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Deep Controllable Backlight Dimming for HDR
Displays

Lvyin Duan, Demetris Marnerides, Alan Chalmers, Zhichun Lei, and Kurt Debattista

Abstract—High dynamic range (HDR) displays with dual-
panels are one type of displays that can provide HDR content.
These are composed of a white backlight panel and a colour
LCD panel. Local dimming algorithms are used to control the
backlight panel in order to reproduce content with high dynamic
range and contrast at a high fidelity. However, existing local
dimming algorithms usually process low dynamic range (LDR)
images, which are not suitable for processing HDR images. In
addition, these methods use hand-crafted features to estimate the
backlight values, which may not be suitable for many kind of
images. In this work, a novel deep learning based local dimming
method is proposed for rendering HDR images on dual-panel
HDR displays. The method uses a Convolutional Neural Network
(CNN) to directly predict backlight values, using as input the
HDR image that is to be displayed. The model is designed and
trained via a controllable power parameter that allows a user
to trade off between power and quality. The proposed method
is evaluated against seven other methods on a test set of 105
HDR images, using a variety of quantitative quality metrics.
Results demonstrate improved display quality and better power
consumption when using the proposed method compared to the
best alternatives.

Index Terms—High dynamic range, Local dimming, Displays

I. INTRODUCTION

HDR technology is capable of capturing, storing and
displaying a much wider dynamic range of luminance

compared to the traditional standard or LDR technologies.
HDR displays can significantly enhance viewing experiences
and has been used in photography, gaming, films, medical
and industrial imaging [1] [2]. However, due to the dynamic
range limitation of widely available conventional displays, a
lot of work has focussed on compressing the dynamic range
OF HDR imagery to adapt to these displays [3]. With the
development of HDR technologies, displays that can support
HDR content are becoming a popular (and increasingly the
only) choice for most consumers [4] [5] [6]. LED-based
HDR displays, termed dual-panel display, are one of the
predominant types of HDR displays available in the consumer
electronics market, and the ones that offer the highest dynamic
range currently. Such a display is composed of two panels, a
backlight panel and a Liquid Crystal Display (LCD) panel,
that are used for modulating the backlight luminance and
maintaining colour and details respectively. Fig. 1 shows the
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structure of dual panel LC displays and their three main
components: the backlight panel, the diffusion panel and the
LC panel. The backlight panel is the lighting source for the
LC panel, while the diffusion panel is used for smoothing
and dispersing the backlight in order to avoid huge luminance
gaps and mismatch between neighbouring pixels. The LC
panel filters the backlight to create the three channel image
output at a high resolution. Due to adopting backlight dimming
(BLD) algorithms, HDR displays of this kind, are capable of
presenting a significantly higher contrast ratio and lower power
consumption compared to conventional displays, providing an
enhanced viewing experience to the consumers.

Fig. 1. Structure of LC displays.

BLD algorithms are designed for modulating the backlight
of dual-panel displays according to the displayed image con-
tent. To date, many BLD algorithms have been proposed [7],
which can enhance the contrast ratio and save power consump-
tion to some extent. They can broadly be divided into three cat-
egories: statistical-based BLD methods, local characteristics-
based BLD methods and optimisation-based BLD methods.
Statistical-based local dimming algorithms obtain backlight
values using straightforward mathematical operators. For in-
stance, Funamoto et al. [8] proposed the use of maximum and
average intensity of a given image segment. The maximum
algorithm sets the intensity of each backlight value to the
maximum pixel value of the corresponding image segment.
The maximum approach is sensitive to noise, while the mean
method tends to produce excessively dim backlighting and
can lead to significant clipping artefacts. Local characteristics-
based BLD methods assign a backlight value that depend
on each local segment, rather than taking simple maximum
or average values. Cho and Kwon [9] proposed a local
characteristics-based BLD method to improve image quality
using a correction term to adjust the average pixel intensity
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by considering the local difference between the maximum
and average luminance. A similar method was developed by
Zhang et al. [10] who also computed a correction term as the
ratio of the difference of maximum and average luminance
to obtain the backlight values. Lin et al. [11] inversed the
cumulative distribution function (from a global histogram) to
map a weighted mean of the maximum and average pixel
values of each backlight segment for the resulting backlight
values. Cho et al. [12] used an image metric to obtain
the intensity of the backlight and refined these values by
considering both local block lighting and the lighting from
neighbouring blocks. Zhang et al. [13] extracted backlight
values via calculating the backlight dimming gray (BDG) and
obtained high contrast ratio and low power consumption of
LCDs. Other BLDs were developed to preserve the image
quality, including Kang and Kim [14] who considered the
pixel distribution of an image using multiple histograms.
Hsia et al. [15] proposed a method to improve the LCD
image resolution by enhancing the weak edges of each image
segment. In BLD methods, clipping artefacts are the most
significant problem that effects the displayed image quality.
To keep the balance between displayed image and backlight
values, some optimisation-based BLD algorithms have been
proposed. For instance, Zhang et al. [16] proposed an optimal
method to maintain a balance between LCD image quality
and power consumption. Cha et al. [17] presented an efficient
optimised BLD method for edge-lit lighting-emitting diode
backlight to reduce image quality fluctuation. There have also
been other approaches, such as those introduced by Burini
et al. [18] and Mantel et al. [19], which focus primarily on
achieving a trade-off between clipping and leakage. Later,
the authors [20] extended the method proposed by Mantel
et al. [19] further to multiple viewers taking into account
clipping and leakage as well as reflections of the ambient light.
To keep the LCD image quality, Song et.al [21] proposed a
pixel compensation algorithm based on deep learning for local
dimming algorithms on the quantum-dot display.

The BLD methods introduced above, all target LDR images.
To render HDR images on dual-panel displays, Seetzen et
al. [22] created a method to solve this problem by splitting
HDR images into two layers using square root of the image
luminance channel. Later, Zerman et al. [23] proposed a
method for HDR image rendering by minimising power con-
sumption and maximising the fidelity to the target pixel values.
Narwaria et al. [7] also proposed an HDR image rendering
solution by minimising the difference between the theoretical
backlight map and the computed light map. However, current
BLD methods are mostly designed by display specialists and
researchers using hand-crafted features or utilising real-time
optimisation, which can be sub-optimal in the first case and
may not be suitable for all kinds of images. Furthermore, most
BLD algorithms are targeted at displaying LDR images on
dual-panel displays to achieve an HDR-like display effect but
very few studies have focused on displaying HDR images, and
none of these used a CNN. Recently, CNNs have been used
for addressing a large range of problems related to luminance
processing because of their excellent performance and learning
capabilities for analysing image characteristics. Hold-Geoffroy

et al. [24] presented a CNN based technique to estimate high
dynamic range outdoor illumination. A number of methods
using CNNs have also been presented for Tone Mapping (HDR
to LDR) and Inverse Tone Mapping (LDR to HDR) [25]
[26] [27]. Inspired by the application of CNNs, Jo et al. [28]
presented a local backlight dimming based on a CNN which
addresses the lack of generalisation ability of hand-crafted
features of other BLD algorithms. Later, Zhang et al. [29]
proposed a deep CNN-based local dimming technology for
dual-modulation display to improve contrast ratios and reduce
power consumption. However, these two CNN-based models
both address LDR images rather than HDR images. To the
best of our knowledge, there are no local dimming methods
using CNN architectures for HDR images. The differences
between LDR and HDR, in general, are substantial as HDR is
capable of handling the full range of lighting in a scene where
LDR is considerably curtailed. Algorithms that are designed to
work for LDR will not work for HDR. This is why there is a
distinction in the literature between LDR and HDR techniques.
In particular, there is a significant difference in the method
of processing the target image. We remedy this situation by
automatically adjusting the BLD values specifically for the
HDR content to be displayed via the use of deep learning.

Recently, data driven methods, in particular deep learning,
have been used for a wide range image processing applications
due to their strong learning and representation capabilities and
efficiency. In particular, CNNs form the basis for many cur-
rent state-of-the-art models in classification, detection, image
translation and synthesis [30]. Deep learning methods can
bypass human expertise and heuristics by learning directly
from data. In this paper, a novel local dimming algorithm
based on a CNN architecture is proposed for displaying HDR
images on dual-panel HDR monitors. The proposed CNN can
efficiently predict the backlight values for each dimming area
directly, providing a high-fidelity reproduction of the original
content. This is the first paper to use CNNs for HDR backlight
dimming, showing that it is possible to do so and that such a
method outperforms other methods.

Currently, the high-power consumption of HDR displays
remains a significant impediment in the adoption of HDR
in many kinds of displays and mobile devices. In addition,
low luminance displays with low-power consumption usually
cannot offer high enough contrast for supporting HDR content.
The proposed HDR local dimming algorithm considers the
image quality and power consumption simultaneously via the
use of an adaptive parameter that produces high image quality
results, surpassing state-of-the-art, at relatively low power
consumption; this will assist in the widespread adoption of
HDR in consumer devices. From the consumers’ point of
view, the proposed algorithm provides one user parameter to
balance the power consumption and quality, which delivers
an improved visual experience and keep a relatively low
power consumption by adjusting the user parameter. Results
show that the proposed method outperforms other methods
in terms of quality whilst maintaining relatively good power
consumption at real-time rates.

The primary contributions of this work are: (a) the first
learning-based local dimming method that uses a CNN model
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for rendering HDR images on a dual-panel HDR display;
(b) one adaptive parameter, named power parameter, is in-
troduced to adapt the power consumption of the predicted
backlight values and suppress the clipping artefact; and (c)
to prove the effectiveness of our method in actual consumer
electronic device, we implement it on an HDR display. (d) A
comprehensive objective evaluation of the proposed algorithm
is conducted on an HDR image dataset. Experimental results
demonstrate the effectiveness of our method.

II. METHOD

As discussed in the previous section, a variety of BLD
algorithms have been proposed to date. More importantly, most
methods are based on modeller expertise [8], with choices
that can seem arbitrary and may not be optimal. Furthermore,
non learning-based methods can ignore abstract and high level
image features that are deemed important in many imaging
applications.

The proposed Deep BLD method (DBLD) addresses these
issues by using a parametric model to process an input HDR
image and directly predict the backlight values. The model
is optimised directly from data, avoiding modeller bias and
heuristics. The parametric model of choice is a CNN, trained
on a dataset of HDR images and optimised to maximise the
fidelity of the displayed HDR image and can be controlled via
a power parameter, pa, that provides a balance between power
consumption and quality.

As shown in Fig. 2, the proposed DBLD architecture in-
cludes four parts: UNet architecture, HDR reconstruction, loss
function and optimisation. The UNet architecture is used for
extracting luminance features of HDR images combining with
the power parameter pa, and it is optimized by minimizing a
loss function. The HDR reconstruction aims to reconstruct the
HDR luminance from the backlighting and LCD images.

A. Network Architecture

The CNN used in this work, is based on the UNet ar-
chitecture [31], which is composed of two main parts, an
encoder and a decoder, both composed of multiple convo-
lutional layers. The encoder progressively downsamples the
feature resolution until it reaches a low resolution bottleneck,
which is then progressively upsampled by the decoder. At each
resolution, features from the encoder are propagated directly to
the decoder and concatenated, effectively combining multiple
scales and speeding up convergence at optimisation. UNet
architectures are the de-facto standard CNNs used for a
variety of imaging problems. They can process information
on multiple scales, have a large receptive field, whilst using
lower computational power compared to other architectures
due to the use of downsampling, which allows the bulk of the
computation to happen on lower resolutions.

The encoder used is a residual network architecture [32]
with 18 layers. Residual networks are formed from residual
blocks, where the output of the main computation of each
block is added to its input, thus allowing better gradient flow
and improved training of deeper networks. The implementa-
tion is taken directly from the “resnet-18” architecture in the

PyTorch model library [33]. The 18-layer resnet architecture is
the most lightweight of the commonly implemented residual
networks. It downsamples five times and uses 3× 3 convolu-
tions, except from the first layer which is of size 7 × 7 and
the residual-connection convolutions that are of size 1×1 and
are used to match the input-output feature sizes of each block
when they differ.

The decoder consists of five upampling layers that use
bilinear upsampling followed by blocks of {3× 3 convolution
- normalisation - activation - 3 × 3 convolution}, matching
the feature sizes of the encoder at each resolution. The ReLU
activation [34] is used both in the encoder and the decoder,
along with Instance Normalisationto help with convergence
in the optimisation. Instance Normalisation is preferred to
the more commonly used Batch Normalisationfor small batch
sizes in gradient descent. In this work, the batch size consists
of only one image at each iteration due to GPU memory
constraints, since training is performed on Full-HD images.
The model has a total of 13,782,031 parameters. Despite the
large number of parameters, processing is quick, since most
of the computation is performed on lower resolutions due to
the use of the UNet architecture.

The network accepts a total of four channels of resolution
1,920 × 1,080, consisting of the RGB channels of the HDR
image, I , in the [0, 1] range, along with a uniform single
channel that holds the power parameter, pa ∈ [0, 1], which
adapts the power consumption of the predicted backlight val-
ues. The output of the network, B̃ ∈ [0, 1], is a single channel
image containing the backlight predictions at full resolution
and is the result of a logistic (sigmoid) function following
the final convolution. The final backlight prediction, B, is
formed by selecting the N(N = 2202) pixels corresponding
to the number of LED lights in the backlight panel of the
target display. These are selected as the central pixels of the
corresponding areas of the image in B̃.

The final model for the backlight prediction, B, can be
expressed as:

B(I)i,j =

{
fCNN(I, pa)i,j , if (i, j) ∈ S,
0, otherwise,

(1)

where S is the set of centres of the pixel neighbourhoods that
correspond to the individual lights in the backlight panel.

B. HDR reconstruction

In theory, the resulting displayed image, Ĩ is given by:

Ĩ = D ⊙ T, (2)

where T is the transmittance of the LC panel, D is the
simulation backlight intensity from the diffusion panel . ⊙ de-
notes the (pixel-wise) Hadamard product operator, broadcasted
channel-wise. The transmittance, T , is driven by the grey level
of each pixel from every colour channel of the LCD image.

The diffusion panel output, D, can be estimated from
the backlight values as the result of the convolution of the
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Fig. 2. Diagram of the DBLD CNN architecture.

displayed backlight image, B, with the Point Spread Function
(PSF) [35], g, of the diffusion panel:

D = (g ∗B)i,j =

Wg/2∑
x=−Wg/2

Hg/2∑
y=−Hg/2

gx,yBi−x,j−y, (3)

where Wg and Hg are the width and height of the PSF filter
respectively. D is often referred to as the baseline luminance.

The loss function presented in Section II-C requires the
reconstructed HDR image, Ĩ , which in turn requires evaluation
of the baseline luminance, D. D is estimated by convolving the
backlight prediction, B, with the PSF, g, following equation 3.
However, the PSF for the modelled display is given as a
single channel filter of size 1, 000× 1, 000. Fast differentiable
convolution with large filters is not directly implemented (at
the time of writing) in modern deep learning libraries [36].
Most libraries optimise small convolutions, e.g. with 3 × 3
kernels, since almost all CNN architectures use relatively small
kernels. Thus, the PSF convolution was implemented from
scratch using base (differentiable) PyTorch operations [33].

In particular, the convolution is implemented using the
convolution theorem, applied on B and g:

D = B ∗ g = F−1 (F (B)⊙F (g)) , (4)

where F is the Fourier Transform operator, in combination
with the Discrete Fourier Transform (FFT):

Su,v = F (T ) =
1√
HW

H−1∑
h=0

W−1∑
w=0

T (h,w)e−2πi(hu
H +wv

W ),

(5)
where T is the input in coordinate space and S is the
representation of the input in fourier space. H and W are
the height and width of the image respectively. The Fourier
transform is performed using the Fast Fourier Transform (FFT)

algorithm. This implementation for convolutions with large
kernels is much faster and uses less memory in contrast to
the default optimised convolution based on the cudnn library
that would get stuck and not complete the computation on the
same machine [37].

C. Loss Function

The loss function, L, consists of two parts, a smooth L1

regression loss, Lreg, and an additional magnitude regular-
isation term, Lmag, that also adapts power consumption by
restricting the magnitude of the backlight predictions via the
user-provided scalar power parameter, pa. The smooth L1 loss
is chosen as it is robust to outliers, which in this case are from
the bright HDR pixels. The total loss is given by:

L(Ĩ , I) = Lreg(Ĩ , I) + paβLmag(B), (6)

where Ĩ is the HDR image reconstructed from the back-
light predictions of the model using the method described
in Section II-B and I is the target HDR image. β is a
hyper-parameter adjusting the magnitude of the regression
loss that helps with levelling the gradient contribution of the
two partial losses for improved convergence. The magnitude
regularisation term, Lmag, is given by:

Lmag(B) =
1

Mmax

∑
(i,j)

Bi,j , (7)

where Mmax is the maximum consumption, when all backlights
take their maximum value. The magnitude regularisation term
restricts power consumption by penalising large backlight
values. The nonlearned user-provided power parameter, pa,
appears directly in the loss function, changing the form of
the loss during training by adjusting the contribution of the
magnitude term Lmag. Lower pa values allow higher Lmag
values in the loss, thus allowing higher power consumption.
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D. Dataset

The training dataset consists of 958 HDR images with vary-
ing resolutions, up to 4K. None of the images contain absolute
luminance values. The images are scaled keeping their aspect
ratio (and zero padded if necessary) to Full-HD (1,920 ×
1,080) resolution. The intensity range is randomly selected
during training, with maximum intensity chosen uniformly in
the interval [3,000, 5,000]. This random scaling works as a
form of data augmentation and to help prevent overfitting.
The images are then clipped at the maximum display intensity
of 4,000 cd/m2. The additional power-adaptation scalar is
randomly chosen using a uniform U [0, 1] distribution for each
mini-batch. The test dataset used for evaluation is formed from
105 HDR images from the Fairchild Photographic Survey [38].
These images contain calibrated absolute luminance values and
are not used during training.

E. Optimisation

The network was optimised until convergence of the loss
for approximately 500,000 iterations, with β = 20. The Adam
optimiser [39] was used, with its default learning rate λ =
1e − 3 and β1 = 0.9, β2 = 0.99. Training took 116 hours
on an workstation with a high performance GPU using the
PyTorch library.

III. RESULTS

This section presents results comparing DBLD with seven
other methods using quantitative analysis and qualitative visual
inspection. In particular DBLD is compared against other
methods: Avg and Max [8], LP [9], IMF [11], ZR [23], DM [7]
and BDG [13].

A. Quantitative evaluation

DBLD is compared with the other methods using the
evaluation scheme proposed by Duan et al. [40]. The authors
demonstrated that there is a strong correlation between objec-
tive and subjective evaluation of different BLD algorithms.
Fig. 3 shows the process of quantitative evaluation. A set
of 105 HDR images from the Fairchild Photographic Survey
database were used in the evaluation process. None of these
105 HDR images were used in the training of DBLD. The
original HDR image and the recontructed HDR image are
scaled to [0, 4000] to adapt the dynamic range of displays. The
metrics used for comparison were the Perceptually Uniform
(PU) [41] versions of PSNR, Multi-Scale SSIM [42], along
with HDR-VDP-2.2 [43]. These metrics correlate significantly
with subjective experiments [40] and therefore are expressive
of an improved consumer experience. Higher values of these
metrics mean better image quality. The Power Saving Patio
(PSR) [44] corresponds to the percentage of power savings
with respect to the maximum display power, with higher values
representing further savings.

In the proposed method, the weights are chosen so that the
gradients are on average of equal contribution/magnitude when
training the network. This is a standard practice in the deep
learning field. To investigate the effect of power parameters
on image quality, we plot the results for the three quality

LCD image

Backlight diffusion image

×

Scale to 

[0,4000]

Scale to 

[0, 1]

Reconstructed HDR image

Original HDR image

Image quality metrics

Objective evaluation
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×
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[0, 1]
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Fig. 3. The process of quantitative evaluation

metrics as a function of power saving ratio, as shown in Fig. 4.
For DBLD multiple values are computed by adjusting pa and
can be seen in Fig. 4 as points on the curve. While DBLD
was trained using pa values ∈ [0, 1], results are also shown
for pa > 1 via extrapolation, demonstrating how the method
performs for very low power consumption. As can be seen,
when the power parameter is in the range of 0.6 to 0.9, as
the power saving ratio increases, the values of PU-PSNR and
PU-MS-SSIM basically remain constant at 53.75 and 0.99,
while the value of HDR-VDP declines slowly from 67.50 to
60.00. When the power parameter is in the range of 0.9 to
1.1, the value of PU-MS-SSIM still remains constant at 0.99,
while the values of PU-PSNR and HDR-VDP have an obvious
decrease. When the power parameter is in the range of 1.1 to
1.5, the values of PU-PSNR and HDR-VDP show a significant
drop, while the value of PU-MS-SSIM decreases slightly in the
range of 1.1 to 1.4, then it drops rapidly in the range of 1.4 to
1.5. Furthermore, under most circumstances, other methods are
below the curve of the proposed method, demonstrating that
DBLD provides better quality as a function of power usage.
BDG uses up very little power relatively at the cost of overall
image quality. From the analysis above, we can see that the
image quality is relatively stable and the power consumption is
relatively high when the power parameter is in the range of 0.6
to 0.9. Therefore, the range of 0.6 to 0.9 can be considered as
the reasonable value range to balance the relationship between
image quality and power consumption.

Fig. 5 illustrates the distribution of results across the 105
tested images for all the methods and the three quality metrics
as well as the power saving ratio. As DBLD is adaptable
to different outputs depending on pa, we show distributions
with values of pa fixed to the values of 0.5 (DBLD.50), 0.65
(DBLD.65) and 0.9 (DBLD.90). These values of pa were
chosen to match the power consumption of popular methods.
DBLD outperforms all others except for ZR for PU-PSNR
and HDR-VDP-2.2, while for PU-MS-SSIM it achieves the
first three positions.

B. Visual inspection

This section presents visual inspection results, including the
backlight values distribution maps and LCD images, the HDR-
VDP-2.2 visibility probability maps and display results via an
actual HDR display for all the methods.



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 6

Fig. 4. Comparison of median values of PU-PSNR, HDR-VDP-2.2, and PU-MS-SSIM against PSR. Adjusting pa allows for the proposed DBLD method
(blue line) to adapt power consumption for improved quality.

Fig. 5. Comparison of the distributions of PU-PSNR, HDR-VDP-2.2, PU-MS-SSIM and PSR for all methods. The proposed DBLD method is evaluated at
different values of pa (0.5, 0.65 and 0.9).

Fig. 6 shows the LCD images and their backlight values
distribution maps for the different BLD methods. Compared
with other methods, DBLD with different values of pa can
provide more details and suppress the clipping artefact in the
LCD images, especially for the bright area where surrounded
by the red boxes. Fig. 7 shows the HDR-VDP-2.2 visibility
probability maps for all the methods for a selection of im-

ages from the testing dataset. The HDR-VDP-2.2 visibility
probability maps describe how likely it is for a difference to
be noticed by the average observer, at each pixel, between the
reconstructed HDR and the target HDR that is being displayed.
Red values indicate high probability, while blue values indicate
low probability of noticeable difference. For DBLD, the same
values of pa used in Section III-A are considered. The results
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Fig. 6. The backlight values distribution maps and LCD images of KingsCanyou

Fig. 7. HDR-VDP-2.2 visibility probability maps for reconstructions of TunnelView(2), MtRushmore(1), KingsCanyon, AmikeusBeaverDamPM2 and
HancockSeedField using all methods. Blue indicates imperceptible differences, red indicates perceptible differences.

show that DBLD produces higher fidelity results than the other
methods and the number of perceivable artefacts reduces as pa
decreases. In some methods, particularly the BDG, Avg, Max,
LP and IMF methods, brighter areas appear overexposed due
to the low backlight values. The ZR method can preserve more
detail compared to these other methods.

C. Display effects on the HDR display
To examine how the results affect the display, these BLD

algorithms were all tested on a state-of-the-art HDR display.
This HDR display has 2202 LEDs as backlights and can
achieve the maximum luminance with 4,000 cd/m2. It allows
users to control backlight values independently by writing
backlight values into the displayed image. Fig. 8 shows
the display results with capturing multiple exposures of the
display. Due to the high dynamic range of the tested display
showing images in the manuscript is difficult as an image at a
single exposure cannot exhibit details in different luminance
levels. Therefore, for each algorithm, we provide three photos
of the display taken at three exposure levels (1/15s, 1/60s and
1/250s). As seen, the DBLD algorithm shows more details
than other algorithms under different exposure levels, and its
performance is consistent with the quantitative results shown
in Section III-A.

D. Timings
DBLD takes an average of 0.061 seconds on the high perfor-

mance Super GPU to render a Full-HD (1,920×1,080) image.

It is worth noting that these are not optimised timings, using
the model directly as implemented for training in Python.

IV. CONCLUSION AND FUTURE WORK

Recently, HDR images/videos have become one of the most
popular media. The efficient reproduction of HDR images on
HDR displays is not straightforward, with different methods
generating quite different results. High power consumption is
also a key issue which can impede the widespread adoption of
HDR in the consumer market. A CNN-based local dimming
method is described herein to balance image quality and power
consumption. The quality of the proposed CNN methods has
been demonstrated to be superior than the other methods in our
evaluations, and while objective, these evaluations correlate
highly with participant-based experiments [40]. The relatively
low power consumption and high image quality of our method
makes it suitable for consumer devices, especially for mobile
devices which have limited battery life and in-vehicle displays
where the high contrast in the real-world requires HDR
displays and where careful power management is essential.
In addition, the method is applicable to current and future
HDR displays. In particular, it will help promote future HDR
displays with brighter luminance than currently available by
providing a balance between power and quality. The results in
this paper demonstrate the superiority of the method for poten-
tial viewers when compared to the other traditional methods.
A limitation of the method is that the controllable parameter is
not calibrated in a linear way, for example, being proportional
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Fig. 8. The display effects. (1) Exposure time: 1/15s (2) Exposure time: 1/60s (3) Exposure time: 1/250s

to power consumption. This however can be adapted by the
display settings, and calibrated against individual displays.
Another limitation is that the trained model is trained on a
relatively small HDR dataset, which might not cover a wide
variety of scenes. This can be addressed by retraining with a
larger dataset, as more HDR data becomes available. Future
work will focus on further refinement of DBLD and extend it
to process HDR videos directly and in real-time.
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