and varying
ξ = 0.8, 1, 1.2. For ξ = 0.8 we observe a single connected component. In the threshold case for
ξ = 1 there still is a giant component present, but we also observe many isolated nodes, while in
for ξ = 1.2 the graph breaks apart into many small pieces.
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3.4 Proofs of Chapter 3

We first prove the consistency of the MLE θ̂ = (µ̂†, γ̂T )T and then its asymptotic

normality.

3.4.1 Consistency of (µ̂†, γ̂)

We want to find a limit for an appropriately scaled version of L†. To that end, we

first prove a concentration result of d+ around its expectation. Consider

E[d+] = E[E[d+|Z]] =
∑
i<j

E

[
n−ξ exp(µ†0) exp(γT0 Zij)

1 + n−ξ exp(µ†0) exp(γT0 Zij)

]

= n−ξ exp(µ†0)
∑
i<j

E

[
exp(γT0 Zij)

1 + n−ξ exp(µ†0) exp(γT0 Zij)

]

= n−ξ exp(µ†0)

(
n

2

)
E

[
exp(γT0 Z12)

1 + n−ξ exp(µ†0) exp(γT0 Z12)

]
, since Zij are i.i.d.

=
n2−ξ

2
exp(µ†0)E

[
exp(γT0 Z12)

1 + n−ξ exp(µ†0) exp(γT0 Z12)

]
+ o(n2−ξ).

By the Law of Total Variance, we may write the variance of d+ as

Var(d+) = E[Var(d+|Z)] + Var(E[d+|Z]).

We have,

Var(E[d+|Z]) = Var

∑
i<j

pij


=
∑
i<j

n−2ξVar

(
exp(µ†0 + γT0 Zij)

1 + n−ξ exp(µ†0) exp(γT0 Zij)

)
= O

(
n2−2ξ

)
.

Also, by independence of the Aij given Z,

Var(d+|Z) =
∑
i<j

Var(Aij |Z) =
∑
i<j

pij(1− pij) = O(n2−ξ).

Therefore,

Var(d+) = O
(
n2−2ξ

)
+O(n2−ξ) = O(n2−ξ).

By Chebychev’s inequality, for any t > 0,

P (|d+ − E[d+]| ≥ t) ≤ Var(d+)

t2
.
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Letting ε > 0 and picking t = n2−ξε, we obtain

P (n−2+ξ|d+ − E[d+]| ≥ ε) ≤ O(n2−ξ)

n4−2ξ
=
O(1)

n2−ξ → 0, n→∞,

since ξ ∈ [0, 2). This implies

d+ = E[d+]+oP (n2−ξ) =
n2−ξ

2
exp(µ†0)E

[
exp(γT0 Z12)

1 + n−ξ exp(µ†0) exp(γT0 Z12)

]
+oP (n2−ξ).

In particular, this implies

2n−2+ξd+
P→ exp(µ†0)E

[
exp(γT0 Z12)

]
, n→∞. (3.5)

Next, we deal with the second term in L†:

E

∑
i<j

(γTZij)Aij

 =
∑
i<j

E
[
(γTZij)E[Aij |Zij ]

]
=
∑
i<j

E
[
(γTZij)pij

]
=
∑
i<j

n−ξ exp(µ†0)E

[
(γTZij)

exp(γT0 Zij)

1 + n−ξ exp(µ†0) exp(γT0 Zij)

]

= n−ξ exp(µ†0)

(
n

2

)
E

[
(γTZ12)

exp(γT0 Z12)

1 + n−ξ exp(µ†0) exp(γT0 Z12)

]

=: n−ξ exp(µ†0)

(
n

2

)
ᾱn,

where we used that the Zij are i.i.d. in the penultimate equality and where we

suppress the dependence of ᾱn on γ in our notation. Pay special attention to the

distinction between the generic γ and the true parameter γ0 here. The last equality

in the previous display can be written as

E

∑
i<j

(γTZij)Aij

 =
n2−ξ

2
exp(µ†0)ᾱn + o(n2−ξ).

We use the Law of Total Variance once more to bound Var(
∑

i<j(γ
TZij)Aij). For

any i, j,

Var((γTZij)Aij) = E[Var((γTZij)Aij |Z)] + Var(E[(γTZij)Aij |Z]).

We have,

Var(E[(γTZij)Aij |Z]) = Var((γTZij)pij) ≤ E[
(
(γTZij)pij

)2
] ≤ Cn−2ξ

and

Var((γTZij)Aij |Z) = (γTZij)
2pij(1− pij) ≤ Cn−ξ,
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where in both instances we may choose some constant C > 0 independent of i, j

and n. Thus,

Var

∑
i<j

(γTZij)Aij

 ≤∑
i<j

C(n−2ξ + n−ξ) = O(n2−ξ).

Using Chebyshev’s inequality, we obtain for any t > 0,

P

∣∣∣∣∣∣
∑
i<j

(γTZij)Aij − E

∑
i<j

(γTZij)Aij

∣∣∣∣∣∣ ≥ t
 ≤ Var

(∑
i<j(γ

TZij)Aij

)
t2

.

Letting ε > 0 and picking t = n2−ξε, we obtain

P

n−2+ξ

∣∣∣∣∣∣
∑
i<j

(γTZij)Aij − E

∑
i<j

(γTZij)Aij

∣∣∣∣∣∣ ≥ ε
 ≤ O(n2−ξ)

n2−ξ · n2−ξ → 0.

This implies

∑
i<j

(γTZij)Aij = E

∑
i<j

(γTZij)Aij

+ oP (n2−ξ) =
n2−ξ

2
exp(µ†0)ᾱn + oP (n2−ξ).

Since ᾱn → E[(γTZ12) exp(γT0 Z12)] almost surely, we end up with

2n−2+ξ
∑
i<j

(γTZij)Aij
P→ exp(µ†0)E[(γTZ12) exp(γT0 Z12)], n→∞. (3.6)

It remains to analyse
∑

i<j log
(
1 + n−ξ exp(µ† + γTZij)

)
, i.e. the last term in

L†. Since log(1 + x) ≤ x for x > −1:

∑
i<j

log
(

1 + n−ξ exp(µ† + γTZij)
)
≤ n−ξ exp(µ†)

∑
i<j

exp(ZTijγ)

= n−ξ exp(µ†)

(
n

2

)
1(
n
2

)∑
i<j

exp(ZTijγ)︸ ︷︷ ︸
=:αn

=
n2−ξ

2
exp(µ†)αn + o(n2−ξ).

On the other hand, we also have x/(1 + x) ≤ log(1 + x) for all x > −1. Also recall
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that |γTZij | ≤ κ almost surely. Thus,

∑
i<j

log
(

1 + n−ξ exp(µ†+γTZij)
)
≥ n−ξ exp(µ†)

∑
i<j

exp(γTZij)

1 + n−ξ exp(µ†) exp(γTZij)

≥ n−ξ exp(µ†)
1

1 + n−ξ exp(µ† + κ)

∑
i<j

exp(γTZij)

= n−ξ exp(µ†)
1

1 + n−ξ exp(µ† + κ)

(
n

2

)
αn

=
n2−ξ

2
exp(µ†)

1

1 + n−ξ exp(µ† + κ)
αn + o(n2−ξ).

Since the Zij are i.i.d. and since γTZij is uniformly bounded,

αn
a.s.−→ E[exp(γTZ12)].

We have found an upper and a lower bound on
∑

i<j log
(
1 + n−ξ exp(µ† + γTZij)

)
.

Multiplying both sides with 2n−2+ξ and taking the limit n → ∞, we see that the

lower as well as the upper bound converge to exp(µ†)E[exp(γTZ12)]. But then, this

already must be the limit for 2n−2+ξ
∑

i<j log
(
1 + n−ξ exp(µ† + γTZij)

)
:

2n−2+ξ
∑
i<j

log
(

1 + n−ξ exp(µ† + γTZij)
)

P→ exp(µ†)E[exp(γTZ12)], (3.7)

as n→∞. Putting equations (3.5), (3.6) and (3.7) together, we obtain that for any

(µ†, γ) ∈ [−M,M ]× Γ:

2n−2+ξL†(µ†, γ)
P→− µ† exp(µ†0)E[exp(γT0 Z12)]

− exp(µ†0)E[(γTZ12) exp(γT0 Z12)]

+ exp(µ†)E[exp(γTZ12)],

(3.8)

as n→∞. We define this limiting function as M : Rp+1 → R,

M(µ†, γ) :=− µ† exp(µ†0)E[exp(γT0 Z12)]− exp(µ†0)E[γTZ12 · exp(γT0 Z12)]

+ exp(µ†)E[exp(γTZ12)].

We want to employ Theorem 5.7 in van der Vaart (1998).

Theorem 3.5 (Theorem 5.7 in van der Vaart (1998)). Let (Θ, d) be a metric space.

Let Mn be random functions and let M be a fixed function of θ ∈ Θ, such that for

every ε > 0,

1. supθ∈Θ |Mn(θ)−M(θ)| P→ 0

2. supθ:d(θ,θ0)≥εM(θ) > M(θ0).

Then any sequence of estimators θ̂n with Mn(θ̂n) ≥ Mn(θ0) + op(1) converges in
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probability to θ0.

To apply Theorem 3.5, we must show that the convergence in (3.8) is uniform

in probability. That is, we must show that

sup
θ∈[−M,M ]×Γ

|2n−2+ξL†(θ)−M(θ)| = oP (1). (3.9)

To shorten notation, introduceMn(θ) := 2n−2+ξL†(θ). Since we already have point-

wise convergence in probability ofMn toM , it will suffice to show that for any ε > 0,

lim
δ↓0

lim sup
n→∞

P

(
sup

‖θ1−θ2‖2≤δ
|Mn(θ1)−Mn(θ2)| ≥ ε

)
= 0. (3.10)

Property (3.9) then follows from the pointwise convergence, the continuity of M

and the compactness of the parameter space [−M,M ]×Γ. To ease notation further,

define for any δ ≥ 0,

∆n
δ := sup

‖θ1−θ2‖2≤δ
|Mn(θ1)−Mn(θ2)|.

Let ε, η > 0. We have to show that there exists a δ > 0 such that

lim sup
n→∞

P (∆n
δ ≥ ε) ≤ η. (3.11)

Consider the following representation of L†(θ):

L†(θ) = −d+µ
† −

∑
i<j

(γTZij)Aij +
∑
i<j

log
(

1 + n−ξ exp(µ† + γTZij)
)

=
∑
i<j

−(µ† + γTZij)Aij + log
(

1 + n−ξ exp(µ† + γTZij)
)

=
∑
i<j

−DT
ijθAij + log

(
1 + n−ξ exp(DT

ijθ)
)

︸ ︷︷ ︸
=:lij(θ)

.

For any δ > 0 and any θ1, θ2 with ‖θ1 − θ2‖2 < δ and any i < j, we obtain:

E|lij(θ1)− lij(θ2)| = E
∣∣∣−DT

ij(θ1 − θ2)Aij + log
(

1 + n−ξ exp(DT
ijθ1)

)
− log

(
1 + n−ξ exp(DT

ijθ2)
) ∣∣∣.
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Hence, by the Mean Value Theorem with α between Dijθ1 and Dijθ2:

E|lij(θ1)− lij(θ2)| ≤ E
[
|DT

ij(θ1 − θ2)| ·Aij
]

+
n−ξ exp(α)

1 + n−ξ exp(α)
E
∣∣DT

ij(θ1 − θ2)
∣∣

≤ C‖θ1 − θ2‖2E[pij ] + Cn−ξ‖θ1 − θ2‖2

≤ C‖θ1 − θ2‖2

(
E

[
n−ξ

exp(DT
ijθ0)

1 + n−ξ exp(DT
ijθ0)

]
+ n−ξ

)
≤ Cn−ξ‖θ1 − θ2‖2

≤ Cn−ξδ,

where C > 0 denotes some generic constant that may change between displays. By

the compactness of our parameter space and the resulting uniform boundedness of

|Dij(θ1 − θ2)|, we may in particular choose this C independent of n, i and j. Then,

almost surely,

E|L†(θ1)− L†(θ2)| ≤ C
(
n

2

)
n−ξδ

and thus, almost surely,

E∆n
δ ≤ Cn−2+ξn−ξ

(
n

2

)
δ ≤ Cδ.

Thus, we can choose a δ > 0 independent of n, such that E∆n
δ ≤ εη. But then an

application of Markov’s inequality yields for all n large enough

P (∆n
δ ≥ ε) ≤ η.

It follows (3.11), which implies (3.10), which yields (3.9).

The second condition of Theorem 3.5 requires that the true parameter be a

well-separated extrema of M . That is, we must show: For any fixed ε > 0,

sup
θ:d(θ,θ0)≥ε

M(θ) > M(θ0). (3.12)

Consider the first partial derivatives of M :

∂µ†M(µ†, γ) = − exp(µ†0)E[exp(γT0 Z12)] + exp(µ†)E[exp(γTZ12)],

∂γkM(µ†, γ) = − exp(µ†0)E[Z12,k exp(γT0 Z12)] + exp(µ†)E[Z12,k exp(γTZ12)].

Clearly, by Assumption 3.1 the true parameter is a critical point of M , i.e. the first

partial derivatives of M evaluated at θ0 = (µ†0, γ
T
0 )T are zero:

∇M(θ0) = 0.
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Consider the Hessian HM(µ†, γ) of M at the point (µ†, γ):

∂2

∂(µ†)2
M(µ†, γ) = exp(µ†)E[exp(γTZ12)],

∂2

∂µ†γk
M(µ†, γ) = exp(µ†)E[Z12,k exp(γTZ12)],

∂2

∂γ2
k

M(µ†, γ) = exp(µ†)E[Z2
12,k exp(γTZ12)],

∂2

∂γkγl
M(µ†, γ) = exp(µ†)E[Z12,kZ12,l exp(γTZ12)].

We thus see that HM(µ†, γ) allows a matrix representation as

HM(µ†, γ) = exp(µ†)E

[
exp(γTZ12)

[
1 ZT12

Z12 Z12Z
T
12

]]
∈ R(p+1)×(p+1).

By the compactness of our parameter space and the boundedness of Z12, we now

obtain for any v ∈ Rp+1:

vTHM(µ†, γ)v = exp(µ†)E
[
exp(γTZ12)vTD12D

T
12v
]

≥ CE
[
vTD12D

T
12v
]

= CvTE

[[
1 0
0 Z12Z

T
12

]]
v

≥ C‖v‖22,

where for the last inequality we have used that the matrix is strictly positive definite

by Assumption 3.2. That means, HM(µ†, γ) is strictly positive definite on the entire

parameter space [−M,M ] × Γ. Hence, M is strictly convex and its minimum θ0

already must be a global minimum. Now, since our parameter space is compact, M

is continuous and θ0 is a global maximum, it is easy to see that (3.12) must hold.

Finally, since (3.9) and (3.12) hold, we have consistency by Theorem 3.5:

θ̂
P→ θ0.

3.4.2 Asymptotic normality

The proof of asymptotic normality in spirit follows to some extent the proof of The-

orem 2.7. By Assumption 3.1, the MLE θ̂ fulfils the first-order estimating equations:

0 = ∇L†(θ̂),
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which, when looking at the individual components, means that for k = 1, . . . , p

0 = ∂µ†L†(θ̂) = −d+ + n−ξ exp(µ̂†)
∑
i<j

exp(γ̂TZij)

1 + n−ξ exp(µ̂† + γ̂TZij)
,

0 = ∂γkL
†(θ̂) =

∑
i<j

Zij,kAij + n−ξ exp(µ̂†)
∑
i<j

Zij,k exp(γ̂TZij)

1 + n−ξ exp(µ̂† + γ̂TZij)
.

We want to make use of a Taylor expansion. Define the functions ln(y, a) : {0, 1} ×

R→ R,

ln(y, a) = −ya+ log(1 + n−ξ exp(a)).

In particular,

L†(µ†, γ) =
∑
i<j

ln(Aij , (µ
†, γT )TDij).

The ln have the following partial derivatives with respect to a:

l̇n(y, a) := ∂aln(y, a) = −y + n−ξ
exp(a)

1 + n−ξ exp(a)
,

l̈n(y, a) := ∂2
a2 ln(y, a) = n−ξ

exp(a)

(1 + n−ξ exp(a))2
,

∂3
a3 ln(y, a) = n−ξ

exp(a)

(1 + n−ξ exp(a))2
· 1− n−ξ exp(a)

1 + n−ξ exp(a)
.

Note that |∂3
a3 ln(y, a)| ≤ Cn−ξ and hence l̈n(y, a) is Lipschitz continuous in a with

constant Cn−ξ by the Mean Value Theorem. Doing a first-order Taylor expansion in

a of l̇n(y, a) = ∂aln(y, a) in the point a0 = (Aij , D
T
ijθ0) evaluated at a = (Aij , D

T
ij θ̂),

we get

∂aln(Aij , Dij θ̂) = ∂aln(Aij , D
T
ijθ0) + ∂a2 ln(Aij , α)DT

ij(θ̂ − θ0), (3.13)

for an α between DT
ij θ̂ and DT

ijθ0.

Consider the vector 1/
(
n
2

)
∇L†(θ̂): By equation (3.13), with αij between DT

ij θ̂

and DT
ijθ0,

0 =
1(
n
2

)∇L†(θ̂) =
1(
n
2

)∑
i<j

(
∂θk ln(Aij , D

T
ij θ̂)
)
k=1,...,p+1

, as a (p+ 1)× 1-vector

=
1(
n
2

)∑
i<j

l̇n(Aij , D
T
ij θ̂)Dij , by the Chain Rule

=
1(
n
2

)∑
i<j

(l̇n(Aij , D
T
ijθ0) + l̈n(Aij , αij)D

T
ij(θ̂ − θ0))Dij , by (3.13)

=
1(
n
2

)∇L†(θ0) +
1(
n
2

)∑
i<j

l̈n(Aij , αij)D
T
ij(θ̂ − θ0) ·Dij .

Proving Theorem 3.1 now breaks down into three problems.
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3.4.2.1 Problem 1

We first show that under appropriate scaling 1

(n2)
∇L†(θ0) is asymptotically normal.

We may write the kth component of ∇L†(θ0) more compactly as

∇L†(θ0)k =
∑
i<j

Dij,k(pij −Aij),

where Dij,k is the kth component of the (i, j)-th row of D, i.e. Dij,k = 1, if k = 1

and Dij,k = Zij,k−1, if k = 2, . . . , p+ 1 and

pij = E[Aij |Zij ] = n−ξ · exp(µ†0 + γT0 Zij)

1 + n−ξ exp(µ†0 + γT0 Zij)
.

Notice that all components of ∇L†(θ0) are centred. Indeed,

E[∇L†(θ0)k] =
∑
i<j

E[Dij,k(pij −Aij)] =
∑
i<j

E[Dij,kE[(pij −Aij)|Zij ]] = 0.

We want to apply the Lindeberg-Feller Central Limit Theorem to the term√(
n

2

)
nξ/2 · 1(

n
2

)∇L†(θ0) =
∑
i<j

Dij(pij −Aij) ·

√
nξ(
n
2

) .
To that end, define the triangular array Yn,ij = Dij(pij − Aij) ·

√
nξ

(n2)
, 1 ≤ i < j ≤

n, n ∈ N. Since the Yn,ij are centred, their covariance matrix is given by

Cov(Yn,ij) = E[Yn,ijY
T
n,ij ] = E

[
DijD

T
ij(pij −Aij)2 · n

ξ(
n
2

)]

= E

[
DijD

T
ijpij(1− pij) ·

nξ(
n
2

)] ,
where for the last equality we have used that E[(pij − Aij)2|Zij ] = pij(1 − pij). In

analogy to the case with non-zero β, we write W 2
0 = diag(pij(1 − pij), i < j) ∈

R(n2)×(n2). Then, we get for the sum of covariance matrices

∑
i<j

Cov(Yn,ij) =
∑
i<j

E

[
DijD

T
ijpij(1− pij) ·

nξ(
n
2

)] =
nξ(
n
2

)E[DTW 2
0D] =: Σ(n).
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For any pair i < j, we have pij(1− pij) = n−ξ exp(µ†0)
exp(γT0 Zij)

(1+n−ξ exp(µ†0+γT0 Zij))
2
. Hence,

nξpij(1− pij)→ exp(µ†0 + γT0 Zij), as n→∞. Consider the (k, l)-th entry of Σ(n):

Σ
(n)
k,l =

1(
n
2

)∑
i<j

E

[
(DijD

T
ij)k,l exp(µ†0)

exp(γT0 Zij)

(1 + n−ξ exp(µ†0 + γT0 Zij))
2

]

= E

[
(D12D

T
12)k,l exp(µ†0)

exp(γT0 Z12)

(1 + n−ξ exp(µ†0 + γT0 Z12))2

]
, Zij i.i.d.

n→∞−→ E
[
(D12D

T
12)k,l exp(µ†0) exp(γT0 Z12)

]
=: Σkl,

by dominated convergence. Hence, with Σ = (Σkl)k,l ∈ R(p+1)×p+1, as n→∞,

∑
i<j

Cov(Yn,ij)→ Σ,

where convergence is to be understood componentwise. We claim that Σ is strictly

positive definite. Indeed, since µ†0 + γT0 Z12 lies in some compact set, there is a

constant C > 0 such that exp(µ†0) exp(γT0 Z12) > C > 0 almost surely. Then, for any

vector v = (v1, v
T
R)T ∈ Rp+1, v1 ∈ R, vR ∈ Rp,

vTΣv = E[(DT
12v)2 exp(µ†0) exp(γT0 Z12)] > CvTE[D12D

T
12]v.

Yet, by Assumption 3.2,

vTE[D12D
T
12]v = vTE

[
1 ZT12

Z12 Z12Z
T
12

]
v = vT

[
1 0T

0 E[Z12Z
T
12]

]
v

= v2
1 + vTRE[Z12Z

T
12]vR ≥ (1 ∧ λmin)‖v‖22.

Thus, for any v 6= 0,

vTΣv ≥ C‖v‖22 > 0

and therefore Σ is positive definite.

Furthermore, we clearly have E[‖Yn,ij‖22] < C < ∞ for any i, j, n. Finally, let

ε > 0. Since ‖Dij(pij − Aij)‖2 is uniformly bounded for all i < j, we we may find

an n0 ∈ N such that for all n > n0 we have ‖Yn,ij‖2 < ε for all i < j. This gives us

that, as n→∞,

∑
i<j

E[‖Yn,ij‖221(‖Yn,ij‖2 > ε)]→ 0.

Then, by the vector-valued Lindeberg-Feller Central Limit Theorem, we obtain√(
n

2

)
nξ/2 · 1(

n
2

)∇L†(θ0) =
∑
i<j

Yn,ij
d−→ N (0,Σ). (3.14)
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3.4.2.2 Problem 2

Next, we must find a bound on the speed of convergence of θ̂ − θ0. Recall that we

obtained the equality

0 =
1(
n
2

)∇L†(θ0) +
1(
n
2

)∑
i<j

l̈n(Aij , αij)DijD
T
ij(θ̂ − θ0). (3.15)

Consider the matrix

Σα :=
1(
n
2

)∑
i<j

l̈n(Aij , αij)DijD
T
ij =

1(
n
2

)DT · diag(l̈n(Aij , αij), i < j) ·D.

Since αij lies between DT
ij θ̂ and DT

ijθ0 and both of these points lie in some compact

set, we have for some universal constant C > 0, independent of i, j,

l̈n(Aij , αij) ≥ Cn−ξ.

Thus, for any v ∈ Rp+1,

vTΣαv ≥ Cn−ξvT
(

1(
n
2

)DTD

)
v.

Completely analogously to the case with non-zero β, we can show that 1

(n2)
DTD is

positive definite with high probability by using Lemma 6 in Kock & Tang (2019)

(cf. Section 2.7.2.1). Therefore, with high probability, mineval(Σα) ≥ Cn−ξ > 0.

Thus,

maxeval(Σ−1
α ) =

1

mineval(Σα)
≤ Cnξ.

From (3.15) we now obtain

Σα(θ̂ − θ0) = − 1(
n
2

)∇L†(θ0)

which is equivalent to

θ̂ − θ0 = −Σ−1
α

1(
n
2

)∇L†(θ0),

which after rescaling gives√(
n
2

)
nξ

(θ̂ − θ0) = −

√(
n
2

)
nξ

Σ−1
α

1(
n
2

)∇L†(θ0)

= −n−ξΣ−1
α ·

√(
n

2

)
nξ/2

1(
n
2

)∇L†(θ0).

From the previous section we know
√(

n
2

)
nξ/2 1

(n2)
∇L†(θ0)

d→ N (0,Σ). Also, the

maximum eigenvalue of n−ξΣ−1
α is uniformly bounded by some universal constant
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C <∞, making the right-hand side above OP (1). This means

θ̂ − θ0 = OP

(√
nξ(
n
2

)) .
3.4.2.3 Problem 3

Finally, we derive the desired central limit theorem for our estimator. We claim that

nξΣα = Σ + oP (1). To prove this, first consider the functions

fn(x) =
exp(x)

(1 + n−ξ exp(x))2
.

For every x, we have pointwise convergence fn(x) → f(x) := exp(x) as n → ∞.

Since θ̂ and θ0 lie in some compact set and since Zij is uniformly bounded, the

values αij in (3.15) and µ†0 + γT0 Zij , i < j all lie in some compact interval I ⊂ R

independent of i, j and n. Also notice that fn(x) ≤ fn+1(x) for all n ∈ N and x ∈ I.

Recall that by Dini’s Theorem a sequence of monotonically increasing, continuous,

real-valued functions that converges pointwise to some continuous limit function on

a compact topological space, must already converge uniformly. Hence, fn converges

uniformly to f on I:

lim
n→∞

sup
x∈I
|fn(x)− f(x)| = 0.

Furthermore, since I is compact and hence bounded, f has bounded derivative on

I and thus is Lipschitz continuous on I with some finite constant C by the Mean

Value Theorem:

|f(x)− f(y)| ≤ C|x− y|, for all x, y ∈ I.

Consider the (k, l)-th entry of nξΣα − Σ:

|(nξΣα − Σ)kl|

=

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

Dij,kDij,l
exp(αij)

(1 + n−ξ exp(αij))2
− E[D12,kD12,l exp(µ†0 + γT0 Z12)]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

Dij,kDij,l

{
exp(αij)

(1 + n−ξ exp(αij))2
− exp(µ†0 + γT0 Zij)

}∣∣∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∣∣ 1(
n
2

)∑
i<j

Dij,kDij,l exp(µ†0 + γT0 Zij)− E[D12,kD12,l exp(µ†0 + γT0 Z12)]

∣∣∣∣∣∣︸ ︷︷ ︸
(II)
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By the strong law of large numbers, (II) goes to zero almost surely. Let us consider

(I).

(I) ≤ 1(
n
2

)∑
i<j

|Dij,kDij,l|
∣∣∣∣ exp(αij)

(1 + n−ξ exp(αij))2
− exp(µ†0 + γT0 Zij)

∣∣∣∣
≤ C ·max

i<j

∣∣∣∣ exp(αij)

(1 + n−ξ exp(αij))2
− exp(µ†0 + γT0 Zij)

∣∣∣∣
= C ·max

i<j
|fn(αij)− f(µ†0 + γT0 Zij)|

≤ C ·
{

max
i<j
|fn(αij)− f(αij)|+ max

i<j
|f(αij)− f(µ†0 + γT0 Zij)|

}
≤ C ·

{
sup
x∈I
|fn(x)− f(x)|+ max

i<j
|αij − µ†0 + γT0 Zij |

}
,

where we have used the Lipschitz continuity of f on I for the last inequality. By

the uniform convergence of fn to f on I, we know that the first term in the last

line goes to zero. For the second term, recall that αij is a point between DT
ij θ̂ and

DT
ijθ0 = µ†0 + γT0 Zij . Hence,

max
i<j
|αij − µ†0 + γT0 Zij | ≤ max

i<j
|(µ̂† − µ†0) + (γ̂ − γ0)TZij | ≤ C‖θ̂ − θ0‖1

P→ 0,

by the consistency of θ̂. Thus, (I)
P→ 0 as n→∞.

In conclusion, |(nξΣα − Σ)kl|
P→ 0 and therefore,

nξΣα = Σ + oP (1),

where oP (1) is to be understood as a matrix in which each component is oP (1).

Now, we get from (3.15),

0 =
1(
n
2

)∇L†(θ0) + Σα(θ̂ − θ0)

which after multiplying with nξ is equivalent to

0 = nξ
1(
n
2

)∇L†(θ0) + (Σ + oP (1)) (θ̂ − θ0).

Rearranging gives

Σ(θ̂ − θ0) = −nξ 1(
n
2

)∇L†(θ0) + oP (1)(θ̂ − θ0).

Now, remember that Σ is positive definite and thus invertible. Hence,

(θ̂ − θ0) = −Σ−1nξ
1(
n
2

)∇L†(θ0) + Σ−1oP (1)(θ̂ − θ0).

Observe that Σ−1 has bounded maximum eigenvalue due to Assumption 3.2 and

thus Σ−1oP (1) = oP (1):

(θ̂ − θ0) = −Σ−1nξ
1(
n
2

)∇L†(θ0) + oP (1)(θ̂ − θ0).
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Finally, multiply by
√

(n2)
nξ

and remember that θ̂ − θ0 = OP

(√
nξ

(n2)

)
√(

n
2

)
nξ

(θ̂ − θ0) = −Σ−1

√(
n

2

)
nξ/2

1(
n
2

)∇L†(θ0) + oP (1).

With this, due to (3.14), we have proven√(
n
2

)
nξ

(θ̂ − θ0)
d−→ N (0,Σ−1). (3.16)

Proof of Theorem 3.1. By the solved problems 1 - 3 above.

It remains to prove Corollary 3.2.

Proof of Corollary 3.2. Notice that from (3.16) we get: For any k = 1, . . . , (p+ 1),√(
n
2

)
nξ
·
θ̂k − θ0,k√

Σ−1
k,k

d−→ N (0, 1). (3.17)

By the exact same arguments that we have used to show that nξΣα = Σ + oP (1),

we can also show that

nξΣ̂ = Σ + oP (1),

where Σ̂ is the same matrix as Σα with αij replaced by µ̂†0 + γ̂TZij :

Σ̂ =
1(
n
2

)DTdiag
(

n−ξ exp(µ̂† + γ̂TZij)

(1 + n−ξ exp(µ̂† + γ̂TZij))2
, i < j

)
D.

By the same arguments as before, we can show that the minimum eigenvalue of

nξΣ̂ is bounded away from zero, uniformly in n. This implies that the maximum

eigenvalue of (nξΣ̂)−1 is bounded by some finite constant C. We already know that

the same property holds for Σ and Σ−1. Therefore, we have for the matrix ∞-norm

(recall (2.30) and Lemma 2.23):

‖(nξΣ̂)−1 − Σ−1‖∞ ≤ ‖(nξΣ̂)−1‖∞‖Σ−1‖∞‖nξΣ̂− Σ‖∞ ≤ C‖nξΣ̂− Σ‖∞ = oP (1).

Thus, in particular, for the diagonal elements:

(nξΣ̂)−1
k,k = n−ξΣ̂−1

k,k = Σ−1
k,k + oP (1).

But then, from (3.17) and by Slutzky’s Theorem,

√(
n

2

)
·
θ̂k − θ0,k√

Σ̂−1
k,k

=

√(
n
2

)
nξ
·
θ̂k − θ0,k√
n−ξΣ̂−1

k,k

=

√(
n
2

)
nξ
·

θ̂k − θ0,k√
Σ−1
k,k + oP (1)

d−→ N (0, 1).
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3.4.3 Proof of Theorem 3.3

Proof of Theorem 3.3. Denote the law of ER-C with parameters µ, γ on n nodes by

ER-C(n), where we suppress the dependence on µ, γ in our notation. Denote the

law of the ER-C, given the realizations of Z = (Zij)i<j as ER-C(n,Z).

Let ξ ∈ [0, 1). Since µ† + ZTijγ is bounded almost surely, we can find a finite

constant c > 0, such that almost surely, for all i, j,

exp(µ† + ZTijγ)

1 + n−ξ exp(µ† + ZTijγ)
≥ c.

In particular, since the Zij are uniformly bounded, we may choose a universal c

independent of Z. Define pmin := n−ξc. Then, almost surely, for all i, j,

pij ≥ pmin.

We now construct a coupling between ER-C (n,Z) and ER(n, pmin) as follows: Start

out with n nodes, numbered 1, . . . , n, without any connections between them.

1. For each pair of nodes i < j draw independent, uniform random variables Uij ∼

U([0, 1]).

2. Place a link between i, j if and only if Uij ≤ pmin. Since P (Uij ≤ pmin) = pmin

the resulting graph has distribution ER(n, pmin).

3. On another copy of the set {1, . . . , n}, place a link between i and j if and only

if Uij ≤ pij , with pij from (3.1), using the same realizations of the Uij . The

resulting graph has distribution ER-C(n,Z).

By construction, the realization of ER-C (n,Z) will contain at least the same edges

as the realization of ER(n, pmin), possibly more.

Define λn = npmin = n1−ξc. Since ξ ∈ [0, 1), λn− log(n)→∞ as n→∞. Thus,

by Theorem 3.4, a realization of ER(n, pmin) will be connected with high probability.

But due to the coupling, the realization of ER-C (n,Z) contains at least the same

edges as that realization of ER(n, pmin), plus potentially some other edges. Thus,

it must be connected with high probability, too. Since pmin is independent of the

realization of Z, this must hold for any realization of ER-C (n).

To prove the converse, let ξ ≥ 1. By the boundedness of µ† + ZTijγ, we can find

a finite constant C > 0, such that almost surely, uniformly in i, j,

exp(µ† + ZTijγ)

1 + n−ξ exp(µ† + ZTijγ)
≤ C.
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Again, since the Zij are uniformly bounded, we may choose a universal C inde-

pendent of the realization of Z. Define pmax := n−ξC. Then, almost surely, for all

i, j,

pij ≤ pmax.

Construct a coupling between ER(n, pmax) and ER-C (n,Z) using the same proce-

dure as above, replacing pmin with pmax. Define λn = npmax = n1−ξC. Since ξ ≥ 1,

λn − log(n) → −∞ and thus, by Theorem 3.4, a realization of ER(n, pmax) will

be disconnected with high probability. Due to the coupling, a realization of ER-C

(n,Z) will contain at most the same edges as that realization of ER(n, pmax), pos-

sibly fewer. Thus, it must be disconnected with high probability, too. Since pmax

was chosen independent of the realization of Z, this must hold for any realization

of ER-C(n).
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Chapter 4

A sparse random graph model for

sparse directed networks

Organization of this chapter

We extend the SβM-C to directed networks, introducing what we call the
parameter-Sparse Random Graph Model (SRGM) in Section 4.1. We focus
particularly on the interplay of the rates of convergence for the network spar-
sity, ρn, the parameter sparsity, s0 and the penalty parameter, λ. We define
an `1-penalized estimator and emphasize how different regimes for s0, ρn and
λ allow us to prove different properties of our estimator.
Our main results are presented in Section 4.2. Model selection consistency is
the most refined of our results and is presented in Section 4.2.1. We state our
parameter estimation consistency result in Section 4.2.2 and the central limit
theorem for the covariate parameter in Section 4.2.3. This is followed by a set
of simulation studies in Section 4.3. Large parts of the proofs of consistency
and asymptotic normality are similar to those for SβM-C, which is why those
proofs have been relegated to Appendix A. The proofs relating model selection
consistency are presented in Section 4.4. The content of this chapter is from
Stein & Leng (2021).

4.1 Estimation

We saw the flexibility of the parameter-Sparse Random Graph Model (SRGM) and

its ability to provide reliable inference when we fitted it to Lazega’s lawyer data in

Section 1.2.2. It is now time to put this model on a solid theoretical foundation.

Recall the definition of SRGM in equation (1.2): We study a directed network model

in which for each ordered pair of nodes (i, j) we observe a covariate vector Zij ∈ Rp.

In particular, we may have Zij 6= Zji. The probability of observing a directed edge

from node i to node j, given the covariate vector Zij , is given by

P (Aij = 1|Zij) = pij =
exp(αi + βj + µ+ γTZij)

1 + exp(αi + βj + µ+ γTZij)
, (4.1)
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where γ ∈ Rp are covariate weights and µ is a global sparsity parameter, for which we

allow µ→ −∞, as n→∞. The degree heterogeneity of the network is characterized

by two parameters α, β ∈ Rn: Each node i has an outgoingness parameter αi that

determines how likely a node is to send out directed links to other nodes and an

incomingness parameter βi that determines how likely the node is to receive directed

links from other nodes. For identifiability we impose min{αi : i = 1, . . . , n} =

min{βj : j = 1, . . . n} = 0. Notice the subtle change in our identifiability condition:

Were we to translate the identifiability condition used in SβM-C directly, one might

assume that we should impose min{αi, βj : i, j = 1, . . . , n} = 0. Our condition is

the slightest bit stricter. This stricter assumption is necessary for showing model

selection consistency and really does not change the flavour of the model.

For brevity, let ϑ = (αT , βT )T denote the degree heterogeneity parameters and

ξ = (µ, γT )T ∈ Rp+1 the global parameters. Write θ = (ϑT , ξT )T with its true

value denoted as θ0 = (ϑT0 , ξ
T
0 )T . We let Θ = Rn+ × Rn+ × R × Γ denote the global

parameter space. As in the case of SβM-C and as is commonly assumed in general for

LASSO type problems (van de Geer & Bühlmann 2011, Chapter 6), we assume the

parameters that will be left unpenalized to be active: µ0 6= 0, γ0,i 6= 0, i = 1, . . . , p.

We write S0 = S(ϑ0) and denote its cardinality as s0 = |S0|. We write S0,+ :=

S0 ∪ {2n + 1, 2n + 2, . . . 2n + 1 + p} with cardinality s0,+ = |S0,+| = s0 + p + 1

to refer to all active indices including those of µ and γ. Let Sα = {i : α0,i >

0}, Sβ = {j : β0,j > 0} and sα = |Sα|, sβ = |Sβ|. When we want to make the

dependence of the link probabilities given Zij on different values of θ explicit, we

write pij(θ) =
exp(αi+βj+µ+γTZij)

1+exp(βi+βj+µ+γTZij)
.

Without the covariates and by absorbing µ into αi and βj as µ/2 + αi and

µ/2+βj , respectively, this model is the p0-model introduced in Holland & Leinhardt

(1981). It was also studied in Yan, Leng & Zhu (2016). When the covariates (but not

the µ) are added, it becomes the model in Yan et al. (2019). The results and deriva-

tions therein only hold for dense networks, however. By adding the global sparsity

parameter µ and imposing the identifiability assumption mini{αi} = minj{βj} = 0,

we are able to perform estimation and inference in sparse networks.

Given the adjacency matrix A and the covariates {Zij}i 6=j , it is easily seen that

the negative log-likelihood of the SRGM in (4.1) at θ = (αT , βT , µ, γT )T is

L(θ) =−
n∑
i=1

αibi −
n∑
i=1

βidi − d+µ−
n∑

i,j=1
i 6=j

(γTZij)Aij

+
n∑

i,j=1
i 6=j

log(1 + exp(αi + βj + µ+ γTZij)),

(4.2)
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where bi is the out-degree of node i and di its in-degree (see Definition 1.5) and

d+ =
∑n

i=1 di =
∑n

i=1 bi. It is easy to see by taking derivatives that

θ0 = arg min
θ∈Θ

E[L(θ)],

where the expectation is taken with respect to the Aij and Zij . We define N =

n(n− 1).

We make a lot of the same definitions as in SβM-C. For the sake of completeness,

we do restate them in the language of model (4.1). To estimate θ0 and identify the

support of ϑ = (αT , βT )T , a natural idea is to resort to the method of penalized

likelihood by solving

arg min
θ∈Θ

1

N
L(α, β, µ, γ) + λ(‖α‖1 + ‖β‖1), (4.3)

where λ is a tuning parameter and we have used the same amount of penalty on

α and β because
∑n

i=1 di =
∑n

i=1 bi. The objective function in (4.3) is similar to

the penalized logistic regression with an `1-penalty and thus can be easily solved

similarly to the case of SβM-C, using for example the R package glmnet (Friedman

et al. 2010). This makes our estimation approach extremely scalable.

Since our focus is on sparse networks, we need pij → 0 as n→∞ at least for some

i and j. It is natural to impose restrictions on how fast this decay can be. Therefore,

we once more assume the existence of a non-random sequence ρn,0 ∈ (0, 1/2] with

ρn,0 → 0 as n→∞, such that for all i, j, almost surely,

1− ρn,0 ≥ pij ≥ ρn,0,

or equivalently,

|α0,i + β0,j + µ0 + γT0 Zij | ≤ −logit(ρn,0) =: rn,0 ≥ 0, ∀i, j,

where the positivity follows from ρn ≤ 1/2. The previous inequality can also be

expressed in terms of the design matrix D associated with the corresponding logistic

regression problem – defined in (4.5) below – and is equivalent to ‖Dθ0‖∞ ≤ rn,0.

This motivates the following tweak to the estimation procedure in (4.3): Given a

sufficiently large constant rn we define the local parameter space

Θloc = Θloc(rn) := {θ ∈ Θ : ‖Dθ‖∞ ≤ rn}
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and propose to perform estimation via

θ̂ = (α̂T , β̂T , µ̂, γ̂T )T = arg min
θ=(αT ,βT ,µ,γT )T∈Θloc

1

N
L(α, β, µ, γ) +λ(‖α‖1 + ‖β‖1), (4.4)

which is more amenable for theoretical analysis. Notice that Θloc is convex.

We now give an explicit form of the associated design matrix D. We have to

consider the presence/ absence of N = n(n − 1) directed edges and our model has

2n + 1 + p parameters. Thus, D has dimension N × (2n + 1 + p). Define the out-

matrix Xout ∈ RN×n with rows Xout
ij ∈ R1×n, i 6= j, such that for each component

k = 1, . . . , n, Xout
ij,k = 1 if k = i and zero otherwise. Likewise, define the in-matrix

X in ∈ RN×n with rows X in
ij ∈ R1×n, i 6= j, such that for each component k =

1, . . . , n, X in
ij,k = 1 if k = j and zero otherwise. Let Z = (ZTij)i 6=j ∈ RN×p be the

matrix of the covariate vectors written below each other. Then, D consists of four

blocks, written next to each other:

D =
[
Xout X in 1 Z

]
∈ RN×(2n+p+1), (4.5)

where 1 ∈ RN is a vector of all ones. We use the shorthand X = [Xout | X in] ∈

RN×2n.

As in the case of SβM-C, the design matrix D reveals an important property

of our model (4.1). While the columns of the the global parameters µ and γ have

effective sample size of order N ∼ n2, the local parameters α and β only have n

non-zero entries in their respective columns. Thus, the effective sample size for α

and β is of order n smaller than the one for the global parameters µ and γ. This

will also be reflected in the different rates of convergence we obtain in Theorem 4.4

below.

Rescaled parameters

While in SβM-C the rescaled parameters (c.f. Section 2.7.1.3) were mostly a

mathematical device needed for proving consistency of the estimator (2.4) (Theorem

2.4), the analogous notion in SRGM is integral for understanding the model selection

consistency result, Theorem 4.1. Therefore, we will introduce them formally in the

main text of this chapter.

Were we to naively ignore the differing sample sizes, our proofs would fail. In par-

ticular, the compatibility condition (cf. Section 4.2.2), crucial for proofs for LASSO-

type problems, would not hold. We therefore need to adjust for the differing sample

sizes. To that end, we introduce the matrix

T =

[√
n− 1I2n 0

0
√
NIp+1

]
,
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where Im is the m ×m identity matrix and define the sample size adjusted Gram

matrix Σ as

Σ = T−1E[DTD]T−1. (4.6)

It will be convenient to cast problem (4.4) in terms of rescaled parameters θ̄ which

adjust for the discrepancy in effective sample sizes. This new formulation is equiv-

alent to the one in (4.4), but gives us a unified framework for treating convergence

properties of our estimators. We will rely heavily on that rescaled version in our

proofs. Precisely, define the sample size adjusted design matrix D̄ as

D̄ =
[
X̄ 1 Z

]
∈ RN×(2n+p+1),

where

X̄ =
[
X̄out X̄ in

]
=
[ √

nXout √nX in
]
,

is blowing up the entries in D belonging to ϑ. For any parameter θ = (ϑT , µ, γT )T ∈

Θ, we introduce the notation

θ̄ = (ϑ̄, µ, γ) =

(
1√
n
ϑ, µ, γ

)
. (4.7)

In particular we use the notation θ̄0 = (ϑ̄T0 , µ0, γ
T
0 )T , to denote the rescaled true

parameter. The blow-up factor
√
n was chosen such that we can now reformulate

our problem as a problem in which each parameter effectively has sample size N in

the sense that

Σ =
1

N
E[D̄T D̄].

We find that the negative log-likelihood corresponding to the rescaled parameters

(4.7) is

L̄(θ̄) =−
n∑
i=1

√
nᾱibi −

n∑
i=1

√
nβ̄idi − d+µ−

∑
i 6=j

(ZTijγ)Aij

+
∑
i 6=j

log
(
1 + exp

(√
nᾱi +

√
nβ̄j + µ+ ZTijγ

))
Our original penalized likelihood problem can be rewritten as

ˆ̄θ = ( ˆ̄ϑT , µ̂, γ̂)T = arg min
ϑ̄,µ,γ

1

N
L̄(θ̄) + λ̄‖ϑ̄‖1, (4.8)

where λ̄ =
√
nλ and the argmin is taken over Θ̄loc = {θ̄ : θ ∈ Θ, ‖D̄θ̄‖∞ ≤ rn}. Note

that Θ̄loc is convex. Given a solution ˆ̄θ for penalty λ̄ to this modified problem (4.8),

we can obtain a solution to our original problem (4.4) with penalty λ = λ̄/
√
n via

(ϑ̂, µ̂, γ̂) =
(√

n ˆ̄ϑ, µ̂, γ̂
)
.
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Since for any θ ∈ Θ, Dθ = D̄θ̄, the bound rn is the same in the definitions of Θloc

and Θ̄loc. Note that θ ∈ Θloc if and only if θ̄ ∈ Θ̄loc. Clearly L̄(θ̄) = L(θ) and

E[L̄(θ̄)] = E[L(θ)]. Thus, θ̄0 satisfies that θ̄0 = arg minθ∈Θ̄ E[L̄(θ̄)].

4.2 Theory

We outline the main assumptions first. For the covariates, we focus on the case when

Zij is finite dimensional following a random design and γ0 is a fixed vector.

Assumption 4.1. The Zij are independent with E[Zij ] = 0 and |Zij | is uniformly

bounded. The covariate parameter γ0 lies in some compact, convex set Γ ⊂ Rp and p

remains fixed. Further assume that there are constants 0 < cmin < C, independent

of n, such that for all n ∈ N, the minimum eigenvalue λmin = λmin(n) and the

maximum eigenvalue λmax = λmax(n) of 1
NE[ZTZ] fulfil cmin ≤ λmin ≤ λmax ≤ C <

∞. Without loss of generality assume cmin < 1/2.

As a result of Assumption 4.1, there exist constants κ, c > 0 such that |ZTijγ| ≤ κ

for all 1 ≤ i 6= j ≤ n and |Zij,k| ≤ c for all 1 ≤ i 6= j ≤ n, k = 1, . . . , p.

Assumption 4.2. θ0 ∈ Θloc or equivalently rn,0 ≤ rn.

Assumption 4.1 is quite standard. Note that Zij ’s are not necessarily i.i.d., pos-

sibly having correlated entries and that Zij can be asymmetric in that Zij 6= Zji.

We note that we could have made a fixed-design assumption but the random-design

assumption is somewhat more interesting (cf. the analogous discussion for SβM-

C in Section 2.1). Assumption 4.2 is rather harmless as it simply states that the

parameter we are estimating is actually contained in the space over which we are

optimizing. Therefore, without loss of generality we assume rn = rn,0 and thus

ρn = ρn,0. Indeed, this can always be achieved by simply increasing rn as needed.

Results that take a potential model-misspecification when rn < rn,0 into account

and quantify the resulting bias can be derived similarly to the results in Chapter 2

(Section 2.2, Theorem 2.4), but are omitted for reasons of space. Indeed, in practice,

it will not be necessary to choose rn explicitly, as discussed in Section 4.3. The ex-

istence of rn,0 and ρn,0 are technical artefacts that encode the permissible sparsity

of the networks we study and enter our rates of convergence.

Assumption B1.
√
ns2

+λ̄ρ
−2
n → 0, n→∞.

For all of our theorems striking the right balance between parameter sparsity s+,

network sparsity ρn and penalty λ̄ is crucial. The restrictiveness of these balancing

assumptions will depend on the complexity of the results being proven and we num-

ber them separately from the general assumptions as “Assumption Bi”, i = 1, 2, 3,
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to make their special standing explicit in our notation. Our main result on model

selection consistency, Theorem 4.1, is the most refined of our theorems and hence

Assumption B1 is the strongest such balancing assumption. In particular, the weaker

balancing assumptions required to establish parameter estimation consistency (The-

orem 4.4; Assumption B2), and asymptotic normality of γ̂ (Theorem 4.5; Assump-

tion B3), follow from Assumptions B1 and 4.3.

In particular, with probability tending to one, our estimator θ̂ in (4.4) will

simultaneously recover the correct support S0, estimate the true parameter θ0 at the

classical LASSO rate of convergence up to a factor ρ−1
n and produce asymptotically

normal estimators for γ0.

4.2.1 Model selection consistency

Our main result for this section, Theorem 4.1, states that under the appropriate con-

ditions our estimator θ̂ will exclude all the truly inactive parameters and correctly

include all those truly active parameters whose value exceeds a certain threshold

(that tends to zero with increasing n). The latter “ϑ-min”-condition is typical for

model selection in high-dimensional logistic regression type problems (Ravikumar

et al. 2010, Chen et al. 2020).

Recall that we use S0 to refer to the active set of indices associated with

ϑ0 = (αT0 , β
T
0 )T , whereas S0,+ = S0 ∪ {2n + 1, . . . , 2n + 1 + p}. In the following

derivations it will be crucial to distinguish the two correctly. We use Sc0,+ to denote

the complement of S0,+ in [2n + 1 + p], that is Sc0,+ = [2n + 1 + p]\S0,+. Let Sc0
refer to the complement of S0 in [2n] only : Sc0 = [2n]\S0. While this may seem like

a potential notational pitfall, this allows for much cleaner notation in our proofs.

We first state the main theorem of this section before giving more details on its

derivation. Recall that λ̄ is the penalty parameter in the rescaled version (4.8) of

our problem (4.4). Also notice that Ŝ := {i : ˆ̄ϑi > 0} = {i : ϑ̂i > 0}. That is, the

estimator (4.4) and (4.8) will always select the same active set of parameters.

Assumption 4.3. −Nλ̄2

18 + log(n)→ −∞, n→∞.

Assumption 4.3 requires λ̄ > 3
√

2 ·
√

log(n)/N , which is the typical rate for the

penalty we would expect from classical LASSO literature (van de Geer & Bühlmann

2011). Theorem 4.1 is proved in Section 4.4.

Theorem 4.1. Under Assumptions 4.1, 4.2, B1 and 4.3, and for n sufficiently

large, with probability approaching one, the estimator θ̂ from (4.4):

1. excludes all the truly inactive parameters: Ŝ ∩ Sc = ∅ and,
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2. with penalty of order λ̄ �
√

log(n)
N , it includes all those truly active parameters

whose value is larger than C · ρ−1
n

√
log(n)√
n

:

{
i : ϑ0,i > C · ρ−1

n

√
log(n)√
n

}
⊆ Ŝ,

where the form of C and the exact probability are given in the proof.

Remark. 1. Assumption 4.3 requires the same regime for λ̄ as specified by Theo-

rems 4.4 and 4.5 which ensure consistent parameter estimation and asymptotic

normality of γ̂. Hence, consistent parameter estimation, inference on γ and sup-

port recovery are all possible simultaneously.

2. If we choose λ̄ �
√

log(n)
N and s+ is of lower order, such as growing logarithmically

or constant, then, up to log-terms, Assumption B1 means the permissible network

sparsity ρn may go to zero at most as fast as n−1/4.

Our tool of choice for proving Theorem 4.1 is a primal-dual witness construction,

similar to the one in Ravikumar et al. (2010). The idea is to construct a tuple (θ̄†, z̄†),

such that θ̄† solves (4.8), while identifying the correct support S0 for ϑ0 and z̄† is

a solution to the Karush-Kuhn-Tucker (KKT) conditions (4.9) as outlined below.

In the construction of (θ̄†, z̄†), we make use of knowledge of the true active set S0,

which makes it infeasible to use in practice. However, by Lemma 4.2 below, if the

construction succeeds – we make precise what we mean by that below – any solution

to (4.8) must have the same support as θ̄†. In summary, if the construction succeeds,

our estimator ˆ̄θ must identify the correct support S0, too. The bulk of the work in

proving Theorem 4.1 is to show that the construction of (θ̄†, z̄†) will be successful

with high probability for large n.

It is important to point out that due to the mixture of deterministic and ran-

dom columns in D and the differing sample sizes between ϑ and ξ, the standard

assumptions in Ravikumar et al. (2010) imposed on the Hessian of L cannot sim-

ply be imposed in our model. Rather, a careful argument is needed to prove that

analogous properties hold for sufficiently large n with high probability. See Section

4.4.1 for details.

Our starting point for proving Theorem 4.1 are the KKT conditions (Bertsekas

1995, Chapter 5): Equation (4.8) is a convex optimization problem. Hence, by sub-

differential calculus, a vector θ̄ is a minimizer of (4.8) if and only if zero is contained

in the subdifferential of 1
N L̄(θ̄) + λ̄‖ϑ̄‖1 at θ̄. That is, if and only if there is a vector

z̄ ∈ R2n+1+p such that

0 =
1

N
∇L̄(θ̄) + λ̄z̄, (4.9)
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and

z̄i = 1, if ϑ̄i > 0, i = 1, . . . , 2n, (4.10a)

z̄i ∈ [−1, 1], if ϑ̄i = 0, i = 1, . . . , 2n, (4.10b)

z̄i = 0, i = 2n+ 1, . . . , 2n+ 1 + p. (4.10c)

We call such a pair (θ̄, z̄) ∈ R2n+1+p×R2n+1+p primal-dual optimal for the rescaled

problem (4.8). Note that in the first 2n components of ∇L̄ we are taking the deriva-

tive with respect to ϑ̄ instead of ϑ. This means we need to pay attention to additional
√
n-factors. For such a pair to identify the correct support S0, it is sufficient for

θ̄i > 0, for all i ∈ S0, and (4.11a)

‖z̄Sc0,+‖∞ < 1 (4.11b)

to hold. Where (4.11a) ensures that all truly active indices are included and (4.11b)

ensures that all truly inactive indices are excluded (due to (4.10a)). We call (4.11b)

the strict feasibility condition as in Ravikumar et al. (2010).

We will proceed to construct a pair (θ̄†, z̄†) that satisfies condition (4.9), (4.10a)

- (4.10c) and (4.11a) - (4.11b) with high probability and for sufficiently large n. We

say the construction succeeds, if (θ̄†, z̄†) fulfils (4.9) - (4.11b), which in particular

implies that θ̄† identifies the correct support S0 and also is a solution to (4.8).

By the following lemma, if the construction succeeds, any solution to (4.8) must

have the same support as θ̄†. Thus, if the construction succeeds, our estimator ˆ̄θ

must identify the correct support S0, too.

Lemma 4.2. Suppose the construction (θ̄†, z̄†) fulfils equations (4.9) and (4.10a) -

(4.10c) and (4.11b). Let S† = {i : ϑ̄†i > 0}. Then,

Ŝ = S†.

In particular, if (θ̄†, z̄†) additionally fulfils (4.11a), then S† = S0, and thus, Ŝ = S0.

Lemma 4.2 is proved in Section 4.4.1. We now give a detailed description of the

primal-dual witness construction.

Primal-dual witness construction.

1. Solve the restricted penalized likelihood problem

θ̄† = (ϑ̄†,T , µ†, γ†,T )T = arg min
1

N
L̄(θ̄) + λ̄‖ϑ̄‖1, (4.12)

where the argmin is taken over all θ̄ = (ϑ̄T , µ, γT )T ∈ Θloc with support S0,+,
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i.e. θ̄†S0,+
= θ̄† or equivalently θ̄†Sc0,+

= 0. Thus, by construction, θ̄† correctly

excludes all inactive indices.

2. Since (4.12) is a convex problem, zero must be contained in its subdifferential

at θ̄†. Thus, we set z̄†i = 1, if ϑ̄†i > 0 such that (4.10a) holds and z̄†i = 0, i =

2n+1, . . . , 2n+1+p, such that (4.10c) holds. By subdifferential calculus we find

z̄†i ∈ [−1, 1], for those i ∈ S with ϑ̄†i = 0 (in case there are any), such that (4.9)

holds for those components in S.

3. Plug θ̄† and z̄† into (4.9) and solve for the remaining components of z̄†, such that

(4.9) holds for (θ̄†, z̄†).

The challenge will be proving that (4.11a) and (4.11b) also hold, which together

ensure that (4.10b) holds, too. This will be shown in Section 4.4.

4.2.2 Consistency

After having seen in Theorem 4.1 that our estimator θ̂ will recover the true set of

active indices S0 with high probability for sufficiently large n, in this section we will

show that under similar assumptions it will also be consistent in terms of excess

risk and `1-error. This section is very similar to Section 2.2 for SβM-C.

We follow once more the empirical risk literature (cf. Greenshtein & Ritov (2004),

Koltchinskii (2011)) and analyse the performance of our estimator in terms of excess

risk. To that end, define the excess risk for a parameter θ and its sample-size adjusted

version θ̄ as

E(θ) :=
1

N
E[L(θ)− L(θ0)] and Ē(θ̄) =

1

N
E[L̄(θ̄)− L̄(θ̄0)]

respectively. By construction, θ0 = arg minθ∈Θ E(θ) = arg minθ∈Θloc(rn,0) E(θ), where

the second equality follows from Assumption 4.2. Also, Ē(θ̄) = E(θ).

A compatibility condition. As in SβM-C, the compatibility condition is cru-

cial for proving the consistency of our estimator (4.4). As in Chapter 2, the classical

compatibility condition as for example defined for generalized linear models in van de

Geer et al. (2014) does not hold. The reason for this is that ϑ and (µ, γT )T have

different effective sample sizes. Using similar techniques as for SβM-C, we can now

show that the sample size adjusted Gram matrix fulfils the compatibility condition,

see Appendix A.1.1 for the proof.

Proposition 4.3 (Compatibility condition). Under Assumption 4.1, for s0 = o(
√
n)

and n large enough, for every θ ∈ R2n+1+p with ‖θSc0,+‖1 ≤ 3‖θS0,+‖1, we have

‖θS0,+‖21 ≤
2s0,+

cmin
θTΣθ.
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Parameter estimation consistency is the most lenient of our theorems in terms

of restrictions that we have to impose on the parameter sparsity s0 and the network

sparsity ρn. We may replace the stricter Assumption B1 by the following.

Assumption B2.
√
ns0ρ

−1
n λ̄→ 0, n→∞.

Theorem 4.4 below suggests a choice of λ̄ �
√

log(n)/N . Under these conditions,

Assumption B2 becomes s0ρ
−1
n

√
log(n)/n→ 0, which is the same as Assumption 2.2

needed for estimation consistency in SβM-C. Up to an additional factor ρ−1
n , which

is the price we have to pay for allowing vanishing link probabilities, the permissible

sparsity for ϑ0 is thus the permissible sparsity in classical LASSO theory for an

effective sample size of order n. This makes sense, considering the discussion of the

differing effective sample sizes in Section 4.2. Also, this choice of λ̄ together with

Assumption B2 imply s0 = o(
√
n), as is required by Proposition 4.3 and which thus

is not a restriction.

Theorem 4.4. Let Assumptions 4.1, 4.2 and B2 hold. Fix a confidence level t and

let

an :=

√
2 log(2(2n+ p+ 1))

N
(1 ∨ c).

Choose λ0 = λ0(t, n) as

λ0 = 8an + 2

√
t

N
(11(1 ∨ (c2p)) + 16(1 ∨ c)

√
nan) +

4t(1 ∨ c)
√
n

3N
.

Let λ̄ =
√
nλ ≥ 8λ0. Then, with probability at least 1− exp(−t) we have

E(θ̂) + λ̄

(
1√
n
‖ϑ̂− ϑ0‖1 + |µ̂− µ0|+ ‖γ̂ − γ0‖1

)
≤ C s0,+λ̄

2

ρn,0
,

with constant C = 128/cmin.

Remark. The proof for consistency follows almost exactly, sometimes even line by

line, as for the SβM-C in Theorem 2.4. Therefore, we only state the theorem here

and defer its proof, which we include for completeness, to Appendix A.1. Indeed,

our proof strategy is the same as in SβM-C: We first assert that the basic inequality

holds for our estimator (4.4) and its rescaled version (4.8) (Section A.1.2) and

derive a lower quadratic margin condition (Section A.1.4). We prove consistency on

a special set I (Section A.1.5) and conclude that I has probability approaching one

(A.1.6). Putting these pieces together results in Theorem 4.4.

Remark. The conditions in Theorem 4.4 imply λ0 �
√

log(n)/N , suggesting that

we may choose λ̄ of the same order. Thus, up to the additional factor ρ−1
n , we obtain

the classical LASSO rates of convergence for a parameter of effective sample size

N for µ and γ and those for a parameter of effective sample size n for α and β.
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If s0 is a lower order term, such as growing logarithmically or constant, then up

to log-factors Assumption B2 requires that ρn tend to zero at rate at most as fast

as 1/
√
n, which allows for sparser networks than what we had for model selection

consistency in Theorem 4.1.

4.2.3 Inference

We derive the limiting distribution of γ̂ and as a by-product of our proofs we also

obtain an analogous limiting result for µ̂. The employed methodology and results

are analogous to the ones used for SβM-C in Section 2.4. Therefore, we give the

general idea and the main result here and defer the derivations to the appendix.

Our strategy for proving Theorem 4.5 below will be inverting the KKT conditions

similar to van de Geer et al. (2014) and to what we did in Section 2.4 for SβM-C.

This relies on a Taylor expansion followed by the inversion of the Hessian of the

negative log-likelihood L with respect to ξ = (µ, γT )T . See Appendix A.2 for details.

The difficulty is that the Hessian will be singular in the limit, because we allow our

link probabilities to go to zero.

In detail, denote by H(θ̂) := Hξ×ξ(θ)|θ=θ̂ ∈ R(p+1)×(p+1) the Hessian of 1
NL(θ)

with respect to ξ only, evaluated at θ̂. LetDξ = [1|Z] be the part ofD corresponding

to ξ with rows DT
ξ,ij = (1, ZTij), i 6= j. Also, let Ŵ 2 = diag

(
pij(θ̂)(1− pij(θ̂)), i 6= j

)
.

Then,

H(θ̂) =
1

N
DT
ξ Ŵ

2Dξ.

LetW 2
0 = diag(pij(θ0)(1−pij(θ0)), i 6= j) and consider the corresponding population

version:

E[H(θ0)] =
1

N
E[DT

ξ W
2
0Dξ].

To be consistent with commonly used notation, call Σ̂ξ = H(θ̂) and Σξ = E[H(θ0)]

and Θ̂ξ := Σ̂−1
ξ ,Θξ := Σ−1

ξ .

For the proof of asymptotic normality we need to invert Σ̂ξ and Σξ and show

that these inverses are close to each other in an appropriate sense. It is commonly

assumed in LASSO theory (cf. van de Geer et al. (2014)) that the minimum eigen-

values of these matrices stay bounded away from zero, uniformly in n. In our case,

however, such an assumption is invalid. As we have argued, it is a necessary con-

dition for modelling sparse networks to allow pij → 0, since otherwise each node

degree will scale linearly in n, putting us in the dense graph regime. Alas, for the

general setting described here, any lower bound on the diagonal entries of W0 and

Ŵ and thus also any lower bound on the minimum eigenvalue of Σξ and Σ̂ξ will

tend to zero with growing n. A careful argument is needed and we have to impose
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a slightly stricter balancing assumption than the Assumption B2 we used for our

consistency result.

Assumption B3.
√
ns0ρ

−2
n λ̄→ 0, n→∞.

Theorem 4.5. Under Assumptions 4.1, 4.2 and B3, with λ fulfilling the conditions

of Theorem 4.4, we have for any k = 1, . . . , p, as n→∞,

√
N

γ̂k − γ0,k√
Θ̂ϑ,k+1,k+1

d−→ N (0, 1).

We also have for our estimator of the global sparsity parameter, µ̂, as n→∞,

√
N

µ̂− µ0√
Θ̂ϑ,1,1

d−→ N (0, 1).

Contrary to what is commonly seen in the penalized likelihood literature (Zhang

& Zhang 2014, van de Geer et al. 2014), no debiasing of γ̂ and µ̂ is needed, as

was also the case for SβM-C. The reason for this is that columns of D pertaining

to those parameters which are indeed biased, that is to ϑ, and those pertaining to

ξ = (µ, γT )T become asymptotically orthogonal, meaning that the bias in ξ̂ vanishes

fast enough for the derivation of Theorem 4.5 to be possible. Notice that for a lower

order s0, Assumption B3 essentially allows for the same level of network sparsity as

Assumption B1, up to lower order factors. Also, under the stated conditions on λ,

Assumption B3 is analogous to Assumption 2.3 in SβM-C.

4.3 Simulation: SRGM

We demonstrate the effectiveness of our estimator (4.4) in consistently performing

simultaneous parameter estimation and model selection. To this end, we tested it

on networks of varying sizes. Specifically, we let n vary from 150 to 800 in steps of

50 and chose s0 close to
√
n/2 and sα = sβ = s0/2. The values for s0 are given in

Table 4.1. We selected a heterogeneous configuration for the assignment of non-zero

α and β values. That is, we included dedicated “spreader” nodes, with large α and

zero β value, as well as “attractor” nodes, with large β and zero α, as well as some

nodes with active α and β. In detail, we let

α = (2, 1.5, 1, 0.8, . . . , 0.8, 0, . . . , 0),

β = (0, . . . , 0, 2, 1.5, 1, 0.8, . . . , 0.8, 0, . . . , 0),

where the number of entries with value 0.8 was chosen to match the chosen sparsity

level (zero for the first three values of n) and the number of leading zeros in β was
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n 150 200 250 300 350 400 450 500 550 600 650 700 750 800

s0 6 6 6 8 8 10 10 10 10 12 12 12 12 14

Table 4.1: The sparsity level s0 for each value of n.

n Median edge density min pij max pij

150 0.140 0.059 0.888
200 0.130 0.055 0.886
250 0.123 0.052 0.879
300 0.119 0.050 0.873
350 0.115 0.048 0.868
400 0.112 0.047 0.867
450 0.109 0.046 0.864
500 0.107 0.045 0.861
550 0.105 0.044 0.859
600 0.104 0.043 0.858
650 0.102 0.043 0.854
700 0.100 0.042 0.856
750 0.099 0.041 0.851
800 0.098 0.041 0.853

Table 4.2: Network summary statistics for directed network model for various values of n.

chosen such that there were exactly two nodes with both active α and β. We let

the networks get progressively sparser by setting µ = −1.2 · log(log(n)). We used

p = 2 and sampled the covariates Zij,k, k = 1, 2, i 6= j, from centred Beta(2, 2)

distributions, that is Zij,k ∼ Beta(2, 2) − 1/2. We weighted the covariates with

γ = (1, 0.8)T . For each value of n we drew M = 500 realizations of this model.

The observed median edge density, as well as median minimum and maximum link

probabilities pij are recorded in Table 4.2.

Our estimator requires us to choose a tuning parameter λ and as in the SβM-C

we explored the use of the Bayesian Information Criterion (BIC) as well as a heuristic

based on our developed theory for model selection. We will see that, while the two

model selection procedures perform similarly in terms of parameter estimation and

inference for γ, with BIC achieving slightly better results, the heuristic based on

our developed theory is superior to BIC in terms of model selection consistency.

Recall the definition of BIC from Section 2.5: We denote the solution of (4.4)

when using penalty λ by θ̂(λ) = (α̂(λ)T , β̂(λ)T , µ̂(λ), γ̂(λ)T )T and write s(λ) = |{i :

ϑ̂i(λ) > 0}| for its sparsity. The value of the BIC at λ is given by

BIC = 2L(θ̂(λ)) + s(λ) log(N)

and the penalty λ was chosen to minimize BIC.

Our heuristic is motivated by the theory developed in the previous sections. We

have two restrictions on the choice of the penalty parameter λ, namely the ones

specified in Theorems 4.1 and 4.4. While both Theorems demand λ to be of the
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same order, upon inspection we see that the conditions imposed by Theorem 4.4

demand λ to be larger in terms of the leading constant. Thus, we may use essentially

the same heuristic as in Section 2.5 for SβM-C. In detail, recall that Theorem 4.4

suggests that based on a confidence level t picked by us, we should first define λ0 as

given in the theorem. We pick t = 3 and set c to the maximum observed covariate

value and, as in the case of SβM-C, we drop the factor eight in the relation between

λ0 and λ̄, as it is a technical artefact. Decreasing the penalty in this manner is

in line with empirical findings that suggest that in high-dimensional settings the

penalty values prescribed by mathematical theory in practice tend to over-penalize

the parameter values (Yu et al. 2019).

We drew M = 500 realizations for each value of n and recorded the mean

absolute error for estimation of (αT , βT )T , the absolute error for estimation of µ

and the `1-error for estimation of γ. We also constructed confidence intervals as

prescribed by Theorem 4.5 and recorded the empirical coverage at the nominal 95%

level. Finally, we studied how well BIC and our heuristic did in terms of identifying

the correct model.

Consistency. We display the error statistics for estimation of ϑ0 = (αT0 , β
T
0 )T , µ0

and γ0 in Figures 4.1a, 4.1b and 4.1c respectively. We see that the error decreases

with increasing network size for both model selection procedures. Especially for

small n, BIC outperforms the heuristic for ϑ0 and µ0, while they both give essen-

tially the same results for estimation of γ0. The better performance of BIC is less

prominent as n increases. BIC selects the penalty in a purely data driven manner,

which allows it to adapt to differing degrees of sparsity in the network, while for

the heuristic the penalty value only depends on n and p. This additional flexibility

is what allows BIC to achieve lower error values.

Asymptotic normality. We construct confidence intervals at the nominal 95%

level for our estimators of γ0,1 and γ0,2 as prescribed by Theorem 4.5. Table 4.3

shows the results for γ0,1 across the values of n. The results for γ0,2 are similar and

are omitted for reasons of space. The coverage is very close to the 95%-level across

all network sizes, independent of which model selection criterion we use. This is to

be expected, considering that there was hardly any difference for the estimation of

γ between our two model selection criteria. This empirically illustrates the validity

of the asymptotic results derived in Theorem 4.5. As expected, the median length

of the confidence interval decreases with increasing network size.

Model selection. Figure 4.2a shows the empirical probability of selecting the cor-

rect model for the various network sizes for BIC and the heuristic. We see very

clearly that, as n grows, our heuristic outperforms BIC, achieving correct model

selection almost all the time. Nonetheless, it is worth pointing out that even though
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Figure 4.1: Mean absolute error for ϑ0 = (αT0 , β
T
0 ), absolute error for µ0 and `1-error for γ0 for

varying n. The results for BIC are presented in red, the ones for our heuristic in green. The dots
are the mean errors and the error bars are of length one standard deviation.

BIC may not select the exact correct model, the number of misclassifications it does

on average is not very large, as shown in Figure 4.2b. Figure 4.2b also shows that

the heuristic, by virtue of selecting a larger penalty than BIC, will on average incur
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n Coverage CI Coverage CI
Pre-determined λ BIC

150 0.960 0.342 0.962 0.344
200 0.952 0.265 0.962 0.266
250 0.952 0.217 0.954 0.218
300 0.944 0.183 0.948 0.184
350 0.946 0.160 0.952 0.160
400 0.950 0.141 0.964 0.141
450 0.962 0.127 0.960 0.127
500 0.940 0.115 0.944 0.115
550 0.952 0.106 0.950 0.106
600 0.954 0.097 0.956 0.097
650 0.960 0.091 0.964 0.091
700 0.946 0.085 0.950 0.085
750 0.944 0.079 0.946 0.079
800 0.946 0.075 0.952 0.075

Table 4.3: Empirical coverage for estimation of γ0,1 under nominal 95% coverage and median
lengths of confidence intervals.

more false negatives for small n. On the other hand, as n grows, BIC will incur

false positives, resulting in the decreasing probability of selecting the correct model.

Running the risk of selecting a slightly misspecified model with BIC may seem an

acceptable price to pay in many applications, when considering that, unlike the

heuristic, BIC is capable of a data driven selection of the penalty parameter and

results in slightly better parameter estimation on average. In the end, it will depend

on the preference of the statistician and the application at hand if they value exact

model recovery over improved parameter estimation.
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Figure 4.2: (a): The empirical probability of selecting the correct subset of active indices. (b):
The median number of misclassifications for each model selection procedure, split up into false
positives and false negatives.
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4.4 Proofs of Chapter 4

4.4.1 Proof of Lemmas 4.2, 4.6, 4.7

To make the representation cleaner, for the remainder of Section 4.4 we will simply

write S for S0 and S+ for S0,+. Recall that we use Sc+ to denote the complement

of S+ in [2n+ 1 + p], that is Sc+ = [2n+ 1 + p]\S+. We also use Sc to refer to the

complement of S in [2n] only : Sc = [2n]\S.

Proof of Lemma 4.2. Since θ̄† and ˆ̄θ both solve (4.8), we must have

1

N
L̄(θ̄†) + λ̄‖ϑ̄†‖1 =

1

N
L̄(ˆ̄θ) + λ̄‖ ˆ̄ϑ‖1.

Denote by z̄†ϑ the first 2n components of z̄†. Then, by (4.10a) and (4.10b), 〈z̄†ϑ, ϑ̄
†〉 =

‖ϑ̄†‖1. Thus,
1

N
L̄(θ̄†) + λ̄〈z̄†ϑ, ϑ̄

†〉 =
1

N
L̄(ˆ̄θ) + λ̄‖ ˆ̄ϑ‖1.

Hence, using that the last p+ 1 components of z̄† are zero,

1

N
L̄(θ̄†) + λ̄〈z̄†, θ̄† − ˆ̄θ〉 =

1

N
L̄(ˆ̄θ) + λ̄

(
‖ ˆ̄ϑ‖1 − 〈z̄†, ˆ̄θ〉

)
.

But by (4.9), λ̄z̄† = −1/N · ∇L̄(θ̄†) and therefore
1

N
L̄(θ̄†)− 〈1/N · ∇L̄(θ̄†), θ̄† − ˆ̄θ〉 − 1

N
L̄(ˆ̄θ) = λ̄

(
‖ ˆ̄ϑ‖1 − 〈z̄†, ˆ̄θ〉

)
.

By the convexity of L̄, the left-hand side in the above display is negative. Therefore,

‖ ˆ̄ϑ‖1 ≤ 〈z̄†, ˆ̄θ〉 = 〈z̄†ϑ,
ˆ̄ϑ〉 ≤ ‖z̄†ϑ‖∞‖

ˆ̄ϑ‖1 ≤ ‖ ˆ̄ϑ‖1.

Hence, 〈z̄†ϑ,
ˆ̄ϑ〉 = ‖ ˆ̄ϑ‖1. But since ‖z̄†

S†c
‖∞ < 1 by (4.11b), this can only hold if

ˆ̄ϑS†c = 0. The claim follows.

For the proof of Theorem 4.1 we need conditions akin to those used in Raviku-

mar et al. (2010). The first condition is the so-called dependency condition which

demands that the population Hessian of L̄ with respect to the variables contained

in the active set S is invertible. For our specific case, the Hessian of 1/N · L̄ with

respect to ϑ̄ only is

Q :=
1

n− 1
XTW 2

0X = Hϑ̄×ϑ̄L̄(θ̄) ∈ R2n×2n, (4.13)

where W0 = diag(
√
pij(θ0)(1− pij(θ0)), i 6= j).

Lemma 4.6 (Dependency condition). For any n,

mineval (QS,S) ≥ 1

2
ρn ·

(
1−

max{sα, sβ}
n− 1

)
> 0.
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Proof of Lemma 4.6. Notice that

1

n− 1
XTX =

[
In B

B In

]
∈ R2n×2n,

where In is the (n×n) identity matrix and B is a matrix with zeros on the diagonal

and 1/(n − 1) everywhere else. Consider the sub-matrix with only those rows and

columns belonging to S:

P :=
1

n− 1
(XTX)S×S =

[
Isα BSα,Sβ

BSβ ,Sα Isβ

]
∈ Rs×s.

This matrix P is strictly diagonally dominant. Indeed,

∑
j∈S,j 6=i

Pij =
sβ

n− 1
< 1 = Pii, i ∈ Sα

∑
j∈S,j 6=i

Pij =
sα

n− 1
< 1 = Pii, i ∈ Sβ.

Thus, P is strictly positive definite. More, by the Gershgorin Circle Theorem, all

the eigenvalues of P must lie in one of the discs D(Pii, Ri), where Ri =
∑

j∈S,j 6=i Pij

and D(Pii, Ri) is the disc with radius Ri centred at Pii. In particular,

mineval(P ) ≥ 1−
max{sα, sβ}

n− 1
.

But now, for any v ∈ Rs,

vTQS,Sv ≥
1

2
ρn · vTPv ≥

1

2
ρn

(
1−

max{sα, sβ}
n− 1

)
‖v‖22

and the claim follows.

The next condition we need is the so-called incoherence condition.

Lemma 4.7 (Incoherence condition). For any n,

‖QSc,SQ−1
S,S‖∞ ≤

1

2
ρ−1
n ·

max{sα, sβ}
n−max{sα, sβ}

.

By Lemma 4.6 the left-hand side in Lemma 4.7 is well-defined. Under Assump-

tion B1, the right-hand side in Lemma 4.7 tends to zero as n→∞.

Proof of Lemma 4.7. We make use of the following bound of a the infinity norm of

the inverse of a diagonally dominant matrix (see for example Varah (1975))

‖Q−1
S,S‖∞ ≤ max

i∈S

{
1

|qii| −Ri

}
,
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where qii is the ith diagonal entry of QS,S and Ri is the sum of the off-diagonal

elements of the ith row of QS,S . That is, for i ∈ Sα,

qii−Ri =
1

n− 1

n∑
j=1,j 6=i

pij(1−pij)−
1

n− 1

∑
j∈Sβ ,j 6=i

pij(1−pij) ≥
1

2(n− 1)
ρn(n−sβ),

and analogously for i ∈ Sβ ,

qii −Ri ≥
1

2(n− 1)
ρn(n− sα).

Thus,

qii −Ri ≥
1

2(n− 1)
ρn(n−max{sα, sβ})

and therefore,

‖Q−1
S,S‖∞ ≤ 2ρ−1

n ·
n− 1

n−max{sα, sβ}
. (4.14)

Furthermore, any row of QSc,S has either sα or sβ non-zero entries, each of the form

1/(n− 1) · pij(1− pij) ≤ 1/(4(n− 1)). Hence,

‖QSc,S‖∞ ≤
max{sα, sβ}

4(n− 1)
.

The claim follows by the sub-multiplicativity of the matrix infinity norm.

4.4.2 General strategy

The proof of Theorem 4.1 hinges on the construction of (θ̄†, z̄†) succeeding with high

probability. The challenge in proving this is proving that (θ̄†, z̄†) fulfils conditions

(4.11a) and (4.11b). Our proof relies on the following derivations. From (4.9) we

obtain

0 =
1

N
∇L̄(θ̄†) + λ̄z̄† − 1

N
∇L̄(θ̄0) +

1

N
∇L̄(θ̄0).

Doing a Taylor expansion along the same lines as (A.16) and (A.17), we obtain

1

N
∇L̄(θ̄†)− 1

N
∇L̄(θ̄0) =

1

N
D̄TW 2

0 D̄(θ̄† − θ̄0) +O

 1

N

∑
i 6=j

D̄ij |D̄T
ij(θ̄
† − θ̄0)|2

 ,

where we have used the fact that we are taking derivatives with respect to θ̄ and

used D̄ij θ̄0 in (A.17), to obtain W 2
0 instead of Ŵ 2 above. Combining the last two

equations, we obtain

1

N
D̄TW 2

0 D̄(θ̄† − θ̄0) = −λ̄z̄† − 1

N
∇L̄(θ̄0) +O

 1

N

∑
i 6=j

D̄ij |D̄T
ij(θ̄
† − θ̄0)|2

 .
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Taking only the first 2n entries of that equation we obtain

1

N
X̄TW 2

0 X̄(ϑ̄† − ϑ̄0) =− 1

N
∇ϑ̄L̄(θ̄0) +

1

N
X̄TW 2

0

[
1 Z

]
(ξ† − ξ0)− λ̄z̄†1:2n + R̄

(4.15)

where we use z̄†1:2n to refer to the first 2n components of z̄†1:2n, use our shorthand

notation ξ = (µ, γT )T and let

R̄ = O

 1

N

∑
i 6=j

X̄ij |D̄T
ij(θ̄
† − θ̄0)|2

 .

The left-hand side in (4.15) is equal to

Q(ϑ̄† − ϑ̄0) = Q−,S(ϑ̄† − ϑ̄0)S +Q−,Sc (ϑ̄† − ϑ̄0)Sc︸ ︷︷ ︸
=0

.

Plugging this into (4.15) and splitting up by rows, we get

QS,S(ϑ̄† − ϑ̄0)S =− 1

N

(
∇ϑ̄L̄(θ̄0)

)
S

+
1

N
(X̄−,S)TW 2

0

[
1 Z

]
(ξ† − ξ0)

− λ̄z̄†1:2n,S + R̄S ,

(4.16a)

QSc,S(ϑ̄† − ϑ̄0)S =− 1

N

(
∇ϑ̄L̄(θ̄0)

)
Sc +

1

N
(X̄−,Sc)TW 2

0

[
1 Z

]
(ξ† − ξ0)

− λ̄z̄†1:2n,Sc + R̄Sc ,

(4.16b)

where it is important to remember that Sc = [2n]\S. We solve (4.16a) for (ϑ̄†− ϑ̄0)S

and plug the result into (4.16b). Finally we rearrange for −λ̄z̄†1:2n,Sc ,

−λ̄z̄†1:2n,Sc =QSc,SQ
−1
S,S

{
− 1

N

(
∇ϑ̄L̄(θ̄0)

)
S

+
1

N
(X̄−,S)TW 2

0

[
1 Z

]
(ξ† − ξ0)

− λ̄z̄†1:2n,S + R̄S

}
+

1

N

(
∇ϑ̄L̄(θ̄0)

)
Sc −

1

N
(X̄−,Sc)TW 2

0

[
1 Z

]
(ξ† − ξ0)− R̄Sc .

Now, divide by λ̄ and take the ∞-norm on both sides. Rearrange corresponding

terms and use (4.10a).

‖z̄†1:2n,Sc‖∞ ≤
1

λ̄

{
‖QSc,SQ−1

S,S‖∞ + 1
}∥∥∥∥ 1

N
∇ϑ̄L̄(θ̄0)

∥∥∥∥
∞

(I)

+
1

λ̄

{
‖QSc,SQ−1

S,S‖∞ + 1
}∥∥R̄∥∥∞ (II)

+
1

λ̄

{
‖QSc,SQ−1

S,S‖∞ + 1
}∥∥∥∥ 1

N
X̄TW 2

0

[
1 Z

]
(ξ† − ξ0)

∥∥∥∥
∞

(III)

+
∥∥∥QSc,SQ−1

S,S

∥∥∥
∞

(IV ).

By appropriately bounding the terms (I) − (IV ) on the right-hand side, we will

proceed to show that for sufficiently large n, with high probability, ‖z̄†1:2n,Sc‖∞ < 1,
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which is equivalent to (4.11b). Notice that we already may control term (IV ) as

well as the terms ‖QSc,SQ−1
S,S‖∞ + 1 by the incoherence condition, Lemma 4.7.

4.4.3 Controlling term (I)

Notice that the ith component of 1
N∇ϑ̄L̄(θ̄0) is of the form

1

N

√
n
∑

j=1,j 6=i
(Aij − pij) =

1√
n
· 1

n− 1

∑
j=1,j 6=i

(Aij − pij).

In particular, each summand is a centred, bounded random variable. By Hoeffding’s

inequality, we have for every t > 0,

P

∣∣∣∣∣∣ 1

n− 1

∑
j=1,j 6=i

(Aij − pij)

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−n− 1

2
t2
)
.

Thus, for any ε > 0, picking t = ε
√
nλ̄, gives

P

(
1

λ̄

∣∣∣∣ 1

N
∇ϑ̄L̄(θ̄0)i

∣∣∣∣ ≥ ε) ≤ 2 exp

(
−Nλ̄

2

2
ε2
)
.

Taking a union bound over all 2n components of ∇ϑ̄L̄(θ̄0), leads to

P

(
1

λ̄

∥∥∥∥ 1

N
∇ϑ̄L̄(θ̄0)

∥∥∥∥
∞
≥ ε
)
≤ 4n · exp

(
−Nλ̄

2

2
ε2
)

= 4 · exp

(
−Nλ̄

2

2
ε2 + log(n)

)
.

(4.17)

In the next section, when controlling term (II), we will also need a similar bound on

the components of 1
N∇L̄(θ̄0) corresponding to ξ = (µ, γT )T , which is why we derive

the respective bounds now. Using analogous arguments to the above, we obtain

P

(
1

λ̄

∥∥∥∥ 1

N
∇ξL̄(θ̄0)

∥∥∥∥
∞
≥ ε
)
≤ 2(p+ 1) · exp

(
− Nλ̄2

2(1 ∨ c2)
ε2
)
. (4.18)

Combining (4.17) and (4.18), we obtain a bound on the infinity norm of the full

gradient,

P

(
1

λ̄

∥∥∥∥ 1

N
∇L̄(θ̄0)

∥∥∥∥
∞
≥ ε

)

≤ 4 · exp

(
−Nλ̄

2

2
ε2 + log(n)

)
+ 2(p+ 1) · exp

(
− Nλ̄2

2(1 ∨ c2)
ε2
)
,

(4.19)

which tends to zero, as long as −Nλ̄2

2 ε2 + log(n)→∞, as n tends to infinity.
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4.4.4 Controlling term (II)

Controlling term (II) is by far the most involved step in controlling ‖z̄†1:2n,Sc‖∞.

We start by controlling the `2-error between our construction θ̄† and the truth θ̄0.

Lemma 4.8. Under Assumptions 4.1, 4.2, B1, 4.3, for n large enough, for any

ε > 0, with probability at least

1− 4 · exp

(
−Nλ̄

2

2
ε2 + log(n)

)
− 2(p+ 1) · exp

(
− Nλ̄2

2(1 ∨ c2)
ε2
)

− p(p+ 3) exp

(
−N c2

min

2048s2
+c̃

)
,

which tends to one as long as −Nλ̄2

2 ε2 + log(n)→ −∞, as n→∞, we have

‖θ̄† − θ̄0‖1 ≤ (1 + ε)
9

cmin
ρ−1
n s+λ̄.

Proof. Keep in mind that θ̄†− θ̄0 = θ̄†S+
− θ̄0,S+ . Define a function G : Rs+1+p → R,

G(u) =
1

N

{
L̄(θ̄0,S+ + u)− L̄(θ̄0,S+)

}
+ λ̄

(
‖θ̄0,S + uS‖1 − ‖θ̄0,S‖1

)
,

where for the addition θ̄0,S+ +u to be well-defined, we use the canonical embedding

of Rs+1+p ↪→ R2n+1+p, by setting the components not contained in S to zero. In

the following we will make use of that embedding without explicitly mentioning it if

there is no chance of confusion. Also, pay close attention to the distinction between

S+ and S in above display. Clearly, G(0) = 0 and G is minimized at ū† = θ̄†S+
−θ̄0,S+ ,

which implies that G(ū†) ≤ 0. Also, G is convex.

Now suppose we manage to find some B ∈ R, B > 0, such that for all u ∈ Rs+1+p

with ‖u‖1 = B we haveG(u) > 0. We claim that in that case it must hold ‖ū†‖1 ≤ B.

Indeed, if ‖ū†‖1 > B, then there exists a t ∈ (0, 1) such that for ũ = tū† we have

‖ũ‖1 = B. But then, by convexity of G, G(ũ) ≤ tG(ū†) + (1− t)G(0) = tG(ū†) ≤ 0.

A contradiction.

Thus, we need to find an appropriate B. Let B > 0, the correct form to be

determined later. Now, pick any u ∈ Rs+1+p with ‖u‖1 = B. We do a first-order

Taylor expansion of L̄, with respect to the components in S+, in the point θ̄0,S+ ,

evaluated at θ̄0,S+ + u. This yields

G(u) =
1

N

{
∇S+L̄(θ̄0,S+)T (θ̄0,S+ + u− θ̄0,S+) +

1

2
· uTHS+,S+L̄(θ̄0,S+ + uα)u

}
+ λ̄

(
‖θ̄0,S + uS‖1 − ‖θ̄0,S‖1

)
,
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for some α ∈ [0, 1]. Now, using (4.19), we know that with high-probability,∣∣∣∣ 1

N
∇S+L̄(θ̄0,S+)Tu

∣∣∣∣ ≤ ∥∥∥∥ 1

N
∇S+L̄(θ̄0,S+)

∥∥∥∥
∞
‖u‖1 ≤ ελ̄B (4.20)

with the ε from (4.19). Furthermore, by using the triangle inequality, we obtain

λ̄
(
‖θ̄0,S + uS‖1 − ‖θ̄0,S‖1

)
≥ −λ̄‖u‖1 = −λ̄B (4.21)

Clearly, the canonical embedding of u into R2n+1+p fulfils the condition of the

empirical compatibility condition, Proposition A.2. Also, keep in mind that As-

sumptions B1 and 4.3 together imply n−1/2ρ−1
n s+ → 0, which in particular implies

s+ = o(
√
n). Thus, Proposition A.2 is applicable and with high probability as pre-

scribed in Proposition A.2, we have

1

2
· 1

N
· uTHS+,S+L̄(θ̄0,S+ + uα)u ≥ 1

4
ρnu

T

{
1

N
D̄T D̄

}
S+,S+

u

=
1

4
ρnu

T Σ̂u

≥ 1

8
ρn
cmin

s+
‖u‖21

=
1

8
ρn
cmin

s+
B2

(4.22)

Combining (4.20), (4.21), (4.22), we find

G(u) ≥ −ελ̄B − λ̄B +
1

8
ρn
cmin

s+
B2.

The right-hand side of this equation is strictly larger zero, whenever

B > (1 + ε)
8

cmin
ρ−1
n s+λ̄.

Thus, the claim follows from picking

B = (1 + ε)
9

cmin
ρ−1
n s+λ̄.

Lemma 4.9. Under Assumptions 4.1, 4.2, B1, 4.3, for n large enough, for any

ε > 0, with probability at least

1− 4 · exp

(
−Nλ̄

2

2
ε2 + log(n)

)
− 2(p+ 1) · exp

(
− Nλ̄2

2(1 ∨ c2)
ε2
)

− p(p+ 3) exp

(
−N c2

min

2048s2
+c̃

)
,
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which tends to one as long as −Nλ̄2

2 ε2 + log(n)→ −∞, as n→∞, we have

1

λ̄
‖R̄‖∞ ≤

324(1 ∨ (c2p))(1 + ε)2

c2
min

·
√
nρ−2

n s2
+λ̄.

Proof. Consider the ith component of R̄, for i ∈ Sα. Similar to (2.23), using the

Cauchy-Schwarz Inequality, we obtain,

R̄i =
1

N

n∑
j=1,j 6=i

X̄ij |D̄T
ij(θ̄
† − θ̄0)|2

=
1√
n
· 1

n− 1

n∑
j=1,j 6=i

|D̄T
ij(θ̄
† − θ̄0)|2

=
1√
n
· 1

n− 1

n∑
j=1,j 6=i

(
α†i − α0,i + β†j − β

†
0,j + µ† − µ0 + ZTij(γ

† − γ0)
)2

≤ 4√
n
· 1

n− 1

n∑
j=1,j 6=i

(
(α†i − α0,i)

2 + (β†j − β0,j)
2 + (µ† − µ0)2 + c2p‖γ† − γ0‖22

)
=

4√
n

{
(α†i − α0,i)

2 + (µ† − µ0)2 + c2p‖γ† − γ0‖22
}

+
4√
n
· 1

n− 1

n∑
j=1,j 6=i

(β†j − β0,j)
2

≤ 4√
n

(1 ∨ (c2p))
{

(α†i − α0,i)
2 + (µ† − µ0)2 + ‖γ† − γ0‖22

}
+

4
√
n

n− 1
‖β̄† − β̄0‖22.

We have

(α†i − α0,i)
2 = n(ᾱ†i − ᾱ0,i)

2 ≤ n‖ᾱ† − ᾱ0‖22.

Thus, by Lemma 4.8, with at least the prescribed probability and for all i ∈ Sα,

Ri
λ̄
≤4(1 ∨ (c2p))

λ̄

√
n‖θ̄† − θ̄0‖22 ≤

4(1 ∨ (c2p))

λ̄

√
n‖θ̄† − θ̄0‖21

≤ 324(1 ∨ (c2p))(1 + ε)2

c2
min

·
√
nρ−2

n s2
+λ̄.

The same bound is found for all i ∈ Sβ using the exact same steps. Since the

right-hand side above does not depend on i the claim follows.

4.4.5 Controlling term (III)

Lemma 4.10. Under Assumptions 4.1, 4.2, B1, 4.3 for n large enough, for any

ε > 0, with probability at least

1− 4 · exp

(
−Nλ̄

2

2
ε2 + log(n)

)
− 2(p+ 1) · exp

(
− Nλ̄2

2(1 ∨ c2)
ε2
)

− p(p+ 3) exp

(
−N c2

min

2048s2
+c̃

)
,

145



which tends to one as long as −Nλ̄2

2 ε2 + log(n)→ −∞, as n→∞, we have

1

λ̄

∥∥∥∥ 1

N
X̄TW 2

0

[
1 Z

]
(ξ† − ξ0)

∥∥∥∥
∞
≤ 9(1 ∨ c)(1 + ε)(p+ 1)

4cmin
· 1√

n
ρ−1
n s+.

Proof. We have∥∥∥∥ 1

N
X̄TW 2

0

[
1 Z

]
(ξ† − ξ0)

∥∥∥∥
∞
≤
∥∥∥∥ 1

N
X̄TW 2

0

[
1 Z

]∥∥∥∥
∞
‖(ξ† − ξ0)‖∞

≤
∥∥∥∥ 1

N
X̄TW 2

0

[
1 Z

]∥∥∥∥
∞
‖θ̄† − θ̄0‖1.

Consider the ith row of the matrix 1
N X̄

TW 2
0

[
1 Z

]
,

∥∥∥∥∥
(

1

N
(X̄−,i)

TW 2
0

[
1 Z

])T∥∥∥∥∥
1

≤ 1

N

√
n(n− 1) · 1

4
(1∨ c)(p+ 1) =

p+ 1

4
(1∨ c) 1√

n
,

where we have used that the ith column of X̄ has exactly (n− 1) non-zero entries,

each with value
√
n, each entry of W 2

0 is upper bounded by 1/4 and any row of[
1 Z

]
has p+1 entries, each upper bounded by 1∨c. Thus, by Lemma 4.8, with

the prescribed probability,

1

λ̄

∥∥∥∥ 1

N
X̄TW 2

0

[
1 Z

]
(ξ† − ξ0)

∥∥∥∥
∞
≤ 9(1 ∨ c)(1 + ε)(p+ 1)

4cmin
· 1√

n
ρ−1
n s+.

4.4.6 Condition (4.11b)

Lemma 4.11. Under Assumptions 4.1, 4.2, B1, 4.3, for n large enough, with prob-
ability at least

1− 4 exp

(
−Nλ̄

2

18
+ log(n)

)
− 2(p+ 1) exp

(
− Nλ̄2

18(1 ∨ c2)

)
− p(p+ 3) exp

(
−N c2min

2048s2
+c̃

)
,

which tends to one as long as −Nλ̄2

18 + log(n)→ −∞, as n→∞, we have

‖z̄†1:2n,Sc‖∞ < 1.

Proof. By equation (4.17), Lemmas 4.7, 4.9, 4.10, with the probability given in those
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Lemmas, for any ε > 0,

‖z̄†1:2n,Sc‖∞ ≤
{
‖QSc,SQ−1

S,S‖∞ + 1
}
ε

+
{
‖QSc,SQ−1

S,S‖∞ + 1
} 324(1 ∨ (c2p))(1 + ε)2

c2
min

·
√
nρ−2

n s2
+λ̄

+
{
‖QSc,SQ−1

S,S‖∞ + 1
} 9(1 ∨ c)(1 + ε)(p+ 1)

4cmin
· 1√

n
ρ−1
n s+

+
1

2
‖QSc,SQ−1

S,S‖∞.

By Lemma 4.7, for n sufficiently large, we have ‖QSc,SQ−1
S,S‖∞ < 1/2. Thus, by

equation (4.17), Lemmas 4.9 and 4.10, for n sufficiently large, with the prescribed

probability,

‖z̄†1:2n,Sc‖∞ ≤
3

2
ε+

1

4

+
486(1 ∨ (c2p))(1 + ε)2

c2
min

·
√
nρ−2

n s2
+λ̄

+
27(1 ∨ c)(1 + ε)(p+ 1)

8cmin
· 1√

n
ρ−1
n s+.

Pick ε = 1/3, to obtain

‖z̄†1:2n,Sc‖∞ ≤
3

4
+

864(1 ∨ (c2p))

c2
min

·
√
nρ−2

n s2
+λ̄+

9(1 ∨ c)(p+ 1)

2cmin
· 1√

n
ρ−1
n s+.

The second and third term go to zero, as n → ∞, by Assumption B1. Indeed,

the second term is Assumption B1 exactly. For the third term, by Assumption

B1,
√
ns2

+λ̄ρ
−2
n = n−1/2ρ−1

n s+ · nρns+λ̄ → 0 as, n → ∞. On the other hand, by

Assumption 4.3, nρns+λ̄ ≥ Cρ−1
n s+ log(n) → ∞. Therefore it must hold true that

n−1/2ρ−1
n s+ → 0. The claim follows.

4.4.7 Proof of Theorem 4.1

Proof of Theorem 4.1. By Lemma 4.11, we know that with probability at least as
large as

1− 4 exp

(
−Nλ̄

2

18
+ log(n)

)
− 2(p+ 1) exp

(
− Nλ̄2

18(1 ∨ c2)

)
− p(p+ 3) exp

(
−N c2min

2048s2
+c̃

)
,

property (4.11b) holds for the construction (θ̄†, z̄†). Thus, by construction and

(4.11b), (θ̄†, z̄†) fulfils (4.10b). Furthermore, (θ̄†, z̄†) fulfils (4.9), (4.10a) and (4.10c)

by construction. Thus, by Lemma 4.2, Ŝ = S† and in particular Ŝ ∩ Sc = ∅.

Recall that by equation (4.16a),

ϑ̄†S = ϑ̄0,S +Q−1
S,S

{
− 1

N

(
∇ϑ̄L̄(θ̄0)

)
S

+
1

N
X̄T
SW

2
0

[
1 Z

]
(ξ† − ξ0)− λ̄z̄†1:2n,S + R̄S

}
.

(4.23)
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Thus, S† contains all those indices i with∥∥∥∥Q−1
S,S

{
− 1

N

(
∇ϑ̄L̄(θ̄0)

)
S

+
1

N
X̄T
SW

2
0

[
1 Z

]
(ξ† − ξ0)− λ̄z̄†1:2n,S + R̄S

}∥∥∥∥
∞
< ϑ̄0,i.

Consider∥∥∥∥Q−1
S,S

{
− 1

N

(
∇ϑ̄L̄(θ̄0)

)
S

+
1

N
X̄T
SW

2
0

[
1 Z

]
(ξ† − ξ0)− λ̄z̄†1:2n,S + R̄S

}∥∥∥∥
∞

≤ ‖Q−1
S,S‖∞

∥∥∥∥− 1

N

(
∇ϑ̄L̄(θ̄0)

)
S

+
1

N
X̄T
SW

2
0

[
1 Z

]
(ξ† − ξ0)− λ̄z̄†1:2n,S + R̄S

∥∥∥∥
∞

≤ 2ρ−1
n ·

n− 1

n−max{sα, sβ}{
ελ̄+ λ̄

+
9(1 ∨ c)(1 + ε)(p+ 1)

4cmin
· 1√

n
ρ−1
n s+λ̄

+
324(1 ∨ (c2p))(1 + ε)2

c2
min

·
√
nρ−2

n s2
+λ̄

2

}

where we used (4.14), (4.19) and Lemmas 4.9 and 4.10.

By assumption, λ̄ ≤ C ·
√

log(n)/N for some C > 0, thus the first two terms in

the bracket may be upper bound by C ·
√

log(n)/N , for a possibly different C. The

third term is o(1) · 1/n by Assumption B1 and the last term is o(1) ·
√

log(n)/n by

Assumption B1. Since (n− 1)/(n−max{sα, sβ}) = O(1), the entire right-hand side

is less or equal

Cρ−1
n

√
log(n)

n
.

Multiply (4.23) by
√
n to transition to the unscaled parameters ϑ†S and the claim

follows. In particular, for n large enough, with at least the prescribed probability

the construction fulfils (4.11a) and thus Ŝ = S† = S by Lemma 4.2.
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Chapter 5

Conclusion

In Chapter 1 we reviewed recent advances in the field of random network models.

We identified several features commonly observed in real-world networks which we

would like to capture in our model. Most notably sparsity, which refers to the

phenomenon that the number of observed edges scales sub-quadratically in the

number of nodes, degree heterogeneity, which means that the degree distribution

of the observed network is heavy-tailed and homophily, which means that similar

nodes are more likely to connect to one another.

We saw that SβM-C and SRGM emerge as a natural extension to a very active

branch of research on extensions of the original β-model (Chatterjee et al. 2011).

While previous models in this line of research were able to capture degree hetero-

geneity and covariates (Graham 2017, Yan et al. 2019) or degree heterogeneity and

sparsity (Chen et al. 2020), SβM-C and SRGM are the first models that capture all

three of these characteristics explicitly in a single model.

The β-model and many of its extensions, such as Yan, Leng & Zhu (2016),

Yan et al. (2019), pursue some type of maximum likelihood approach to parameter

estimation. This entails that they are over-parametrized and require the observed

network to be dense in order to be able to perform consistent parameter estimation.

Therefore, a popular exercise in the literature is to focus on a sub-network induced

by nodes with better connectivity, leaving out a substantial portion of the nodes. We

have highlighted in Section 1.2 the fallacy of the resulting data-selective inference

for analysis. Its associated non-random sampling often brings biased estimates as

we have demonstrated in two fundamental network models, under the idealistic

scenario when the assumed model does produce the realized data. As a result of

data-selective inference, it is not clear whether any findings are genuine or artefact

of biased sampling – Statisticians are well aware of the pitfalls of what systematic

sampling bias can bring to data analysis. Having biased initial parameter estimates

calls into question the validity of any downstream statistical inference, including
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consistency, model selection, hypothesis testing, and so on, creating a demand for

models that can account for sparsity.

SβM-C builds on earlier work by Chen et al. (2020) by including covariates

into the likelihood of the sparse β-model. SRGM extends and refines the results

from SβM-C to directed networks. The key assumption in these models is that the

degree heterogeneity parameter, which assigns individual parameters to each node,

is sparse. As a consequence, the number of parameters these models need to estimate

is much lower than the number of parameters in the aforementioned models. Thus,

they avoid over-parametrization and can be fitted to sparse networks without the

need of removing low-degree nodes. They may be a stepping stone towards avoiding

data-selective inference in the future.

In Chapter 2 we have shown that SβM-C is well suited to model sparse networks,

thanks to the sparsity assumption on the nodal parameter that can effectively re-

duce the dimensionality of the model. We have presented theory for the penalized

likelihood estimator based on an `1-penalty on the nodal parameter, including `1-

consistency and a central limit theorem for the homophily parameter. The key to

our success was proving that once we account for differing sample sizes of the model

parameters, the analogue to the compatibility condition – which is crucial for con-

sistency results in classical LASSO theory – holds. Built on LASSO theory, our

theoretical contributions go beyond existing theory for LASSO as we have argued.

Additionally to the general theory for SβM-C developed in Section 2.2, we

treated two special cases of SβM-C: in Section 2.3 we showed that the consistency

results from Section 2.2 can be applied to the model studied in Chen et al. (2020).

We compared our findings for SβM when employing an `1-penalty for regulariza-

tion with the results obtained by Chen et al. (2020), who used an `0-penalty. We

dedicated Chapter 3 to the second special case in which we set the degree hetero-

geneity parameter β = 0. We named this model the sparse Erdős-Rényi model with

covariates (ER-C). Since the number of parameters remains fixed in this model, we

were able to use a standard MLE approach for parameter estimation and showed

that ER-C can model networks of almost arbitrary sparsity.

In Chapter 4 we introduced direction to the edges in SβM-C by studying the

parameter-Sparse Random Graph Model (SRGM). Without covariates and without

the global sparsity parameter, this model is the p0-model introduced in Holland &

Leinhardt (1981). Once we were able to argue that a compatibility condition also

holds in this model, we were able to carry over the consistency and asymptotic nor-

mality proofs from SβM-C without much effort. As a novel aspect to the developed

theory, we derived conditions under which our `1-penalized estimator will identify

the correct support of the degree heterogeneity parameter ϑ. We gave a nuanced
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account of how the network sparsity, the parameter sparsity and the penalty used

need to be appropriately balanced for our penalized likelihood estimator for SRGM

to simultaneously consistently identify the support of ϑ, consistently estimate the

whole parameter θ, and provide valid inference for the covariates parameter γ.

The computation of the estimators in SβM-C and SRGM capitalizes on the

tremendous progress made in the algorithmic development of LASSO-type estima-

tors and thus is straightforward to implement and extremely scalable

There are a host of important issues for future research. Firstly, in SRGM, we

have assumed that, given the covariates, directed links are formed independently

between node-pairs. This may be a limitation because empirically, reciprocity – a

measure of the likelihood of vertices in a directed network to be mutually linked –

may be present. For example, in the lawyer friendship network we studied in Section

1.2, lawyer j may be more likely to call lawyer i a friend if the converse is true. To

address this layer of sophistication, the next natural step is to add a reciprocity pa-

rameter to the model. One approach to do this is to add an extra term δ
∑

i<j AijAji

in the model, where δ ∈ R is an unknown parameter, as adopted in the p1 model

(Holland & Leinhardt 1981). For the models in Yan, Leng & Zhu (2016) and Yan

et al. (2019), including this extra reciprocity parameter turns out very challenging

for their theoretical framework, because their analytical tool needed to approximate

the inverse of a Fisher information matrix accurately is no longer applicable. On

the other hand, by assuming parameter sparsity in α and β, SRGM will deal with

a much smaller number of parameters and thus some of the theoretical arguments

presented in this thesis may go through. Secondly, we assume that the dimension

of the covariates is fixed but it need not be the case in practice. Recent data deluge

brings more and more data sets that have more variables than observations. How

to generalize SβM-C and SRGM to include growing dimensional covariates is worth

further investigation. Thirdly, in some applications inference on α and β might be of

interest. Since α̂ and β̂ are biased due to the shrinkage incurred by our `1-penalty,

this will require a debiasing step. We believe that it is possible to derive inference

results with suitable balancing assumptions, in a manner similar to what was done

in van de Geer et al. (2014). Finally, it will be interesting to incorporate a low rank

component in SβM-C in order to capture transitivity, the phenomenon that nodes

with common neighbours are more likely to connect, as is done in Ma, Ma & Yuan

(2020).
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Part II

A guided analytics tool for feature

selection in steel manufacturing
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Chapter 6

Data science in industry

Organization of this chapter

We present the ‘initial Guided Analytics for parameter Testing and control-
band Extraction (iGATE)’ framework. iGATE is designed to provide a stan-
dardized, expert knowledge driven approach to feature selection. It is a middle
ground between autonomous and manual feature selection.
In Section 6.1 we introduce the general concept of guided analytics and pro-
vide a high-level overview of the iGATE methodology. This is followed by an
in depth treatment of iGATE for the case of continuous response variables in
Section 6.2. In Section 6.3 we show how the same methodology can be ex-
tended to categorical response variables. We follow up with an application of
iGATE to top-gas efficiency in Section 6.4. Concluding remarks are presented
in Section 6.5. The content of this chapter is taken from Stein et al. (2021).

6.1 Guided analytics

Over the past decade or so, so-called data science has become an increasingly im-

portant topic in all aspects of business and industry. This reflects the increasing

availability and power of computing resource and associated big data technologies

over the same period. Data from manufacturing and business processes is being

increasingly recognized as holding enormous business development potential. The

vehicle for realization of this potential is systematic data analysis and this has

evolved from the traditional niche domain of the statistician to an organized Ad-

vanced Analytics business function commanding an increasingly prominent position

on the senior management agenda (Jensen 2020). Advanced Analytics present many

opportunities, including optimization of manufacturing, maximization of equipment

effectiveness and enhanced logistics for customer service.

In steel manufacturing in particular, even small improvements to stability, yield

or quality make big differences to costs and profitability, making application of Ad-

vanced Analytics a lucrative endeavour. In this chapter we present a novel, expert

knowledge driven approach to feature selection in industrial applications. This ap-
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Find manufacturing 
problem

Guided process for 
eliciting insights from 

domain experts

Find optimal production 
regimes

Automatically report 
and centrally store 
results of analysis

iGATE
Framework

Figure 6.1: Overview of the iGATE framework: Once a manufacturing problem has been found,
iGATE will automatically find potentially influential process parameters using hypothesis tests.
These are then systematically reviewed by a domain expert for their suitability for the problem
under study. The expert is guided through this process by the application and encouraged to
comment on their decision to include or discard parameters. For the retained parameters, iGATE
finds optimal production regimes and validates these findings. At the end, a report of the analysis
is automatically produced and centrally stored. This helps long-term knowledge retention within
a company and can inform future data science projects.

proach is called the ‘initial Guided Analytics for parameter Testing and controlband

Extraction (iGATE)’ framework. It has been published in Stein et al. (2021) un-

der the Creative Commons Attribution 4.0 International License (2013) and this

chapter is based on said paper. The technical component of iGATE has been made

publicly available in form of the igate package (Stein 2019) for the R programming

language and is available on the Comprehensive R Archive Network (CRAN)1.

iGATE is a guided analytics tool. The premise of guided analytics is that the suc-

cessful application of data science requires the combination of statistical or machine

learning techniques with domain knowledge of the physical process being modelled

(Anderson-Cook et al. 2019). Failure to include expert knowledge from the outset

may result in models that conflict with expert knowledge and ultimately physi-

cal reality (Liu et al. 2020). A guided analytics application is meant to facilitate

the knowledge transfer between domain experts and statisticians by guiding them

through an analysis, prompting them to interactively use their respective exper-

tise to influence its outcome. The long-term value to the company lies in domain

experts and statisticians commenting on their decisions, enabling the company to

capture and centrally store their expert judgement in a structured way. While each

individual method used in iGATE already existed beforehand, Stein et al. (2021)

combined them in a novel way to create the iGATE framework. The iGATE frame-

work is schematically visualized in Figure 6.1.
1https://cran.r-project.org
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Steel manufacturing, like many other process industries, can be considered par-

ticularly knowledge intensive. That is, a high degree of human judgement is involved

in decision making processes, making it ideal for the application of guided analytics.

This is due in part to typically high degrees of legacy in information systems, but

also because of practical limitations to implementation of robust sensor technolo-

gies. At Tata Steel in Europe, iGATE has been made available as a web application

providing on-demand analytics functionality and streamlining overall analytics us-

age. The tool has proven especially useful as an early step in data science projects

as it allows for initial dimensionality reduction and elicitation of expert knowledge.

In Section 6.4 we present an application of iGATE to blast furnace data from

Tata Steel. Blast furnace steelmaking accounted for roughly 70% of steel produced

worldwide in 2015 (Geerdes et al. 2015) and therefore, improving efficiency of blast

furnaces is a lucrative area of application for Advanced Analytics technologies. The

blast furnace is particularly interesting for guided analytics, as accurate measure-

ment of parameters is a major bottleneck (Agarwal et al. 2010) and thus data tends

to be inherently messy and values need to be placed into context by domain experts.

For a long time, the blast furnace has been considered a “black-box” (Omori 1987).

6.2 The iGATE methodology

On a high level, the assumptions on the data for iGATE resemble a standard regres-

sion setup. We assume that the quality of a manufacturing output can be measured

by some univariate response variable y (the target ; either continuous or categorical).

Alongside y, we observe an array of covariates X that may or may not have an influ-

ence on y. We call each covariate a suspected source of variation (SSV) and wish to

determine which SSVs significantly influence the product quality y. Different from

a regression problem, iGATE is not concerned with modelling the actual relation-

ship y ≈ f(X), for some suitable function f . The emphasis is rather on fostering

discussion between domain experts and statisticians so that they may come up with

a (small) subset of potentially influential variables that is worth further analysis.

While there are plenty of statistical techniques available for quantifying statis-

tical significance in regression models, in real-world industrial contexts there may

be factors other than statistical accuracy at play, which we have to consider when

deciding which techniques to employ. In the following we highlight some of these

factors.

Firstly, there is the aforementioned need for domain expertise. Inclusion of ex-

pert feedback is especially important for identifying target leakage in the feature

selection step of an analysis. Target leakage refers to using illegitimate variables to
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predict the target variable (Kaufman et al. 2011). In the context of manufacturing,

it usually occurs, when using variables as predictors that may be highly correlated

with the target, but that cannot be physically controlled during the manufacturing

process. Any sensible tool would identify such variables as a strong predictors for

the target. In terms of actionable business insights, however, these findings would

be useless. Target leakage is considered one of the most insidious problems of auto-

mated machine learning (Larsen & Becker 2018).2

However, eliciting expert knowledge usually requires much iteration between

domain experts and statisticians and is an inefficient path to follow. In industrial

contexts, such as modern factories, often hundreds or even thousands of process

parameters are captured automatically by sensors and asking a domain expert to

review them all for their suitability for an analytics project is unrealistic.

Property 1. iGATE systematically compares good and bad products by applying

statistical hypothesis tests to find a small subset of potentially influential variables

for review by the domain expert. They may then decide which SSVs to keep for

further study.

Secondly, we have to recognize that any machine learning project will only be of

value to a company, if the knowledge gained from it can be transformed into action-

able business insights. In the context of manufacturing, this means that the insights

gained must be moved to the shop floor – where the actual wealth is created – by

educating the workforce about the findings and by providing them with actionable

knowledge (Brimacombe 1999). Furthermore, the findings need to be understandable

to domain experts and decision-makers alike who may not have had prior statistical

training. Especially “black-box” models, that give predictions without explanatory

context, rarely enjoy the confidence of decision-makers.

Property 2. iGATE uses intuitive concepts easily grasped by personnel who possibly

have had no prior statistical training, combating concerns about so-called “black-

box” models. iGATE also provides an initial estimation of favourable controlbands

that – under regular manufacturing conditions – will result in good product quality.

These controlbands, once validated, can immediately be translated into actionable

instructions for process operators.

Thirdly, eliciting expert knowledge on an ad-hoc basis for an analysis at hand

tends to be suboptimal with regard to long-term organizational knowledge capture.

Unless results are stored in such a way that they are easily accessible and inter-

pretable by other data science teams in the future, any knowledge gained might be
2This illustrates that while autonomous feature engineering and by extension autonomous ma-

chine learning might be the ultimate goal in manufacturing, they are often not yet feasible and
can only work for very specific and well defined tasks.
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lost when the employees involved in an analysis leave or move to a different position

within the company. It is also imperative to accurately document the assumptions

underlying the analysis as assumptions may become outdated and invalid over time.

Property 3. iGATE captures and centrally stores comments made by domain ex-

perts for future reference in the form of standardized reports, aiding long-term knowl-

edge capture.

Finally, depending on the industrial context, procuring samples may be very

expensive and data on them may be messy; either because it is missing altogether

or because it has been recorded incorrectly. Especially in the latter case the insights

from a domain expert can be of great help.

Property 4. iGATE uses techniques that have reasonable statistical power for small

sample sizes. It uses non-parametric hypothesis tests to avoid making distributional

assumptions. It has been robustified against messy data in the sense made precise in

the next section.

The current implementation of iGATE can be considered a skeleton pipeline for

analytics projects to which new steps and methods can be added as user confidence

in the use of guided analytics tools increases. After running iGATE it is possible to

employ more powerful, but possibly less transparent machine learning algorithms

to find correlations in the features selected by iGATE.

In summary, iGATE’s main features are:

1. It is a fast framework for initial feature selection and expert knowledge elicitation

that is applicable beyond the steel manufacturing application presented here.

2. It works with messy data with potentially many missing or misrecorded values.

3. Results are easy to interpret and explain.

4. It contains a standardized way of documenting the analysis, its underlying as-

sumptions and results, aiding knowledge capture.

6.2.1 iGATE overview

The main idea of iGATE is to compare the best products with the worst products

and determine those production parameters in which they differ significantly, which

are then concluded to be potentially influential for the product quality. This allows

us to automatically exclude many parameters that are irrelevant to the problem

under investigation. iGATE iteratively applies the Tukey-Duckworth test as pro-

posed in Tukey (1959), which performs well even for small sample sizes. We explain

how it works below. This statistical hypothesis test was chosen for its ease of inter-

pretation, making it possible to effectively explain any findings to people without
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statistical training. As a non-parametric hypothesis test it is also robust against

different underlying distributions.

Having identified a manufacturing problem to be investigated, a data set is

assembled for a typical period of operation, i.e. excluding known disturbances such

as maintenance or equipment failures. This data set includes the target variable as

well as a number of features we consider potentially influential for the value of the

target (suspected sources of variation; SSVs). We explain the general concept for

continuous targets in this section and show how it can be generalized to categorical

targets in the next section. The iGATE procedure consists of the following steps

(detailed explanations follow below):

1. Select the eight best and eight worst products.

2. Perform the Tukey-Duckworth test for each SSV.

3. Optional: For each SSV perform unpaired Wilcoxon rank sum test.

4. Extract upper/ lower control bands for kept parameters.

5. Perform sanity check via regression plot; based on whether a trend is discernible

and expert judgement, decide which SSV to keep.

6. Validate choice of SSVs and control bands.

7. Report findings in standardized format.

6.2.2 Products selection

When running iGATE with default settings, a box-plot approach is used for outlier

detection and all observations with a target value that lies beyond 1.5 times the

interquartile range of the 25th and the 75th quantile are removed before the analysis.

This is justified, because we want to understand the behaviour of the target under

regular production conditions. If one is interested in the insights outliers provide

into the behaviour of the target, outlier removal can be switched off.

From the remaining dataset we select the eight products that produced the best

quality in terms of our target variable (“Best of the Best”, BOB) and the eight

products that produced the worst quality (“Worst of the Worst”, WOW). If many

samples are readily available, the number of BOB/ WOW can be specified manually

by the user. To avoid selecting observations with missing values, rather than select-

ing the same eight BOB and WOW for all SSV, we select them dynamically: For the

SSV we are currently investigating, we first remove those observations that contain

missing values for that SSV and then select our BOB and WOW from the remain-

ing data. We conduct the analysis with the 16 selected observations and determine

whether or not the current SSV is potentially influential for the target variable.

For the next SSV we repeat the process, starting again with the full data set. The
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user may choose to perform outlier removal for each SSV before selecting the BOB

and WOW. If ties occur when selecting BOB and WOW, we select from the tied

observations at random.

6.2.3 The Tukey-Duckworth hypothesis test

The Tukey-Duckworth test used in Step 2 is a distribution free hypothesis test

pioneered in Tukey (1959). Its null hypothesis is that the two samples come from

the same distribution and it works as follows. After selecting the BOB and WOW,

we are left with 16 observations of the SSV under consideration. Denote this vector

as X = (X1, . . . , Xn), with X1, . . . , X8 being the values of the SSV of the BOB

and X9, . . . , X16 the values of the WOW respectively. Define the vector of labels

v = (v1, . . . , vn), where vi = BOB if Xi is a value corresponding to a BOB and

vi = WOW otherwise. Consider the order statisticsX(i), whereX(i) the i-th smallest

entry of X. The rank of Xi is

Ri =

n∑
j=1

1(Xj ≤ Xi), (6.1)

where 1(Xj ≤ Xi) denotes the indicator function for the event {Xj ≤ Xi}. That is,

Ri is the position of Xi in the ordered vector X̄ = (X(1), . . . , X(n)). Consider the

label vector ordered according to the ranks Ri,

v̄ = (v(1), . . . , v(n)),

where v(i) is the label of X(i). The count summary statistic s is defined as

s =

0, if v(1) = v(n),

sl + su, otherwise,

where sl and su the lower and upper counts given by

sl =
n∑
j=1

1(v(1) = · · · = v(j)), su =
n∑
j=1

1(v(n) = · · · = vv(n−(j−1))
),

i.e. sl counts how many of the entries of X̄ at the lower end have the same label as

X(1) and su counts how many entries of X̄ at the upper end have the same label as

X(n). If ties occur we take the average over all the possible values of s for each of

the ties.

If the distribution of the BOB and WOW differ significantly in the current SSV,

the BOB will cluster on one end of X̄ and the WOW on the other and s will be large.

It will be small otherwise. See Figure 6.2 for an example. If s ≥ 6, we keep the SSV
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Figure 6.2: Count summary statistic example. If the distribution of a specific SSV differs signifi-
cantly between good and bad products, good products will cluster at one end of the sorted vector
X̄ and bad products at the other (left plot; BOB are sampled from a Beta(2,5) distribution, WOW
from a Beta(5,2) distribution). If the distribution of that SSV is similar for good and bad products,
no such overlap will be observable (right plot; BOB sampled from a Beta(2,5) distribution, WOW
from a Beta(3,5) distribution).

as potentially influential. If s < 6, we discard it. The critical value 6 corresponds to

a p-value of roughly 0.05 and is independent of the sample size 16 (Tukey 1959). The

Tukey-Duckworth test is used as a preliminary step to greatly reduce the number

of parameters under consideration and was chosen for its easy interpretability.

6.2.4 The Wilcoxon rank sum test

Optionally, we can choose to perform the two-sample Wilcoxon rank sum test de-

scribed in Wilcoxon (1945) instead of the Tukey-Duckworth test. It serves as a

possibly more widely known alternative to the Tukey-Duckworth test, that might,

however, be harder to explain to non-statisticians. Given the rank vector R =

(R1, . . . , Rn) from equation (6.1), we calculate the summary statistics

WBOB =

8∑
i=1

Ri, WWOW =

16∑
i=9

Ri.

That is, we sum up all the ranks of the BOB and all the ranks of the WOW. Simple

algebra shows that WBOB + WWOW =
∑16

i=1 i = 136 and the values of WBOB and

WWOW must lie between
∑8

i=1 i = 36 and
∑16

i=9 = 100. Under the null-hypothesis

that the samples from the BOB and the WOW come from the same distribution,

WBOB and WWOW will take similar values. If they come from significantly different

distributions, they will produce significantly different values and we keep the SSV

under study as potentially influential. This hypothesis test is frequently also referred

to as the Mann-Whitney U Test, which uses slightly different – but equivalent –

test statistics and was introduced independently from Wilcoxon (1945) in Mann &

Whitney (1947).

This is a multiple testing problem and we therefore adjust the p-values using the

Bonferroni-Holm procedure presented in (Holm 1979). The main function of these
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steps is to facilitate dimensionality reduction in the data to generate a manageable

population for expert consideration. These two tests are preferred over the t-Test,

because they are distribution free and, while the t-Test may be optimal for normally

distributed data, for non-normal data it can get arbitrarily weak.

6.2.5 Controlband extraction

For those SSVs retained after conducting the above hypothesis tests, control bands

are extracted in Step 4 as follows. For each SSV retained, we have s > 0. If sl =

k > 0, then v(1) = · · · = v(k), but v(k) 6= v(k+1). The control band for the group with

label v(1) is then given as Il = [X(1), X(k)] and we conjecture, that if the SSV under

consideration is kept within Il during production, we are more likely to obtain a

good target value if v(1) = BOB, and a bad target value if v(1) = WOW. Similarly,

if su = k > 0, we define the control band corresponding to the group of v(n) as

Iu = [X(n−k+1), X(n)].3

6.2.6 Sanity check via regression plots

As sanity check of the results obtained by the hypothesis test a linear regression

plot of for each retained SSV against the target is produced in Step 5. The domain

experts can now review these plots, the extracted controlbands, the count summary

statistic and the adjusted p-value together with their domain expertise to make a

final decision on which parameters to keep and which to discard. If a trend can be

seen in the plots and the order of magnitude of the extracted control bands align

with their expertise, an SSV will be kept, otherwise discarded. Note that manual

inspection of regression plots for all SSVs is often not feasible for processes with

hundreds of parameters. In iGATE the user will only have to check regression plots

for those SSVs that passed the hypothesis tests. At this point, control bands may

also be adjusted manually based on their expert knowledge.

6.2.7 Validation of controlbands

For the validation step, the production period from which the validation data is

selected is dependent on the business situation, but should be from a period of op-

eration consistent with that from which the initial population was drawn, i.e. similar

product types, similar level of equipment status etc. The validation step extracts

from the validation sample all the records for which any of the retained SSVs lies

within these bands. We expect that if the SSV lies within the good band, then
3By construction v(1) 6= v(n).
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the target should also correspond to good performance, and vice versa for bad per-

formance. The application gives feedback on the extent to which this criterion is

satisfied, such as how many observations fall within the good/ bad band of each

individual SSV. See Section 6.4 for an example.

6.2.8 Automatic report generation

In the last step, a report of the conducted analysis and its findings is automatically

created. We provide a visual template of the report generated by iGATE in Figure

6.3. For reasons of space, we limit ourselves to presenting the conceptual idea of what

the report looks like. It starts with the Overview section containing the metadata

of the analysis, such as when it was conducted, which data set was used with which

target variable etc. It follows an outline of the analysis, describing the techniques

used and showing a box-plot of the target variable (in case of a continuous target). In

the Results section the retained SSVs together with their count summary statistics,

their adjusted p-values and extracted control-bands are shown. This section also

contains any comments made by domain experts about the SSVs. This is followed

by the Validation section. If validation of the results has been conducted, the results

of it are presented here. The appendix of the report contains a list of all the SSVs

that were analysed as well as all the regression plots. Thus, if at a later stage the

results of the analysis are reviewed by a different data scientist, it is clear to them

how data decisions were taken in the original analysis.

6.3 Extending iGATE to categorical target variables

Using iGATE with categorical target variables is analogous to the continuous target

case. The main difference is that when selecting the eight best and eight worst ob-

servations, this selection is unlikely to be unique. In this case, eight observations are

selected from the best and from the worst category at random. However, especially

in the case of few categories with many observations in each category, this can be

problematic. The variance of each SSV within each category may be very large and

we might obtain a different result each time we run iGATE. To robustify against

this, we implemented a multiple sampling approach. In this ensemble method we run

iGATE with categorical target 50 times and only return those SSVs that come up as

influential in at least 50% of the runs. This prevents a scenario in which we obtain

a different outcome every time the analysis is conducted. The rest of the analysis

follows the same steps as in the case with continuous target. The only difference is

that in Step 5, we do not produce regression plots. Instead, a normalized frequency
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Figure 6.3: A schematic representation of the report automatically generated by iGATE. 1) An
overview of the conducted analysis is presented, including the date of the analysis, the name of
the data set used and of the target variable. 2) A detailed description of the methods used, such
as which hypothesis tests were used and what plots were created. In case of a continuous target
variable it also contains a box-plot of the target. 3) A table with the SSVs selected by iGATE,
the obtained count statistics, p–values and expert comments is presented, followed by another
table containing the extracted controlbands for the retained SSV. 4) Summary statistics about
the validation results, such as how many samples of the validation set fall within the extracted
controlbands and the distribution of the target variable amongst these samples. 5) The appendix
contains a possibly long list of all the SSV that were studied and the produced regression/ frequency
plots for future reference.

163



0

10

20

0.7 0.8 0.9 1.0
SSV_397

de
ns
ity

TARGET
best_cat

cat_a

cat_b

cat_c

worst_cat

0.0

0.2

0.4

0.6

1 2 3 4 5 6
SSV_19

de
ns
ity

TARGET
best_cat

cat_a

cat_b

cat_c

worst_cat

Figure 6.4: Frequency polygon example: In this case the user might decide to keep the SSV on
the left and discard the one on the right.

plot for each retained SSV, split up by the various categories, is created4. If there

is a clear separation between the curve for the best category and the curve for the

worst category, the SSV is kept as potentially influential. Otherwise it is discarded.

See Figure 6.4 for an example.

6.4 An application to blast furnace top-gas efficiency

We applied iGATE to blast furnace data provided by Tata Steel. For reasons of

confidentiality we suppress the real variable names and simply refer to them gener-

ically by “SSV i” with i = 1, . . . , 218. Our target was top-gas efficiency (ηCO). The

efficiency of a blast furnace is the amount of reductant (i.e. coke and other injec-

tants containing carbon) used per tonne of hot metal produced. As a proxy for the

efficiency of the furnace, the chemical decomposition of the top-gas (the gas escap-

ing at the top of the furnace) can be studied. More precisely, the top-gas efficiency

ηCO measures how efficiently the oxygen from the burden in the blast furnace is

removed.5 It is calculated as

ηCO =
CO2

CO + CO2
.

That is, an increase in ηCO means, more CO2 is produced rather than CO, meaning,

the oxygen is removed using less coke, making the furnace more efficient. Typical

values for ηCO are in the range of 45% − 50% (Geerdes et al. 2015). It was known
4A normalized frequency plot shows the same data as a normalized histogram, only that in-

stead of bars, we are connecting the bins via lines. They are more suitable than histograms when
comparing a distribution across the levels of a categorical variable, as we do here.

5We want to remove as much oxygen (O2) as possible, using as little carbon (C) as possible.
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Figure 6.5: Positions of missing values in the blast furnace data. Each tick along the x-axis repre-
sents one feature, while the y-axis enumerates the rows in the data frame. Grey cells correspond to
correctly recorded data. Black cells correspond to missing data. A total of 2.4% of data is missing.

beforehand that ηCO is a definite indicator for process stability and thus, better

understanding of ηCO would lead to better process control. Also, since it is negatively

correlated with the amount of coke used (the higher ηCO, the less coke is needed

to fuel the furnace) improvements to ηCO will have a direct, quantifiable business

impact.

The data spanned around five years of daily mean ηCO values. It contained 1692

observations and 218 SSVs. In total, 2.4% of all entries were missing or wrongly

recorded, cf. Figure 6.5. The missing data required no additional pre-processing as

iGATE handles missing values automatically. Of this data set, we randomly selected

80% as training data (1353 observations), while we retained 20% for validation (339

observations).

Running iGATE on the training data returned 88 potentially influential features

for ηCO, meaning it was able to reduce the number of variables under study by

around 60%. Upon presenting these variables to domain experts, several variables

corresponding to target leakage were identified and removed from further analysis.

For example, iGATE identified the coke-rate (the amount of coke burned per tonne

of hot metal produced) as a significant predictor for the values of ηCO. While coke-

rate is highly correlated with ηCO, it is a quality measure in and off itself and cannot

be controlled directly. iGATE also found the chemical decomposition of the coke (to

be precise: the concentration of a specific chemical element) to be influential. High

concentrations of it were found to result in worse performance. A domain expert

explained that this SSV can be interpreted as an indicator for the type of coke that

is being burned and that it was known that certain types of coke performed better

than others. This suggested that separate analyses for different coke types might

be sensible. While it is statistical best practice to account for different group effects

such as this one, it would have been difficult to find the right groups and parameters
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to adjust for without this expert’s insight. This is especially true in a case like this,

where the group membership of the samples is only encoded implicitly in their

chemical decomposition. The experts also confirmed some of the selected SSVs. For

example, a certain temperature setting was found to produce bad results when it was

too high. This was interpreted to mean that if the temperature is too high, more fuel

is used, producing lower values of ηCO. Having an expert confirm such findings and

recording their comment on it can be equally valuable for the long-term knowledge

capture within the company as it creates a knowledge pool that future data science

projects can build on. This once more illustrates that expert feedback is essential for

successful analytics projects as fully autonomous approaches would not have been

able to provide the necessary context to these findings. After incorporating the

expert feedback, we retained 16 potentially influential variables for further analysis.

iGATE does not yet employ any statistical regression modelling, hence there is

no explicit loss function that can be used for validation purposes. Instead, in the

validation step we try to gauge how well the control bands extracted by iGATE

capture the differences between good and bad products. To that end, we took the

339 validation samples and for each retained SSV extracted those observations that

fell into any of the good or bad control bands. The results are displayed in Figure

6.6. It shows frequency plots of ηCO for those observations that fell into either of the

control bands. The plots have been normalized to have density one to account for

differing group sizes. We see that in most cases those observations that we would

expect to yield a good, i.e. high, value of ηCO based on the extracted control bands

indeed have higher ηCO values than those we would expect to yield bad ηCO values.

This is particularly prominent in the plotsA, D, E, F, O. There are several plots in

which the distribution of ηCO overlaps strongly between those observations we would

expect to have good quality and those we would expect to have bad quality, e.g. plots

B or J. This means that these variables on their own might not be impacting ηCO

significantly after all and further analysis is needed.

6.5 Conclusion

iGATE is a guided analytics framework that presents a middle ground between au-

tonomous and manual feature selection. It is fast, easy to explain to people without

statistical training and the controlbands extracted by it can be translated into ac-

tionable instructions for process operators. The automated reporting feature is an

integral part of iGATE that promotes knowledge capture within a company. We

recognize that there are statistically more powerful tools available for assessing the

influence of covariates on a target variable, but chose the tools used in iGATE for
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Figure 6.6: Validation results. For each of the 16 retained SSVs we checked which of the 339
observations retained for validation had values for that SSV within the extracted good or bad
control bands. We plotted the ηCO value of these variables as a frequency plot with normalized
density curve. In most cases we observe that the mode of the ηCO values of the observations we
expect to have good ηCO values is to the right of the mode of the observations we expect to have
bad ηCO values. This indicates that there indeed is a difference in distribution for that SSV between
good and bad ηCO values. This is particularly prominent for plots A, D, E, F, O. In plots B or
J, for example, no such difference is apparent, suggesting that these SSV by themselves might not
be significantly influential to the target variable after all.

their easy interpretability and robustness against messy data. Much of the value

of the traditional manual approach of domain experts and statisticians exchanging

information lies in its interactivity and mutual guidance, an element which was re-

tained in iGATE but significantly streamlined. While the methods used in iGATE

already existed beforehand, novelty was added by combining them in this manner

and extending them to categorical target variables.

The emphasis on explainable results seems justified to us as there commonly

are concerns about basing business decisions with far-reaching consequences on re-

sults obtained from “black-box” models. We consider iGATE as a stepping stone in

fostering user confidence in the use of guided analytics tools.
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Appendix A

Proofs for Chapter 4

A.1 Proof of Theorem 4.4

A.1.1 Proof of the compatibility condition, Proposition 4.3

We first prove a sample compatibility condition before providing a proof for the

population compatibility condition in Proposition 4.3. That is, we first want to find

a suitable relation between the quantities ‖θ̂ − θ0‖1 and (θ̂ − θ0)Σ̂(θ̂ − θ0), where

Σ̂ = T−1DTDT−1 is the sample version of the sample size adjusted Gram matrix

Σ.

Recall from Section 2.7.1.2 that the compatibility condition is equivalent to the

condition that

κ2(A, s0) := min
θ∈R2n+1+p\{0}

‖θSc0,+‖1≤3‖θS0,+
‖1

θTAθ
1

s0,+
‖θS0,+‖21

stays bounded away from zero. We first show that the compatibility condition holds

for the matrix

ΣA :=

I2n 0 0
0 1 0
0 0 E[ZTZ/N ]

 ∈ R(2n+1+p)×(2n+1+p),

where I2n is the (2n)× (2n) identity matrix.

Recall that by Assumption 4.1 there is a finite constant cmin > 0 independent of

n, such that λmin > cmin > 0 for all n, where λmin = λmin(n) of is the the minimum

eigenvalue of 1
NE[ZTZ]. Then, clearly, for any θ = (ϑT , µ, γT )T ,

θTΣAθ = ‖ϑ‖22 + µ2 + γT
1

N
E[ZTZ]γ ≥ ‖ϑ‖22 + µ2 + cmin‖γ‖22 ≥ (1 ∧ cmin)‖θ‖22.

Thus, ΣA is strictly positive definite. Furthermore, by Cauchy-Schwarz’ inequality,

169



for any θ ∈ R2n+1+p with ‖θSc0,+‖1 ≤ 3‖θS0,+‖1,

1

s0,+
‖θS0,+‖21 ≤ ‖θS0,+‖22 ≤ ‖θ‖22.

Thus,

κ2(ΣA, s0) = min
θ∈R2n+1+p\{0}

‖θSc0,+‖1≤3‖θS0,+
‖1

θTΣAθ
1

s0,+
‖θS0,+‖21

≥ (1 ∧ cmin)‖θ‖22
‖θ‖22

> 0.

We conclude that the compatibility condition holds for ΣA. Now we need to show

that with high probability κ(Σ̂, s0) ≥ κ(ΣA, s0), which would imply that the com-

patibility condition holds with high probability for Σ̂. To that end, we employ once

more Lemma 2.8.

Introduce the set

J =

{
max
ij
|Σ̂ij − ΣA,ij | ≤

cmin

32s0,+

}
.

On the set J , by Lemma 2.8, we have κ2(Σ̂, s0) ≥ κ(ΣA, s0)− cmin
2 ≥ cmin

2 > 0 and

thus the compatibility condition holds for Σ̂ on J .

Lemma A.1. If s0 = o(
√
n), for n large enough, with δ = cmin

32s0,+
and c̃ = c2∨ (2c4),

where c > 0 is the universal constant such that |Zk,ij | ≤ c for all k, i, j, we have

P (J ) ≥ 1− p(p+ 3) exp

(
−N c2

min

2048s2
0,+c̃

)
.

Proof. To make referencing of sections of Σ̂ easier, we number its blocks as follows

Σ̂ = T−1


XTX︸ ︷︷ ︸

1©

XT1︸ ︷︷ ︸
2©

XTZ︸ ︷︷ ︸
3©

1TX︸ ︷︷ ︸
4©

1T1︸︷︷︸
5©

1TZ︸︷︷︸
6©

ZTX︸ ︷︷ ︸
7©

ZT1︸︷︷︸
8©

ZTZ︸ ︷︷ ︸
9©

T
−1.

For block 1©, i.e. i, j = 1, . . . , 2n, notice that (Xout)TXout = (X in)TX in = (n−1)In

and (Xout)TX in is a matrix with zero on the diagonal and ones everywhere else.

Therefore, we have either Σ̂ij = ΣA,ij or

|Σ̂ij − ΣA,ij | =
1

n− 1
<

cmin

32s0,+
,

for n large enough, since s0,+ = o(
√
n). Blocks 2© and 4© are a 2n dimensional

column and row vector respectively in which each entry is equal to n− 1. Thus, for
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i, j corresponding to these blocks,

|Σ̂ij − ΣA,ij | =
n− 1√

(n− 1)N
=

1√
n
≤ cmin

32s0,+
,

for n large enough, since s0,+ = o(
√
n). For i, j corresponding to blocks 3© and 7©,

we have

|Σ̂ij − ΣA,ij | ≤
c√
n
<

cmin

32s0,+
,

for n large enough. Block 5© is a single real number and equal for Σ̂ and ΣA.

The only cases left to consider are those entries corresponding to blocks 6©, 8©

and 9©. For the blocks 6© and 8©, that is for i = 2n+ 1, j = 2n+ 2, . . . , 2n+ 1 + p

and i = 2n+ 2, . . . , 2n+ 1 + p, j = 2n+ 1, Σ̂ij −ΣA,ij = Σ̂ij is the scaled sum of all

the entries of some column Zk of the matrix Z for an appropriate k. That is, there

is a 1 ≤ k ≤ p such that

Σ̂ij − ΣA,ij =
1

N
ZTk 1 =

1

N

∑
s 6=t

Zk,st.

By model assumption, E[Σ̂ij − ΣA,ij ] = 0. We know that for each k, s, t : Zk,st ∈

[−c, c]. Hence, by Hoeffding’s inequality, for all δ > 0,

P
(
|Σ̂ij − ΣA,ij | ≥ δ

)
= P

∣∣∣∣∣∣
∑
s 6=t

Zk,st

∣∣∣∣∣∣ ≥ Nδ


≤ 2 exp

(
− 2N2δ2∑

i 6=j(2c)
2

)
= 2 exp

(
−N δ2

2c2

)
.

For block 9©, that is for i, j = 2n+ 2, . . . , 2n+ 1 + p, a typical element has the form

Σ̂ij − ΣA,ij =
1

N

∑
s 6=t
{Zk,stZl,st − E[Zk,stZl,st]} ,

for appropriate k, l. In other words, Σ̂ij −ΣA,ij is the inner product of two columns

of Z, minus their expectation, scaled by 1/N . Since Zk,stZl,st ∈ [−c2, c2] for all

k, l, s, t, we have that for all k, l, s, t: Zk,stZl,st−E[Zk,stZl,st] ∈ [−2c2, 2c2]. Thus, by

Hoeffding’s inequality, for all δ > 0,

P
(
|Σ̂ij − ΣA,ij | ≥ δ

)
= P

∣∣∣∣∣∣
∑
s 6=t
{Zk,stZl,st − E[Zk,stZl,st]}

∣∣∣∣∣∣ ≥ Nδ


≤ 2 exp

(
−N δ2

8c4

)
.

Thus, with c̃ = c2 ∨ (2c4), we have for any entry in blocks 6©, 8©, 9©, that for any
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δ > 0,

P
(
|Σ̂ij − ΣA,ij | ≥ δ

)
≤ 2 exp

(
−N δ2

2c̃

)
.

Choosing δ = cmin
32s0,+

, by the exposition above we know that all entries in blocks 1©
- 5© and 7© are bounded by δ for n� 0. Also, because block 6© is the transpose of
block 8©, it is sufficient to control one of them. By symmetry of block 9© it suffices
to control the upper triangular half, including the diagonal, of block 9©. Thus, we
only need to control the entries Σ̂ij − ΣA,ij for i, j in the following index set

A = {i, j : i, j belong to 8© or the upper triangular half or diagonal of 9©}

= {(i, j) ∈ {n+ 2, . . . , n+ 1 + p} × {n+ 1}} ∪ {i ≤ j : i, j = n+ 2, . . . , n+ 1 + p}.

Keep in mind that block 8© has p elements, while the upper triangular part of block

9© plus its diagonal has
(
p
2

)
+ p =

(
p+1

2

)
elements. Thus, for n� 0,

P (J c) = P

(
max
ij
|Σ̂ij − ΣA,ij | ≥

cmin

32s0,+

)
≤
∑
i,j∈A

P

(
|Σ̂ij − ΣA,ij | ≥

cmin

32s0,+

)

≤ 2p exp

(
−N δ2

2c2

)
+ 2

(
p+ 1

2

)
exp

(
−N δ2

8c4

)
≤ 2

(
p+

(
p+ 1

2

))
exp

(
−N δ2

2c̃

)
= p(p+ 3) exp

(
−N δ2

2c̃

)
.

This proves the claim.

For our results on model selection consistency in Section 4.2.1 we require a sam-

ple version of the population compatibility condition (Proposition 4.3). Therefore,

we prove that the compatibility condition holds for the sample version of Σ, that is

for Σ̂ = T−1DTDT−1 first in Proposition A.2 from which Proposition 4.3 readily

follows. The tools we employ are similar to what we saw in Section 2.7.1.2.

Proposition A.2. Under Assumption 4.1, for s0 = o(
√
n) and n large enough,

with c̃ = c2 ∨ (2c4), where c > 0 is the universal constant such that |Zk,ij | ≤ c for

all k, i, j: With probability at least

1− p(p+ 3) exp

(
−N c2

min

2048s2
0,+c̃

)

we have for every θ ∈ R2n+1+p with ‖θSc0,+‖1 ≤ 3‖θS0,+‖1, that

‖θS0,+‖21 ≤
2s0,+

cmin
θT Σ̂θ.
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Proof. This follows from Lemma A.1.

Proof of Proposition 4.3. To prove that the compatibility condition holds for the

population sample size adjusted Gram matrix Σ we may follow the same steps as

in the proof of Proposition 2.3: Number the blocks of Σ as 1© - 9© as we did for Σ̂.

Σ and ΣA are equal on blocks 3©, 5©, 6©, 7©, 8© and 9©. For blocks 1©, 2© and 4©

we use the exact same arguments as in the proof of Proposition 2.3 to find that for

n sufficiently large, almost surely,

max
ij
|Σij − ΣA,ij | ≤

cmin

32s0,+
.

The claim follows from Lemma 2.8.

A.1.2 A basic Inequality

Recall that Pn denotes the empirical measure with respect to our observations

(Aij , Zij), that is, for any suitable function g,

Png :=
1

N

∑
i 6=j

g(Aij , Zij).

In particular, if we let for each θ ∈ Θ, lθ(Aij , Zij) = −Aij(αi + βj + µ + γTZij) +

log(1 + exp(αi + βj + µ + γTZij)), then Pnlθ = L(θ)/N. Similarly, we define the

theoretical risk as P = EPn. In particular, Plθ = EPnlθ = E[L(θ)]/N, where we

suppress the dependence of the theoretical risk on n in our notation. Note that we

have for the excess risk

E(θ) = P (lθ − lθ0).

We derive a basic inequality for model (4.1) as we did in Lemma 2.11. We define

the empirical process as

{vn(θ) = (Pn − P )lθ : θ ∈ Θ} .

Lemma A.3 (Basic Inequality). For any θ = (βT , µ, γT )T ∈ Θloc we have

E(θ̂) + λ‖β̂‖1 ≤ −[vn(θ̂)− vn(θ)] + E(θ) + λ‖β‖1.

Proof. By plugging in the definitions and rearranging, we see that the above equa-

tion is equivalent to

1

N
L(θ̂) + λ‖β̂‖1 ≤

1

N
L(θ) + λ‖β‖1,

which is true by definition of θ̂.
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An analogous result follows line by line for the rescaled parameter ˆ̄θ. Writing

v̄n(θ̄) :=
1

N
(L̄(θ̄)− E[L̄(θ̄)]) = vn(θ).

for the rescaled empirical process, we have the following.

Lemma A.4. For any θ̄ ∈ Θ̄loc we have

Ē(ˆ̄θ) + λ̄‖ ˆ̄ϑ‖1 ≤ −[v̄n(ˆ̄θ)− v̄n(θ̄)] + Ē(θ̄) + λ̄‖ϑ̄‖1.

Remark. For any 0 < t < 1 and θ ∈ Θloc, let θ̃ = tθ̂ + (1− t)θ. Since Γ is convex,

θ̃ ∈ Θloc and since θ → lθ and ‖ . ‖1 are convex functions, we can replace θ̂ by θ̃ in

the basic inequality and still obtain the same result. Plugging in the definitions, we

see that the basic inequality is equivalent to the following:

E(θ̃) + λ‖β̃‖1 ≤ −[vn(θ̃)− vn(θ)] + λ‖β‖1 + E(θ)

⇐⇒ 1

N
L(θ̃) + λ‖β̃‖1 ≤

1

N
L(θ) + λ‖β‖1

and by convexity

1

N
L(θ̃)+λ‖β̃‖1 ≤

1

N
tL(θ̂)+

1

N
(1−t)L(θ)+tλ‖β̂‖1+(1−t)λ‖β‖1 ≤

1

N
L(θ)+λ‖β‖1,

where the last inequality follows by definition of θ̂. In particular, for any M > 0,

choosing

t =
M

M + ‖θ̂ − θ‖1
,

gives ‖θ̃ − θ‖1 ≤M . The completely analogous result holds for θ̄.

A.1.3 Two norms and one function space

To give us a more compact way of writing, for any θ̄ ∈ Θ we introduce functions

fθ̄ : R2n+1+p → R, fθ̄(v) = vT θ̄ and denote the function space of all such fθ̄ by

F̄ := {fθ̄ : θ̄ ∈ Θ}. We endow F̄ with two norms as follows:

Denote the law of the rows of D̄ on R2n+1+p, i.e. the probability measure induced by

(X̄T
ij , 1, Z

T
ij)

T , i 6= j, by Q̄. That is, for a measurable set A = A1×A2 ⊂ R2n+1×Rp,

Q̄(A) =
1

N

∑
i 6=j

P (D̄ij ∈ A) =
1

N

∑
i 6=j

δij(A1) · P (Zij ∈ A2),

where δij(A1) = 1 if (X̄T
ij , 1)T ∈ A1 and zero otherwise, is the Dirac-measure. We

are interested in the L2 and L∞ norm on F̄ with respect to the measure Q̄ on

R2n+1 × Rp. Denote the L2(Q̄)-norm of f ∈ F̄ simply by ‖ . ‖Q̄ and let EZ be the
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expectation with respect to Z:

‖f‖2Q̄ := ‖f‖2L2(Q̄) =

∫
R2n+1×Rp

f(v)2Q̄(dv) =
1

N

∑
i 6=j

EZ [f((X̄T
ij , 1, Z

T
ij)

T )2]

and define the L∞(Q̄)-norm as usual as the Q̄-a.s. smallest upper bound of f :

‖f‖Q̄,∞ = inf{C ≥ 0 : |f(v)| ≤ C for Q̄-almost every v ∈ R2n+1+p}.

In particular, for any fθ̄ ∈ F̄, θ̄ ∈ Θ̄loc: ‖fθ̄‖∞ ≤ supZij ‖D̄θ̄‖∞ ≤ rn.

We make the analogous definitions for the unscaled design matrix. Let Q denote

the probability measure induced by the rows of D. Since D̄θ̄ = Dθ, for any θ with

rescaled version θ̄, we have

‖fθ̄‖L2(Q̄) = ‖fθ‖L2(Q), ‖fθ̄‖Q̄,∞ = ‖fθ‖Q,∞.

We want to apply the compatibility condition to vectors of the form θ = θ1 −

θ2, θ1, θ2 ∈ Θloc.

We have the following relation between the L2(Q)-norm and the sample size

adjusted Gram matrix Σ: For any θ we have

‖fθ‖2Q = EZ

 1

N

∑
i 6=j

(DT
ijθ)

2

 = θ̄TΣθ̄. (A.1)

We have the following corollary which follows immediately from Proposition 4.3 (see

e.g. van de Geer & Bühlmann (2011), Section 6.12 for a general treatment).

Corollary A.5. Under Assumption 4.1, for s0 = o(
√
n) and n large enough, for

every θ̄ = θ̄1 − θ̄2, θ̄1, θ̄2 ∈ Θ̄loc with ‖θ̄Sc0,+‖1 ≤ 3‖θ̄S0,+‖1, we have

‖θ̄S0,+‖21 ≤
2s0,+

cmin
‖fθ1 − fθ2‖2Q.

Proof. By Proposition 4.3,

‖θ̄S0,+‖21 ≤
2s0,+

cmin
θ̄Σθ̄.

The claim follows from (A.1) and the fact that θ 7→ fθ is linear.

A.1.4 Lower quadratic margin for E

We derive a lower quadratic bound on the excess risk E(θ) if the parameter θ is

close to the truth θ0. This is referred to as the margin condition in classical LASSO

theory (cf. van de Geer & Bühlmann (2011)). The proof relies on a second-order
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Taylor expansion of the function lθ of introduced in Section 4.2.2. Given a fixed θ,

we treat lθ as a function in θTx and define new functions lij : R→ R, i 6= j,

lij(a) = E[lθ(Aij , a)|Zij ] = −pija+ log(1 + exp(a)),

where pij = P (Aij = 1|Zij) and by slight abuse of notation we use lθ(Aij , a) :=

−Aija+ log(1 + exp(a)). Taking the derivative, it is easy to see that

fθ0((XT
ij , 1, Z

T
ij)

T ) ∈ arg min
a
lij(a).

Write f0 = fθ0 . All lij are clearly twice continuously differentiable with derivative

∂2

∂a2
lij(a) =

exp(a)

(1 + exp(a))2
> 0,∀a ∈ R.

Using a second-order Taylor expansion around a0 = f0((XT
ij , 1, Z

T
ij)

T ) we get

lij(a) = lij(a0) + l′(a0)(a− a0) +
l′′(ā)

2
(a− a0)2 = lij(a0) +

l′′(ā)

2
(a− a0)2,

with an ā between a and a0. Note that |a0| ≤ rn. Then, for any a with |a| ≤ rn,

we must have that for any intermediate point ā between a0 and a it also holds true

that |ā| ≤ rn. Also note that exp(a)
(1+exp(a))2 is symmetric and monotone decreasing for

a ≥ 0. Thus, for any a with |a| ≤ rn,

lij(a)− lij(a0) =
exp(ā)

(1 + exp(ā))2

(a− a0)2

2

=
exp(|ā|)

(1 + exp(|ā|))2

(a− a0)2

2
, by symmetry

≥ exp(rn)

(1 + exp(rn))2

(a− a0)2

2
.

(A.2)

In particular, if we pick any θ ∈ Θloc and let a = fθ((X
T
ij , 1, Z

T
ij)

T ), we have

lij(fθ((X
T
ij , 1, Z

T
ij)

T ))− lij(f0((XT
ij , 1, Z

T
ij)

T ))

≥ exp(rn)

(1 + exp(rn))2

(fθ((X
T
ij , 1, Z

T
ij)

T )− f0((XT
ij , 1, Z

T
ij)

T ))2

2
.

Let

Kn =
2(1 + exp(rn))2

exp(rn)
. (A.3)
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Define a subset Flocal ⊂ F as Flocal = {fθ : θ ∈ Θloc}. Now, for all fθ ∈ Flocal:

E(θ) =
1

N

∑
i 6=j

E[lθ(Aij , Dij)− lθ0(Aij , Dij)]

=
1

N

∑
i 6=j

E[(lij(fθ(Dij)− lij(f0(Dij)))]

≥ 1

Kn
· 1

N
(θ − θ0)TEZ [DTD](θ − θ0)

=
1

Kn
· ‖fθ − f0‖2Q.

Thus, we have obtained a lower bound for the excess risk given by the quadratic

function Gn(‖fθ − f0‖) where Gn(u) = 1/Kn · u2. Recall that the convex conjugate

of a strictly convex function G on [0,∞) with G(0) = 0 is defined as the function

H(v) = sup
u
{uv −G(u)}, v > 0,

and in particular, if G(u) = cu2 for a positive constant c, we have H(v) = v2/(4c).

Hence, the convex conjugate of Gn is

Hn(v) =
v2Kn

4
.

Keep in mind that by definition for any u, v: uv ≤ G(u) +H(v).

A.1.5 Consistency on a special set

We show that the penalized likelihood estimator is consistent on a specific set I. It

will then suffice to show that P (I) → 1. The proof follows in spirit Theorem 6.4

in van de Geer & Bühlmann (2011) and is analogous to the derivations in Section

2.7.1.6 for SβM-C.

We define some objects that we will need for the proof of consistency. We want

to use the quadratic margin condition derived in Section A.1.4. Recall that the

quadratic margin condition holds for any θ ∈ Θloc. Define

ε∗ = Hn

(
4
√

2
√
s0,+λ̄√
cmin

)
.

Recall the definition of θ̄ in equation (4.7) and let for any M > 0

ZM := sup
θ∈Θloc,

‖θ̄−θ̄0‖1≤M

|vn(θ)− vn(θ0)|,

where vn denotes the empirical process. The set over which we are maximizing in

the definition of ZM can be expressed in terms of parameters θ on the original scale
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as {
θ = (ϑT , µ, γT )T ∈ Θloc :

1√
n
‖ϑ− ϑ0‖1 + |µ− µ0|+ ‖γ − γ0‖1 ≤M

}
.

Set

M∗ := ε∗/λ0,

where λ0 is a lower bound on λ̄ that will be made precise in the proof showing that

I has large probability. Define

I := {ZM∗ ≤ λ0M
∗} = {ZM∗ ≤ ε∗}. (A.4)

Theorem A.6. Assume that Assumptions 4.1 and B2 hold and that λ̄ ≥ 8λ0. Then,

on the set I, we have

E(θ̂) + λ̄

(
1√
n
‖ϑ̂− ϑ0‖1 + |µ̂− µ0|+ ‖γ̂ − γ0‖1

)
≤ 4ε∗ = 4Hn

(
4
√

2
√
s0,+λ̄√
cmin

)
.

Proof of Theorem A.6. We assume that we are on the set I throughout. Set

t =
M∗

M∗ + ‖ ˆ̄θ − θ̄0‖1

and θ̃ = (ϑ̃T , µ̃, γ̃T )T = t ˆ̄θ + (1− t)θ̄0. Then,

‖θ̃ − θ̄0‖1 = t‖ ˆ̄θ − θ̄0‖ ≤M∗.

Since ˆ̄θ, θ̄0 ∈ Θ̄loc and by the convexity of Θ̄loc, θ̃ ∈ Θ̄loc, and by the remark after

Lemma A.4, the basic inequality holds for θ̃. Also, recall that Ē(θ̄0) = 0:

Ē(θ̃) + λ̄‖ϑ̃‖1 ≤ −(v̄n(θ̃)− v̄n(θ̄0)) + Ē(θ̄0) + λ̄‖ϑ̄0‖1

≤ ZM∗ + λ̄‖ϑ̄0‖1

≤ ε∗ + λ̄‖ϑ̄0‖1.

From now on write Ẽ = Ē(θ̃). Note, that ‖ϑ̃‖1 = ‖ϑ̃Sc0‖1 + ‖ϑ̃S0‖1 and thus, by the

triangle inequality,

Ẽ + λ̄‖ϑ̃Sc0‖1 ≤ ε
∗ + λ̄(‖ϑ̄0‖1 − ‖ϑ̃S0‖1)

≤ ε∗ + λ̄(‖ϑ̄0 − ϑ̃S0‖1)

≤ ε∗ + λ̄(‖ϑ̄0 − ϑ̃S0‖1 + ‖(µ0, γ
T
0 )T − (µ̃, γ̃T )T ‖1)

= ε∗ + λ̄‖(θ̃ − θ̄0)S0,+‖1.

(A.5)
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Case i) If λ̄‖(θ̃ − θ̄0)S0,+‖1 ≥ ε∗, then

λ̄‖ϑ̃Sc0‖1 ≤ Ẽ + λ̄‖ϑ̃Sc0‖1 ≤ 2λ̄‖(θ̃ − θ̄0)S0,+‖1. (A.6)

Since ‖(θ̃ − θ̄0)Sc0,+‖1 = ‖ϑ̃Sc0‖1, we may thus apply the compatibility condition,

Corollary A.5 (note that ϑ̄0 = ϑ̄0,S0) to obtain

‖(θ̃ − θ̄0)S0,+‖1 ≤
√

2 ·
√
s0,+√
cmin
‖fθ̃ − fθ̄0‖Q̄,

where we have used that θ 7→ fθ is linear and hence fθ̃−θ̄0 = fθ̃ − fθ̄0 . Observe that

‖θ̃ − θ0‖1 = ‖ϑ̃Sc0‖1 + ‖(θ̃ − θ0)S0,+‖1. (A.7)

Hence,

Ẽ + λ̄‖θ̃ − θ̄0‖1 = Ẽ + λ̄(‖ϑ̃Sc0‖1 + ‖(θ̃ − θ̄0)S0,+‖1)

≤ ε∗ + 2λ̄‖(θ̃ − θ̄0)S0,+‖1

≤ ε∗ + 2
√

2λ̄

√
s0,+√
cmin
‖fθ̃ − fθ̄0‖Q̄.

Recall that for a convex function G and its convex conjugate H we have uv ≤

G(u) +H(v). Thus, we obtain

2
√

2λ̄

√
s0,+√
cmin
‖fθ̃ − fθ̄0‖Q̄ = 4

√
2λ̄

√
s0,+√
cmin

‖fθ̃ − fθ̄0‖Q̄
2

≤ Hn

(
4
√

2λ̄

√
s0,+√
cmin

)
+Gn

(‖fθ̃ − fθ̄0‖Q̄
2

)
Gn convex
≤ Hn

(
4
√

2λ̄

√
s0,+√
cmin

)
+
Gn(‖fθ̃ − fθ̄0‖Q̄)

2

margin condition
≤ Hn

(
4
√

2λ̄

√
s0,+√
cmin

)
+
Ẽ
2
.

It follows

Ẽ + λ̄‖θ̃ − θ̄0‖1 ≤ ε∗ +Hn

(
4
√

2λ̄

√
s0,+√
cmin

)
+
Ẽ
2

= 2ε∗ +
Ẽ
2

and therefore
Ẽ
2

+ λ̄‖θ̃ − θ̄0‖1 ≤ 2ε∗. (A.8)

Finally, this gives

‖θ̃ − θ̄0‖1 ≤
2ε∗

λ̄
=

2λ0M
∗

λ̄
≤︸︷︷︸

λ̄≥4λ0

M∗

2
.
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From this, by using the definition of θ̃, we obtain

‖θ̃ − θ̄0‖1 = t‖ ˆ̄θ − θ̄0‖1 =
M∗

M∗ + ‖ ˆ̄θ − θ̄0‖1
‖ ˆ̄θ − θ̄0‖1 ≤

M∗

2
.

Rearranging gives

‖ ˆ̄θ − θ̄0‖1 ≤M∗.

Case ii) If λ̄‖(θ̄0 − θ̃)S0,+‖1 ≤ ε∗, then from (A.5)

Ẽ + λ̄‖ϑ̃Sc0‖1 ≤ 2ε∗.

Using once more (A.7), we get

Ẽ + λ̄‖θ̃ − θ̄0‖1 = Ẽ + λ̄‖ϑ̃Sc0‖1 + λ̄‖(θ̃ − θ̄0)S0,+‖1 ≤ 3ε∗. (A.9)

Thus,

‖θ̃ − θ̄0‖1 ≤ 3
ε∗

λ̄
= 3

λ0

λ̄
M∗ ≤ M∗

2

by choice of λ ≥ 6λ0. Again, plugging in the definition of θ̃, we obtain

‖ ˆ̄θ − θ̄0‖1 ≤M∗.

Hence, in either case we have ‖ ˆ̄θ− θ̄0‖1 ≤M∗. That means, we can repeat the above

steps with ˆ̄θ instead of θ̃: Writing Ê := Ē(ˆ̄θ), following the same reasoning as above

we arrive once more at (A.5):

Ê + λ̄‖ ˆ̄ϑSc0‖1 ≤ ε
∗ + λ̄‖ϑ̄∗ − ˆ̄ϑS0‖1 ≤ 2ε∗ + λ̄‖(ˆ̄θ − θ̄0)S0,+‖1.

From this, in case i) we obtain (A.6) which allows us to use the compatibility

condition to arrive at (A.8):

Ê
2

+ λ̄‖ ˆ̄θ − θ̄0‖1 ≤ 2ε∗,

resulting in

Ê + λ̄‖ ˆ̄θ − θ̄0‖1 ≤ 4ε∗.

In case ii) on the other hand, we arrive directly at (A.9), and hence

Ê + λ̄‖ ˆ̄θ − θ̄0‖1 ≤ 3ε∗.

Plugging in the definitions of ˆ̄θ and θ̄0 and using the fact that Ê = Ē(ˆ̄θ) = E(θ̂)

proves the claim.
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A.1.6 Controlling the special set I

In this section we seek to control The expectation of ZM . Recall the definition

ZM := sup
θ̄∈Θ̄loc,

‖θ̄−θ̄0‖1≤M

|v̄n(θ̄)− v̄n(θ̄0)|,

where v̄n denotes the rescaled empirical process. Recall, that there is a constant

c ∈ R such that uniformly |Zij,k| ≤ c, 1 ≤ i 6= j ≤ n, k = 1, . . . , p.

Lemma A.7. For any M > 0 we have in model (4.1)

E[ZM ] ≤ 8M(1 ∨ c)
√

2 log(2(2n+ p+ 1))

N
.

Proof. Let εij , i 6= j, be a Rademacher sequence independent of Aij , Zij , i 6= j.

We first want to use the Symmetrization Theorem 2.16: For the random variables

Z1, . . . , Zn we choose Tij = (Aij , X̄
T
ij , 1, Z

T
ij)

T ∈ {0, 1} × R2n+1+p. For any θ̄ ∈ Θ̄loc

we consider the functions

gθ̄(Tij) =
1

N

{
−AijD̄T

ij(θ̄ − θ̄0) + log(1 + exp(D̄T
ij θ̄))− log(1 + exp(D̄T

ij θ̄0))
}

and the function set G = G(M) := {gθ̄ : θ̄ ∈ Θ̄loc, ‖θ̄ − θ̄0‖1 ≤M}. Note, that

v̄n(θ̄)− v̄n(θ̄0) =
∑
i 6=j
{gθ̄(Tij)− E[gθ̄(Tij)]}.

Then, by the Symmetrization Theorem,

E[ZM ] = E

 sup
gθ̄∈G

∣∣∣∣∣∣
∑
i 6=j

gθ̄(Tij)− E[gθ̄(Tij)]

∣∣∣∣∣∣


≤ 2E

 sup
gθ̄∈G

∣∣∣∣∣∣
∑
i 6=j

εijgθ̄(Tij)

∣∣∣∣∣∣
 .

Next, we want to apply the Contraction Theorem 2.17. Denote T = (Tij)i 6=j and let

ET be the conditional expectation given T . We need the conditional expectation at

this point, because Theorem 2.17 requires non-random arguments in the functions.

This does not hinder us, as later we will simply take iterated expectations, cancelling

out the conditional expectation, see below. For the functions gi in Theorem 2.17 we

choose

gij(x) =
1

2
{−Aijx+ log(1 + exp(x))}

Note, that log(1 + exp(x)) has derivative bounded by one and thus is Lipschitz

continuous with constant one by the Mean Value Theorem. Thus, all gij are also
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Lipschitz continuous with constant 1:

|gij(x)− gij(x′)| ≤
1

2
{|Aij(x−x′)|+ | log(1 + exp(x))− log(1 + exp(x′))|} ≤ |x−x′|.

For the function class F in Theorem 2.17 we choose F = FM := {fθ̄ : θ̄ ∈ Θ̄loc, ‖θ̄−

θ̄0‖1 ≤M} and pick f∗ = fθ̄0 . Then, by Theorem 2.17

ET

 sup
θ̄∈Θ̄loc,

‖θ̄−θ̄0‖1≤M

∣∣∣∣∣∣ 1

N

∑
i 6=j

εij(gij(fθ̄((X̄
T
ij , 1, Z

T
ij)

T ))− gij(fθ̄0((X̄T
ij , 1, Z

T
ij)

T )))

∣∣∣∣∣∣


≤ 2ET

 sup
θ̄∈Θ̄loc,

‖θ̄−θ̄0‖1≤M

∣∣∣∣∣∣ 1

N

∑
i 6=j

εij(fθ̄((X̄
T
ij , 1, Z

T
ij)

T )− fθ̄0((X̄T
ij , 1, Z

T
ij)

T ))

∣∣∣∣∣∣
 .

Recall that we can express the functions fθ̄ = fᾱ,β̄,µ,γ as

fᾱ,β̄,µ,γ( . ) =
n∑
i=1

ᾱiei( . ) +

2n∑
i=n+1

β̄i−nei( . ) + µe2n+1( . ) +

p∑
i=1

γie2n+1+i( . ),

where ei( . ) is the projection on the i-th coordinate. Consider any θ̄ ∈ Θ̄loc with ‖θ̄−

θ̄0‖1 ≤M . For the sake of a compact representation we use our shorthand notation

θ̄ = (θ̄i)
2n+1+p
i=1 where the components θi are defined in the canonical way and we

also simply write ek(X̄ij , 1, Zij) for the projection of the the vector (X̄T
ij , 1, Z

T
ij)

T ∈

R2n+p+1 to its k-th component, i.e. instead of ek((X̄T
ij , 1, Z

T
ij)

T ). Then,

∣∣∣∣∣∣ 1

N

∑
i 6=j

εij(fθ̄((X̄
T
ij , 1, Z

T
ij)

T )− fθ̄0((X̄T
ij , 1, Z

T
ij)

T ))

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

N

∑
i 6=j

εij

(
2n+p+1∑
k=1

(θ̄k − θ̄0,k)ek(X̄ij , 1, Zij)

)∣∣∣∣∣∣
≤ 1

N

2n+p+1∑
k=1

|θ̄k − θ̄0,k| max
1≤l≤2n+p+1

∣∣∣∣∣∣
∑
i 6=j

εijel(X̄ij , 1, Zij)

∣∣∣∣∣∣


≤M max
1≤l≤2n+p+1

∣∣∣∣∣∣ 1

N

∑
i 6=j

εijel(X̄ij , 1, Zij)

∣∣∣∣∣∣ .
Note, that the last expression no longer depends on θ̄. To bind the right hand side

in the last expression we use Lemma 2.19: In the language of the Lemma, choose

Z1, . . . , Zn as Tij = (εij , X̄
T
ij , 1, Z

T
ij)

T . We choose for the p in the formulation of the

Lemma 2n+ p+ 1 and pick for our functions

gk(Tij) =
1

N
εijek(X̄ij , 1, Zij), k = 1, . . . , 2n+ p+ 1.
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Then, E[gk(Tij)] = 0. We want to employ Lemma 2.19 which requires us to bound

|gk(Tij)| ≤ cij,k for all i 6= j and k = 1, . . . , n + 1 + p. For any fixed 1 ≤ k ≤ n we

have

|gk(Tij)| ≤


√
n
N = 1

(n−1)
√
n
, i or j = k

0, otherwise.

The first case occurs exactly (n− 1) times for each k. Thus, for any k ≤ 2n,

∑
i 6=j

c2
ij,k =

(
1

(n− 1)
√
n

)2

(n− 1) =
1

N
.

If k = 2n+ 1, |gk(Tij)| = 1/N and hence

∑
i 6=j

c2
ij,2n+1 =

1

N
.

Finally, if k > 2n+ 1, |gk(Tij)| ≤ c/N and therefore,

∑
i 6=j

c2
ij,k ≤

c2

N
.

In total, this means

max
1≤k≤2n+1+p

∑
i 6=j

c2
ij,k ≤

1 ∨ c2

N
.

Therefore, an application of Lemma 2.19 results in

E

[
max

1≤l≤2n+p+1

∣∣∣∣∣ 1

N

∑
i 6=j

εijel(X̄ij , Zij)

∣∣∣∣∣
]

≤
√

2 log(2(2n+ 1 + p)) max
1≤k≤2n+1+p

∑
i 6=j

c2
ij,k

1/2

≤
√

2 log(2(2n+ 1 + p))

N
(1 ∨ c).
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Putting everything together, we obtain

E[ZM ] ≤ 2E

 sup
θ̄∈Θ̄loc,

‖θ̄−θ̄0‖1≤M

∣∣∣∣∣∣ 1

N

∑
i 6=j

εij(−Aij(fθ̄(X̄ij , 1, Zij)− fθ̄0(X̄ij , 1, Zij)))

∣∣∣∣∣∣


= 2E

ET
 sup

θ̄∈Θ̄loc,
‖θ̄−θ̄0‖1≤M

∣∣∣∣∣∣ 1

N

∑
i 6=j

εij(−Aij(fθ̄(X̄ij , 1, Zij)− fθ̄0(X̄ij , 1, Zij)))

∣∣∣∣∣∣



≤ 8E

ET
 sup

θ̄∈Θ̄loc,
‖θ̄−θ̄0‖1≤M

∣∣∣∣∣∣ 1

N

∑
i 6=j

εij(fθ̄(X̄ij , 1, Zij)− fθ̄0(X̄ij , 1, Zij))

∣∣∣∣∣∣



≤ 8ME

ET
 max

1≤l≤2n+p+1

∣∣∣∣∣∣ 1

N

∑
i 6=j

εijel(X̄ij , 1, Zij)

∣∣∣∣∣∣


≤ 8M

√
2 log(2(2n+ 1 + p))

N
(1 ∨ c).

This concludes the proof.

We now show that ZM does not deviate too far from its expectation. The proof

relies on the concentration theorem due to Bousquet, Theorem 2.18.

Corollary A.8. Pick any confidence level t > 0. Let

an :=

√
2 log(2(2n+ p+ 1))

N
(1 ∨ c)

and choose λ0 = λ0(t, n) as

λ0 = 8an + 2

√
t

N
(11(1 ∨ (c2p)) + 16(1 ∨ c)

√
nan) +

4t(1 ∨ c)
√
n

3N

Then, we have the inequality

P (ZM ≥Mλ0) ≤ exp(−t).

Proof. We want to apply Bousquet’s Concentration Theorem 2.18. For the ran-

dom variables Zi in the formulation of the theorem we choose once more Tij =

(Aij , X̄ij , 1, Zij), i 6= j, and as functions we consider

gθ̄(Tij) = −AijD̄T
ij(θ̄ − θ̄0) + log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0)),

G = GM := {gθ̄ : θ̄ ∈ Θ̄loc, ‖θ̄ − θ̄0‖1 ≤M}.
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Then, we have

ZM = sup
gθ̄∈G

1

N

∣∣∣∣∣∣
∑
i 6=j
{gθ̄(Tij)− E[gθ̄(Tij)]}

∣∣∣∣∣∣ .
To apply Theorem 2.18, we need to bound ‖gθ̄‖∞. Recall that we denote the distribu-

tion of [X̄|1|Z] by Q̄ and ‖gθ̄‖∞ is defined as the Q̄-a.s. smallest upper bound on the

value of gθ̄. We have for any gθ̄ ∈ G, using the Lipschitz continuity of log(1+exp(x)):

|gθ̄(Tij)| ≤ |D̄T
ij(θ̄ − θ̄0)|+ | log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0))|

≤ 2|D̄T
ij(θ̄ − θ̄0)|

≤ 2‖ϑ− ϑ0‖1 + |µ− µ0|+ c‖γ − γ0‖1.

Thus,

‖gθ̄‖∞ ≤ 2‖ϑ− ϑ0‖1 + |µ− µ0|+ c‖γ − γ0‖1

≤ 2(1 ∨ c)‖θ − θ0‖1

≤ 2(1 ∨ c)
√
nM =: ηn.

For the last inequality we used that for any θ with ‖θ̄ − θ̄0‖1 ≤ M it follows that

‖θ − θ0‖1 ≤
√
nM , which is possibly a very generous upper bound. This does not

matter, however, as the term associated with the above bound will be negligible, as

we shall see.

The second requirement of Theorem 2.18 is that the average variance of gθ̄(Tij)

has to be uniformly bounded. To that end we calculate

1

N

∑
i 6=j

Var(gθ̄(Tij))

=
1

N

∑
i 6=j

Var(−AijDT
ij(θ − θ0))

+
1

N

∑
i 6=j

Var(log(1 + exp(D̄T
ij θ̄))− log(1 + exp(D̄T

ij θ̄0)))

+
2

N

∑
i 6=j

Cov(−AijDT
ij(θ − θ0), log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0))).

Let us look at these terms in term. For the first term, we obtain

1

N

∑
i 6=j

Var(−AijDT
ij(θ − θ0)) ≤ 1

N

∑
i 6=j

E[(−AijDT
ij(θ − θ0))2]

≤ E

 1

N

∑
i 6=j

(DT
ij(θ − θ0))2

 .
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For the second term, we get by Lipschitz continuity,

1

N

∑
i 6=j

Var( log(1 + exp(D̄T
ij θ̄))− log(1 + exp(D̄T

ij θ̄0)))

≤ 1

N

∑
i 6=j

E[(log(1 + exp(D̄T
ij θ̄))− log(1 + exp(D̄T

ij θ̄0)))2]

≤ E

 1

N

∑
i 6=j

(DT
ij(θ − θ0))2

 .
The last term decomposes as

2

N

∑
i 6=j

Cov(−AijDT
ij(θ − θ0), log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0)))

=
2

N

∑
i 6=j

E[−AijDT
ij(θ − θ0) · (log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0)))]

− 2

N

∑
i 6=j

E[−AijDT
ij(θ − θ0)] · E[log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0))]

For the first term in that decomposition we have

2

N

∑
i 6=j

∣∣E[−AijDT
ij(θ − θ0) · (log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0)))]

∣∣
≤ 2

N

∑
i 6=j

E[|DT
ij(θ − θ0)| · | log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0))|]

≤ 2

N

∑
i 6=j

E[|DT
ij(θ − θ0)|2]

and for the second term using the same arguments, we get

2

N

∑
i 6=j

E[−AijDT
ij(θ − θ0)] · E[log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0))]

≤ 2

N

∑
i 6=j

E[|DT
ij(θ − θ0)|]2.

Meaning that in total

2

N

∑
i 6=j

∣∣Cov(−AijDT
ij(θ − θ0), log(1 + exp(D̄T

ij θ̄))− log(1 + exp(D̄T
ij θ̄0)))

∣∣
≤ 2

N

∑
i 6=j

E[|DT
ij(θ − θ0)|2] +

2

N

∑
i 6=j

E[|DT
ij(θ − θ0)|]2.
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In total, we thus get

1

N

∑
i 6=j

Var(gθ̄(Tij)) ≤ 4 · E

 1

N

∑
i 6=j

(DT
ij(θ − θ0))2

+
2

N

∑
i 6=j

E[|DT
ij(θ − θ0)|]2.

(A.10)

Furthermore, by Cauchy-Schwarz’ inequality,

1

N

∑
i 6=j

(DT
ij(θ − θ0))2

=
1

N

∑
i 6=j

(αi + βj + µ− α0,i − β0,j − µ0 + (γ − γ0)TZij)
2

≤ 4

N

∑
i 6=j

{
(αi − α0,i)

2 + (βj − β0,j)
2 + (µ− µ0)2 + ((γ − γ0)TZij)

2
}
.

Recall that for any x ∈ Rp, ‖x‖2 ≤ ‖x‖1 ≤
√
p‖x‖2 and note that

|(γ − γ0)TZij | ≤ c‖γ − γ0‖1 ≤ c
√
p‖γ − γ0‖2.

Then, from the above

1

N

∑
i 6=j

(DT
ij(θ − θ0))2

≤ 4

N

∑
i 6=j

{
(αi − α0,i)

2 + (βj − β0,j)
2 + (µ− µ0)2 + c2p‖γ − γ0‖22

}
= 4

(
(µ− µ0)2 + c2p‖γ − γ0‖22 +

1

N
(n− 1)‖ϑ− ϑ0‖22

)
= 4

(
(µ− µ0)2 + c2p‖γ − γ0‖22 +

∥∥∥∥ 1√
n

(ϑ− ϑ0)

∥∥∥∥2

2

)
= 4

(
(µ− µ0)2 + c2p‖γ − γ0‖22 + ‖ϑ̄− ϑ̄0‖22

)
≤ 4(1 ∨ (c2p))‖θ̄ − θ̄0‖22

≤ 4(1 ∨ (c2p))‖θ̄ − θ̄0‖21

≤ 4(1 ∨ (c2p))M2.

(A.11)

For the second summand on the right-hand side in (A.10), we have

2

N

∑
i 6=j

E[|DT
ij(θ − θ0)|]2 =

2

N

∑
i 6=j

(αi + βj + µ− α0,i − β0,j − µ0 + (γ − γ0)TE[Zij ])
2

=
2

N

∑
i 6=j

(αi + βj + µ− α0,i − β0,j − µ0)2.

So that we may use the same steps as in (A.11) to conclude that

2

N

∑
i 6=j

E[|DT
ij(θ − θ0)|]2 ≤ 6(1 ∨ (c2p))M2.
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Such that in total,

1

N

∑
i 6=j

Var(gθ̄(Tij)) ≤ 22(1 ∨ (c2p))M2 := τ2
n.

Applying Bousquet’s Concentration Theorem 2.18 with ηn, τn defined above, we
obtain for all z > 0

exp
(
−Nz2

)
≥ P

(
ZM ≥ E[ZM ] + z

√
2(τ2

n + 2ηnE[ZM ]) +
2z2ηn

3

)
= P

(
ZM ≥ E[ZM ] + z

√
2(22(1 ∨ (c2p))M2 + 4(1 ∨ c)

√
nME[ZM ]) +

4z2(1 ∨ c)
√
nM

3

)
.

(A.12)

From Lemma A.7, we know

E[ZM ] ≤ 8M

√
2 log(2(2n+ p+ 1))

N
(1 ∨ c) = 8Man.

Using this, we obtain from (A.12)

exp
(
−Nz2

)
≥ P

(
ZM ≥ 8Man + z

√
2(22(1 ∨ (c2p))M2 + 32(1 ∨ c)

√
nM2an) +

4z2(1 ∨ c)
√
nM

3

)
= P

(
ZM ≥M

(
8an + 2z

√
11(1 ∨ (c2p)) + 16(1 ∨ c)

√
nan +

4z2(1 ∨ c)
√
n

3

))
.

Now, pick z =
√
t/N to get

exp(−t)

≥ P

(
ZM ≥M

(
8an + 2

√
t

N
(11(1 ∨ (c2p)) + 16(1 ∨ c)

√
nan) +

4t(1 ∨ c)
√
n

3N

))
.

which is the claim.

A.1.7 Putting it all together

Proof of Theorem 4.4. Theorem 4.4 follows from Theorem A.6 and Corollary A.8.

Recall the definition of Kn in (A.3), which simplifies to

Kn = 2
(1 + exp(rn,0))2

exp(rn,0)
= 2

(1 + exp (−logit(ρn,0)))2

exp (−logit(ρn,0))
≤ 4

ρn,0
.

Thus, under the conditions of Theorem 4.4, we have with high probability by The-

orem A.6 and Corollary A.8,

E(θ̂) + λ̄

(
1√
n
‖ϑ̂− ϑ0‖1 + |µ̂− µ0|+ ‖γ̂ − γ0‖1

)
≤ C s0,+λ̄

2

ρn,0
.

with constant C = 128/cmin.
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A.2 Proof of Theorem 4.5

Recall our discussion of the KKT conditions in Section 4.2.1. By the same arguments

we find that 0 has to be contained in the subdifferential of 1
NL(θ)+λ‖β‖1 at θ̂, where

this time we consider the KKT conditions with respect to the original parameters

θ. That is, there exists a ẑ ∈ R2n+1+p such that

0 =
1

N
∇ L(θ)|θ=θ̂ + λẑ, (A.13)

where ∇ L(θ)|θ=θ̂ is the gradient of L(θ) evaluated at θ̂ and for i = 1, . . . , 2n, ẑi = 1

if ϑ̂i > 0 and ẑi ∈ [−1, 1] if ϑ̂i = 0, and for i = 2n+ 1, . . . , 2n+ 1 + p, ẑi = 0.

Denoting ∇ξ L(θ)|θ=θ̂ ∈ Rp+1 the gradient of L with respect to the unpenalized

parameters ξ = (µ, γT )T only, evaluated at θ̂, we have

0 = ∇ξ L(θ)|θ=θ̂ . (A.14)

Recall the form of the Hessian H(θ̂) := Hξ×ξ(θ)|θ=θ̂ of 1
NL(θ) with respect to ξ

only, evaluated at θ̂:

H(θ̂) =
1

N
DT
ξ Ŵ

2Dξ,

where Dξ = [1|Z] is the part of the design matrix D corresponding to ξ with rows

DT
ξ,ij = (1, ZTij), i 6= j, and

Ŵ = diag
(√

pij(θ̂)(1− pij(θ̂)), i 6= j

)
.

Also recall the corresponding population version

E[H(θ0)] =
1

N
E[DT

ξ W
2
0Dξ],

where W0 = diag(
√
pij(θ0)(1− pij(θ0)), i 6= j). Finally, recall that to be con-

sistent with commonly used notation, we write Σ̂ξ = H(θ̂) = 1
ND

T
ξ Ŵ

2Dξ and

Σξ = E[H(θ0)] = 1
NE[DT

ξ W
2
0Dξ] and Θ̂ξ := Σ̂−1

ξ ,Θξ := Σ−1
ξ .

A.2.1 Inverting population and sample Gram matrices

Note that the function f(x) = x(1−x) is monotonically increasing in x for x ≤ 1/2

and monotonically decreasing in x for x ≥ 1/2. Thus, by considering the cases

pij ≤ 1/2 and pij ≥ 1/2 separately and using that ρn ≤ 1/2, we may employ

the following lower bound for all i 6= j: pij(θ0)(1 − pij(θ0)) ≥ 1/2ρn. Also, recall

that by Assumption 4.1, for the minimum eigenvalue λmin of E[ZTZ/N ] we have

λmin = λmin(n) ≥ cmin > 0. Then, for any n and v ∈ Rp+1\{0} with components
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v = (v1, v
T
R)T , vR ∈ Rp, we have

vTΣξv ≥
1

2
ρnv

T 1

N
E[DT

ξ Dξ]v =
1

2
ρnv

T

(
1 0
0 1

NE[ZTZ]

)
v

=
1

2
ρn

(
v2

1 + vTR
1

N
E[ZTZ]vR

)
≥ 1

2
ρn(v2

1 + λmin‖vR‖22) ≥ 1

2
ρn(1 ∧ cmin)‖v‖22 > 0.

Hence, for finite n all eigenvalues of Σξ are strictly positive and consequently this

matrix is invertible. We want to show that the same holds with high probability

for the sample matrix Σ̂ξ. Using the tools deployed in the proofs of Lemma 2.8 and

A.1 we can show that with high probability the minimum eigenvalue of DT
ξ Dξ/N is

also strictly larger than zero and thus, DT
ξ Dξ/N is invertible with high probability.

From this the desired properties of Σ̂ξ follow.

More precisely, recall the definition of κ(A,m) for square matrices A and dimen-

sionsm. We want to consider the expression κ2
(

1
NE[DT

ξ Dξ], p+ 1
)
which simplifies

to

κ2

(
1

N
E[DT

ξ Dξ], p+ 1

)
:= min

v∈Rp+1\{0}

vT 1
NE[DT

ξ Dξ]v
1
p+1‖v‖

2
1

and compare it to κ2
(

1
ND

T
ξ Dξ, p+ 1

)
. By Assumption 4.1 and the argument above,

we have

κ2

(
1

N
E[DT

ξ Dξ], p+ 1

)
≥ C > 0

for a universal constant C independent of n. By Lemma 2.8, with

δ = max
kl

∣∣∣∣( 1

N
DT
ξ Dξ

)
kl

−
(

1

N
E[DT

ξ Dξ]

)
kl

∣∣∣∣ ,
we have

κ2

(
1

N
DT
ξ Dξ, p+ 1

)
≥ κ2

(
1

N
E[DT

ξ Dξ], p+ 1

)
− 16δ(p+ 1).

By looking at the proof of Lemma 2.8, we see that in this particular case we do

not even need the factor 16(p+ 1) on the right hand side above, but this does not

matter anyway, so we keep it. By the exact same arguments we have used in the

proof of Lemma A.1 for the blocks 5©, 6©, 8© and 9©, we now get

δ = OP

(
N−1/2

)
.

Thus, for n large enough, we have with high probability δ ≤ λmin
32 . Then, by Lemma
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2.8, with high probability and uniformly in n,

κ2

(
1

N
DT
ξ Dξ, p+ 1

)
≥ κ2

(
1

N
E[DT

ξ Dξ], p+ 1

)
−16δ(p+1) ≥ λmin(p+ 1)

2
≥ C > 0.

If κ2
(

1
ND

T
ξ Dξ, p+ 1

)
≥ C > 0 uniformly in n, then for any v 6= 0, vT 1

ND
T
ξ Dξv ≥

C‖v‖22. Thus, for any v ∈ Rp+1\{0} and any finite n:

1

N
vTDT

ξ Ŵ
2Dξv ≥ min

i 6=j
{pij(θ̂)(1− pij(θ̂))}

(
vT

1

N
DT
ξ Dξv

)
≥ Cρn‖v‖22 > 0.

Thus, for every finite n, 1
ND

T
ξ Ŵ

2Dξ is positive definite and invertible with high

probability.

A.2.2 Goal and approach

Goal: We want to show that for k = 1, . . . , p+ 1,

√
N
ξ̂k − ξ0,k√

Θ̂ξ,k,k

→ N (0, 1).

Approach: Recall the definition of the “one-sample-version” of L: For θ ∈ Θ,

lθ : {0, 1} × R2n+1+p → R

lθ(y, x) := −yθTx+ log(1 + exp(θTx).

Then,

L(θ) =
∑
i 6=j

lθ(Aij , D
T
ij)

and

∇L(θ) =
∑
i 6=j
∇lθ(Aij , DT

ij), HL(θ) =
∑
i 6=j

Hlθ(Aij , D
T
ij),

where H denotes the Hessian with respect to θ. Consider lθ as a function in θTx

and introduce:

l(y, a) := −ya+ log(1 + exp(a)), (A.15)

with second derivative: l̈(y, a) = ∂a2 l(y, a) = exp(a)
(1+exp(a))2 . Note, that ∂a2 l(y, a) is

Lipschitz continuous (it has bounded derivative |∂a3 l(y, a)| ≤ 1/(6
√

3); Lipschitz

continuity then follows by the Mean Value Theorem). Doing a first-order Taylor

expansion in a of l̇(y, a) = ∂al(y, a) in the point (Aij , D
T
ijθ0) evaluated at (Aij , D

T
ij θ̂),

we get

∂al(Aij , Dij θ̂) = ∂al(Aij , D
T
ijθ0) + ∂a2 l(Aij , α)DT

ij(θ̂ − θ0), (A.16)
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for an α between DT
ij θ̂ and DT

ijθ0. By Lipschitz continuity of ∂a2 l, we also find

|∂a2 l(Aij , α)DT
ij(θ̂ − θ0)− ∂a2 l(Aij , D

T
ij θ̂)D

T
ij(θ̂ − θ0)|

≤ |α−DT
ij θ̂||DT

ij(θ̂ − θ0)| ≤ |DT
ij(θ̂ − θ0)|2,

(A.17)

where the last inequality follows, because α is between DT
ij θ̂ and DT

ijθ0.

Consider the vector Pn∇lθ̂: By equation (A.16), with αij between DT
ij θ̂ and

DT
ijθ0,

Pn∇lθ̂ =
1

N

∑
i 6=j

(
∂θk l(Aij , D

T
ij θ̂)
)
k=1,...,2n+1+p

, as a (2n+ 1 + p)× 1-vector

=
1

N

∑
i 6=j

l̇(Aij , D
T
ij θ̂)Dij

=
1

N

∑
i 6=j

(l̇(Aij , D
T
ijθ0) + l̈(Aij , αij)D

T
ij(θ̂ − θ0))Dij

which by (A.17) gives

= Pn∇lθ0 +
1

N

∑
i 6=j

Dij

{
l̈(Aij , D

T
ij θ̂)D

T
ij(θ̂ − θ0) +O(|DT

ij(θ̂ − θ0)|2)
}
.

Noticing that l̈(Aij , DT
ij θ̂) = pij(θ̂)(1−pij(θ̂)) and thus

∑
i 6=j l̈(Aij , D

T
ij θ̂)DijD

T
ij(θ̂−

θ0) = DT Ŵ 2D(θ̂ − θ0):

= Pn∇lθ0 + PnHlθ̂(θ̂ − θ0) +O

 1

N

∑
i 6=j

Dij |DT
ij(θ̂ − θ0)|2


= Pn∇lθ0 +

1

N
DT Ŵ 2D(θ̂ − θ0) +O

 1

N

∑
i 6=j

Dij |DT
ij(θ̂ − θ0)|2

 ,

where the O notation is to be understood componentwise. Above, we have equality

of two ((2n+ 1 + p)× 1)-vectors. We are only interested in the portion relating to

ξ = (µ, γT )T , i.e. in the last p+1 entries. Introduce the ((2n+1+p)× (2n+1+p))-

matrix

A =

(
0 0
0 Θ̂ξ

)
,

where 0 are zero-matrices of appropriate dimensions. Multiplying the above with A

from the left on both sides gives:

APn∇lθ̂ = APn∇lθ0 +A
1

N
DT Ŵ 2D(θ̂ − θ0) +AO

 1

N

∑
i 6=j

Dij |DT
ij(θ̂ − θ0)|2

 .

(A.18)

Let us consider these terms in turn: Multiplication by A means that the first n

entries of any of the vectors above are zero. Hence we only need to consider the last

p+ 1 entries. The left-hand side of (A.18) is equal to zero by (A.14). The last p+ 1

entries of the first term on the right-hand side are Θ̂ξPn∇ξlθ0 . For the second term
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on the right hand side, notice that

1

N
DT Ŵ 2D =

1

N

XT Ŵ 2X XT Ŵ 21 XT Ŵ 2Z

1T Ŵ 2X 1T Ŵ 21 1T Ŵ 2Z

ZT Ŵ 2X ZT Ŵ 21 ZT Ŵ 2Z

 .
Since Θ̂ξ = Σ̂−1

ξ and Σ̂−1
ξ is the lower-right (p+ 1)× (p+ 1) block of above matrix,

A
1

N
DT Ŵ 2D =

[
0 0

Θ̂ξ
1
ND

T
ξ Ŵ

2X I(p+1)×(p+1)

]
.

Then, for the last p+ 1 entries of A 1
ND

T Ŵ 2D(θ̂ − θ0)

(
A

1

N
DT Ŵ 2D(θ̂ − θ0)

)
last p+1 entries

= Θ̂ξ
1

N
DT
ξ Ŵ

2X(ϑ̂− ϑ0) +

(
µ̂− µ0

γ̂ − γ0

)
.

Thus, (A.18) implies

0 = Θ̂ξPn∇γ lθ0+Θ̂ξ
1

N
DT
ξ Ŵ

2X(ϑ̂−ϑ0)+

(
µ̂− µ0

γ̂ − γ0

)
+O

Θ̂ξ
1

N

∑
i 6=j

(
1

Zij

)
|DT

ij(θ̂ − θ0)|2
 ,

which is equivalent to

(
µ̂− µ0

γ̂ − γ0

)
= −Θ̂ξPn∇ξlθ0−Θ̂ξ

1

N
DT
ξ Ŵ

2X(ϑ̂−ϑ0)+O

Θ̂ξ
1

N

∑
i 6=j

(
1

Zij

)
|DT

ij(θ̂ − θ0)|2
 .

(A.19)

Our goal is now to show that for each component k = 1, . . . , p+ 1,

√
N
ξ̂k − ξ0,k√

Θ̂ξ,k,k

d−→ N (0, 1).

as described in the Goal section. To that end, by equation (A.19), we now need to

solve the following three problems: Writing Θ̂ξ,k for the k-th row of Θ̂ξ,

1.
√
N

Θ̂ξ,kPn∇ξlθ0√
Θ̂ξ,k,k

d−→ N (0, 1),

2. 1√
Θ̂ξ,k,k

Θ̂ξ,k
1
ND

T
ξ Ŵ

2X(ϑ̂− ϑ0) = oP
(
N−1/2

)
,

3. O

(
1√

Θ̂ξ,k,k
Θ̂ξ,k

1
N

∑
i 6=j

(
1

Zij

)
|DT

ij(θ̂ − θ0)|2
)

= oP
(
N−1/2

)
.

A.2.3 Bounding inverses

The problems (1) - (3) above suggest that it will be essential to bound the norm and

the distance of Θ̂ξ and Θξ in an appropriate manner. Recall that for any invertible
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matrices A,B ∈ Rm×m and any sub-multiplicative matrix norm ‖ . ‖, we have

‖A−1 −B−1‖ ≤ ‖A−1‖‖B−1‖‖B −A‖. (A.20)

where we are particularly interested in the matrix∞-norm. Also recall that since the

matrix ∞-norm is induced by a vector norm, it is sub-multiplicative and consistent

with the inducing vector norm. Also recall Lemma 2.23 to bound the matrix ∞-

norm in terms of the largest eigenvalue and that the inverse of a symmetric matrix

A is itself symmetric.

Hence, Θ̂ξ and Θξ are symmetric and we may apply Lemma 2.23. Using that

λmax(Σ−1
ξ ) = 1

λmin(Σξ)
, we get

‖Θξ‖∞ ≤
√
pλmax(Σ−1

ξ ) ≤ C 1

ρn
,

and with high probability

‖Θ̂ξ‖∞ ≤
√
pλmax(Σ̂−1

ξ ) ≤ C 1

ρn
,

with some absolute constant C. Finally, by (A.20),

‖Θ̂ξ −Θξ‖∞ ≤ ‖Θ̂ξ‖∞‖Θξ‖∞‖Σ̂ξ − Σξ‖∞ ≤
C

ρ2
n

‖Σ̂ξ − Σξ‖∞.

It remains to control ‖Σ̂ξ − Σξ‖∞. We have

Σ̂ξ − Σξ =
1

N

(
DT
ξ Ŵ

2Dξ − E[DT
ξ W

2
0Dξ]

)
=

1

N

(
DT
ξ (Ŵ 2 −W 2

0 )Dξ

)
︸ ︷︷ ︸

(I)

+
1

N

(
DT
ξ W

2
0Dξ − E[DT

ξ W
2
0Dξ]

)
︸ ︷︷ ︸

(II)

.

Recall that ŵ2
ij = pij(θ̂)(1 − pij(θ̂)) =

exp(DTij θ̂)

(1+exp(DTij θ̂))
2

= ∂a2 l(Aij , D
T
ij θ̂), with the

function l defined in (A.15). Also recall that ∂a2 l is Lipschitz with constant one, by

the Mean Value Theorem and the fact that it has derivative ∂a3 l bounded by one.
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Thus, considering the (k, l)-th element of (I) above, we get:∣∣∣∣∣ 1

N

(
DT
ξ (Ŵ 2−W 2

0 )Dξ

)
kl

∣∣∣∣∣
=

∣∣∣∣∣∣ 1

N

∑
i 6=j

Dij,n+kDij,n+l(ŵ
2
ij − w2

0,ij)

∣∣∣∣∣∣
≤ C 1

N

∑
i 6=j
|ŵ2
ij − w2

0,ij |, by uniform boundedness of Zij

≤ C 1

N

∑
i 6=j
|DT

ij(θ̂ − θ0)|, by Lipschitz continuity

≤ C

N

∑
i 6=j

{
|α̂i − α0,i|+ |β̂j − β0,j |+ |µ̂− µ0|+ |ZTij(γ̂ − γ0)|

}

≤ C

N

∑
i 6=j
|α̂i − α0,i|+ |β̂j − β0,j |

︸ ︷︷ ︸
=(n−1)‖ϑ̂−ϑ0‖1

+C|µ̂− µ0|+ C‖γ̂ − γ0‖1

≤ C
{

1

n
‖ϑ̂− ϑ0‖1 + |µ̂− µ0|+ ‖γ̂ − γ0‖1

}
= OP

(
s0,+

√
log(n)

N
ρ−1
n

)
,

where the last equality holds under the conditions of Theorem 4.4. Since the dimen-

sion of (I) is (p + 1) × (p + 1) and thus remains fixed, any row of (I) has `1-norm

of order OP
(
s0,+

√
log(n)
N ρ−1

n

)
and thus

‖(I)‖∞ = OP

(
s0,+

√
log(n)

N
ρ−1
n

)
.

Taking a look at the (k, l)-th element in (II):∣∣∣∣∣ 1

N

(
DT
ξ W

2
0Dξ − E[DT

ξ W
2
0Dξ]

)
kl

∣∣∣∣∣
=

∣∣∣∣∣∣ 1

N

∑
i 6=j

{
Dij,n+kDij,n+lw

2
0,ij − E[Dij,n+kDij,n+lw

2
0,ij ]
}∣∣∣∣∣∣ .

The random variables Dij,n+kDij,n+lw
2
0,ij are bounded uniformly in i, j, k, l. Thus,

by Hoeffding’s inequality, for any t ≥ 0,

P

∣∣∣∣∣∣ 1

N

∑
i 6=j

{
Dij,n+kDij,n+lw

2
0,ij − E[Dij,n+kDij,n+lw

2
0,ij ]
}∣∣∣∣∣∣ ≥ t

 ≤ 2 exp
(
−CNt2

)
.

This means,
∣∣∣ 1
N

(
DT
ξ W

2
0Dξ − E[DT

ξ W
2
0Dξ]

)
kl

∣∣∣ = OP
(
N−1/2

)
. Again, since the di-
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mension p+ 1 is fixed, we get by a simple union bound

‖(II)‖∞ = OP

(
N−1/2

)
.

In total, we thus get

‖Σ̂ξ − Σξ‖∞ = OP

(
s0,+

√
log(n)

N
ρ−1
n +

1√
N

)
= OP

(
s0,+

√
log(n)

N
ρ−1
n

)
.

We can now obtain a rate for ‖Θ̂ξ −Θξ‖∞.

‖Θ̂ξ −Θξ‖∞ ≤
C

ρ2
n

‖Σ̂ξ − Σξ‖∞ = OP

(
s0,+

√
log(n)

N
ρ−3
n

)
.

By Assumption B3, we have s0,+

√
log(n)√
nρ2
n
→ 0, n→∞, which implies that the above

is oP (1). In particular, we have now managed to get for k = 1, . . . , p+ 1,

• ‖Θ̂ξ,k −Θξ,k‖1 = oP (1),

• Θ̂ξ,k,k = Θξ,k,k + op(1).

A.2.4 Problem 1

We can now take a look at the problems (1) - (3) outlined above. For problem (1),

we want to show:
√
N

Θ̂ξ,kPn∇ξlθ0√
Θ̂ξ,k,k

→ N (0, 1).

Step 1: Show that

Θ̂ξ,kPn∇ξlθ0 = Θξ,kPn∇ξlθ0 + oP

(
N−1/2

)
. (A.21)

We have

|(Θ̂ξ,k −Θξ,k)Pn∇ξlθ0 | ≤ ‖Θ̂ξ,k −Θξ,k‖1

∥∥∥∥∥∥ 1

N

∑
i 6=j

(
1

Zij

)
(pij(θ0)−Aij)

∥∥∥∥∥∥
∞

≤ ‖Θ̂ξ −Θξ‖∞

∥∥∥∥∥∥ 1

N

∑
i 6=j

Dξ,ij(pij(θ0)−Aij)

∥∥∥∥∥∥
∞

.

Consider the vector
∑

i 6=j Dξ,ij(pij(θ0) − Aij) ∈ Rp+1. The k-th component of it

has the form
∑

i 6=j(pij(θ0) − Aij) for k = 1 and
∑

i 6=j Zij,k−1(pij(θ0) − Aij), k =

2, . . . , p+ 1. Notice that for these components are all centred:

E[Dξ,ij,k(pij(θ0)−Aij)] = E[Dξ,ij,kE[(pij(θ0)−Aij)|Zij ]] = E[Dξ,ij,k · 0] = 0,
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as well as |Dξ,ij,k(pij(θ0)− Aij)| ≤ c, where c > 1 is a universal constant bounding

|Zij,k| for all i, j, k. Thus, by Hoeffding’s inequality, for any t > 0,

P

∣∣∣∣∣∣ 1

N

∑
i 6=j

Dξ,ij,k(pij(θ0)−Aij)

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−2

Nt2

c2

)

and thus,
1

N

∑
i 6=j

Dξ,ij(pij(θ0)−Aij) = OP

(
N−1/2

)
.

Since we have ‖Θ̂Z −ΘZ‖∞ = oP (1), by Section A.2.3, Step 1 is now concluded.

Step 2: Show that

Θ̂ξ,k,k = Θξ,k,k + oP (1).

Since ‖Θ̂ξ −Θξ‖∞ = oP (1), by Section A.2.3, for all k

|Θ̂ξ,k,k −Θξ,k,k| ≤ ‖Θ̂ξ −Θξ‖∞ = oP (1)

and Step 2 is concluded.

Step 3: Show that ∣∣∣∣ 1

Θξ,k,k

∣∣∣∣ ≤ C <∞,

for some universal constant C > 0. Then, we may conclude from Step 1 and Step 2

that
√
N

Θ̂ξ,kPn∇ξlθ0√
Θ̂ξ,k,k

=
√
N

Θξ,kPn∇ξlθ0√
Θξ,k,k

+ oP (1).

To prove Step 3, notice that Θξ is symmetric and hence has only real eigenvalues.

Therefore it is unitarily diagonalizable and for any x ∈ Rp+1, we have xTΘξx ≥

λmin(Θξ)‖x‖22. We also know that

λmin(Θξ) =
1

λmax(Σξ)
.

Under Assumption 4.1 we can now deduce an upper bound on the maximum eigen-

value of Σξ: For any x ∈ Rp,

xTΣξx = xT
1

N
E[DT

ξ W
2
0Dξ]x ≤ xT

1

N
E[DT

ξ Dξ]x ≤ (1 ∨ λmax)‖x‖22,

where we have used that any entry in W 2
0 is bounded above by one. Since xTΣξx ≤

λmax(Σξ)‖x‖22 and since this bound is tight (we have equality if x is an eigenvector

corresponding to λmax), we can conclude by Assumption 4.1 that λmax(Σξ) ≤ (1 ∨

λmax) ≤ C <∞ for some universal constant C > 0.
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In particular, since Θξ,k,k = eTk Θξek, we get

Θξ,k,k ≥ λmin(Θξ)‖ek‖22 =
1

λmax(Σξ)
≥ C > 0,

uniformly for all n. Consequently,

0 <
1

Θξ,k,k
≤ C <∞.

Step 3 is thus concluded.

Step 4: Finally, show that

√
N

Θξ,kPn∇ξlθ0√
Θξ,k,k

d−→ N (0, 1).

Such that by all the above

√
N

Θ̂ξ,kPn∇ξlθ0√
Θ̂ξ,k,k

d−→ N (0, 1).

For brevity, we write pij for the true link probabilities pij(θ0). Also keep in mind

that Θξ,k denotes the k-th row of Θξ, while Dξ,ij denote ((p+1)×1)-column vectors.

We want to apply the Lindeberg-Feller Central Limit Theorem (CLT). The random

variables we study are the summands in

√
NΘξ,kPn∇ξlθ0 =

∑
i 6=j

{
1√
N

Θξ,kDξ,ij(pij −Aij)
}
.

These random variables are centred:

E
[

1√
N

Θξ,kDξ,ij(pij −Aij)
]

= E
[

1√
N

Θξ,kDξ,ijE[pij −Aij |Zij ]
]

= 0.

For the Lindeberg-Feller CLT we need to sum up the variances of these random

variables. We claim that

∑
i 6=j

Var
(

1√
N

Θξ,kDξ,ij(pij −Aij)
)

= Θξ,k,k.

Indeed, consider the vector-valued random variable
∑

i 6=j

{
1√
N
Dξ,ij(pij −Aij)

}
∈
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Rp+1. It has covariance matrix

E

∑
i 6=j

{
1√
N
Dξ,ij(pij −Aij)

}∑
i 6=j

{
1√
N
Dξ,ij(pij −Aij)

}T
= E

∑
i 6=j

1√
N
Dξ,ij(pij −Aij)

1√
N
DT
ξ,ij(pij −Aij)

 , by independence across i, j

=
1

N

∑
i 6=j

[
E[Dξ,ij,kDξ,ij,l(pij −Aij)2]

]
k,l=1,...,p+1

, as a ((p+ 1)× (p+ 1))-matrix

=
1

N
E[DT

ξ W
2
0Dξ]

= Σξ.

Thus, by independence across i, j,

∑
i 6=j

Var
(

1√
N

Θξ,kDξ,ij(pij −Aij)
)

= Var

Θξ,k

∑
i 6=j

1√
N
Dξ,ij(pij −Aij)


= Θξ,kΣξΘ

T
ξ,k = Θξ,k,k,

where for the last equality we have used that Θξ = Σ−1
ξ and thus, ΣξΘ

T
ξ,k = ek.

Now, we need to show that the Lindeberg condition holds. That is, we want for any

ε > 0,

lim
n→∞

1

Θξ,k,k

∑
i 6=j

E

[{
1√
N

Θξ,kDξ,ij(pij −Aij)
}2

1

(
|Θξ,kDξ,ij(pij −Aij)| > ε

√
NΘξ,k,k

)]
= 0.

(A.22)

We have

|Θξ,kDξ,ij(pij −Aij)| ≤ p · c · ‖Θξ,k‖1 ≤ C‖Θξ‖∞ ≤ Cρ−1
n .

At the same time, we know from Step 3 that ΘZ,k,k ≥ C > 0 for some universal C.

Then, as long as ρ−1
n →∞ at a rate slower than n, which is enforced by Assumption

B3, we must have for n large enough

|Θξ,kDξ,ij(pij −Aij)| < ε
√
NΘξ,k,k

uniformly in i, j. Thus, the indicator function and therefore each summand in (A.22)

is equal to zero for n large enough. Hence, (A.22) holds. Then, by the Lindeberg-

Feller CLT,
√
N

Θξ,kPn∇ξlθ0√
Θξ,k,k

d−→ N (0, 1).
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Now, by the Steps 1-4,

√
N

Θ̂ξ,kPn∇ξlθ0√
Θ̂ξ,k,k

d−→ N (0, 1).

This concludes solving problem 1.

A.2.5 Problem 2

For Problem 2 we must show

1√
Θ̂ξ,k,k

Θ̂ξ,k
1

N
DT
ξ Ŵ

2X(ϑ̂− ϑ0) = oP

(
N−1/2

)
.

Since we have ‖Θ̂ξ−Θξ‖∞ = oP (1), we do not need to worry about Θ̂
−1/2
ξ,k,k , because

Θ̂ξ,k,k = Θξ,k,k + oP (1) and Θ
−1/2
ξ,k,k ≤ C < ∞, i.e. Θ̂

−1/2
ξ,k,k = OP (1) . By Theorem

4.4 we also have a high-probability error bound on ‖ϑ̂− ϑ0‖1. The problem will be

bounding the corresponding matrix norms.∣∣∣∣Θ̂ξ,k
1

N
DT
ξ Ŵ

2X(ϑ̂− ϑ0)

∣∣∣∣ ≤ ∥∥∥∥ 1

N
XT Ŵ 2DξΘ̂

T
ξ,k

∥∥∥∥
∞
‖ϑ̂− ϑ0‖1.

Notice that in the display above we have the vector `∞-norm. Also,∥∥∥∥ 1

N
XT Ŵ 2DξΘ̂

T
ξ,k

∥∥∥∥
∞
≤
∥∥∥∥ 1

N
XT Ŵ 2Dξ

∥∥∥∥
∞
‖Θ̂T

ξ,k‖∞.

Here we used the compatibility of the matrix `∞-norm with the vector `∞-norm.

The first term is the matrix norm, the second the vector norm. We know,

‖Θ̂T
ξ,k‖∞ ≤ ‖Θ̂ξ‖∞ ≤ Cρ−1

n ,

where on the left hand side we have the vector norm and in the middle display

the matrix norm. Finally, 1/N ·XT Ŵ 2Dξ is a (2n × (p + 1))-matrix. The (k, l)-th

element looks like 1/N ·Sk,l, where Sk,l is the sum of n−1 terms of the formDξ,il,kŵ
2
il,

summed over the appropriate indices i, j, all of which are uniformly bounded. Thus,∣∣∣∣∣
(

1

N
XT Ŵ 2Dξ

)
k,l

∣∣∣∣∣ ≤ 1

N
· (n− 1) · C =

C

n
.

Thus, the `1-norm of any row of 1
NX

T Ŵ 2Dξ is bounded by pC/n and thus∥∥∥∥ 1

N
XT Ŵ 2Dξ

∥∥∥∥
∞
≤ C

n
.
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Recall that ‖ϑ̂− ϑ0‖1 = OP

(
s0,+

√
log(n)√
n

ρ−1
n

)
by Theorem 4.4. Then,

∣∣∣∣Θ̂ξ,k
1

N
XT Ŵ 2Dξ(ϑ̂− ϑ0)

∣∣∣∣ ≤ ‖Θ̂T
ξ,k‖∞

∥∥∥∥ 1

N
DT
ξ Ŵ

2X

∥∥∥∥
∞
‖ϑ̂− ϑ0‖1

= OP

(
s0,+

ρ2
n · n

·
√

log(n)√
n

)
.

Multiplying by
√
N = O(n), gives

√
N

∣∣∣∣Θ̂ϑ,k
1

N
DT
ϑ Ŵ

2X(ϑ̂− ϑ0)

∣∣∣∣ = OP

(
s0,+

ρ2
n

·
√

log(n)√
n

)
,

which is oP (1) under Assumption B3.

A.2.6 Problem 3

Finally, we must show

O

 1√
Θ̂ξ,k,k

Θ̂ξ,k
1

N

∑
i 6=j

(
1

Zij

)
|DT

ij(θ̂ − θ0)|2
 = oP

(
N−1/2

)
.

Again, since Θ̂ξ,k,k = Θξ,k,k + oP (1) and Θξ,k,k ≥ C > 0 uniformly in n, we do not

need to worry about the factor 1√
Θ̂ξ,k,k

and it remains to show

O

Θ̂ξ,k
1

N

∑
i 6=j

Dξ,ij |D>ij(θ̂ − θ0)|2
 = oP

(
N−1/2

)
.

We have for each i 6= j, |Θ̂ξ,kDξ,ij | ≤ C‖Θ̂ξ,k‖1. Thus,∣∣∣∣∣∣Θ̂ξ,k
1

N

∑
i 6=j

Dξ,ij |D>ij(θ̂ − θ0)|2
∣∣∣∣∣∣ ≤ 1

N

∑
i 6=j
|Θ̂ξ,kDξ,ij ||DT

ij(θ̂ − θ0)|2

≤ C‖Θ̂ξ,k‖1
1

N

∑
i 6=j
|DT

ij(θ̂ − θ0)|2

≤ C 1

ρn

1

N

∑
i 6=j
|DT

ij(θ̂ − θ0)|2,

where for the last inequality we have used that ‖Θ̂ξ,k‖1 ≤ ‖Θ̂ξ‖∞ ≤ C 1
ρn
. Now

remember from (A.11) that

1

N

∑
i 6=j
|DT

ij(θ̂ − θ0)|2 ≤ C‖ ˆ̄θ − θ̄0‖21,
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where we make use of the fact that D̄θ̄ = Dθ. From Theorem 4.4 we know that

under the assumptions of Theorem 4.5, ‖ ˆ̄θ − θ̄0‖1 = OP

(
s0,+

√
log(n)
N ρ−1

n

)
. Thus,

√
N

∣∣∣∣∣∣Θ̂ξ,k
1

N

∑
i 6=j

Dξ,ij |DT
ij(θ̂ − θ0)|2

∣∣∣∣∣∣ = OP

(
(s0,+)2 log(n)√

N
ρ−3
n

)
.

We see that this is oP (1) by applying Assumption B3 twice. Problem 3 is solved.

Proof of Theorem 4.5. Theorem 4.5 now follows from the solved problems (1) - (3).
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