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GENERALIZED KATO CLASSES AND EXCEPTIONAL ZERO

CONJECTURES

ÓSCAR RIVERO

Abstract. The primary objective of this paper is the study of different instances of the
elliptic Stark conjectures of Darmon, Lauder and Rotger, in a situation where the elliptic curve
attached to the modular form f has split multiplicative reduction at p and the arithmetic
phenomena are specially rich. For that purpose, we resort to the principle of improved p-
adic L-functions and study their L-invariants. We further interpret these results in terms
of derived cohomology classes coming from the setting of diagonal cycles, showing that the
same L-invariant which arises in the theory of p-adic L-functions also governs the arithmetic
of Euler systems. Thus, we can reduce, in the split multiplicative situation, the conjecture of
Darmon, Lauder and Rotger to a more familiar statement about higher order derivatives of
a triple product p-adic L-function at a point lying inside the region of classical interpolation,
in the realm of the more well-known exceptional zero conjectures.
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1. Introduction

The elliptic Stark conjecture was first formulated by Darmon, Lauder and Rotger in [DLR1]
as a “more constructive alternative to the Birch and Swinnerton-Dyer conjecture, since it often
allows the efficient analytic computation of p-adic logarithms of global points”. The conjecture
relates a p-adic iterated integral attached to a triple (f, g, h) of cuspidal modular forms with a
regulator given in terms of points in an elliptic curve, in a rank 2 situation. Until the moment,
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not too much work towards the proof of the conjecture has been done: most of the results are
restricted to situations where there exists a factorization of p-adic L-functions, which allows to
interpret the conjecture in terms of the more familiar objects of Bertolini–Darmon–Prasanna
[BDP].

However, recent works of Bertolini–Seveso–Veneruci [BSV1], [BSV2] and Darmon–Rotger
[DR4], [DR3] suggest an alternative conjecture also in terms of triple product p-adic L-
functions: while the first formulation of [DLR1] is concerned with the p-adic value at a point
lying outside the region of classical interpolation, the new version we discuss is about higher
order derivatives at a point which belongs to the classical interpolation region. This setting
is germane to that explored firstly by Greenberg–Stevens [GS] and then by Bertolini–Darmon
[BD2] or Venerucci [Ven]. We propose an alternative conjecture in the split multiplicative
setting, and one of the main results of this note is the discussion of the equivalence between
both formulations, using for that purpose the setting of generalized cohomology classes. This
relies, however, on an apparently deep fact about periods of weight one modular forms, stated
in [DR2] as Conjecture 2.1. We believe that this translation of the conjecture to a more well
understood setting provides new evidence for a better understanding of the problem.

The genesis of this project comes from a parallel story where a new conjecture, formulated
in [DLR2], arises; this gives a formula for the p-adic iterated integral when the modular form
f is no longer cuspidal, but an Eisenstein series. In [RiRo1], the authors envisaged a method
of proof for this conjecture when the two modular forms (g, h) are self-dual: this was based
on Hida’s improved factorization theorem for the Hida–Rankin p-adic L-function and allowed
us to study the conjecture in terms of a question concerning Galois deformations.

The discussion of our results in this paper also leads us to the study of an exceptional
vanishing of the generalized cohomology classes of [DR2] and [CaHs], proposing a putative
refinement in terms of some derived generalized cohomology classes.

Setting and notations. Fix once for all a prime number p ≥ 3 and three positive integers
Nf , Ng, Nh. Let N = lcm(Nf , Ng, Nh) and assume that p - N . Let χ : (Z/NZ)× → C× be a
Dirichlet character. Let

f ∈ S2(pNf ), g ∈M1(Ng, χ), h ∈M1(Nh, χ̄)

be a triple of newforms of weights (2, 1, 1), levels (pNf , Ng, Nh) and nebentype characters
(1, χ, χ̄), where χ̄ stands for the character obtained by composing χ with complex conjugation.
Further, we denote by Vg and by Vh the Artin representations attached to g and h, respectively,
and write Vgh := Vg ⊗ Vh. Let H be the number field cut out by this representation, and
L for the field over which it is defined. To simplify the exposition, we assume that f has
rational Fourier coefficients and that is attached via modularity to an elliptic curve E with
split multiplicative reduction at p. Under the assumption that (pNf , NgNh) = 1, the global
sign of the functional equation of L(E, Vgh, s) is +1. We keep this assumption from now on.

Label and order the roots of the p-th Hecke polynomial of g as

X2 − ap(g)X + χ(p) = (X − αg)(X − βg)

and do the same for those of h. Let gα(q) = g(q) − βg(qp) denote the p-stabilization of g
with Up-eigenvalue αg; it is defined by the q-expansion gα(q) = g(q) − βgg(qp). We want to
deal with a situation of exceptional zeros, that is, where one or several of the Euler factors
involved in the interpolation formula of the p-adic L-function vanish (alternatively, and as we
will see later on, this can be understood in terms of the eigenvalues for the Frobenius action).
This naturally splits into two different settings, namely

(a) the case where αgαh = 1 (and therefore βgβh = 1); and
(b) the case where αgβh = 1 (and therefore βgαh = 1).
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In both cases, if we denote the roots of the p-th Hecke polynomial of g by {αg, βg}, those
of h are {1/αg, 1/βg}. As a piece of notation, we write h1/α and h1/β for the p-stabilizations
of h with eigenvalues 1/αg and 1/βg, respectively. Along this work, we refer to these settings
as Case (a) and Case (b). In the framework of Beilinson–Flach elements and Hida–Rankin
p-adic L-functions, the second case has been studied in [RiRo1], and the former has been
worked out in [RiRo2, Section 5].

To prove our main results, we also need a classicality property for g. Hence, we assume
throughout that

(H1) the reduction of both Vg and Vh modulo p is irreducible (this requires the choice of
integral lattices Tg and Th, but the fact of being irreducible or not is independent of
this choice);

(H2) g and h are p-distinguished, i.e, αg 6= βg, αh 6= βh (mod p); and
(H3) Vg is not induced from a character of a real quadratic field in which p splits.

Enlarge L if necessary so that it contains all Fourier coefficients of gα. As shown in [DLR1],
the above hypotheses ensure that any generalized overconvergent modular form with the same
generalized eigenvalues as gα is classical, and hence simply a multiple of gα.

In order to describe our results more precisely, let Λ = Zp[[Z×p ]] be the Iwasawa algebra
and denote by W = Spf(Λ) the weight space. Hida’s theory associates the following data to
f :

• a finite flat extension Λf of Λ, giving rise to a covering w :Wf = Spf(Λf ) −→W;
• a family of overconvergent p-adic ordinary modular forms f ∈ Λf [[q]] specializing to f

at some point x0 ∈ Wf of weight w(x0) = 2.
• a representation of the absolute Galois group GQ, %f : GQ −→ GL(Vf ) ' GL2(Λf )

characterized by the property that all its classical specializations coincide with the
Galois representation associated by Deligne to the corresponding specialization of the
Hida family.

The same occurs with gα and hα thanks to the work of Bellaiche and Dimitrov [BeDi]
on the geometry of the eigencurve for points of weight one; we denote by Λg and Λh the
corresponding extensions of Λ over which the Hida families g and h are defined, and by
y0 ∈ Wg, z0 ∈ Wh the weight one points for which the corresponding specializations agree
with gα and hα, respectively.

For each of the settings (a) and (b) presented above, we discuss three different objects
which are expected to encode arithmetic information regarding the convolution of the three
Galois representations attached to the modular forms f , g and h. We denote by (x, y, z) a
triple of points in Wf ×Wg ×Wh, whose weights are referred as (k, `,m).

(i) The cohomology classes κ(f, gα, hα) studied for instance in [DR2] and [CaHs], arising
as the specialization at weights (2, 1, 1) of the three-variable family κ(f ,g,h) con-
structed as the image under a p-adic Abel-Jacobi map of certain diagonal cycles. In
general, one may construct four different classes

κ(f, gα, hα), κ(f, gα, hβ), κ(f, gβ, hα), κ(f, gβ, hβ),

one for each p-stabilization of g and h. Further, when some of these classes vanish,
we are lead to consider their derivatives.

(ii) The special value Lp
f (f ,g,h) at weights (2, 1, 1) and its derivatives. Here, Lp

f (f ,g,h)
stands for the three-variable p-adic L-function attached to three Hida families, charac-
terized by an interpolation property regarding the classical values of the triple product
L-function at the region where k ≥ ` + m. When this function vanishes at the point
(2, 1, 1), the derivatives along different directions of the weight space may encode
interesting arithmetic information.
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(iii) The special value Lp
gα(f ,g,h) at weights (2, 1, 1), denoted Lp

gα . This p-adic L-
function is defined in an analogue way to the previous one, but now the region of
interpolation is characterized by the inequality ` ≥ k + m so the point (2, 1, 1) is

outside the region of classical interpolation. Similarly, we may also take Lp
hα(f ,g,h),

whose region of interpolation concerns those points for which m ≥ k+`. Observe that
the first value depends on the choice of p-stabilizations for the weight one form gα.

(i) Cohomology classes coming from the theory of diagonal cycles. We begin by
recalling the results concerning cohomology classes. Results of this kind had already been
explored in [BSV2] and [DR3] when αgαh = 1. In that case, the cohomology class is not
expected to vanish, but the numerator of the (Perrin-Riou) regulator in the reciprocity law

for Lp
f does, which is coherent with the fact that the p-adic L-function Lp

f (f, g, h) is zero
(this can be seen, of course, as an exceptional zero coming from the vanishing of an Euler
factor).

Here we are mostly interested in the case where the denominator of the Perrin-Riou regu-
lator in the reciprocity law for Lp

gα vanishes due to another exceptional zero phenomenon.
This occurs when αgβh = 1 and leads us to recover the ideas of [Cas], [RiRo1] and [Ri1],
where this same phenomenon was studied for Heegner points, Beilinson–Flach elements and
elliptic units, respectively. In those cases, the reciprocity laws linking Euler systems and p-
adic L-functions were updated to derived reciprocity laws. A different approach is taken also
in [BSV1, Section 9], where the authors introduce certain improved cohomology classes, which
in this case we may compare in an explicit way with appropriate derived elements.

Define the three-variable Iwasawa algebra Λfgh := Λf ⊗̂ZpΛg⊗̂ZpΛh and the Λfgh[GQ]-
module

Vfgh := Vf ⊗̂ZpVg⊗̂ZpVh.

We work with V†fgh, a certain twist of it by an appropriate power of the Λ-adic cyclotomic

character defined for instance in [DR3, Section 5.1] and that is needed to satisfy the self-dual
assumption.

The works [BSV1] and [DR3] attach to (f ,g,h) a Λ-adic global cohomology class

κ(f ,g,h) ∈ H1(Q,V†fgh)

parameterized by the triple product of the weight space Wfgh :=Wf ×Wg ×Wh.
Consider the specialization of the class at weights (x0, y0, z0),

κ(f, gα, h1/β) ∈ H1(Q, Vfgh),

where Vfgh is the tensor product Vf ⊗ Vg ⊗ Vh of the Galois representations attached to the
modular forms f , g and h. This class can be shown to be trivial and hence we are placed to
work with an appropriate derived class κ′(f, gα, h1/β).

As it occurred in the setting of Beilinson–Flach classes, the notion of derivative is rather
flexible. Following [RiRo1], we consider here a derivative along an analytic direction, and
keeping fixed the weight of h. Rather informally, this may be thought as the line (`+ 1, `, 1)
of the weight space. Note that at least in the self-dual case, where we may argue that the
corresponding class vanishes all along the line (2, `, `), we may consider the derivative along
any direction of the weight space.

Let αf (resp. αg, αh) stand for the Iwasawa function corresponding to the root of the p-th
Hecke polynomial of f (resp. g, h) with smallest p-adic valuation. As an additional piece of
notation, let

(1) L :=
α′g
αg
−
α′f
αf
,
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where α′f (resp. α′g, α
′
h) stands for the derivative of the Frobenius eigenvalues at x0 (resp.

y0, z0) when seen as an Iwasawa function along the Hida family Λf (resp. Λg, Λh). Observe
that we can give explicit formulas for L, involving both some units and p-units in the field cut
out by the representation Vgh and the Tate uniformizer of the elliptic curve E. Hence, the L-
invariant governing the arithmetic of the triple (f, g, h) is related both with the L-invariant of
the elliptic curve (the logarithm of the Tate uniformizer) and also with the regulator attached
to the adjoint representation ad0(Vg), expressed in [RiRo1] as a combination of logarithms of
units and p-units. Compare for instance this result with the main theorem of [Cas], where
he interprets the L-invariant attached to a modular form f and an anticyclotomic character
as the sum of the two L-invariants. Our first main result is the following (see Theorem 3.10
for the precise formulation), relating an appropriate logarithm of the derived class with the
special value Lp

gα .

Theorem 1.1. The derived local cohomology class satisfies

〈logBK(κ′p(f, gα, h1/β)g), ωf ⊗ ηgα ⊗ ωh1/β 〉 = L ·Lp
gα(f ,g,h)(x0, y0, z0) (mod L×),

where the superindex g stands for an appropriate projection of κ′p that we later introduce,
and logBK refers to the Bloch–Kato logarithm, followed by the pairing 〈−,−〉 with certain
canonical differentials.

Remark. In [BSV1] the authors take a different approach to this exceptional zero phenome-
non, and construct an improved cohomology class κ∗g(f, gα, h1/β). As we will later show, there
is a connection between both constructions and one may prove (under mild conditions!) that
the following equality holds in H1(Q, (Vf ⊗ Vg ⊗ Vh)|S), where S stands for the subvariety of
the weight space along which the derived and the improved class are defined, corresponding to
the set of weights k +m = `+ 2:

(2) κ′(f, gα, h1/β) = L · κ∗g(f, gα, h1/β).

(ii) The special value Lp
f and derivatives of the triple product p-adic L-function.

In subsequent parts of the article we use the previous cohomology classes to study different
instances of the elliptic Stark conjecture. Section 4 is devoted to analyze higher order deriva-
tives of Lp

f (f ,g,h) at (x0, y0, z0). The presence of an Euler factor which vanishes at weights
(2, 1, 1) automatically forces the vanishing of that value. Therefore, it is natural to formulate

several conjectures for the value of the derivatives of Lp
f (f ,g,h).

When αgαh = 1 and L(f⊗g⊗h, 1) 6= 0, the results of Bertolini–Seveso–Venerucci relying on
the existence of an improved p-adic L-function allow us to state the following result. Although
this can be seen as a straightforward corollary of the results developed in loc. cit., we want to
point out that the L-invariants attached to both g and h have a strong connection with the
arithmetic of number fields. This reveals that in the rank 0 situation the quantity Lp

f is also
a putative refinement of the more well-known L-invariants of Greenberg–Stevens, where not
only the Tate period qE appears. This result follows from [BSV1, Proposition 9.3].

Proposition (Bertolini–Seveso–Venerucci). Let I denote the ideal of functions in Λfgh which
vanish at (x0, y0, z0). Assume that L(f⊗g⊗h, 1) 6= 0, and let Lξ := α′ξ/αξ, for ξ ∈ {f, gα, hα}.
Then, up to a constant in L×,

Lp
f (f ,g,h) = (Lgα − Lf )(`− 1) + (Lhα − Lf )(m− 1) (mod I2).

Moreover, the quantities Lχ are explicitly computable in terms of the arithmetic of number
fields and elliptic curves.

Observe for example that the derivative along the y-direction agrees with the L-invariant
that also arises as the derivative of the diagonal class discussed before.
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However, the most interesting case appears when L(f ⊗ g⊗ h, 1) = 0. Let us put ourselves

in the setting of [DLR1] and assume that (E(H) ⊗ Vgh)Gal (H/Q) is two-dimensional. This
group is equipped with an inclusion in the p-adic Selmer group corresponding to the group of
extensions of Qp by Vfgh in the category of Qp-linear representations of GQ that are crystalline
at p. This group is denoted by H1

f (Q, Vfgh), and we also assume that is two-dimensional (the
latter would follow from the Birch and Swinnerton-Dyer conjecture for the pair (E, Vgh) and
the finiteness of the corresponding Tate–Shafarevich group).

Let {P,Q} denote generators of (E(H)⊗ Vgh)GQ , and fix a basis {eαα, eαβ, eβα, eββ} of Vgh
as a GQp-module with the Frobenius action. This allows us to write

P = Pββ ⊗ eββ + Pβα ⊗ eβα + Pαβ ⊗ eαβ + Pαα ⊗ eαα,
and similarly for Q. Here, the arithmetic Frobenius Frp acts on Pββ with eigenvalue βgβh and
analogously for the remaining components. In this scenario, we can conjecture the following
result, that we extensively discuss in Section 5.

Conjecture 1.2. Assume that the L-dimension of (E(H)⊗ Vgh)GQ is two. Then, under the

running assumptions, the p-adic L-function Lp
f (f ,g,h) satisfies

∂2Lp
f (fx, gα, h1/α)

∂x2

∣∣∣
x=x0

= logp(Pββ) · logp(Qαα)− logp(Qββ) · logp(Pαα) (mod L×).

If the L-dimension of (E(H)⊗ Vgh)GQ is greater than two, then the left hand side vanishes.

There are other interesting lines along weight space to take derivatives. For example, in
[CaHs] the study is concerned with the line (2, `, `), where the derivatives are connected with
appropriate derived heights of the points P and Q.

The work of Bertolini–Seveso–Venerucci and Darmon–Rotger establishes the conjecture for
the case where g and h are theta series of a quadratic field where p is inert, which leads to a
decomposition Vgh = Vψ1 ⊕ Vψ2 . In the imaginary case, we can extend their computations to
the split case, observing that here one has a trivial equality of the form 0 = 0.

Therefore, we may establish that Conjecture 1.2 holds in some dihedral cases. The first
part of this Proposition follows from [BSV2, Theorem A], and the second is established as
part of Proposition 4.7.

Proposition 1.3. Conjecture 1.2 holds in the following cases:

(a) CM or RM series with p inert in K and at least one of ψ1 or ψ2 being a genus
characters;

(b) CM series with p split in K, Vgh = Vψ1 ⊕ Vψ2, with each component of rank one.

We must say that in all these cases the proof is based on a factorization formula, so we
expect that new ideas would be required for the proof in the general case.

(iii) The special value Lp
gα. In the last section, we discuss a way to connect the

previous conjecture with the elliptic Stark conjecture of [DLR1] when αgαh = 1. Recall that
the conjecture predicts that

(3) Lp
gα(f, gα, hα) =

logp(Pβα) logp(Qββ)− logp(Pββ) logp(Qβα)

logp(ugα)
(mod L×),

with ugα being a Gross–Stark unit whose characterization we later recall. In particular, it is
expected that this unit could be expressed as a ratio of periods attached to weight one forms.
These two periods, denoted by Ωgα and Ξgα , will play a prominent role in the last part of the
work. More precisely, in [DR2, eq. (9)], the authors introduce a p-adic period, Lgα = Ωgα/Ξgα
and conjecture (see Conjecture 2.1 of loc. cit.)

(4) Lgα = logp(ugα).

In Section 5 we consider the following three conjectures:
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(i) the elliptic Stark conjecture for Lp
gα ;

(ii) the conjecture for the second derivative along the f -direction for Lp
f , i.e., Conjecture

1.2;
(iii) [DR2, Conjecture 2.1] about periods of weight one modular forms. Proposition 5.1

can be seen as an extra piece of theoretical evidence towards this conjecture, showing
that

Lgα
Lgβ

=
logp(ugα)

logp(ugβ )
.

Under certain non-vanishing hypothesis, we prove that if two of the previous conjectures are
true, the third one automatically holds. In particular, we establish the following in Corollary
5.5.

Theorem 1.4. Let g and h be theta series of a quadratic field (either real or imaginary) where
p is inert. Write Vgh = Vψ1⊕Vψ2, and assume that either ψ1 or ψ2 is a genus character. Then,
under the given assumptions, the equality (4) is equivalent to the elliptic Stark conjecture of
Darmon, Lauder and Rotger (3).

All the previous results are based on the interaction of the different arithmetic actors
when αgαh = 1. The case where αgβh = 1 is more subtle, since here the cohomology class
κ(f, gα, h1/β) vanishes and we cannot extract the same arithmetic information. In any case,
we expect that a similar result must hold in this setting. The reason is that the value of
Lp

gα does not depend on the choice of a p-stabilization for h, and hence we can also give a
conjectural expression for the derived cohomology class in terms of points, in complete analogy
with [RiRo1, Theorem B].

Conjecture 1.5. The following equality holds in H1
f (Q, Vfgh):

(5) κ′(f, gα, h1/β) =
L

Ξgα · Ωh1/β

·
logp(Pββ) ·Q− logp(Qββ) · P

logp(ugα)
(mod L×).

Proceeding as in [DR2] and [RiRo2] we may also obtain expressions (at least conjecturally)
for the three remaining cohomology classes, κ′(f, gβ, h1/α), κ(f, gα, h1/α) and κ(f, gβ, h1/β).
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2. Preliminaries

This section aims to give an overview of the setting we present, concerned with triple
product p-adic L-functions, and also recalls some known results in other related scenarios
coming from the theory of elliptic curves and weight one modular forms.

2.1. Hsieh’s triple product p-adic L-function. Fix an algebraic closure Q̄ of Q. For a
number field K, let GK := Gal (Q̄/K) denote its absolute Galois group. Fix also an odd
prime p and an embedding Q̄ ↪→ Q̄p.

The formal spectrum W = Spf(Λ) of the Iwasawa algebra Λ = Zp[[Z×p ]] is called the weight
space attached to Λ. The weight space is equipped with a distinguished class of arithmetic
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points νs,ε indexed by integers s ∈ Z and Dirichlet characters ε : (Z/prZ)× → Q̄× of p-power
conductor. The point νs,ε ∈ W is defined by the rule

νs,ε(n) = ε(n)ns.

Let (f ,g,h) be a triple of p-adic Hida families of tame levels Nf , Ng, Nh and tame characters
χf , χg, χh. Assume that χfχgχh = 1 (this is referred to as the self-duality assumption). Set
N = lcm(Nf , Ng, Nh), and suppose that p - N .

Let Λf , Λg and Λh be the finite extensions of Λ generated by the coefficients of the Hida
families f , g and h, respectively. The weight space attached to Λf is Wf := Spf(Λf ). Since
Λf is a finite flat algebra over Λ, there is a natural finite map

π :Wf := Spf(Wf )
w−→W,

and we say that a point x ∈ Wf is arithmetic of weight s and character ε if π(x) = νs,ε.
A point x ∈ Wf of weight k ≥ 1 and character ε is said to be crystalline if ε = 1 and there

exists an eigenform f◦x of level N such that fx is the ordinary p-stablization of f◦x . We denote
by W◦f the set of crystalline arithmetic points of Wf .

Finally, set Λfgh = Λf ⊗̂Λg⊗̂Λh and let W◦fgh := W◦f ×W◦g ×W◦h ⊂ Wfgh = Spf(Λfgh) be
the set of triples of crystalline classical points, at which the three Hida families specialize to
modular forms with trivial nebentype at p. This set admits the natural partition

W◦fgh =Wf
fgh tW

g
fgh tW

h
fgh tWbal

fgh,

where

• Wf
fgh denotes the set of points (x, y, z) ∈ W◦fgh of weights (k, `,m) such that k ≥ `+m.

• Wg
fgh and Wh

fgh are defined similarly, replacing the role of f by g (resp. h).

• Wbal
fgh is the set of balanced triples, consisting of points (x, y, z) of weights (k, `,m)

such that each of the weights is strictly smaller than the sum of the other two.

Recall from [DR3, Section 1.4] the notion of test vector. As proved in Section 3.5 of loc. cit.
following [Hs], there is a canonical choice of test vectors for which there exists a square-root
p-adic L-function

Lp
f (f ,g,h) :Wfgh → Cp,

characterized by an interpolation property relating its values at classical points (x, y, z) ∈
Wf

fgh to the square root of the central critical value of Garrett’s triple-product complex L-

function L(fx,gy,hz, s) associated to the triple of classical eigenforms (fx,gy,hz). For the
following proposition, let αfx and βfx be the roots of the p-th Hecke polynomial of fx, ordered
in such a way that ordp(αfx) ≤ ordp(βfx). The following result is [DR3, Proposition 5.1].

Proposition 2.1. Fix test vectors (f̃ , g̃, h̃) as in [Hs, Section 3]. Then Lp
f (f̃ , g̃, h̃) lies in

Λfgh and for every (x, y, z) ∈ Wf
fgh of weights (k, `,m) we have

Lp
f (f̃ , g̃, h̃)2(x, y, z) =

a(k, `,m)

〈f◦x , f◦x〉2
· e2(x, y, z)× L(f◦x ,g

◦
y,h
◦
z, c),

where

(1) c = k+`+m−2
2 .

(2) a(k, `,m) = (2πi)−2k ·
(
k+`+m−4

2

)
! ·
(
k+`−m−2

2

)
! ·
(
k−`+m−2

2

)
! ·
(
k−`−m

2

)
!,
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(3) e(x, y, z) = E(x, y, z)/E0(x)E1(x) with

E0(x) := 1− χ−1
f (p)β2

fxp
1−k,

E1(x) := 1− χf (p)α−2
fx
pk−2,

E(x, y, z) :=
(

1− χf (p)α−1
fx
αgyαhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
αgyβhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
βgyαhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
βgyβhzp

k−`−m
2

)
.

For simplicity, we fix once and for all these test vectors and remove their dependence in the
notation. Moreover, and to be more consistent with other papers in the topic, we may safely
shrink the weight space and restrict to a fixed congruence class of weights modulo 2(p− 1).

There is an ostensible parallelism between this p-adic L-function and the so-called Hida–
Rankin p-adic L-function attached to a pair of Hida families (g,h), but where the cyclotomic
variable s is allowed to move freely. It may be instructive to keep in mind this analogy for
the subsequent results.

Some of the easiest cases to understand these triple product p-adic L-functions arise when
the representation attached to Vgh is irreducible. In particular, assume that g is a weight one
theta series attached to a quadratic field K (either real of imaginary) where p remains inert.
Then, Vgh = Vψ1 ⊕ Vψ2 , and under the assumption that at least one between ψ1 or ψ2 is a
genus (quadratic) character, the works [BSV2] and [DR3] show that

(6) Lp
f (f , g, h)2 = f(k) · Lp(f/K,ψ1) · Lp(f/K,ψ2),

where f(k) is a bounded analytic function on Λf such that f(x0) ∈ L×. Here, Lp(f/K,ψ) is the
two-variable p-adic L-function attached to a Hida family f and a character ψ of a quadratic
field.

As a word of caution, observe that there are three different p-adic L-functions, depending
on the region of classical interpolation (associated to the dominant weight).

2.2. Improved p-adic L-functions. It is a natural phenomenon in the study of p-adic L-
functions that some of the Euler factors arising in the interpolation process are analytic along
a subvariety of the weight space. When this happens, one is tempted to define improved
p-adic L-functions, that is, functions over the corresponding subvariety characterized by the
same interpolation property, but with these Euler factors removed. This is a quite well-
known phenomenon, which dates back to Greenberg–Stevens [GS] and their study of the
Mazur–Kitagawa p-adic L-function. This was one of the key ingredients in the proof of our
main results in [RiRo1] and we would like to stress the limitations of the method in this
triple product setting. The interest of this study is that we also want to discuss later on its
applicability from the Euler system side in order to construct improved cohomology classes.

For the sake of simplicity, assume that χf is trivial. In the setting of triple product p-adic
L-functions we have just discussed, one of the Euler factors appearing in the interpolation
property of Lp

f (f ,g,h) is

1−
αgyαhz

αfx

p
k−`−m

2 ,

which is an Iwasawa function along the surface Sk=`+m defined by

Sk=`+m = {(x, y, z) ∈ W◦f ×W◦g ×W◦h such that k = `+m}.

The definitions given in [DR1, Def. 4.4] can be adapted to yield an improved p-adic L-

function Lp(f ,g,h)∗ on Sk=`+m, by replacing the family h × dtg[p] with the family h × g,
whose coefficients vary analytically because t = 0 on Sk=`+m.
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Proposition 2.2. There exists an analytic p-adic L-function over the surface Sk=`+m, de-
noted by Lp

f (f ,g,h)∗, such that the following equality holds in Sk=`+m:

(7) Lp
f (f ,g,h) = (1− α−1

f αgαh)Lp
f (f ,g,h)∗.

Proof. This follows from the proof of [BSV1, Proposition 9.3] and the discussion after it. �

We point out that the improved p-adic L-function we have considered, Lp
f (f ,g,h)∗, inter-

polates classical L-values, in the same way than Lp
f (f ,g,h), but with the vanishing Euler

factor removed. Therefore, its value at (x0, y0, y0) is given by an explicit non-zero multiple of
the square root of the algebraic part of L(f, g, h, 1). In particular, L(f, g, h, 1) 6= 0 if and only
if the improved p-adic L-function does not vanish at (x0, y0, y0).

Observe however that we may also consider other Euler factors. Take for example

1− χ̄h(p)αhz

αgyαfx

p
k+`−m−2

2 ,

which is analytic along k + ` = m+ 2.
We would expect that one can establish that these factors (each along its respective re-

gion) divide the p-adic L-function and yield other improved p-adic L-functions satisfying mild
analytic and interpolation properties.

2.3. Exceptional zeros and L-invariants. The situations we study in this article are
mostly concerned with the so-called exceptional zero phenomenon. We now recall several
results which appear in the literature around that, mainly in [GS], [Ven] and [RiRo1]. As
anticipated before, the point is that the L-invariant governing the arithmetic of Vf ⊗ Vgh is
a combination of the L-invariants attached to f and the adjoint of g (or the adjoint of h,
according to the direction we choose). For a brief summary of the usual definition and the
main properties of the adjoint representation in this scenario, see [DLR1, Section 1.2].

The aim of this section is to give an arithmetic description of the different L-invariants that
later appear in the setting of triple products, to have a complete description of our picture.

Let us define, to ease notations,

(8) L(ad0(gα)) :=
α′g
αg
, L(E) :=

α′f
αf
,

where the derivative is taken along the unique Hida family passing through gα and f , respec-
tively, and then evaluating at the points corresponding to gα and f .

I. The L-invariant of the adjoint of a modular form. One of the main results of
[RiRo1] was the computation of the L-invariant associated to the adjoint of a modular form.

As shown in [DLR2, Lemma 1.1], we have

dimL(O×H ⊗ ad0(g))GQ = 1, dimL(OH [1/p]×/pZ ⊗ ad0(g))GQ = 2.

Fix a generator u of (O×H ⊗ ad0(g))GQ and also an element v of (O×H [1/p]× ⊗ ad0(g))GQ such

that {u, v} is a basis of (OH [1/p]× ⊗ ad0(g))GQ . The element v may be chosen to have p-
adic valuation ordp(v) = 1, and we do so. Viewed as a GQp-module, ad0(g) decomposes as

ad0(g) = L1⊕Lα/β⊕Lβ/α, where all the summands are 1-dimensional subspaces characterized
by the property that the arithmetic Frobenius Frp acts on it with eigenvalue 1, α/β and β/α,
respectively. Let Hp denote the completion of H in Q̄p and let

u1, uα/β, uβ/α, v1, vα/β, vβ/α ∈ H×p ⊗Q L (mod L×)

denote the projection of the elements u and v in (H×p ⊗ ad0(g))GQp to the above lines. By

construction we have u1, v1 ∈ Q×p and

Frp(uα/β) =
β

α
uα/β, Frp(vα/β) =

β

α
vα/β, Frp(uβ/α) =

α

β
uβ/α, Frp(vβ/α) =

α

β
vβ/α.
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Let

logp : H×p ⊗ L −→ Hp ⊗ L
denote the usual p-adic logarithm.

Then, one the main results of [RiRo1] was the computation of L(ad0(gα)), which can be
expressed as

(9) L(ad0(gα)) = −
logp(v1) logp(uα/β)− logp(u1) logp(vα/β)

2ordp(v1) · logp(uα/β)
.

II. The L-invariant of an elliptic curve (rank 0). In [GS], the authors prove a
conjecture of Mazur, Tate and Teitelbaum [MTT] expressing the quantity Lp(E, 1) in terms
of the derivative of L(E, 1) when the rank is zero. As a consequence of this, they show that
an elliptic curve with split multiplicative reduction at p satisfies

(10) L(E) = −
logp(qE)

2ordp(qE)
,

where qE is Tate’s uniformizer for the elliptic curve E. We write Lp(f)(x, s) for the usual
two-variable Mazur–Kitagawa p-adic L-function, and x0 for the weight two point satisfying
fx0 = f , with f the modular form attached to E by modularity.

As recalled for instance in the discussion of [BD2, Remark 1.13], there exists an improved
p-adic L-function along s = 1, that we denote here as L∗p(f)(x) and which is characterized by

Lp(f)(x, 1) = (1− ap(fx)−1) · L∗p(f)(x).

Observe that in a rank 0 situation L∗p(fx0) is a non-zero algebraic number which agrees (up
to constant) with the algebraic part of the classical L-value.

III. The L-invariant of an elliptic curve (rank 1). In a rank 1 situation, Venerucci
relates the second derivatives of the Mazur–Kitagawa p-adic L-function with certain heights
of Heegner points. Observe that in this setting, Lp(f)(x0, 1) = 0 and the same happens for its
first derivatives. To determine the second order derivatives, he recasts in [Ven] to the theory
of Selmer complexes and Nekovář’s Selmer groups, as introduced in [Nek].

Following the conventions used in loc. cit., let H̃1
f be Nekovar’s extended Selmer group. It

is a Qp-module, equipped with a natural inclusion of the extended Mordell-Weil group of E,

that we denote by E†(Q)⊗Qp. In general,

H̃1
f (Q, Vp(E)) = H1

f (Q, Vp(E))⊕Qp · qE ,

where H1
f (Q, Vp(E)) is the Bloch–Kato p-adic Selmer group. Using Nekovar and Venerucci’s

results, there is a canonical Qp-bilinear form

〈·, ·〉 : H̃1
f (Q, Vp(E))⊗Qp H̃

1
f (Q, Vp(E))→ I/I2,

where I stands for the augmentation ideal of the cyclotomic Iwasawa algebra, and which
may be thought as the ring of functions vanishing at the point (x, s) = (x0, 1), that with a
slight abuse of notation we denote by (2, 1). This is the so-called height-weight pairing, which
decomposes as

〈·, ·〉 = 〈·, ·〉cyc
p · {s− 1}+ 〈·, ·〉wt

p · {k − 2},
where 〈·, ·〉cyc

p and 〈·, ·〉wt
p are canonical Qp-valued pairings on the extended Selmer group.

Finally, the Schneider height is defined by

〈·, ·〉Sch
p = 〈x, y〉cyc

p −
logp(resp(x)) · logp(resp(y))

logp(qE)
,

where resp(x) is the localization-at-p map. The following result provides expressions for the
second derivative of Lp(f) along different directions of the weight space.
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Proposition 2.3. The following formulas hold, where P is a generator of the Mordell–Weil
group E(Q).

(a)

d2Lp(f)(k, k/2)

dk2

∣∣∣
k=2

= logE(P )2 (mod L×);

(b)

d2Lp(f)(k, 1)

dk2

∣∣∣
k=2

= L(E) · 〈P, P 〉cyc (mod L×);

(c)

d2Lp(f)(x0, s)

ds2

∣∣∣
s=1

= L(E) · 〈P, P 〉Sch (mod L×).

Proof. The first part follows from the main result of [BD2], and the other two are [Ven,
Theorems D and E]. We refer the reader to loc. cit. for a definition of the corresponding
pairings. �

IV. Results beyond modular forms of weight 2. The main result of Bertolini and
Darmon [BD2] was generalized by Seveso [Se] to modular forms of even weight. Let us recall
here his main result for the sake of completeness and to illustrate that most of our results
generalize to the situation of weights (k, 1, 1), by replacing the points over the elliptic curve
by the corresponding Heegner cycles. Let fk ∈ Sk(N), where N = pN+N− and N− is the
squarefree product of an odd number of prime factors. The modular form corresponds, via
the Jacquet-Langlands correspondence, to a modular form on a certain Shimura curve X =
XN+,pN− uniformized by the p-adic upper half-plane. In this framework, Iovita and Spiess
[IS] constructed a Chow motive Mk−2 attached to modular forms on X. Let m = k/2− 1.

We fix K/Q a quadratic imaginary field extension, of discriminant DK prime to pN , such
that N+ is a product of primes that are split in K, while pN− is a product of primes that
are inert in K; we further fix an order of K of conductor c prime to NDK . Hence, one may

consider a higher weight analogue of Heegner points, the Heegner cycles y
(n)
ψ ∈ CHm+1(Mn)

attached to a character ψ. The p-adic étale Abel-Jacobi map takes the form

AJp : CHm+1(Mn)→M∨k .

In the following result, the Mazur–Kitagawa p-adic L-function is replaced by the p-adic
L-function attached to the quadratic imaginary field and the character ψ, that we denote by
L(f/K,ψ)(k, s) following the notations of [Se].

Proposition 2.4 (Seveso). The first derivative of L(f/K,ψ)(k, s) in the weight direction is
given by

2
d

dx

(
L(f/K,ψ)(x, x/2)

)∣∣∣
x=k

= AJp(y
(n)
ψ )(f) + (−1)mAJp(y

(n)

ψ̄
)(f).

This suggests that some of our results can be transposed to a higher weight situation,
replacing the points over the elliptic curve by the corresponding Heegner cycles. More pre-
cisely, the results relying on the work of Darmon, Lauder and Rotger on the elliptic Stark
conjecture [DLR1] can be adapted following the generalizations of Gatti and Guitart to higher
weights [GG]. Similarly, the construction of derived cohomology classes, anticipated in the
introduction and developed in Section 3, can be also carried out for general weights (k, 1, 1).

3. Derived diagonal cycles and an explicit reciprocity law

3.1. Diagonal cycles and an explicit reciprocity law. Darmon and Rotger constructed
in [DR3] an element

κ(f ,g,h) ∈ H1(Q,V†fgh)
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arising from the interpolation of diagonal cycles along the balanced region (and depending on
the choice of the triple of test vectors). An alternative construction has been given by Bertolini,
Seveso and Venerucci [BSV1, Section 3]. This class is symmetric in all three variables. Let

resp : H1(Q,V†fgh)→ H1(Qp,V†fgh)

denote the restriction map to the local cohomology at p, and set

κp(f ,g,h) := resp(κ(f ,g,h)) ∈ H1(Qp,V†fgh).

One of the main results of both [BSV1] and [DR3] is the proof of an explicit reciprocity law.

As showed in loc. cit., the Galois representation V†fgh is endowed with a four-step filtration

(11) 0 ⊂ V++
fgh ⊂ V+

fgh ⊂ V−fgh ⊂ V†fgh
by GQp-stable Λfgh-submodules of ranks 0, 1, 4, 7 and 8, respectively. Moreover,

V+
fgh/V

++
fgh = Vgh

f ⊕ Vhf
g ⊕ Vfg

h .

We discuss now the definition of Vgh
f . Let Θgh

f be the Λfgh-adic cyclotomic character whose

specialization at a point of weight (k, `,m) is εtcyc, with t := (−k + `+m)/2, and let ψgh
f be

the unramified character of GQp sending Frp to χ−1
f (p)ap(f)ap(g)−1ap(h)−1. Define U as the

unramified Λfgh-adic representation of GQp given by the character ψgh
f , and let

Vgh
f = U(Θgh

f ).

We finally introduce the Λ-adic Dieudonné module

D(U) := (U⊗̂Znr
p )GQp .

Then, one may construct a Perrin-Riou regulator map whose source is H1(Qp,Vgh
f ) →

Λfgh and which interpolates either the Bloch–Kato logarithm or the dual exponential map,
according to the value of a certain Hodge–Tate weight. In order to state their main properties,
we need to introduce more terminology. Let c = k+`+m−2

2 , and with the previous notations,
define

EPR(x, y, z) =
1− p−cβfxαgyαhz

1− p−cαfxβgyβhz
.

The following result is discussed e.g. in [DR3, Proposition 5.6] and follows from the general
theory of Perrin-Riou maps. For this statement we implicitly assume that neither βfxαgyαhz

nor αfxβgyβhz vanish. If this were the case, and as we will later see, we need to work with
the expression

EPR(x, y, z) =
1− χf (p)p

k−`−m
2 α−1

fx
αgyαhz

1− χ̄f (p)p
`+m−k−2

2 αfxα
−1
gy α

−1
hz

,

which agrees with the former in the non-exceptional case.

Proposition 3.1. There is a homomorphism (usually named Perrin-Riou regulator)

Lf ,gh : H1(Qp,Vgh
f )→ D(U)

such that for all κp ∈ H1(Qp,Vgh
f ) the image Lf ,gh(κp) satisfies the following interpolation

properties:

(1) For all points (x, y, z) /∈ Wf
fgh,

νx,y,z(Lf ,gh(κp)) =
(−1)t

t!
EPR(x, y, z) · logBK(νx,y,z(κp)),
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(2) For all points (x, y, z) ∈ Wf
fgh,

νx,y,z(Lf ,gh(κp)) = (−1)t · (1− t)! · EPR(x, y, z) · exp∗BK(νx,y,z(κp)).

Following [DR3], one can define

(12) κp(f ,g,h)f ∈ H1(Qp,Vgh
f )

as the projection of the local class κp(f ,g,h) to Vgh
f . Let ηf , ωg and ωh be the canonical

differentials attached to the three Hida families, as introduced for instance in [KLZ, Section
10]. The following result has been independently established in [BSV1, Theorem A] and [DR3,
Theorem 5.1].

Proposition 3.2. For any choice of test vectors, the following equality holds in the ring of
fractions of Λfgh:

〈Lf ,gh(κp(f ,g,h)f ), ηf ⊗ ωg ⊗ ωh〉 = Lp
f (f ,g,h).

Remark 3.3. Observe that both the left hand side and the right hand side depend on the
choice of test vectors. There exist analogue reciprocity laws for Lp

g and Lp
h.

We can also formulate an explicit reciprocity law for the improved p-adic L-function. Since
along the region k = ` + m the Perrin-Riou map interpolates the dual exponential, we have
that

(13)
1

1− p−k+1αfxβgyβhz
· 〈exp∗BK(κp(f ,g,h)f (x, y, z)), ηfx ⊗ ωgy ⊗ ωhz〉 = Lfp(fx,gy,hz)

∗,

and in particular the dual exponential map vanishes at (x0, y0, y0) (i.e. the class is crystalline)
if and only if the improved p-adic L-function is zero at that point.

Remark 3.4. In [GGMR], the authors study the cohomology classes in a generic rank zero
situation, where they are non-crystalline. This yields a formula for the special value Lp

g in

terms of Lp
f in absence of exceptional zeros. Again, the key point is that each component of

the cohomology class encodes information about a different p-adic L-function.

3.2. Vanishing of cohomology classes. In [BSV1, Section 9], the authors deal with a
situation where the numerator of the Perrin-Riou map Lf ,gh vanishes, defining an improved
map whose derivatives may be explicitly computed. We come back to this question later on.
Let us analyze, firstly, the vanishing of the denominator of the Perrin-Riou map, but in the
case of the Perrin-Riou map Lg,hf , that is:

(14) 1− χ̄g(p)p
k−`+m−2

2 α−1
fx
αgyα

−1
hz

= 0.

Since we have placed ourselves in the ordinary setting, a necessary condition for this to happen
is k + m = ` + 2, which moreover suffices to guarantee the analyticity of the Euler factor in
the denominator.

Hence, when f is of weight 2 with split multiplicative reduction at p, and g and h are
self-dual of the same weight (h = g⊗χ−1

g ), the denominator of the Perrin-Riou map vanishes.
This means that we expect

logBK(κp(f ,g,h)g(x, y, z)) = 0.

However, the self-duality condition is not necessary for this vanishing, and following the con-
ventions of the introduction in the case of weights (2, 1, 1) (again, with E of split multiplicative
reduction), it suffices to impose that αgβh = 1. This encompasses for example the case of
theta series of quadratic fields where the prime p is inert. Nevertheless, there are certain phe-
nomena which are exclusive from the self-dual case: indeed, the fact that the Hida families
interpolating both g and h keep the self-duality condition gives us a vanishing along the whole
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line (2, `, `). We treat both the self-dual and the non self-dual case, emphasizing the main
differences between them.

We begin by showing that when αgβh = 1 and g and h are self-dual, the local class
κp(f, gα, hα) vanishes, using the techniques of our prior work [RiRo1]. Although this is not
strictly necessary since we will later see that the whole global class is zero, we believe that it
may be instructive for the reader to compare the formalism of [RiRo1], which relies on the
basic properties of the Perrin-Riou maps, with the more conceptual proof of [BSV1, Section
9], based on the geometric construction of an improved cohomology class.

Proposition 3.5. With the running assumptions, the specialization of the Λ-adic cohomology
class κp(f ,g,g

∗) at (x0, y0, y0) vanishes, that is, κp(f, gα, g
∗
1/β) = 0.

Proof. We will follow the same strategy used in [RiRo1, Theorem 3.5]. First of all we show,
invoking [BSV1, Theorem 8.1], that any specialization of the three-variable Λ-adic class at
a point of weights (2, `, `), with ` ≥ 2, is zero. In order to achieve this, we just use the
comparison provided by the aforementioned result with the twisted class κ†, twisting now in
the g-variable, that is, applying the operator Id⊗w′p ⊗ Id according to the definitions given
at the beginning of Section 7.2 of loc. cit., where wp stands for the Atkin–Lehner involution.
As we later discuss, this class may be understood as an improved cohomology class, since it
agrees with the former up to multiplication by the Euler factor

1−
χ̄(p)αgy

αfxαhz

p
k−`+m−2

2 .

This factor is zero over the line (2, `, `) when we take Hida families such that h = g∗, since
χ̄(p)αgy = αhy . Observe that we are implicitly using Lemma 8.4 of loc. cit., which assert that
the class κ(f ,g,h) is symmetric in all three variables.

The second part of the proof consists on applying a limit argument componentwise, via the
corresponding Perrin-Riou maps, to conclude that the limit when ` goes to one is also zero.
For this last step, we look at the four different components of the local class κp(f, gα, g

∗
1/β)

corresponding to the balanced subspace V+
fgg∗ . This suffices according to the results established

in [BSV1, Corollary 8.2] and following the notations of Section 6.2 in loc. cit., which asserts
that the three-variable cohomology class lies in the balanced subspace. The components of

the balanced subspace are denoted by V gg∗

f , V g∗f
g , V fg

g∗ and V ++
fgg∗ , where V gg∗

f stands for the

specialization of Vgg∗

f and similarly for the other factors (recall the filtration of (11)).

• We first prove that the component associated to the rank one subspace V gg∗

f is zero.

Observe that along the line (2, `, `), the specialization of the module H1(Qp,Vgg∗

f )
agrees with H1(Qp,Zp(ψ−2

gy )(`− 1)), where y is a point of weight `. Then, the Perrin-
Riou map is an application

(15) H1(Qp,Λg(ψ−2
g )⊗̂Λ(εcyc))→ D(Λg(ψ−2

g ))⊗̂Λ.

Since ψ−2
g 6= 1, we have H0(Qp,Λg(ψ−2

g )) = 0 and it follows from [KLZ, Theorem 8.2.3]
that the above map is an isomorphism. Moreover, using the same argument of the
proof of the last step of [RiRo1, Theorem 3.5], we conclude that the Λ-module of (15) is
non-canonically isomorphic to Λg. Therefore, and since infinitely many specializations
vanish according to the previously quoted result of [BSV1], the corresponding H1 is
zero.
• The components associated to V g∗f

g and V fg
g∗ are zero; this is because

H1(Qp,Vg∗f
g |(2,`,`)) ' H1(Qp,Λg(1)) ' Λg ⊕ Λg,

and although the Perrin-Riou map only kills one of the above two components, the
restriction of the class is zero since again infinitely many specializations are zero.
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• For the remaining component, the one corresponding to V++
fgg∗ , the same argument

used in the first step works once we have established that the remaining projections
vanish.

�

Consider now the surface

S = Sk,k+m−2,m := {(x, y, z) ∈ Wf ×Wg ×Wh : wt(x) + wt(z) = wt(y) + 2},
and also the line

C := {(x, y, z) ∈ Wf ×Wg ×Wh : wt(x) = 2, wt(y) = wt(z)}.
Observe that the surface S is just a finite cover of the plane in W3 arising as the Zariski
closure of weights (k, k +m− 2,m).

Using the results of [BSV1, Section 9.2], we may upgrade Proposition 3.5 to the vanishing
of the global class κ(f, gα, hα) when αgβh = 1 (and hence we can work beyond the setting of
the adjoint, covering for example the case of theta series of quadratic fields where the prime
p remains inert).

In particular, we have the following result.

Proposition 3.6. The global class κ(f ,g,h) vanishes along the line C in the self dual case.
Moreover, the class κ(f, gα, h1/β) is zero when αgβh = 1.

Proof. Following again [BSV1, Section 9.2], there is an improved class κ∗g(f ,g,h) along the
surface S satisfying

(16) κ(f ,g,h)|S =
(

1−
χ̄(p)αgy

αfxαhz

)
κ∗g(f ,g,h).

Hence, the vanishing of κ(f, gα, h1/β) follows from the vanishing of the corresponding Euler
factor. �

3.3. Derived classes and reciprocity laws. Following the analogy with [RiRo1], let us
focus firstly on the self-dual case to discuss the notion of derived classes. We shrink the
weight space W to a rigid-analytic open disk U ⊂ W centered at 2 at which the finite cover
w : Wf → W restricts to an isomorphism w : Uf

∼−→ U with x0 ∈ Uf . Let ΛUf = O(Uf )
denote the Iwasawa algebra of analytic functions on Uf whose supremum norm is bounded by
1. Shrink likewise C and S so that projection to the weight space restricts to an isomorphism
with U and U × U respectively. Having done that, their associated Iwasawa algebras are
respectively O(C) = ΛUf ' Zp[[X]] and O(S) = ΛUf ⊗̂ΛUh ' Zp[[X,Z]]. The isomorphism
ΛUf ' Zp[[X]] is not canonical and depends on the choice of an element γ ∈ Λ×Uf which is sent
to 1 +X.

Then, consider the short exact sequence of Zp-modules

0→ Zp[[X,Z]]
·X−→ Zp[[X,Z]]→ Zp[[Z]]→ 0.

Under the usual isomorphisms, Λf may be identified with Zp[[X]] after fixing a topological
generator γ of Λ×Uf and sending [γ] to 1 +X. Then, Λf ⊗̂Λh becomes isomorphic to Zp[[X,Z]]
and the previous exact sequence may be recast as

(17) 0→ OS
δ−→ OS → OC → 0

with δ = (γ − 1)⊗ 1 in OS ' Λf ⊗̂Λh.

Proposition 3.7. In the self-dual case, there exists a class κ′γ(f ,g,g∗) ∈ H1(Q,Vfgg∗|S) such
that

κ(f ,g,g∗)|S = δ · κ′γ(f ,g,g∗).
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If we further assume that VGQ
fgg∗|C = {0}, the class is unique.

Proof. This follows by considering the long exact sequence in cohomology attached to (17):

H0(Q,Vfgg∗|C)→ H1(Q,Vfgg∗|S)→ H1(Q,Vfgg∗|S)→ H1(Q,Vfgg∗|C).

Since the restriction of κ(f ,g,g∗) to H1(Q,Vfgg∗|C) is zero by Proposition 3.6, one may assure
the existence of a derived class as in the statement. �

Note that over Qp, the uniqueness of a derived class with values in the balanced subspace
follows by an analysis of the Hodge–Tate weights.

Remark 3.8. Normalizing by logp(γ), the specializations of this class over the line (2, `, `) can
be proved to be independent of the choice of γ.

In general, if we are no longer in the self-dual case but the condition αgβh = 1 still holds,
the notion of derived class makes sense at the point (x0, y0, z0). For that purpose, let D stand
for the codimension two subvariety

D := {(x, y, z) ∈ Wf ×Wg ×Wh : wt(x) = wt(y) + 1, z = z0}.
The following result is the analogue of [RiRo1, Proposition 3.13] and its proof follows from
the same argument of Proposition 3.7.

Proposition 3.9. Assume that αgβh = 1 and that V
GQ
fgh = {0}. Then, there exists a unique

class κ′γ(f ,g,h) ∈ H1(Q,Vfgh|D) such that

κ(f ,g,h)|D = δ · κ′γ(f ,g,h).

Let L =
α′g
αg
− α′f

αf
, and consider the normalization of κ′γ(f ,g,h) by γ, that is,

κ′(f ,g,h) =
κ′γ(f ,g,h)

logp(γ)
.

The following result can be seen as an improved reciprocity law expressing the logarithm
of the derived local class in terms of a p-adic L-value.

Theorem 3.10. The logarithm of the derived local class satisfies the following

〈logBK(κ′p(f ,g,h)g(x0, y0, z0)), ωf ⊗ ηg ⊗ ωh〉 = L ·Lp
gα(f ,g,h)(x0, y0, z0) (mod L×),

where as in (12) the superindex g refers to the projection to Vhf
g .

Proof. Consider the reciprocity law of Proposition 3.2, now for Lp
gα(f ,g,h), restricted to

D, and multiply both sides by the Euler factor in the denominator of the Perrin-Riou map.
Then, we have an equality of the form(

1−
χ̄(p)αgy

pαfxαhz

)
· 〈logBK(κp(f ,g,h)g), ωf ⊗ ηg ⊗ ωh〉 =

(
1− αfxαhz

χ̄(p)αgy

)
·Lp

gα(f ,g,h),

since along D the Perrin-Riou interpolates the Bloch–Kato logarithm. At the point (x0, y0, z0)
both the cohomology class at the left hand side and the Euler factor at the right are zero.
Taking derivatives along the direction (k+1, k, 1), and evaluating then at the point (x0, y0, z0),
the result follows (see [Ri1, Remark 4.8] for a more exhaustive discussion on the identifications
we are considering). �

An analogue formula holds for any point over the line (2, `, `) in the self-dual case, but of
course the description of the L-invariant is not so explicit and relies on the results of [Se].

It may be instructive to compare this derived cohomology class with the improved coho-
mology class considered by Bertolini, Seveso and Venerucci. We can prove the following.
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Proposition 3.11. Consider the map given by the projection

φhfg : H1(Q,Vfgh|S)→ H1(Qp,Vhf
g |S).

Then, there is a relation between the improved class φhfg (κ∗g(f ,g,h)) and φhfg (κ′(f ,g,h)), given
by

φhfg (κ′(f ,g,h)) = L · φhfg (κ∗g(f ,g,h)) (mod L×).

Proof. This is proved by applying the map 〈logBK(·), ηf ⊗ ωg ⊗ ωh〉 to both sides, and then
comparing the results. For that purpose, we use that the Euler factors involved in the Perrin-
Riou map are analytic along S and can be cancelled out. That way, we obtain an improved
reciprocity law

Lp
gα(f ,g,h)(x, y, z) = 〈logBK(φhfg (κ∗g(f ,g,h)g(x, y, z))), ωfx ⊗ ηgy ⊗ ωhz〉 (mod L×),

which holds for all the points (x, y, z) of S. �

Finally, we point out that we may expect a relation between κ′p(f ,g,h)(x, y, z) and the

Gross–Kudla–Schoen cycle of [DR1], that we denote by ∆k,`,m ∈ H1(Q, Vfgh((4−k−`−m)/2).
In particular, we expect the following result to be true (or at least, a slight variant of it). Here,
locp stands for the localization at p-map.

Question 3.12. Can we establish that, up to multiplication by a non-zero constant in L×

and for any point (x, y, z) of weights (2, `, `) with ` ≥ 2, we have the equality

κ′p(f ,g,h)(x, y, z) = L · locp(∆2,`,`)?

Of course, this would require the proof of an analogue result to [DR1, Theorem 5.1] in a
situation where f has split multiplicative reduction.

4. Derivatives of triple product p-adic L-functions

In this section, we discuss a variant of the elliptic Stark conjecture for the derivative of the
triple product p-adic L-function Lp

f in a situation of exceptional zeros. As before, we keep
the assumption that f has split multiplicative reduction at p and that an exceptional zero
condition occurs.

There are two main instances we want to consider: the rank zero situation and the rank two
situation. While the former is quite well understood after the results developed in [BSV1] and
[BSV2], the latter is more subtle and we will propose a conjectural formula in this scenario.
Along this section, by the word rank, we refer to the rank of the Vgh-isotypic component of
E(H). According to our general assumptions on the local signs, the rank is always even. The
Vgh-component of E(H) is endowed with an inclusion in the Selmer group, that is,

HomGQ(E(H), Vgh) ' (E(H)⊗ Vgh)GQ ⊂ H1
f (Q, Vfgh),

where H1
f (Q, Vfgh) is the group of extensions of Qp by Vfgh in the category of Qp-linear

representations of GQ which are crystalline at p.
Recall that for higher ranks the computations performed in [DLR1] lead us to expect that

the special value Lp
gα presented in the introduction is zero, and that the second derivative of

Lp
f along the f -direction vanishes, too. The odd rank situation is equally interesting, and we

hope to come back to this question in a further work. We keep the notations of the previous
section.

Proposition 4.1. The value Lp
f (f ,g,h)(x0, y0, z0) is zero. Moreover, the jacobian matrix

of Lp
f (f ,g,h) at the point (x0, y0, z0) is given by

(0 Lgα − Lf Lhα − Lf ) ·Lp
f (f ,g,h)∗.

Proof. This directly follows from [BSV1, Proposition 9.2]. �
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Remark 4.2. Observe that, towards the rationality conjectures we are interested in, the value
Lp

f (f ,g,h)∗ is an algebraic number, and it is non-zero if and only if the cohomology class
κ(f, gα, hα) is non-crystalline.

In particular, the derivative along the direction (2+k, 1, 1) vanishes, and along the direction
(2, 1 + `, 1 + `) is given by Lgα +Lhα − 2Lf , up to an explicit algebraic number in the number
field L.

Suppose from now on that Lp
f (f ,g,h)∗ vanishes at (x0, y0, z0). Therefore, the cohomology

class κ(f, gα, hα) is crystalline, and following [BSV2, Section 2.1] we may define a new Bloch–
Kato logarithm, denoted by logββ in loc. cit. Roughly speaking, it can be understood as a

projection to the rank one subspace V ++
fgh arising in the filtration (11), followed by the Bloch–

Kato logarithm and the pairing with ωf ⊗ ωg ⊗ ωh. To be coherent with the other notations
we will need later on, write log++ for this map. Alternatively, we may consider the local class
κp(f, gα, hα) and take its decomposition according to the action of the Frobenius element, in
such a way that κββ is the part corresponding to the (βg, βh) component.

Assume further that αgαh = 1 (in particular, this also implies that βgβh = 1). The following
result is the content of [BSV2, Section 2.1].

Proposition 4.3. Under the given conditions, the value Lp
f (f , gα, hα) vanishes and

d2

dx2
Lp

f (f , gα, hα)|x=x0 =
1

2ordp(qE)
· (1− p−1)−1 · log++(κp(f, gα, hα)).

Remark 4.4. In the adjoint case, when we take h1/α = g∗1/β we do have a relation between Lg
and Lh: indeed

(1/αg)
′

1/αg
= −

α′g
αg

;

however when h1/α = g∗1/α both quantities are a priori unrelated.

4.1. A conjecture for the second derivative. As we have discussed before, the improved
p-adic L-function Lp

f (f ,g,h)∗ interpolates an explicit non-zero multiple of L(f ⊗ g ⊗ h, 1),
and we expect this value to be zero when the rank of the corresponding isotypic component of
the Selmer group is two. In those cases, we would like to compare the Kato class with a basis
of (E(H)⊗Vgh)GQ , that we write as {P,Q}. We also assume that H1

f (Q, Vfgh) has dimension
2.

To fix notations, observe that Vgh decomposes as a GQp-module as the direct sum of four

different lines V αα
gh := V

αg
g ⊗ V αh

h , . . . , V ββ
gh . After choosing a basis of Vgh, we may write this

decomposition as

Vgh = L · eαα ⊕ L · eαβ ⊕ L · eβα ⊕ L · eββ ,
where

Frp(eλµ) = aλµ · eλµ for any λ, µ ∈ {α, β}.
Here, aλµ = βgβh if (λ, µ) = (α, α) and similarly in the other three cases.

In particular, restricting the elements {P,Q} to a decomposition group at p gives expressions

P = Pββ ⊗ eββ + Pβα ⊗ eβα + Pαβ ⊗ eαβ + Pαα ⊗ eαα,

and similarly for Q, where as recalled in the introduction Frp acts on Pββ with eigenvalue
βgβh and analogously for the remaining components.

Conjecture 4.5. Under the running assumptions, the following equality holds:

d2

dx2
Lp

f (f , gα, hα)|x=x0 = logp(Pββ) logp(Qαα)− logp(Qββ) logp(Pαα) (mod L×).
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This conjecture can be seen as a quite natural analogue for the first part of Proposition 2.3;
that is, we are proposing an expression for the second derivative of the p-adic L-function along
the line (k, k/2) since the central critical point corresponding to (k, 1, 1) is precisely k/2. It
would be interesting to understand the derivatives along different directions; we expect that
they would be related with appropriate height pairings. See [CaHs] for an approximation to
that question when g and h are theta series attached to the same quadratic imaginary field
where the prime p splits.

4.2. Some reducible cases. We continue by recalling some factorization formulas in special
cases where the representation Vgh becomes reducible. See [DLR2, Section 2] for a complete
discussion of the different cases where this may occur.

A first case occurs when g and h are theta series of the same quadratic field K, but the
behavior is ostensibly different depending on whether K is real or imaginary, and on whether
p is inert or split in K. While the inert case was worked out in [BSV2], the split case was not
considered in loc. cit. However, it turns out that it is not specially interesting, at least when
K is imaginary: the second derivative of Lp

f along the x-direction is 0 for trivial reasons.

Remark 4.6. It may be tempting to prove a factorization formula for Lp
f as in [CR], or even

when all three variables (k, `,m) are allowed to move along a Hida family. However, the
two-variable Castella’s p-adic L-functions considered in loc. cit. would have infinity types(k + `+m

2
− 1,

k + `+m

2
− `−m+ 1

)
,

(k + `+m

2
−m, k + `+m

2
− `

)
.

This precludes the possibility of comparing the different p-adic L-values along the region of
classical interpolation, since they are disjoint.

Finally, in the case where h = g∗, the situation is also quite simple and the right hand of
the conjecture is zero when the component corresponding to the adjoint has rank two. For
details on that, see the case by case analysis, completely analogue to our situation, of [DR2].

Proposition 4.7. Conjecture 4.5 holds whenever (a) g and h are theta series of an imaginary
quadratic field where p splits, Vgh = Vψ1 ⊕ Vψ2, with each component of rank one; (b) g and h
are theta series of a quadratic field where p is inert, Vgh = Vψ1 ⊕ Vψ2, and either ψ1 or ψ2 is
a genus character.

Proof. Consider first the case of imaginary quadratic fields, where we can prove that both the
left and the right hand side are zero for trivial reasons. For that purpose, recall the notations
introduced in the discussion before Proposition 4.3. In order to see that the second derivative
vanishes, it is enough to conclude that the component κββ = 0, and this follows after adapting
the results of [DR2, Section 4.3] to the multiplicative situation, where one may invoke the
discussion of [CR]. In particular, if we assume without loss of generality that Pβα 6= 0, then
Pαα = Pββ = 0, and similarly Qαβ = Qβα = 0. See [GGMR, Section 4] for a similar treatment
of an analogue situation.

The case of theta series for quadratic fields where the prime is inert follows from the main
results of Bertolini–Seveso–Venerucci [BSV2, Section 3], taking into account the identifications
among the different eigenspaces for the Frobenius action of e.g. [DLR1, Section 3.3] and [DR2,
Sections 4.3, 4.4]. �

4.3. The conjecture in other settings. We would like to make some comments regarding
the case αgβh = 1. Observe that the previous Euler factor that gave rise to the improved
p-adic L-function does not vanish, but the factors

1−
χf (p)αgyβhz

αfx

p
k−`−m

2 and 1−
χf (p)βgyαhz

αfx

p
k−`−m

2
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do. The first one is analytic along the region Sk+m=`+2, while the second is analytic along the
region Sk+`=m+2. In this case we cannot assure the existence of an improved p-adic L-function,
but at least we can guarantee that Lp

f (f ,g,h) vanishes.
We get indeed a very similar result.

Proposition 4.8. The value Lp
f (f ,g,h)(x0, y0, z0) = 0. Moreover, the jacobian matrix of

Lp
f (f ,g,h) at (x0, y0, z0) is given by an L-multiple of

(0 Lgα − Lf Lhα − Lf ).

Observe that Conjecture 4.5 still makes sense in this framework. And again, we can also
take the derivative along the line (2 + k, 1 + k, 1) and we would expect to relate it with an
explicit multiple of an appropriate height pairing 〈P, P 〉.

5. Applications to the elliptic Stark conjecture

5.1. Interplay between both settings and a conjecture of Darmon–Rotger. Let H
denote the smallest number field cut out by the representation Vgh, with coefficients in a
finite extension L/Q. By enlarging it if necessary, assume throughout that L contains both
the Fourier coefficients of g and h, and the roots of their p-th Hecke polynomials. Fix a prime
ideal ℘ of H lying above p, thus determining an embedding H ⊂ Hp ⊂ Q̄p of H into its
completion Hp at ℘, and an arithmetic Frobenius Frp ∈ Gal (Hp/Qp). Due to our regularity
assumptions, Vg and Vh decompose as

Vg = V α
g ⊕ V β

g , Vh = V α
h ⊕ V

β
h ,

where Frp acts on V α
g with eigenvalue αg, and similarly for the remaining summands.

Fix eigenbases {eαg , e
β
g} and {eαh , e

β
h} of Vg and Vh, respectively, which are compatible with

the choice of the basis for Vgh, i.e.,

eαα = eαg ⊗ eαh , eαβ = eαg ⊗ e
β
h, eβα = eβg ⊗ eαh , eββ = eβg ⊗ e

β
h

(recall that in previous sections we were using the dual basis). Let ηgα ∈ (Hp ⊗ V β
g )GQp and

ωhα ∈ (Hp ⊗ V α
g )GQp denote the canonical periods arising as the weight one specializations of

the Λ-adic periods ηg and ωh introduced in [KLZ, Section 10.1]. Then, we can define p-adic

periods Ξgα ∈ H
Frp=β−1

g
p and Ωhα ∈ H

Frp=α−1
h

p by setting

Ξgα ⊗ eβg = ηgα , Ωhα ⊗ eαh = ωhα ,

and

(18) Lgα :=
Ωgα

Ξgα
∈ (Hp)

Frp=
βg
αg .

At the same time, recall that ugα is the Stark unit attached to the adjoint representation of
gα, which arises as a normalization term in the conjectures of [DLR1] and [DLR2] involving
a second-order regulator. Then, it was conjectured by Darmon and Rotger [DR2] that

(19) Lgα = logp(ugα) (mod L×).

This relation gives a relatively easy interpretation of the apparently mysterious unit ugα . This
suggests that more natural descriptions of this object should be available, involving only the
arithmetic of the modular form g. However, this conjecture seems to be hard to prove, even in
cases where the elliptic Stark conjecture is known (theta series of quadratic imaginary fields
where the prime p splits). The main difficulty is the lack of an explicit description of the
periods Ωgα and Ξgα : in weights greater than one, these periods can be understood as certain
algebraic numbers and be explicitly described, but in weight one this description is no longer
available and Ωgα and Ξgα are p-adic transcendental numbers.
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The main point of this section is that the knowledge of different conjectures involving these
periods can be enough to determine the value of the ratio Lgα . Indeed, the generalized coho-
mology classes described in Section 3 can be decomposed as the sum of different components,
each one encoding information about different p-adic L-functions. When combining these
results, we may relate the different periods which are involved.

As a first application of this technique, let us prove a result of this kind using the theory
of Beilinson–Flach elements. This corresponds to the limit case where the modular form f
is Eisenstein and the arithmetic governing the triple product are ostensibly different. For
the following discussion, the notations are the same of [RiRo2]. Let Ugg∗ = O×H ⊗ L and
Ugg∗ [1/p] = OH [1/p]× ⊗ L, and assume that the hypothesis (H1)-(H3) of the introduction

of [RiRo2] hold. Fix a basis {u, v} of the two dimensional space (Ugg∗ [1/p]/p
Z ⊗ ad0(Vg))

GQ

such that u ∈ (O×H ⊗ ad0(Vg))
GQ . As in the case of elliptic curves, these unit groups are

endowed with a Frobenius action, since the restriction to a decomposition group allows us to
decompose ad0(Vg) = L1⊕Lα/β ⊕Lβ/α and we may take the projection of u and v to each of
those components. Let

Rgα = logp(u1) logp(vα/β)− logp(v1) logp(uα/β),
Rgβ = logp(u1) logp(vβ/α)− logp(v1) logp(uβ/α)

be the regulators which appear in the formulation of the main conjecture of [DLR2] and
[RiRo2].

Proposition 5.1. Assume that Rgα and Rgβ are both non-zero. Then,

Lgα
Lgβ

=
logp(ugα)

logp(ugβ )
(mod L×).

Proof. Recall the maps log+− and log−+ introduced in [RiRo2, Section 3.3] as the composition
of the corresponding projection maps from Vgh, the Bloch–Kato logarithm, and the pairing
with the canonical differentials. Apply then [RiRo2, Proposition 4.3] twice, first with the map
log−+ (and hence taking the β/α component of both u and v), and then with the map log+−

(taking the α/β component of both u and v). Then, comparing both expressions we have that

Ξgα · Ωg∗
1/α
· logp(ugα) = Ωgα · Ξg∗1/α · logp(ugβ ) (mod L×).

We now proceed as in [RiRo1, Section 5.2] (see the discussion after display (56)), observing
that

Ωg∗
1/α

= Ξ−1
gβ
, Ξg∗

1/α
= Ω−1

gβ
(mod L×),

and we are done. �

We would like to go a step beyond and aim for stronger results, so in a certain way we
would like to keep the period attached to h fixed and vary just the one attached to g, which
would yield the desired equality.

We do this by analyzing first the prototypical case of the elliptic Stark conjecture, where
the Selmer group is two-dimensional and we may fix a basis {P,Q} of the L-vector space

(E(H)⊗ Vgh)GQ .

For the following Proposition we assume the hypothesis discussed in the introduction of
[DLR1], and in particular, that L(f ⊗ g ⊗ h, 1) = 0. Recall the decomposition

P = Pββ ⊗ eββ + Pβα ⊗ eβα + Pαβ ⊗ eαβ + Pαα ⊗ eαα,
and similarly for Q.

Define the regulators

Reggα(Vgh) = logp(Pββ) logp(Qβα)− logp(Qββ) logp(Pβα)
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and
Regf (Vgh) = logp(Pββ) logp(Qαα)− logp(Qββ) logp(Pαα).

To shorten notations, write

log−+(κ) = 〈logBK(κgp), ωf ⊗ ηg ⊗ ωh〉,

and whenever κ is crystalline, write log++ for the Bloch–Kato logarithm of [BSV2, Section
2.1], as recalled before during the proof of Proposition 4.3.

Proposition 5.2. Assume that Reggα(Vgh), Regf (Vgh) 6= 0. Suppose that two of the following

three equalities are true modulo L×. Then, the third automatically holds.

(a)

Lp
gα(f, gα, hα) =

logp(Pββ) logp(Qβα)− logp(Qββ) logp(Pβα)

logp(ugα)
.

(b)

∂2Lp
f (f , gα, hα)

∂x2

∣∣∣
x=x0

= logp(Pββ) logp(Qαα)− logp(Qββ) logp(Pαα).

(c)
Lgα = logp(ugα).

Proof. The proof is based on the study of the local cohomology class κp(f, gα, hα) introduced
in the preceding sections.

Observe that (a) and (b) are equivalent to

log−+(κp(f, gα, hα)) =
logp(Pββ) logp(Qβα)− logp(Qββ) logp(Pβα)

logp(ugα)
(mod L×)

and

log++(κp(f, gα, hα)) = logp(Pββ) logp(Qαα)− logp(Qββ) logp(Pαα) (mod L×),

respectively, by virtue of the explicit reciprocity law (both in the usual version and improved
version based on the techniques of Venerucci).

Let us define the local class

(20) κ0 =
1

Ξgα · Ωhα

· 1

logp(ugα)
· (logp(Pββ) ·Q− logp(Qββ) · P ),

where we have implicitly identified a point over the elliptic curve with its image under the
Kummer map; take then κ̃ = κ − κ0. The element κ̃ clearly belongs to the kernel of the
Bloch–Kato logarithm log−+, that we have defined by

log−+ : H1(Qp, Vfgh)
pr−+

−−−→ H1(Qp, Vf ⊗ V αβ
gh )→ Cp,

the last map being the composition of the Perrin-Riou map and the pairing with the differen-
tials ωf ⊗ ηgα ⊗ωhα . Then, κ̃ = λ(logp(Pβα) ·Q− logp(Qβα) ·P ). But observe that by [BSV1,
Corollary 8.2] we know that the cohomology class κ lies in the balanced part for the filtration
attached to H1(Qp, Vfgh) and hence κ̃ lies in the kernel of the map log−−

log−− : H1(Qp, Vfgh)
pr−−−−−→ H1(Qp, Vf ⊗ V αα

gh )→ Cp.
Hence, the non-vanishing of the regulator Reggα(Vgh), implies that κ̃ = 0 and therefore κ = κ0.

From the same argument and under the assumption that Regf (Vgh), the second equation
yields

(21) κ =
1

Ωgα · Ωhα

· (logp(Pββ) ·Q− logp(Qββ) · P ) (mod L×),

where again we have identified the points with their image under the Kummer map.
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Now the statement is clear. For instance, if both (a) and (b) are true, comparing the
previous expressions, we get

logp(ugα) =
Ξgα
Ωgα

(mod L×).

The proof of the other implications is equally straightforward. �

It would be interesting to prove an analogue result in a more general situation, beyond the
case of split multiplicative reduction. The discussion around cohomology classes is still valid,
but the point is that one needs a replacement for the results expressing the second derivative
of Lp

f in terms of the Bloch–Kato logarithm of the cohomology class. While we can assure

that the special value Lp
f is zero, it is not clear how to proceed with its derivatives.

Question 5.3. Is there a reciprocity law relating the second derivative of Lp
f (or some

variation of it) with the logarithm log−− of the cohomology class κ(f, g, h) in a generic
situation (non exceptional zeros)?

5.2. Case (a). We assume first that αgαh = 1. The results we have proved until now

showing a deep interaction between the value of the derivatives of Lp
f (f ,g,h) and the value

of Lp
gα(f ,g,h) may be applied to study new instances of the elliptic Stark conjecture.

Let us analyze some particular cases describing the exact shape of the generalized cohomol-
ogy classes. For example, according to the results of [BSV1], when g is a theta series attached
to a quadratic field where the prime p is inert and Vgh = Vψ1 ⊕ Vψ2 with ψ1 being a genus
character, we have

d2Lp
f (f , gα, hα)

dx2

∣∣∣
x=x0

= log++(κp(f, gα, hα)) = log(P+
ψ1

) · log(P+
ψ2

) (mod L×),

where P+
ψi

= Pψi + σpPψi , being σp ∈ Gal (H/Q) a Frobenius element at p.

Remark 5.4. This situation occurs in general when at least one of ψ1 or ψ2 is a genus character.
See for example the discussion after [DLR1, Lemma 3.10] where the authors explain how the
regulator of the elliptic Stark conjecture admits a particularly simple expression in this case.

However, from the results we already know around the elliptic Stark conjecture, one obtains
that

(22) Lp
gα(f, gα, hα) =

log(P+
ψ1

) · log(P−ψ2
)

Lgα
(mod L×),

where with the previous notations, P−ψi = Pψi − σpPψi . This is quite significant, since it

establishes the elliptic Stark conjecture only up to a conjecture about periods of weight one
modular forms.

Corollary 5.5. Let g and h be theta series attached to a quadratic field (either real or imag-
inary) where the prime p remains inert, with Vgh = Vψ1 ⊕ Vψ2 and ψ1 or ψ2 being a genus
character. Then, the elliptic Stark conjecture of [DLR1] is equivalent to the conjecture about
periods of [DR2].

Proof. This follows from the fact that part (b) of Proposition 5.2 holds in this setting. �

Moreover, we expect conjectural expressions for the generalized Kato classes. In particular,
the previous result suggests the following conjecture.

Proposition 5.6. In the setting of Proposition 5.2, if the formulas which appear in that
statement are satisfied, then the equality

κ(f, gα, h1/α) =
1

Ωgα · Ωhα

· (logp(Pββ) ·Q− logp(Qββ) · P ),
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holds in H1
f (Q, Vfgh) up to multiplication by L×.

Proof. This follows verbatim the proof of Proposition 5.2, using the third statement to simplify
the different period relations. �

The same result holds for κ(f, gβ, h1/α).

5.3. Case (b). In the case where αgβh = 1, the explicit reciprocity law gives a connection
between Lp

gα and the Bloch–Kato logarithm of κ(f, gα, h1/β), but unfortunately both the
latter class and one of the Euler factors involved in the equality vanish. Therefore, that result
is meaningless in this setting.

In previous sections we saw how to overcome that difficulty, proving a derived reciprocity law
after having observed that certain Euler factors are analytic along the line k+m = `+2. There
are two natural directions for considering the derivative over that plane (although of course it
makes sense to take any combination of them): the line (2, `, `) and the line (k + 1, k, 1); the
former is not quite interesting since both the class κ(f, gα, g

∗
1/β) and the Euler factor in the

denominator of the Perrin-Riou map vanish identically. Hence, we may take derivative along
(k + 1, k, 1) and we get an equality of the form

L ·Lp
gα(f, gα, h1/β) = log−+(κ′p(f, gα, h1/β)) (mod L×),

where L is the L-invariant which already appeared in previous sections. Hence, if the elliptic
Stark conjecture for Lp

gα were true, the class κ′p(f, gα, hα) could be expressed as a combination
of points, normalized by appropriate L-invariants. In particular, this would yield an equality
of the form

(23) κ′(f, gα, h1/β) =
L

Ξgα · Ωh1/β

·
logp(Pββ) ·Q− logp(Qββ) · P

logp(ugα)
(mod L×).

One may obtain a symmetric expression for κ′(f, gβ, h1/α). Recall that this is the analogue of
[RiRo1, Theorem B].

Conjecture 5.7. The equality

κ′(f, gα, h1/β) =
L

Ξgα · Ωh1/β

·
logp(Pββ) ·Q− logp(Qββ) · P

logp(ugα)
(mod L×)

holds in H1
f (Q, Vfgh).

As it was pointed out before, in the self dual case the product ΞgαΩh1/β is an element of

L×.
We finish our work with the following result.

Proposition 5.8. Assume that Conjecture 5.7 is true. Then, the special value Lp
gα satisfies

Lp
gα(f, gα, hα) =

logp(Pββ) logp(Qβα)− logp(Qββ) logp(Pβα)

logp(ugα)
(mod L×).

Proof. This follows by applying the Bloch–Kato logarithm log−+ to the cohomology class
κ′(f, gα, h1/β), and using the derived reciprocity law of Theorem 3.10. �

The converse can also be established with some extra assumptions, including the conjecture
about periods of [DR2].
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