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and sepsis. The FtsZ protein is a bacterial tubulin homolog required for cell division in most species, including E. coli. Several
agents that block cell division have been shown to mislocalise FtsZ, including the bacteriophage �‐encoded Kil peptide, resulting in
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phages can inhibit FtsZ and block bacterial cell division leading to a filamentous multi-ringed phenotype, potentially delaying lysis
and increasing progeny number. This occurs in the exponential growth phase, as actively dividing hosts are needed. We present
that the ZapA protein is needed for phage inhibition by showing a phenotype recovery with a ZapA mutant strain, and we show
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inhibition of FtsZ in K12 strains by observing a phenotype recovery with a T7∆0.4 mutant.
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Contribution to Field   
  
Antimicrobial resistance is a growing problem worldwide and has created a need for novel antibacterial agents 
and strategies. Bacteriophages are viruses that infect bacteria and provide a potential solution to this 
problem, and we wish to study the mechanisms that bacteriophages use to target their host bacteria. FtsZ is 
a protein necessary for bacterial cell division and we investigate how E. coli FtsZ localisation is affected upon 
bacteriophage application. We show that different phages and their peptides, such as Kil peptide, T7 
bacteriophage and K1F bacteriophage, can inhibit the bacterial FtsZ protein to block host cell division by 
creating long filamentous cells containing multiple Z-rings. We further show the potential mechanism of this 
process in the case of T7 bacteriophage. Our results provide the basis for better understanding how 
bacteriophages act towards their host, and how FtsZ can be used as a potential target and biomarker for 
antimicrobials.   
  
Abstract  
  
Escherichia coli is one of the most common Gram-negative pathogens and is responsible for infection leading 
to neonatal meningitis and sepsis. The FtsZ protein is a bacterial tubulin homolog required for cell division in 
most species, including E. coli. Several agents that block cell division have been shown to mislocalise FtsZ, 
including the bacteriophage l-encoded Kil peptide, resulting in defective cell division and a filamentous 
phenotype, making FtsZ an attractive target for antimicrobials. In this study we have used an in vitro meningitis 
model system for studying the effect of bacteriophages on FtsZ using fluorescent E. coli EV36/FtsZ-mCherry 
and K12/FtsZ-mNeon strains. We show localisation of FtsZ to the bacterial cell midbody as a single ring during 
normal growth conditions, and mislocalisation of FtsZ producing filamentous multi-ringed bacterial cells upon 
addition of the known inhibitor Kil peptide. We also show that when bacteriophages K1F-GFP and T7-mCherry 
were applied to their respective host strains, these phages can inhibit FtsZ and block bacterial cell division 
leading to a filamentous multi-ringed phenotype, potentially delaying lysis and increasing progeny number. 
This occurs in the exponential growth phase, as actively dividing hosts are needed. We present that the ZapA 
protein is needed for phage inhibition by showing a phenotype recovery with a ZapA mutant strain, and we 
show that the FtsI protein is also mislocalised upon phage infection. Finally, we show that the T7 peptide gp0.4 
is responsible for inhibition of FtsZ in K12 strains by observing a phenotype recovery with a T7∆0.4 mutant.   
  
Introduction   
  
Antimicrobial resistance is a growing problem worldwide and infections caused by Gram-negative bacteria are 
particularly concerning, as these organisms are highly efficient at acquiring genes for antibiotic drug 
resistance1,2, in addition to permeability issues presented by the outer membrane. This has led to the need 
for novel antibacterial agents and model systems in which to test them. A potential target for new molecules 
could be the bacterial cell division machinery as this is essential for bacterial propagation and survival and is 
directly related to bacterial cell wall biosynthesis which is a validated target for natural product and 
semisynthetic clinically used antibiotics3.   
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Escherichia coli is one of the most common Gram-negative pathogens and is responsible for many different 
diseases. For example, E. coli O18:K1:H7 is responsible for secondary infections in burn patients, neonatal 
meningitis4 and sepsis, which can rapidly lead to shock and mortality5. Around 80% of the E. coli strains that 
are able to cause meningitis are of the K1 capsule type6. The K1 antigen produced by these strains makes up 
a thick polysaccharide capsule, which aids pathogenicity by immune system evasion, giving bacterial cells the 
ability to cross certain barriers (such as the blood brain barrier) and defends against certain bacteriophages7.   
  
Bacteriophages (phages) are viruses that infect bacteria. Their potential to kill bacteria was first discovered in 
19178, but despite their undaunted therapeutic potential they were widely disregarded as therapeutic agents 
in Western nations due to the discovery of small molecule antibiotics9. However, the worldwide rise of multi-
drug resistant bacteria has led to reinvestigation of phage therapy as an alternative to antibiotics in human 
and animal infections. T7 is a small bacteriophage with a genome of ~40 kbp encapsulated in a 55 nm 
icosahedral head10, which infects E. coli and related enteric bacteria, encoding a tail fibre that specifically binds 
to lipopolysaccharide and recognises many E. coli K12 strains11. Laboratory strains of K12 are similar to and 
share many genes and phenotypes with pathogenic strains, for example E. coli O157:H7, so inhibitors of these 
strains are also likely effective against pathogens12-14. The K1F phage is a natural T7-like phage which infects 
E. coli O18:K1:H7. It is similar to T7 at the genome scale, although rather than the T7 tail fibre protein it 
incorporates the endosialidase enzyme into its tail structure, allowing attachment to and degradation of the 
K1 polysaccharide capsule of its host7.   
  
The bacterial filamentous temperature sensitive Z (FtsZ) protein is a tubulin homolog required for cell division 
in most species, including E. coli15. It is comprised of a globular domain, made up of two subdomains, which 
can fold independently16. FtsZ monomers in the cytoplasm undergo GTP-dependent polymerisation into single 
stranded protofilaments, which bundle together through lateral interactions17. FtsZ polymerises to assemble 
a ring structure (called the Z-ring) at the division site, which recruits other cell division components, such as 
FtsI and ZapA18, ready to initiate cytokinesis15. Since FtsZ is the first protein in the divisome and is needed for 
downstream recruitment, it would make a good target for novel antibiotics3,19, specifically aiming to inhibit 
FtsZ polymerisation20. Changes in the polymerisation of FtsZ or GTPase activity would prevent formation of 
the Z-ring and septum formation, which would in turn block cell division and cause cell death, making FtsZ a 
potential target for new antibacterial agents, as demonstrated by the mode of action of PC190072321. The Kil 
peptide of bacteriophage l prevents FtsZ polymerisation and therefore Z-ring formation, leading to 
filamentation of E. coli cells and cell death17. Kil has been shown to block FtsZ from forming protofilaments 
during the lytic cycle, and it has been suggested that Kil can directly interact with FtsZ in vitro for ZipA-
dependant inhibition of the Z-ring17. At high concentrations Kil may be able to sequester FtsZ subunits and 
reduces their GTPase activity22. The gene product (gp) 0.4 protein expressed by bacteriophage T7 prevents 
FtsZ assembly to give elongated bacterial cells, thereby enhancing T7’s competitiveness23. Gp0.4 is a non-
essential gene transcribed around 2 min after infection with the early genes24. It has previously been shown 
that purified FtsZ is inhibited by purified gp0.4 to block Z-ring assembly in vitro, along with in vivo studies 
which found that gp0.4 specifically binds to and interacts with FtsZ23.   
 
Several features of FtsZ make it an attractive drug target: it performs an essential set of functions in the 
majority of bacterial pathogens19, it has a specific role in prokaryotic cell division related to cell wall 
biosynthesis which is a proven target for antimicrobial agents, it is conserved across the vast majority of 
bacterial and archaeal species15 and it is absent in human and animals so should not exhibit adverse effects 
on host cells25.  
  
The aim of this study was to investigate the effect of bacteriophages and their peptides on the localisation of 
FtsZ during infection. We used a previously developed in vitro meningitis model system26 to study the effect 
of bacteriophages on FtsZ using fluorescent E. coli EV36/FtsZ-mCherry27,28 and K12/FtsZ-mNeon16 strains in 
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the hCMEC human brain cell line. We investigate FtsZ localisation in both intracellular and extracellular 
bacteria within a human cell environment, in order to understand better the cell biology mechanisms during 
phage therapy. We show localisation of FtsZ to the bacterial cell midbody as a single ring during normal growth 
conditions in the absence and presence of human cells and mislocalisation of FtsZ to give filamentous multi-
ringed cells upon addition of the known inhibitor Kil peptide17. We show that bacteriophages K1F-GFP29 and 
T7-mCherry are able to inhibit FtsZ and block bacterial cell division in the exponential growth phase only, since 
an actively dividing host is needed. We show that inhibition of the divisome proteins FtsI and ZapA occurs, 
and potentially the inhibition of MinC. Finally, we show that the T7 peptide gp0.4 is responsible for inhibition 
of FtsZ in K12 strains by observing a phenotype recovery with a T7∆0.4 mutant23, and this peptide potentially 
acts to delay host cell lysis and increase phage progeny numbers.   
  
Materials and Methods   
  
Human cell culture   
The human cerebral microvascular endothelial cell (hCMEC) line (Merck, UK) was cultured in EndoGRO-MV 
Complete Media (Merck) supplemented with 1% penicillin-streptomycin and grown at 37°C with 5% CO2 in 
culture vessels coated with 5 µg/cm2 Collagen Type 1 (Merck). Prior to an experiment, the cells were seeded 
onto coverslips in a 6-well plate or a fluorodisc in culture media at a density of 4	x	104 cells/ml and left for 24 
hours to settle. The culture media was then replaced with Leibovitz L-15 media (Lonza) and the cells were 
moved to a 37°C incubator suitable for bacterial infection.   
  
Bacterial cultures   
Bacterial cultures were grown from a single colony in lysogeny broth (LB), supplemented with the appropriate 
antibiotic if needed, and grown in a 37°C shaking incubator. The seven bacterial strains used in this study are 
listed in Table 1. During experiments bacterial cells were added during the exponential growth phase at OD600 

0.3 (unless otherwise stated as stationary) and incubated for one hour prior to fixation or phage addition.  
  

Strain  Description  Source  
Escherichia coli   
EV36  

E. coli K1/K12 hybrid suitable for Class 1 laboratory 
work while maintaining phenotypic properties of a 
pathogenic K1 strain   

Dr Eric R. Virm28  

Escherichia coli 
EV36/FtsZmCherry  

Derivative of EV36 transformed with a 
pBAD30FtsZ-mCherry plasmid and cultured under 
35 µg/ml chloramphenicol selection  

Plasmid kindly provided 
by Dr Kenn Gerdes27, 
transformed in this study  

Escherichia coli 
EV36/Kil  

Derivative of EV36 transformed with a pBAD33-Kil 
plasmid and cultured under 35 µg/ml  
chloramphenicol selection  

Plasmid kindly provided 
by Dr William Margolin17, 
transformed in this study  

Escherichia coli K12 
FtsZ-mNeon  

E. coli BW27783 strain which has had its wild type 
ftsZ gene replaced with FtsZ-mNeonGreen   

Dr Harold Erickson30   

Escherichia coli 
K12/FtsZmNeon/Kil  

Derivative of K12/FtsZ-mNeon transformed with a 
pBAD33-Kil peptide plasmid and cultured under 35 
µg/ml chloramphenicol selection  

Plasmid kindly provided 
by Dr William Margolin17, 
transformed in this study  

In review



Escherichia coli  
K12∆zapA  

E. coli BW25113 K12 strain from the Keio collection 
with a deleted zapA gene that has been replaced 
by a kanamycin resistance cassette. Cultured under 
50 µg/ml kanamycin selection   

OEC4987-200828117,  
Keio collection31  

Escherichia coli   
K12∆minC  

E. coli BW25113 K12 strain from the Keio collection 
with a deleted minC gene that has been replaced 
by a kanamycin resistance cassette. Cultured under 
50 µg/ml kanamycin selection  

OEC4987-213605848,  
Keio collection31  

Table 1: Bacterial strains used in this study  

  
Bacteriophage propagation and purification   
The bacteriophages used in this study are listed in Table 2. E. coli EV36 was used as a host to grow and purify 
K1F-GFP phage and K12/FtsZ-mNeon was used as a host to grow and purify T7 phage, T7-mCherry phage and 
T7∆0.4 phage. After host clearance each phage propagation culture was centrifuged at 3220 x g for 15 
minutes. The resulting supernatant was filter sterilised and incubated on ice with 0.2 M NaCl for 1 hour, then 
centrifuged at 3220 x g for 15 minutes at 4°C. The supernatant was then incubated with 10% w/v PEG8000 
overnight at 4°C to precipitate the phage, and then centrifuged at 3220 x g for 15 minutes at 4°C. The resulting 
phage pellet was resuspended in a SM 

buffer 1 (1 M NaCl, 8 mM MgSO4 • 7H2O, 25 mM Tris-HCl). A CsCl density gradient was set up with three 
solutions of densities 1.7, 1.5 and 1.4 g/ml, along with phage solution with CsCl added to give a density of 1.3 
g/ml. The solutions were added in equal volumes to a centrifuge tube, starting with the heaviest, and 
centrifuged at 125,000x g for 20 hours at 4°C. The resulting phage band was extracted and placed in dialysis 
tubing (MWCO of 14kDa) and dialysed overnight in SM buffer 1 at 4°C, followed by dialysis in SM buffer 2 (100 
mM NaCl, 8 mM MgSO4 • 7H2O, 25 mM Tris-HCl) for 2 hours at room temperature twice. After dialysis the 
purified phage was retrieved and stored at -20°C, and the phage titre was found by plaque assay. WT T7, T7-
mCherry and K1F-GFP phage stocks were diluted to approximately 109 pfu/ml for use in experiments. For 
experiments phages were incubated for one hour prior to fixation.   
 

Phage  Description  Source  
K1F-GFP  A K1F phage derivative engineered to express 

GPF which shows a high specificity towards K1 
capsule bacteria.  

K1F from Dr Dean  
Scholl7, K1F-GFP from  
Dr Antonia Sagona 29  

T7  Extensively used strain showing high specificity 
to commensal E. coli K12 strains.    

Dr  Ian  Molineux,  
Texas USA 32  

T7-mCherry   A T7 phage derivative engineered with 
genomic integration of mCherry, showing high 
specificity to commensal E. coli K12 strains.    

This study  

T7Δ0.4  T7 phage derivative engineered with a 
knockout of gp0.4 showing high specificity 
towards commensal E. coli K12  

Dr Udi Qimron23  

Table 2: Phage strains used in this study  
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Engineering of T7-mCherry phage   
Plasmid construction – the pSB1C3 plasmid (Registry of Standard Biological Parts 
http://parts.igem.org/Main_Page) contained chloramphenicol resistance. The synthetic gBlock was ordered 
from Integrated DNA Technologies, with EcoRI and SpeI sites to ligate to the corresponding restriction sites of 
the pSB1C3 plasmid. The gBlock (Fig S1) was designed to contain the mCherry gene33 flanked by 150bp 
homology regions of the C-terminus (excluding the stop codon) of the T7 minor capsid protein (gene 10), along 
with a linker sequence. A PCR was performed to amplify the insert using primers AG005 and AG006 (Table 
S1). The insert and vector were digested with restriction enzymes at 37°C for 1 hour, purified using a GeneJET 
PCR Purification Kit (ThermoFisher Scientific) and then ligated (150 ng insert and 50 ng vector) with DNA T4 
ligase overnight at 4°C.   
  
Sequencing the plasmid – after ligation the resulting vector was transformed into electrocompetent K12 cells, 
plated on chloramphenicol agar overnight, and plasmid was miniprepped from the colonies using a QIAprep 
Spin kit. The miniprepped DNA was sent for Sanger sequencing by GATC using the AG005 primer. One plasmid 
returned a matching sequence and was used for engineering the phage.   
  
Homologous recombination - wild type T7 phages were propagated with electrocompetent K12/FtsZmNeon 
transformed with the donor plasmid at a low OD600 of 0.2. Homologous recombination occurred between the 
homology regions of the plasmid and genome of some phages, resulting in a mixed population lysate which 
was centrifuged at 3220 x g for 15 minutes and then filter sterilised.  
  
Screening for engineered phage – the presence of engineered phage was found by PCR analysis of the lysate 
using the primers mCherry-forward and mCherry-rev (Table S1). Positive lysate was then plated out on host 
lawn at an appropriate dilution to give individual phage plaques. 10 plaques were chosen and used as a 
template for a second PCR screen. The plaques showing positive bands were propagated as before and the 
lysate was plated for a second plaque assay, and plaques were again checked by a PCR screen. Positive phage 
was propagated, CsCl purified and further checked for mCherry fluorescence by confocal and electron 
microscopy.  
  
Bacterial and phage infections of human cells  
Cultures of hCMECs were incubated with the relevant bacterial strain at OD600 of 0.2-0.4 which were added to 
the Leibovitz media for 60 minutes (unless otherwise stated) along with antibiotics or plasmid induction if 
needed, and if phages were being used then the phage was added at 1 x 107 pfu/ml and incubated for a further 
60 minutes. Control cultures were incubated with bacteria or phage alone for 60 minutes in parallel.   
 
To investigate if strains acted intracellularly, hCMEC cultures were infected with bacterial cultures at OD600 0.3 
for one hour, then incubated with 100 ug/ml gentamicin for a further two hours to kill extracellular bacteria, 
performed in triplicate for each condition. For each condition, a minimum of 300 human cells were counted 
to calculate the internalised bacteria percentages.   
To quantify human cell death after bacterial infection, hCMEC cultures were infected with bacterial cultures 
at OD600 0.3 for one hour, in triplicate conditions. For each condition, a minimum of 500 human cells were 
counted.   
  
Immunofluorescent confocal microscopy   
  
After bacterial and/or phage infection, hCMEC cultures were fixed with 4% paraformaldehyde (ThermoFisher 
Scientific) in phosphate buffered saline (PBS) for 15 minutes and then washed in PBS. Cells were then 
permeabilised in ice cold PEM/0.05% saponin for 5 minutes, washed, incubated with 50 mM NH4Cl in PBS for 
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15 minutes, and then washed in PBS/0.05% saponin. The fixed cells were stained overnight at 4°C with anti-
Prokaryotic Cell Division GTPase (FtsZ) antibody (Agrisera, Sweden) or Rabbit anti-Escherichia coli (strain K12) 
FtsI Polyclonal antibody if no fluorescent proteins were present and FtsZ or FtsI staining was needed, diluted 
1:100 in 0.05% saponin in PBS. This was followed by conjugation with secondary Donkey Anti-Rabbit IgG H&L 
(Alexa Fluor® 488) diluted 1:500 in 0.05% saponin in PBS at room temperature for 45 minutes. For samples 
with fluorescent proteins, the fixed cells were stained with the following antibodies diluted in PBS/0.05% 
saponin for 60 minutes at room temperature: 5 µg/ml GFP-booster (Chromotek), 5 µg/ml RFP-booster 
(Chromotek) and 5 µg/ml Phalloidin CF680R Conjugate (Biotium).   
 
After staining the coverslips were washed and mounted on slides with DAPI-containing Fluoroshield Mounting 
Medium (Abcam) and sealed. The slides were then imaged using a Zeiss LSM800 confocal microscope using 
the following excitation wavelengths: DAPI at 405 nm, GFP/mNeon at 488 nm, mCherry at 561 nm and 
phalloidin at 633 nm.   
 
Quantification was performed by manually counting Z-rings of 75 bacterial cells per condition and measuring 
cell length using the Fiji (ImageJ) software for phage filamentation experiments. Data was plotted with error 
bars showing one standard deviation of uncertainty. For significant difference comparisons, Tukey’s tests 
were performed and the calculated probability values (p-values) are displayed as p < 0.05 (*), p < 0.01 (**) 
and not statistically significant p > 0.05 (ns).   
  
Live cell imaging   
Cultures of bacteria alone expressing fluorescent proteins were imaged live on 2% agarose pads. Cultures of 
K12/FtsZ-mNeon were grown to OD600 0.5 and imaged immediately. For EV36/FtsZ-mCherry, cultures were 
grown to OD600 0.3 and induced with 0.2% arabinose for 5 minutes (stopped using 0.2% glucose) and incubated 
for 45 minutes to allow time for protein folding before imaging. Agarose pads were made by dissolving 0.2 g 
agar into 10 ml sterile water by heating, and a drop was placed onto a glass microscope slide and left to dry. 
10 µl of culture was then placed onto the agarose layer and covered with a coverslip once dry. Cells were 
imaged using the Zeiss LSM 880 confocal microscope, with mNeon excitation at 488 nm and mCherry at 561 
nm wavelengths, and transmitted light was used to visualise the cell outline.   
  
Correlative Light and Electron microscopy  
T7-mCherry phage was added to a K12/FtsZ-mNeon culture (OD600 0.3) and incubated at 37℃ with shaking for 
60 minutes. 300 mesh copper grids (FC300Cu) were hydrophilised by glow discharge. Sample was added to 
the grid and incubated for 2 minutes, then 2% uranyl acetate was dropped into the grid and incubated for 2 
minutes. A wash step was performed three times and blotted. 0.1% trehalose was added to the grid and 
incubated for 2 minutes. This was left to airdry. The sample was imaged using Zeiss LSM 880 confocal 
microscope (565 nm for T7-mCherry and 488 nm for K12/FtsZ-mNeon) and Jeol 2100 transmission electron 
microscope, overlayed using ImageJ.  
  
Results   
  
Visualisation of the FtsZ ring and Kil peptide-mediated inhibition of FtsZ   
  
We firstly sought to observe Z-rings in bacterial cells, using the E. coli K12/FtsZ-mNeon16 strain which has its 
genomic copy of the FtsZ gene replaced with FtsZ-mNeon. A crucial aspect of the design of this FtsZ construct 
is that the mNeon protein has been placed on an internal loop of FtsZ so that the head-to-tail mode of 
polymerisation required for function is not impaired16 and the mNeon proteins are prevented from forming 
aggregates with each other. The Z-rings were visualised by placing exponential-phase bacterial cultures onto 
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2% agarose pads for visualisation by confocal microscopy. FtsZ-mNeon assembled at the cell midbody as a 
single Z-ring (Fig. S2A). This visualisation was repeated in the E. coli K1/K12 hybrid strain EV3628, by 
transforming it with an arabinose-inducible FtsZ-mCherry plasmid27 and FtsZ-mCherry forms a Z-ring at the 
EV36 midbody (Fig. S2B).  
 
We next observed the phenotype of the Z-rings in a meningitis infection model, to see if FtsZ localisation 
changed during bacterial infection of human cells. hCMEC brain cells were infected with K12/FtsZ-mNeon 
culture for an hour, fixed and stained before visualising by confocal microscopy. During human cell infection 
FtsZ rings were still visible at the midbody of K12 cells as a single ring per cell (Fig. 1A), suggesting cells can 
divide normally, and this was also found for the EV36/FtsZ-mCherry strain (Fig. 1B). These data confirm that 
FtsZ assembles as a single ring at the cell midbody under normal bacterial growth conditions and during 
bacterial infection of human cells. The EV36 strain has previously been shown to have an infection rate of 20-
50%, depending on the human cell line26,29. Since the K12 strain is non-pathogenic and not expected to act 
intracellularly34,35, an internalisation experiment was done using gentamicin to kill extracellular bacteria to 
confirm if K12 would be present inside of human cells. This showed that only 4.1% of hCMECs infected with 
K12/FtsZ-mNeon had intracellular bacteria. Since the infection rate is low, for the following experiments we 
chose to focus on both intracellular and extracellular bacteria in the infection model for both strains. 
Nevertheless, both extracellular and intracellular bacteria are toxic to the human cells and have a variety of 
mechanisms to cause disease36. We confirm this by quantifying human cell death by confocal microscopy after 
bacterial infection of human cells and found that 5.3% of human cells died after infection with the K12 strain, 
and 12.1% of human cells died after infection with the EV36 strain (Figure S3). Recent studies have presented 
efficiency of bacteriophages in targeting both intracellular and extracellular bacteria in human cell 
environment37 and bacteriophages have been shown to be more efficient in the presence of human cells38. It 
is therefore necessary to test the proposed system in infection human cells models, in order to understand 
better the interplay of phage and bacteria in the presence of human cells.  
 
We then applied the known FtsZ inhibitor Kil peptide to the model system to investigate how FtsZ inhibition 
would appear in these conditions. Kil stops FtsZ from polymerising leading to filamentation of cells which are 
unable to divide, so a Kil peptide plasmid17 was transformed into both strains. For these experiments the 
plasmid was induced with 0.2% arabinose for two hours.  Imaging in Fig. S4A confirmed that induction of Kil 
in K12/FtsZ-mNeon resulted in long filamentous cells, with varying FtsZ phenotypes that ranged from distinct 
multiple rings (42.2% of cells) to diffuse FtsZ spread (30.1%) and cells in an intermediate phenotype (27.7%) 
of faint rings within a diffuse background. Previous studies have shown a diffuse FtsZ spread upon Kil inhibition 
using antibody staining17, which was confirmed in Fig. S5, however, here we present that when using a 
fluorescent protein stably expressed, multiple distinct Z-rings still form along the cell body, potentially due to 
Kil not having fully acted on these cells yet. 
 
To support these findings, images for the induction of Kil were quantified in K12/FtsZ-mNeon under the 
following conditions: control (no Kil induction), 1 hour induction, and 2 hour induction. The averages (Fig. S4C 
and S4D) showed an increase in number of Z-rings and cell length after 1 hour of Kil induction, with a further 
increase after 2 hours, confirming the cells are not dividing and continually elongating in the presence of Kil 
and formation of multiple Z rings suggests cell division had been unsuccessfully attempted. The increase seen 
after 2 hours compared to 1 hour suggests that the effect and phenotypes seen may be dependent on the 
amount of Kil peptide present in the cell.   
 
These data support previous findings that the phage l Kil peptide causes filamentation of E. coli cells by 
blocking cell division with diffuse FtsZ spread by antibody staining as FtsZ is unable to polymerise to form rings 
and further show that multiple Z-rings can form along the body of the filamentous cell as it fails to divide at 
new division sites when using fluorescent proteins.  

In review



 
Genetic engineering of a T7-mCherry phage   
   
The K1F-GFP phage29 has been previously engineered to express GFP, and this was first visualised in human 
cells vacuoles (Fig. 2A) to confirm fluorescence compared to no-phage controls as a visual control for use in 
confocal experiments. In order to visualise T7 phage in the K12/FtsZ-mNeon model system, we attached a 
fluorescent protein to the C-terminal of the phage’s minor capsid protein so that it is displayed at the surface, 
using homologous recombination from an engineered plasmid. Presence of the mCherry gene in the phage 
lysate was confirmed by PCR screening of the recombinant phage genome using the primers in Table S1 and 
associated plaque assays (Fig. S6A-D), prior to purification of positive lysate by caesium chloride gradient 
purification (Fig. S6E-F). Fluorescence of the mCherry tag was further tested by confocal microscopy (Fig. 2B) 
showing mCherry fluorescence inside human cells after phage infection, alongside no-phage controls (Fig. S7) 
performed to show the fluorescence seen was from the phage label, confirming successful engineering of the 
T7-mCherry phagemid which was able to be taken up by human cells.   
 
 
T7 phage blocks cell division in K12 by FtsZ inhibition  

  
K1F-GFP phage was confirmed to target the EV36/FtsZ-mCherry strain (Fig. S8A), and T7-mCherry phage 
targets the K12/FtsZ-mNeon strain (Fig. S8B) using growth curves. This was further confirmed by correlative 
light and electron microscopy (CLEM) showing the formation of a septum at the midbody of cells, as well as 
colocalisation of FtsZ-mNeon and T7-mCherry signals within K12 cells (Fig. S9) confirming specificity of the 
phage.   
 
Next the effect of T7-mCherry on FtsZ was examined by infecting hCMEC with K12/FtsZ-mNeon, followed 
incubation with T7-mCherry. Confocal microscopy showed that T7 phage infection caused a change from the 
single midbody ring previously seen and led to the formation of filamentous, multi Z-ring E. coli cells (Fig. 3A 
and 3B) which were unable to divide, suggesting T7 phage can block cell division.  We were then interested 
to see how the Z-rings and cell length of E. coli changed over time in control conditions (no phage) and in the 
presence of T7 phage using a time series experiment. For the control, hCMECs were infected with exponential 
K12/FtsZ-mNeon and fixed at 15 minute intervals for 2 hours (Fig. S10). For the phage time series, hCMECs 
were infected with K12/FtsZ-mNeon for one hour, then T7 phage was added (Fig. S11). For each condition 
bacterial cells were quantified using confocal microscopy (Fig. 3C and 3D). Since K12/FtsZ-mNeon cells were 
incubated prior to phage addition, this meant phage time 0 minutes was equivalent to control 60 minutes so 
these were plotted to overlap. Larger error bars were due to the variation in phenotypes, as some cells were 
fully filamentous whereas others were yet to be infected. In the first 60 minutes of the control series, each 
cell averages one Z ring at the midbody as seen earlier in Figure 1, but later we unexpectedly see 2 polar rings 
in the majority of cells. Upon phage addition the number of Z-rings start to increase after 15-30 minutes, and 
after one hour they reach an average of 4 rings, double compared to the control. After an hour of incubation 
with phage there is a notable increase in cell length showing filamentation, but interestingly this does not 
start until about 30-45 minutes after infection, suggesting the number of rings start to increase first and then 
filamentation follows.   
 
To investigate the cause of the filamentation confocal microscopy was performed using a K12∆minC strain 
from the Keio collection with the minC gene knocked out, alongside a K12 control. Cultures were incubated 
for 2 hours in no-phage conditions and then stained with an FtsZ antibody and imaged (Fig. S12). The images 
were quantified and average cell length was plotted (Fig. 3E), showing a significant increase in cell length of 
K12∆minC compared to the control, suggesting that inhibition of MinC could be causing the filamentation 
seen upon phage infection of cells.    
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Taken together these data confirm the specificity of engineered T7-mCherry for K12 strains and show that 
during infection the phage causes a filamentous (potentially due to MinC inhibition) non-dividing phenotype 
with multiple Z-rings formed where division had been attempted, similar to what was seen with the known 
FtsZ inhibitor Kil, suggesting that T7 phage can inhibit FtsZ to block division.  
 
 
K1F phage blocks cell division in EV36 K1 by FtsZ inhibition   

  
To investigate the effect of K1F-GFP phage on FtsZ localisation, hCMECs were infected with host EV36/FtsZ-
mCherry and K1F-GFP phage. The EV36/FtsZ-mCherry cells showed a long filamentous phenotype with 
multiple Z-rings and DNA along the cell after K1F-GFP infection (Fig. 4A and 4B), unlike control samples, 
suggesting that the K1F phage can also inhibit FtsZ to block host cell division.    
To further confirm this, bacterial cells were quantified for control conditions and K1F infected conditions (Fig. 
4C and 4D). The control showed an average of 1.027 rings per cell as expected and after K1F-GFP infection 
this increases to 4.120 rings per cell, suggesting cells had attempted to divide 2-3 times unsuccessfully. There 
was an increase in average cell length showing cells were starting to elongate to confirm filamentation. These 
data shows that similarly to phages l and T7, the K1F phage is able to inhibit FtsZ to block host cell division.  
 
 
Effects of T7 bacteriophage on ZapA and FtsI divisome proteins  

  
We hypothesised that the observed effect of FtsZ inhibition by phages may not be specific to just FtsZ and 
that other divisome proteins may be involved in the infection process. To test this a K12∆zapA strain from the 
Keio collection with the zapA gene knocked out was used, alongside a K12 control. Cultures were incubated 
for 1 hour and then infected with T7 phage for a further hour, alongside a no phage control, and imaged by 
light microscopy to observe cell filamentation (Fig. 5A). The images were quantified and average cell lengths 
for the conditions were plotted (Fig. 5B). As previously shown there was an increase in cell length upon T7 
phage infection of K12 cells as they became filamentous, but this phenotype appears to be absent during T7 
phage infection of K12∆zapA cells, suggesting that ZapA is essential for cell filamentation and the phenotype 
seen during phage inhibition of cell division.   
  
Next the localisation of the FtsI protein in this system was investigated. Cultures of K12 were grown for one 
hour and infected with T7 phage, alongside a no-phage control, and stained with an FtsI antibody. Under 
normal growth conditions in the no-phage control, we see that FtsI is localising to the midbody of the cell as 
a single ring (Fig. 5C) as expected after recruitment by FtsZ as the divisome forms. After T7 phage infection of 
K12, we observe mislocalisation of FtsI (Fig. 5D). This suggests that other divisome proteins are mislocalised 
upon phage infection as cell division is inhibited, potentially being recruited by mislocalised FtsZ.     
 
 
T7 Gp0.4 targets FtsZ to increase titres and delays lysis   
  
It has been previously shown by light microscopy that the T7 phage peptide gp0.4 directly inhibits FtsZ and 
causes host cell filamentation23 and in this study we confirm this observation by confocal microscopy, to allow 
visualisation of the Z-rings in the human cell model after infection with a T7∆0.4 mutant phage23. hCMEC cells 
were treated with K12/FtsZ-mNeon followed by infection with T7mCherry or T7∆0.4 phage, along with a 
control. Cells were imaged to see the resulting phenotypes (Fig. 6A-C) and for each condition was quantified 
and averages were plotted (Fig. 6D and 6E).  Upon T7∆0.4 addition, unlike the WT T7, the mutant-infected E. 
coli showed recovery back to a phenotype similar to the control, confirming that T7's gp0.4 targets FtsZ and 
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causes filamentation of the cells as well as multiple Z rings along the cell body. After 2 hours the control sample 
had an average of 1.920 rings per cell with an average length of 3.426 µm, and for the WT T7 infected cells 
this nearly doubled to an average of 3.827 rings and 6.143 µm length. Infection with T7∆0.4 resulted in cells 
averaging 2.200 rings with length 3.513 µm, which closely resembles control measurements and suggests the 
host can divide normally with the mutant, so gp0.4 plays a role in blocking cell division via FtsZ inhibition.   
 
We then investigated why phages may have evolved these peptides, and it has been shown that WT phage 
progeny is higher than T7∆0.4 progeny via PCR23, so we further verified this by performing plaque assays to 
titre phage lysate grown in the presence and absence of gp0.4 (Fig. 7A). There was nearly a 10-fold decrease 
in titre with the T7∆0.4 mutant, supporting previous PCR findings, suggesting gp0.4 plays a role in increasing 
progeny numbers, potentially by enabling the formation of long undivided cell factories.  Growth curves were 
done to compare phage infection and cell lysis of WT T7 and T7∆0.4 (Fig. 7B-C) and we found that T7∆0.4 
lysed host cells after 45 minutes, whereas the WT T7 took 105 minutes, suggesting that the gp0.4 peptide has 
a role in delaying host cell lysis by approximately 1 hour (43%).   
 
Phage inhibition of FtsZ is limited in the stationary phase and under bacteriostatic conditions  
  
We then wanted to apply the same phages to the model system during the stationary phase of cell growth to 
test the hypothesis that phage proteins need hosts that are actively dividing and producing an FtsZ target to 
inhibit FtsZ and block cell division. hCMEC cells were infected with K12/FtsZ-mNeon cells from overnight 
cultures to give cells in the stationary phase, followed by incubation with either T7-mCherry or T7∆0.4 phage, 
along with a no-phage control. Bacterial cells were quantified and plotted alongside the exponential phase 
quantification for comparison (Fig. 8A-B).   
The average number of Z-rings in the stationary phase control was 1.160, unlike the exponential control of 
1.920 rings per cell, suggesting no movement of FtsZ to confirm cells are not dividing. When the phages are 
applied there is an increase in ring number for both phages compared to the control, but there are less rings 
produced compared to the exponential phase suggesting some inhibition is taking place but it is limited in the 
stationary phase. There is no change in length upon either phage addition in the stationary phase, so cells are 
unable to filament. These data are consistent with the hypothesis that T7 inhibition of bacterial cell growth 
requires the presence of a functional FtsZ engaged in cell division. This was further confirmed by performing 
growth curves with bacteriostatic concentrations of chloramphenicol (Fig. S13), which showed the phage was 
unable to lyse static host cells. Finally, we investigated whether the concentration of FtsZ changed in the 
stationary phase and upon phage infection by live cell imaging calculation of corrected total cell fluorescence 
(CTCF) (Fig. 8C and Fig. S14). FtsZ-mNeon imaging shows a 2.8-fold decrease in the intensity per Z-ring in the 
stationary phase compared to exponential. Interestingly upon phage addition to exponential culture, the 
average intensity per ring almost halves, potentially due to FtsZ being spread through the elongated cell.   
   
 Discussion   
 
In this study we used an in-vitro meningitis model26 to investigate the effect of phage on bacterial FtsZ  
localisation during treatment, using hCMEC human brain cell cultures infected with E. coli EV36/FtsZ-mCherry 
or K12/FtsZ-mNeon strains and initially observed FtsZ localising to the cell midbody as a single ring. It has been 
previously shown that the bacteriophage l Kil peptide can block FtsZ polymerisation and Z-ring formation, 
leading to a filamentous cell phenotype as a result of cells being unable to complete division17. Here we 
confirm this phenotype and further show for the first time that Kil also leads to multiple Z-ring formation in 
the filamentous cell.   
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We have engineered a fluorescent T7-mCherry phage by homologous recombination which specifically targets 
K12 strains of E. coli. This has allowed us to observe invasion of hCMEC human brain cells by this phage and 
show that during T7 infection of K12, there is a mislocalisation of FtsZ into multiple rings along a filamentous 
cell that is unable to divide, suggesting that T7 phage inhibits FtsZ to block cell division. These multiple rings 
may represent attempts at cell division, where the inhibitor has stalled cytokinesis, creating multiple 
midbodies since the new upcoming cells are unable to separate. The filamentation seen may be due to MinC 
inhibition, since we show a MinC mutant strain becomes filamentous in normal growth conditions.   
We have also shown that actively dividing cells are needed for phage inhibition of FtsZ, as inhibition is limited 
in the stationary phase. Since phage is still able to bind and infect these cells, we hypothesise that the decrease 
in average cell length and ring number is due to the small number of cells that are still dividing at a slower 
rate, leading to less of an effect seen from gp0.4 or any other inhibitor.   
  
The T7 phage inhibition of FtsZ is likely to have a similar effect on other divisome proteins since proteins such 
as ZipA and FtsA have been shown to be recruited to the FtsZ ring site so it is likely they will also mislocalise 
away from the midbody as new Z-rings form along the cell17,39. Here we present that the ZapA protein is 
needed for phage inhibition of FtsZ by showing a phenotype recovery with a ZapA mutant strain, and we show 
that the FtsI protein is also mislocalised upon phage infection.  We propose that this is effect is specific to the 
divisome due to the phenotype seen, for example if the elangosome18 protein MreB was inhibited and 
mislocalised we would expect to see lemon shaped cells40 rather than elongation, therefore these other 
proteins appear to be functioning as expected.   
  
A recent study has shown that the T7 phage peptide gp0.4 directly inhibits FtsZ by binding the protein and 
preventing Z-ring assembly, giving E. coli cells an elongated phenotype under light microscopy, to enhance 
the phages competitive ability23. In this study we further investigate how and why phage proteins might target 
FtsZ, using the T7∆0.4 mutant to confirm that the T7 peptide gp0.4 is responsible for inhibiting FtsZ by showing 
a reversal in phenotype to normal single central ring growth compared to the filamentous multi ring 
phenotype seen with the wild type. Plaque assays were performed to titre propagated T7∆0.4 and wild type 
T7 phages and found a 10-fold decrease in titre with the mutant suggesting the gp0.4 peptide assists in 
increasing phage progeny, confirming what was previously shown by Kiro et al using PCR analysis23, to give 
the phage a competitive advantage by producing more progeny per burst cycle.   
 
Here we present for the first time that gp0.4 delays host cell lysis, showing that the mutant T7∆0.4 phage 
lysed bacterial culture around 60 min before the wild type T7 containing gp0.4 lysed. The Kil peptide has 
similarly been reported to delay lysis by 30%17, so it seems both these phage peptides targeting FtsZ are able 
to cause this delay. Lysis is initiated when cell signals such as lysins reach a certain threshold concentration 
towards the end of the infection cycle41. Here we hypothesise that the delay in lysis is due to the cell 
filamentation increasing the volume of the infected cell and therefore it is taking longer for a similar number 
of signals to reach the threshold concentration. This could also explain the reduced titre seen for the mutant, 
since lysis occurs faster, so the host cell bursts prematurely and the phage does not fully exploit the entire 
resources.   
 
We report for the first time that the K1F phage is also able to target FtsZ and leads to a multi-ringed 
filamentous phenotype to block cell division, suggesting multiple phages have evolved this strategy.  
K1F is a natural T7-like phage7.  Interestingly it lacks the 0.4 gene found in T7 but still shows the same 
phenotype, so it has evolved another peptide with the same function which is currently unknown. Further 
studies on K1F phage to find this inhibitory peptide could lead to the discovery of a new antimicrobial 
compound. A BLAST search on the National Centre for Biotechnology Information (NCBI) database showed 
that the K1F phage genome had no sequence similarity to the kil or gp0.4 genes, so the inhibitory peptide is 
likely to be novel from these.   
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We saw that after about 75 min into normal growth the K12 bacterial cells seem to form two polar Zrings 
instead of the characteristic single midbody ring in the absence of phage infection. The location of the Z-ring 
is restricted by regulatory systems such as Min in E. coli42, so two Z-rings may demonstrate a time within the 
cell in which the Min system has not started to discriminate against FtsZ at the poles43 and has also been 
previously shown that competition between FtsZ and the Min system could be the cause for these polar sites 
43. We further show that a knockout mutant lacking the MinC protein displays a filamentous phenotype under 
normal growth conditions.  
  
In conclusion, we have shown that FtsZ assembles as a single ring at the cell midbody under normal bacterial 
growth conditions during infection of human cells and shown that this localisation is disrupted to give a 
filamentous phenotype with multiple Z-rings along the cell body via phage peptides such as Kil, Gp0.4 and an 
unknown K1F phage protein during phage infection. This inhibition may function to delay host lysis and 
increase phage progeny numbers and occurs during the exponential phase of bacterial growth when cells are 
dividing. This furthers our understanding of the mechanism that phages use to control their bacterial host, 
allowing them to be considered as future antimicrobials.   
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Main text figure legends  
Table 1: Bacterial strains used in this study  
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Table 2: Phage strains used in this study  
  
Figure 1: Visualisation of the FtsZ Z-ring in normal growth conditions by confocal microscopy. (A) K12/FtsZ-
mNeon cells fixed during human cell infection. An internalisation experiment using gentamicin to kill 
extracellular bacteria showed this strain had an infection rate of 4.1% in hCMECs. (B) EV36/FtsZ-mCherry cells 
fixed during human cell infection. Arrows pointing to bacterial Z-rings. DAPI stain is shown in blue, phalloidin 
stain is shown in grey, FtsZ-mNeon is shown in green and FtsZ-mCherry is shown in red.   
  
Figure 2: Visualising bacteriophage in hCMEC brain cells.  (A)  K1F-GFP phage inside vacuole of hCMEC cell 
after infection. (B) T7-mCherry phage inside hCMEC cells after infection. Arrows pointing to phage clusters. 
DAPI stain is shown in blue, phalloidin stain is shown in grey, K1F-GFP is shown in green and T7-mCherry is 
shown in red.   
  
Figure 3: T7 phage inhibition of FtsZ in K12 E. coli cells. (A-B) Fluorescent images of K12/FtsZ-mNeon cells 
after T7-mCherry phage infection fixed in a human cell model. Arrows point to filamentous cells. DAPI stain is 
shown in blue, phalloidin in grey and FtsZ-mNeon in green. (C-D) Quantification of Z ring number and cell 
length for 75 K12/FtsZ-mNeon bacterial cells infected with T7-mCherry phage at 15 minute intervals and 
compared to a no-phage control. Averages plotted with error bars showing one standard deviation of 
uncertainty. (E) Quantification of cell length for 75 K12 control and K12∆minC bacterial cells.  Tukey’s tests 
were performed and the calculated probability values (p-values) are displayed as p < 0.01 (**).  
  
Figure 4: K1F phage inhibition of FtsZ in K1 E. coli. (A-B) Fluorescent images of EV36/FtsZ-mCherry cells after 
K1F-GFP phage infection fixed in a human cell model. Arrows point to filamentous cells. DAPI stain is shown 
in blue, phalloidin in grey and FtsZ-mCherry in red.  (C-D) Quantification of Z ring number and cell length for 
75 EV36/FtsZ-mCherry bacterial cells infected with K1F-GFP phage and compared to a no-phage control. 
Averages plotted with error bars showing one standard deviation of uncertainty. Tukey’s tests were 
performed and the calculated probability values (p-values) are displayed as p < 0.05 (*), p < 0.01 (**), and 
not statistically significant p > 0.05 (ns).  
  
Figure 5: Effects of T7 bacteriophage on ZapA and FtsI divisome proteins (A) Light microscopy images of K12 
control and K12∆zapA cells after T7 phage infection. (B) Quantification of cell length for 75 K12 control and 
K12∆zapA bacterial cells infected with T7 phage and compared to a no-phage control. Averages plotted with 
error bars showing one standard deviation of uncertainty. Tukey’s tests were performed and the calculated 
probability values (p-values) are displayed as p < 0.05 (*), p < 0.01 (**) and not statistically significant p > 
0.05 (ns). (C) E. coli K12 cell stained with an FtsI antibody showing localisation of FtsI to the cell midbody as a 
single ring. (D) E. coli K12 cell after T7 phage infection stained with an FtsI antibody showing mislocalisation 
of FtsI to three rings.     
  
Figure 6: T7∆0.4 mutant phage microscopy. (A) K12/FtsZ-mNeon control cells fixed in human cells. (B) 
K12/FtsZ-mNeon cells infected with T7-mCherry phage fixed in human cells. (C) K12/FtsZ-mNeon cells infected 
with T7∆0.4 phage fixed in human cells. For fluorescent images DAPI stain is shown in blue, phalloidin in grey 
and FtsZ-mNeon in green. Arrows pointing to bacterial cell of interest. (D-E) Quantification of Z ring number 
and cell length for 75 K12/FtsZ-mNeon bacterial cells infected with T7-mCherry or T7∆0.4 phage during 
exponential growth and compared to a no-phage control. Averages plotted with error bars showing one 
standard deviation of uncertainty. Tukey’s tests were performed and the calculated probability values (p-
values) are displayed as p < 0.05 (*), p < 0.01 (**), and not statistically significant p > 0.05 (ns).  
  
Figure 7: T7∆0.4 mutant experiments showing gp0.4 delays lysis and increases progeny. (A) WT T7 and 
T7∆0.4 phages were propagated and titred by plaque assays in triplicate. Averages plotted on a log scale with 
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error bars showing one standard deviation of uncertainty. (B) Growth curves were performed on cultures of 
K12/FtsZ-mNeon only, K12/FtsZ-mNeon and WT T7, K12/FtsZ-mNeon and T7∆0.4 phage. Average readings 
across replicates at 15 minute time intervals were plotted with error bars showing one standard deviation 
unit of uncertainty. Arrow shows when phage was added. (C) Photo time series of growth curves with images 
of cultures taken upon phage addition at 75 minutes, at 120 minutes showing T7∆0.4 lysis, and 180 minutes 
showing WT T7 lysis.   
  
Figure 8: Stationary phase microscopy quantification of WT T7 and T7∆0.4 infection. Quantification of (A) Z 
ring number and (B) cell length for 75 K12/FtsZ-mNeon bacterial cells infected with T7mCherry or T7∆0.4 
phage during the stationary phase of growth, along with a no-phage control, compared to exponential phase 
data. Tukey’s tests were performed and the calculated probability values (p-values) are displayed as p < 0.05 
(*), p < 0.01 (**), and not statistically significant p > 0.05 (ns). (C) Exponential phase control, stationary phase 
control, exponential phase with T7 phage and stationary phase with T7 phage cultures of E. coli K12/FtsZ-
mNeon were imaged on agarose pads, and the corrected total cell fluorescence (CTCF) of 50 Z-rings per sample 
was averaged and plotted. Error bars show one standard deviation of uncertainty.   
  
  
Supplementary figure legends   
  
Table S1: Primers. Primers used in the engineering of T7-mCherry phage  
  
Table S2: Table of titres from plaque assays for WT and T7 mutant phages  
  
Figure S1: gBlock insert designed to make fluorescent T7 phage. A gBlock was designed to create a recombinant 
T7-mCherry phage. The BioBrick regions at the ends shown in blue contain restriction sites to allow cloning into a 
vector. Homology regions shown in pink contain 150 bp of DNA before and after the stop codon of the minor capsid 
protein. The mCherry gene is shown in red and the linker region is shown in green.   
  
Figure S2: Visualisation of the FtsZ Z-ring in normal growth conditions by confocal microscopy. (A) 
Fluorescent images showing live K12/FtsZ-mNeon cells on agarose pads. (B) Live EV36/FtsZ-mCherry cells on 
agarose pads. FtsZ-mNeon is shown in green and FtsZ-mCherry is shown in red.   
  
Figure S3: Human cell death by extracellular bacterial strains. HCMEC human brain cells were infected with 
the K12/FtsZ-mNeon and EV36/FtsZ-mCherry strains live, along with a no bacteria control, and numbers of 
dying human cells were counted and the percentage cell death was quantified as follows: 4.8% hCMEC cell 
death in control conditions, 5.3% hCMEC cell death following K12 infection, and 12.1% hCMEC cell death 
following EV36 infection. Cell outlines are shown by transmitted light and DAPI stain was used to show DNA 
in blue. Arrows are pointing to dying human cells. For each condition the experiments were repeated in 
triplicate and a minimum of 500 human cells per condition were counted.   
  
Figure S4: Kil peptide inhibition of E. coli FtsZ. (A) Different phenotypes of K12/FtsZ-mNeon/Kil. Left image shows 
multiple distinct Z-rings, right images shows diffuse spread and middle images shows an intermediate phenotype. 
(B) K12/FtsZ-mNeon/Kil cell fixed in human cell infection. Arrow pointing to filamentous bacterial cells. Images 
taken one 2 hours after plasmid induction. DAPI stain is shown in blue, phalloidin stain is shown in grey and FtsZ-
mNeon is shown in green. (C-D) Quantification of Z ring number and cell length for 75 K12/FtsZ-mNeon/Kil bacterial 
cells under the following conditions: control, 1 hour plasmid induction, 2 hour plasmid induction. Mean averages 
plotted with error bars showing one standard deviation of uncertainty. Tukey’s tests were performed and the 
calculated probability values (p-values) are displayed as p < 0.05 (*), p < 0.01 (**), and not statistically significant 
p > 0.05 (ns).    
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Figure S5: Kil inhibition of E. coli EV36 FtsZ. EV36/Kil cell fixed in human cell infection with anti-Prokaryotic Cell 
Division GTPase (FtsZ) antibody staining. (A) Control with no Kil induction (B) Elongated cell after Kil induction   
  
Figure S6: Screening for recombinant phage after homologous recombination  
(A) Phage culture screening round 1 PCR after homologous recombination  
(B and C) Plaque assay of positive culture and screening of individual plaques  
(D) Positive plaques propagated and further PCR test on liquid culture   
(E) CsCl purification band of positive T7-mCherry culture   
(F) Plaque assay to titre the recombinant phage  
  
Figure S7: No-phage controls for experiments visualising phages in human cells. (A-B) No phage control samples 
for visualisation of K1F-GFP phage in hCMEC, showing no contamination or background fluorescence inside the 
human cells. (C-D) No phage control samples for visualisation of T7-mCherry phage in hCMEC, showing no 
contamination or background fluorescence inside the human cells. DAPI stain is shown in blue, phalloidin in grey, 
K1F-GFP in green and T7-mCherry in red  
  
Figure S8: Growth curves. (A) Growth curves for EV36, EV36/FtsZ-mCherry and EV36/FtsZ-mCherry with K1F-
GFP phage. OD600 readings were taken every 30 minutes and phage was added after OD600 passed 0.3 at 90 
minutes (B) Growth curves for MG1655, K12/FtsZ-mNeon and K12/FtsZ-mNeon with T7 phage. OD600 
readings taken every 30 minutes and phage was added after OD600 passed 0.3 at 90 minutes.  
  
Figure S9: Correlative light and electron microscopy. Correlative light and electron microscopy (CLEM) images 
of E. coli K12/FtsZ-mNeon after 60 minutes of T7 infection. Left panel shows EM image, middle shows confocal 
T7-mCherry channel and right shows confocal mNeon channel.  
  
Figure S10. Control (no phage) time series of K12/FtsZ-mNeon in hCMEC cells. (A) 45 minutes incubation of 
K12/FtsZ-mNeon (B) 60 minutes incubation of K12/FtsZ-mNeon (C) 75 minutes incubation of K12/FtsZ-mNeon 
(D) 105 minutes incubation of K12/FtsZ-mNeon (E) 120 minutes incubation with FtsZ-mNeon.  
  
Figure S11. Time series of K12/FtsZ-mNeon infected with T7-mCherry in hCMEC cells. (A) 0 minutes 
incubation of K12/FtsZ-mNeon with T7-mCherry (B) 30 minutes incubation of K12/FtsZ-mNeon with T7-
mCherry (C) 45 minutes incubation of K12/FtsZ-mNeon with T7-mCherry (D) 60 minutes incubation of 
K12/FtsZ-mNeon with T7-mCherry (E) 75 minutes incubation of K12/FtsZ-mNeon with T7-mCherry.  
  
Figure S12: Mutated MinC leads to cell filamentation (A) Confocal microscopy image of K12 control cells after 
FtsZ antibody staining. (B) Confocal microscopy image of K12∆minC cells after FtsZ antibody staining. DAPI 
stain is shown in blue, phalloidin in grey, and FtsZ in green. Arrows point to cells of interest.   
  
Figure S13: Growth curve showing the effect of bacteriostatic antibiotics on host cell lysis. Growth curves 
for K12/FtsZ-mNeon with WT T7 phage and T7∆0.4 phage, alongside a no phage control (solid lines), and 
curves for K12/FtsZ-mNeon with WT T7 phage and T7∆0.4 phage, alongside a no phage control with a 
bacteriostatic concentration of chloramphenicol added to each culture (dashed lines). OD600 readings taken 
every 5 minutes, and phage and chloramphenicol was added when needed after OD600 passed 0.3 at 90 
minutes.     
  
Figure S14: Representative images used for calculated total cell fluorescence (CTCF). Cultures of E. coli 
K12/FtsZ-mNeon in the exponential phase, K12/FtsZ-mNeon in the stationary phase, K12/ FtsZmNeon and T7 
phage in the exponential phase, and K12/ FtsZ-mNeon and T7 phage in the stationary phase were grown and 
imaged on triplicate agarose pads. 50 cells per condition were quantified for their CTCF using fluorescence 
intensity measurements calculated on FiJi.
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