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Abstract 

The development of neuroimaging technologies and open-access large-scale 

datasets provides the opportunity to explore biological big data, by developing 

computational models for the brain network, aiming to find biomarkers for mental 

disorders and investigate brain mechanisms. Due to the high dimensionality and 

massive sample size of neuroimaging data, exploring new computational methods and 

modelling approaches for neuroimaging data with various behavioural patterns is of 

great importance. This will lead to more stable and reliable models to understand the 

pattern of human behaviours and the underlying brain mechanism.  

The research interest of this thesis is to explore new data analysis methods and 

novel modelling approaches of the brain network related to mental disorders including 

addiction, anxiety and depression, and brain functions related to emotion, personality, 

and cognitive performance with large scale neuroimaging data. 

First, a novel prediction model was developed based on the elastic net regression 

of the sensation-seeking personality from brain functional connectivity in a large-scale 

study (Wan et al., 2020). This provides a novel way to investigate the relationship 

between behavioural measures and brain functional connectivity, replacing the usual 

correlation analysis with a prediction model. Furthermore, the prediction model 

examines groups of functional connectivity links, instead of an individual link, which 

is usual in correlation analysis; this indicates the relationship between behaviour 

measures and a group of links as community. Biologically, the sensation-seeking score 

was found to be optimally predicted from the functional connectivity mostly between 

the medial orbitofrontal cortex and the anterior cingulate cortex brain areas. This 

discovery helps to show how this group of links in part of the medial orbitofrontal 

cortex reward system plays a role in sensation-seeking. 

Second, the relationship between risk-taking and worrier/anxious feeling was 

investigated in an advanced approach with over 30,000 participants from a massive 

open-access dataset, the UK Biobank (Rolls et al., 2022). Instead of performing the 

traditional correlation between behaviour scores, the association pattern of behaviour 

measures with functional connectivity was analysed. In this project, the significantly 

associated functional connectivity links between risk-taking and anxiety involved 

similar regions of the brain, including the medial orbitofrontal cortex, VMPFC, and the 

parahippocampal gyrus, but in the opposite direction (p<0.001, FDR corrected). This 

investigation revealed, to my knowledge for the first time, that risk-taking individuals 

were not normally worriers, and the medial orbitofrontal cortex, which is a key area of 

the reward system, was associated positively with risk-taking, and negatively with 

anxiety. 

In addition, childhood traumatic events in relation to cognitive performance, 

various psychological disorders, including anxiety, depression and addiction in 

adulthood was investigated with the UK Biobank dataset. This investigation focused on 



the long-lasting relationship of childhood trauma with other behaviours over 30 years 

later, while most childhood trauma studies are limited to childhood or early adolescence. 

Moreover, with the massive datasets of various behaviour measures available, the 

relationships were investigated with nine mental health measures and three cognitive 

measures in adults, and the associated patterns of functional connectivity. These 

findings highlight the long-lasting relationship between childhood traumatic events and 

a wide range of mental health problems and cognition in later life. They also provide 

insights into the neural mechanisms of the long-lasting relationship, including brain 

areas involved in executive function, emotion, face processing, and memory. 

By exploring novel computational methods and modelling approaches to large-

scale neuroimaging data, efficient models were developed in different cases. Moreover, 

significant progress has been made in understanding the brain mechanism of human 

behaviours and mental disorders, including impulsivity (sensation-seeking in Chapter 

4, risk-taking in Chapter 6), verbal intelligence (Chapter 5), and childhood trauma with 

mental health problems and cognitive performances (Chapter 7). 
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Chapter 1 

Introduction 

1.1 Background 

The rapid development of non-invasive neuroimaging technologies, including 

functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI) and 

positron emission tomography (PET), have boosted a large amount of studies exploring 

and applying modern computational and biostatistical methods on neuroimaging in 

animal and human brains in recent years (Smitha et al., 2017; Kim, 2018; Yaple and 

Arsalidou, 2018; Eickhoff et al., 2020). With available high dimensional extensive 

sample size neuroimaging data, these studies have contributed to understanding human 

mental health, cognitive performances, and the underlying brain mechanism 

(Linhartova et al., 2019; Perosa et al., 2020; Zovetti et al., 2020). However, due to the 

high dimension of neuro features, large sample sizes and potential underlying 

multicollinear relationships between pairs of neuro features, exploring novel modelling 

approaches, especially suitable for neuroimaging data with large scale datasets, is of 

great importance. The research interest is to develop novel modelling approaches for 

the large-scale and high dimensional neuroimaging data (resting-state fMRI data in this 

thesis) and explore the brain mechanism of various behavioural measures including 

impulsivity and cognitive performances, and mental disorders including addiction, 

anxiety, and depression.  

Impulsivity describes a tendency for taking quick but usually hasty acts without 

adequate foresight which can be associated with risky dangerous behaviours and 

addictions (Evenden, 1999). Recent studies suggested a more detailed breakdown of 

component behavioural processes and their underlying brain mechanism (Kruschwitz 

et al., 2012; Cai et al., 2014; Rae et al., 2015). Many researchers have discovered the 

neurological and psychological factors underlying impulsivity, although the results may 

vary in different studies. More explorations of the fractionation of impulsivity and their 

neuron system are needed with large scale data and novel approaches to get reliable 

findings. Sensation seeking is a multifaceted personality trait with components that 

include experience-seeking, thrill and adventure seeking, disinhibition, and 

susceptibility to boredom, which is highly associated with impulsivity (Zuckerman, 

1994). In Chapter 4, a novel prediction model on the sensation-seeking from the brain 
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functional neuroimaging data was developed to explore the mechanism of sensation-

seeking, which is highly associated with impulsivity with 414 participants included. 

Besides, the concept was advanced that one type of impulsivity, which is related to 

sensation-seeking, is related to increased functional connectivity of a reward-related 

cortical region, the medial orbitofrontal cortex.  

In addition, the risk taking is also highly associated with impulsivity and sensation-

seeking. In Chapter 6, research on risk-taking and the underlying brain mechanism with 

a large-scale dataset including around 20,000 participants was developed to further 

explore the impulsive behaviour and the neuron systems. Risk-taking is used to describe 

the tendency of taking certain risks when people were making decisions or aiming for 

higher targets (Green and Myerson, 2013), which was reported to be associated with 

risky drug use, alcohol use, and gambling problems. In this project, the risk-taking was 

found related to the medial orbitofrontal cortex, which is involved in the functions of 

reward system, and associated with impulsivity and alcohol/drug use. This supports the 

hypothesis that one type of reward-driven impulsivity is related to the medial 

orbitofrontal cortex of the brain, as proposed in the previous sensation-seeking project 

(Chapter 4). 

Brain functional connectivity is defined as the correlation of the BOLD signal 

averaged across time between pairs of brain regions or voxels (Biswal et al., 1995), 

which is widely used in MRI studies and in Chapter 4, 6, and 7. The functional 

connectivity describes un-directional relationship between pairs of brain regions, which 

gives no clue of how one brain region influents the other. Although the functional 

connectivity has been widely used and inspirited large amount of literature, the 

directional connectivity which gives the direction and causality of how one brain 

regions have the effects on the other will help to understand the asymmetries of how 

these brain regions work hierarchically underlying certain processes, such as sensory 

information processing in the brain. In Chapter 5, two directional connectivity methods 

including the effectivity connectivity (Gilson et al., 2018) and the Granger causality 

(Granger, 1969) was investigated. The efficiency of these two methods was examined 

by applying machine learning prediction models involving the whole brain connectome.  

In Chapter 7, the long-lasting relationship between childhood traumatic events and 

mental health problems, and the underlying neuron system were investigated with 

around 20,000 participants. Childhood traumatic events are an established risk factor 

for psychopathology including depression (Copeland et al., 2018). Children who had 
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sexual, physical, or emotional abuse, or physical and emotional neglect experiences 

may feel overwhelmed, and this can be associated with lasting mental and physical 

differences. Despite a large amount of literature on childhood traumatic events with 

mental health problems, the association of an individual’s childhood traumatic events 

and psychopathology, and how brain function related to that, is still an important topic 

and needs more findings with large sample sizes (Susser and Widom, 2012; Teicher 

and Samson, 2016; Baldwin et al., 2019). In Chapter 7, with a large scale of participants, 

the relationship between the childhood traumatic events and a wide range of mental 

health problems was investigated including addiction, anxiety, cannabis use, depression, 

mania, mental distress, unusual and psychotic experiences, self-harm, and wellbeing. 

A brief introduction for the mental health problems involved in this chapter. Addiction 

is a condition characterized by compulsive engagement in a behaviour or unable to stop 

using a substance despite adverse consequences, for example, addiction to tobacco, 

alcohol, or other drugs (Koob and Volkow, 2010). Anxiety describes a feeling of fear, 

uneasiness, and dread, which will cause sweat, feel restless and tense, and might have 

a rapid heartbeat (Julian, 2011). For the anxiety disorder, the anxiety does not go away 

and can get worse over time, which can interfere with daily activities such as 

schoolwork, job performance, and relationships. Anxiety was usually found to have 

high association with depression, which will cause a persistent feeling of sadness and 

loss of interest for nearly every day, for at least two weeks (Hammen, 2005). At its 

worst, depression can lead to suicide. Mania is a psychological condition which will 

cause unreasonable euphoria, hyperactivity, delusions, and very intense moods (Fink, 

1999). People with mania may not sleep or eat, engage in risky behaviours, and harm 

themselves. Mental distress is used to describe a wide variety of symptoms and 

experiences of a person's internal life that are commonly to be confusing, troubling, or 

out of the ordinary (Bhui and Bhugra, 2002). The measurements of these mental health 

problems may vary depending on how the dataset collects these symptoms. Detailed 

information of the symptom scores will be described in the method section of each 

chapter while the measures are used in the analyses.  

The underlying brain function involving different personality measures, mental 

health problems, and cognitive measures was investigated with the functional MRI data. 

The parcellation of brain regions used in this thesis including two types: the AAL2 atlas 

in Chapter 4, 5, and 6 and the Shen atlas in Chapter 7. The Automated-Anatomical-

Labelling Atlas 2 (AAL2) parcellate the brain into 94 regions (excluding the cerebellum), 
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which include clear subdivisions of the orbitofrontal cortex, which is the area of interest 

related to emotion (Rolls et al., 2015). The names of the brain areas are shown in 

Appendix-1. The Shen atlas parcellate the brain into 228 regions (excluding the 

cerebellum), was developed based on functional connectivity, which can help the 

explanations with functional connectivity results. This has been validated in different 

resting-state fMRI investigations (Finn et al., 2015; Rosenberg et al., 2016). The 

mapping of Shen atlas areas to AAL2 atlas areas is presented in Appendix-3 and 

adopted the AAL2 area names when referring to brain regions and the related functional 

connectivities because the Shen atlas areas do not have region names 

In recent years, more and more online available massive datasets with a range of 

behavioural measures, brain imaging data, and genetic data are open-accessed to 

researchers, such as the enhanced Nathan Kline Institute-Rockland sample (NKI-RS) 

(Nooner et al., 2012), the Human Connectome Project (HCP) (Van Essen et al., 2012; 

Van Essen et al., 2013), and the UK Biobank dataset 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367). The availability of these big 

datasets motivated more research on exploring human mental health problems, 

including anxiety, depression, and addictions, whose diagnoses and underlying brain 

mechanisms are still unclear, which urging for efficient computational models and 

useful statistical measures to produce reliable and stable result. For example, with 

different datasets, by performing the same analysis approaches on the same behavioural 

measures and brain measures, different conclusions may be leaded to. This may be due 

to the sample size is too small to deduce reliable result, which requires useful statistical 

measures to define significant results more efficiently. Besides, this un-consistent result 

may be leaded due to the analysis method is too sensitivity to data variation, i.e., easily 

affected by the data noise. This requires for exploring novel modelling approaches 

which can deal with the noisy neuroimaging data to conduce consistent results. 

1.2 Research question and objective 

The research interest of this thesis is to explore new data analysis methods and 

novel modelling approaches of the neuroimaging data, mainly resting-state fMRI data, 

related to behavioural measures of mental disorders including addiction, anxiety and 

depression, emotion, personality, and cognitive performance. By exploring novel 

modelling approaches on various behavioural measures with neuroimaging big data, 
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the aim is to produce efficient models fitting the high dimension, large sample size and 

noisy neuroimaging data. The biological emphasis is to find biomarkers for mental 

disorders, and the underlying brain mechanism related to emotion, personality, and 

cognitive performance.  

1.3 Scope of the research 

Following my research interest, I developed my researches on exploring new 

modelling methods on neuroimaging data related to personality, cognitive 

performances, and mental health measures with different large datasets. Besides, 

biostatistical methods and validations with independent datasets were performed to 

examine the significance of the findings. Instead of exploring the dataset with specific 

mental health patients, the emphasis was on large-scale databases which record various 

behaviour measures, cognitive performances, mental health measures, physical 

assessments, medical history, and the well-being of a large number of volunteers, such 

as the NKI dataset, HCP and UK Biobank dataset. These huge datasets provide more 

opportunities to explore novel methods for neuroimaging data related to different 

behaviour measures. Biologically, investigating the relationship of personality, 

cognitive performances, and other behavioural measures with mental health problems 

benefits the early diagnosis of mental health problems and help to reduce the risk of 

psychiatric disorders. There are four projects covered in my PhD research, and details 

are described as follows.  

The first project developed a novel prediction model based on the elastic net 

regression of the sensation-seeking personality from brain functional connectivity were 

developed in a large-scale study with 414 participants (Chapter 4). A paper on this 

project has been published on NeuroImage (Wan et al., 2020). In this project, elastic 

net regression was selected over a support vector machine, as it can deal with the 

multicollinear brain functional connectivity features to model the whole-brain 

functional connectivity network. This provides a novel way to investigate the 

relationship between behavioural measures and brain functional connectivity with a 

prediction model instead of ordinary correlation analysis. Besides, the prediction model 

examines groups of functional connectivity links instead of the individual link in 

correlation analysis, which indicates the relationship between a group of links as a 

community and behaviour measures. The sensation-seeking score was found optimally 
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predicted from the functional connectivity mostly between the medial orbitofrontal 

cortex and the anterior cingulate cortex brain areas with correlation r=0.34 (p=7.3x10-

13) between the predicted and actual sensation-seeking score across all participants. 

Besides, significant associations between drug use, alcohol use, risk-taking and 

sensation-seeking were identified. Based on these findings, we propose that sensation-

seeking reflects a strong effect of reward, which is implicated by the medial OFC areas, 

on promoting actions to obtain rewards, which is involved by the ACC areas. 

The second project investigated the relationship between risk-taking and 

worrier/anxious feeling in an advanced approach with over 30,000 participants from 

the UK Biobank dataset (Chapter 6). Instead of performing the traditional correlation 

between behaviour scores, the association pattern of behaviour measures with 

functional connectivity was analysed, which enables the analyses of behaviour 

differences together with brain functional connectivity differences. In this project, the 

association pattern of the risk-taking with functional connectivity and association 

pattern of the worrier/anxious feelings with functional connectivity in the whole brain 

was found of significant correlation (r=-0.66, p<1x10-20) (Rolls et al., 2022). 

Interestingly, the significantly associated functional connectivity links with risk-taking 

and with anxious feeling were involving similar brain regions including the medial 

orbitofrontal cortex, VMPFC, and the parahippocampal, but in the opposite direction 

(p<0.001, FDR corrected). In addition, the significant correlation between risk-taking, 

which is a kind of reward-driven impulsive behaviour, and the medial orbitofrontal 

cortex is consistent with the finding of sensation-seeking with the NKI dataset 

described in Chapter 4. This investigation reveals, to my knowledge, the first time that 

the risk-taking participants normally is not worrier, and the medial orbitofrontal cortex, 

which is a key area of the reward system, was associated with risk-taking positively, 

and with worrier negatively. 

A comparison of traditional Granger causality (GC) and the newly developed 

brain's effective connectivity method (EC) on measuring the whole-brain connectivity 

network was conducted in the third project by performing different machine learning 

prediction models (Chapter 5). The functional connectivity of the brain, which was 

widely used in many studies, can only give an undirected correlation between pairs of 

brain regions. This project explored directional connectivity measures on the brain and 

compared two connectivity measures by performing prediction models of behaviours 

from these connectivities. The Granger causality modelling and effective connectivity 
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modelling were used to measure the directional connectivity of the whole brain. The 

effects of these two directional connectivity methods on measuring the brain were 

examined by performing predictions on behaviour data (verbal intelligence used in this 

study) with five different machine learning regression algorithms. Besides, the 

prediction efficiency of these machine learning methods with varying sizes of the 

sample was investigated. Generally, the GC feature provided slightly better prediction 

accuracy than the EC feature, indicating that the GC feature model the directional 

connectivity of the brain better than the EC based on this study. Additionally, by 

comparing the efficiency of these five commonly used prediction models, the elastic 

net regression provided better prediction accuracy than the other four algorithms in both 

EC and GC based models. 

In the fourth project, the long-lasting relationships between childhood traumatic 

events (such as child abuse and neglect) and mental health problems, and cognitive 

performance in adulthood were investigated with 19,535 participants from the UK 

Biobank dataset. This investigation focused on the long-lasting relationship of 

childhood trauma with other behaviour performances after over 30 years later, while 

most of the childhood trauma studies stuck on only the childhood or early adolescents. 

Besides, with the massive datasets with various behaviour measures available, the long-

lasting relationships between nine mental health measures, three cognitive measures in 

adults, and childhood trauma, and the association patterns with functional connectivity, 

were investigated. In a mediation analysis, the functional connectivity links, which 

were significantly associated with childhood trauma (p<0.01, FDR corrected), 

significantly mediated the association between childhood traumatic events and 

addiction, anxiety, depression, and well-being (p<1.0×10-3), and cognitive performance. 

These findings highlight the long-lasting relationship between childhood traumatic 

events and a wide range of mental health problems and cognition in later life and 

provide insights into the neural mechanisms of the long-lasting relationship, including 

brain areas involved in executive function, emotion, face processing, and memory. 

1.4 Significance and contributions 

By exploring novel computational methods and modelling approaches on large 

scale neuroimaging data for analyses of the brain function and various behaviour 

measures, efficient models for neuroimaging data were developed in different cases to 
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investigate the underlying mechanism of personality and mental disorders on massive 

datasets. This provides insights into the underlying mechanism of many behaviours, 

including impulsive, verbal intelligence, and how childhood trauma may affect mental 

health and cognitive performance.  

In the sensation-seeking study, the first prediction model from the functional 

connectivity links on the sensation-seeking personality with four hundred and fourteen 

participants was developed. The finding on this project has been written up and 

published in NeuroImage (Wan et al., 2020). The prediction accuracy was high with 

r=0.34, p<1×10-10. Furthermore, associations between sensation-seeking and functional 

connectivities of the medial OFC were found, which suggested a reward-driven kind of 

impulsivity.  

Following the research interest on impulsivity, investigation on risk-taking, which 

is highly associated with impulsivity and sensation-seeking, was developed with the 

UK Biobank dataset with over 30,000 participants included. Functional connectivities 

of the medial orbitofrontal cortex, VMPFC, and the parahippocampal areas were 

significantly higher in the risk-taking group (p<0.001, FDR corrected). In addition, 

risk-taking was significantly associated with alcohol drinking amount, cannabis use, 

and anxious feelings. The result is consistent with the finding in the sensation-seeking 

project. The implication is that a brain system involved in reward value (medial 

orbitofrontal cortex) may be one way in which risk-taking/sensation-seeking, as highly 

associated with impulsivity, is driven by reward systems that are different in the brains 

of different individuals (published in NeuroImage (Rolls et al., 2022)). 

In the childhood trauma study, the long-lasting relationship of childhood trauma 

with other behaviour performances after over 30 years later was investigated, while 

most of the childhood trauma studies stuck on only the childhood or early adolescents. 

Childhood traumatic events were found strongly associated with adult mental health 

problems and cognitive performances. Furthermore, these behaviour associations were 

mediated by brain functional connectivities that were significantly correlated with 

childhood traumatic events. These findings highlight the long-lasting relationship 

between childhood traumatic events and mental health problems in later life and 

provide insights into the neural mechanisms of the long-lasting relationship. A paper 

on this project is in revision at eBioMedicine , as it provided significant results and is 

the first study, to our knowledge, investigating the relationship of brain functional 

connectivity with childhood traumatic events on a large dataset. 
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In conclusion, by exploring novel computational methods and modelling 

approaches on large scale neuroimaging data, significant progress has been made in 

understanding the brain mechanism of human behaviour and mental disorders in 

different projects, including impulsivity (sensation-seeking in Chapter 4, risk-taking in 

Chapter 6), and childhood trauma with mental health problems and cognitive 

performances (in Chapter 7). The study of the sensation-seeking project as described in 

Chapter 4 has been published in NeuroImage (Wan et al., 2020). A paper based on the 

findings of risk-taking investigation (Chapter 6) has also been published (Rolls et al., 

2022). A paper on the childhood traumatic events in Chapter 7 is in revision at 

eBioMedicine.  
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Chapter 2 

Literature Review 

The literature review section mainly includes three parts: application of machine 

learning methods to neuroimaging data, literature on impulsivity including sensation-

seeking and risk-taking, and literature on childhood traumatic events. The first part is a 

general literature review of the implements of computational methods, and machine 

learning approaches on neuroimaging data and the performances of these approaches 

on improving the process and analysis of neuroimaging data. General computational 

methods on neuroimaging data are used in the whole thesis, including all chapters stated 

in this thesis. The machine learning methods, particularly prediction models, are of 

particular interest in Chapters 4 and 5. The second part is literature on impulsivity with 

brain imaging data, especially interested in sensation-seeking and risk-taking, which is 

more specifically related to the project described in Chapters 4 and 6. Finally, the third 

part reviews current literature on childhood traumatic events with the brain and other 

behaviours, which is of interest in Chapter 7.  

2.1 Application of computational methods on neuroimaging  

Computational algorithms have been applied in the analysis of brain functions to 

process and analyse neuroimage data, which includes imaging techniques (Strother, 

2006; Caballero-Gaudes and Reynolds, 2017), dimensionality reduction (Kandel et al., 

2015; Kafashan et al., 2018), brain network modelling (Park and Friston, 2013; Smitha 

et al., 2017) and analysing the neuroimaging data with other modal data (e.g. clinical 

data, genetic data and behavioural data) (Cheng et al., 2019b; Luo et al., 2019). Besides, 

many available toolboxes have been developed for neuroimaging data analysis (Penny 

et al., 2011; Schrouff et al., 2013). Among all these studies applying various 

computational algorithms, machine learning methods to neuroimaging data contributed 

to enormous progress because of the ability to deal with high dimensional data (Orru et 

al., 2012; Arbabshirani et al., 2017). Primary applications of machine learning method 

to neuroimaging data include classification of the patients with mental disorders (Wang 

et al., 2017; de Vos et al., 2018) and clustering of potential subtyping disease and 

behavioural patterns (Yokota et al., 2015; Drysdale et al., 2017), and regression 

approaches to predict behavioural measures including personality and cognitive 
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performances (continuous variables) of individuals (Cui and Gong, 2018; Feng et al., 

2018).  

Wang et al. (2017) developed a different method to construct the functional brain 

network by applying a sparse low-rank model, which removes weak relationships and 

retains the functional brain network's modular structure. In this reported classification 

model of identifying depression patients and healthy people, a leave-one-out cross-

validated linear support vector machine classifier was applied, and the accuracy was 

very high, which achieved 95%. Compared with the linear support vector machine 

classifier, Wang et al. (2017) also constructed classification models with a support 

vector machine with radial basis function (RBF) kernel, naïve Bayes model, and linear 

discriminant analysis in their study. The linear support vector machine had the best 

performance in classifying depression patients and healthy people in their research. 

This study provided a different way to construct a functional brain network and 

compared the prediction performances of several commonly used classification 

approaches, which offers valuable experiences for other researchers to apply 

classification models to neuroimaging studies, especially research on mental health 

diseases. However, only 60 participants were included in this study. Considering the 

high dimension of functional connectivity in the brain, such small number of samples 

included was not reliable. Comparison of the performances of different machine 

learning algorithms on neuroimaging data is valuable, which suggests further research 

can be developed with large sample size. 

A study on the classification of patients who have Alzheimer’s disease was 

developed by de Vos et al. (2018), with 250 participants included. In this study, 

different resting-state fMRI measures, including FC matrices (Koch et al., 2012), FC 

dynamics (Wee et al., 2016) and the amplitude of low-frequency fluctuations (Dai et 

al., 2012) were used as predictors separately and combined to examine the 

performances of these measures on predicting the Alzheimer’s disease. A logistic 

regression based on the elastic net model was applied as a classifier in this study. The 

best classification performance was achieved by predicting from the combination of all 

these three resting-state measures (AUC=0.85). The elastic net regression is particularly 

helpful when the predictors outnumber subjects by using regularization to abandon 

some of the predictors to enter the prediction model (Zou and Hastie, 2005; Friedman 

et al., 2010). Due to the high dimension of brain connectivities, the elastic net model is 

more helpful in neuroimaging data than other prediction models in general. Besides, a 
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nested cross-validation approach (Krstajic et al., 2014) was applied to avoid overfitting 

issues. The hyperparameters were tuned in the inner loop, and the outer loop was used 

to fit and test the performances of the regression model.  

Clustering was also widely used in neuroimaging studies to identify potential 

subtypes of diseases or behaviour patterns (Franco and Vivo, 2019). For example, a 

study developed by Yokota et al. (2015) applied a k-means cluster on 277 developing 

children to investigate possible sub patterns of cognitive development relating to brain 

structures. Six subtypes of cognitive patterns were obtained, and significant grey matter 

volume differences among different subtypes were also reported in this study. One 

subtype identified in this study is participants who generally had lower cognitive scores 

than average, and they showed larger volume in the middle temporal gyrus. The 

application of the k-means cluster provides a way to investigate the cognitive pattern 

related to brain structure. However, clustering is an unsupervised method that cannot 

be validated and can produce biased and unstable results based on different data groups. 

For example, in this study, although a group of participants with a relatively low 

cognitive score was identified, no group with higher cognitive performance was found. 

Therefore, analyses should be performed with large sample sizes, and validations are 

needed with dependent datasets in future studies when applying the clustering methods 

for subtyping in neuroimaging data. 

Apart from classification and clustering, regression models were applied to predict 

continuous variables (e.g., behavioural characteristics, personality, and cognitive 

ability) in neuroimaging studies widely (Norman et al., 2006; Dosenbach et al., 2010; 

Haynes, 2015; Siegel et al., 2016; Liu et al., 2018a).  

Feng et al. (2018) developed a study on a prediction mode of narcissism from 

functional connectivity with 155 participants by performing a linear regression model. 

A feature selection was conducted before the prediction model to select the most 

associated brain features with narcissism instead of using the whole-brain FCs. A leave-

one-out cross-validation was applied in this model. The prediction accuracy was 

indicated by the correlation between the actual narcissism score and the predicted 

narcissism score (r=0.24, p<0.005). Besides, different cross-validation schemes such as 

two-fold, five-fold, and ten-fold validation were also performed to validate the 

prediction model further. In this prediction model, key brain areas contributing highly 

to the prediction model, including the prefrontal cortex, the amygdala, and the ACC 

areas, were identified. In summary, this study conducted a feature selection step before 
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the prediction, which helped to reduce the high dimensional feature numbers to match 

the sample size. However, the prediction accuracy was not very significant, and an 

ordinary linear regression model without any penalty of overfitting will provide product 

models with low generalization fitting for other datasets. 

A comparison of the prediction performance of several commonly used machine 

learning methods on resting-state fMRI data was performed by Cui and Gong (2018). 

Six different machine learning algorithms, including ordinary least squares regression, 

ridge regression, LASSO regression, linear support vector regression, relevance vector 

regression, and elastic net regression were performed to predict behavioural measures 

with continuous variables from the brain functional connectivities. Apart from 

comparing the prediction accuracy and computation efficiency of these prediction 

models on the HCP dataset (Van Essen et al., 2012), the effect on the prediction 

performance with different sample sizes was also tested in this study. The LASSO 

regression showed relatively low accuracy, while the other algorithms showed similar 

performances in general with varying sizes of samples. The accuracy and stability of 

all these prediction models grown higher with the increasing sample size regardless of 

the regression models. This study conducted a comprehensive comparison of the 

commonly used prediction models and tested the influence of sample size, which 

provides a good reference for potential prediction model selection.  

2.2 Brain reward system, impulsivity fractionation, sensation-seeking 

and risk-taking 

A reward is a stimulus or event that one works to obtain, such as food, and a 

punisher is what one works to escape from or avoid (or which suppresses an action on 

which its delivery is contingent), such as a painful stimulus or the sight of an object 

associated with a painful stimulus (Rolls, 2018b). A positive reinforcer (such as food) 

increases the probability of emission of a response on which it is contingent, the process 

is termed positive reinforcement, and the outcome is a reward (such as food). The brain 

reward system is a collection of brain structures and neural pathways that responsible 

for reward-related cognition, including incentive salience (i.e., "wanting"; desire or 

craving for a reward and motivation), associative learning (primarily positive 

reinforcement and classical conditioning), and positively-valanced emotions, 

particularly emotions that involve pleasure (e.g., joy, euphoria and ecstasy) (Berridge 
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and Kringelbach, 2015; Schultz, 2015). The orbitofrontal cortex plays a key role in the 

reward system. It receives information from the last stages for each sensory modality 

including visceral information from the anterior insular cortex, visual information from 

the inferior temporal visual cortex, olfactory information from the primary olfactory, 

and auditory information from the superior temporal cortex; and send outputs directly 

to the anterior cingulate cortex for action-outcome learning, to striatum for stimulus-

response habit learning, and to gateways to hippocampal memory systems. The 

hypothesis is that the orbitofrontal cortex is involved in representing reward value and 

rapidly updating these representations, which has been investigated in different 

studies(Rolls, 2017a; Rolls, 2018b). Following the hypothesis of the orbitofrontal 

cortex involving in the brain reward system, these are two investigations developed 

together with behavioural measures including sensation-seeking in Chapter 4 and risk-

taking in Chapter 6.  

Impulsivity is a multidimensional trait found in humans and other mammalian 

animals. It is defined as a tendency for taking quick but frequently hasty acts without 

adequate foresight. (Evenden, 1999). Recent advances in the neuroscientific study of 

impulsivity have inspirited a more detailed breakdown of component behavioural 

processes and their underlying brain mechanism (Kruschwitz et al., 2012; Cai et al., 

2014; Rae et al., 2015). Impulsivity is described as a tendency of taking rapid actions, 

often with insufficient forethought or consideration of potential consequences. Many 

researchers have discovered the neurological and psychological factors underlying 

impulsivity, although the results may vary in different studies. In a review of the neural 

and biochemical finding of impulsivity by Dalley and Robbins (2017), fractionation of 

impulsive behaviour was proposed, which suggested that impulsivity may have many 

subtypes, and these subtypes depend on distinct neuron systems. It can indicate either 

a lack of information processing or a lack of control over response output. Besides, a 

fractionation of impulsive behaviour was proposed, which suggested that impulsivity 

may have many subtypes, and these subtypes depend on distinct neuron systems. Three 

subtypes were described in this paper, including: ‘waiting impulsivity’, ‘stopping 

impulsivity’, and ‘risky impulsivity’.  

The waiting impulsivity refers to self-restraint to delay rewards, usually measured 

by the temporal discounting and the premature-response tests (Ainslie, 1975; Robbins, 

2002). The waiting impulsivity is associated with the ventral striatum, the prefrontal 

cortex (both dorsolateral and ventrolateral parts), and the parietal cortices, which are 
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areas involving the delayed reward (Voon et al., 2014; Morris et al., 2016). 

Alternatively, another theory of waiting impulsivity has been suggested that the delay 

might be conducted with the lateral prefrontal cortex and the parietal circuit, while the 

reward magnitude was involved with the ventral striatum and medial prefrontal cortex 

(Ballard and Knutson, 2009). 

Stopping impulsivity is characterized by a lack of response inhibition, which is 

typically assessed using the stop-signal reaction time (SSRT) task (Logan et al., 2014). 

When action outpaces thought, it is functional and adaptive to be able to terminate a 

response after it has started. The brain circuits governing performance on the SSRT 

task have been well-defined, with components of the ACC, the right inferior frontal 

cortex, the pre-supplementary cortex, and the premotor areas (Bari and Robbins, 2013). 

The volume of grey matter loss in the right inferior frontal sulcus in patients with frontal 

brain injury was linked most strongly with the SSRT measure (Aron and Poldrack, 

2006). Another fMRI research revealed the association between the right inferior 

frontal cortex and the premotor areas and striatal circuitry by investigating the same 

task (Whelan et al., 2012). In a review of over seventy fMRI literature by Cai et al. 

(2014), two clusters of activation in the right inferior lateral frontal cortex and the right 

insula were identified with distinct functional properties. To be more specific, the 

inferior frontal cluster was functionally connected to the parietal cortex. In contrast, the 

insula cluster was more tightly coupled with the ACC and has greater activations on the 

failure of SSRT trials. The dorsomedial prefrontal cortex was related to individual 

differences and was more activated on successful SSRT trials than unsuccessful 

attempts. These findings suggest that the inferior frontal cluster is more critical for 

response inhibition than monitoring task outcomes (Rae et al., 2015) but does not rule 

out the potential that this cluster has other functions, for example, executive attention 

(Dodds et al., 2011).  

Risky impulsivity is about risky decision making and is associated with sensation-

seeking (Green and Myerson, 2013). The neural mechanisms underlying risky 

impulsivity include the lateral prefrontal cortex involving a tendency for ambiguity 

with unpredictable probabilities of outcomes and the posterior parietal cortex involving 

the tendency for risk with known probabilities (Huettel et al., 2006). Risky behaviour 

is typically related to impulsivity (‘risky impulsivity') due to the relevance of value and 

the uncertainty of the outcome of responding. The probability discounting paradigm 

illustrates this risky behaviour (Green and Myerson, 2013), in which risky options (for 
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example, a 50% chance of a high reward vs a 100% chance of a lower return) are 

favoured. Besides, there's always a possibility of being penalized in exchange for a 

higher reward. Sensation-seeking is frequently associated with the willingness to 

engage in risky behaviour (MacPherson et al., 2010; Ruedl et al., 2012). 

Sensation-seeking is a multidimensional personality trait that includes experience-

seeking, thrill and adventure seeking, susceptibility to boredom, and disinhibition 

(Zuckerman, 1994). High sensation seekers (HSS) are more prone to substance use 

(Bardo et al., 1996), reckless driving (Jonah, 1997), unprotected sexual activities 

(Hoyle et al., 2000), physical risk sports (Ruedl et al., 2012), and problem gambling 

(Harris et al., 2015) compared to low sensation seekers (LSS). The mechanisms that 

predispose persons with a high level of sensation seeking to engage in such dangerous 

behaviours is a crucial issue. Therefore, prevention strategies targeted at decreasing the 

occurrence of sensation-seeking behaviours (Sargent et al., 2010) and the development 

of risk-taking models is of great importance  (Schonberg et al., 2011). 

The earliest stage of sensation-seeking research only relied on clinical data, with 

no examination of the specific neural systems underlying the reported behaviours. The 

high sensation-seeking group had higher neurobiological responses to strong and 

unexpected stimuli than the low sensation-seeking group. In humans, for instance, the 

high sensation-seeking group has a greater orienting response to novel stimuli and 

higher cortical arousal in response to strong visual or auditory stimuli than the low 

sensation-seeking group. The low sensation-seeking group, on the other hand, exhibits 

cortical inhibition in response to strong stimuli, especially at the highest levels of 

stimulus intensity (Zuckerman and Kuhlman, 2000). Skin conductance reactions to 

sexually explicit and violent stimuli are also stronger in the high sensation-seeking 

group (Smith et al., 1990). In conclusion, the research implied that the high sensation-

seeking group were hypersensitive to strong and new stimuli. However, it is unclear 

whether the observed behavioural changes related to sensation-seeking may be related 

to specific brain systems that regulate approach and avoidance. 

Investigations on neuroimaging data together with behavioural data help to look 

into the neural systems underlying the behavioural difference. Abler et al. (2006) 

developed the first study to investigate the underlying neural system related to 

sensation-seeking with fMRI data. This study found that the nucleus accumbens (NAc), 

which is part of the ventral striatum, was positively associated with the sensation-

seeking score across all eleven participants included. The ventral striatum works as an 
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essential part of the reward system, which receives a strong emotional response output 

from the OFC, the ACC, and amygdala (Gregorios-Pippas et al., 2009; Rolls, 2014a). 

This investigation applied a monetary incentive task, which is suitable for studying 

reward sensitivity but less well adapted to studying strong reactivity to intense stimuli 

(Zuckerman, 1994) and preference for arousal (Zuckerman and Como, 1983). The study 

of Abler suggests the potential relation between sensation-seeking behaviour and the 

brain reward system. In a study by Joseph et al. (2009) on the neural system with 

sensation-seeking, the emotion-induction task was adopted, which is more suitable for 

examining strong reactivity to intense stimuli and preference for arousal (Bradley et al., 

2001). The result in Joseph’s study was consistent with the framework developed by 

the clinical data, which showed that HSSs responded to high-arousal stimuli more 

strongly than LSSs. Besides, brain regions, including the insula and the medial OFC, 

were found associated with arousal and reinforcement during sensation-seeking related 

tasks. In summary, these two studies suggested that HSSs showed stronger activation 

of intense stimuli in the brain areas, which function in the reward system.   

Apart from the brain regions with the brain reward system, brain regions including 

the insula, prefrontal cortex, and superior frontal gyrus were also commonly reported 

in sensation-seeking studies. Kruschwitz et al. (2012) developed an analysis exploring 

the neural underpinnings of sensation-seeking behaviour (mainly interested in 

adventure-seeking and thrill-seeking) using fMRI data. By performing a gambling task, 

high sensation-seeking individuals were found to show an enhanced reward sensitivity 

in the superior frontal gyrus, the insula, and the precuneus than the low sensation-

seeking group. The enhanced reward sensitivity in the nucleus accumbens was 

consistent with previous reviews. Besides, there were studies of sensation-seeking to 

focus on a specific group of people, for example, adolescents. A study using fMRI data 

of adolescent sample only was developed to examine differences in brain activity that 

included 27 high sensation seekers and 27 low sensation seekers (Cservenka et al., 

2013). A wheel-of-fortune task was conducted during the scanning, and the HSSs had 

a stronger response in the bilateral insula and prefrontal cortex on Win vs No Win than 

LSS. However, in the study of Collins et al. (2012), the typically described sensation-

seeking related regions, including the insula, the lateral prefrontal, the cingulate cortex, 

and the motor areas, exhibited no difference activation in high sensation seekers. In 

Zheng et al. (2017), the activation of the prefrontal cortex was lower in the HSS than 

in LSS.  
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In summary, the brain regions with the brain reward system, including the medial 

OFC areas and the ventral striatum, showed enhanced activation in the high sensation 

seeking group than the low sensation-seeking group as reported in many studies(Abler 

et al., 2006; Joseph et al., 2009; Kruschwitz et al., 2012). The other brain regions 

reported in different studies, including the insula, the prefrontal cortex, and the 

cingulate cortex, were found to behave differently, even opposite in some of these 

reviewed studies(Collins et al., 2012; Kruschwitz et al., 2012; Cservenka et al., 2013; 

Zheng et al., 2017).In the study of Kruschwitz et al. (2012)  and Zheng et al. (2017), 

the tasks used for the subjects were both monetary reward-related (gambling task and 

monetary reward-based decision-making task). The insula was correlated with the 

expected value and the uncertainty of the magnitude of the reward obtained in a neuro-

economics study (Rolls et al., 2008).  Hence, the interpretation might be that the insula 

was significant in these two studies because it was related to only the monetary reward 

task instead of the main focus of sensation-seeking behaviour. In the study of Joseph et 

al. (2009), the insula, the medial OFC and the ACC areas were picked out. The role of 

the anterior insula in emotion is that it receives input from the ACC and the OFC areas, 

which were involved in the fundamental computations for emotion. In addition, the 

insula is involving in producing autonomic responses (Rolls, 2014a). Hence, the 

essential brain regions picked up in this study might be medial OFC areas and the 

anterior cingulate cortex. 

Although some studies tried to find the underlying brain mechanism of sensation-

seeking, most of these studies used task-related fMRI data. Task-related studies can be 

related to different task trials instead of sensation-seeking behaviour, which will 

produce a not robust result. Besides, the sample size in these studies was small, which 

might lead to different results in different studies and less reliability, leading to poor 

understanding and controversy in sensation seeking. Taking together, investigations on 

sensation-seeking with big dataset and ideally with resting-state fMRI data which lead 

to robust results are needed. In Chapter 4, a large-scale resting-state study on sensation-

seeking with prediction models is described, and the relationship between sensation-

seeking and the brain reward system is indicated. 

Risk-taking is used to describe the tendency of taking certain risks when people 

were making decisions or aiming for higher targets. Risky behaviour was defined as 

riskier behaviour in a lab-based risky decision making, high score in the personality 

measures, for example, sensation-seeking, or risky behaviours in drug or alcohol usage 
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(Steinberg, 2008). People have different preferences on whether to act in behaviours 

that have a higher possibility of risks and a higher chance of more rewards. The critical 

hypothesis was that the heightened reward sensitivity, sensation-seeking, preferences 

for risky behaviours were related, and together with a risky-impulsivity (Dalley and 

Robbins, 2017). To better understand human behaviour, neuroimaging research has 

attempted to decode the brain underpinnings of these risk attitudes. To help the 

understanding of typical and abnormal decision-making procedures, neural associations 

of risky decision-making have been used as a neural system biomarker of treatment 

outcomes (Macoveanu et al., 2014), analysed as a potential heritable trait (Rao et al., 

2018), and investigated along with the development (Qu et al., 2015). 

Individual differences in risk-taking behaviours have been linked to several brain 

areas, as reported in different studies. For example, the ventral striatum was positively 

correlated with a higher tendency in pursuing rewards and a higher likelihood of 

seeking fun (Braams et al., 2016). In another study with 136 adolescent participants, 

increased risky behaviour was associated with perceptions of more deviant peer norms 

for participants with high ventral striatum sensitivity. In contrast, participants with low 

ventral striatum sensitivity showed common risk-taking preferences and are relatively 

resilient to deviant peer norms (Telzer et al., 2021). 

The ventral medial prefrontal cortex (VMPFC), which were in the function of the 

reward system, is related to reward sensitivity and seeking rewards. In the study of 

Blankenstein et al. (2017), greater risk preferences were found related to higher 

activation of the ventral medial prefrontal areas. Furthermore, decreased activation in 

the lateral prefrontal cortex, which is a critical region involved in self-control  (Dixon, 

2015), was linked to increased risk-taking in young adults (Gianotti et al., 2009). In 

contrast, in a longitudinal analysis by Qu et al. (2015), the association between the 

lateral prefrontal cortex activation and reductions in the frequency of risky behaviours 

(such as getting drunk or getting high at parties) was rejected. In a study with 244 pairs 

of twins on brain activation with genetic contributions, risk-taking behaviours were 

found related to the left insula and right striatum in the balloon analogue risk task (Rao 

et al., 2018). Risk-taking was reported to be associated with drug use, alcohol use, and 

gambling problems. A positive correlation between the frequencies of drug use, a large 

number of drinking problems, and sexual risky behaviours and the ventral striatum were 

found in different studies (Bjork and Pardini, 2015; Braams et al., 2016). Risk-taking 

behaviours in the financial domain have also drawn lots of attention. In a study by 
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Raggetti et al. (2017), with around 20 financial decision events were collected for each 

participant, the ventrolateral and dorsolateral prefrontal cortex and the posterior parietal 

cortex had stronger activation in the risk-seeking group comparing to the risk-averse 

group. The ventrolateral prefrontal cortex was involved with strategic planning, which 

is shown to be associated with the financial trades with long experiences (Levy and 

Wagner, 2011). The dorsolateral prefrontal cortex, which involves the cognitive action 

control, was found associated with the response latency (Cieslik et al., 2013). 

In a literature review on risk-taking with the brain activations of more than 20 

studies, no brain region was consistently related to risk-taking behaviour. This limited 

convergence and conflicting findings, as the review above, may be disappointing and 

can be caused by relatively small sample sizes in many of these studies. On the other 

hand, the limited convergence can indicate that the risk-taking behaviour can be related 

to activations across the brain with many regions instead of localized in a few ones. 

Besides, many of these studies are task related. Therefore, different tasks can affect the 

result quite much, which may not be the risk-taking behaviour but varies with varying 

tasks and how the precise was defined in various tasks. Hence, we posit that more 

investigations on risk-taking should be developed to enrich the literature and contribute 

to a comprehensive understanding of the neural mechanism of risk-taking with brain 

activations. More importantly, according to current literature, studies with relatively 

large sample sizes, analysing the whole-brain activations with risk-taking instead of 

focusing on only a few regions with resting-state fMRI data will be helpful and provide 

a novel contribution to the study of risky impulsivity behaviours. Therefore, an 

investigation on risk-taking with around 20,000 participants from the UK Biobank 

dataset was developed, aiming to understand risk-taking, worrier/anxious feelings, and 

the related brain functional connectivity on the whole brain. The worrier/anxious 

feelings describe people who spend a lot of time thinking about problems that they have 

or unpleasant things that might happen. In the UK Biobank, this is a psychosocial factor 

question, which indicates whether the participants are a worrier with binary answer. 

Different with the mental health diagnosis, this question measures a personality and 

tendency of normal participants.  
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2.3 Childhood traumatic events and underlying brain mechanism 

Childhood traumatic event is an established risk factor for psychopathology. To 

be specific, Children who went through sexual, physical, or emotional abuse, physical 

and emotional neglect may feel overwhelmed and often results in lasting mental and 

physical effects. Despite the century-old debate on the origins of this risk, the 

association and causality between the psychopathology and an individual’s experience 

of childhood traumatic events, and how the brain alterations related to that, is still a hot 

topic and need more findings with a large sample size to convergence (Susser and 

Widom, 2012; Teicher and Samson, 2016; Baldwin et al., 2019).  

Childhood traumatic events are suggested to be related to the risk of psychotic 

symptoms and diseases. In a systematic review of the literature of 20 studies on 

childhood traumatic events, 17 of these studies suggested positive correlations between 

psychotic disorders with different types of childhood traumatic events (Trotta et al., 

2015). However, in a further meta-analysis of nine studies, the heterogeneity of studies 

was high, indicating that more methodologically reliable studies are needed. Besides, 

the associations between many mental disorders, including anxiety, depression, and 

post-traumatic stress disorder, and childhood traumatic events, were reported in the 

literature. Four types of childhood traumatic events, including neglect, parent 

psychopathology, physical and sexual abuse, were all related to a higher risk of post-

traumatic stress disorder compared to those who did not have childhood traumatic 

events, with over 20,000 participants included collected by the World Mental Health 

Surveys (McLaughlin et al., 2017). Furthermore, childhood, adolescence and early 

middle adulthood had stronger associations than later adulthood. In a longitudinal study 

that assessed traumatic events in childhood eight times and follow-up four more times 

in adulthood with over 1000 participants, childhood traumatic event was related to 

greater risks of psychotic diseases and lower functional outcomes in adulthood, 

including substantial impacts that suggest a significantly delayed transition to 

adulthood (e.g., failure to hold a job and social isolation) (Copeland et al., 2018). Higher 

childhood traumatic events scores were associated with hospital diagnosed depression 

in a meta-analysis on childhood traumatic events and depression, including 68,830 

participants from 192 independent datasets (Humphreys et al., 2020). Especially the 

emotional abuse and neglect were more significantly associated with depression than 

other types of childhood traumatic events. Apart from mental disorders, a review by 
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Suglia et al. (2018) found considerable evidence of a relationship between childhood 

traumatic events and cardiometabolic consequences throughout the lifetime. In a meta-

analysis involving 16 unique research, the relationship between prospective and 

retrospective assessments of childhood traumatic events was investigated. (Baldwin et 

al., 2019). This study suggested that the prospectively identified childhood traumatic 

events can have a different relationship with mental disorders compared to the 

retrospectively self-reported childhood traumatic events. When developing analyses on 

childhood traumatic events and designing interventions, researchers and public health 

experts should be aware of these variations of prospective and retrospective childhood 

trauma. ‘Time does not heal all wounds’: a growing number of studies have shown that 

various types of childhood traumatic events were linked to an increased risk of 

personality disorders and increased odds of negative mental health impacts, such as 

anxiety and depression (Raposo et al., 2014). These findings highlight the necessity to 

avert childhood traumatic events and intervene afterwards if they occur to prevent long-

term impacts on mental health. 

In addition to the behaviour level association, studies emphasizing mechanisms, 

resiliency, and vulnerability aspects will increase the knowledge further and give more 

comprehensive and helpful information aiming for effective interventions. The 

relationship between childhood traumatic events and the brain structural and functional 

alterations have been examined in different studies (Teicher and Samson, 2016). An 

increasing number of studies suggested that childhood traumatic events have long-term 

impacts on the brain circuitry function on stress-susceptible (Marusak et al., 2016). In 

a review of the neuroimaging studies by  Bolsinger et al. (2018), the history of 

childhood traumatic events is associated with functional and volume changes of the 

prefrontal cortex and limbic regions. Longitudinal behavioural studies provided more 

evidence, showing that a smaller volume of the prefrontal cortex after childhood 

traumatic events was associated with low cognitive performances  (Raymond et al., 

2018) and diagnosis of depression  (Lu et al., 2019) in later life. McLaughlin et al. 

(2014), Sheridan and McLaughlin (2014) show that childhood traumatic events are 

likely to have a significant impact on brain systems involving threat perception and 

learning, as well as emotion control and salience processing, which includes the limbic 

or frontal-amygdala system (Tottenham, 2015), involving the amygdala, medial 

prefrontal cortex and the hippocampus. In a study on participants with depression 

symptoms on brain resting-state network, childhood traumatic event was related to a 
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multivariate pattern of different connectivity networks involving the dorsal attention 

network, the frontoparietal network, the cingulo-opercular network subcortical regions, 

ventral attention network, and the salience network (Yu et al., 2019). This study focused 

on the association between depression and childhood traumatic events, in which adults 

retrospectively report childhood traumatic events with current mental illness. 

Comparing to what was registered with the prospective childhood traumatic events, 

more brain regions were identified in this study. This may indicate the difference 

between the retrospective and prospective childhood traumatic events as supporting the 

idea reported in Baldwin et al. (2019). However, this may also be more related to 

depression, as this study works on the depression patients’ group, not healthy people. 

In another study on the retrospective childhood traumatic events with a large size 

dataset (over 6,000 participants), participants who had experienced emotional abuse in 

early life were found to have smaller volumes of the cerebellar and the ventral striatum 

areas compared to the group who had not experienced childhood emotional abuse 

(Gheorghe et al., 2021). This study focused on retrospective childhood maltreatment 

and the long-term effects on the brain alterations in old adults with a large dataset, 

which supported that childhood traumatic events may impact the brain structure into 

old age. 

However, the exact underlying pathways of which childhood traumatic events 

impact brain development and behaviour are still unclear, and more studies are needed 

to achieve a coverage conclusion. Furthermore, significant variations in effect sizes 

were observed in different studies. These variations might be explained by 

methodological difficulties, including small sample size, cross-site data, differences in 

how childhood traumatic events and mental health symptoms were measured, and the 

level of confounding adjustment. 

In summary, it is not clear if the relationship between childhood traumatic events 

and psychotic experiences is causal and reliable and how the underlying biological 

pathways are related. Besides, the difference between retrospective and prospective 

childhood traumatic events has been reported in studies. Therefore, researchers and 

public health experts should be aware of these variations of prospective and 

retrospective childhood trauma in future investigations. Finally, the long-lasting impact 

of childhood traumatic events on the brain and mental disorders in old age adults should 

be emphasized.   
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Chapter 3 

Methodology 

3.1 Measurements of the resting-state brain connectivity 

3.1.1 Functional connectivity 

The human brain includes 100 billion neurons linked together by nerve fibers to 

form a highly complex structure. To comprehend how the neurons work together in the 

brain, connectivities between neural systems and how the brain functions were 

conducted within and between these networks is of great importance. Therefore, it is 

critical to examine the anatomy of distinct brain regions as well as functional 

connectivity to unravel the brain's mystery. However, researchers do not focus on the 

integration of brain function in the early stages of brain functional magnetic resonance 

investigations. Instead, they concentrate on the distinction of brain functions, i.e., 

different brain areas are responsible for different types of recognition. The study of 

Biswal et al. (1995) on the spontaneous low-frequency oscillatory signal of the brain 

led to the definition of resting-state functional connectivity. The phenomenon of 

functional connectivity describes the high consistency of activations of different brain 

regions when they have a large spatial distance. After Biswal et al. (1995) revealed the 

synchronization between low-frequency signals, studies have found that the blood 

oxygenation level-dependent (BOLD) signals between the brain areas whose functional 

systems have a high level of synchronization in the resting state activations. Functional 

connectivity is defined simply, and the Pearson correlation is the most often utilized 

method. Specifically, the functional connectivity between two brain areas (i.e. Pearson 

correlation) is calculated using the time series 𝑥(𝑡) of a brain region as follows: 

𝑟𝑖𝑗 =
∑ [𝑥𝑖(𝑡) − 𝑥�̅�][𝑥𝑗(𝑡) − 𝑥�̅�]𝑇

𝑡=1

√∑ [𝑥𝑖(𝑡) − 𝑥�̅�]2𝑇
𝑡=1 ∙ √∑ [𝑥𝑗(𝑡) − 𝑥�̅�]

2𝑇
𝑡=1

 

Where xi(t) and xj(t) (t = 1,2, … , T) denotes the time courses of brain regions i 

and j. 

Whether to apply global signal regression (GSReg), which includes regressing out 

signal averaged over the whole brain, is a crucial point in neuroimaging data analysis 

(Fox et al., 2009). This will cause resting-state correlations to vary drastically, affecting 

correlation patterns and, as a result, inferences concerning brain functional connectivity 
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(Saad et al., 2012).  The global signal regression is usually not applied in neuroimaging 

studies. The reasons are as described as follows (Cheng et al., 2016).  

The impacts are introduced with the help of an intuitive example. Consider the fact 

that only visible portions rise for a short time. With the mean global signal set to zero, 

the signal in brain areas that have nothing to do with the visual areas will be compelled 

to reflect negative ‘signal' values during this time. As a result, there will be negative 

correlations between the visual and other brain areas even if there is no functional 

connectivity between them. As a result, negative associations may be spurious and 

difficult to evaluate. Moreover, GSReg has the potential to profoundly alter inter-

regional correlations within a group of people, as well as disparities between groups 

(Saad et al., 2012). This may propagate underlying group differences to brain areas 

where functional connectivity variations may never have existed. 

Furthermore, rather than just modifying the mean or range of correlation values 

between pairs of brain regions, GSReg consistently affects the rank ordering of results 

and introduces negative values in functional connectivity research in autism spectrum 

disorder. In comparison to previous pre-processing procedures, this results in a reversal 

of group correlation differences, with a higher occurrence of both long-range and local 

correlation differences favouring the patient group. In addition, findings in locations 

that indicate group differences no longer correspond with the associations with 

behavioural symptoms (Gotts et al., 2013). Furthermore, greater cortical power and 

variance were found in schizophrenia in research, an effect that was predictive of 

symptoms but was hidden by GSReg (Yang et al., 2014). In bipolar patients, the finding 

was not present, indicating diagnostic specificity (Yang et al., 2014). As a result, in 

resting-state functional connectivity datasets, GSReg may hide other information of 

potential interest. Furthermore, it was demonstrated in a study of macaques that the 

global signal could reflect some underlying neurophysiological effects of importance, 

such as those related to gamma frequencies in the local field potential measured in even 

remote cortical regions (Scholvinck et al., 2010). Hence, there are solid reasons to leave 

the global mean signal un-regressed.  

In summary, after the functional connectivity was defined by Biswal et al. (1995), 

it became the most widely used brain connectivity measure with large amounts of 

literature and studies.  In this thesis, most of these investigations used the functional 

connectivity measure as the first step to produce the brain connectivity matrix, and then 
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further modelling methods were followed, including the sensation-seeking study in 

Chapter 4, risk-taking study in Chapter 6, and childhood traumatic events in Chapter 7. 

3.1.2 Directional connectivity  

3.1.2.1 Effective connectivity 

Effective connectivity assesses the efficacy of each existing link between two 

brain regions, i.e., how much one brain region influences the other. It focuses on 

transitions between different fMRI "activity states" throughout time (Mitra et al., 2015). 

The investigation into asymmetric connectivity is of great meaning in neuroscience, as 

it happens a lot in the communication of neurons in the brain. Based on a large body of 

evidence in rich literature, forward connections between any pair of cortical areas are 

assumed to be stronger than backward connections within a cortical hierarchy of 

connectivity. These asymmetries are fundamental in understanding how these brain 

regions work hierarchically underlying certain processes, such as sensory information 

processing in the brain. In a sensory hierarchy, forward connectivity from layer 2-3 

pyramidal cells to layers 4, of the following cortical areas was found to be stronger than 

the backward connection from layer 5, which is a deeper layer of the cerebral cortex, 

and project back to layer 1 of the antecedent cortical regions (Markov et al., 2014; Rolls, 

2016). The top-down or back projection is weaker than the forward connection, which 

is also essential for attention and memory recall. Attentional bias and memory recall do 

not dominate the bottom-up forward input (Turova and Rolls, 2019). Due to the 

asymmetries of the connectivities between different brain areas are functionally 

essential and usually have an anatomical basis, the directional connections, especially 

with anatomical prior selections of the links, are crucial to investigate.  

Dynamic causal modelling (DCM) is a classical approach to measuring effective 

connectivity (Friston, 2009). It is often applied in conjunction with a circuit composed 

of brain areas that were prior selected to test hypotheses on the interactions between the 

regions considered. It involves the Balloon model, a very detailed modelling method 

that is low in computational efficiency (Friston et al., 2000). A new effective 

connectivity modelling method that applies a simpler model to limits the degrees of 

freedom for individual brain areas was proposed by Gilson et al. (2016). In addition, 

the structural connectivity information from DTI is used to reduce the number of 

possible connections in the model. In comparison to the DCM, this method enables the 

calculation of maximum likelihood effective connectivity estimates for a large number 
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of nodes on the whole-brain level, individually for large datasets, in a very efficient 

way. By performing this method, analyses can be applied on the whole-brain level and 

target significant effective connectivity differences for all existing connections that 

characterize the behaviour or mental health problems without preliminary knowledge. 

The EC method efficiently calculates maximum-likelihood effective connectivity 

estimates for many brain regions (Gilson et al., 2016). The approach takes into account 

known anatomical connections and exploits transitions of fMRI data over successive 

repeat intervals. The resting-state analysis described here can be thought of as probing 

the connectivities between brain areas by assessing the impact of noise produced by 

random spiking times of neurons on the system. This model uses the covariances with 

nonzero temporal shifts to capture and exploit this information. The criteria of 

optimization of this model for the EC and the local input variance in a parameter Σ is 

to reproduce statistics of the observed fMRI signals most accurately. Detailed 

descriptions of the EC model are as follows, example code of calculating the EC is 

attached in Appendix-7, and a complete illustration of the EC method can be referred 

to in (Gilson et al., 2016). 

The estimated effective connectivity assesses the intensity of causal linkages from 

one brain area to another using BOLD fluctuations as a proxy: it generates a single 

value that combines the impacts of synapse strength, neurotransmitter release, and other 

factors. A network model is iteratively optimized using the estimate process. It 

replicates empirical cross-covariances between brain regions, which are canonically 

connected to cross-spectral density, which has been exploited in recent investigations 

(Friston et al., 2014; Razi et al., 2017). This model discards very slow-frequency 

fluctuations and employs an exponential estimate of BOLD autocovariance (locally 

across a few TRs). The effective connectivity was simplified by using an adiabatic 

approximation. Because broadband (slow) fluctuations in neural signals were studied, 

the observed signals were considered as a direct reflection of underlying neuronal 

activity. Finally, following known neuroanatomy and earlier modelling research, 

positive restrictions were imposed on extrinsic or between-node connections. 

Empirical covariances 

For each session of the resting-state fMRI scanning, the BOLD time series is 

denoted by  𝑥𝑖
𝑡  for brain area 1 ≤ 𝑖 ≤ 𝑁  of time point  1 ≤ 𝑡 ≤ 𝑇 , 𝑇  denote the 

duration time of the whole scanning session. The mean signal is indicated by: 𝑥�̅� =
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1

𝑇
∑ 𝑥𝑖

𝑡
𝑡  for all brain regions. As consistent with Gilson et al. (2016), the empirical 

functional connectivity consists of BOLD covariances with zero-lag and one-lag are 

calculated as follows: 

�̂�𝑖𝑗
0 =

1

𝑇 − 2
∑ (𝑥𝑖

𝑡 − 𝑥�̅�)(𝑥𝑗
𝑡 − 𝑥�̅�)

1≤𝑡≤𝑇−1

 

�̂�𝑖𝑗
1 =

1

𝑇 − 2
∑ (𝑥𝑖

𝑡 − 𝑥�̅�)(𝑥𝑗
𝑡+1 − 𝑥�̅�)

1≤𝑡≤𝑇−1

 

The time constant 𝜏𝑥 associated with the exponential decay of the autocovariance 

averaged across all brain areas using time shifts from zero-lag to one-lag was evaluated 

for each participant: 

𝜏𝑥 =
𝑁

∑ log(�̂�𝑖𝑖
0) − log(�̂�𝑖𝑖

1 )𝑖

 

Dynamic cortical model 

The activity 𝑥𝑖 of each region is governed by a multivariate Ornstein-Uhlenbeck 

process. The activity variable  𝑥𝑖  of node 𝑖  changes exponentially with the time 

constant 𝜏𝑥 and depends on the activities of other populations to evolve: 

𝑑𝑥𝑖 = (
−𝑥𝑖

𝜏𝑥
+ ∑ 𝐶ij𝑥𝑗

𝑗≠𝑖

) 𝑑𝑡 + 𝑑𝐵𝑖 

Here, dB𝑖 represents the white Gaussian noise with covariance matrix 𝛴, where 

the input variances are on the diagonal and are zero elsewhere. A matrix 𝐶 embodies 

these input fluctuations propagate by effective connectivity. The mathematical mapping 

between 𝑄0 ,  𝑄1, and matrices 𝐶, is given by Lyapunov equation: 

𝐽Q
0 + 𝑄0𝐽𝑇 + 𝛴 = 0 

Where 𝜏 = 0 and 𝑄1 = 𝑄0expm(𝐽𝑇) where 𝜏 > 0. The expm denotes the matrix 

exponential, and the superscript T denotes the matrix transpose.  𝐽 is the Jacobian of 

dynamical systems, which depends on the time constant 𝜏𝑥 and the network EC: 

𝐽ij = −
𝛿𝑖𝑗

𝜏𝑥
+ 𝐶ij 

Here, 𝛿ij is the Kronecker delta. Without modelling the network, these consistency 

equations allow for rapid calculation of the predicted FC matrices. 

Parameter estimation  
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Considering the noise matrix Σ to be known, for now, the network parameters 𝐶 

were optimized in this step to minimize the model error, which is defined by a 

Lyapunov function as a sum of two matrix distances: 

𝑉(𝐶) = ∑(𝑄𝑖𝑗
0 − �̂�𝑖𝑗

0 )2 +

𝑖,𝑗

∑(𝑄𝑖𝑗
1 − �̂�𝑖𝑗

1 )2

𝑖,𝑗

 

The Jacobian 𝐽 is computed from the current value of 𝐶 at the first step. Secondly, 

the model FC matrices 𝑄0 and 𝑄1  are then computed from the consistency equations, 

with the Lyapunov equation solved using the Bartels-Stewart algorithm. The target of 

the Jacobian update is to reduce the FC error between empirical and model FC, as 

calculated by the Lyapunov function 𝑉(𝐶). The optimized parameters were obtained 

when the model error was minimized in 1000 optimization iterations, and the local 

minima was addressed by the replication with subsets of subjects. Finally, the 

connectivity update is 𝛿𝐶𝑖𝑗 = 𝜂𝐶𝛿𝐽𝑖𝑗  for existing connections. The input variance is 

tuned according to 𝛿Σ𝑖𝑗 =  −𝜂Σ(𝐽𝛿𝑄𝑖𝑖
0 + 𝛿𝑄𝑖𝑖

0𝐽𝑇) . 𝜂Σ = 0.1  and  𝜂𝐶 = 0.0001  were 

applied here. 

Model estimates normalization  

The effective connectivity was normalized by applying a z-score transform over 

the matrix elements within each participant: 

𝑠𝑐𝑜𝑟𝑒(𝑉𝑖𝑗) =
𝑉𝑖𝑗 − 𝑚𝑒𝑎𝑛(𝑉𝑖𝑗)

𝑠𝑡𝑑(𝑉𝑖𝑗)
 

Where the 𝑉 is either 𝐶 or Σ, this normalization was implemented to enable that 

the effective connectivity of each participant contributes similarly to the statistics. 

This effective connectivity method has been performed on a study of rest and 

movie viewing and successfully identified differences in cortical coordination (Gilson 

et al., 2018) and also mental disorder analyses (Rolls et al., 2020b). 

 

3.1.2.2 Granger causality 

The concept of cross prediction was the base of the Granger causality. To be 

specific, if including the previous values of time series X enhances the future forecast 

of time series Y, X is defined to have a causal effect on Y (Granger, 1969). The efficacy 

of cross-prediction could be deduced from the residual error after the prediction 

(Roebroeck et al., 2005) or the magnitude of the predictor coefficients (Blinowska et 

al., 2004) in any two time-series X and Y. Both of these two approaches are identical, 
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and the detailed analyses on the relationship of these two methods are given by Granger 

(1969). The model order was typically determined by the Akaike information criterion 

(AIC) (Akaike, 1974). In describing brain effective connectivity, the Granger causality 

was applied to compute the temporal effects of the fMRI signal of one brain region on 

another brain region.  

As the number of regions of interest grows, the computational complexity can 

become intractable, and the numerical procedure can become unreliable for traditional 

methods like DCM. These drawbacks can be mitigated significantly using approaches 

based on cross-prediction between two time courses, i.e. Granger causality (Granger, 

1969). The Granger causality analysis has been applied in many studies on 

neuroimaging works related to mental disorders and other behaviours (Hamilton et al., 

2011; Luo et al., 2013; Wang et al., 2016; Shi et al., 2019). 

Bivariate Granger causality 

The bivariate linear autoregressive model of the time course Y with previous 

values in Y and another time course 𝑋 is as follows: 

𝑌𝑡 = ∑ 𝐴𝑖

𝑝

𝑖=1
𝑋(𝑡 − 𝑖) + ∑ 𝐵𝑖

𝑝

𝑖=1
𝑌(𝑡 − 𝑖) + 𝐶𝑍𝑡 + 휀𝑡 

When ignoring the directional causality from  𝑋𝑡 to 𝑌𝑡 in the 𝑌𝑡, the time-variant 

process Y will become: 

𝑌𝑡 = ∑ 𝐵𝑖

𝑝

𝑖=1
𝑌(𝑡 − 𝑖) + 𝐶𝑍𝑡 + 휀�̃� 

Here the parameter 𝑝  represents the time lag in this model. 𝐴𝑖  and 𝐵𝑖  are 

autoregression coefficient, 휀𝑡  is residual, and 𝑍𝑡  is covariant included, for example, 

global trend, head motion, and physiological noise.  

If the 𝐴𝑖 is significantly smaller or larger than zero, the time series 𝑋𝑡 is said to 

Granger causes the time series 𝑌𝑡. Similarly, the Granger causality from 𝑌𝑡 to  𝑋𝑡 can 

be inferred in the same way. The Akaike Information Criterion is typically used to 

calculate the optimal lag parameter (Akaike, 1974). To enhance the temporal resolution 

of estimates of neural effect, the time-directed prediction between the BOLD time series 

was usually estimated across a lag of one TR. 

Following the concept of Granger causality (Granger, 1969), the value of one time 

course 𝑋 at one time point has a causal impact on another time course 𝑌 after a certain 

temporal lags 𝑝 can be inferred if the value of 𝑋 in previous time point can contribute 

to the prediction of the value in the time course 𝑌 to achieve better prediction accuracy 



31 
 

than considering only information in the past of 𝑌 itself. The Granger causality from X 

to Y is computed by cumulating the residual square errors as estimated by: 

𝐹𝑋→𝑌 = log [
∑ 𝑣𝑎𝑟(휀�̃�)𝑇

𝑡=1

∑ 𝑣𝑎𝑟(휀𝑡)𝑇
𝑡=1

] 

Multivariate Granger causality 

The bivariate Granger causality formulation can be extended to multivariate 

conditions as the multivariate autoregressive model shown below.: 

𝑌1𝑡 = ∑ 𝐴11
𝑖 𝑌1(𝑡 − 𝑖)

𝑝

𝑖=1
+ ⋯ + ∑ 𝐴1𝑛

𝑖 𝑌𝑛(𝑡 − 𝑖)
𝑝

𝑖=1
+ 𝐶1𝑍𝑡 + 휀𝑡 

… 

𝑌𝑛𝑡 = ∑ 𝐴𝑛1
𝑖 𝑌1(𝑡 − 𝑖)

𝑝

𝑖=1
+ ⋯ + ∑ 𝐴𝑛𝑛

𝑖 𝑌𝑛(𝑡 − 𝑖)
𝑝

𝑖=1
+ 𝐶𝑛𝑍𝑡 + 휀𝑡 

The multivariate Granger causality model is used for identifying an identical, 

temporal prediction among diverse time-varying signals in a multivariate 

autoregressive procedure. In the multivariate GC analysis, multiple time series were 

included in the prediction instead of pairs of time series, enabling a more 

comprehensive analysis of the whole system. However, compared to the bivariate, the 

computational cost of the multivariate model is higher and less efficient.  

Statistical significance testing 

To assess whether the result detected by Granger causality is significant, surrogate 

data (Kus et al., 2004) was employed to build an empirical null distribution, i.e. a 

permutation test was performed. To be specific, the original time series were converted 

to the frequency domain, and the phase was randomized to form a uniform distribution 

over  (-pi, pi) (Kus et al., 2004). The signal was then converted back to the time domain 

to produce the surrogate data. The surrogate data had the same spectrum as the original 

data, but the causal phase relations were destroyed by this approach. To calculate the p 

value, the actual Granger causality value was compared to the corresponding null 

distribution for each connectivity. Then, the p values from individual participants were 

merged by the Fisher's method (Fisher, 1992) to create a single p value for group 

significance inference. No permutation test was performed in this step to test the group 

significance, following prediction analysis and statistical methods using the Granger 

causality coefficients are described in Chapter 5.  

In the investigation described in Chapter 5, the Granger causality modelling 

(Hamilton et al., 2011) and effective connectivity modelling (Gilson et al., 2018) were 
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performed to measure the directional connectivity of the brain. In addition, the effects 

of these two directional connectivity methods on measuring the brain were examined 

by performing predictions on the behavioural measure (verbal intelligence) with five 

different machine learning regression algorithms. 

3.2 Machine learning regression algorithm 

The existing research in neuroimaging field consists of five widely used machine 

learning linear regression methods: ordinary least squares regression (OLSR), linear 

support vector regression (LSVR), ridge regression, LASSO regression, and elastic net 

regression. Here, the basic algorithms of these five methods are described. In Chapter 

4, a novel prediction approach of sensation-seeking based on elastic net regression was 

developed, and the schematic overview of this approach is shown in Fig. 4.1 (details 

described in Chapter 4). In Chapter 5, to compare the prediction efficiency of the 

effective connectivity and the Granger causality, nested-5-fold cross validation 

prediction models were developed with these five regression models. The inner 5F-CV 

was used to determine the optimal parameters of the correlation regression algorithm 

(Lasso, ridge λ, elastic net λ, α and LSVR C). The parameters and the formula are 

described next in this section. The schematic overview of this approach is shown in Fig. 

5.1 (details described in Chapter 5). Besides, the prediction accuracy of these five 

models was investigated with different sample sizes.  

Considering a model with n explanatory variables, the regression model has the 

form: 
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3.2.1 Ordinary least squares regression  

Ordinary least squares regression (OLSR) is more commonly called a simple or 

multiple linear regression model depending on the number of explanatory variables. To 

minimize the residual (the sample estimate of the error for each observation) sum of 

squares differences between actual values iy  in the training data group and predicted 

values )( ixf  by the linear model is the crucial problem of the OLSR algorithm.  The 

objective function of OLSR can be formed as below: 
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Where iy  represents the actual behavioural score. The minimization problem of 

this objective function was solved using the Moore-Penrose pseudo-inverse method and 

singular value decomposition. If X is full column rank, the  analytical solution of the 

estimator of   value is represented as follows: 

yXXX TT 1)(yX −+


==  

Where 
TT XXXX 1)( −+ = indicates Moore-Penrose pseudo-inverse, and X is a 

pN *  matrix in which each row is a feature vector of one subject. 

The limitations of OLSR make it impossible to be directly used for linear 

regression fitting in many cases. Especially in the following two issues: 1) the X is not 

a full-rank matrix or positive definite matrix, that is, the number of features is larger 

than that of observations, increasing the difficulty of solving the inversion of the XTX 

matrix and 2) a strong linear correlation between the features are prone to overfitting. 

In contrast, LSVR, LASSO regression, ridge regression, and elastic net regression 

adopted multiple regularization rules to help minimize the overfitting problem in 

machine learning models. OLSR estimator may provide a good fitting to the training 

dataset. However, it will not fit well with the test dataset. The OLSR has no parameters, 

which is an advantage, but it cannot control the complexity of the model. 

3.2.2 Ridge regression 

If multicollinearity exits in the observed data, OLSR is very sensitive to the noisy 

input variables, and its solution will be extremely unstable. If the growth of the 

parameter can be restricted, then the sensitivity of the model to noisy the inputs will be 

reduced. To limit the size of the model parameters, a penalty term (regularization term) 
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is included in the objective function of the model, which is called regularization. For 

example, the regression model uses "squared magnitude" of coefficient as penalty term 

(L2 regularization) added to the loss function termed ridge regression. The complete 

optimization function is calculated as follows: 
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In the ridge algorithm, λ can regulate the trade-off between the prediction accuracy 

within the training data and L2 regularization. Additionally, L2 regularization drives 

down the overall size of the weight values during optimization and reduces the 

overfitting problem. Compared with OLSR, ridge regression is a more restrained model, 

making it less possible to overfit. In general, a simpler model performs worse on the 

training set but performs better in generalization. The ridge model makes a trade-off 

between the simplicity of the model (coefficients are all close to 0) and the performance 

of the training set. The importance of both simplicity and training set performance to 

the model can be specified by the user by setting the alpha parameter. The optimal 

setting of alpha depends on the specific data set used. Increasing alpha will make the 

coefficients more towards 0, thereby reducing training set performance, but may 

improve generalization performance. 

3.2.3 LASSO regression 

Unlike ridge regression, L1-norm regularization applied to the OLSR loss function 

is termed as LASSO regression, making the coefficients of determination shrunk to 

zero. Therefore, the loss function has the form as below: 
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Lasso regression penalizes less important features, which cause high variance and 

model over-fitting issues of training data and makes their respective coefficients zero, 

thereby eliminating them, which benefits feature selection and reduces the model 

complexity. Meanwhile, the trade-off between the prediction accuracy with the training 

data group and L1 regularization, i.e. the trade of penalties between bias and variance, 

is controlled by parameter λ. If an easy to explain model is required, LASSO can give 

a model that is easier to understand because it only selects a part of the input features. 

LASSO performed poorly on the training set and the test set. This indicates that there 
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is underfitting. To reduce underfitting, we try to reduce alpha. While doing this, we also 

need to increase the maximum number of iterations to run. 

3.2.4 Elastic net regression 

Elastic net regression is another regularized linear regression model involving L1-

norm regularization used by LASSO and L2-norm regularization used by ridge 

regression in the loss function during training. The loss function is set to the formula as 

follows: 
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Elastic net regression, which includes both L1-norm and L2-norm penalties, 

produces better performances than other models with only L1 or L2 regularization. 

Hyperparameter λ is provided to control the sum weight of both penalties in the 

loss function, controlling the trade-off between the prediction accuracy in the training 

samples and regularizations, i.e., the trade of penalties between bias and variance. The 

fully-weighted penalty is used by default with a value of 1; a value of 0 is used to 

exclude the penalty. Another hyperparameter is utilized to distribute the relative 

weight given to L1 and L2 regularization. The value  is from 0 to 1. 

3.2.5 Linear support vector regression 

Compared with the squared loss function described in the previous models, LSVR 

implements Vapnik's ε-sensitive loss function to fit the linear model. The aim of the 

objective function is to identify a function )( ixf , which produces a predicted value 

with less than ε deviation from the actual value iy  for all training samples. Besides, the 

flatness of this function needs to be maximized at the same time. Precisely, maximizing 

the flatness is calculated by an L2-norm regularization to minimize the squared sum of 

the coefficients. The loss function is written as below to learn the model parameters: 


==

++
l

i

ii

p

j

j C
1

*2

1

)(||||
2

1
min 


 

Subject to 










+−

+−

0,

)(

)(

*

*

ii

iii

iii

yxf

xfy







 



36 
 

Where i  and  *

i  are the positive and negative errors at the i-th observed data, 

respectively. This loss function can be solved by the linear programming approach. The 

algorithm is used to generate weights (i.e. s ) for the support vectors, then the 

weighted sum of these feature vectors was used to calculate the regression coefficients 

of all features, shown as follows, 
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Where is xx* is referred to as the linear kernel. The penalty coefficient of the loss 

function is controlled by parameter C, which is equivalent to the regularization 

coefficient in linear regression. The default value of the penalty coefficient is 1. The 

larger the C is, the greater the penalty for incorrect samples, resulting in increased 

training sample accuracy but less generalization ability. That is, the test data 

classification accuracy is lowered. However, if C is lowered, some incorrect 

misclassification examples can be included in the training data group, and the 

generalization ability is higher. The larger the C value, the weaker the corresponding 

regularization. In other words, if the parameter C value is large, then LSVR will fit the 

training set as best as possible (the model will be more complicated). If the C value is 

small, the model emphasizes making the coefficient vector (w) close to 0. A small C 

value (corresponding to strong regularization) allows the algorithm to adapt to "most" 

data points as much as possible. In contrast, a larger C value (corresponding to weak 

regularization) emphasizes the correct classification of each data point. For training 

samples with noise, the latter is generally used, and the samples with the wrong 

classification in the training sample set are regarded as noise. 

This section gives description of the five commonly used machine learning 

regression models including the definition, formula and parameters. In Chapter 4, a 

novel prediction approach of sensation-seeking based on elastic net regression was 

developed. This provides a novel way to investigate the relationship between 

behavioural measures and brain functional connectivity with a prediction model instead 

of ordinary correlation analysis. A schematic overview of this approach is shown in Fig. 

4.1. In Chapter 5, for the first time, the prediction efficiency of the effective 

connectivity and the Granger causality was compared by developing a nested-5-fold 

cross validation prediction models with five regression models as described above. 
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Details of the structure of this nested-5-fold prediction model is shown in Fig 5.1, and 

in section 5.2.  

Chapter 4 

Prediction of Sensation-seeking from Functional 

Connectivities of the Medial Orbitofrontal Cortex with the 

Anterior Cingulate Cortex 

4.1 Introduction  

Sensation seeking is a multifaceted personality trait with components that include 

experience-seeking, thrill and adventure seeking, disinhibition, and susceptibility to 

boredom (Zuckerman, 1994). High sensation seekers, compared to low sensation 

seekers, are more vulnerable to reckless driving (Jonah, 1997), physical risk sports 

(Ruedl et al., 2012), unprotected sexual activities (Hoyle et al., 2000), problem 

gambling (Harris et al., 2015), and substance use (Bardo et al., 1996). One critical issue 

is the mechanisms predisposing those high in sensation seeking to such risky behaviors. 

Addressing this issue is of great importance in prevention programs aimed at reducing 

the occurrence of sensation-seeking behaviours where these may be dangerous (Sargent 

et al., 2010) and in the development of risk-taking models (Schonberg et al., 2011). 

Individuals with high sensation-seeking have a stronger orienting response and 

greater cortical arousal in response to intense visual or auditory stimuli. They also show 

a preference for and have stronger skin conductance responses to sexually explicit and 

violent stimuli (Smith et al., 1990). Taken together, this evidence suggests that high 

sensation seekers show hypersensitivity to intense and novel stimuli.  

Previous research on brain processing related to sensation-seeking has typically 

involved activation studies with relatively low numbers of participants. In one study, 

activation in the ventral striatum in a delayed incentive task was related to individual 

differences in sensation-seeking and novelty seeking (Abler et al., 2006). In another 

study, Joseph et al. (2009) found that high sensation seekers had larger responses in the 

posteromedial orbitofrontal cortex and insula to arousing pictures. In a gambling task, 

it was found that those with high scores for thrill and adventure-seeking had larger 

activations in the ventral striatum, insula, precuneus and superior frontal gyrus 

(Kruschwitz et al., 2012). In another gambling task, high sensation seekers had greater 

responses to Wins in the prefrontal cortex and insula (Cservenka et al., 2013). 
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Activation of the ventrolateral prefrontal cortex to reward expectancy has also been 

related to impulsive sensation seeking (Chase et al., 2017). 

In the present study, we used a different approach with no task being performed 

by analysing resting-state functional connectivity and relating this to sensation seeking. 

A highlight of the investigation described here is the large number of participants 

involved (414). Another feature of the present study is the use and further development 

of methods. In addition to measuring correlations of sensation-seeking with functional 

connectivities, we also made predictions about sensation-seeking from the functional 

connectivities. The prediction approach provides another way to identify functional 

connectivity links related to sensation-seeking. The prediction method used was to 

identify relevant links by finding the connections with which the optimal prediction 

could be made (Liu et al., 2018a). The predictions were made with an elastic net linear 

regression model because an elastic net operates reasonably when the features are 

correlated (Cui and Gong, 2018). We know of no other large-scale study of the relation 

between sensation-seeking and functional connectivity. Because sensation-seeking may 

be related to some types of impulsivity, we also measured the correlations in this dataset 

between sensation-seeking and different types of impulsivity. Further, we investigated 

whether the functional connectivities related to sensation-seeking were also associated 

with impulsivity. 

The hypotheses we investigated were: (1) Are some resting-state functional 

connectivities significantly related to sensation-seeking? (2) Can sensation-seeking be 

predicted from functional connectivities? (3) Are some of the functional connectivities 

related to sensation-seeking also related to impulsive behaviour? (4) Are functional 

connectivities in brain areas related to emotion, such as the orbitofrontal cortex, 

amygdala, and anterior cingulate cortex (Rolls, 2014b, 2019b) related to sensation-

seeking? Although (4) was a hypothesis, we did not exclude any brain area from 

consideration and performed a whole-brain analysis. 

4.2 Method 

4.2.1 Participants, resting-state fMRI 

The data used in this study is provided by the enhanced Nathan Kline Institute-

Rockland Sample dataset (Nooner et al., 2012). NKI-RS is an ongoing, institutionally 

centered endeavor aimed at creating a large-scale (N > 1000) community sample of 
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participants across the lifespan, which was approved by an Ethics committee (Nathan 

Kline Institute and Montclair State University). Measures include a wide array of 

physiological and psychological assessments, genetic information, and advanced 

neuroimaging. In addition, anonymized data is made available 

(fcon_1000.projects.nitrc.org/index/enhanced). Four hundred fourteen participants 

were involved in this prediction analysis, ageing from 18 to 85. All of these participants 

have available resting-state fMRI data and the behaviour scores of sensation seeking.  

The resting-state fMRI data were acquired on a 3T Siemens Trio Scanner with a 

BOLD-weighted multiband echo-planar imaging sequence (TR=645 ms, voxel size=3 

mm, duration=10 min), with the participants awake and looking at a fixation cross on 

the screen (Nooner et al., 2012).  

4.2.2 Data Preprocessing 

Resting-state fMRI data were preprocessed using FSL (Jenkinson et al., 2012) and 

AFNI toolbox (Cox, 1996). For each individual, the preprocessing steps included: slice 

timing correction (FSL slicetimer), motion correction (FSL mcflirt), spatial smoothing 

by a 3D Gaussian kernel, despiking motion artifacts using the brain-wavelet toolbox 

(Patel et al., 2014), registering to a 3×3×3 mm3 standard space by first aligning the 

functional image to individual T1 structural images using boundary-based registration 

(Greve and Fischl, 2009) and then to standard space using FSL’s linear and non-linear 

registration tool (FSL flirt and fnirt), regressing out nuisance covariates including 

Friston’s 24 head motion parameters (Friston et al., 1996), white matter signal, and the 

cerebrospinal fluid signal. No temporal filtering was used to ensure compatibility for 

possible analysis for effective connectivity. All the images were manually checked to 

ensure successful preprocessing. The resulting time courses were used for the 

construction and analysis of the brain network. Global signals were not regressed out, 

for reasons described elsewhere (Cheng et al., 2016). 

After preprocessing, the whole brain was parcellated to reduce the high 

dimensionality of the voxel-level data. In this study, 94 regions for the brain (excluding 

the cerebellum) were defined by the Automated-Anatomical-Labelling Atlas 2 because 

it has been tailored to include clear subdivisions of the orbitofrontal cortex (Rolls et al., 

2015). The names of the brain areas are shown in Appendix-1. Then the time series 

were extracted for each region by averaging the signals of all voxels within that region. 
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4.2.3 Construction of the whole-brain functional network 

Functional connectivity is defined as the correlation of the BOLD signal averaged 

across time between pairs of brain regions or voxels (Biswal et al., 1995). For each pair 

of brain regions, the Pearson correlation was calculated from the BOLD signal across 

the time series for that pair of brain regions to measure functional connectivity between 

the 94×94 brain regions for each participant. Fisher’s r-to-z transformation was then 

implemented to improve the normality of the correlation coefficients, resulting in a 94 

by 94 symmetric matrix that represented the links between every pair of brain regions 

(Fig. 4.1A). 

 

 

Figure 4.1. A) Schematic overview of the method. 
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B) The correlation was 0.34 between the predicted sensation-seeking score from the functional 

connectivities and the actual score of each of the 414 individuals obtained with the optimal p-

threshold value for selecting which functional connectivity links to use, which was 0.001. Each 

data point is from a different individual. 

 

4.2.4 Correlation of the functional connectivities with sensation-seeking 

Interest in sensation-seeking as a measure was developed by Zuckerman (1994) 

and came to be included in the UPPS as a result of factor analysis (Whiteside and 

Lynam, 2001). The UPPS-P is a 59-item self-report inventory in its revised version 

(originally UPPS) that quantifies five different aspects of impulsive behaviour (Lynam 

et al., 2006): (i) negative urgency, which refers to the tendency to experience strong 

impulses under conditions of negative affect; (ii) lack of perseverance that reflects the 

experience of having problems with remaining focused on a task that might be boring 

or too difficult; (iii) lack of premeditation that describes the tendency to engage in an 

act without reflecting the consequences of that act beforehand; (iv) sensation seeking 

that further comprises two aspects: (a) the propensity to enjoy and chase exciting 

activities; (b) an openness to engage in new experiences that might be dangerous; and 

(v) positive urgency that involves the tendency towards rash actions in response to very 

positive mood. Each item can be scored on a four-point Likert scale, ranging from 1 

(strongly agree) to 4 (strongly disagree). Reversed items are recoded afterwards so that 

higher scores indicate a more pronounced level of self-reported trait impulsivity. 

Reliability analyses revealed an adequate level of internal consistency (Cronbach's 
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alpha) for each of the five subscales (Golchert et al., 2017). The questions used to 

produce the sensation-seeking score are available  (Whiteside and Lynam, 2001) and 

are shown in the next section, and included: “I generally seek new and exciting 

experiences and sensations”, “I welcome new and exciting experiences and sensations, 

even if they are a little frightening and unconventional”, and “I quite enjoy taking risks”.  

After the functional connectivity matrices of all participants had been calculated, 

correlations between the functional connectivities and the sensation-seeking scores 

across all participants were calculated to investigate which brain regions have 

connectivities related to sensation-seeking. In more detail, a partial correlation was 

performed between the functional connectivities and the sensation-seeking scores with 

age, sex, ethnicity, race and head motion regressed out. In this study, false discovery 

rate (FDR) correction (p<0.05) for multiple comparisons (Benjamini and Hochberg, 

1995) for the functional connectivity between any pair of AAL2 brain regions was used. 

4.2.5 Full sensation-seeking question list  

The sensation-seeking question list is part of the full list of UPPS questionnaires 

(Whiteside and Lynam, 2001). For each statement, please indicate how much you agree 

or disagree with the statement.  If you ‘Agree Strongly’ circle 1, if you ‘Agree 

Somewhat’ circle 2, if you ‘Disagree somewhat’ circle 3, and if you ‘Disagree Strongly’ 

circle 4.  Be sure to indicate your agreement or disagreement for every statement below. 

All items in sensation-seeking are reversed, which means that the item needs to be 

reverse scored such as 1=4, 2=3, 3=2, 4=1. 

1. I generally seek new and exciting experiences and sensations. 

2. I'll try anything once. 

3. I like sports and games in which you have to choose your next move very 

quickly. 

4. I would enjoy water skiing. 

5. I quite enjoy taking risks. 

6. I would enjoy parachute jumping. 

7. I welcome new and exciting experiences and sensations, even if they are a little 

frightening and unconventional. 

8. I would like to learn to fly an airplane. 

9. I sometimes like doing things that are a bit frightening. 

10. I would enjoy the sensation of skiing very fast down a high mountain slope. 
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11. I would like to go scuba diving. 

12. I would enjoy fast driving. 

4.2.6 Prediction of the sensation-seeking scores from the functional connectivities 

A schematic overview of the method used in this study is shown in Fig. 4.1A. The 

method used was developed from methods described by Liu et al. (2018a) and Cui and 

Gong (2018) in which the links optimal in making the prediction, and an elastic net 

linear regression model was used to make the predictions because it is a powerful 

approach when there is some correlation between the features. The functional 

connectivity matrix includes functional connectivity links which have some 

correlations with each other. We made a comparison and found that the elastic net 

regression had a considerably better prediction performance than an LSVR in the 

current study. 

Elastic net regression combines L1-norm and L2-norm regularizations in the 

standard linear regression loss function to make predictions (Zou and Hastie, 2005). 

The regression model used is as follows: 
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where �̂� is the best estimate of the predicted value of the sensation-seeking scores, 

𝑋𝑗  is the value of the 𝑗𝑡ℎ  feature used in the prediction model, 𝛽𝑗  is  the regression 

coefficient of the 𝑗𝑡ℎ  feature and 𝑝 is the number of features. The aim of the regression 

model is to find a function 𝐹(𝑋) = ∑ 𝛽𝑗
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𝑗=1 𝑋𝑗 + 𝛽0 that can best predict the actual 
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where 𝑓(𝑥𝑖) is the value of the predicted behavioural score for the 𝑖𝑡ℎsubject, 𝑦𝑖 

is the observed behavioural score, and 𝑁 is the number of subjects. A mixing parameter 

α is used to control the relative weighting of the L1-norm and L2-norm contributions. 

In addition, a regularization parameter λ is used to control the trade-off of penalties 

between bias and variance. 
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The LASSO function in MATLAB was used to implement elastic net regression. 

The optimal λ value and a-value were obtained by cross-validation within the training 

dataset of each leave-one-out loop.  

4.2.7 Individual prediction framework 

Leave one out cross-validation was performed in the prediction stage to test the 

accuracy (Fig.4.1A). In each leave-one-out iteration, the most significantly correlated 

group of FC links were selected by performing a partial correlation between the 

functional connectivity and the sensation-seeking score across all samples in the 

training set except for the single test sample. The effects of age, sex, ethnicity, race and 

head motion were regressed out. The individual prediction was performed with groups 

of functional connectivities more significant than a certain p threshold (i.e. the p value 

of the partial correlation between the functional connectivity and the sensation-seeking 

score had to be under the p threshold) (Liu et al., 2018a). The p threshold was obtained 

by cross-validation within the training dataset of each leave-one-out loop. The elastic 

net regression model was trained with the training set with the group of the most 

significant functional connectivities defined in this way and tested by predicting the test 

sample with leave one out cross-validation. Example code of feature selection and 

optimizing the model parameters is attached in Appendix-6. The Pearson correlation 

coefficients between the actual scores and the predicted scores were computed to 

quantify the accuracy of the prediction (Erus et al., 2015; Siegel et al., 2016). To yield 

the final accuracy, the predicted score of each participant in each iteration was saved in 

one vector, and the correlation between the predicted scores and actual scores was 

calculated across all 414 participants.  

4.2.8 Statistical test: permutation analysis 

To determine whether the predicted scores obtained from the prediction model 

were significantly better than random, a nonparametric permutation procedure was 

adopted. The symptom scores across all participants were randomly shifted in each 

permutation. Then the elastic net prediction analysis was conducted. The null 

distribution for the highest correlation between the actual scores and predicted scores 

was formed by running the permutation procedure 10000 times, resulting in a 

significance level of p <0.0001 (Fig. 4.4).  
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Figure 4.4. Permutation test results for the sensation-seeking score predicted from the 

functional connectivities when the participants' scores were shuffled with respect to their 

functional connectivities. The blue lines stand for the null distribution formed by 10000 

iterations. The red line stands for the correlation r value between the actual score and the 

predicted score obtained by the unshuffled prediction model. 

 

4.2.9 Association of sensation-seeking with risk-taking, and substance use 

The correlation between the sensation-seeking score and the risk-taking score was 

also measured to examine whether the sensation-seeking score is associated with risk-

taking behaviours. The risk-taking score was provided by the domain-specific risk-

taking scale (DOSPERT) (Blais and Weber, 2006), which assesses risk-taking in five 

content domains: financial decisions (separately for investing versus gambling), 

health/safety, recreational, ethical, and social decisions. The associations between 

sensation-seeking and the overall risk-taking score and its five subscales were examined. 

In addition, the correlation between the sensation-seeking score and the substance 

use scores available in the NKI dataset was also measured to examine whether the 

sensation-seeking score is associated with substance use behaviours. The measure of 

substance use was obtained with the adult self-report questionnaire (ASR) (Achenbach 

and Rescorla, 2003) results available in the NKI dataset. The associations between 

sensation-seeking and alcohol, tobacco, and drug use were examined.  
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4.3 Results 

4.3.1 Functional connectivities that predict and are correlated with sensation-

seeking 

After the functional connectivity matrices of all participants had been calculated, 

the partial correlation between each functional connectivity and the sensation-seeking 

score across all participants was calculated with age, sex, ethnicity, race and head 

motion regressed out. Five functional connectivities were significantly correlated with 

the sensation-seeking score at p < 0.05 FDR corrected, corresponding to a p threshold 

of 3.83e-05 in the partial correlations (Table 4.1).  

 

Region 1 Region 2 r value p value 

Amygdala_L Rolandic_Oper_L 0.175 3.81E-04 

OFCmed_L Cingulate_Ant_R 0.220 7.28E-06 * 

OFCmed_L Cingulate_Ant_L 0.206 2.75E-05 * 

OFCmed_R Cingulate_Ant_R 0.192 9.00E-05 

OFCpost_L Cingulate_Ant_L 0.191 1.03E-04 

Olfactory_L Cingulate_Ant_R 0.207 2.43E-05 * 

Olfactory_L Cingulate_Ant_L 0.203 3.61E-05 * 

Olfactory_L Frontal_Inf_Orb_2_L 0.188 1.35E-04 

Rectus_R Cingulate_Ant_R 0.236 1.34E-06 * 

Rectus_R Cingulate_Ant_L 0.202 3.83E-05 

Rectus_R Frontal_Sup_2_R 0.189 1.23E-04 

 

Table 4.1. The eleven functional connectivities were optimal for use in predicting sensation-

seeking using an elastic net regression model. The r values show the correlation between the 

functional connectivity and the sensation-seeking score, and the p values show the significance 

level. Five functional connectivities that were significantly correlated with the sensation-

seeking score at p < 0.05 FDR corrected are indicated by *. 

 

For the predictions, the functional connectivity matrix was thresholded with many 

different p values for the correlation between the sensation-seeking score and the 

connectivities to find the links optimal for making the prediction. An elastic net 

regression model was used to predict the sensation-seeking score with leave-one-out 

cross-validation. The overall accuracy of this prediction model given by the correlation 
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r value between the predicted score and the actual score across all 414 participants was 

0.34 (p = 7.3x10-13) (shown in Fig. 4.1B). (The result was shown to remain highly 

significant with 10-fold cross-validation, as described in the next section.) Random 

permutation analysis was used to test the significance level of the prediction. The 

sensation-seeking scores were shuffled concerning the values predicted from the 

functional connectivities across all participants randomly in each iteration. In ten 

thousand iterations of the random permutation test, the results were significant at the 

maximum level obtainable of p < 0.0001 (Fig. 4.4). 

Eleven functional connectivities were found to be optimal in making the prediction 

of sensation-seeking (Table 4.1). 10 of these 11 links involved medial orbitofrontal 

cortex areas and eight of the medial orbitofrontal cortex links were with the anterior 

cingulate cortex (Fig. 4.2).  

 

 

Figure 4.2. The brain regions related to the 11 functional connectivities were optimal in 

predicting sensation-seeking. The AAL2 regions shown in this figure with labels are medial 

OFC (OFCmed), olfactory (OLF), rectus, ACC, and superior frontal gyrus (SFG). 

 

One link involved the lateral orbitofrontal cortex, and one the amygdala. Five of 

the links, all involving the medial orbitofrontal cortex and anterior cingulate cortex, 

were individually significantly correlated (p<0.05 after FDR correction) with sensation-

seeking with all the participants involved (Fig. 4.3). The AAL2 areas (Rolls et al., 2015) 

included here as medial orbitofrontal cortex were medial OFC, posterior OFC, anterior 
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OFC, the rectus, and the olfactory tubercle (Rolls et al., 2018). (The olfactory tubercle 

is included in these medial areas because, in the AAL2 atlas, it is at least continuous 

with the posterior orbitofrontal cortex; and has high correlations of its resting-state 

functional connectivity with the other AAL2 medial orbitofrontal cortex areas listed 

(Rolls et al., 2018)). 

 

 

Figure 4.3. The eleven functional connectivities that were used in the optimal prediction of 

sensation-seeking. Lateral, medial and dorsal views are shown. The AAL2 regions shown in 

this figure with labels are medial OFC (OFCmed), posterior OFC (OFCpost), olfactory (OLF), 

rectus, ACC, amygdala (AMYG), superior frontal gyrus (SFG), and rolandic operculum. 

 

In more detail, these 11 links were those that were common to all runs of the leave-

one-out cross-validation, which typically used 18 links with a threshold for the 

correlation matrix that gave the optimal prediction. We checked that these 11 links were 

able, if used alone, to obtain a good prediction, and that was found to be the case, in 

that the predicted sensation-seeking scores were correlated with r=0.335 (p=2.4x10-12) 

with just the 11 links (Table 4.1). We can, therefore, have confidence that good 

predictions can be made from just the 11 functional connectivity links shown in Table 

4.1. 

In addition, to provide another way of assessing how well the functional 

connectivities could make predictions, they were used in an analysis to predict who was 

high on sensation-seeking and who was low. The participants were split at the median 

into two groups, high and low on sensation-seeking. In a leave-one-out cross-validation 
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using support vector classification, the prediction was 63% correct (p<0.001) using a 

permutation test. The procedure used was as described above, selecting the optimal 

number of functional connectivity links from those with the most significant differences 

between the two groups. Eleven links were used and included nine from the medial 

orbitofrontal cortex, of which six were with the anterior cingulate cortex. These links 

are similar to those that successfully predict the sensation-seeking score in the elastic 

net regression model.  

In addition, we showed that with only links between the medial orbitofrontal 

cortex areas and the anterior cingulate cortex (i.e. part of the common links in the elastic 

net regression model) used for the prediction of high vs low sensation-seeking 

individuals, then the prediction was 62% correct (where chance is 50%). Thus, a 

reasonable prediction of the high sensation-seeking individuals could be made from just 

the eight functional connectivity links between the medial orbitofrontal cortex and the 

anterior cingulate cortex (Table 4.1) which were used to make the optimal prediction 

of the sensation-seeking score in Fig. 4.1B.  

4.3.2 Further statistical tests 

An elastic net regression model was used to predict from the functional 

connectivities the sensation-seeking score with leave-one-out cross-validation. To test 

whether the cross-validation method will affect the statistical significance of the 

prediction model, this result was checked with 10-fold cross-validation, which resulted 

in a highly significant correlation with p=5.6x10-5, r=0.20. The ten-fold cross-validation 

was performed by using each fold to predict the sensation-seeking score of the 

approximately 41 individuals (of the 414 participants) used as the test set in that fold, 

and then after all folds had been run, calculating the correlation between the 414 

predicted and actual scores. The procedures for cross-validation to obtain parameter 

values for lambda and alpha were analogous to those used for the leave-one-out analysis. 

4.3.3 Other UPPS-P subscales  

In the present study, only the sensation-seeking subscale of the UPPS-P had 

significant correlations with functional connectivities after FDR correction, and in 

addition, the scores could be predicted from the functional connectivities for the 

sensation-seeking scores. The other four subscales were investigated, but none had a 
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significant correlation with any functional connectivity after FDR correction, and the 

prediction from the functional connectivities for these four subscales were low. 

As these five subscales stand for different dimensions of impulsivity, there could 

be similarities and differences between these subscales. Hence, correlation analyses 

between the five subscales were performed to check their similarity. The sensation-

seeking subscale showed a relatively low correlation with the other four subscales, 

explaining the different results for sensation-seeking compared to the other four 

subscales of impulsive behaviour in the UPPS (Table 4.2). 

 

 
Negative 
Urgency 

Lack of 
Premeditation 

Lack of 
Perseverance 

Sensation 
Seeking 

Positive 
Urgency 

Total 
score 

Negative 
Urgency 1.000 0.353 0.402 0.240 0.691 0.795 

Lack of 
Premeditation 0.353 1.000 0.473 0.154 0.312 0.589 

Lack of 
Perseverance 0.402 0.473 1.000 0.045 0.293 0.553 

Sensation 
Seeking 0.240 0.154 0.045 1.000 0.317 0.616 

Positive 
Urgency 0.691 0.312 0.293 0.317 1.000 0.802 

Total score 0.795 0.589 0.553 0.616 0.802 1.000 

Table 4.2. The correlation matrix between the five subscales and the total score of the UPPS-

P. The number of participants was 414. 

 

4.3.4 Relation between sensation-seeking, risk-taking behaviours and NEO five 

factor personality inventory 

A correlation between the sensation-seeking score and the risk-taking score was 

also performed to examine whether the sensation-seeking score is associated with risk-

taking behaviours. The risk-taking score was provided by DOSPERT (Blais and Weber, 

2006), which assesses risk-taking in five content domains: financial decisions 

(separately for investing versus gambling), health/safety, recreational, ethical, and 

social decisions. The associations between sensation-seeking and the overall risk-taking 

score and its five subscales were examined. The sensation-seeking score was 

significantly correlated with the overall-risk taking score with r=0.49 (p=3.92x10-26) 

across 412 participants (the intersection of the number of participants having fMRI data 

and UPPS-P and DOSPERT scores available). The correlations between the sensation-
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seeking and risk-taking subscales are shown in Table 4.3. The highest correlation of 

sensation-seeking was with the 'recreational' risk-taking subscale. 

 

Risk-Taking r value p value 

Ethical 0.26 7.16e-08 

Financial 0.25 4.56e-07 

Health 0.35 1.21e-13 

Recreational 0.58 4.11e-39 

Social decision 0.19 8.36e-05 

Table 4.3. Correlations between the different risk-taking subscales of the DOSPERT and 

sensation-seeking across 412 participants. 

 

In addition, of the five functional connectivities significantly correlated with 

sensation-seeking after FDR correction, three all involving the medial orbitofrontal 

cortex and the anterior cingulate cortex were significantly associated (p<0.05) with the 

overall risk-taking score as shown in Table 4.4. 

 

Region1 Region2 
Risk-Taking Drug Use Drinking Smoking 

r val p val r val p val r val p val r val p val 

Rectus_R Cingulate_Ant_R 0.108 0.030 -0.012 0.832 -0.009 0.873 -0.147 0.012 

OFCmed_L Cingulate_Ant_R 0.082 0.101 0.031 0.596 0.021 0.718 -0.064 0.273 

Olfactory_L Cingulate_Ant_R 0.107 0.031 0.041 0.489 0.026 0.655 -0.084 0.153 

OFCmed_L Cingulate_Ant_L 0.088 0.078 0.028 0.628 0.022 0.714 -0.026 0.653 

Olfactory_L Cingulate_Ant_L 0.144 0.004 0.055 0.351 0.038 0.513 -0.036 0.542 

Table 4.4. Correlations and associated p values for the relation between the five links related 

to sensation-seeking after FDR correction and other behaviours, including risk-taking. 

 

Similarly, association analysis between the sensation-seeking with a five-factor 

personality inventory was performed. The NEO-FFI-3 is a 60-item psychological 

personality inventory that assesses based on the five-factor model: Openness to 

Experience, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. The 

sensation-seeking score was significantly correlated with the Extraversion score 

(r=0.23, p=1.37x10-11), with the Openness to Experience score (r=0.24, p=6.01x10-13), 
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with the Agreeableness score (r=-0.24, p=1.61x10-12), with the Conscientiousness score 

(r=-0.03, p=0.36), and with the Neuroticism score (r=-0.01, p=0.70). 

4.3.5 Relation between sensation-seeking and substance use (drinking, smoking 

and other drugs) 

A correlation between the sensation-seeking score and the substance use scores 

available in the NKI dataset was also performed to examine whether the sensation-

seeking score is associated with substance use behaviours. The measure of substance 

use was obtained with ASR (Achenbach and Rescorla, 2003). The sensation-seeking 

score was correlated with the drug usage (including cannabis and cocaine) per day 

r=0.29 (p=3.13x10-7), correlated with alcohol usage per day r=0.21 (p=1.89x10-4), and 

correlated with tobacco usage per day r=-0.024 (p=0.67) across 298 participants 

(intersection number of participants having fMRI data, UPPS-P score and DOSPERT 

score available). 

The five functional connectivities that were significantly correlated with 

sensation-seeking after FDR correction did not, in general, have significant correlations 

with these measures of drug abuse, as shown in Table 4.4. 

4.4 Discussion 

In this investigation, it was found that it was possible to predict the sensation-

seeking score of 414 individuals from resting-state functional connectivities, which 

mainly involved the medial orbitofrontal cortex and anterior cingulate gyrus. The 

method used involved the selection of an optimal threshold for the functional 

connectivity correlation matrix to predict the sensation-seeking score, which was 

r=0.34, p=7.3x10-13. The prediction method used an elastic net regression model, which 

was found to be more effective than support vector regression. 10 of the 11 common 

links used in each leave-one-out iteration to predict sensation-seeking involved medial 

orbitofrontal cortex areas and eight of the medial orbitofrontal cortex links were with 

the anterior cingulate cortex. This was supported by the finding that 5 of these links 

were significantly correlated with the sensation-seeking score after FDR correction. 

The behavioural assessment used was UPPS, which measures impulsive behaviour. 

The sub-score of the UPPS, which produced the most significant correlations with the 

functional connectivities, was the sensation-seeking score, and for that reason is the 

focus of this project. Sensation-seeking may be one factor that can lead to impulsive 
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behaviour. Impulsive behaviour has many components or subtypes (Dalley and 

Robbins, 2017), and one component may be related to decreased sensitivity to non-

reward, which might imply lower functional connectivity of the lateral orbitofrontal 

cortex (Deng et al., 2019). The lateral orbitofrontal cortex, especially on the right, 

continues round the inferior convexity to the inferior frontal gyrus, but this does not 

happen on the left as much because the inferior frontal gyrus on the left includes Broca’s 

area. However, in the research of Cheng et al. (2019b), it was found that increased 

functional connectivity involving medial orbitofrontal areas in drinkers of alcohol was 

also associated with increased impulsivity, so they argued that increased sensitivity to 

reward might also lead to high impulsivity. That could be another component or type 

of impulsivity. The association of sensation-seeking with impulsivity was supported in 

the present investigation by the finding that risk-taking (an aspect of impulsivity) was 

somewhat correlated with the sensation-seeking score with r=0.49 and that three of the 

five medial orbitofrontal cortex links with the anterior cingulate cortex that were 

implicated in sensation-seeking had significant correlations with risk-taking as 

measured by the DOSPERT (Blais and Weber, 2006). A concept then related to the 

present investigation is that some types of impulsive behaviour can be related in part to 

increased functional connectivity of the medial orbitofrontal cortex reward system with 

the anterior cingulate cortex action-outcome system; and that this functionality 

contributes to sensation-seeking. Consistent with this concept, we found that the 

sensation-seeking score was correlated with positive affect (r=0.14, p<0.003), which 

relates the sensation-seeking score to some types of positive behaviour.  

The method of making optimal predictions of behaviour from functional 

connectivity by searching for the best threshold for the functional connectivity 

correlation matrix has been used in only a few studies before (Liu et al., 2018a; Liu et 

al., 2018b) to the best of our knowledge. Its use in combination with an elastic net 

regression for making the prediction was found to be more powerful than using support 

vector regression.  

A previous task-related fMRI study showed that high sensation seekers have a 

high activation to arousing images in the posterior medial orbitofrontal cortex (Abler et 

al., 2006; Joseph et al., 2009).  Activations in the nucleus accumbens (which receives 

from the orbitofrontal cortex) are high in sensation-seekers in a monetary incentive 

delay task (Abler et al., 2006). There is also extensive evidence that the human medial 

OFC areas, including Brodmann area (BA) No.13, are activated by rewarding stimuli 
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that are subjectively pleasant (including pleasant odours, pleasant touch, pleasant flavor, 

and monetary reward) (O'Doherty et al., 2001; Grabenhorst and Rolls, 2011; Rolls, 

2014a; Rolls, 2017b). It was very interesting that in our study, without any task, 

differences in the functional connectivity of the medial orbitofrontal cortex were related 

to sensation-seeking. 

The anterior cingulate cortex is relevant to emotion for it receives input from the 

orbitofrontal cortex about the value of emotional stimuli and implements instrumental 

goal-directed actions using action-outcome learning. In this study, five functional 

connectivities which were significantly correlated with sensation-seeking scores after 

FDR correction was between the ACC areas and the medial OFC areas. This provides 

evidence to elucidate further the hypothesis that the orbitofrontal cortex sends reward 

and non-reward information to the ACC where the reward/non-reward signals can be 

interfaced to cingulate systems that learn actions to obtain reward and avoid non-reward 

and punishers (Rushworth et al., 2011; Rushworth et al., 2012; Rolls, 2014a; Rolls, 

2017b). The effects of high functional connectivity described here between the medial 

orbitofrontal cortex and the anterior cingulate cortex may be related to a strong effect 

of reward on promoting actions, which is expressed as sensation-seeking. 

In conclusion, this research reveals a clear association between functional 

connectivity involving the medial orbitofrontal cortex and sensation-seeking, with 

connectivity involving medial orbitofrontal cortex areas and the anterior cingulate 

cortex especially prominent. It was quite remarkable was that it was possible to predict 

the sensation-seeking score only from 8 links involving different medial orbitofrontal 

cortex areas and the anterior cingulate cortex with a correlation of r=0.300 (p<4.8x10-

10). (The corresponding value with the best 11 links shown in Table 4.1 was r=0.335 

(p<2.4x10-12).) This provides clear evidence that the relation between these two brain 

areas, the medial orbitofrontal cortex and the anterior cingulate cortex, is strongly 

involved in sensation-seeking. Moreover, the concept was advanced that one type of 

impulsivity, which is related to sensation-seeking, is related to increased functional 

connectivity of a reward-related cortical region, the medial orbitofrontal cortex. 
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Chapter 5 

Comparison of Granger Causality and Effective Connectivity 

Features with Machine Learning Prediction Models  

5.1 Motivation 

The applications of functional connectivity measured from resting-state fMRI data 

have helped to understand the mechanism of brain connections, as reported in many 

studies and many of my projects. However, the functional connectivity can only give 

an undirected temporal correlation of BOLD signal change between pairs of brain areas, 

with no explanation of which direction these brain areas interact with each other. 

Therefore, it is worth exploring more methods to measure the projection relations of 

these interactions. In this project, the Granger causality modelling (Hamilton et al., 

2011) and effective connectivity modelling (Gilson et al., 2018) were performed to 

measure the directional connectivity of the brain. Furthermore, the effects of these two 

directional connectivity methods on measuring the brain were examined by performing 

predictions on the behavioural measure (verbal intelligence) with five different machine 

learning regression algorithms.  

5.2 Method 

5.2.1 Granger causality and effective connectivity 

The concept of cross prediction was the base of the Granger causality. To be 

specific, if including the previous values of time series X enhances the future forecast 

of time series Y, X is defined to have a causal effect on Y (Granger, 1969). The efficacy 

of cross-prediction could be deduced from the residual error after the prediction 

(Roebroeck et al., 2005) or the magnitude of the predictor coefficients (Blinowska et 

al., 2004) in any two time-series X and Y. Both of these two approaches are identical, 

and the detailed analyses on the relationship of these two methods are given by Granger 

(1969). The model order was typically determined by the Akaike information criterion 

(AIC). (Akaike, 1974).  The calculation of Granger causality values between pairs of 

brain regions was performed by the toolbox developed by Luo et al. (2013). Detailed 

method description of Granger causality is as shown in the method chapter (Chapter 3). 
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Effective connectivity is defined as an estimation of the strengths of dynamical 

interactions between neural populations in the cortex hypothesized to shape functional 

connectivity. Effective connectivity in this project was calculated by the effective 

connectivity method developed by Gilson et al. (2016). To assess effective connectivity, 

this method used a cortical model that incorporates data from Diffusion-weighted MRI 

and fMRI. This method can be applied to the whole brain, while the traditional effective 

connectivity ‘dynamical causal modelling’ (Marreiros et al., 2008) can only be used to 

very few brain regions due to its high computational complexity. Detailed method 

description of effective connectivity is as shown in the method chapter (Chapter 3). 

5.2.2 Participants, dataset, and behavioural measure 

The data used in this investigation is from the enhanced Nathan Kline Institute-

Rockland Sample dataset (Nooner et al., 2012). Details of this dataset are described in 

Chapter 4 (section 4.2.1) and preprocessing of the fMRI data is in Chapter 4 (section 

4.2.2). In this project, 477 participants with available fMRI data and verbal intelligence 

measures were investigated, aged 18 to 85. 

The verbal intelligence measure came as a subscale of the Wechsler Abbreviated 

Scale of Intelligence (WASI-II) (McCrimmon and Smith, 2013). The WASI-II is a 

general intelligence trail of overall cognitive performance, which includes four subtests: 

block design (13-item), vocabulary (31-item), matrix reasoning (30-item), and 

similarities (24-item). The verbal intelligence score was obtained as a combination of 

the vocabulary and similarities subsets. More descriptions of WASI-II can be found on 

the NKI website (http://fcon_1000.projects.nitrc.org/indi/enhanced/assessments/wasi-

ii.html). The verbal intelligence score ranges from 65 to 143 of these 477 participants 

(mean=103.8, SD=12.3). 

5.2.3 Prediction models with Granger causality and effective connectivity  

To compare how Granger causality and effective connectivity model the brain 

efficiently, prediction models with Granger causality and effective connectivity as 

predictors independently were built to examine which connectivity feature of the brain 

will produce higher prediction accuracy on the same behaviour measure. To be more 

comprehensive and analyse the efficiency of different prediction models, five 

commonly used prediction models in machine learning were compared in this 

investigation, including ordinary least squares regression (OLSR), linear support vector 

http://fcon_1000.projects.nitrc.org/indi/enhanced/assessments/wasi-ii.html
http://fcon_1000.projects.nitrc.org/indi/enhanced/assessments/wasi-ii.html
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machine regression (LSVR), LASSO regression, ridge regression, and elastic net 

regression. Detailed method descriptions of these five regression algorithms can be 

found in Chapter 3 (section 3.2). The scikit-learn library of Python was utilized to 

perform OLSR, LSVR, ridge regression, LASSO regression, and elastic net regression 

(http://scikit-learn.org/) in this project. 

5.2.4 Individualized prediction framework 

Five prediction models were performed on the Granger causality and effective 

connectivity features separately. A schematic overview of the prediction framework is 

shown in Fig. 5.1. In this project, all features, i.e., whole brain connectivity links were 

included in the prediction model without prior feature selection, as the aim of this 

investigation was comparing the efficiency of Granger causality and effective 

connectivity on modelling the whole brain connectivity instead of getting high 

prediction accuracy. 5-fold cross-validation was applied to examine the prediction 

accuracy of these models. For the LSVR, LASSO regression, ridge regression, and 

elastic net regression, a nested 5-fold cross-validation was used to optimize parameters 

in these models. Details are as follows. 

 

 

Figure 5.1. Schematic overview of the method. 
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       Outer 5-fold cross-validation 

For outer 5-fold cross-validation, all samples were approximately equally divided 

into 5 sample subsets. All samples were sorted from small to large according to the size 

of the verbal intelligence value of the data set and then regard the samples sorted as (1, 

6, 11, ...) as the first sample subgroup. By analogy, (2, 7, 12, ...) was the second sample 

subgroup, (3, 8, 13, ...) was the third sample subgroup, (4, 9, 14, ...) was the fourth 

sample subgroup, (5, 10, 15, ...) was the last sample subgroup, which was the fifth 

sample subset. This method of splitting the data set avoided the random deviation 

between the subsets and the large calculation cost caused by repeating the random 

splitting procedure many times. Among the five sample subsets, four subsets were used 

as the training group, and the other subgroup was employed as the test group. Here, all 

the training sample data was used to construct the prediction models, and then the 

prediction results of the test samples were computed. To quantify the prediction 

accuracy of the regression models, the Pearson correlation coefficient and the mean 

absolute error (MAE) between the predicted score and the actual score were computed. 

All training and testing processes were performed five times to ensure that each of the 

five subsets was employed as a test group. The final model accuracy was achieved by 

averaging the correlation and MAE of the five iterations. 

Inner 5-fold cross-validation and parameter tuning 

In addition to the OLSR model, the remaining four models all needed to find the 

optimal parameters that suited them during the training process. Therefore, in each 

training of the external 5F-CV, the inner 5F-CV was used to determine the optimal 

parameters of the correlation regression algorithm (Lasso, ridge λ, elastic net λ, α and 

LSVR C). Since the values of C and λ were opposite to each other, the value range of 

C is [2-5,2-4,...,29,210], so the value range of λ is [2-10,2-9,..., 24, 25]. For the value range 

of α in the elastic net regression was [0,0.1,...,0.9,1]. Based on the given C and λ, a grid 

search was performed on the elastic net regression, and 176 (16 * 11) sets of the (λ, α) 

parameters was obtained. 

For LSVR with parameter C, ridge and LASSO with parameter λ, and elastic net 

regression with parameters λ and α, the training and the test groups were divided 

according to the external 5F-CV described above. Four sample training subsets were 

used to determine the parameter C (LSVR) or λ (LASSO and ridge regression) or a 

given parameter set (λ, α) (elastic net regression) to train the optimal prediction model 
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and the remaining subset was used to test. The above process was repeated five times 

so that each subset was the test set once, and the results of 5 internal CVs were obtained. 

For each internal 5F-CV iteration, a correlation coefficient value and MAE were 

generated for each parameter. Then the average value of the five inner loops of MAE 

and correlation coefficient was obtained. The mean correlation r values and the 

reciprocal of the mean MAE were denoted as the internal prediction accuracy. Finally, 

the optimal parameters were determined by holding the highest internal prediction 

performance. 

5.2.5 Sampling and model fitting method 

To study the impact of the training set size on the prediction effect of the regression 

models, different numbers of training subsets were extracted from the entire sample set. 

In theory, with the gradual increase of the training sample size, the prediction 

performance of the machine learning model will no longer be sensitive to the size of 

the sample size. At the same time, to reduce the amount of calculation, we increased 

from 30 to 450 samples with 30 as the increment, thereby generating 15 training sample 

sizes. Fifty random samplings were used for every sample size to achieve a stable result. 

Then the average value of these fifty prediction accuracy (i.e., correlation r) were 

calculated. Next, how the average accuracy of the prediction results was affected by the 

number of samples was the focus of this investigation. 

5.3 Result 

5.3.1 Prediction effect of Granger causality and effective connectivity 

Firstly, prediction models with the EC and GC feature with five machine learning 

regression algorithms with all samples available in the NKI dataset were built to predict 

the verbal intelligence measure and provided an overall prediction effect comparison. 

Four hundred seventy-seven subjects with available fMRI and behavioural data were 

included in this investigation. The plots between the predicted score and the actual 

verbal intelligence score by different regression algorithms are illustrated in Fig. 5.2. 

Regardless of the algorithm, the EC features-based prediction performed slightly less 

efficiently than the GC feature-based prediction on the same behaviour with a mean 

correlation r value across these five EC models at r=0.17 and of GC at r=0.2. In the EC 

feature-based prediction models, the ridge regression model provided the highest 



60 
 

prediction accuracy at r=0.22. In contrast, in the GC based prediction models, the elastic 

net model achieved the highest prediction accuracy at r=0.23. Except for the ridge 

regression model, the correlation r  values of five regression models using GC feature 

were higher than those of regression models using EC feature. In all the regression 

algorithms, the dispersion degrees of the actual and predicted scores points were 

different based on EC and GC features. In the prediction results of Lasso regression, 

the overlapping area was the smallest among the five algorithms (Fig. 5.2).  

 

 

Figure 5.2. Scatter plots and model fitting curves between the actual and predicted scores with 

five regression algorithms including OLSR, LASSO, ridge, elastic net and LSVR with all 477 

participants included.  

 

5.3.2 Sample size effect of the algorithms 

To further investigate the relationship between the prediction effect of each 

algorithm and sample size, similar prediction procedures with each algorithm with 15 

different sample sizes were performed. The prediction effect was indicated by the mean 

value of the correlation r value between the predicted score and actual score over 50 

random selection of sample groups of each sample size (Fig. 5.3). When modelling with 

the whole-brain EC features to predict verbal intelligence, LSVR regression yielded 

highest prediction accuracies for sample sizes smaller than 90 among these five models 

(Fig. 5.3A). The performance of the LSVR model began to be lower than the other four 

models when sample sizes were bigger than 90. In contrast, the OLSR, LASSO, ridge, 

and elastic net, provided better prediction accuracy results when the sample size 
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increased. The elastic net model provided the highest prediction accuracy among all 

these five prediction models when the sample size was larger than 150. Additionally, 

the improvement of the prediction accuracy of the OLSR model with the sample size 

increasing was not obvious comparing with the other three algorithms, i.e., LASSO, 

ridge and elastic net models. In the prediction models using the whole-brain GC 

features, the prediction accuracy of all the algorithms except for the LSVR, increased 

when the sample size increased. Similar to the EC feature-based model, the elastic net 

provided the highest accuracy when the sample size was bigger than 150. Regardless 

of the algorithm, when the sample size was smaller than 240, EC feature-based 

prediction models provided better prediction results than the GC feature-based 

prediction models. When the sample size achieved and beyond 240, the GC models 

provided better prediction accuracy than EC models. Besides, no matter EC or GC 

features were used, the performance of elastic net regression was better than the other 

four regression models when sample sizes were larger than 150.  

 

 
Figure 5.3. Prediction accuracy of EC and GC based prediction models with five regression 

algorithms. Different prediction algorithms were marked with different colours, and 15 sample 

sizes were selected from 30 to 450. With a certain sample size, 50 subsets were selected 

randomly within the whole dataset, and the mean prediction accuracy was shown in this figure 

to show a robust result.  A) The plot of EC feature-based prediction accuracy (mean correlation) 

trend with 15 different sample sizes with 50 sample subsets of each sample size; B) The plot of 

GC feature-based prediction accuracy (mean correlation) trend with 15 different sample sizes 

with 50 sample subsets of each sample size. 

 

5.3.3 Algorithm-to-algorithm similarity  

To further investigate the similarity of the prediction results between these five 

algorithms, the correlation of the prediction scores with all participants between each 

pair of algorithms were calculated to form a similarity matrix between these algorithms 
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(Fig. 5.4). The algorithm-to-algorithm similarity results of five regression algorithms 

were calculated based on the predicted scores across all participants using both EC 

features (Fig. 5.4A) and GC features (Fig. 5.4B). The results of EC features-based 

algorithm-to-algorithm similarity was quite different from that of GC features-based. 

Regardless of the features used, LASSO regression showed very low similarity with all 

other algorithms except elastic net using EC features. This was consistent with its lower 

prediction accuracy compared to other algorithms. For the EC feature-based prediction 

models, taking the elastic net model as reference (which provided the highest prediction 

accuracy), the correlation between the elastic net model and the other four models, from 

high to low, was LASSO, LSVR, ridge regression, and OLSR. When using GC features, 

the similarity of OLSR and ridge regression was close to 1 (Fig. 5.4B), which indicated 

that the parameter 𝜆 in the ridge regression model was close to 0, which was equivalent 

to OLSR regression. Because of the larger number of GC features and relatively lower 

number of EC features, the problem of multicollinearity greatly influenced the 

predicted scores of ridge regression with GC features. Compared with the algorithm-

to-algorithm similarity results using EC features, the similarity results of the elastic net 

and OLSR, elastic net and ridge, and ridge and OLSR raised in the GC feature models. 

 

 

Figure 5.4. A) A 5 by 5 matrix representing the algorithm-to-algorithm similarity of EC 

features-based predicted scores. B) A 5 by 5 matrix representing the algorithm-to-algorithm 

similarity of GC features-based predicted scores. The darker the colour, the higher the 

correlation. 
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5.4 Discussion 

Regardless of the algorithms, the GC feature-based models predicted better than 

the EC feature-based model in the prediction models with EC feature and GC feature 

with all participants included, with a mean correlation r value across these five EC 

models at r=0.17 and of GC at r=0.2. The best prediction model with the EC feature 

was with the ridge regression algorithm resulting in r=0.22. The best prediction model 

with GC feature was with the elastic net regression with r=0.23. The correlation r value 

between the predicted and the actual score is not very high, but acceptable according to 

existing connectome-based prediction literature (Cai et al., 2020; Itahashi et al., 2021; 

Ren et al., 2021). As we focus on comparing the efficiency of the Granger causality and 

effective connectivity on the whole brain, no feature selection was performed as in 

Chapter 4. Hence, this can be a reason of low accuracy. The five prediction models 

performed differently with EC and GC feature in the further analysis with sample size 

changes. However, the elastic net regression provided better prediction accuracy than 

the other four algorithms in both EC and GC based models.  

For the OLSR prediction models, there were significant differences in the 

prediction performance based on EC and GC features. According to the previous 

introduction, no regularization terms were involved in the OLSR algorithm. Ridge 

regression and LSVR, on the other hand, used L2 norm regularization, LASSO used L1 

norm regularization, while elastic net regression used both L1 and L2 norm 

regularization. In all linear regression algorithms, the lack of regularization in the 

OLSR model resulted in a high probability of inconsistent prediction results. According 

to the existing research, the regularization problem in the linear regression models with 

high dimensional features may depend on the related matrix. By using regularization, 

the negative impact of data noise on the model can be effectively overcome. In 

summary, the impact of regularization on the predictive performance of regression 

algorithms will depend on the ill-conditioned degree and noise level of a given problem. 

Therefore, when the feature dimension is high, and the sample size is small, the 

prediction performance of the model will be very unstable, so the OLSR should be used 

with extreme caution. 

As shown in Fig. 5.3, the prediction models of the LASSO regression, ridge 

regression, and elastic net regression with both the EC and GC features had stable 

prediction accuracy than the OLSR. Additionally, the prediction accuracy of these three 
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algorithms raised with the increase of sample size generally. LASSO regression, ridge 

regression, and elastic net regression are all improved versions for the problems of 

OLSR. In simple terms, OLSR fits the parameters to minimize the squared loss function. 

Besides, LASSO regression is based on the square loss function plus the L1-norm 

penalty term to fit the parameters, and ridge regression optimizes based on OLSR based 

on the application of the L2-norm penalty term. Elastic net regression adopted both L1 

norm and L2 norm for regularization. The LASSO objective function is convex and 

easy to calculate, and the coefficient of the unrelated variable is 0, and the robustness 

is good. Ridge regression only has a display solution, and the calculation is simple; 

Elastic net and Lasso regression can compress small coefficients to 0 and selectively 

compress one of the collinear variables. Notably, because of the larger number of GC 

features and relatively lower number of EC features, the problem of multicollinearity 

greatly influenced the predicted scores of ridge regression with GC features, which 

resulted in a relatively lower accuracy with EC features than the GC feature and low 

stability especially with small sample sizes (n<210, Fig. 5.3A). To further investigate 

the similarity of the prediction results between these five algorithms, the correlation of 

the prediction scores with all participants between each pair of algorithms were 

calculated to form a five-by-five similarity matrix (Fig. 5.4). Regardless of the features 

used, LASSO regression showed very low similarity with all other algorithms except 

elastic net using EC features. This was consistent with its lower prediction accuracy 

compared to other algorithms. 

In conclusion, five commonly used prediction algorithms, including OLSR, ridge, 

LASSO, elastic net and LSVR, were performed to explore the efficiency of the EC and 

GC feature of the brain. Generally, the GC feature provided slightly better prediction 

accuracy than the EC feature, indicating that the GC feature model the directional 

connectivity of the brain better than the EC based on this study. From the prediction 

accuracy point of view, regardless of the algorithms used, the prediction accuracy with 

both EC and GC features were not high (r=0.23 in this study vs r=0.34 in our previous 

study on sensation-seeking with FCs). This can be due to the high dimensional features 

but the small sample size available. Additionally, by comparing the efficiency of these 

five commonly used prediction models, the elastic net regression provided better 

prediction accuracy than the other four algorithms in both EC and GC based models. 

We propose that the elastic net fits better with high dimensional feature data and handle 

multicollinearity better than other algorithms. The OLSR, which does not involve any 
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regularization terms in this method, should not be used in high dimensional data with a 

small sample size, which will provide a very unstable result. In addition, the 

multicollinearity problem greatly influences the predicted result of ridge regression 

worse than the other algorithms. The elastic net, which combines both L1 norm and L2 

norm for regularization, provided better prediction results in this study and fits better 

for neuroimage data based on this study and our previous study on sensation-seeking 

with FC features in Chapter 4. 

Further investigations with other independent datasets and predictions on different 

behaviours can be performed to validate the finding on examining the efficiency of 

Granger causality and effective connectivity on modelling the whole brain directional 

connectivity network. In addition, in terms of the prediction accuracy, further 

investigations can be developed on a larger dataset or try feature selections in advance 

to narrow the feature dimension down to achieve higher prediction accuracy. As in this 

project, the aim was to compare the whole brain EC and GC differences, no feature 

selection was applied in advance.  
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Chapter 6  

Risk-taking in humans and the medial orbitofrontal cortex 

6.1 Introduction 

Risk-taking is a fundamental difference between different people. Here we 

analysed the basis of this difference and show that it relates to how strongly the medial 

orbitofrontal cortex relates to other brain systems. Given that the medial orbitofrontal 

cortex is involved in reward, an implication is that it is differences in the reward value 

of potential goals that is a key factor in whether individuals show risky behaviours 

(rather than for example sensitivity to punishment). The findings provide new insights 

into human behaviour that have potential applications in many walks of life. 

Risk-taking is used to describe the tendency of taking certain risks when people 

were making decisions or aiming for higher targets, which is highly associated with 

sensation-seeking and impulsivity (Green and Myerson, 2013). Besides, risk-taking 

was reported to be associated with drug use, alcohol use, and gambling problems. 

Significant associations between the frequencies of drug use, a large number of drinking 

problems, and sexual risky behaviours were found in different studies (Bjork and 

Pardini, 2015; Braams et al., 2016). In a review of current neural and biochemical 

findings of impulsivity by Dalley and Robbins (2017), a fractionation of impulsive 

behaviour was proposed, which suggested that impulsivity may have many subtypes, 

and these subtypes depend on distinct neuron systems. Three subtypes were described 

in this paper, including: ‘waiting impulsivity’, ‘stopping impulsivity’, and ‘risky 

impulsivity’. Risky impulsivity is about risky decision making and is associated with 

sensation-seeking (Green and Myerson, 2013). The neural mechanisms underlying 

risky impulsivity include the lateral prefrontal cortex involving a preference for 

ambiguity with unknown probabilities of outcomes and the posterior parietal cortex 

involving the tendency for risk with known probabilities (Huettel et al., 2006). 

Individual differences in risk-taking behaviours have been linked to several brain areas, 

as reported in different studies. For example, the ventral striatum was positively 

correlated with a higher tendency in pursuing rewards and a higher likelihood of 

seeking fun (Braams et al., 2016). In the study of Blankenstein et al. (2017), greater risk 

preferences were found related to higher activation of the ventral medial prefrontal 

areas. 
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Furthermore, the tendency to risky impulsivity is often associated with sensation-

seeking (MacPherson et al., 2010; Ruedl et al., 2012). Sensation-seeking was found 

positively correlated with the medial OFC areas in our previous study with the NKI 

dataset (N=414) (Wan et al., 2020). This study suggested that sensation-seeking, which 

is an aspect of impulsivity, may be driven by reward involving the medial OFC areas. 

Besides, a modest association between risk-taking and sensation-seeking found in the 

sensation-seeking study indicates that the risk-taking may be led by the reward 

associated with sensation-seeking. Association between risk-taking and substance use, 

especially alcohol and drug use, has been reported in many studies, although different 

genetics and neuro systems were reported relevant in different studies. In one of our 

previous studies, increased FCs involving the medial OFC regions in alcohol drinkers 

were found correlated with increased impulsiveness (Cheng et al., 2019b). This 

supports the hypothesis that one type of impulsivity is led by reward, which is 

associated with substance use. A more detailed literature review on the current risk-

taking studies is in Chapter 2. 

The aim of the present study is to investigate how brain functional connectivity is 

related to risk-taking using a very large neuroimaging sample of 18,740 participants 

from the UK Biobank. Functional connectivity is measured by the correlation between 

the fMRI BOLD signal between each pair of brain areas, with a high functional 

connectivity providing an indication of strong interactions between areas. A feature of 

the investigation is that risk-taking was measured by self-report from the human 

participants, whereas performance in tasks thought to be related to risky behaviour need 

to be used in animal studies. The measure of risky behaviour used here was shown to 

be valid, in those other measures such as whether the individual is a worrier were 

(negatively) correlated with it, and alcohol and drug use were positively correlated with 

the report measure of risky behaviour. The hypotheses investigated were whether some 

neural systems had their functional connectivity significantly related to self-reported 

human risk-taking; whether the reward-related medial orbitofrontal cortex had high 

functional connectivity in risk-takers; whether the punishment/non-reward lateral 

orbitofrontal cortex has low functional connectivity in risk-takers; and whether the 

report measure of risk-taking was related to substance use and other behavioural 

measures such as worrier status. 

 



68 
 

6.2 Method 

6.2.1 Dataset and resting-state fMRI data 

The UK Biobank is a large-scale biomedical database and research resource 

dedicated to improving the prevention, diagnosis, and treatment of various diseases. It 

follows the health status, medical history, and well-being of 500,000 volunteers aged 

between 37 and 73 years and recruits health information to approved researchers from 

academia and industry. These participants underwent cognitive performance, mental 

health and physical assessments, provided detailed information of their backgrounds, 

living environment, and general behavioural pattern, and agreed to have their health 

followed longitudinally. 19,528 participants with available resting-state fMRI data after 

quality control are mainly investigated in this study, with 10323 females and 9205 

males (ageing from 45 to 79, mean 61.80). 

6.2.2 Behaviour measures 

The risk-taking measure used (UK Biobank data field ID 2040) was the response 

to the question: "Would you describe yourself as someone who takes risks?". An answer 

of ‘Yes’ was scored 1, and of ‘No’ 0. Participants who reported ‘Do not know’ or 

‘Prefer not to answer’ were excluded, leaving 29,956 participants with risk-taking data 

from release 1 of the UK Biobank. 

A worrier/anxious feelings measure (UK Biobank data field ID 1980) also used 

was the response to the question: "Are you a worrier?". Scoring was as for the risk-

taking measure, and provided 30,237 participants, 15,134 of whom provided a response 

of ‘Yes’. 

6.2.3 A t-test on functional connectivity 

Functional connectivity is computed by performing a Pearson correlation of the 

BOLD signal averaged across time between each pair of voxels or brain areas (Biswal 

et al., 1995). In this study, the brain regions were used and defined by AAL2 (Rolls et 

al., 2015). This AAL2 atlas includes 94 brain regions spanning the whole cerebrum, 

excluding the cerebellum. The time series of each pair of brain areas were extracted 

first. Then, the Pearson correlation between these two time courses was calculated to 

measure functional connectivity for each participant. To improve the normality of the 

correlation coefficients, the Fisher’s r-to-z transformation was performed, which results 
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in a 94 by 94 symmetric matrix that each value represents one link between every pair 

of brain regions. 

Two-sample two-tailed t-tests were used to test whether risk-taking is associated 

with functional connectivity in this investigation. The confounding effects of age, sex, 

education, head motion (mean framewise displacements), and site information were 

removed in this analysis. 18,740 participants who have both available resting-state 

fMRI and risk-taking data were included in the t-test, including 4891 risk-taking people 

and 13849 non-risk-taking people. Example MATLAB code for the t-test analysis is 

attached in Appendix-5. 

6.2.4 Longitudinal analysis 

In the UK Biobank dataset, the behaviour measures, including risk-taking and 

worrier/anxious feeling, were tested more than once for each participant. To be specific, 

the measures were tested at baseline time when the participants were first circulated in 

this UK Biobank project, and then another test was taken when the participants returned 

to have an imaging scanning. This follow-up study enables a longitudinal analysis for 

behaviour measures to investigate the changes of certain behaviour and longitudinal 

associations of this behaviour with other behaviours. In this analysis, the longitudinal 

association of risk-taking with other measures, including worrier/anxious and other 

addiction measures, were explored by performing a two-wave cross-lagged panel 

model (CLPM). Covariances including age, sex, and education were regressed out 

before this analysis. The CLPM were implemented with the Lavaan package in R. 

Parameters in this model were estimated by maximum likelihood estimation, and the 

standardized beta coefficients and standard errors were reported in this analysis.   

6.3 Results 

6.3.1 Functional connectivity changes for the risk-taking vs non-risk-taking 

groups 

778 functional connectivities were found significantly different between the risk-

taking and non-risk-taking groups (p<0.001, FDR corrected). The brain regions, 

including the VMPFC, the rectus, the medial OFC, the postcentral, the 

parahippocampal, the middle temporal pole and the superior temporal pole, were 

significantly different in the risk-taking group (Fig. 6.1). The full matrix of the t values 
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of functional connectivities is shown in Fig. 6.2A. The lower triangle of the matrix 

shows the t value of all FCs of the risk-taking group vs the non-risk-taking group; the 

upper triangle of the matrix shows which FCs were significantly different between these 

two groups (p<0.001 uncorrected). Most of these significant different links were higher 

in the risk-taking group compared to the non-risk-taking group, while only 42 links 

were lower in the risk-taking group. Links involving the medial orbitofrontal cortex 

areas (the rectus, the medial OFC, and the posterior OFC) and the VMPFC were higher 

in the risk-taking the non-risk-taking group. Besides, links involving the 

paraHippocampal and the temporal lobe (the temporal pole: superior and middle 

temporal gyrus) were higher in the risk-taking group than in the non-risk-taking group. 

A square of higher functional connectivity links within the temporal lobe is shown in 

Fig. 6.2A.  

 

 

Figure 6.1. Functional connectivity links were significantly higher in the risk-taking group 

(p<0.001, FDR corrected). The number of links higher involving different brain regions is 

shown in this figure, and only the brain regions which have more than 20 links were significant 

are shown. 

 

6.3.2 Worrier/anxious feelings, drug use and alcohol use with risk-taking 

behaviour 

The worrier/anxious feeling was associated with risk-taking with r=-0.122 

(p=7.62e-98) at the behavioural level. Besides, 712 functional connectivities were 
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significantly different between the worrier/anxious feelings and the non-

worrier/anxious feeling groups (p<0.01, FDR corrected) (shown in Fig. 6.2B). Links 

involving the VMPFC, the rectus, the posterior OFC, the cingulate cortex, the 

hippocampus, and the temporal lobe (the temporal pole: superior and middle temporal 

gyrus) were significantly lower in the worrier/anxious feelings group. In summary, the 

functional connectivity links involving the VMPFC, the rectus, the medial OFC areas, 

the hippocampus/parahippocampal, and the temporal lobe (the temporal pole: superior 

and middle temporal gyrus) were significantly negatively associated with the 

worrier/anxious feelings group and significantly positively associated with the risk-

taking group. In addition, for the 778 links significantly associated with risk-taking 

(shown in Fig. 6.2), 767 of these links were positively associated with risk-taking and 

762 of which were negatively associated worrier/anxious feelings; 11 of these links 

were negatively associated with risk-taking and all of that were positively associated 

worrier/anxious feelings. 

 

 

Figure 6.2. A) The difference in functional connectivity in the risk-taking group. The matrix 

of t values for the risk-taking group. The lower triangle matrix shows the functional 
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connectivity across all links of the risk-taking group relative to the non-risk-taking group. The 

upper triangle matrix shows significant links with p<0.001 FDR corrected.  

 

B) The difference in functional connectivity in the worrier/anxious feelings group. The matrix 

of t values for the worrier/anxious feelings group. The lower triangle matrix shows the 

functional connectivity across all links of the worrier/anxious feelings group relative to the non- 

worrier/anxious feelings group. The upper triangle matrix shows significant links with p<0.01 

FDR corrected.  
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C) Only the significantly different functional connectivity links in the risk-taking group (as in 

A)) (upper triangle) and in the worrier/anxious feelings group (as in B))(lower triangle) are 

shown together as a comparison. 

 

 

D) Scatter plots and fitting curves between the t values (differences of functional connectivity) 

in the risk-taking group and the worrier/anxious feelings group.  
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In the longitudinal analysis performed by the Lavaan package, the associations of 

risk-taking with worrier/anxious feelings at baseline and imaging visit time were 

investigated (result as shown in Fig. 6.3). Risk-taking at the baseline time was 

associated with the imaging visit worrier/anxious scores in the longitudinal analysis 

(β=-0.046, p<0.001). The baseline worrier/anxious score was associated with the 

imaging visit risk-taking score with β=-0.035 (p<0.001). In addition to the association 

between the risk-taking and worrier/anxious measures at the same measuring time, the 

former measures of risk-taking and the successive worrier/anxious measure were 

associated significantly, and vice versa. 

 

 

Figure 6.3. Longitudinal association of risk-taking with worrier/anxious. Covariances 

including age, sex, and education were regressed out. The standardized beta coefficients are 

shown in the figure (* p<0.01, ** p<0.005, ***p<0.001). 

 

Besides, the risk-taking was associated with cannabis use (r=0.116, p=8.763e-65), 

with the frequency of consuming large amount alcohol (r=0.096, p=1.175e-41), and 

with the amount of alcohol drunk (r=0.078, p=5.140e-28) (Table 6.1). 

 
 

Drinking Amount Heavy Drink Frequency Cannabis Use 

Risk-taking 
r value p value r value p value r value p value 

0.078 5.14E-28 0.098 1.18E-41 0.117 5.99E-66 

Worrier 
r value p value r value p value r value p value 

-0.039 5.15E-08 -0.053 4.96E-14 -0.026 1.53E-04 

Table 6.1. Behaviour level association between risk-taking, worrier/anxious feelings, drug 

use, and alcohol use. 
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6.3.3 Sensation-seeking, impulsiveness, and validation with independent data 

groups 

Validations with the risk-taking and impulsiveness in other datasets were 

performed to test whether the findings are consistent. With the same brain atlas, the 

correlation between the risk-taking and the functional connectivities with all 

participants from the NKI dataset was performed. Then, the correlation between the 

correlation matrix of risk-taking with FCs in the UK Biobank dataset and the correlation 

matrix of risk-taking with FCs in the NKI dataset was 0.12 (p=3.3e-15), as shown in 

Fig. 6.4A. Impulsiveness measures are available in the HCP dataset, a set of delay 

discounting trials with different amounts of money and length, including 12 different 

trail scores and two summary scores. The same analysis with the risk-taking in the NKI 

dataset was performed. The correlation between the correlation matrix of risk-taking 

with FCs in the UK Biobank dataset and the correlation matrix of the delay discounting 

score with FCs in the HCP dataset was -0.38 (p<1e-20), as shown in Fig 6.4B.  

Besides, validation was also performed in the same dataset with the same risk-

taking measure. The functional connectivity changes for the risk-taking and non-risk-

taking groups were conducted with newly released data in the UK biobank (with 5699 

participants with available risk-taking scores and fMRI data). The correlation between 

the correlation matrix of risk-taking with FCs in the UK Biobank dataset and the 

correlation matrix of risk-taking with FCs in the newly released data in the UK biobank 

was 0.67 (p<1e-20) shown in Fig 6.4C, providing cross-validation in the form of 

support from independent participants. (It was confirmed that the correlation measures 

utilized were not significant with measures from the UK Biobank that are unlikely to 

be related to risk-taking. These included total food weight consumed on the previous 

day (field ID 100001) for which r=-0.00043 p=0.98; and body mass index (field ID 

21001) for which r=-0.024 p=0.11.) 
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Figure 6.4. Validations. A) The correlation between the correlation matrix of risk-taking with 

FCs in the UK Biobank dataset and the correlation matrix of risk-taking with FCs in the NKI 

dataset was 0.12 (p=3.3e-15). B) The correlation between the correlation matrix of risk-taking 

with FCs in the UK Biobank dataset and the correlation matrix of the delay discounting score 

with FCs in the HCP dataset was -0.38 (p<1e-20). C) The correlation between the correlation 

matrix of risk-taking with FCs in the UK Biobank dataset and the correlation matrix of the risk-

taking with FCs in the newly released data in the UK biobank was 0.67 (p<1e-20).  

 

6.4 Discussion 

In the t-test of functional connectivities between the risk-taking and non-risk-

taking groups, links involving the medial OFC areas, the rectus, and the VMPFC were 

higher in the risk-taking group than in the non-risk-taking group. Risk-taking is an 

aspect of impulsive behaviour. The medial OFC and the VMPFC are in function of 

reward. Therefore, the positive correlation between risk-taking and the links with the 

medial OFC and the VMPFC indicates the risk-taking behaviour can be a reward-driven 

impulsive behaviour. Enhanced functional connectivity involving the medial 

orbitofrontal regions was also associated with increased impulsivity in alcoholics, 

according to Cheng et al. (2019a), implying that increased reward sensitivity could 

potentially lead to high impulsivity. In a previous study on sensation-seeking (Chapter 
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4), we found positive correlations between sensation-seeking and the FCs between the 

medial OFC and the ACC. Besides, a high association between sensation-seeking and 

risk-taking was found in the sensation-seeking study in the NKI dataset with r=0.49 

(p=3.92e-26). This supports the argument that enhanced reward sensitivity may lead to 

high impulsivity. A theory that is related to the present analysis, also consistent with 

previous studies, is that some kinds of impulsiveness might be associated with increased 

functional connectivity with the reward system, including the medial orbitofrontal 

cortex and the VMPFC. In contrast, conventional impulsiveness was believed to be 

involving the reduced sensitivity to the non-reward system, which includes the lateral 

orbitofrontal cortex. 

Links involving the paraHippocampal gyrus were higher in the risk-taking group 

than in the non-risk-taking group. The hippocampus and paraHippocampal areas are 

involved in episodic memory, which might indicate that the risk-taking behaviour can 

be associated with the previous memories and experiences (Rolls, 2016; Rolls, 2018a). 

As shown in a study on hypertension with the UK Biobank dataset, FC links involving 

the hippocampus and paraHippocampal areas were correlated with blood pressure 

(Feng et al., 2020). Hence, the same t-test of FCs between the risk-taking and non-risk-

taking groups was also performed with additional co-variances, the diastolic and 

systolic blood pressures to evaluate whether the paraHippocampal showed in this study 

is associated with blood pressure. The resulting links and regions were similar to those 

without blood pressures regressed out but less significant. The FC links with the 

paraHippocampal were still significantly higher in the risk-taking group. This provides 

evidence that the FCs involving the paraHippocampal areas were not related to blood 

pressures. Hence, the blood pressure was not regressed out in this analysis. Links 

involving the temporal lobe (the temporal pole: superior and middle temporal gyrus) 

were higher in the risk-taking group than in the non-risk-taking group. The temporal 

lobe provides input signals to the frontal lobe as the association cortex, and this can 

cause higher FCs involving the paraHippocampal. 

The worrier/anxious feelings measure is correlated with risk-taking with r=-0.122 

(p<1e-20) in the behaviour level. In relation to the brain, the FC links involving the 

medial OFC areas were positively correlated with risk-taking and negatively correlated 

with worrier/anxious feelings (Fig. 6.2C). An interesting implication of these findings 

is that the type of risk-taking considered here was related to increased FCs of reward-

related medial OFC areas. Furthermore, these FCs were also associated with reduced 
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feelings of anxiety. Thus, we suggest that the same functional connectivities involving 

the medial OFC areas that may promote risk-taking because of increased reward are 

also involved in the reduced anxiety associated with such risk-taking behaviours. 

Besides, drug use and alcohol use were positively correlated with risk-taking, as 

consistent with our previous study on impulsiveness in the NKI dataset. Besides, the 

FC links involving the medial orbitofrontal cortex, which were significantly correlated 

with the impulsiveness measure, were found modestly associated with drug and alcohol 

use. This may indicate the association between risk-taking and drug/alcohol use is 

related to the medial orbitofrontal cortex of the brain. 

In conclusion, the medial orbitofrontal cortex, which is in the function of the 

reward system, was found related to risk-taking, which is associated with impulsivity. 

This proves to support the hypothesis that one type of reward-driven impulsivity is 

related to the medial orbitofrontal cortex of the brain. Besides, the medial orbitofrontal 

cortex was found negatively correlated with anxious feelings, which is the opposite 

direction with risk-taking. In the behaviour level, drug/alcohol use was positively 

correlated with risk-taking, which is consistent with our previous found with another 

dataset. This suggests the association between risk-taking and drug/alcohol use is 

related to the medial orbitofrontal cortex of the brain. 
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Chapter 7  

Brain Functional Connectivities that Mediate the Association 

between Traumatic Events in Childhood and Mental Health 

in Later Life 

7.1 Introduction 

Childhood traumatic events are an established risk factor for psychopathology. 

Children who experience sexual, physical or emotional abuse, or physical and 

emotional neglect may feel overwhelmed, and this can be associated with lasting mental 

and physical differences. Despite the century-old debate on the origins of this 

association, the association and possible causality of an individual’s childhood 

traumatic events and psychopathology, and how brain differences related to that, is still 

an important topic and needs more findings with large sample sizes (Susser and Widom, 

2012; Teicher and Samson, 2016; Baldwin et al., 2019).  

Meta-analyses indicated that childhood traumatic events were correlated with a 

twenty to thirty percentage increase in the risk of psychosis (van Dam et al., 2012; 

Varese et al., 2012; Trotta et al., 2015). Also, such childhood traumatic events were 

found associated with the development of mental disorders including depression 

(McLaughlin et al., 2017; Copeland et al., 2018), and physical ill-health including non-

communicable diseases (Basu et al., 2017; Suglia et al., 2018). Particularly on 

individuals who had experiences of exposing to stressful events and early-life traumas, 

depression was commonly reported (Kessler, 1997; Green et al., 2010; McLaughlin et 

al., 2010; Nanni et al., 2012; Rolls, 2018b). In addition, reported trauma was robustly 

associated with a range of adverse life differences including depression (Kessler et al., 

1997; Collishaw et al., 2007; Baldwin et al., 2019). The relationship between depression 

and reported trauma is unclear and complicated. The reported trauma was associated 

with both subsequent depression and prior depression (Kendler et al., 1999). However, 

most of the people who had exposure to traumatic events do not report depression 

(Kessler et al., 1997; Collishaw et al., 2007; Baldwin et al., 2019). In addition, there is 

evidence that childhood traumatic events are associated with poorer cognitive 

performance in adults (Petkus et al., 2018; Velikonja et al., 2021). 

  In addition to behaviour-level association analyses, there is converging evidence 

from substantial studies linking childhood traumatic events to brain structure and 
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function (Teicher and Samson, 2016). A large amount of research supported the 

enduring associations between childhood maltreatment and adversity and stress-

susceptible brain circuitry (Shonkoff et al., 2012; Marusak et al., 2016). In a study with 

a large dataset, participants with childhood emotional abuse experiences (‘felt hated by 

family member as a child’) were found to have smaller ventral striatum volumes 

compared to those who did not have traumatic events in their childhood (Gheorghe et 

al., 2021). Reviews on the neuroimaging literature suggested that a history of childhood 

traumatic events was associated with volumes and/or function alterations of (midline) 

prefrontal cortex and with limbic regions and related functional connectivities (Whittle 

et al., 2009; Morey et al., 2016; Bolsinger et al., 2018). Furthermore, this idea was 

supported by a longitudinal behavioural study which revealed that smaller prefrontal 

cortex volume associated with childhood traumatic events was linked to later poor 

cognitive function (Hanson et al., 2012) and poorer illness courses (Frodl et al., 2010). 

In the studies of McLaughlin et al. (2014); Sheridan and McLaughlin (2014), traumatic 

events were found to have strong associations with neural systems which were related 

to emotion regulation, salience processing, and threat detection and learning. These 

neural systems included the fronto-amygdala system (Tottenham, 2015), which is also 

referred as the limbic (Yeo et al., 2011), comprising the medial prefrontal cortex, the 

amygdala, and the hippocampus.  

Nonetheless, the exact pathways involved in the association between childhood 

traumatic events and brain development and behaviour have yet to be firmly delineated. 

Furthermore, significant variations in effect sizes were observed in different studies 

(Gibson et al., 2016). These variations might be explained by methodological 

difficulties, including small sample size, cross-site data, differences in how childhood 

traumatic events and mental health symptoms were measured, and the level of 

confounding adjustment. Therefore, it is unclear if the relationship between childhood 

traumatic events and psychotic experiences is causal and reliable and how the 

underlying biological pathways are related. 

To understand the underlying neural pathways more comprehensively, large 

population samples are likely to be important. Most of the previous studies have 

focused on the underlying brain structure associated with childhood trauma, not on 

brain functioning. In addition, the studies described investigated the relationship 

between childhood trauma and the mental health problems of only adolescent or young 
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adults, not the long-lasting associations between childhood trauma and people in more 

mature adulthood to assess the persistence of the associations.  

The study described here has three main objectives. First, we aimed to assess the 

association between traumatic events in childhood and a wide range of mental health 

problems and cognitive performance in later life using large scale data from 19,535 

participants from the UK Biobank dataset. Second, we aimed to examine the association 

between childhood traumatic events and brain functional connectivity and to test 

whether functional connectivity mediates the association between childhood traumatic 

events and mental health problems in later adulthood. Third, we aimed to validate the 

results using an independent dataset with 17,747 participants. 

7.2 Method 

7.2.1 Participants and data preprocessing 

The UK Biobank is a health resource aiming to improve the prevention, diagnosis 

and treatment of a wide range of illnesses (Miller et al., 2016; Alfaro-Almagro et al., 

2018). It follows the health and well-being of 500,000 volunteer participants and 

provides health information to approved researchers from academia and industry. The 

participants have assessments of cognitive function, mental health problems and 

physical health, provide detailed information about their backgrounds and lifestyles, 

and agree to have their health followed longitudinally. The UK Biobank received 

ethical approval from the research ethics committee (REC reference 11/NW/0382). The 

current investigation was performed under UK Biobank application number 1954. The 

demographic characteristics of individuals who were included in this investigation are 

summarized in Table 7.1. 

A standard Siemens Skyra 3T running VD13A SP4 with a standard Siemens 32-

channel RF receive head coil was used to acquire the multi-modal imaging. 22,331 

participants with available resting-state functional MRI data were collected and 

processed in the UK Biobank dataset. The details of the image acquisition can be found 

in the form of a protocol on the UK Biobank website 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367).  

 

 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367
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Characteristics No. (%) 

Age, mean (SD), y 62.77 (7.73) 

Female 86,523 (56.31%) 

BMI 26.77(4.55) 

Townsend deprivation index, mean (SD), points -1.71 (2.83) 

Alcohol Drinker Status  

Prefer not to answer 53 (0.03%) 

Never 4,335 (2.82%) 

Previous 4,124 (2.69%) 

Current 145,058 (94.46%) 

Smoking Status  

Never 88,605 (57.70%) 

Previous 53,905 (35.10%) 

Current 11,061 (7.20%) 

Education Qualifications  

College or University degree 69,753 (45.69%) 

A levels/AS levels or equivalent 20,648 (13.52%) 

O levels/GCSEs or equivalent 30,268(19.82%) 

CSEs or equivalent 5,640 (3.69%) 

NVQ or HND or HNC or equivalent 7,715 (5.05%) 

Other professional qualifications, e.g., nursing, teaching 7,735 (5.07%) 

None of the above 10,921 (7.15%) 

Table 7.1. Demographic Characteristics of the 153,642 UK Biobank Participants.  

 

The UK Biobank performed all the quality control and pre-processing procedures 

using the FSL (FMRIB Software Library), and the details of the pre-processing can be 

referred to on the UK Biobank website 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977) and also as described in Miller 

et al. (2016). Correction for spatial and gradient distortions, as well as head motion, 

intensity normalization and bias field removal, registration to the T1 weighted structural 

image, transformation to 2 mm Montreal Neurological Institute (MNI) space, and the 

FIX artefact removal procedure were all part of the data pre-processing (Smith et al., 

2013; Navarro Schroder et al., 2015). Finally, by using ICA+FIX processing 
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(Independent Component Analysis followed by FMRIB's ICA-based X-noiseifier), the 

head motion parameters were regressed out, and structural artefacts were removed 

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014)). The FMRIB (Oxford University 

Centre for Functional MRI of the Brain) data preprocessing pipeline used here has been 

frequently used in resting-state fMRI investigations (Navarro Schroder et al., 2015; 

Smith et al., 2015; Colclough et al., 2017; Vidaurre et al., 2018). 19,535 participants 

were retained for the investigation on neuroimaging with available behavioural data, 

after the imaging quality control procedure. 

7.2.2 Construction of the whole-brain functional network 

After pre-processing, the whole brain was parcellated into 228 regions of interest 

using the Shen atlas (Shen et al., 2013). The Shen atlas was applied in this study for 

two main reasons. First, the Shen atlas was developed based on functional connectivity, 

which can help the explanations with functional connectivity results. This has been 

validated in different resting-state fMRI investigations (Finn et al., 2015; Rosenberg et 

al., 2016). Second, the Shen atlas was more helpful in this study because it parcels the 

brain into more areas than the AAL2 atlas (Rolls et al., 2015). 

We presented the mapping of Shen atlas areas to AAL2 atlas areas in Appendix-3 

and adopted the AAL2 area names when referring to particular brain regions and the 

related functional connectivities because the Shen atlas areas do not have region names 

(Rolls et al., 2015). To quantify functional connectivity between pairs of brain regions, 

for each individual, the Pearson correlation was calculated from the time series for that 

pair of brain regions. Then the Fisher's z transformation was performed to increase the 

normality of these correlations, yielding a 228 by 228 symmetric matrix which indicates 

the connections between each pair of brain areas. 

7.2.3 Childhood traumatic event score  

The childhood traumatic event score was calculated based on five questions related 

to childhood traumatic events available in the UK Biobank dataset. These five questions 

are as follows: (field ID question) 

20487 Felt hated by family member as a child 

20488 Physically abused by family as a child 

20489 Felt loved as a child 

20490 Sexually molested as a child 
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20491 Someone to take to doctor when needed as a child 

The answers to these five questions are encoded the same way: score from 0 to 4 

representing the answer from ‘never true’ to ‘very often true’ (data-coding 532 in the 

UK Biobank data field) in the UK Biobank dataset, hence no normalization was needed. 

The childhood traumatic events score describes the severity of the traumatic events of 

each participant as a child. Specifically, a correlation between each pair of these five 

measures was performed to check whether these questions measure traumatic events in 

the same direction (i.e., whether a higher score in the questions was related to a higher 

traumatic score). The scores of questions 20489 and question 20491 were reversed, and 

then the childhood traumatic event score was calculated as a sum of the scores of these 

questions. The sum score based on 5 point responses (0:4) across all childhood 

traumatic questions was used in this investigation instead of the number of adverse 

childhood events, which provides a wide range of distribution of the childhood trauma 

score from 0 to 20 for further analyses (Gheorghe et al., 2021). 

7.2.4 Association of childhood traumatic events with mental health problems and 

cognitive performance 

First, the correlations between the childhood traumatic events scores and the 

mental health problems later in life . To be specific, a partial correlation was performed 

between mental health problems scores and the childhood traumatic events scores with 

age, gender, body mass index, education, Townsend index, alcohol use, and tobacco 

use regressed out. The Townsend deprivation index is named after Prof Peter Townsend, 

which is a simple census-based index of material deprivation calculated by the 

combination of four census variables including households without a car, overcrowded 

households, households not owner-occupied, and persons unemployed (Wilkinson, 

1997). A greater Townsend index score implies a greater degree of deprivation. Areas 

may be “ranked” according to their Townsend score as a means of expressing relative 

deprivation.  

The mental health problems scores included nine aspects: addiction, anxiety, 

cannabis use, depression, mania, mental distress, unusual and psychotic experiences, 

self-harm, and wellbeing, which are categories specified under the mental health tab of 

the online questionnaires in the UK Biobank dataset 

(https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=136). For each category, a mean 
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score of all the questions was calculated as an overall score of that category of mental 

health problems.  

The correlation was also measured between the childhood traumatic event score 

and cognitive performance including fluid intelligence, numeric memory and 

prospective memory. The score of each category of cognitive performance was the 

score of single questions recommended by the UK Biobank dataset instead of the 

calculated sum scores of all measures under each category.  

To validate the result, in the main analysis, all participants with available 

behavioural data except for the participants who were included in the second release of 

the dataset were included (around 480,000 participants, with the exact number varying 

for different behaviours). For the data in the second release of the UK Biobank dataset, 

we performed validation with these 17,747 independent participants. 

In addition to the behaviour level associations, the functional connectivity related 

to the mental health problems, cognitive performance, and the childhood traumatic 

events scores were investigated. Hadamard products were performed on the mean 

correlation r values of significant brain regions with childhood traumatic events and 

mental health problems/cognitive performance to calculate the commonalities of the 

brain regions related to the different measures. The functional connectivities significant 

with childhood traumatic events were FDR corrected at p<0.01, and the functional 

connectivity significant with other measures (mental health problems and cognitive 

performances) was FDR corrected at p<0.05. 

7.2.5 Association between the functional connectivities with childhood traumatic 

events 

A Spearman correlation was performed to assess the association between whole-

brain functional connectivity and the childhood traumatic event scores across all 

participants. Specifically, partial correlations were performed between functional 

connectivities and the childhood traumatic scores with 9 confounding variables 

regressed out including age, gender, body mass index, education, Townsend index, 

alcohol use, tobacco use, site information and head motion (mean framewise 

displacement). To take into account multiple comparisons, FDR correction was applied 

to identify the functional connectivities significantly correlated with the childhood 

traumatic event score. To validate the results, the same analyses were performed with 

17,747 independent participants in the second release of the UK Biobank dataset. 
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7.2.6 Mediation analysis and structural equation modelling 

Mediation analyses were conducted to interrogate the relationship between the 

childhood traumatic events, related brain imaging variables, mental health problems, 

and cognitive performance: path a represents a relationship between childhood 

traumatic events and functional connectivity links; path b represents the relationship 

between functional connectivity links and mental health problems/cognitive measures; 

path c represents the relationship between childhood traumatic events and mental health 

problems/cognitive measures; path a*b represents an indirect path which is the 

relationship between childhood traumatic events and mental health problems/cognitive 

measures that is mediated by the mean strength of the functional connectivity links 

which were significantly correlated with the childhood traumatic events. The mediation 

analysis was conducted by the Mediation Toolbox of Tor Wager 

(https://github.com/canlab/MediationToolbox), with a 1,000 bias-corrected bootstrap 

sample for significance testing. Age, gender, body mass index, education, Townsend 

index, alcohol use, tobacco use, site information and head motion (only for functional 

connectivities) were regressed out as covariances in the mediation analyses. 

Structural equation modelling (SEM) was used to further test the role of the 

functional connectivities in the relationship between the childhood traumatic events 

scores, mental health problems, and cognitive performance scores in groups modelled 

by latent variables. Four latent variables were estimated in this model including 

childhood traumatic events, mental health problems, cognitive performance, and 

functional connectivity strength. Using latent variables helps control measurement error, 

artificially reducing the relationship between measured variables in standard univariate 

analyses (McDonald, 1990). Calculations of SEM were performed with the Lavaan 

toolbox in Matlab (Rosseel, 2012). For preprocessing, age, gender, body mass index, 

education, Townsend index, alcohol use, tobacco use, site information and head motion 

were regressed out as covariances for each latent variable (site information and head 

motion were only for functional connectivities). A latent variable representing the 

childhood traumatic events was estimated based on the score of five childhood 

traumatic event questions. Latent variables for the mental health problem and cognitive 

performance were estimated in the same model. Finally, a latent variable representing 

the functional connectivity strength of brain regions was based on the mean functional 

connectivity value of the links which were significantly correlated with childhood 

https://github.com/canlab/MediationToolbox
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traumatic events for the top 25 most involved brain regions. Multiple regression was 

adopted to measure the multivariate relationship between functional connectivity 

strength, childhood traumatic events, mental health problems and cognitive 

performance. Standardized beta coefficients were used to indicate the effect sizes of the 

relationship between pairs of latent variables. The comparative fit index (CFI) and root 

mean square error of approximation (RMSEA) were used to indicate the fitting degree 

of the structural equation model (Bentler, 1990; Browne and Cudeck, 1992). The brain 

regions included in this model were selected as those with a significant correlation with 

the childhood traumatic event score. The hypotheses about the directions to test in the 

structural equation model were set up a priori, based on arguments that the early 

childhood trauma might influence the brain functional connectivities; and that the 

childhood traumatic events and related brain changes might influence the cognitive 

performance and mental health problems (Bolsinger et al., 2018; Copeland et al., 2018). 

7.3 Results 

7.3.1 Association between childhood traumatic events, and mental health and 

cognitive performance 

Association analysis was performed between childhood traumatic events and 

mental health problems (N=151,009). All the mental health problems were positively 

correlated with the childhood traumatic events, while well-being was negatively 

correlated (all p<1.0×10-200, Fig. 7.1). Of special interest, childhood traumatic events 

were associated with anxiety at r = 0.19 (p<1.0×10-323), with depression at r = 0.21 

(p<1.0×10-323), with self-harm at r = 0.24 (p<1.0×10-323), and with well-being at r = -

0.22 (p<1.0×10-323). Cognitive performance, including fluid intelligence, numeric 

memory and prospective memory, were negatively correlated with childhood traumatic 

events (all p<1.0×10-3, Fig. 7.1). Fluid intelligence was the most significantly correlated 

cognitive performance with childhood traumatic events with r=-0.05 (p=2.8×10-10). 
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Figure 7.1. Mental health problems and cognitive performance are all related to childhood 

traumatic events. They include addiction, anxiety, cannabis use, depression, mania, mental 

distress, psychotic experiences, self-harm, well-being, fluid intelligence, numeric memory and 

prospective memory. The correlation coefficient r values of each mental health problem with 

childhood traumatic events are shown in each subplot. 

 

7.3.2 Functional connectivity correlated with childhood traumatic events 

Next, the association between childhood traumatic events and brain functional 

connectivity was investigated with the first release of neuroimaging data of the UK 

Biobank dataset (N=19,535). One hundred ninety-four FC links were significantly 

negatively correlated with the childhood traumatic event score (p<0.01, FDR corrected, 

Fig. 7.2). The brain areas related to these significant links included the middle temporal 

gyrus, the inferior temporal gyrus, the precentral cortex, the inferior frontal gyrus (the 

triangular part), the middle frontal gyrus, the superior medial prefrontal cortex, and the 

precuneus (Fig 7.2). The top 100 significantly correlated functional connectivity links 
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with the childhood traumatic events score are shown in Table 7.2, and a full list of these 

194 significant links are shown in Appendix 4. 

 

 
Figure 7.2. Correlation of the functional connectivity links with childhood traumatic events 

(p<0.01, FDR corrected). The numbers of links for each brain region in the Shen atlas showing 

a significant negative correlation with the childhood traumatic events score are shown.  

 

  



90 
 

Region 1 Region 2 r val p val Region 1 Region 2 r val p val 

Temporal_Inf_R Temporal_Inf_L -0.046 4.95E-08 Precuneus_R Cingulate_Mid_L -0.037 1.03E-05 

Angular_R Precentral_L -0.045 1.03E-07 Precentral_R SupraMarginal_L -0.037 1.04E-05 

Angular_R Temporal_Inf_L -0.045 1.25E-07 Occipital_Mid_R Precentral_L -0.037 1.08E-05 

Temporal_Inf_R Temporal_Mid_L -0.044 2.40E-07 Frontal_Mid_2_R Precentral_L -0.037 1.10E-05 

Lingual_R Temporal_Inf_L -0.043 2.82E-07 Fusiform_R Precentral_L -0.037 1.10E-05 

Temporal_Inf_R Postcentral_L -0.043 3.36E-07 Precuneus_R Frontal_Inf_Tri_L -0.037 1.12E-05 

Precuneus_R Temporal_Inf_L -0.042 5.09E-07 Temporal_Inf_L Rectus_L -0.037 1.16E-05 

Frontal_Sup_2_R Precentral_L -0.042 8.92E-07 Precuneus_R Precentral_L -0.037 1.17E-05 

Precuneus_R Precentral_L -0.041 9.50E-07 Angular_R Frontal_Inf_Tri_L -0.037 1.22E-05 

Precuneus_R Precentral_L -0.041 1.07E-06 Temporal_Inf_R Temporal_Inf_R -0.037 1.23E-05 

Temporal_Inf_R Parietal_Inf_L -0.041 1.10E-06 Parietal_Sup_R Temporal_Inf_R -0.037 1.25E-05 

Precuneus_R Precentral_L -0.041 1.11E-06 Frontal_Sup_2_R Precentral_L -0.037 1.26E-05 

SupraMarginal_R Temporal_Inf_R -0.041 1.21E-06 Frontal_Sup_Medial_R Frontal_Inf_Tri_L -0.037 1.26E-05 

Temporal_Inf_R Parietal_Inf_L -0.041 1.25E-06 Temporal_Mid_R Temporal_Mid_L -0.037 1.27E-05 

Temporal_Mid_R Temporal_Inf_L -0.041 1.31E-06 Temporal_Inf_R Frontal_Sup_2_L -0.037 1.28E-05 

Temporal_Inf_R Frontal_Inf_Tri_L -0.041 1.42E-06 Lingual_R Precentral_L -0.037 1.44E-05 

Angular_L Temporal_Inf_L -0.040 1.92E-06 Temporal_Inf_R Rolandic_Oper_R -0.037 1.44E-05 

Temporal_Inf_R Parietal_Sup_L -0.040 2.44E-06 Cuneus_L Temporal_Inf_L -0.037 1.45E-05 

Temporal_Inf_R Frontal_Inf_Tri_L -0.040 2.61E-06 Temporal_Inf_R Precentral_L -0.037 1.49E-05 

Temporal_Inf_R SupraMarginal_L -0.040 2.82E-06 Frontal_Sup_2_R Parietal_Inf_L -0.037 1.54E-05 

Temporal_Inf_R Precentral_L -0.039 3.47E-06 Frontal_Sup_2_R Fusiform_L -0.037 1.59E-05 

Temporal_Mid_R Frontal_Inf_Tri_L -0.039 3.69E-06 Cuneus_R Temporal_Inf_L -0.036 1.63E-05 

Precuneus_R Temporal_Inf_L -0.039 3.90E-06 Frontal_Mid_2_R Frontal_Inf_Tri_R -0.036 1.67E-05 

Lingual_R Frontal_Inf_Tri_L -0.039 4.16E-06 Supp_Motor_Area_L Rolandic_Oper_L -0.036 1.67E-05 

Temporal_Pole_Sup_L Temporal_Inf_L -0.039 4.22E-06 Fusiform_R Precentral_L -0.036 1.76E-05 

Frontal_Sup_Medial_R Temporal_Mid_L -0.039 4.26E-06 Postcentral_R Temporal_Inf_R -0.036 1.80E-05 

Frontal_Sup_2_R Postcentral_L -0.039 4.29E-06 Temporal_Mid_L Temporal_Mid_L -0.036 1.80E-05 

Frontal_Sup_2_R Parietal_Inf_L -0.039 4.30E-06 Angular_R Precentral_L -0.036 1.84E-05 

Temporal_Mid_R Precentral_L -0.039 4.61E-06 Fusiform_R Frontal_Inf_Tri_L -0.036 1.90E-05 

Rolandic_Oper_R Temporal_Inf_R -0.039 4.97E-06 Postcentral_L Temporal_Mid_L -0.036 1.91E-05 

Temporal_Inf_R Postcentral_L -0.039 5.09E-06 Frontal_Sup_2_R Frontal_Inf_Tri_L -0.036 1.95E-05 

Temporal_Mid_L Temporal_Inf_L -0.039 5.13E-06 Temporal_Pole_Sup_R Temporal_Inf_L -0.036 1.97E-05 

Temporal_Inf_R Parietal_Inf_L -0.039 5.27E-06 Temporal_Inf_R Fusiform_L -0.036 2.01E-05 

Precuneus_L Rectus_L -0.039 5.30E-06 Occipital_Sup_R Precentral_L -0.036 2.04E-05 

Temporal_Inf_R Temporal_Mid_R -0.038 5.36E-06 Fusiform_R Precentral_L -0.036 2.10E-05 

Temporal_Inf_R Temporal_Sup_R -0.038 5.37E-06 Frontal_Sup_2_R SupraMarginal_R -0.036 2.15E-05 

ParaHippocampal_R Precentral_L -0.038 5.38E-06 Frontal_Sup_2_R Frontal_Inf_Tri_L -0.036 2.21E-05 

Cuneus_R Frontal_Inf_Tri_L -0.038 5.65E-06 Precentral_L Fusiform_L -0.036 2.34E-05 

Temporal_Inf_L ParaHippocampal_

L 

-0.038 5.73E-06 Fusiform_R Frontal_Sup_2_L -0.036 2.40E-05 

Precentral_L Precuneus_L -0.038 5.75E-06 Lingual_R Cingulate_Mid_L -0.036 2.40E-05 

Frontal_Mid_2_R Precentral_L -0.038 6.58E-06 Temporal_Sup_R Temporal_Inf_R -0.036 2.41E-05 

Temporal_Inf_R Temporal_Mid_L -0.038 6.84E-06 Frontal_Mid_2_R Precuneus_L -0.036 2.41E-05 

ParaHippocampal_R Temporal_Mid_L -0.038 6.99E-06 Lingual_R Temporal_Mid_L -0.036 2.53E-05 

Frontal_Inf_Tri_L Rectus_L -0.038 7.66E-06 OFCmed_L OFCant_R -0.036 2.54E-05 

Precentral_L Fusiform_L -0.038 7.69E-06 Temporal_Inf_L Precuneus_L -0.036 2.55E-05 

Angular_R Temporal_Mid_R -0.038 8.29E-06 Hippocampus_R Temporal_Mid_L -0.036 2.58E-05 
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Temporal_Inf_R Rolandic_Oper_L -0.037 9.44E-06 Frontal_Sup_Medial_R Precentral_L -0.036 2.68E-05 

Frontal_Sup_2_R Fusiform_R -0.037 9.80E-06 Temporal_Inf_R Fusiform_R -0.036 2.71E-05 

Temporal_Inf_R Temporal_Sup_L -0.037 9.85E-06 Frontal_Sup_2_L Fusiform_L -0.035 2.72E-05 

Frontal_Mid_2_R Precuneus_R -0.037 9.97E-06 Frontal_Sup_2_R Precentral_R -0.035 2.73E-05 

Table 7.2. Top 100 significantly correlated functional connectivity links with the childhood 

traumatic events score. All the links shown in this table are significant at p<0.01, FDR corrected. 

 

7.3.3 Common brain regions correlated with both childhood traumatic events and 

mental health problems and cognitive performance 

In addition to the association between childhood traumatic events and behavioural 

measures, we also found correlations between the functional connectivity significantly 

correlated with childhood traumatic events and the functional connectivity associated 

with mental health problems and cognitive performance, especially for anxiety (r=0.35, 

p=8.3×10-8), depression (r=0.23, p=5.1×10-4), well-being (r=-0.30, p=3.8×10-6) and 

numeric memory(r=-0.23, p=5.6×10-4) (Fig. 7.3).  
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Figure 7.3. Correlation of the functional connectivity links with mental health problems and 

cognitive performance (p<0.05, FDR corrected). The number of links that are different in 

different brain regions for different mental health problems and cognitive performance is 

shown. In the centre, brain regions with reduced functional connectivity correlated with the 

childhood traumatic event score are shown (from Figure 7.2) to provide a reference for the 

other measures. The coefficients shown in the inner circle are the correlation r value of the 

mean correlation coefficient of significant links in all brain regions between the childhood 

traumatic event score and mental health problems and cognitive performance (* p<0.05, ** 

p<0.01, ***p<0.001). 

 

To be specific, the precentral cortex and anterior areas to it were correlated with 

childhood traumatic events and with addiction, depression, mental distress, well-being, 

prospective memory, fluid intelligence. The middle temporal gyrus showed as a 

common area for anxiety, depression, well-being, numeric memory, prospective 

memory, fluid intelligence, and childhood traumatic events. The superior medial 

prefrontal area was common between only numeric memory and childhood traumatic 
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events. (The utility of this is that it suggests that impairments in numeric memory in 

those with childhood traumatic events may be related to reduced functional connectivity 

in the superior medial prefrontal cortex.) The hippocampus / paraHippocampal gyrus 

was common between addiction, anxiety, mental distress, well-being, numeric memory 

and childhood traumatic events. Hadamard products were also calculated to explore the 

common brain regions correlated with childhood traumatic events and mental health 

problems/cognitive performances (Table 7.3). The inferior temporal gyrus and the 

middle temporal gyrus was found common between the childhood traumatic events and 

anxiety in the top 10 highest Hadamard products of all brain regions. The precuneus 

was found common between the childhood traumatic events, numeric memory and 

prospective memory in the top 10 highest Hadamard products of all brain regions. 

 

Addiction Anxiety Depression Mental Distress 

Regions HP Regions HP Regions HP Regions HP 

Precentral_L 0.653 Temporal_Inf_R 5.100 Temporal_Inf_R 4.253 Precentral_L 0.893 

Precentral_L 0.582 Temporal_Inf_L 3.083 Precentral_L 2.710 Fusiform_R 0.484 

Frontal_Inf_Tri_L 0.331 Precentral_L 2.307 Precentral_L 2.628 Fusiform_L 0.480 

Frontal_Sup_2_R 0.162 Fusiform_R 1.349 Fusiform_R 1.541 Lingual_R 0.278 

Fusiform_R 0.143 Precuneus_R 1.346 Precuneus_R 1.394 Fusiform_R 0.238 

Fusiform_L 0.102 Temporal_Mid_R 1.259 Frontal_Sup_2_R 1.331 ParaHippocampal_R 0.203 

Cuneus_R 0.099 Lingual_R 1.189 Fusiform_L 1.145 Precuneus_L 0.195 

ParaHippocampal_R 0.093 Temporal_Mid_L 1.144 Temporal_Mid_R 1.094 Temporal_Inf_R 0.179 

Calcarine_R 0.056 ParaHippocampal_R 0.842 Temporal_Mid_L 1.073 Rolandic_Oper_L 0.156 

Hippocampus_R 0.053 Fusiform_R 0.734 Lingual_R 1.034 Fusiform_L 0.141 

Well-being Numeric Memory Prospective Memory Fluid Intelligence 

Regions HP Regions HP Regions HP Regions HP 

Precentral_L -4.094 Temporal_Mid_R -1.687 Temporal_Inf_L -0.889 Temporal_Inf_L -1.798 

Frontal_Inf_Tri_L -2.830 Angular_R -0.630 Precuneus_R -0.803 Precentral_L -1.345 

Fusiform_R -2.180 Precuneus_R -0.461 Frontal_Mid_2_R -0.741 Precentral_L -1.336 

SupraMarginal_L -1.665 SupraMarginal_L -0.413 Precentral_L -0.659 Temporal_Mid_R -1.076 

Lingual_R -1.531 Frontal_Sup_Medial_R -0.358 Frontal_Inf_Tri_L -0.657 Precuneus_R -0.962 

Fusiform_L -1.371 Rectus_L -0.348 Fusiform_R -0.554 Frontal_Inf_Tri_L -0.926 

Fusiform_R -1.210 Temporal_Mid_R -0.336 Lingual_R -0.431 Temporal_Mid_L -0.700 

ParaHippocampal_R -1.079 Frontal_Sup_2_R -0.253 Temporal_Mid_L -0.414 Frontal_Sup_2_R -0.677 

Postcentral_L -1.037 ParaHippocampal_R -0.243 Frontal_Sup_2_R -0.367 Fusiform_R -0.672 

Temporal_Mid_R -0.946 Rolandic_Oper_L -0.158 Angular_R -0.363 Frontal_Inf_Tri_L -0.640 

Table 7.3. List of top 10 brain regions that were significant in the childhood traumatic events 

and mental health problems/cognitive performances. HP is initial for Hadamard product. 
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7.3.4 Mediation analysis and structural equation modelling  

The functional connectivities that were significantly correlated with childhood 

traumatic events (Fig. 7.2) significantly mediated the relationship between the 

childhood traumatic events and mental health problems including addiction (1.9% of 

the variance explained), anxiety (1.3% explained), depression (1.0% explained) and 

well-being (1.4% explained) (all p<10-3) (Fig. 7.4). The interpretation is that the 

functional connectivities correlated with childhood traumatic events significantly 

mediate the association between childhood traumatic events and addiction, anxiety, 

depression and well-being. Similar results were also found for the cognitive 

performance measures including fluid intelligence (3.0% explained), and prospective 

memory (3.3% explained) (p<0.05) (Fig. 7.4). The interpretation is that the functional 

connectivities correlated with childhood traumatic events significantly mediate the 

association between childhood traumatic events and fluid intelligence and prospective 

memory. A full list of the mediation results for all measures of mental health problems 

and cognitive performance can be found in Table 7.4. 

 

 

Figure 7.4. Mediation analysis between the childhood traumatic events, the mental health 

problems and cognitive measures with a mean strength of functional connectivity links which 

were significantly correlated with the childhood traumatic events as a mediator. Path a: 

relationship between childhood traumatic events and functional connectivity links; Path b: 

the relationship between functional connectivity links and mental health problems/cognitive 

measures; Path c: the relationship between childhood traumatic events and mental health 

problems/cognitive measures; Path a*b represents an indirect path which is the relationship 

between childhood traumatic events and mental health problems/cognitive measures that is 

mediated by the mean strength of the functional connectivity links which were significantly 
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correlated with the childhood traumatic events. Path a*b indicates the extent to which taking 

the functional connectivity strength into account can explain the effect of the childhood 

traumatic events on mental health and cognitive measures including: addiction (1.9% of the 

variance explained), anxiety (1.3% of the variance explained), depression (1.0% of the 

variance explained), mental distress (0.8% of the variance explained), self-harm (0.5% of the 

variance explained), well-being (1.4% of the variance explained), fluid intelligence (3.0% of 

the variance explained), and prospective memory (3.3% of the variance explained). 

 
 

Path a Path b Path c Path a*b 
 

beta p beta p beta p beta p 

Addiction -0.0033 2.8E-13 -0.0342 1.9E-04 0.0052 0 0.0001 9.6E-04 

Anxiety -0.0033 2.1E-13 -0.1072 2.8E-09 0.0232 0 0.0003 4.3E-06 

Cannabis use -0.0033 2.3E-13 -0.0144 2.4E-01 0.0034 1.23E-07 0.0000 2.5E-01 

Depression -0.0033 2.1E-13 -0.0703 4.4E-06 0.0206 0 0.0002 1.1E-04 

Mania -0.0033 1.4E-13 -0.0172 1.6E-01 0.0125 0 0.0001 1.7E-01 

Mental 

distress 

-0.0033 1.4E-13 -0.0719 2.5E-03 0.0236 0 0.0002 5.5E-03 

Unusual and 

psychotic 

experiences 

-0.0033 2.1E-13 -0.0012 7.9E-01 0.0034 0 0.0000 7.9E-01 

Self-harm -0.0033 2.0E-13 -0.0381 2.3E-03 0.0201 0 0.0001 5.2E-03 

Wellbeing -0.0033 2.3E-13 0.0558 9.6E-08 -0.0139 0 -0.0002 1.8E-05 

Fluid 

intelligence 

-0.0033 1.0E-12 0.4140 6.8E-03 -0.046 1.5E-08 -0.0014 1.2E-02 

Numeric 

memory 

-0.0035 3.7E-07 0.2469 1.4E-01 -0.0204 2.1E-02 -0.0009 1.6E-01 

Prospective 

memory 

-0.0033 3.3E-13 0.0772 2.2E-02 -0.0090 3.3E-07 -0.0003 3.1E-02 

Table 7.4. Mediation analysis between childhood traumatic events, mental health problems, 

and cognitive performances with a mean strength of functional connectivity links shown in 

Table 7.2 as mediator. 

 

Structural equation modelling was performed to measure the multivariate 

relationship between childhood traumatic events, mental health problems, cognitive 

performance, and the functional connectivity in the frontal lobe, the temporal lobe, the 

precuneus, etc. (comparative fit index (CFI) = 0.99, root mean square error of 

approximation (RMSEA) = 0.032), and as shown in Fig. 7.5, all the paths in the model 

were significant at p<0.001. The functional connectivities that were significantly 

correlated with childhood traumatic events had a significant association with mental 

health problems (β=-0.04, p<0.001) and with cognitive performance (β=0.05, p<0.001), 

suggesting that childhood traumatic events and the associated brain changes related to 

those events may contribute to the mental health problems and cognitive performance 

differences. 
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Figure 7.5. Structural equation model: for the brain regions indicated with functional 

connectivity of some links associated with the childhood trauma score, the correlation of its 

significant links with the childhood trauma score was entered into structural equation model 

with the behavioural measures indicated and grouped to form latent variables. The numbers in 

bold font show the standardised beta coefficients involving the latent variables. All paths 

between the latent variables were significant at p < 0.001 (indicated by 3 stars). After the Brain 

Regions, the functional connectivity between the significant links for that brain area with the 

childhood trauma score is shown. The structural equation model used here enables the different 

measures for cognition to be grouped, and similarly for the childhood trauma and mental health 

measures, so that relationship between the grouped variables can be measured. The direction of 

the effects to be tested was as shown by the arrows, and was based on a priori hypotheses. 

7.3.5 Validation with an independent data group 

Validation was performed with the second release of neuroimaging data from the 

UK Biobank (N=17,747). Firstly, the behavioural associations between childhood 

traumatic events, mental health problems and cognitive performance were well-

validated, with anxiety (r=0.19, p=3.8×10-93), depression (r=0.19, p=3.2×10-95), self-

harm (r=0.25, p=2.5×10-155), well-being (r=-0.22, p=1.9×10-126), fluid intelligence (r=-

0.03, p=1.4×10-3), and numeric memory (r=-0.03, p=5.3×10-3) (Table 7.5).  

 



97 
 

 
 

Main analysis Validation 

r value p value r value p value 

Addition 0.09 4.5E-235 0.09 2.9E-22 

Anxiety 0.19 <E-323 0.19 3.8E-93 

Cannabis use 0.06 1.2E-117 0.07 1.3E-14 

Depression 0.21 <E-323 0.19 3.2E-95 

Mania 0.16 <E-323 0.17 3.4E-72 

Mental distress 0.16 <E-323 0.16 1.2E-68 

Psychotic experiences 0.09 2.1E-253 0.08 2.0E-19 

Self-harm 0.24 <E-323 0.25 2.5E-155 

Well-being -0.22 <E-323 -0.22 1.9E-126 

fluid Intelligence -0.05 2.8E-10 -0.03 1.4E-03 

numeric memory -0.04 1.1E-04 -0.03 5.3E-03 

prospective memory -0.04 6.8E-08 -0.02 4.5E-02 

Table 7.5. Association between childhood traumatic events, mental health problems and 

cognitive performances with the first and second released data group. 

Secondly, the correlation between childhood traumatic events and functional 

connectivity was well-validated (Fig. 7.6). For example, areas with many links 

correlated with childhood trauma in the second release include prefrontal cortical areas 

(superior, middle and inferior frontal and medial superior frontal), the middle and 

inferior temporal cortex and temporal pole, and the orbitofrontal cortex including the 

posterior and lateral orbitofrontal cortex (Fig. 7.6A). It was found that the correlation 

of the association pattern of functional connectivity with childhood traumatic events 

between the first and second released data group was r=0.40, p < 10-323 (Fig. 7.6B). (It 

was confirmed that the correlation measures utilized were not significant with measures 

from the UK Biobank that are unlikely to be related to risk-taking. These included total 

food weight consumed on the previous day (field ID 100001) for which r=-0.00043 

p=0.98; and body mass index (field ID 21001) for which r=-0.024 p=0.11.) This cross-

validation analysis thus provides evidence that the associations between childhood 

traumatic events, mental health problems and functional connectivity described above 

can be confirmed with an independent dataset.  
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Figure 7.6. Comparison of the findings from the second release of the UK Biobank with 17,747 

participants. A) For the second release, correlation of the functional connectivity links with 

childhood traumatic events (p<0.01, FDR corrected). The numbers of links for each brain 

region in the Shen atlas showing a significant negative correlation with the childhood traumatic 

events score are shown. B) Scattergram of the functional connectivity r values between the first 

and second releases. There is one data point for each region in the Shen atlas. 

7.4 Discussion 

This is the first study, to our knowledge, to examine the association between 

childhood traumatic events, brain function, mental health problems, and cognitive 

performance, with a large sample size in the UK Biobank dataset. A strong correlation 

was shown between the mental health problems, cognitive performance, and low 

functional connectivity in brain regions with childhood traumatic events. The main 

brain regions with functional connectivity negatively correlated with the childhood 

traumatic events scores included the precentral areas extending into the prefrontal 

cortex (superior, middle, inferior and medial parts), the temporal cortex (lateral and 

medial), the precuneus, the fusiform gyrus, and the medial orbitofrontal cortex. The 

results were well validated with an independent data group with the correlation between 

the two correlation matrices with childhood traumatic events r=0.4, p<10-323. The low 

functional connectivities of these brain regions were shown to significantly mediate the 

association between childhood traumatic events, and mental health problems including 

addiction, anxiety, depression, and well-being (all p<10-3). 

A range of mental health problems including addiction, anxiety, cannabis use, 

depression, mania, mental distress, psychotic experiences, self-harm, and well-being in 

later life was found to be positively significantly associated with childhood traumatic 

events (p<1×10-117) (Fig. 7.1). Brain regions for which functional connectivity was 
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associated with childhood traumatic events and mental health problems included the 

middle temporal gyrus, the medial orbitofrontal cortex and in the second release lateral 

orbitofrontal cortex, the prefrontal and precentral cortex, and the precuneus (Fig. 7.3). 

The middle temporal gyrus, which was common between anxiety and childhood 

traumatic events, is implicated in facial emotional expression and face movements, and 

theory of mind (Hasselmo et al., 1989; Critchley et al., 2000; Hein and Knight, 2008; 

Cheng et al., 2015; Cheng et al., 2017; Rolls, 2021). The association between the middle 

temporal gyrus and childhood traumatic events suggests that childhood traumatic 

events are associated with differences in the neural mechanisms for detecting face 

emotional expression and in the theory of mind (Cheng et al., 2015), which may relate 

to emotional problems such as anxiety, depression, and mental distress in later 

adulthood.  

The medial orbitofrontal cortex is involved in reward value and hence in emotion 

and decreases in functional connectivity here are associated with depression (Rolls, 

2019a, b; Rolls et al., 2020a). The lateral orbitofrontal cortex is involved in changing 

behaviour to non-reward and punishment and reduced functional connectivity here may 

be associated with rule-breaking and impulsive types of behaviour (Rolls, 2019a, b; 

Rolls et al., 2020a).  

The functional connectivity of the fusiform gyrus was found to be significantly 

associated with childhood traumatic events and mental health measures including 

addiction, anxiety, depression, mental distress, and well-being. The fusiform gyrus is 

implicated in face processing (Schirmer and Adolphs, 2017; Grill-Spector et al., 2018). 

The precentral cortex and areas extending anteriorly into the lateral prefrontal 

cortex, which were significantly associated with childhood traumatic events and mental 

health problems including addiction, depression, mental distress, and well-being, 

contains mirror neurons that are implicated in observational learning as proposed by 

Rizzolatti and Craighero (2004). Mirror neurons in area F5 of the premotor areas in 

both humans and monkeys fire when actions are being performed, or are observed in 

another individual (human or monkey) performing the same action (Rizzolatti, 2014). 

Impairment in this type of learning may be related to the cognitive and mental problems 

associated with childhood traumatic events. Executive function, implemented in the 

prefrontal cortex (Shallice and Cipolotti, 2018; Cristofori et al., 2019), may also be 

involved.  
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The precuneus is a part of the medial parietal cortex involved in self-awareness, 

autobiographical memory, and spatial function (Cavanna and Trimble, 2006; Freton et 

al., 2014). The low functional connectivity of the precuneus suggests that childhood 

traumatic events are associated with a reduced or low sense of self. In addition, a low 

functional connectivity of the precuneus with some cortical areas is associated with 

depression (Peng et al., 2015; Cheng et al., 2018; Schreiner et al., 2019). The lower 

connectivity of the precuneus reported here in the participants with childhood traumatic 

events may be related to depression and contribute particularly to the low self-esteem 

in depression.  

Cognitive performance measures including fluid intelligence, numeric memory 

and prospective memory were also found to be negatively correlated with childhood 

traumatic events (p<0.001) (Fig. 7.1). Although not as significant as the mental health 

problems, negative associations between childhood traumatic events and cognitive 

functions were observed. Brain regions associated with childhood traumatic events and 

lower cognitive performance included the superior medial prefrontal cortex, and the 

middle frontal gyrus (Fig. 7.3).  

The superior medial prefrontal area was related to both childhood traumatic events 

and numeric memory. The superior medial prefrontal area is involved in planning / 

executive function (Mizuhara and Yamaguchi, 2007). Numerical information is 

represented and processed by regions of the prefrontal and posterior parietal lobes, 

according to studies in humans and nonhuman primates utilizing a variety of 

approaches (Nieder and Dehaene, 2009). In a more recent study on the representation 

of numerical and sequential patterns, activations in the medial prefrontal areas were 

found when participants were processing number change tasks (Wang et al., 2015). 

Childhood traumatic events may relate to numeric memory and the superior medial 

prefrontal cortex because of the role of this region in low executive function.  

Further, the superior and middle frontal gyri are part of the frontoparietal network, 

which is involved in cognitive control and working memory (Sheridan and McLaughlin, 

2014). The negative association between childhood traumatic events and cognitive 

performance may also relate to the reduced functional connectivity of this system. 

The mediation analyses provided evidence that the reduced functional 

connectivities related to childhood traumatic events mediated the relationship between 

the childhood traumatic events and the mental health problems including addiction (1.9% 

variance explained), anxiety (1.3% variance explained), depression (1.0% variance 
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explained) and well-being (1.4% variance explained) (all p<10-3) (Fig. 7.4), and the 

cognitive measures including fluid intelligence (3.0% variance explained), and 

prospective memory (3.3% variance explained) (p<0.05).  

The SEM analysis was performed to measure the associations between the 

grouped variables for Cognitive Effects, Mental health problems, and brain regions for 

the measures associated with childhood trauma in one regression model. In this 

modelling, the mean functional connectivity strengths of the brain regions which were 

significantly correlated with the childhood traumatic events score were also 

significantly associated with mental health problems (β=-0.04, p<0.001) and cognitive 

performance (β=0.05, p<0.001), suggesting that childhood traumatic events and 

consequent brain changes related to that may contribute to the mental health problems 

and cognitive performance measured in later life (Fig. 7.5).   

Because this is an association study, causality cannot be directly addressed. One 

possibility is that childhood trauma produces brain differences, behavioural problems, 

and cognitive differences. Another possibility is that the general socio-economic 

environment during childhood made a contribution. However, we did regress out as a 

covariate on no interest the Townsend index, which measures a set of socio-economic 

variables. We also tested whether the Townsend index was correlated with the 

childhood trauma score. The Townsend index was significantly associated with 

childhood traumatic events score (r=0.08, p=5.3×10-200). In addition, the association 

between childhood traumatic events and other factors which might contribute to brain 

differences, behavioural problems, and cognitive differences were tested, including 

BMI (r=0.06, p=2.8×10-103), smoking (r=0.09, p=3.8×10-284), and drinking (r=-0.03, 

p=7.7×10-30). (These variables were regressed out of all the analyses described here.) 

Another factor might have been that some children, for genetic or possibly other reasons, 

were more likely to have traumatic events. Besides, another limitation in this study is 

the brain functional differences were focused while the brain volume loss is not checked, 

as the functional connectivity alteration could be reduced by either fewer axons (due to 

cell/volume loss) or reduced synaptic weight. The present findings do though make it 

clear that there are significant and long-lasting associations between childhood 

traumatic events, brain functional differences, and behavioural and cognitive problems. 

It is interesting and remarkable that a rather similar constellation of mental health 

and cognitive problems involving similar brain regions to those described here are 

associated in children with prolonged nausea and vomiting of the mother in pregnancy 
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(Wang et al., 2020), with conflict in the family environment (Gong et al., 2021), and 

with a young age of the mother (Du et al., 2021). Whether these similar associations 

reflect the vulnerability of some brain regions during development or other factors, is 

not yet known, but the similarities are of considerable interest for neurology. 

Strengths of the present investigation are the large sample size (over 20,000 

participants), which leads to robust findings; a focus on brain functional differences 

related to childhood traumatic events instead of structure as in many other studies; 

validation with a large independent sample group in the same dataset (around 20,000 

participants); comprehensive analysis of the long-lasting relation into mature adulthood 

between childhood traumatic events and a range of mental health problems and lower 

cognitive performance; and the mediation analysis, which links the findings to recent 

advances in understanding brain mechanisms associated with childhood traumatic 

events and mental health problems. 

In summary, this investigation provides evidence in a very large population that 

childhood traumatic events are associated with many kinds of mental health problems 

in later life including anxiety, depression, and well-being; that lower functional 

connectivity involving the precentral areas extending into the prefrontal cortex 

(superior, middle, inferior and medial parts), the temporal cortex (lateral and medial), 

the precuneus, and the medial orbitofrontal cortex, which are involved in executive 

function, face processing, emotion, and memory were associated with childhood 

traumatic events; and that the low functional connectivities mediated the correlation 

between the childhood traumatic events and mental health problems including addiction, 

anxiety, depression and self-harm, and cognitive measures including fluid intelligence 

and prospective memory. These advances have implications for the care and treatment 

of people who very many years previously have had childhood traumatic events, for 

these results indicate which functions may benefit from treatment given the insight from 

knowing the brain regions that are involved.  
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Chapter 8 

Conclusion and Open Problems  

8.1 Discussion 

This thesis, by exploring novel computational methods and modelling approaches 

on large scale neuroimaging data for analyses of the brain function and various 

behaviour measures, contributes to the understanding the brain mechanism of 

impulsivity (including sensation-seeking and risk-taking) and its association with 

alcohol/drug use in two dependent datasets. In addition, long-lasting relationships were 

revealed between childhood traumatic events, brain functional connectivity, and 

various psychological disorders, including depression, anxiety, and addiction. To our 

knowledge, this is the first time such relationships have been shown in a large sample 

from the UK Biobank dataset. Detailed discussion section of each topic is included at 

the end of the main chapters: here, brief conclusions drawn from the findings of 

different projects are provided. 

In Chapter 4, a novel prediction model was developed, based on the elastic net 

regression of the sensation-seeking personality from brain functional connectivity of 

the medial OFC areas and the ACC areas. A sensation-seeking score was found to be 

optimally predicted with a correlation of r=0.34 (p=7.3x10-13) between the predicted 

and the actual sensation-seeking score across all participants. This provides a novel way 

to investigate the relationship between behavioural measures and brain functional 

connectivity, replacing the usual correlation analysis with a prediction model. 

Furthermore, the prediction model examines groups of functional connectivity links, 

instead of an individual link, which is usual in correlation analysis; this indicates the 

relationship between behaviour measures and a group of links as community. 

Biologically, this provides clear evidence that functional connectivities between the 

medial OFC and the ACC were strongly involved in sensation-seeking. Moreover, our 

study advanced the concept that one type of impulsivity, related to sensation-seeking, 

is associated with increased functional connectivity of a reward-related cortical region, 

the medial orbitofrontal cortex.  

Following the same research interest in exploring the underlying mechanism of 

impulsivity, Chapter 6 found a significant association between risk-taking and the 

functional connectivity of the medial OFC areas with 18,740 participants from the UK 
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Biobank dataset (p<0.001, FDR corrected). This supports the hypothesis proposed in 

Chapter 4 that one type of reward-driven impulsivity is related to the medial 

orbitofrontal cortex of the brain, which is highly associated with risk-taking and 

sensation-seeking. In addition, the relationship between risk-taking and worry/anxiety 

was investigated through an advanced approach in this project. Instead of performing 

the traditional correlation between behaviour scores, the association pattern of 

behaviour measures with functional connectivity was analysed. This enabled the 

analysis of behavioural differences in association with differences in functional 

connectivity in the brain. Interestingly, the significantly associated functional 

connectivity links between risk-taking and anxiety involved similar regions of the brain, 

including the medial orbitofrontal cortex, VMPFC, and the parahippocampal gyrus, but 

in the opposite direction (p<0.001, FDR corrected). This investigation revealed, to my 

knowledge for the first time, that risk-taking individuals were not normally worriers, 

and the medial orbitofrontal cortex, which is a key area of the reward system, was 

associated positively with risk-taking, and negatively with anxiety. 

Apart from functional connectivity, an exploration of directional connectivity 

measures was conducted in Chapter 5, including the effective connectivity (EC) 

measure and Granger causality (GC) of the brain. Five commonly used prediction 

algorithms, i.e., OLSR, ridge, LASSO, elastic net and LSVR, were performed to 

explore the efficiency of the EC and GC feature of the brain. Generally, the GC feature 

provided slightly better prediction accuracy of verbal intelligence than the EC feature, 

indicating that the GC feature modelled the directional connectivity of the brain in this 

study better than the EC. This study explored the currently developed measures of 

directional connectivity of the whole brain and compared their efficiency using 

different prediction models. This provides a way to examine the efficiency of different 

brain connectivity measures in terms of their prediction accuracy on behaviour 

measures. Our comparison of the efficiency of these five commonly used prediction 

models found that elastic net regression provided better prediction accuracy than the 

other four algorithms in both EC and GC based models. Further investigations can be 

tried with other large-scale datasets and predictions on different behaviour measures to 

validate these findings, and the functional connectivity analysis can be included for 

comparison.  

Chapter 7 investigated childhood traumatic events in relation to cognitive 

performance, various psychological disorders, including anxiety, depression and 
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addiction in adulthood. Childhood traumatic events are established risk factors for 

psychopathology and can be associated with lasting mental differences. The UK 

Biobank dataset, which includes various health status reports, cognitive performance 

data and mental health measures from 500,000 volunteers, provides a great opportunity 

to explore the relationship between childhood traumatic events and various 

psychological disorders. Childhood traumatic events were found to be significantly 

associated with adult mental health problems, including anxiety (r=0.19, p<1.0×10-323), 

depression (r=0.21, p<1.0×10-323), addiction (r=0.09, p<1.0×10-230), and self-harm 

(r=0.24, p<1.0×10-323), as well as with adult cognitive performance, including fluid 

intelligence (r=-0.05, p=2.8×10-10) and prospective memory (r=-0.04, p=6.8×10-8). 

Functional connectivities of the precentral areas, the frontal lobe (middle and superior 

part), the temporal cortex (inferior and middle part), and the precuneus were negatively 

correlated with childhood traumatic events (FDR corrected, p<0.01). Notably, this 

investigation focused on the long-lasting relationship of childhood trauma with other 

behaviours over 30 years later, while most childhood trauma studies are limited to 

childhood or early adolescence. Moreover, with the massive datasets of various 

behaviour measures available, the relationships were investigated with nine mental 

health measures and three cognitive measures in adults, and the associated patterns of 

functional connectivity. These findings highlight the long-lasting relationship between 

childhood traumatic events and a wide range of mental health problems and cognition 

in later life. They also provide insights into the neural mechanisms of the long-lasting 

relationship, including brain areas involved in executive function, emotion, face 

processing, and memory. 

8.2 Open Problems 

The development of model imaging techniques and more available public datasets 

provides great opportunities for researchers to explore more about human behaviours 

and their underlying neuro pathways. However, with massive sample sizes and high-

dimensional neuroimaging data, it is also a great challenge in terms of methodology. 

Further investigations can be developed, applying more complex and novel machine 

learning methods to model neuroimaging data more effectively with massive data. 

Furthermore, efficient dimensional reduction methods for neuroimaging data should be 

explored and developed to solve the very high-dimensional brain features (over 
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thousands of features) at the level of the whole brain. In addition, multi-modal analysis 

methods are also of great importance for the exploration of neuroimaging data, 

behavioural data, and genetic data together.  

Although the literature may include thousands of reported results on the same 

question, limited convergence and conflicting findings may be disappointing and 

confusing in the search for a consistent understanding. This may be caused by different 

datasets, different pre-processing procedures, or inefficient methods which produce 

biased results. Developing a systematic approach that can summarize and extract the 

important and consistent findings from a large number of studies will benefit future 

researchers.  

With specific reference to this thesis, there are some open problems to work on 

following the current research. First, further exploration is needed into the parcellation 

of impulsivity and how different brain regions are related to different subtypes of 

impulsivity. As proposed in the projects presented in Chapters 4 and 6, one type of 

impulsivity, which is related to sensation-seeking, is related to increased functional 

connectivity of a reward-related cortical region, the medial orbitofrontal cortex. Other 

subtypes of impulsivity and related brain regions may be of interest to investigate with 

a large-scale dataset and proper validation, aiming to deepen the understanding of 

impulsivity.  

Second, machine learning methods are of great value in dealing with neuroimaging 

data with a high number of dimensions and large population, as described in Chapters 

4 and 5. In particular, prediction models help to predict behaviour measures from brain 

connectivities. For example, a reliable prediction model of mental disorder will help 

the diagnosis to be more objective, while diagnosis is currently usually based on 

questionnaires. Hence, exploration of reliable prediction models for neuroimaging data 

with a huge dataset, e.g., the UK Biobank dataset, will be of great importance in 

improving the understanding of brain function and help in the diagnosis of mental 

illness.  

Third, an investigation into the directional connectivity of the brain, including 

Granger causality and effective connectivity, was performed in Chapter 5. Directional 

connectivity shows the direction and causality of the way one brain region has an effect 

on another, which helps in understanding asymmetries in the way these brain regions 

work hierarchically underlying certain processes, such as sensory information 
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processing in the brain. More directional connectivity measurements can be explored 

and tested with independent datasets.  

Fourth, it is of great importance to explore the relationship between early life 

experiences, such as childhood trauma, the growing-up environment and parenting 

situation, with mental health status in later life. It is worth investigating whether this 

relationship is causal, and this will help to understand how mental disorders are 

developed and facilitate early diagnosis.  

8.3 Summary 

In summary, by exploring novel computational methods and modelling 

approaches to large-scale neuroimaging data, significant progress has been made in 

understanding the brain mechanism of impulsive behaviour and mental disorders. A 

new subtype of impulsivity was proposed that is reward-driven and related to the medial 

orbitofrontal cortex in Chapter 4. This proposal is based, for the first time, on a success 

prediction model of sensation-seeking from the brain’s functional connectivity, which 

was further supported by another project investigating risk-taking from a dependent 

dataset (Chapter 6). These findings help to provide a more comprehensive 

understanding of impulsivity, which further benefits the diagnosis and treatment of 

addiction and other impulsivity-related mental disorders.  

In addition, in Chapter 5, a comparison was conducted of traditional Granger 

causality and the newly developed method of measuring the brain's effective 

connectivity through the whole-brain connectivity network by implementing different 

machine learning prediction models. Generally, the GC feature provided slightly better 

prediction accuracy than the EC feature, indicating that the GC feature modelled the 

directional connectivity of the brain in this study better than the EC. A comparison of 

the efficiency of these five commonly used prediction models showed that elastic net 

regression provided better prediction accuracy than the other four algorithms in both 

EC and GC based models.  

Chapter 7 highlighted, from a large-scale dataset, the long-lasting relationship 

between childhood traumatic events and mental health problems, including depression, 

anxiety, and self-harm, and related brain functional connectivity links in later life. This 

is the first study, to our knowledge, to explore the association between childhood 

traumatic events, brain function, mental health problems, and cognitive performance, 
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with a large sample. It provides insights into the neural mechanisms of the long-lasting 

relationship between childhood trauma and mental health status in later life, including 

brain areas involved in executive function, emotion, face processing and memory. In 

particular, the UK Biobank dataset, which includes neuroimaging data, genetic data, 

and a wide range of cognitive performance, mental health and physical assessments 

from over 500,000 participants, provides the opportunity to understand various 

behavioural measures and the underlying neuroimaging pathway. As in Chapters 6 and 

7, significant associations in the underlying brain mechanism were revealed related to 

risk-taking and childhood trauma, and there certainly are more possibilities to explore 

in this dataset. 
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Appendix - 1  

The anatomical regions are defined in each hemisphere and their label in the automated 

anatomical labelling atlas AAL2 (Rolls et al., 2015). Column 4 provides a set of possible 

abbreviations for the anatomical descriptions. 

NO. ANATOMICAL DESCRIPTION 
LABEL 

aal2.nii.gz 

POSSIBLE 

ABBREVIATION 

1,2  Precentral gyrus Precentral PreCG 

3, 4 Superior frontal gyrus, dorsolateral Frontal_Sup SFG 

5, 6 Middle frontal gyrus Frontal_Mid MFG 

7, 8 Inferior frontal gyrus, opercular part Frontal_Inf_Oper IFGoperc 

9, 10 Inferior frontal gyrus, triangular part Frontal_Inf_Tri IFGtriang 

11, 12 IFG pars orbitalis,   Frontal_Inf_Orb IFGorb 

13, 14 Rolandic operculum Rolandic_Oper ROL 

15, 16 Supplementary motor area Supp_Motor_Area SMA 

17, 18 Olfactory cortex Olfactory OLF 

19, 20 Superior frontal gyrus, medial Frontal_Sup_Med SFGmedial 

21, 22 Superior frontal gyrus, medial orbital Frontal_Med_Orb PFCventmed 

23, 24 Gyrus rectus Rectus REC 

25, 26 Medial orbital gyrus OFCmed OFCmed 

27, 28 Anterior orbital gyrus OFCant OFCant 

29, 30 Posterior orbital gyrus OFCpost OFCpost 

31, 32 Lateral orbital gyrus OFClat OFClat 

33, 34 Insula Insula INS 

35, 36 Anterior cingulate & paracingulate gyri Cingulate_Ant ACC 

37, 38 Middle cingulate & paracingulate gyri Cingulate_Mid MCC 

39, 40 Posterior cingulate gyrus Cingulate_Post PCC 

41, 42 Hippocampus Hippocampus HIP 

43, 44 Parahippocampal gyrus ParaHippocampal PHG 

45, 46 Amygdala Amygdala AMYG 

47, 48 Calcarine fissure and surrounding cortex Calcarine CAL 

49, 50 Cuneus Cuneus CUN 

51, 52 Lingual gyrus Lingual LING 

53, 54 Superior occipital gyrus Occipital_Sup SOG 

55, 56 Middle occipital gyrus Occipital_Mid MOG 

57, 58 Inferior occipital gyrus Occipital_Inf IOG 

59, 60 Fusiform gyrus Fusiform FFG 

61, 62 Postcentral gyrus Postcentral PoCG 

63, 64 Superior parietal gyrus Parietal_Sup SPG 

65, 66 
Inferior parietal gyrus, excluding 

supramarginal and angular gyri 
Parietal_Inf IPG 

67, 68 SupraMarginal gyrus SupraMarginal SMG 

69, 70 Angular gyrus Angular ANG 

71, 72 Precuneus Precuneus PCUN 

73, 74 Paracentral lobule Paracentral_Lobule PCL 

75, 76 Caudate nucleus Caudate CAU 

77, 78 Lenticular nucleus, Putamen Putamen PUT 

79, 80 Lenticular nucleus, Pallidum Pallidum PAL 

81, 82 Thalamus Thalamus THA 

83, 84 Heschl’s gyrus Heschl HES 

85, 86 Superior temporal gyrus Temporal_Sup STG 

87, 88 Temporal pole: superior temporal gyrus Temporal_Pole_Sup TPOsup 

89, 90 Middle temporal gyrus Temporal_Mid MTG 

91, 92 Temporal pole: middle temporal gyrus Temporal_Pole_Mid TPOmid 

93, 94 Inferior temporal gyrus Temporal_Inf ITG 
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Appendix - 2 

List of functional connectivity links (778 links) which were significantly different 

between the risk-taking group and the non-risk-taking group (p<0.001 FDR corrected) 

in the study described in chapter 6. 

Region 1 Region 2 t value p value 

ParaHippocampal_R Postcentral_R 7.31 2.8E-13 

ParaHippocampal_R Postcentral_L 7.11 1.2E-12 

ParaHippocampal_R Paracentral_Lobule_L 7.09 1.4E-12 

Paracentral_Lobule_L Temporal_Pole_Mid_L 6.86 7.2E-12 

ParaHippocampal_L Postcentral_R 6.85 7.6E-12 

Paracentral_Lobule_R Temporal_Pole_Mid_L 6.79 1.2E-11 

Postcentral_L Postcentral_R 6.64 3.2E-11 

ParaHippocampal_L Paracentral_Lobule_L 6.64 3.3E-11 

ParaHippocampal_R Paracentral_Lobule_R 6.61 4.1E-11 

Paracentral_Lobule_L Temporal_Pole_Mid_R 6.50 8.0E-11 

Rolandic_Oper_L ParaHippocampal_R 6.48 9.4E-11 

Postcentral_R Paracentral_Lobule_R 6.46 1.0E-10 

ParaHippocampal_L Occipital_Sup_L 6.44 1.2E-10 

Paracentral_Lobule_R Temporal_Pole_Mid_R 6.39 1.7E-10 

Rolandic_Oper_R ParaHippocampal_R 6.37 1.9E-10 

Supp_Motor_Area_R Frontal_Med_Orb_L 6.36 2.0E-10 

ParaHippocampal_L Postcentral_L 6.36 2.1E-10 

Precentral_R Paracentral_Lobule_R 6.35 2.1E-10 

ParaHippocampal_L Occipital_Sup_R 6.30 3.0E-10 

Supp_Motor_Area_R ParaHippocampal_L 6.26 3.8E-10 

Supp_Motor_Area_R ParaHippocampal_R 6.23 4.7E-10 

ParaHippocampal_L Paracentral_Lobule_R 6.22 5.0E-10 

Postcentral_R Temporal_Pole_Mid_L 6.22 5.1E-10 

Parietal_Sup_R Temporal_Pole_Mid_L 6.22 5.2E-10 

Rolandic_Oper_R ParaHippocampal_L 6.21 5.2E-10 

ParaHippocampal_L Fusiform_R 6.21 5.3E-10 

ParaHippocampal_L Lingual_R 6.20 5.7E-10 

Rolandic_Oper_L ParaHippocampal_L 6.18 6.4E-10 

ParaHippocampal_L Temporal_Sup_L 6.18 6.6E-10 

Postcentral_L Paracentral_Lobule_R 6.17 7.0E-10 

ParaHippocampal_L Cuneus_R 6.15 7.8E-10 

Supp_Motor_Area_R Temporal_Pole_Mid_L 6.15 7.9E-10 

Postcentral_L Temporal_Pole_Mid_L 6.15 8.0E-10 

Hippocampus_R Postcentral_R 6.14 8.3E-10 

Hippocampus_R Paracentral_Lobule_L 6.13 8.8E-10 

Postcentral_L Temporal_Pole_Mid_R 6.12 9.6E-10 

Insula_R ParaHippocampal_L 6.10 1.1E-09 

Precentral_R Temporal_Pole_Mid_L 6.08 1.2E-09 

Occipital_Sup_R Temporal_Pole_Mid_L 6.03 1.6E-09 

ParaHippocampal_L Parietal_Sup_R 6.03 1.7E-09 
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Insula_L ParaHippocampal_L 6.03 1.7E-09 

Postcentral_R Temporal_Pole_Mid_R 6.01 1.9E-09 

Occipital_Sup_L Temporal_Pole_Mid_L 5.99 2.2E-09 

ParaHippocampal_L Fusiform_L 5.98 2.3E-09 

Cuneus_R Temporal_Pole_Mid_L 5.97 2.4E-09 

Hippocampus_R Paracentral_Lobule_R 5.95 2.8E-09 

Precentral_R Postcentral_L 5.95 2.8E-09 

Precentral_R ParaHippocampal_L 5.94 2.8E-09 

Precentral_R ParaHippocampal_R 5.90 3.7E-09 

Fusiform_R Temporal_Pole_Mid_L 5.89 3.9E-09 

Frontal_Med_Orb_L Postcentral_R 5.88 4.1E-09 

ParaHippocampal_L Heschl_R 5.87 4.5E-09 

Precentral_R Paracentral_Lobule_L 5.86 4.8E-09 

Rectus_R OFCpost_R 5.83 5.5E-09 

Temporal_Sup_L Temporal_Pole_Mid_L 5.83 5.8E-09 

Fusiform_L Temporal_Pole_Sup_R 5.82 6.0E-09 

ParaHippocampal_L Occipital_Inf_R 5.81 6.4E-09 

Lingual_L Temporal_Pole_Mid_L 5.81 6.5E-09 

Cuneus_L Postcentral_R 5.80 6.8E-09 

Frontal_Sup_2_R Frontal_Med_Orb_L 5.79 7.2E-09 

Temporal_Pole_Mid_L Temporal_Inf_R 5.77 8.0E-09 

Cuneus_R Postcentral_R 5.74 9.9E-09 

ParaHippocampal_R Temporal_Sup_L 5.73 1.0E-08 

ParaHippocampal_R Temporal_Pole_Sup_R 5.72 1.1E-08 

Precentral_R Temporal_Pole_Mid_R 5.71 1.1E-08 

Fusiform_L Temporal_Pole_Mid_L 5.71 1.2E-08 

Rolandic_Oper_L Temporal_Pole_Mid_L 5.70 1.2E-08 

Precentral_R Postcentral_R 5.65 1.6E-08 

Lingual_R Temporal_Pole_Mid_L 5.65 1.6E-08 

Cuneus_L Temporal_Pole_Mid_L 5.65 1.6E-08 

ParaHippocampal_L Lingual_L 5.64 1.7E-08 

ParaHippocampal_L Temporal_Sup_R 5.61 2.1E-08 

Frontal_Sup_2_R Temporal_Pole_Mid_L 5.60 2.1E-08 

ParaHippocampal_L SupraMarginal_R 5.59 2.4E-08 

Occipital_Sup_R Postcentral_R 5.57 2.5E-08 

Occipital_Mid_R Temporal_Pole_Mid_L 5.55 2.9E-08 

ParaHippocampal_L Cuneus_L 5.54 3.1E-08 

Supp_Motor_Area_R Temporal_Pole_Mid_R 5.53 3.3E-08 

Temporal_Sup_L Temporal_Pole_Sup_R 5.51 3.7E-08 

Rolandic_Oper_L Temporal_Pole_Mid_R 5.50 3.8E-08 

Temporal_Sup_R Temporal_Pole_Mid_L 5.50 3.8E-08 

Insula_R ParaHippocampal_R 5.50 3.9E-08 

Frontal_Med_Orb_L Paracentral_Lobule_L 5.49 4.0E-08 

Postcentral_R Paracentral_Lobule_L 5.48 4.4E-08 

Temporal_Sup_R Temporal_Pole_Sup_R 5.47 4.5E-08 

ParaHippocampal_L Occipital_Inf_L 5.46 4.7E-08 

ParaHippocampal_R Temporal_Sup_R 5.46 4.9E-08 
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Frontal_Med_Orb_L OFCpost_R 5.46 4.9E-08 

Temporal_Sup_L Temporal_Pole_Mid_R 5.44 5.5E-08 

ParaHippocampal_R Temporal_Pole_Sup_L 5.43 5.6E-08 

Supp_Motor_Area_R Frontal_Med_Orb_R 5.43 5.7E-08 

Precentral_L ParaHippocampal_R 5.43 5.7E-08 

Frontal_Med_Orb_R OFCpost_R 5.43 5.8E-08 

ParaHippocampal_L Temporal_Inf_R 5.42 6.1E-08 

Rectus_L Postcentral_R 5.41 6.2E-08 

Precuneus_R Temporal_Pole_Sup_L 5.41 6.3E-08 

Parietal_Sup_R Temporal_Pole_Sup_L 5.41 6.3E-08 

Frontal_Med_Orb_L Parietal_Sup_R 5.39 7.1E-08 

Precentral_R Frontal_Med_Orb_L 5.38 7.4E-08 

Temporal_Pole_Sup_R Temporal_Inf_R 5.38 7.7E-08 

ParaHippocampal_L Parietal_Sup_L 5.37 8.1E-08 

Precentral_L Precentral_R 5.36 8.4E-08 

ParaHippocampal_L Heschl_L 5.34 9.4E-08 

Temporal_Pole_Sup_R Temporal_Mid_L 5.33 9.7E-08 

Parietal_Sup_R Temporal_Pole_Sup_R 5.33 9.7E-08 

Cuneus_R Paracentral_Lobule_R 5.33 9.8E-08 

Rolandic_Oper_L Rectus_R 5.33 9.8E-08 

Hippocampus_R Postcentral_L 5.33 1.0E-07 

Supp_Motor_Area_L Temporal_Pole_Sup_R 5.32 1.0E-07 

Fusiform_L Temporal_Pole_Sup_L 5.32 1.1E-07 

ParaHippocampal_L Occipital_Mid_R 5.31 1.1E-07 

Rolandic_Oper_R Temporal_Pole_Mid_L 5.30 1.2E-07 

Occipital_Mid_L Temporal_Pole_Mid_L 5.29 1.2E-07 

Temporal_Sup_L Temporal_Sup_R 5.29 1.3E-07 

Frontal_Sup_2_R Frontal_Med_Orb_R 5.28 1.3E-07 

Cuneus_R Temporal_Pole_Mid_R 5.27 1.4E-07 

ParaHippocampal_R Fusiform_R 5.27 1.4E-07 

Insula_R Parietal_Inf_L 5.26 1.5E-07 

Supp_Motor_Area_R Rectus_R 5.25 1.5E-07 

Precentral_L Temporal_Pole_Mid_R 5.24 1.6E-07 

Frontal_Med_Orb_R Postcentral_R 5.24 1.6E-07 

Fusiform_R Temporal_Pole_Sup_R 5.24 1.6E-07 

Frontal_Med_Orb_L Paracentral_Lobule_R 5.23 1.7E-07 

ParaHippocampal_L Occipital_Mid_L 5.23 1.7E-07 

Rolandic_Oper_L Temporal_Pole_Sup_R 5.21 1.9E-07 

Fusiform_L Postcentral_R 5.21 1.9E-07 

Temporal_Pole_Sup_L Temporal_Pole_Sup_R 5.20 2.0E-07 

Rectus_R Postcentral_R 5.20 2.0E-07 

Fusiform_R Temporal_Pole_Mid_R 5.19 2.1E-07 

Supp_Motor_Area_R Temporal_Pole_Sup_R 5.18 2.2E-07 

Occipital_Sup_L Temporal_Pole_Mid_R 5.17 2.3E-07 

Heschl_L Heschl_R 5.17 2.4E-07 

Precuneus_R Heschl_R 5.16 2.5E-07 

Occipital_Sup_L Postcentral_R 5.16 2.5E-07 
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Precentral_L ParaHippocampal_L 5.16 2.5E-07 

Frontal_Med_Orb_L Postcentral_L 5.15 2.6E-07 

Rolandic_Oper_R Temporal_Pole_Mid_R 5.15 2.6E-07 

Insula_L ParaHippocampal_R 5.14 2.8E-07 

Supp_Motor_Area_R Hippocampus_R 5.14 2.8E-07 

Insula_R Precuneus_R 5.14 2.8E-07 

Rolandic_Oper_R Rectus_R 5.13 3.0E-07 

Frontal_Med_Orb_R Paracentral_Lobule_L 5.13 3.0E-07 

Supp_Motor_Area_L ParaHippocampal_R 5.12 3.1E-07 

Precentral_L Temporal_Pole_Mid_L 5.11 3.2E-07 

Frontal_Sup_2_L Frontal_Med_Orb_L 5.11 3.2E-07 

Precentral_R Rectus_R 5.09 3.5E-07 

Temporal_Mid_R Temporal_Pole_Mid_L 5.09 3.6E-07 

Frontal_Med_Orb_L Temporal_Inf_R 5.08 3.8E-07 

Rolandic_Oper_L Precuneus_R 5.08 3.9E-07 

Precentral_R Hippocampus_R 5.08 3.9E-07 

Cuneus_L Postcentral_L 5.08 3.9E-07 

Rectus_R Postcentral_L 5.07 3.9E-07 

Parietal_Sup_L Temporal_Pole_Mid_L 5.06 4.2E-07 

ParaHippocampal_R Heschl_R 5.06 4.3E-07 

ParaHippocampal_L Calcarine_R 5.05 4.3E-07 

Parietal_Sup_L Temporal_Pole_Sup_R 5.05 4.4E-07 

OFCmed_R Heschl_L 5.05 4.4E-07 

Frontal_Med_Orb_L Occipital_Sup_L 5.05 4.5E-07 

Lingual_R Temporal_Pole_Mid_R 5.05 4.5E-07 

Frontal_Med_Orb_L Cingulate_Ant_R 5.05 4.6E-07 

OFCmed_L Insula_R 5.04 4.6E-07 

Temporal_Sup_R Temporal_Pole_Sup_L 5.04 4.7E-07 

Frontal_Sup_2_R Cingulate_Post_L 5.04 4.7E-07 

OFCpost_R Angular_L 5.03 5.0E-07 

ParaHippocampal_L SupraMarginal_L 5.03 5.1E-07 

Paracentral_Lobule_R Temporal_Pole_Sup_R 5.03 5.1E-07 

Supp_Motor_Area_R OFClat_L 5.01 5.5E-07 

Rectus_R Insula_R 5.00 5.7E-07 

OFCmed_R Insula_R 5.00 5.7E-07 

Frontal_Med_Orb_L Occipital_Sup_R 5.00 5.8E-07 

Occipital_Sup_R Temporal_Pole_Mid_R 5.00 5.8E-07 

Fusiform_R Postcentral_R 5.00 5.9E-07 

Temporal_Pole_Sup_L Temporal_Mid_R 4.99 6.2E-07 

Frontal_Med_Orb_L Lingual_L 4.98 6.3E-07 

Rectus_L OFCpost_R 4.98 6.4E-07 

Cuneus_R Paracentral_Lobule_L 4.98 6.4E-07 

Occipital_Sup_R Paracentral_Lobule_R 4.98 6.5E-07 

Postcentral_L Paracentral_Lobule_L 4.97 6.7E-07 

Precentral_L Postcentral_R 4.97 6.7E-07 

Cingulate_Mid_L Heschl_R 4.97 6.8E-07 

Paracentral_Lobule_L Temporal_Pole_Sup_R 4.95 7.5E-07 
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Temporal_Sup_L Temporal_Mid_L 4.95 7.5E-07 

Calcarine_R Temporal_Pole_Mid_L 4.95 7.6E-07 

Frontal_Sup_2_R Frontal_Sup_Medial_L 4.94 7.7E-07 

Cingulate_Mid_L ParaHippocampal_L 4.94 7.9E-07 

Fusiform_L Temporal_Pole_Mid_R 4.94 7.9E-07 

Parietal_Inf_L Heschl_R 4.93 8.2E-07 

Fusiform_R Temporal_Pole_Sup_L 4.93 8.2E-07 

Cuneus_R Postcentral_L 4.93 8.3E-07 

Rectus_L Postcentral_L 4.92 8.7E-07 

ParaHippocampal_R Occipital_Sup_R 4.92 8.8E-07 

Temporal_Pole_Sup_L Temporal_Inf_R 4.92 8.9E-07 

Occipital_Mid_L Postcentral_R 4.91 9.2E-07 

OFCmed_R Temporal_Pole_Sup_R 4.90 9.5E-07 

Frontal_Med_Orb_L Fusiform_L 4.90 9.7E-07 

Precentral_L Paracentral_Lobule_R 4.90 9.7E-07 

Heschl_L Temporal_Pole_Mid_R 4.90 9.8E-07 

Cuneus_L Temporal_Pole_Mid_R 4.89 1.0E-06 

Temporal_Pole_Sup_R Temporal_Mid_R 4.89 1.0E-06 

Cuneus_L Paracentral_Lobule_R 4.89 1.0E-06 

ParaHippocampal_R Lingual_R 4.88 1.0E-06 

Paracentral_Lobule_R Temporal_Pole_Sup_L 4.88 1.0E-06 

Heschl_L Temporal_Pole_Sup_R 4.88 1.1E-06 

Occipital_Mid_R Postcentral_R 4.88 1.1E-06 

Rolandic_Oper_L Frontal_Med_Orb_L 4.88 1.1E-06 

ParaHippocampal_L Calcarine_L 4.88 1.1E-06 

Rolandic_Oper_L Temporal_Sup_R 4.87 1.1E-06 

Precuneus_R Temporal_Pole_Sup_R 4.87 1.1E-06 

Frontal_Med_Orb_L Fusiform_R 4.87 1.1E-06 

Temporal_Pole_Sup_R Temporal_Pole_Mid_L 4.86 1.2E-06 

Temporal_Sup_L Temporal_Pole_Sup_L 4.86 1.2E-06 

Rolandic_Oper_L Temporal_Mid_R 4.85 1.2E-06 

ParaHippocampal_L Temporal_Pole_Sup_R 4.85 1.3E-06 

OFCpost_L Insula_R 4.84 1.3E-06 

Cuneus_L Temporal_Pole_Sup_L 4.84 1.3E-06 

Rolandic_Oper_L Temporal_Pole_Sup_L 4.82 1.5E-06 

Supp_Motor_Area_L Supp_Motor_Area_R 4.82 1.5E-06 

Temporal_Pole_Mid_R Temporal_Inf_R 4.81 1.5E-06 

Supp_Motor_Area_R Temporal_Pole_Sup_L 4.81 1.5E-06 

Temporal_Sup_R Temporal_Pole_Mid_R 4.81 1.5E-06 

ParaHippocampal_R Fusiform_L 4.81 1.5E-06 

OFCpost_R Cingulate_Post_L 4.81 1.5E-06 

ParaHippocampal_R Heschl_L 4.80 1.6E-06 

Temporal_Pole_Sup_R Temporal_Pole_Mid_R 4.80 1.6E-06 

Precuneus_L Heschl_R 4.79 1.7E-06 

Supp_Motor_Area_R Rectus_L 4.79 1.7E-06 

Rectus_L Paracentral_Lobule_L 4.79 1.7E-06 

Insula_L Temporal_Pole_Sup_R 4.79 1.7E-06 
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Parietal_Sup_R Temporal_Pole_Mid_R 4.79 1.7E-06 

Paracentral_Lobule_L Paracentral_Lobule_R 4.79 1.7E-06 

Calcarine_L Temporal_Pole_Mid_L 4.79 1.7E-06 

Frontal_Med_Orb_L Cuneus_R 4.78 1.8E-06 

Cuneus_R Temporal_Pole_Sup_L 4.78 1.8E-06 

Insula_L Precuneus_R 4.78 1.8E-06 

Cingulate_Ant_R Cingulate_Post_L 4.77 1.8E-06 

Supp_Motor_Area_R Angular_L 4.77 1.8E-06 

Precentral_R Rectus_L 4.77 1.9E-06 

Precuneus_R Temporal_Pole_Mid_L 4.77 1.9E-06 

Lingual_L Temporal_Pole_Mid_R 4.77 1.9E-06 

ParaHippocampal_L ParaHippocampal_R 4.76 1.9E-06 

Frontal_Sup_2_L Frontal_Med_Orb_R 4.76 1.9E-06 

Rectus_R Heschl_L 4.76 2.0E-06 

SupraMarginal_R Temporal_Pole_Mid_L 4.75 2.0E-06 

Rolandic_Oper_R Temporal_Pole_Sup_R 4.75 2.0E-06 

Frontal_Med_Orb_L Heschl_R 4.75 2.1E-06 

Rectus_R Paracentral_Lobule_L 4.74 2.2E-06 

Rolandic_Oper_L Fusiform_L 4.74 2.2E-06 

ParaHippocampal_R Cuneus_R 4.74 2.2E-06 

Frontal_Inf_Orb_2_L Supp_Motor_Area_R 4.74 2.2E-06 

Fusiform_L Temporal_Sup_L 4.73 2.2E-06 

Rolandic_Oper_R Precuneus_R 4.73 2.3E-06 

Fusiform_L Paracentral_Lobule_R 4.73 2.3E-06 

OFCmed_R Temporal_Pole_Sup_L 4.72 2.4E-06 

Rolandic_Oper_R OFCmed_R 4.72 2.4E-06 

SupraMarginal_L Temporal_Pole_Sup_L 4.71 2.4E-06 

Frontal_Med_Orb_L Calcarine_L 4.71 2.4E-06 

Rolandic_Oper_L OFCmed_R 4.71 2.4E-06 

Frontal_Med_Orb_R Parietal_Sup_R 4.71 2.4E-06 

OFCmed_R OFCpost_R 4.71 2.5E-06 

ParaHippocampal_R SupraMarginal_L 4.71 2.5E-06 

ParaHippocampal_R Occipital_Sup_L 4.70 2.6E-06 

Postcentral_L Temporal_Pole_Sup_R 4.70 2.6E-06 

Lingual_R Postcentral_R 4.70 2.6E-06 

Postcentral_R Temporal_Pole_Sup_R 4.70 2.6E-06 

Frontal_Med_Orb_L Parietal_Sup_L 4.70 2.6E-06 

Frontal_Med_Orb_R Paracentral_Lobule_R 4.70 2.7E-06 

Occipital_Sup_R Postcentral_L 4.70 2.7E-06 

Precentral_L Frontal_Med_Orb_L 4.70 2.7E-06 

Precuneus_R Heschl_L 4.69 2.8E-06 

OFCpost_L OFCpost_R 4.68 2.8E-06 

Precentral_L Hippocampus_R 4.68 2.8E-06 

Rolandic_Oper_L Temporal_Mid_L 4.68 2.9E-06 

Rolandic_Oper_L Rectus_L 4.68 2.9E-06 

Frontal_Inf_Tri_R Cingulate_Post_L 4.66 3.1E-06 

Rolandic_Oper_R Frontal_Med_Orb_L 4.66 3.1E-06 
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Precuneus_R Temporal_Sup_L 4.66 3.2E-06 

Rectus_L Paracentral_Lobule_R 4.66 3.2E-06 

Frontal_Inf_Oper_R Frontal_Med_Orb_L 4.66 3.2E-06 

Cingulate_Mid_R ParaHippocampal_L 4.66 3.2E-06 

Heschl_L Temporal_Pole_Mid_L 4.66 3.2E-06 

Rolandic_Oper_R Parietal_Inf_L 4.65 3.4E-06 

ParaHippocampal_R Parietal_Sup_R 4.64 3.4E-06 

Frontal_Med_Orb_L Insula_R 4.64 3.4E-06 

Postcentral_L Caudate_R -4.64 3.5E-06 

Frontal_Med_Orb_L Cingulate_Mid_R 4.64 3.5E-06 

Fusiform_L Postcentral_L 4.64 3.5E-06 

Frontal_Sup_2_R Rectus_L 4.64 3.5E-06 

Occipital_Sup_R Paracentral_Lobule_L 4.64 3.5E-06 

Frontal_Inf_Tri_R Frontal_Med_Orb_L 4.64 3.5E-06 

Rolandic_Oper_L Parietal_Sup_R 4.64 3.6E-06 

Frontal_Med_Orb_L Calcarine_R 4.63 3.6E-06 

Frontal_Med_Orb_R Temporal_Inf_R 4.62 3.8E-06 

Rectus_R Temporal_Pole_Sup_R 4.62 3.8E-06 

Precentral_L Temporal_Pole_Sup_R 4.62 3.8E-06 

Rectus_L Temporal_Inf_R 4.62 3.9E-06 

Rolandic_Oper_R Heschl_R 4.62 4.0E-06 

Insula_R Cingulate_Post_L 4.61 4.0E-06 

Cingulate_Post_L SupraMarginal_R 4.61 4.0E-06 

ParaHippocampal_R Temporal_Inf_R 4.61 4.1E-06 

ParaHippocampal_R Occipital_Inf_R 4.60 4.2E-06 

Cuneus_L Temporal_Pole_Sup_R 4.60 4.3E-06 

Rolandic_Oper_R Temporal_Mid_L 4.59 4.4E-06 

Rolandic_Oper_R Rectus_L 4.59 4.4E-06 

Lingual_R Temporal_Pole_Sup_L 4.59 4.4E-06 

SupraMarginal_L Temporal_Pole_Sup_R 4.59 4.5E-06 

Olfactory_L Olfactory_R 4.59 4.5E-06 

Lingual_R Temporal_Pole_Sup_R 4.59 4.5E-06 

OFCpost_L Cingulate_Mid_R 4.59 4.5E-06 

Insula_L Parietal_Inf_L 4.58 4.6E-06 

Rolandic_Oper_L Precuneus_L 4.58 4.6E-06 

Supp_Motor_Area_L ParaHippocampal_L 4.58 4.6E-06 

Insula_R Precuneus_L 4.58 4.7E-06 

Parietal_Inf_L Temporal_Sup_L 4.58 4.8E-06 

Frontal_Med_Orb_L Lingual_R 4.57 4.8E-06 

Rolandic_Oper_R Temporal_Pole_Sup_L 4.57 4.8E-06 

Temporal_Pole_Mid_L Temporal_Pole_Mid_R 4.57 4.9E-06 

Rolandic_Oper_L Temporal_Inf_R 4.57 5.0E-06 

Rolandic_Oper_R Fusiform_L 4.57 5.0E-06 

Heschl_R Temporal_Pole_Sup_R 4.56 5.1E-06 

Cuneus_R Temporal_Pole_Sup_R 4.55 5.3E-06 

Rolandic_Oper_R OFCmed_L 4.55 5.3E-06 

Fusiform_R Paracentral_Lobule_R 4.55 5.4E-06 
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Lingual_L Postcentral_R 4.55 5.4E-06 

Hippocampus_R Occipital_Sup_R 4.55 5.4E-06 

OFCmed_L Heschl_R 4.55 5.4E-06 

Supp_Motor_Area_R Temporal_Mid_L 4.54 5.5E-06 

Frontal_Sup_Medial_R Frontal_Med_Orb_R 4.54 5.6E-06 

Fusiform_L Temporal_Sup_R 4.54 5.7E-06 

Precuneus_L Temporal_Sup_L 4.54 5.7E-06 

Cingulate_Post_L Heschl_R 4.54 5.7E-06 

Cuneus_L Paracentral_Lobule_L 4.53 6.0E-06 

Cingulate_Post_L SupraMarginal_L 4.53 6.0E-06 

Insula_R Angular_R 4.53 6.0E-06 

Occipital_Mid_R Temporal_Pole_Sup_L 4.53 6.0E-06 

OFCmed_L Temporal_Pole_Sup_R 4.52 6.1E-06 

OFCmed_R Heschl_R 4.52 6.3E-06 

Occipital_Inf_L Postcentral_R 4.52 6.3E-06 

Hippocampus_R Occipital_Sup_L 4.51 6.4E-06 

Frontal_Inf_Oper_R ParaHippocampal_L 4.51 6.4E-06 

Rectus_R Temporal_Inf_R 4.51 6.6E-06 

Frontal_Inf_Oper_R Temporal_Pole_Mid_L 4.51 6.6E-06 

Fusiform_R Postcentral_L 4.51 6.7E-06 

Occipital_Inf_L Temporal_Pole_Mid_L 4.50 6.7E-06 

Heschl_R Temporal_Inf_L 4.50 6.8E-06 

ParaHippocampal_R Parietal_Sup_L 4.50 7.0E-06 

Supp_Motor_Area_L Frontal_Med_Orb_R 4.50 7.0E-06 

Supp_Motor_Area_L Rectus_R 4.50 7.0E-06 

Insula_R Cingulate_Mid_L 4.49 7.1E-06 

Calcarine_R Temporal_Pole_Mid_R 4.49 7.1E-06 

Occipital_Mid_R Postcentral_L 4.49 7.1E-06 

Occipital_Sup_L Paracentral_Lobule_R 4.49 7.3E-06 

Precentral_L Rectus_R 4.49 7.3E-06 

Occipital_Inf_L Temporal_Pole_Sup_R 4.48 7.3E-06 

Parietal_Sup_R Heschl_R 4.48 7.4E-06 

Rectus_R Temporal_Sup_L 4.48 7.5E-06 

Cingulate_Mid_L Heschl_L 4.48 7.5E-06 

Rectus_R Heschl_R 4.48 7.6E-06 

Parietal_Sup_L Temporal_Pole_Sup_L 4.48 7.7E-06 

Frontal_Sup_Medial_L Frontal_Sup_Medial_R 4.47 7.7E-06 

Precentral_L Paracentral_Lobule_L 4.47 7.9E-06 

Rolandic_Oper_R OFClat_L 4.47 7.9E-06 

Cingulate_Mid_R Heschl_R 4.47 7.9E-06 

Temporal_Sup_R Temporal_Mid_L 4.47 8.0E-06 

Cingulate_Mid_L Cingulate_Mid_R 4.46 8.3E-06 

Insula_L Cingulate_Mid_L 4.46 8.4E-06 

Insula_L Temporal_Pole_Sup_L 4.45 8.5E-06 

Frontal_Inf_Orb_2_R Rectus_L 4.45 8.7E-06 

Parietal_Sup_L Temporal_Pole_Mid_R 4.45 8.8E-06 

Heschl_R Temporal_Pole_Mid_R 4.44 8.8E-06 
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Supp_Motor_Area_R OFCpost_L 4.44 8.9E-06 

Frontal_Sup_Medial_L OFCpost_R 4.44 9.0E-06 

Frontal_Sup_Medial_L Frontal_Med_Orb_R 4.44 9.1E-06 

Rolandic_Oper_L Heschl_R 4.44 9.1E-06 

Occipital_Inf_R Temporal_Pole_Mid_L 4.43 9.3E-06 

Insula_R Temporal_Pole_Mid_L 4.43 9.3E-06 

Rolandic_Oper_L Fusiform_R 4.43 9.3E-06 

Lingual_R Paracentral_Lobule_R 4.43 9.4E-06 

Frontal_Med_Orb_R Postcentral_L 4.43 9.4E-06 

Rolandic_Oper_R Temporal_Sup_R 4.43 9.6E-06 

Fusiform_L Heschl_R 4.42 9.8E-06 

Frontal_Sup_Medial_R OFCpost_R 4.42 9.8E-06 

Rectus_R Temporal_Sup_R 4.42 9.9E-06 

Occipital_Mid_L Temporal_Pole_Mid_R 4.42 9.9E-06 

Heschl_L Temporal_Sup_R 4.42 1.0E-05 

OFCpost_L Insula_L 4.41 1.0E-05 

OFCpost_R Temporal_Pole_Mid_L 4.41 1.0E-05 

Thalamus_L Thalamus_R 4.41 1.0E-05 

Lingual_L Temporal_Pole_Sup_L 4.41 1.0E-05 

Frontal_Sup_Medial_R Frontal_Med_Orb_L 4.41 1.0E-05 

Frontal_Inf_Tri_R Temporal_Pole_Mid_L 4.41 1.1E-05 

Supp_Motor_Area_L Frontal_Med_Orb_L 4.40 1.1E-05 

Fusiform_L Precuneus_L 4.40 1.1E-05 

ParaHippocampal_R Lingual_L 4.40 1.1E-05 

Temporal_Pole_Sup_L Temporal_Pole_Mid_R 4.40 1.1E-05 

Supp_Motor_Area_L Temporal_Pole_Mid_R 4.40 1.1E-05 

Frontal_Med_Orb_L Cuneus_L 4.40 1.1E-05 

Rectus_L Parietal_Sup_R 4.39 1.1E-05 

Postcentral_L Parietal_Sup_R 4.39 1.2E-05 

Rectus_L Amygdala_R 4.39 1.2E-05 

Insula_R Temporal_Pole_Sup_R 4.39 1.2E-05 

Rolandic_Oper_L OFCmed_L 4.39 1.2E-05 

Occipital_Sup_R Temporal_Pole_Sup_L 4.38 1.2E-05 

Postcentral_R Temporal_Pole_Sup_L 4.38 1.2E-05 

Occipital_Mid_R Temporal_Pole_Sup_R 4.38 1.2E-05 

OFCpost_L Precuneus_R 4.38 1.2E-05 

Postcentral_L Temporal_Pole_Sup_L 4.37 1.2E-05 

Rolandic_Oper_L Cuneus_L 4.37 1.3E-05 

ParaHippocampal_R Occipital_Inf_L 4.36 1.3E-05 

Rolandic_Oper_L Temporal_Sup_L 4.36 1.3E-05 

ParaHippocampal_L Temporal_Mid_R 4.36 1.3E-05 

Heschl_R Temporal_Pole_Mid_L 4.36 1.3E-05 

Fusiform_R Temporal_Sup_L 4.36 1.3E-05 

Hippocampus_R Parietal_Sup_R 4.36 1.3E-05 

Frontal_Inf_Orb_2_R Rectus_R 4.35 1.3E-05 

Heschl_L Temporal_Sup_L 4.35 1.4E-05 

Temporal_Sup_L Temporal_Inf_R 4.35 1.4E-05 
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SupraMarginal_L Temporal_Pole_Mid_L 4.35 1.4E-05 

Heschl_R Temporal_Mid_L 4.35 1.4E-05 

Frontal_Inf_Orb_2_R Cingulate_Post_L 4.34 1.4E-05 

Hippocampus_L Postcentral_R 4.34 1.4E-05 

Occipital_Mid_L Temporal_Pole_Sup_R 4.34 1.4E-05 

Frontal_Med_Orb_R OFCpost_L 4.34 1.4E-05 

ParaHippocampal_R Temporal_Pole_Mid_L 4.34 1.4E-05 

Frontal_Inf_Orb_2_R Frontal_Med_Orb_L 4.34 1.5E-05 

Frontal_Med_Orb_L Insula_L 4.33 1.5E-05 

Rectus_R Fusiform_R 4.33 1.5E-05 

Rolandic_Oper_R OFCpost_L 4.33 1.5E-05 

Heschl_R Temporal_Sup_R 4.32 1.5E-05 

Rectus_R Temporal_Pole_Sup_L 4.32 1.5E-05 

Precuneus_L Temporal_Pole_Sup_R 4.32 1.6E-05 

ParaHippocampal_R Cuneus_L 4.32 1.6E-05 

Fusiform_L Precuneus_R 4.31 1.6E-05 

Insula_L Temporal_Pole_Mid_R 4.31 1.6E-05 

Rolandic_Oper_R Precuneus_L 4.31 1.6E-05 

Frontal_Med_Orb_L Occipital_Mid_L 4.31 1.7E-05 

Precentral_R Frontal_Med_Orb_R 4.31 1.7E-05 

Heschl_R Temporal_Sup_L 4.30 1.7E-05 

Rectus_L Fusiform_R 4.30 1.7E-05 

Paracentral_Lobule_L Temporal_Pole_Sup_L 4.30 1.7E-05 

Hippocampus_L Paracentral_Lobule_L 4.30 1.7E-05 

Rolandic_Oper_R Temporal_Mid_R 4.30 1.7E-05 

Frontal_Med_Orb_L SupraMarginal_R 4.29 1.8E-05 

Frontal_Med_Orb_R Parietal_Sup_L 4.29 1.8E-05 

Insula_R Cingulate_Mid_R 4.29 1.8E-05 

SupraMarginal_R Temporal_Pole_Sup_L 4.28 1.8E-05 

Fusiform_L Heschl_L 4.28 1.8E-05 

OFCpost_L Cingulate_Ant_R 4.28 1.8E-05 

Parietal_Sup_L Temporal_Sup_L 4.28 1.9E-05 

Frontal_Sup_2_R Temporal_Pole_Mid_R 4.28 1.9E-05 

Precuneus_L Temporal_Pole_Sup_L 4.28 1.9E-05 

OFCpost_R Angular_R 4.28 1.9E-05 

Frontal_Inf_Tri_R ParaHippocampal_L 4.28 1.9E-05 

Precentral_R Caudate_R -4.26 2.0E-05 

Rectus_R OFCmed_R 4.26 2.0E-05 

Postcentral_L Caudate_L -4.26 2.1E-05 

Occipital_Sup_L Temporal_Pole_Sup_L 4.26 2.1E-05 

Temporal_Sup_L Temporal_Mid_R 4.26 2.1E-05 

Fusiform_L Temporal_Mid_R 4.26 2.1E-05 

Rolandic_Oper_L Paracentral_Lobule_R 4.25 2.1E-05 

Rectus_R Insula_L 4.25 2.1E-05 

ParaHippocampal_L Temporal_Pole_Sup_L 4.25 2.2E-05 

Frontal_Sup_2_R Rectus_R 4.25 2.2E-05 

Heschl_R Temporal_Inf_R 4.25 2.2E-05 
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Occipital_Sup_L Postcentral_L 4.25 2.2E-05 

Rectus_L Fusiform_L 4.24 2.2E-05 

OFCpost_L ParaHippocampal_R 4.24 2.2E-05 

Olfactory_R Cingulate_Ant_L 4.24 2.2E-05 

OFCpost_L Heschl_R 4.23 2.3E-05 

Parietal_Sup_R Temporal_Sup_L 4.23 2.3E-05 

Rolandic_Oper_R Parietal_Sup_R 4.23 2.3E-05 

Fusiform_L Paracentral_Lobule_L 4.23 2.4E-05 

Rectus_R Parietal_Sup_R 4.23 2.4E-05 

Frontal_Inf_Orb_2_L Precuneus_R 4.22 2.4E-05 

OFCmed_L Temporal_Pole_Sup_L 4.22 2.4E-05 

Lingual_L Temporal_Pole_Sup_R 4.22 2.4E-05 

Rolandic_Oper_L Frontal_Med_Orb_R 4.21 2.5E-05 

Insula_R Angular_L 4.21 2.5E-05 

Frontal_Inf_Oper_R Rectus_R 4.21 2.6E-05 

Rectus_L Insula_R 4.21 2.6E-05 

Lingual_L Paracentral_Lobule_R 4.21 2.6E-05 

Rolandic_Oper_R Frontal_Med_Orb_R 4.20 2.6E-05 

Rectus_R Paracentral_Lobule_R 4.20 2.7E-05 

Frontal_Inf_Orb_2_R Frontal_Med_Orb_R 4.20 2.7E-05 

Postcentral_R SupraMarginal_R -4.20 2.7E-05 

Cingulate_Mid_L ParaHippocampal_R 4.19 2.7E-05 

Cingulate_Mid_R Cingulate_Post_L 4.19 2.7E-05 

Cingulate_Mid_R Heschl_L 4.19 2.8E-05 

Temporal_Sup_L Temporal_Inf_L 4.19 2.8E-05 

Frontal_Med_Orb_L Cingulate_Mid_L 4.19 2.8E-05 

OFCmed_L Temporal_Sup_R 4.19 2.8E-05 

Fusiform_R Paracentral_Lobule_L 4.19 2.8E-05 

Hippocampus_R ParaHippocampal_R 4.19 2.9E-05 

OFClat_L Postcentral_R 4.19 2.9E-05 

Parietal_Sup_L Heschl_R 4.18 2.9E-05 

OFCpost_L Temporal_Pole_Sup_R 4.18 2.9E-05 

Occipital_Mid_R Temporal_Pole_Mid_R 4.18 2.9E-05 

Insula_L Precuneus_L 4.18 3.0E-05 

Rolandic_Oper_L Parietal_Sup_L 4.18 3.0E-05 

Occipital_Mid_L Postcentral_L 4.17 3.0E-05 

Rolandic_Oper_R Temporal_Sup_L 4.17 3.1E-05 

Postcentral_L Putamen_L -4.17 3.1E-05 

Occipital_Sup_R Temporal_Pole_Sup_R 4.17 3.1E-05 

Rolandic_Oper_L Parietal_Inf_L 4.17 3.1E-05 

Frontal_Inf_Oper_R Temporal_Pole_Mid_R 4.17 3.1E-05 

OFCpost_L Cingulate_Mid_L 4.16 3.2E-05 

Frontal_Med_Orb_L Temporal_Sup_L 4.16 3.2E-05 

Insula_R Temporal_Pole_Mid_R 4.16 3.2E-05 

Cingulate_Mid_L Temporal_Pole_Sup_R 4.16 3.3E-05 

OFCmed_L Cingulate_Mid_R 4.15 3.3E-05 

Temporal_Pole_Sup_L Temporal_Mid_L 4.15 3.3E-05 
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Frontal_Med_Orb_L OFCant_R 4.15 3.3E-05 

Insula_R Temporal_Pole_Sup_L 4.15 3.3E-05 

Frontal_Med_Orb_L Occipital_Inf_R 4.15 3.3E-05 

OFCmed_L Temporal_Sup_L 4.15 3.3E-05 

Frontal_Med_Orb_L ParaHippocampal_R 4.15 3.3E-05 

Rectus_L OFCmed_L 4.15 3.3E-05 

Supp_Motor_Area_L Temporal_Sup_R 4.15 3.3E-05 

Parietal_Inf_L Temporal_Pole_Sup_R 4.15 3.3E-05 

Cingulate_Mid_L Precuneus_R 4.15 3.3E-05 

ParaHippocampal_R Occipital_Mid_L 4.15 3.3E-05 

ParaHippocampal_R SupraMarginal_R 4.15 3.4E-05 

Rectus_L Temporal_Sup_L 4.15 3.4E-05 

Occipital_Mid_R Paracentral_Lobule_R 4.14 3.4E-05 

Cingulate_Mid_R Temporal_Pole_Mid_L 4.14 3.4E-05 

Angular_L Temporal_Sup_L 4.14 3.5E-05 

Temporal_Pole_Sup_L Temporal_Pole_Mid_L 4.14 3.5E-05 

OFClat_L Insula_R 4.14 3.5E-05 

Cingulate_Mid_R Precuneus_R 4.14 3.5E-05 

OFCmed_R Insula_L 4.13 3.6E-05 

Frontal_Inf_Tri_R OFCpost_L 4.13 3.7E-05 

Rolandic_Oper_R Heschl_L 4.12 3.7E-05 

Hippocampus_R Amygdala_R 4.12 3.7E-05 

Occipital_Sup_L Temporal_Pole_Sup_R 4.12 3.8E-05 

Occipital_Mid_L Temporal_Pole_Sup_L 4.12 3.8E-05 

Frontal_Med_Orb_L Occipital_Mid_R 4.12 3.8E-05 

Frontal_Sup_2_L Temporal_Pole_Sup_R 4.12 3.9E-05 

Heschl_L Temporal_Pole_Sup_L 4.12 3.9E-05 

ParaHippocampal_R Amygdala_R 4.12 3.9E-05 

Frontal_Med_Orb_R OFCmed_R 4.12 3.9E-05 

Rolandic_Oper_R Parietal_Sup_L 4.11 3.9E-05 

Rolandic_Oper_R Temporal_Inf_R 4.11 3.9E-05 

Frontal_Sup_2_R Angular_L 4.11 3.9E-05 

Cingulate_Mid_R Temporal_Pole_Sup_L 4.11 4.0E-05 

OFCpost_L Heschl_L 4.11 4.0E-05 

Frontal_Inf_Oper_R Cingulate_Post_L 4.11 4.0E-05 

OFCmed_L Heschl_L 4.10 4.1E-05 

Occipital_Mid_L Paracentral_Lobule_R 4.10 4.1E-05 

Calcarine_L Temporal_Pole_Mid_R 4.10 4.1E-05 

Rectus_R Calcarine_R 4.10 4.2E-05 

Frontal_Med_Orb_R Heschl_R 4.10 4.2E-05 

Rolandic_Oper_L Rolandic_Oper_R 4.10 4.2E-05 

Fusiform_R Temporal_Sup_R 4.09 4.3E-05 

Precuneus_L Heschl_L 4.09 4.3E-05 

Frontal_Inf_Orb_2_R Temporal_Pole_Mid_L 4.09 4.3E-05 

Frontal_Sup_2_R OFCpost_L 4.09 4.4E-05 

Postcentral_R Caudate_R -4.09 4.4E-05 

Rolandic_Oper_L OFCpost_L 4.09 4.4E-05 
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Rectus_L ParaHippocampal_R 4.08 4.4E-05 

SupraMarginal_R Angular_L 4.08 4.5E-05 

Parietal_Inf_L Heschl_L 4.08 4.5E-05 

Rectus_L Temporal_Mid_R 4.08 4.5E-05 

Frontal_Med_Orb_L OFCmed_L 4.07 4.8E-05 

Occipital_Inf_R Temporal_Pole_Sup_R 4.07 4.8E-05 

Heschl_L Temporal_Mid_R 4.06 4.9E-05 

ParaHippocampal_R Temporal_Pole_Mid_R 4.06 4.9E-05 

Heschl_L Temporal_Mid_L 4.06 5.0E-05 

Occipital_Mid_R Paracentral_Lobule_L 4.06 5.0E-05 

OFCmed_L Temporal_Mid_R 4.06 5.0E-05 

Insula_L Cingulate_Mid_R 4.06 5.0E-05 

Frontal_Inf_Tri_L Supp_Motor_Area_R 4.05 5.0E-05 

Frontal_Sup_2_L Cingulate_Post_L 4.05 5.0E-05 

Frontal_Sup_2_R Temporal_Pole_Sup_R 4.05 5.1E-05 

Frontal_Sup_Medial_L Cingulate_Ant_R 4.05 5.1E-05 

Rectus_R OFCant_R 4.05 5.1E-05 

Frontal_Med_Orb_R Fusiform_R 4.05 5.2E-05 

Rectus_L Lingual_L 4.05 5.2E-05 

Frontal_Med_Orb_L Frontal_Med_Orb_R 4.04 5.3E-05 

Insula_L Cingulate_Post_L 4.04 5.3E-05 

Rolandic_Oper_R Fusiform_R 4.04 5.3E-05 

OFCmed_R ParaHippocampal_L 4.04 5.3E-05 

Frontal_Inf_Tri_R Temporal_Pole_Sup_L 4.04 5.4E-05 

OFCmed_L Cingulate_Mid_L 4.03 5.5E-05 

Supp_Motor_Area_R Cingulate_Post_L 4.03 5.6E-05 

Supp_Motor_Area_L Temporal_Pole_Sup_L 4.03 5.7E-05 

Cingulate_Mid_R ParaHippocampal_R 4.03 5.7E-05 

Fusiform_R Heschl_L 4.02 5.7E-05 

Occipital_Sup_L Paracentral_Lobule_L 4.02 5.7E-05 

Cingulate_Mid_R Temporal_Pole_Sup_R 4.02 5.8E-05 

Occipital_Inf_R Paracentral_Lobule_R 4.02 5.8E-05 

Rectus_R Cuneus_R 4.02 5.9E-05 

Cingulate_Ant_R Cingulate_Post_R 4.01 6.0E-05 

Frontal_Inf_Tri_R Frontal_Inf_Orb_2_L 4.01 6.1E-05 

Rectus_R Calcarine_L 4.01 6.1E-05 

Cingulate_Post_L Thalamus_R 4.01 6.1E-05 

OFCpost_L Precuneus_L 4.01 6.1E-05 

OFCmed_R Cingulate_Ant_L 4.01 6.2E-05 

Precentral_R Caudate_L -4.01 6.2E-05 

Rolandic_Oper_L Angular_R 4.01 6.2E-05 

OFCmed_R Temporal_Sup_R 4.01 6.2E-05 

Calcarine_R Temporal_Pole_Sup_L 4.00 6.2E-05 

SupraMarginal_L Heschl_R 4.00 6.2E-05 

Hippocampus_R Parietal_Sup_L 4.00 6.4E-05 

ParaHippocampal_R Occipital_Mid_R 4.00 6.4E-05 

Rolandic_Oper_L Heschl_L 3.99 6.5E-05 
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Rectus_L Temporal_Sup_R 3.99 6.6E-05 

Cingulate_Ant_L Cingulate_Ant_R 3.99 6.7E-05 

Cingulate_Mid_L Temporal_Pole_Sup_L 3.99 6.7E-05 

Rectus_R Lingual_R 3.99 6.7E-05 

Frontal_Inf_Tri_R Temporal_Pole_Mid_R 3.98 6.8E-05 

Rectus_R SupraMarginal_L 3.98 6.9E-05 

Hippocampus_L Hippocampus_R 3.98 6.9E-05 

Frontal_Inf_Oper_R OFCpost_L 3.98 6.9E-05 

Amygdala_R Paracentral_Lobule_L 3.98 7.0E-05 

Parietal_Inf_L Temporal_Sup_R 3.98 7.0E-05 

Rectus_L Occipital_Sup_L 3.98 7.0E-05 

Cingulate_Ant_L Precuneus_R 3.97 7.1E-05 

Lingual_L Postcentral_L 3.97 7.1E-05 

Frontal_Inf_Tri_R Temporal_Pole_Sup_R 3.97 7.2E-05 

Fusiform_R Precuneus_L 3.97 7.2E-05 

Frontal_Med_Orb_R Occipital_Sup_L 3.97 7.3E-05 

Postcentral_L Temporal_Mid_R 3.97 7.3E-05 

Frontal_Med_Orb_R Cingulate_Ant_R 3.97 7.4E-05 

Frontal_Med_Orb_R Temporal_Pole_Mid_L 3.96 7.6E-05 

Fusiform_R Heschl_R 3.96 7.6E-05 

OFCmed_L ParaHippocampal_L 3.95 7.7E-05 

Lingual_R Postcentral_L 3.95 7.7E-05 

Frontal_Inf_Oper_R Temporal_Pole_Sup_L 3.95 7.8E-05 

Frontal_Med_Orb_R Fusiform_L 3.95 7.8E-05 

Insula_R Heschl_R 3.95 7.9E-05 

Frontal_Inf_Tri_R Angular_L 3.94 8.2E-05 

OFCmed_R Temporal_Sup_L 3.94 8.3E-05 

OFCmed_L OFCpost_R 3.93 8.4E-05 

Heschl_L Temporal_Inf_R 3.93 8.6E-05 

Fusiform_L Temporal_Mid_L 3.93 8.6E-05 

Postcentral_L Thalamus_L -3.93 8.6E-05 

Frontal_Inf_Oper_R Rectus_L 3.93 8.6E-05 

Frontal_Sup_2_R Temporal_Pole_Sup_L 3.93 8.7E-05 

Insula_R Parietal_Inf_R 3.92 8.7E-05 

Olfactory_L Frontal_Med_Orb_R 3.92 8.8E-05 

Frontal_Inf_Oper_R Temporal_Pole_Sup_R 3.92 8.9E-05 

Rectus_L Heschl_R 3.92 8.9E-05 

Frontal_Med_Orb_L Occipital_Inf_L 3.92 8.9E-05 

Hippocampus_R Amygdala_L 3.92 8.9E-05 

Cingulate_Mid_R Parietal_Inf_L 3.92 8.9E-05 

Supp_Motor_Area_L Heschl_R 3.92 8.9E-05 

Occipital_Inf_L Temporal_Pole_Sup_L 3.92 9.1E-05 

Frontal_Inf_Orb_2_L ParaHippocampal_R 3.91 9.1E-05 

OFCpost_L Temporal_Sup_L 3.91 9.1E-05 

Precentral_L Supp_Motor_Area_R 3.91 9.1E-05 

Frontal_Med_Orb_R Heschl_L 3.91 9.1E-05 

Frontal_Inf_Orb_2_L Temporal_Pole_Sup_R 3.91 9.2E-05 
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Frontal_Mid_2_R Frontal_Med_Orb_L 3.91 9.2E-05 

Frontal_Inf_Orb_2_R Angular_L 3.91 9.3E-05 

Precentral_R Temporal_Pole_Sup_R 3.91 9.4E-05 

Frontal_Med_Orb_L SupraMarginal_L 3.91 9.4E-05 

Rectus_R Cuneus_L 3.91 9.4E-05 

OFCmed_L Precuneus_R 3.91 9.4E-05 

ParaHippocampal_L Precuneus_L 3.91 9.4E-05 

Angular_R Heschl_R 3.90 9.5E-05 

OFClat_L Temporal_Sup_L 3.90 9.5E-05 

Insula_R Temporal_Inf_L 3.90 9.7E-05 

Rolandic_Oper_L Angular_L 3.90 9.7E-05 

Insula_R Temporal_Mid_L 3.90 9.8E-05 

OFCmed_L Cingulate_Ant_L 3.89 9.9E-05 

Rectus_L Lingual_R 3.89 9.9E-05 

OFClat_L Heschl_R 3.89 9.9E-05 

ParaHippocampal_L Precuneus_R 3.89 1.0E-04 

Hippocampus_R Fusiform_R 3.89 1.0E-04 

OFCpost_L Parietal_Sup_R 3.89 1.0E-04 

Supp_Motor_Area_R Hippocampus_L 3.89 1.0E-04 

Rectus_R Parietal_Sup_L 3.89 1.0E-04 

Insula_L Heschl_R 3.89 1.0E-04 

Frontal_Med_Orb_L OFCpost_L 3.89 1.0E-04 

Frontal_Med_Orb_L Heschl_L 3.88 1.0E-04 

Frontal_Inf_Oper_R Frontal_Sup_Medial_L 3.88 1.0E-04 

Parietal_Sup_L Temporal_Sup_R 3.88 1.1E-04 

Hippocampus_R Cuneus_R 3.88 1.1E-04 

OFCpost_L SupraMarginal_R 3.87 1.1E-04 

OFCmed_L Insula_L 3.87 1.1E-04 

Frontal_Inf_Oper_R Frontal_Inf_Orb_2_L 3.87 1.1E-04 

ParaHippocampal_L Putamen_R 3.87 1.1E-04 

Occipital_Inf_R Precuneus_R 3.87 1.1E-04 

OFCpost_L Cuneus_L 3.87 1.1E-04 

Precuneus_R Temporal_Pole_Mid_R 3.87 1.1E-04 

Precentral_L Caudate_R -3.86 1.1E-04 

Rectus_L Cingulate_Mid_R 3.86 1.1E-04 

SupraMarginal_R Temporal_Pole_Sup_R 3.86 1.1E-04 

Frontal_Med_Orb_R Occipital_Sup_R 3.86 1.1E-04 

Occipital_Inf_R Postcentral_R 3.86 1.1E-04 

Cingulate_Post_R SupraMarginal_R 3.86 1.1E-04 

ParaHippocampal_R Amygdala_L 3.86 1.1E-04 

Occipital_Inf_L Temporal_Pole_Mid_R 3.86 1.2E-04 

Lingual_L Paracentral_Lobule_L 3.85 1.2E-04 

Supp_Motor_Area_R Angular_R 3.85 1.2E-04 

Frontal_Med_Orb_R Rectus_L 3.85 1.2E-04 

Rectus_R SupraMarginal_R 3.85 1.2E-04 

Rolandic_Oper_R Temporal_Inf_L 3.85 1.2E-04 

Supp_Motor_Area_L Heschl_L 3.85 1.2E-04 
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Rolandic_Oper_R Cuneus_L 3.84 1.2E-04 

Hippocampus_L Postcentral_L 3.84 1.2E-04 

OFCpost_R Temporal_Pole_Mid_R 3.84 1.2E-04 

ParaHippocampal_R Calcarine_R 3.84 1.2E-04 

Cingulate_Ant_L SupraMarginal_R 3.84 1.2E-04 

Heschl_R Temporal_Mid_R 3.84 1.2E-04 

Rolandic_Oper_L OFClat_L 3.84 1.2E-04 

OFCant_R Temporal_Pole_Sup_R 3.84 1.2E-04 

Temporal_Mid_L Temporal_Mid_R 3.84 1.2E-04 

Frontal_Inf_Tri_R Frontal_Med_Orb_R 3.83 1.3E-04 

Frontal_Med_Orb_L OFCmed_R 3.83 1.3E-04 

Insula_L Temporal_Mid_R 3.83 1.3E-04 

Frontal_Sup_2_R OFClat_L 3.83 1.3E-04 

Occipital_Inf_R Temporal_Pole_Sup_L 3.83 1.3E-04 

Supp_Motor_Area_R OFCmed_L 3.83 1.3E-04 

Rectus_L Cuneus_L 3.83 1.3E-04 

Insula_L Fusiform_L 3.83 1.3E-04 

Occipital_Inf_L Paracentral_Lobule_R 3.83 1.3E-04 

Rolandic_Oper_R Angular_R 3.83 1.3E-04 

OFCmed_R Cingulate_Mid_L 3.83 1.3E-04 

OFCmed_R SupraMarginal_R 3.83 1.3E-04 

Heschl_R Temporal_Pole_Sup_L 3.83 1.3E-04 

Rectus_R Occipital_Sup_L 3.83 1.3E-04 

Rolandic_Oper_R Angular_L 3.83 1.3E-04 

Frontal_Med_Orb_R Occipital_Inf_R 3.82 1.3E-04 

Olfactory_L OFCmed_L 3.82 1.3E-04 

Precentral_L Temporal_Pole_Sup_L 3.82 1.4E-04 

Rectus_R Temporal_Pole_Mid_L 3.82 1.4E-04 

Hippocampus_R Temporal_Inf_R 3.82 1.4E-04 

Rolandic_Oper_L Temporal_Inf_L 3.82 1.4E-04 

Frontal_Med_Orb_R Insula_R 3.82 1.4E-04 

Frontal_Inf_Orb_2_L Cingulate_Mid_R 3.81 1.4E-04 

SupraMarginal_L Temporal_Pole_Mid_R 3.81 1.4E-04 

Postcentral_R Temporal_Mid_R 3.81 1.4E-04 

Parietal_Sup_R Heschl_L 3.81 1.4E-04 

Frontal_Sup_Medial_R Angular_L 3.81 1.4E-04 

Rectus_R Cingulate_Mid_R 3.81 1.4E-04 

Angular_L Heschl_R 3.81 1.4E-04 

Frontal_Inf_Orb_2_L Precuneus_L 3.81 1.4E-04 

OFCmed_L Postcentral_L 3.80 1.4E-04 

Postcentral_R Temporal_Sup_R 3.80 1.4E-04 

Precentral_L Thalamus_L -3.80 1.4E-04 

Frontal_Inf_Orb_2_L Cingulate_Mid_L 3.80 1.4E-04 

OFCmed_L OFCpost_L 3.80 1.4E-04 

Insula_L Angular_R 3.80 1.4E-04 

OFCpost_L Temporal_Sup_R 3.80 1.5E-04 

Rolandic_Oper_L Hippocampus_R 3.80 1.5E-04 
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Precentral_R Thalamus_L -3.80 1.5E-04 

Frontal_Med_Orb_R Temporal_Pole_Sup_R 3.80 1.5E-04 

Hippocampus_L Occipital_Sup_R 3.79 1.5E-04 

Temporal_Mid_R Temporal_Pole_Mid_R 3.79 1.5E-04 

Hippocampus_R Occipital_Mid_R 3.78 1.5E-04 

Insula_R Fusiform_L 3.78 1.5E-04 

Frontal_Inf_Orb_2_R OFCpost_L 3.78 1.6E-04 

Rectus_L Cingulate_Ant_R 3.78 1.6E-04 

Postcentral_R Temporal_Mid_L 3.78 1.6E-04 

SupraMarginal_L Angular_L 3.78 1.6E-04 

OFClat_L SupraMarginal_R 3.78 1.6E-04 

Occipital_Inf_R Temporal_Pole_Mid_R 3.78 1.6E-04 

Lingual_R Paracentral_Lobule_L 3.77 1.6E-04 

Rectus_R Temporal_Mid_R 3.77 1.6E-04 

Frontal_Med_Orb_L Cingulate_Ant_L 3.77 1.6E-04 

Olfactory_R Frontal_Med_Orb_L 3.77 1.6E-04 

Frontal_Inf_Tri_R Cingulate_Post_R 3.77 1.6E-04 

Frontal_Inf_Orb_2_L Insula_R 3.77 1.7E-04 

Supp_Motor_Area_L Precuneus_R 3.77 1.7E-04 

Occipital_Inf_L Postcentral_L 3.77 1.7E-04 

Frontal_Inf_Orb_2_L OFCpost_R 3.77 1.7E-04 

OFCpost_L Temporal_Mid_R 3.76 1.7E-04 

Temporal_Pole_Sup_R Temporal_Inf_L 3.76 1.7E-04 

Precentral_L Postcentral_L 3.76 1.7E-04 

OFClat_L SupraMarginal_L 3.76 1.7E-04 

Cuneus_L Temporal_Sup_L 3.76 1.7E-04 

Frontal_Inf_Orb_2_L SupraMarginal_R 3.76 1.7E-04 

Rectus_L Cuneus_R 3.76 1.7E-04 

Insula_R Temporal_Mid_R 3.76 1.7E-04 

OFCmed_R ParaHippocampal_R 3.76 1.7E-04 

Rectus_R Fusiform_L 3.76 1.7E-04 

Precentral_L Rectus_L 3.76 1.7E-04 

OFClat_L Temporal_Sup_R 3.75 1.8E-04 
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Appendix - 3 

The anatomical regions are defined in each hemisphere using the Shen atlas, with 

appropriate names provided for each Shen atlas region by finding the corresponding 

part in the AAL2 atlas. Note: _L indicates left hemisphere; _R indicates right hemisphere; 

The AAL2 names provided were obtained by mapping the MNI coordinates of each Shen 

atlas area to the corresponding AAL2 atlas area. 

 

No. Region name  Anatomical description No. Region name  Anatomical description 

1  OFCpost_R  Posterior orbitofrontal gyrus 126  Frontal_Mid_2_R  Middle frontal gyrus 

2  OFCpost_L  Posterior orbitofrontal gyrus 127 Frontal_Sup_Medial_R Superior frontal gyrus, medial 

3  OFCant_R  Anterior orbitofrontal gyrus 128  Cuneus_R  Cuneus 

4  OFCant_L  Anterior orbitofrontal gyrus 129 ParaHippocampal_R Parahippocampal gyrus 

5  OFCmed_R  Medial orbitofrontal gyrus 130  Cingulate_Post_R  Posterior cingulate gyrus 

6  OFCmed_L  Medial orbitofrontal gyrus 131  Lingual_R  Lingual gyrus 

7  Rectus_R  Gyrus rectus  132  Frontal_Mid_2_R  Middle frontal gyrus 

8  Rectus_L  Gyrus rectus  133  Cingulate_Mid_R  
Middle cingulate & paracingulate 

gyri 

9  Olfactory_R  Olfactory cortex  134  Precentral_R  Precentral gyrus 

10  Olfactory_L  Olfactory cortex  135  Frontal_Mid_2_L  Middle frontal gyrus 

11  OFClat_R  Lateral orbitofrontal gyrus 136  Frontal_Inf_Tri_L 
Inferior frontal gyrus, triangular 

part 

12  OFClat_L  Lateral orbitofrontal gyrus 137  Frontal_Inf_Oper_L Inferior frontal gyrus, opercular part 

13  Frontal_Inf_Orb_2_R Inferior Frontal Gyrus, orbital part 138  Precuneus_L  Precuneus 

14  Frontal_Inf_Orb_2_L Inferior Frontal Gyrus, orbital part 139  Temporal_Inf_L  Inferior temporal gyrus 

15  Precentral_R  Precentral gyrus  140  Postcentral_L  Postcentral gyrus 

16  Frontal_Sup_2_R  Superior frontal gyrus, dorsolateral 141  Putamen_L  Lenticular Putamen nucleus, 

17  Frontal_Med_Orb_R 
Superior frontal gyrus, medial orbital 

(or ventromedial prefrontal cortex) 
142  Caudate_L  Caudate nucleus 

18  Postcentral_R  Postcentral gyrus  143  Cingulate_Mid_L  
Middle cingulate & paracingulate 

gyri 

19  SupraMarginal_R  Supramarginal gyrus  144  Occipital_Mid_L  Middle occipital gyrus 

20  OFClat2  Lateral orbitofrontal cortex 145  Postcentral_L  Postcentral gyrus 

21  Precentral_R  Precentral gyrus  146  Thalamus_L  Thalamus 

22  Postcentral_R  Postcentral gyrus  147  Calcarine_L 
Calcarine fissure and surrounding 

cortex 

23  Frontal_Mid_2_R  Middle frontal gyrus  148  Postcentral_L  Postcentral gyrus 

24  Temporal_Inf_R  Inferior temporal gyrus 149  Parietal_Inf_L  
Inferior parietal gyrus, excluding 

supramarginal and angular gyri 

25  Thalamus_R  Thalamus  150  Cingulate_Ant_L 
Anterior cingulate & paracingulate 

gyri 

26  Lingual_R  Lingual gyrus  151  Insula_L  Insula 

27  Calcarine_R  
Calcarine fissure and surrounding 

cortex 
152  Frontal_Mid_2_L  Middle frontal gyrus 

28  Heschl_R  Heschl's gyrus  153  Calcarine_L 
Calcarine fissure and surrounding 

cortex 

29  Precuneus_R  Precuneus  154  Parietal_Inf_L 
Inferior parietal gyrus, excluding 

supramarginal and angular gyri 
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30  SupraMarginal_R  Supramarginal gyrus  155  Thalamus_L  Thalamus 

31  Temporal_Sup_R  Superior temporal gyrus 156  Lingual_L  Lingual gyrus 

32  Temporal_Inf_R  Inferior temporal gyrus 157  Insula_L  Insula 

33  Frontal_Inf_Tri_R  Inferior frontal gyrus, triangular part 158  Precuneus_L  Precuneus 

34  Precuneus_R  Precuneus  159 Supp_Motor_Area_L Supplementary motor area 

35  Temporal_Mid_R  Middle temporal gyrus  160  Cingulate_Mid_L  
Middle cingulate & paracingulate 

gyri 

36  Angular_R  Angular gyrus  161  Cingulate_Mid_L  
Middle cingulate & paracingulate 

gyri 

37  Caudate_R  Caudate nucleus  162  Precentral_L  Precentral gyrus 

38  Temporal_Pole_Mid_R Temporal pole: middle temporal gyrus 163  Fusiform_L  Fusiform gyrus 

39  Cingulate_Mid_R  Middle cingulate & paracingulate gyri 164  Frontal_Mid_2_L  Middle frontal gyrus 

40  Postcentral_R  Postcentral gyrus  165  Cingulate_Ant_L 
Anterior cingulate & paracingulate 

gyri 

41  Parietal_Sup_R  Superior parietal gyrus  166 Temporal_Pole_Mid_L 
Temporal pole: middle temporal 

gyrus 

42  Postcentral_R  Postcentral gyrus  167  Cingulate_Ant_L 
Anterior cingulate & paracingulate 

gyri 

43  Temporal_Mid_R  Middle temporal gyrus  168  Temporal_Sup_L  Superior temporal gyrus 

44  Postcentral_R  Postcentral gyrus  169  Calcarine_L 
Calcarine fissure and surrounding 

cortex 

45  Temporal_Inf_R  Inferior temporal gyrus 170  Occipital_Mid_L  Middle occipital gyrus 

46  Cuneus_R  Cuneus  171  Precuneus_L  Precuneus 

47  Frontal_Sup_Medial_R Superior frontal gyrus, medial 172 Supp_Motor_Area_L Supplementary motor area 

48  Occipital_Mid_R  Middle occipital gyrus  173 Temporal_Pole_Sup_L 
Temporal pole: superior temporal 

gyrus 

49  Occipital_Sup_R  Superior occipital gyrus 174  Cuneus_L  Cuneus 

50  Precuneus_R  Precuneus  175  Hippocampus_L  Hippocampus 

51  ParaHippocampal_R Parahippocampal gyrus 176  Angular_L  Angular gyrus 

52  Insula_R  Insula  177 
Frontal_Mid_Orb_R (or 

OFClat) 
Lateral orbital gyrus 

53  Temporal_Sup_R  Superior temporal gyrus 178  Angular_L  Angular gyrus 

54  Precuneus_R  Precuneus  179  SupraMarginal_L  Supramarginal gyrus 

55  Frontal_Sup_Medial_R Superior frontal gyrus, medial 180  Precentral_L  Precentral gyrus 

56  Cingulate_Post_R  
Posterior cingulate cortex 

(retrosplenial) 
181  Temporal_Inf_L  Inferior temporal gyrus 

57  Calcarine_R  
Calcarine fissure and surrounding 

cortex 
182  Hippocampus_L  Hippocampus 

58  Postcentral_R  Postcentral gyrus  183  Frontal_Sup_2_L  Superior frontal gyrus, dorsolateral 

59  Temporal_Mid_R  Middle temporal gyrus  184  Temporal_Inf_L  Inferior temporal gyrus 

60  Caudate_R  Caudate nucleus  185  Frontal_Sup_2_L  Superior frontal gyrus, dorsolateral 

61  Calcarine_R  
Calcarine fissure and surrounding 

cortex 
186  Cingulate_Post_L  Posterior cingulate gyrus 

62  Cingulate_Ant_R  
Anterior cingulate & paracingulate 

gyri 
187  Lingual_L  Lingual gyrus 

63  Cingulate_Mid_R  Middle cingulate & paracingulate gyri 188  Precentral_L  Precentral gyrus 

64  Temporal_Sup_R  Superior temporal gyrus 189  Insula_L  Insula 

65  Postcentral_R  Postcentral gyrus  190  Lingual_L  Lingual gyrus 
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66  Hippocampus_R  Hippocampus  191  Temporal_Mid_L  Middle temporal gyrus 

67  Supp_Motor_Area_R Supplementary motor area 192  Temporal_Mid_L  Middle temporal gyrus 

68  Parietal_Sup_R  Superior parietal gyrus  193  Fusiform_L  Fusiform gyrus 

69  Temporal_Mid_R  Middle temporal gyrus  194  Occipital_Mid_L  Middle occipital gyrus 

70  Frontal_Mid_2_R  Middle frontal gyrus  195  Frontal_Inf_Tri_L 
Inferior frontal gyrus, triangular 

part 

71  Frontal_Sup_2_R  Superior frontal gyrus, dorsolateral 196  Insula_L  Insula 

72  Frontal_Med_Orb_R 
Superior frontal gyrus,medial orbital 

(or ventromedial prefrontal cortex) 
197  Fusiform_L  Fusiform gyrus 

73  Frontal_Mid_2_R  Middle frontal gyrus  198  Temporal_Sup_L  Superior temporal gyrus 

74  Cingulate_Ant_R  
Anterior cingulate & paracingulate 

gyri 
199  Parietal_Inf_L 

Inferior parietal gyrus, excluding 

supramarginal and angular gyri 

75  Temporal_Pole_Mid_R Temporal pole: middle temporal gyrus 200  Occipital_Mid_L  Middle occipital gyrus 

76  Cingulate_Mid_R  Middle cingulate & paracingulate gyri 201  Cuneus_L  Cuneus 

77  Frontal_Mid_2_R  Middle frontal gyrus  202  Precuneus_L  Precuneus 

78  Fusiform_R  Fusiform gyrus  203 Frontal_Sup_Medial_L Superior frontal gyrus, medial 

79  Temporal_Sup_R  Superior temporal gyrus 204  Frontal_Mid_2_L  Middle frontal gyrus 

80  Hippocampus_R  Hippocampus  205  Lingual_L  Lingual gyrus 

81  Temporal_Pole_Sup_R 
Temporal pole: superior temporal 

gyrus 
206  Frontal_Sup_2_L  Superior frontal gyrus, dorsolateral 

82  Parietal_Sup_R  Superior parietal gyrus  207  Temporal_Mid_L  Middle temporal gyrus 

83  Cingulate_Ant_R  
Anterior cingulate & paracingulate 

gyri 
208  Cingulate_Mid_L  

Middle cingulate & paracingulate 

gyri 

84  Insula_R  Insula  209  Parietal_Sup_L  Superior parietal gyrus 

85  Temporal_Sup_R  Superior temporal gyrus 210  Hippocampus_L  Hippocampus 

86  Cuneus_R  Cuneus  211  Temporal_Mid_L  Middle temporal gyrus 

87  Frontal_Sup_2_R  Superior frontal gyrus, dorsolateral 212  Fusiform_L  Fusiform gyrus 

88  Fusiform_R  Fusiform gyrus  213  Lingual_L  Lingual gyrus 

89  Frontal_Mid_2_R  Middle frontal gyrus  214  Temporal_Sup_L  Superior temporal gyrus 

90  Temporal_Mid_R  Middle temporal gyrus  215  Temporal_Inf_L  Inferior temporal gyrus 

91  Temporal_Inf_R  Inferior temporal gyrus 216  Parietal_Sup_L  Superior parietal gyrus 

92  Insula_R  Insula  217  SupraMarginal_L  Supramarginal gyrus 

93  Cingulate_Mid_R  Middle cingulate & paracingulate gyri 218  Precentral_L  Precentral gyrus 

94  Insula_R  Insula  219  Temporal_Inf_L  Inferior temporal gyrus 

95  Parietal_Inf_R 
Inferior parietal gyrus, excluding 

supramarginal and angular gyri 
220 Temporal_Pole_Sup_L 

Temporal pole: superior temporal 

gyrus 

96  Temporal_Mid_R  Middle temporal gyrus  221  SupraMarginal_L  Supramarginal gyrus 

97  Lingual_R  Lingual gyrus  222  Insula_L  Insula 

98  Fusiform_R  Fusiform gyrus  223  Occipital_Inf_L  Inferior occipital gyrus 

99  Putamen_R  Lenticular nucleus, Putamen 224 Frontal_Sup_Medial_L Superior frontal gyrus, medial 

100  Insula_R  Insula  225 Precuneus_L  Precuneus 

101  Parietal_Inf_R 
Inferior parietal gyrus, excluding 

supramarginal and angular gyri 
226  Occipital_Mid_L  Middle occipital gyrus 

102  Frontal_Sup_2_R  Superior frontal gyrus, dorsolateral  227  Frontal_Mid_2_L  Middle frontal gyrus 

103  Occipital_Inf_R  Inferior occipital gyrus  228  Paracentral_Lobule _L  Paracentral lobule 
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104  Frontal_Inf_Tri_R  Inferior frontal gyrus, triangular part  229  Postcentral_L  Postcentral gyrus 

105 Supp_Motor_Area_R Supplementary motor area 230  Precuneus_L  Precuneus 

106  Occipital_Sup_R  Superior occipital gyrus  231  Occipital_Inf_L  Inferior occipital gyrus 

107  Frontal_Inf_Tri_R  Inferior frontal gyrus, triangular part  232  Cingulate_Mid_L  
Middle cingulate & paracingulate 

gyri 

108  Fusiform_R  Fusiform gyrus  233  Frontal_Mid_2_L  Middle frontal gyrus 

109  Fusiform_R  Fusiform gyrus  234  Thalamus_L  Thalamus 

110 Frontal_Inf_Oper_R Inferior frontal gyrus, opercular part 235  Postcentral_L  Postcentral gyrus 

111  Fusiform_R  Fusiform gyrus  236  Caudate_L  Caudate nucleus 

112  Fusiform_R  Fusiform gyrus  237  Cingulate_Mid_L  
Middle cingulate & paracingulate 

gyri 

113  Caudate_R  Caudate nucleus  238  Temporal_Pole_Mid_L  
Temporal pole: middle temporal 

gyrus 

114  Precentral_R  Precentral gyrus  239  Hippocampus_L  Hippocampus 

115  Lingual_R  Lingual gyrus  240  Frontal_Sup_Medial_L  Superior frontal gyrus, medial 

116  Thalamus_R  Thalamus  241  Temporal_Sup_L  Superior temporal gyrus 

117 Frontal_Med_Orb_R 
Superior frontal gyrus, medial orbital 

(or ventromedial prefrontal cortex) 
242  Insula_L  Insula 

118  Occipital_Mid_R  Middle occipital gyrus  243  Calcarine_L  
Calcarine fissure and surrounding 

cortex 

119  Occipital_Mid_R  Middle occipital gyrus  244  Cingulate_Ant_L  
Anterior cingulate & paracingulate 

gyri 

120  Temporal_Mid_R  Middle temporal gyrus  245  Caudate_L  Caudate nucleus 

121 Temporal_Pole_Mid_R Temporal pole: middle temporal gyrus 246 Frontal_Med_Orb_L 

Superior frontal gyrus, medial 

orbital (or ventromedial prefrontal 

cortex) 

122 Frontal_Inf_Oper_R Inferior frontal gyrus, opercular part 247  Occipital_Mid_L  Middle occipital gyrus 

123  Parietal_Inf_R 
Inferior parietal gyrus, excluding 

supramarginal and angular gyri 
248  Frontal_Inf_Tri_L 

Inferior frontal gyrus, triangular 

part 

124  Calcarine_R  
Calcarine fissure and surrounding 

cortex  
249  Supp_Motor_Area_ L  Supplementary motor area 

125  Putamen_R  Lenticular nucleus, Putamen  250  Postcentral_L  Postcentral gyrus 
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Appendix - 4 

A full list of functional connectivity links which were significantly correlated with 

childhood traumatic experience score (p<0.01 FDR corrected) in the study is described 

in chapter 7. 

Region 1 Region 2 r value p value 

Angular_L Temporal_Inf_L -0.040 1.9E-06 

Angular_R Precentral_L -0.045 1.0E-07 

Angular_R Temporal_Inf_L -0.045 1.2E-07 

Angular_R Temporal_Mid_R -0.038 8.3E-06 

Angular_R Frontal_Inf_Tri_L -0.037 1.2E-05 

Angular_R Precentral_L -0.036 1.8E-05 

Angular_R Temporal_Mid_L -0.034 7.5E-05 

Calcarine_R Frontal_Inf_Tri_L -0.035 2.9E-05 

Calcarine_R Precentral_L -0.035 3.9E-05 

Calcarine_R Temporal_Inf_L -0.034 4.8E-05 

Cingulate_Mid_L SupraMarginal_L -0.034 5.1E-05 

Cuneus_L Temporal_Inf_L -0.037 1.5E-05 

Cuneus_L Cingulate_Mid_L -0.034 6.8E-05 

Cuneus_R Frontal_Inf_Tri_L -0.038 5.6E-06 

Cuneus_R Temporal_Inf_L -0.036 1.6E-05 

Cuneus_R Precentral_L -0.035 3.1E-05 

Cuneus_R Frontal_Inf_Tri_L -0.034 6.4E-05 

Frontal_Inf_Tri_L Rectus_L -0.038 7.7E-06 

Frontal_Inf_Tri_L Rectus_R -0.034 5.3E-05 

Frontal_Inf_Tri_L Fusiform_L -0.034 5.4E-05 

Frontal_Med_Orb_L Rectus_L -0.035 2.9E-05 

Frontal_Mid_2_L Postcentral_L -0.034 5.8E-05 

Frontal_Mid_2_R Precentral_L -0.038 6.6E-06 

Frontal_Mid_2_R Precuneus_R -0.037 1.0E-05 

Frontal_Mid_2_R Precentral_L -0.037 1.1E-05 

Frontal_Mid_2_R Frontal_Inf_Tri_R -0.036 1.7E-05 

Frontal_Mid_2_R Precuneus_L -0.036 2.4E-05 

Frontal_Mid_2_R Parietal_Sup_R -0.035 2.8E-05 

Frontal_Mid_2_R Occipital_Inf_L -0.035 3.9E-05 

Frontal_Mid_2_R Lingual_R -0.034 4.6E-05 

Frontal_Mid_2_R Fusiform_R -0.034 4.7E-05 

Frontal_Mid_2_R Fusiform_L -0.034 4.8E-05 

Frontal_Mid_2_R Fusiform_R -0.034 4.9E-05 

Frontal_Sup_2_L Fusiform_L -0.035 2.7E-05 

Frontal_Sup_2_L Occipital_Inf_L -0.035 3.5E-05 

Frontal_Sup_2_L Precentral_L -0.034 5.4E-05 

Frontal_Sup_2_L Precentral_L -0.034 5.6E-05 

Frontal_Sup_2_R Precentral_L -0.042 8.9E-07 

Frontal_Sup_2_R Postcentral_L -0.039 4.3E-06 

Frontal_Sup_2_R Parietal_Inf_L -0.039 4.3E-06 

Frontal_Sup_2_R Fusiform_R -0.037 9.8E-06 
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Frontal_Sup_2_R Precentral_L -0.037 1.3E-05 

Frontal_Sup_2_R Parietal_Inf_L -0.037 1.5E-05 

Frontal_Sup_2_R Fusiform_L -0.037 1.6E-05 

Frontal_Sup_2_R Frontal_Inf_Tri_L -0.036 1.9E-05 

Frontal_Sup_2_R SupraMarginal_R -0.036 2.1E-05 

Frontal_Sup_2_R Frontal_Inf_Tri_L -0.036 2.2E-05 

Frontal_Sup_2_R Precentral_R -0.035 2.7E-05 

Frontal_Sup_2_R Frontal_Inf_Tri_L -0.035 3.2E-05 

Frontal_Sup_2_R Postcentral_R -0.035 3.4E-05 

Frontal_Sup_2_R Fusiform_R -0.035 3.5E-05 

Frontal_Sup_2_R Fusiform_R -0.035 4.1E-05 

Frontal_Sup_2_R Occipital_Inf_L -0.035 4.3E-05 

Frontal_Sup_2_R Frontal_Inf_Tri_L -0.034 5.2E-05 

Frontal_Sup_2_R Precentral_L -0.034 5.8E-05 

Frontal_Sup_2_R shen_roi_126 -0.034 6.6E-05 

Frontal_Sup_2_R Lingual_R -0.034 6.7E-05 

Frontal_Sup_2_R OFCant_L -0.034 7.0E-05 

Frontal_Sup_2_R Parietal_Inf_L -0.034 7.1E-05 

Frontal_Sup_2_R Fusiform_R -0.034 7.2E-05 

Frontal_Sup_2_R Lingual_R -0.034 7.4E-05 

Frontal_Sup_Medial_R Temporal_Mid_L -0.039 4.3E-06 

Frontal_Sup_Medial_R Frontal_Inf_Tri_L -0.037 1.3E-05 

Frontal_Sup_Medial_R Precentral_L -0.036 2.7E-05 

Frontal_Sup_Medial_R Parietal_Inf_L -0.035 3.2E-05 

Frontal_Sup_Medial_R Frontal_Inf_Tri_L -0.034 5.2E-05 

Frontal_Sup_Medial_R Temporal_Inf_L -0.034 7.4E-05 

Fusiform_R Precentral_L -0.037 1.1E-05 

Fusiform_R Precentral_L -0.036 1.8E-05 

Fusiform_R Frontal_Inf_Tri_L -0.036 1.9E-05 

Fusiform_R Precentral_L -0.036 2.1E-05 

Fusiform_R Frontal_Sup_2_L -0.036 2.4E-05 

Fusiform_R Parietal_Inf_L -0.035 2.7E-05 

Fusiform_R Precentral_L -0.035 3.2E-05 

Fusiform_R Frontal_Mid_2_L -0.035 4.4E-05 

Hippocampus_R Temporal_Mid_L -0.036 2.6E-05 

Lingual_R Temporal_Inf_L -0.043 2.8E-07 

Lingual_R Frontal_Inf_Tri_L -0.039 4.2E-06 

Lingual_R Precentral_L -0.037 1.4E-05 

Lingual_R Cingulate_Mid_L -0.036 2.4E-05 

Lingual_R Temporal_Mid_L -0.036 2.5E-05 

Lingual_R Precentral_L -0.035 2.8E-05 

Lingual_R Precentral_L -0.035 3.2E-05 

Lingual_R Precuneus_L -0.035 3.4E-05 

Lingual_R Precentral_L -0.035 3.6E-05 

Lingual_R Temporal_Inf_L -0.034 5.8E-05 

Lingual_R Frontal_Inf_Tri_L -0.034 7.0E-05 

Lingual_R Precentral_L -0.034 7.3E-05 
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OFCmed_L OFCant_R -0.036 2.5E-05 

OFCmed_L OFClat_R -0.035 4.2E-05 

Occipital_Mid_R Precentral_L -0.037 1.1E-05 

Occipital_Sup_R Precentral_L -0.036 2.0E-05 

ParaHippocampal_R Precentral_L -0.038 5.4E-06 

ParaHippocampal_R Temporal_Mid_L -0.038 7.0E-06 

ParaHippocampal_R Temporal_Inf_L -0.035 2.7E-05 

ParaHippocampal_R Precentral_L -0.034 4.7E-05 

ParaHippocampal_R Precuneus_L -0.034 7.0E-05 

Parietal_Sup_R Temporal_Inf_R -0.037 1.2E-05 

Parietal_Sup_R Angular_R -0.034 4.8E-05 

Parietal_Sup_R Temporal_Mid_R -0.034 5.5E-05 

Postcentral_L Temporal_Mid_L -0.036 1.9E-05 

Postcentral_L Temporal_Sup_L -0.035 3.0E-05 

Postcentral_L Temporal_Inf_L -0.034 6.1E-05 

Postcentral_R Temporal_Inf_R -0.036 1.8E-05 

Postcentral_R Rolandic_Oper_L -0.035 4.3E-05 

Precentral_L Precuneus_L -0.038 5.8E-06 

Precentral_L Fusiform_L -0.038 7.7E-06 

Precentral_L Fusiform_L -0.036 2.3E-05 

Precentral_L Temporal_Pole_Mid_L -0.035 3.9E-05 

Precentral_L Precuneus_L -0.035 4.4E-05 

Precentral_L Precuneus_L -0.034 6.0E-05 

Precentral_R SupraMarginal_L -0.037 1.0E-05 

Precentral_R Temporal_Mid_R -0.034 7.1E-05 

Precuneus_L Rectus_L -0.039 5.3E-06 

Precuneus_R Temporal_Inf_L -0.042 5.1E-07 

Precuneus_R Precentral_L -0.041 9.5E-07 

Precuneus_R Precentral_L -0.041 1.1E-06 

Precuneus_R Precentral_L -0.041 1.1E-06 

Precuneus_R Temporal_Inf_L -0.039 3.9E-06 

Precuneus_R Cingulate_Mid_L -0.037 1.0E-05 

Precuneus_R Frontal_Inf_Tri_L -0.037 1.1E-05 

Precuneus_R Precentral_L -0.037 1.2E-05 

Precuneus_R Frontal_Inf_Tri_L -0.035 2.9E-05 

Precuneus_R Temporal_Mid_L -0.035 3.3E-05 

Precuneus_R Temporal_Mid_L -0.035 3.9E-05 

Precuneus_R Frontal_Inf_Tri_L -0.035 4.2E-05 

Precuneus_R Precuneus_L -0.035 4.5E-05 

Precuneus_R Precentral_L -0.034 5.1E-05 

Precuneus_R Angular_L -0.034 5.3E-05 

Precuneus_R Cingulate_Mid_L -0.034 5.7E-05 

Precuneus_R Temporal_Mid_L -0.034 6.2E-05 

Precuneus_R Rectus_L -0.034 6.6E-05 

Precuneus_R Frontal_Mid_2_L -0.034 7.0E-05 

Rolandic_Oper_R Temporal_Inf_R -0.039 5.0E-06 

Supp_Motor_Area_L Rolandic_Oper_L -0.036 1.7E-05 
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Supp_Motor_Area_L SupraMarginal_L -0.035 3.4E-05 

Supp_Motor_Area_R SupraMarginal_L -0.035 2.8E-05 

Supp_Motor_Area_R SupraMarginal_L -0.035 4.1E-05 

SupraMarginal_R Temporal_Inf_R -0.041 1.2E-06 

Temporal_Inf_L ParaHippocampal_L -0.038 5.7E-06 

Temporal_Inf_L Rectus_L -0.037 1.2E-05 

Temporal_Inf_L Precuneus_L -0.036 2.5E-05 

Temporal_Inf_L OFCmed_L -0.035 4.1E-05 

Temporal_Inf_R Temporal_Inf_L -0.046 4.9E-08 

Temporal_Inf_R Temporal_Mid_L -0.044 2.4E-07 

Temporal_Inf_R Postcentral_L -0.043 3.4E-07 

Temporal_Inf_R Parietal_Inf_L -0.041 1.1E-06 

Temporal_Inf_R Parietal_Inf_L -0.041 1.3E-06 

Temporal_Inf_R Frontal_Inf_Tri_L -0.041 1.4E-06 

Temporal_Inf_R Parietal_Sup_L -0.040 2.4E-06 

Temporal_Inf_R Frontal_Inf_Tri_L -0.040 2.6E-06 

Temporal_Inf_R SupraMarginal_L -0.040 2.8E-06 

Temporal_Inf_R Precentral_L -0.039 3.5E-06 

Temporal_Inf_R Postcentral_L -0.039 5.1E-06 

Temporal_Inf_R Parietal_Inf_L -0.039 5.3E-06 

Temporal_Inf_R Temporal_Mid_R -0.038 5.4E-06 

Temporal_Inf_R Temporal_Sup_R -0.038 5.4E-06 

Temporal_Inf_R Temporal_Mid_L -0.038 6.8E-06 

Temporal_Inf_R Rolandic_Oper_L -0.037 9.4E-06 

Temporal_Inf_R Temporal_Sup_L -0.037 9.9E-06 

Temporal_Inf_R Temporal_Inf_R -0.037 1.2E-05 

Temporal_Inf_R Frontal_Sup_2_L -0.037 1.3E-05 

Temporal_Inf_R Rolandic_Oper_R -0.037 1.4E-05 

Temporal_Inf_R Precentral_L -0.037 1.5E-05 

Temporal_Inf_R Fusiform_L -0.036 2.0E-05 

Temporal_Inf_R Fusiform_R -0.036 2.7E-05 

Temporal_Inf_R Temporal_Mid_R -0.035 2.9E-05 

Temporal_Inf_R Precentral_L -0.034 4.8E-05 

Temporal_Inf_R Temporal_Sup_L -0.034 5.1E-05 

Temporal_Inf_R Frontal_Inf_Tri_L -0.034 5.4E-05 

Temporal_Inf_R Postcentral_L -0.034 5.8E-05 

Temporal_Inf_R Temporal_Inf_R -0.034 6.1E-05 

Temporal_Inf_R Frontal_Sup_2_L -0.034 6.3E-05 

Temporal_Inf_R Precuneus_L -0.034 6.5E-05 

Temporal_Mid_L Temporal_Inf_L -0.039 5.1E-06 

Temporal_Mid_L Temporal_Mid_L -0.036 1.8E-05 

Temporal_Mid_L Fusiform_L -0.034 7.3E-05 

Temporal_Mid_R Temporal_Inf_L -0.041 1.3E-06 

Temporal_Mid_R Frontal_Inf_Tri_L -0.039 3.7E-06 

Temporal_Mid_R Precentral_L -0.039 4.6E-06 

Temporal_Mid_R Temporal_Mid_L -0.037 1.3E-05 

Temporal_Mid_R Postcentral_L -0.035 3.8E-05 
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Temporal_Mid_R Fusiform_R -0.035 3.9E-05 

Temporal_Mid_R Cuneus_R -0.034 5.5E-05 

Temporal_Mid_R Temporal_Mid_R -0.034 5.9E-05 

Temporal_Mid_R Temporal_Inf_R -0.034 6.0E-05 

Temporal_Mid_R Hippocampus_R -0.034 6.3E-05 

Temporal_Mid_R Hippocampus_R -0.034 6.8E-05 

Temporal_Pole_Mid_L Temporal_Inf_L -0.034 4.9E-05 

Temporal_Pole_Mid_R Temporal_Inf_L -0.034 7.2E-05 

Temporal_Pole_Sup_L Temporal_Inf_L -0.039 4.2E-06 

Temporal_Pole_Sup_R Temporal_Inf_L -0.036 2.0E-05 

Temporal_Sup_R Temporal_Inf_R -0.036 2.4E-05 

Temporal_Sup_R Calcarine_R -0.034 6.8E-05 
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Appendix - 5 

Example code of t-test analysis between two groups of data that utilises covariates of no 

interest with FDR correction of the result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

for i=1:size(fc_data_hc,3) 

DependentVariable = gretna_fishertrans([fc_data_hc(:,:,i);... 

 fc_data_con(:,:,i)]);    

GroupLabel = [zeros(size(fc_data_hc,1),1);... 

 ones(size(fc_data_con,1),1)]; 

    Covariate = [cov_all_hc; cov_all_con]; 

[T_value(i,:), P_value(i,:)] = ttest2_cov_improve... 

(DependentVariable, GroupLabel, Covariate);  

%% two sample t-test with removing the effect of covariates 

    Cohens_d(i,:) = 2*T_value(i,:)/sqrt(length(GroupLabel)-2); 

end 

bon_threshold = 0.05/length(ssjnum(P_value));   

%% Bonferroni correction  

fdr_threshold = gretna_FDR(ssjnum(P_value),0.001);   

%% FDR correction 

[Significant_links, Significant_nodes] =extract_edges_multi_ttest... 

(P_value, T_value, fdr_threshold, 'aal2'); 

%% Extract significant links and nodes 
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Appendix - 6 

Example code of elastic net prediction model with cross-validation. 

a) Feature selection 

 

 

 

 

 

 

 

 

 

 

 

b) Optimize parameters 

  
 for alpha=0.01:0.1:1 

        for gama=0.01:0.1:1 

              [model,info]=lasso(fc_prediction,subscales_train,'Alpha',... 

alpha,'Lambda',gama); 

            for i=1:size(fc_test_selected,2) 

                Predicted_Scores(i) =sum(model.*fc_test_selected(:,i)); 

            end 

            [r(count11),p(count11)]=corr(Predicted_Scores',score_test); 

            result(count11,:)={r(count11),p(count11),edgeNames,model,... 

info.MSE,Predicted_Scores,alpha,gama}; 

            count11=count11+1; 

        end 

    end 

 cval = nan(size(fc_train,2),size(fc_train,1)); 

 pval = nan(size(fc_train,2),size(fc_train,1)); 

 pheno_select = Subscale_all_train; 

 for j=1:size(fc_train,1) 

      fc_select = gretna_fishertrans(squeeze(fc_train(j,:,:)))'; 

      [cval(:,j), pval(:,j)] = partialcorr(pheno_select, fc_select,... 

 cov_all_train,'row','complete'); 

 end 
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Appendix - 7 

Example code of calculation of effective connectivity of the whole brain 

a) Calculation of the empirical FC value in the current time point (FC0) and FC value 

at one time point later (FC1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

% calculate FC0 and FC1 

if 1 

    FC0_emp = zeros(n_sub,N,N); 

    FC1_emp = zeros(n_sub,N,N); 

    n_T = size(tc_all,1); 

    ts = tc_all; 

    for i_sub = 1:size(tc_all,3) 

        for i=1:N 

            if mod(i,2)==1 

                ii = floor((i+1)/2); 

            else 

                ii = 95 - floor((i+1)/2); 

            end 

            for j=1:N               if mod(j,2)==1 

                    jj = floor((j+1)/2); 

                else 

                    jj = 95 - floor((j+1)/2); 

                end 

                FC0_emp(i_sub,ii,jj) = dot(ts(1:n_T-1,i,i_sub),... 

ts(1:n_T-1,j,i_sub)) / (n_T-2.); 

                FC1_emp(i_sub,ii,jj) = dot(ts(1:n_T-1,i,i_sub),... 

ts(2:n_T,j,i_sub)) / (n_T-2.); 

            end 

        end 

    end 
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b) Optimize the effective connectivity values to best predict the empirical FC values. 

 

  
% optimization 

sprintf('*opt*') 

for i_sub = 1:n_sub 

    % initial parameters 

    EC = zeros(N); %initial conectivity 

    Sigma = eye(N)*noise_level^2; % initial noise 

    %best distance between model and empirical data 

    best_dist = 1e10; 

    best_Pearson = 0; 

    %objective FC matrices (empirical) 

    FC0_obj = squeeze(FC0_emp(i_sub,:,:)); 

    FC1_obj = squeeze(FC1_emp(i_sub,:,:)); 

    %record model parameters and outputs 

    dist_FC_hist = zeros(n_opt,1)*NaN; 

    Pearson_FC_hist = zeros(n_opt,1)*NaN; 

    stop_opt = 0; 

    i_opt = 1; 

    while ~stop_opt 

        %calculate Jacobian of dynamical system 

        J = -eye(N)/tau_x(i_sub)+EC; 

        %calculate FC0 and FCtau for model 

        FC0 = lyap(J,Sigma); 

        FC1 = FC0*expm(J'); %%%was a dot() before de * between these two 

        %calculate error between model and empirical data for FC0 and FC_tau 

(matrix distance) 

        err_FC0 = sqrt(sum((FC0(:)-FC0_obj(:)).^2)/sum((FC0_obj(:)).^2)); 

        err_FCtau = sqrt(sum((FC1(:)-FC1_obj(:)).^2)/sum((FC1_obj(:)).^2)); 

        dist_FC_hist(i_opt) = 0.5*(err_FC0+err_FCtau); 

        %calculate Pearson corr between model and empirical data for FC0 and 

FC_tau 

        Pearson_FC_hist(i_opt) = 0.5*(corr(FC0(:),FC0_obj(:))... 

+corr(FC1(:),FC1_obj(:)));  

%%%reshape (adash)   ##### 

         

        % best fit given matrix distance best for FC0/FC1 between model and 

empirical data 

        if dist_FC_hist(i_opt) < best_dist 

            best_dist = dist_FC_hist(i_opt); 

            EC_est(i_sub,:,:) = EC; 
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%Jacobian update with weighted FC updates depending on respective 

error 

        Delta_FC0 = FC0_obj-FC0; 

        Delta_FCtau = FC1_obj-FC1; 

        Delta_J = transpose(pinv(FC0)*(Delta_FC0+Delta_FCtau*expm(-

J'))); 

        %update conectivity and noise 

        EC = EC + epsilon_EC * Delta_J; 

        EC(EC>max_val_EC) = max_val_EC; 

        EC(EC<min_val_EC) = min_val_EC; 

        EC(not(mask_EC)) = 0; 

         

        Sigma = Sigma + epsilon_Sigma * Delta_FC0; 

        Sigma(Sigma<min_val_Sigma) = min_val_Sigma; 

        Sigma(not(mask_Sigma)) = 0; 

         

        %check if end optimization: if FC error becomes too large 

        if i_opt<n_opt-1 

            stop_opt = i_opt>20 && (dist_FC_hist(i_opt)>1.5); 

        else 

            stop_opt = 1; 

        end 

        if ~stop_opt 

            i_opt = i_opt+1; 

        else 

            sprintf('stop at step %d; best FC 

dist %d',i_opt,best_dist) 

        end 

    end 

end 
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