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Abstract. The study of asymptotic minimum degree thresholds that force matchings and tilings
in hypergraphs is a lively area of research in combinatorics. A key breakthrough in this area was
a result of Hàn, Person and Schacht [6] who proved that the asymptotic minimum vertex degree
threshold for a perfect matching in an n-vertex 3-graph is

(
5
9

+ o(1)
) (

n
2

)
. In this paper we improve

on this result, giving a family of degree sequence results, all of which imply the result of Hàn,
Person and Schacht, and additionally allow one third of the vertices to have degree 1

9

(
n
2

)
below this

threshold. Furthermore, we show that this result is, in some sense, tight.

1. Introduction

Determining whether a k-uniform hypergraph (or k-graph) contains a perfect matching (a collec-
tion of disjoint edges which cover the vertex set) is a key question in combinatorics. Whilst Tutte’s
Theorem [24] gives a complete characterisation for when a graph G contains a perfect matching,
no such ‘nice’ characterisation is expected to be found for k-graphs in general. In particular, de-
termining whether a k-graph contains a perfect matching is one of Karp’s original 21 NP-complete
problems [11]. As such, much work has been done to consider sufficient conditions for a hypergraph
to contain a perfect matching. A key direction for this has been to consider minimum degree con-
ditions, also known as ‘Dirac-type’ conditions, which follow the form of Dirac’s Theorem [4] from
1952; every graph G on n ≥ 3 vertices with minimum degree at least n/2 contains a Hamilton cycle
(a cycle covering all vertices in G), and if n is even, contains a perfect matching (found by taking
every other edge in a Hamilton cycle). In hypergraphs, the notion of minimum degree extends in
various ways. In particular, for a hypergraph H, we define the degree of a set T ⊆ V (H), deg(T ),
to be the number of edges in H containing T . We then define the minimum t-degree, δt(H), to
be δt(H) := min{deg(T ) : T ⊆ V (H), |T | = t}. In a k-graph, H, we also refer to δ1(H) as the
minimum vertex degree of H, and to δk−1(H) as the minimum co-degree of H. In the last fifteen
years much progress has been made in finding asymptotic and exact minimum t-degree conditions
that force perfect matchings in k-graphs for various k and t. Let mt(k, n) denote the smallest
integer m such that every k-graph on n vertices with minimum t-degree at least m contains a per-
fect matching (given, of course, also that n ∈ kZ). We refer to mt(k, n) as the minimum t-degree
threshold for a k-graph on n vertices to contain a perfect matching. For the purposes of this paper,
we are interested in minimum vertex degree thresholds, and particularly, in m1(3, n). For more on
Dirac-type problems in general, see e.g. [19] and [25]. In a significant breakthrough, Hàn, Person
and Schacht [6] determined the asymptotic minimum vertex degree threshold for a perfect matching
in a 3-graph:
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Theorem 1.1 (Hàn, Person and Schacht, [6]). For all γ > 0 there exists an n0 = n0(γ) ∈ N such
that for all n ≥ n0 with n ∈ 3Z the following holds. Let H be a 3-graph on n vertices with

δ1(H) ≥
(

5

9
+ γ

)(
n

2

)
.

Then H contains a perfect matching.

This was subsequently improved to an exact result by Kühn, Osthus and Treglown [16], and

independently by Khan [10]; that is, m1(3, n) =
(
n−1
2

)
−
(
2n/3
2

)
+ 1 for sufficiently large n. We

can see this result is tight by examining the following extremal example: Let H be a 3-graph on
n vertices and divide V (H) into two parts, A and B, with |A| = n

3 − 1 and |B| = 2n
3 + 1. Let

E(H) contain all edges with at least one vertex in A. Observe that H does not contain a perfect
matching, since every edge in a matching will have at least one vertex in A, and a perfect matching
has size n/3, but A has only n/3 − 1 vertices. This extremal example can be generalised from
3-graphs to k-graphs, and is known as the space barrier, a term coined by Keevash and Mycroft
[12].

Whilst asymptotic and exact results for mt(k, n) are best possible in the sense that one cannot
lower the minimum t-degree threshold and still ensure the existence of a perfect matching, we
can also consider ‘stronger’ degree conditions, by seeing whether allowing a certain proportion of
t-sets to go a certain distance below the minimum t-degree threshold, we are still able to guarantee
a perfect matching. This idea is formalised by the notion of a degree sequence of a graph. In
particular, we say that a graph G on n vertices has degree sequence d1 ≤ d2 ≤ . . . ≤ dn if there
exists an ordering (v1, v2, . . . , vn) of the vertices of G such that d(vi) = di for all i ∈ [n]. It is natural
to ask for which degree sequences of G we are guaranteed a perfect matching. In general, it is hard
to characterise all such degree sequences, but there are notable results of Pósa [18] and Chvátal
[3] which show two different degree sequence improvements of Dirac’s Theorem. Pósa [18] proved
that if G is a graph on n ≥ 3 vertices with degree sequence d1 ≤ . . . ≤ dn satisfying di ≥ i+ 1 for
all i < (n − 1)/2 and, when n is odd ddn/2e ≥ dn/2e, then G contains a Hamilton cycle. Chvátal
[3] went further and demonstrated that if G has degree sequence d1 ≤ d2 ≤ . . . ≤ dn such that
either di ≥ i+ 1 or dn−i ≥ n− i for all i ≤ n/2 then G still contains a Hamilton cycle. Moreover,
for every sequence not satisfying this condition, there is a graph with pointwise at least as large
degree sequence not containing a Hamilton cycle. In this paper we will be concerned with so-called
Pósa-type degree sequence conditions, that is, degree sequence conditions which, informally, have
a starting point (d1) below some (known) minimum degree threshold and have a part of the degree
sequence condition that steadily increases.

There have been a number of recent examples of Pósa-type degree sequence results in graphs.
Asymptotically answering a conjecture of Balogh, Kostochka and Treglown [2], Treglown [23] proved
a Pósa-type degree sequence version of Hajnal and Szemerédi’s [5] perfect Kr-tiling result (as well
as a degree sequence strengthening of Alon and Yuster’s [1] perfect H-tiling result for general
graphs H). Using ideas from [23], Hyde, Liu and Treglown [8] proved a Pósa-type degree sequence
strengthening of Komlós’ [14] almost-perfect tiling theorem which was then utilised by Hyde and
Treglown [7] to give a Pósa-type degree sequence version of Kühn and Osthus’ [15] perfect tiling
theorem. See [13, 17, 22] for further examples of degree sequence results.

Whilst considerable progress has been made with respect to degree sequence results in graphs,
not as much headway has been made for hypergraphs. Very recently, Schülke [21] proved a Pósa-
type degree sequence result related to finding tight Hamilton cycles in 3-graphs. We say that a
3-graph H on n vertices contains a tight Hamilton cycle if there exists an ordering (v1, v2, . . . , vn) of
the vertices of H such that {vivi+1vi+2, i ∈ [n− 2]}∪ vn−1vnv1 ∪ vnv1v2 ⊆ E(H). Furthermore, for
n ∈ N and a 3-graph H = ([n], E) we define d(i, j) to be the number of edges of H containing both
vertex i and vertex j. Generalising a result of Rödl, Ruciński and Szemerédi [20] on the asymptotic
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minimum co-degree threshold for a tight Hamilton cycle in a 3-graph, Schülke [21] proved the
following:

Theorem 1.2. For all γ > 0 there exists an n0 = n0(γ) ∈ N such that for all n ∈ N with n ≥ n0 the

following holds. If H = ([n], E) is a 3-graph with d(i, j) ≥ min
{
i, j, n2

}
+ γn for all {i, j} ∈

(
[n]
2

)
,

then H contains a (tight) Hamilton cycle.

Theorem 1.2 can be seen as an analogue of Pósa’s theorem for 3-graphs. The proof follows
the strategy taken in [20]. (Note that Theorem 1.2 yields a perfect matching in H whenever
n ∈ 3Z by taking every third edge in a Hamilton cycle.) We believe that Theorem 1.2 is the first
sufficient degree sequence condition for the existence of some spanning structure in a hypergraph. In
particular, as far as we are aware, no work has been done to provide degree sequence improvements
to minimum vertex degree thresholds for structures in k-graphs. Note that for both the graph case
and the co-degree case, the largest possible degree in a k-graph is n−k+1, and so a degree sequence
result typically has a gap of Θ(n) between the smallest and largest degrees in the degree sequence
condition. However, a substantial difference for t-degree conditions in k-graphs, where t < k − 1,
is that, to make a significant improvement on the minimum degree threshold, we wish to have the
minimum t-degree in the degree sequence starting a constant proportion lower than the minimum
t-degree threshold, which typically means increasing the degree by Θ(nk−t) (where k − t ≥ 2).
Our main result, a collection of Pósa-type degree sequence strengthenings of Theorem 1.1, is the
following:

Theorem 1.3. For all γ > 0 there exists n0 = n0(γ) ∈ N such that for every n ≥ n0 with n ∈ 3N
and q ∈ [(1−

√
2
3)n], the following holds. Suppose H is a 3-graph on n vertices with degree sequence

d1 ≤ . . . ≤ dn such that

di ≥


(
1
3 + γ

) (
n
2

)
+ iq if 1 ≤ i ≤ q,(

4
9 + γ

) (
n
2

)
if q < i ≤ n

3 ,(
5
9 + γ

) (
n
2

)
if n

3 < i.

Then H contains a perfect matching.

Note that our result contains many (growing with n) degree sequence conditions which do not
imply one another, all of which imply Theorem 1.1, and improve on Theorem 1.1 by having a third
of the vertices substantially below the minimum degree threshold in Theorem 1.1. Theorem 1.3 is
tight in the sense that it is not possible to have more than a third of the vertices below the 4/9
barrier by any ω(n) amount,1 as seen by the following space and parity examples.

1.1. Extremal example 1: space barrier. Let H be a 3-graph with vertex set V (H) = A ∪̇ B,
where |A| = n

3 + 1, |B| = 2n
3 − 1 and E(H) consists of all edges containing at most one vertex from

A. Then for each v ∈ A,

deg(v) =

(2n
3 − 1

2

)
=

2

9
n2 − n+ 1 =

4

9

(
n

2

)
− 7n

9
+ 1,

and for each v ∈ B,

deg(v) =

(
n− 1

2

)
−
(n

3 + 1

2

)
∼ 8

9

(
n

2

)
.

1That is, there exists a constant c > 0 such that it is not possible to have more than a third of the vertices with
degree less than (1− c

n
) 4
9

(
n
2

)
. In general, from now on, when we refer to the relation of vertices and their degree to

‘the x barrier’ we mean their relation to (1 + o(1))x
(
n
2

)
where sometimes, as here, we are more precise in the o(1)

term.
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H has no perfect matching, since each of the n/3 + 1 vertices in A uses two vertices in B to form
an edge, and so to cover A we need at least 2(n/3 + 1) vertices in B. Hence we cannot cover A.
This implies that we cannot have more than n

3 vertices with degree ω(n) below the 4/9 barrier.

1.2. Extremal example 2: parity barrier. Let H be a 3-graph with vertex set V (H) = A∪̇B,
such that |A| = n

3 is odd (and |B| = 2n
3 ). Let E(H) consist of all edges with an even number of

vertices in A. Then for v ∈ A,

deg(v) =
(n

3
− 1
) 2n

3
=

2n2

9
− 2n

3
=

4

9

(
n

2

)
− 4n

9
.

Clearly H has no perfect matching, because every edge using a vertex from A has to use exactly
two vertices from A, so since |A| is odd, it is not possible to cover A by disjoint edges. Note that
in this example we have that every vertex v ∈ B has deg(v) = m1(3, n)− 1. Considering this, it is
perhaps not so surprising that this does not have a perfect matching. However, if we instead take
|A| = n

3 −1 (and still require that |A| is odd), we get that for vertices v ∈ A, deg(v) = 4
9

(
n
2

)
− 7n

9 −2
and that for vertices v ∈ B, deg(v) ≥ m1(3, n) and again there is no perfect matching. Off the
back of these two cases combined, we wonder whether it would be possible to prove the following
statement: every 3-graph H on n ∈ 3N vertices such that n is sufficiently large and 2n/3 vertices

in H have degree at least m1(3, n) whilst the remaining n/3 have degree at least 2n2

9 −
2n
3 + 1 has

a perfect matching. If this were true, the above parity barrier would be tight since it shows that
having each vertex degree only one lower results in no perfect matching. (This is tight in the same
sense that m1(3, n) is a tight threshold - the extremal example there shows that we do not get a
perfect matching if 2n

3 + 1 vertices have degree only one below that threshold.)

It seems difficult to find extremal examples to suggest that the sequences in Theorem 1.3 are
exactly optimal. On the other hand, as we discuss in Section 5, new ideas would be needed to
potentially improve our result. We hope that our result will lead to further development of the
area of hypergraph degree sequences, and further understanding of the variety of degree sequence
improvements possible for known minimum degree threshold results in hypergraphs.

1.3. Paper organisation. Our proof of Theorem 1.3 is split into two parts: an almost-perfect
matching lemma and an absorbing lemma. The proof of the former employs ideas from [8] and [23],
in particular with regards to the ‘swapping’ arguments employed in [8], and also relies on inferences
one can make from the proof of [6, Theorem 4.4] (see the proof of Lemma 2.3). The proof of the
latter borrows from the proof of [6, Lemma 2.4], with some new ideas introduced to accommodate
vertices with small degree.

The rest of the paper is laid out as follows: in Section 2, we discuss the statement of our almost-
perfect matching lemma, and its relation to [6, Theorem 4.4]. In Section 3 we introduce the notion
of swapping pairs, and present the key details of the proof to obtain our almost-perfect matching
(Theorem 2.1), and in Section 4 we discuss our modified absorbing argument and complete the
proof of Theorem 1.3. Finally, in Section 5, we discuss directions for future development.

1.4. Preliminary definitions and notation. We write [n] := {1, 2, . . . , n}. For l ∈ N and a

collection of sets A, we let
(
A
l

)
:= {S ⊆ A : |S| = l}, that is,

(
A
l

)
contains the unordered l-sets of

elements from A, not allowing repeats. We write A(l) to denote the collection of unordered l-sets
of elements from A, where repeats are allowed.

We define a 3-graph H to be a set of vertices V (H) together with an edge set E(H) consisting
of 3-sets of vertices from V (H). Let X ⊆ V (H). Then H[X] is the subhypergraph of H induced
by X and has vertex set X and edge set E(H[X]) := {xyz ∈ E(H) : x, y, z ∈ X}. We also define

H \X = H[V (H) \X]. For a set M ⊆
(V (H)

l

)
, we write V (M) :=

⋃
m∈M m.
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For a 3-graph H on n vertices with degree sequence d1 ≤ . . . ≤ dn and some given γ ∈ R,
we partition the vertex set V (H) into three families according to their position in the degree
sequence. Let V5/9(H, γ) := {v ∈ V (H) : d(v) ≥ (59 + γ)

(
n
2

)
}, V4/9(H, γ) := {v ∈ V (H) : d(v) ≥

(49 + γ)
(
n
2

)
} \ V5/9(H, γ), and V3/9(H, γ) := {v ∈ V (H) : d(v) < (49 + γ)

(
n
2

)
}. We write V5/9, V4/9

and V3/9, respectively, when n and γ are clear from context. We refer to the vertices in these
sets as 5/9th, 4/9th and 3/9th vertices respectively, and also as big, medium and small vertices,
respectively. Furthermore, we say that any vertex in V4/9 ∪ V5/9 is not-small.

2. The almost-perfect matching

For a matching M in a 3-graph H, let L(M) := V (H) \ V (M) be the leave of M . Most of our
work concerns the proof of the following theorem:

Theorem 2.1. Let γ > 0. There exists n′′ = n′′(γ) ∈ N such that for every n ≥ n′′ and q ∈
[

n
3
√
2

]
,

the following holds. Let H be a 3-graph on n vertices with degree sequence d1 ≤ . . . ≤ dn such that

di ≥


(
1
3 + 4γ

) (
n
2

)
+ iq if 1 ≤ i ≤ q,(

4
9 + 4γ

) (
n
2

)
if q < i ≤ n

3 ,(
5
9 + 4γ

) (
n
2

)
if n

3 < i.

Then H contains a matching M of size bn−γn3 c where |L(M) ∩ V5/9| ≥ 2
3 |L(M)|.

Note that we have q ≤ n
3
√
2
, since

(
1
3 + 4γ

) (
n
2

)
+ q2 >

(
4
9 + 4γ

) (
n
2

)
when q > n

3
√
2
, and so if we

take a larger value for q we obtain a pointwise larger degree sequence than that in Theorem 2.1.
In order to prove this theorem, we both have to show that there is a matching M of the required

size, and that L(M) contains sufficiently many 5/9th vertices. The key strategy for the proof is the
use of a swapping mechanism to show that if we do not have enough 5/9th vertices in the leave of
the current matching, we can find a matching of at least the same size, which increases the number
of 5/9th vertices in the leave. In particular, we first show that, given a largest matching which has
size at most bn−γn3 c, we can find a matching of the same size with a constant proportion of big
vertices in the leave (see Lemma 2.4). Then we can infer from the proof of [6, Theorem 4.4] that
a larger matching exists, contradicting that our first choice of matching was largest. Hence there
exists a matching of size bn−γn3 c (see Lemma 2.3). Once we have such a matching, we again use
the swapping arguments to show that we may now obtain a matching of the same size with the
required proportion of big vertices in the leave (see proof of Theorem 2.1 on p.16).

The following definition is crucial in the proof of [6, Theorem 4.4] and for our subsequent swapping
arguments.

Definition 2.2. Let H be a 3-graph, let U be a collection of disjoint 3-sets of vertices in V (H)
and let v ∈ V (H) \ V (U). We define the 3-set link graph Lv(U), to be the (2-)graph on vertex set

V (Lv(U)) :=
⋃
u∈U

u,

and edge set given by any pair of vertices from distinct 3-sets in U that together with v form an
edge in H. i.e. uw ∈ E(Lv(U)) if and only if there exist e, f ∈ U with e 6= f such that u ∈ e, w ∈ f
and vuw ∈ E(H). By slight abuse of notation, for e, f ∈

(
V (H)

3

)
, we sometimes write Lv(e, f) in

place of Lv({e, f}).

Lemma 2.3. Suppose that H is as in Theorem 2.1 and that M is a matching in H such that
|M | < bn−γn3 c and |L(M)∩V5/9| > 2γn

75 . Then there exists a matching M∗ in H with |M∗| ≥ |M |+1.
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Proof. Suppose for a contradiction that no such M∗ exists. Let B(M) ⊆ L(M) be the set of

5/9th vertices in L(M). By assumption we have that |B(M)| > 2γn
75 . Let s := bn−γn3 c− |M |. Then

take S ⊆
(
L(M)

3

)
with |S| = s and |B(M) \ V (S)| > 2γn

75 (i.e. take as many non-big vertices from

L(M) for S before adding any big vertices). Let N = M ∪ S so that |N | = bn−γn3 c. Then for

L(N) := V (H) \ V (N), and B(N) := B(M) ∩ L(N), we still have that |B(N)| > 2γn
75 . Following

the proof of [6, Theorem 4.4],2 we first note that for every v ∈ B(N), we have

|E(Lv(N))| ≥ degH(v)− 3|N | − |L(N)|(n− |L(N)|)−
(
|L(N)|

2

)
>

(
5

9
+ γ

)(
n

2

)
.

Their proof shows that either we may find a larger matching |M∗|, with |M∗| ≥ |M | + 1, or we

have at most 2γn
75 vertices satisfying

|E(Lv(N))| >
(

5

9
+ γ

)(
n

2

)
in L(N). However, since |B(N)| > 2γn

75 , we must be in the former case, and hence able to find the
desired matching. �

The following lemma is the heart of our proof of Theorem 2.1 and will be proved in the next
section.

Lemma 2.4. Let H be as in Theorem 2.1 and M be a matching of H such that |M | ≤ bn−γn3 c.
Then there exists a matching N such that |N | ≥ |M | and |L(N) ∩ V5/9| > 2γn

75 .

These lemmas imply the following key corollary:

Corollary 2.5. For H as in Theorem 2.1 there exists a matching M∗ in H such that |M∗| = bn−γn3 c
and |L(M∗) ∩ V5/9| > 2γn

75 .

3. Proof of Lemma 2.4

In this section we introduce the key swapping lemmas which allow us to obtain the required
matchings with sufficiently many 5/9th vertices in the leave. Throughout this section for a given
maximum matching M ′ in our graph H, we define a phantom matching, M , of M ′ in the following
way: if |M ′| < bn−γn3 c we define M ⊇M ′ such that M consists of disjoint 3-sets and |M | = bn−γn3 c.
If |M ′| ≥ bn−γn3 c we define M ⊆M ′ such that |M | = bn−γn3 c, so that our phantom matching always

has size bn−γn3 c. We shall refer directly to a phantom matching M , meaning a collection of disjoint
3-sets from V (H) such that there exists a maximum matching M ′ such that M is a phantom
matching of M ′. Also, the 3-sets in a phantom matching will sometimes be referred to as phantom
edges.

3.1. Swapping pairs. The swapping arguments we use require a detailed understanding of the
different combinations of vertices that may reside in each phantom edge in a phantom matching.
As such we have a substantial set of notation to deal with the different cases, which is explained
here. Throughout this section, unless stated otherwise, we shall call the vertices of a 3-set e by
e1, e2, e3.

Definition 3.1. Let H be a 3-graph and e, f ∈
(
V (H)

3

)
be disjoint 3-sets in H. Let x, y ∈ V (H)\(e∪

f). We say {e, f} has an {x, y}-matching if there exist vertices e1, e2 ∈ e and f1, f2 ∈ f with e1 6= e2
and f1 6= f2 such that xe1f1, ye2f2 ∈ E(H). We call {xe1f1, ye2f2} an {x, y}-matching for {e, f}.

2Appendix A includes a brief summary of the strategy used in the proof of [6, Theorem 4.4], and the key details
we take from it.
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Furthermore, in this subsection denote the vertices in e and f not present in this {x, y}-matching
by e3 and f3 respectively.

Definition 3.2. Let H be a 3-graph on n vertices with degree sequence d1 ≤ . . . ≤ dn. Define a
bijection IH : V (H)→ [n] such that IH(x) = i implies that dH(x) := di. This natural bijection will
be used several times throughout this section. Let x and y be 3/9th vertices in H. We say that

y is

{
x-little if IH(y) < IH(x);

x-large if IH(y) > IH(x).

Definition 3.3. Let H be a 3-graph and M be a phantom matching in H. Let x, y ∈ L(M) and

{e, f} ∈
(
M
2

)
. We say {x, y} is a 5/9th (or big) swapping pair for {e, f} if there exists an {x, y}-

matching for {e, f} such that {e3, f3} ∩ V5/9 6= ∅. We say that {x, y} is a 4/9th (or not-small)
swapping pair for {e, f} if there exists an {x, y}-matching for {e, f} such that {e3, f3} ∩ (V4/9 ∪
V5/9) 6= ∅. We say {x, y} is a large swapping pair for {e, f} if there exists an {x, y}-matching for
{e, f} such that both e3 and f3 are x-large and y-large. In general, if {x, y} is a 5/9th, 4/9th or
large swapping pair for {e, f} then we say that {x, y} is a swapping pair for {e, f}. We call an
{x, y}-matching for {e, f} good if it is a witness for {x, y} being a swapping pair for {e, f}.

For a phantom matching M and a vertex x ∈ L(M), we now describe different subsets of M
according to the types of vertices in the phantom edges of M . We describe two partitions of M ,
and two partitions of

(
M
2

)
(noting that some sets of the partition could be empty). In the first

partition of M , E3/9(M,x), we differentiate according to how vertices relate to the vertex x, and to
V3/9. More specifically, for each phantom edge in M , we wish to distinguish whether each vertex
in the phantom edge is either in V4/9 ∪ V5/9 or not, and if not, then, relative to x, whether each
vertex in the phantom edge has smaller or larger index than x:

E```(M,x) := {e ∈M | e1, e2, e3 are x-little}
E``L(M,x) := {e ∈M | e1 and e2 are x-little; e3 is x-large}
E``N (M,x) := {e ∈M | e1 and e2 are x-little; e3 is not-small}
E`LL(M,x) := {e ∈M | e1 is x-little; e2 and e3 are x-large}
E`LN (M,x) := {e ∈M | e1 is x-little; e2 is x-large; e3 is not-small}
E`NN (M,x) := {e ∈M | e1 is x-little; e2 and e3 are not-small}
ELLL(M,x) := {e ∈M | e1, e2, e3 are x-large}
ELLN (M,x) := {e ∈M | e1 and e2 are x-large; e3 is not-small}
ELNN (M,x) := {e ∈M | e1 is x-large; e2 and e3 are not-small}
ENNN (M,x) := {e ∈M | e1, e2, e3 are not-small}

When it is clear from context, we drop the (M,x). Note that we use ` to denote x-little vertices,
L to denote x-large vertices, and N to denote not-small vertices, i.e. those in V4/9 ∪ V5/9. We say
a vertex v is of type ` (with respect to x) if v is x-little. Similarly, we say that v is of type L (with
respect to x) if v is x-large, and that v is of type N if v is not-small. For F ∈ E3/9(M,x) and e ∈ F ,
we say that e is of type F . We take the convention that we order the vertices in a phantom edge
according to the following total order on their vertex type with respect to x:

(1) ` < L < N.

We also take the natural partial ordering on the sets of the partition E3/9(M,x) acquired from (1),
that is, we take the product of the linear orders. For example, given M and x, we have that

E``` < E``N < E`LN < ENNN ,

but E`NN and ELLL are incomparable. We also extend this ordering to the elements of the sets in
E3/9(M,x). That is, for e ∈ E```, e′ ∈ E``N , e′′ ∈ E`LN and e′′′ ∈ ENNN , we have e < e′ < e′′ < e′′′,
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and for f ∈ E`NN and f ′ ∈ ELLL, we have both that f ≮ f ′ and f ≯ f ′. We shall use this partition
to understand when we may obtain large and 4/9th swapping pairs.

In the second partition of M , denoted by E5/9(M), we differentiate based on the number of
vertices from V5/9. This is used in order to understand when we may obtain 5/9th swapping pairs:

Ebbb(M) := {e ∈M | e1, e2, e3 are not big}
EbbB(M) := {e ∈M | e1, e2 are not big; e3 is big}
EbBB(M) := {e ∈M | e1 is not big; e2, e3 are big}
EBBB(M) := {e ∈M | e1, e2, e3 are big}

Note that we use B to denote 5/9th (big) vertices, and b to denote all vertices which are not in
V5/9. We say that a vertex v is of type b if v is not big, of type B if v is big, and we have the total
ordering b < B on these two vertex types. This ordering extends to a total ordering on the sets in
E5/9(M) given by

Ebbb(M) < EbbB(M) < EbBB(M) < EBBB(M).

As before, we also consider the related ordering to the elements of the sets, so that we may write
e < e′ < e′′ < e′′′ when e ∈ Ebbb(M), e′ ∈ EbbB(M), e′′ ∈ EbBB(M) and e′′′ ∈ EBBB(M).

Let {E1, E2} ∈ E3/9(M,x)(2), and {F1, F2} ∈ E5/9(M)(2) (where repetition is allowed). We call

a pair of phantom edges {e, f} ∈
(
M
2

)
type E1E2 for x if there exists i, j ∈ {1, 2} with i 6= j such

that e ∈ Ei and f ∈ Ej and type F1F2 if e ∈ Fi and f ∈ Fj .
We allow the orders on E3/9(M,x) and E5/9(M) to extend in the natural way to E3/9(M,x)(2)

and E5/9(M)(2) respectively3, and define two partitions of
(
M
2

)
according to these partitions. The

first partition is required for Lemma 3.8, while the second is required for Lemma 3.9 (both stated
later).

Partition 1:

T 4
M,x := {{e, f} ∈

(
M
2

)
| {e, f} is of type E1E2 ≥ F1F2 for some pair

F1F2 ∈ {E```ENNN , ELLLELLL} for x}

T 5
M,x := {{e, f} ∈

(
M
2

)
\ T 4

M,x| {e, f} is of type E1E2 ≥ F1F2 for some pair

F1F2 ∈ {E``NE`NN , E``LELNN , E`LNE`LN , E`LLELLN} for x}

T 6
M,x := {{e, f} ∈

(
M
2

)
\ (
⋃5
i=4 T

i
M,x)| {e, f} is of type E1E2 ≥ F1F2 for some

pair F1F2 ∈ {E``NE``N , E``LELLN} for x}

T 7
M,x := {{e, f} ∈

(
M
2

)
\ (
⋃6
i=4 T

i
M,x)| {e, f} is of type E1E2 ≥ F1F2 for some

pair F1F2 ∈ {E```E``N , ELLLE``L, E`LLE`LL} for x}

T 8
M,x := {{e, f} ∈

(
M
2

)
\ (
⋃7
i=4 T

i
M,x)| {e, f} is of type E1E2 ≥ E``LE``L for x}

T 10
M,x :=

(
M
2

)
\ (
⋃8
i=4 T

i
M,x)

3That is, for E1, E2, F1, F2 ∈ E3/9(M,x) (E5/9(M)), we have that E1E2 ≤ F1F2 if and only if there exists

i, j ∈ {1, 2} and k, ` ∈ {1, 2} with i 6= j and k 6= ` such that Ei ≤ Fk and Ej ≤ F`.
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Partition 2:

S4
M := {{e, f} ∈

(
M
2

)
| {e, f} is of type E1E2 ≥ EbbbEBBB for x}

S5
M := {{e, f} ∈

(
M
2

)
\ (S4

M )| {e, f} is of type E1E2 ≥ EbbBEbBB for x}

S6
M := {{e, f} ∈

(
M
2

)
\ (
⋃5
i=4 S

i
M )| {e, f} is of type E1E2 ≥ EbbBEbbB for x}

S7
M := {{e, f} ∈

(
M
2

)
\ (
⋃6
i=4 S

i
M )| {e, f} is of type E1E2 ≥ EbbbEbbB for x}

S10
M :=

(
M
2

)
\ (
⋃7
i=4 S

i
M )

The motivation for the superscript i ∈ {4, 5, 6, 7, 8} (i ∈ {4, 5, 6, 7}), is that given a phantom
matching M and two vertices x 6= y ∈ L(M), we will show that {x, y} is a swapping pair for
every pair {e, f} ∈ T iM,x ∩ T iM,y ({e, f} ∈ SiM ), such that |E(Lx(e, f))|, |E(Ly(e, f))| ≥ i. Observe

that T 10
M,x and T 10

M,y (S10
M ) consist(s) of the pairs {e, f} such that even if Lx(e, f) and Ly(e, f) were

complete bipartite graphs, {x, y} would not be a swapping pair for {e, f}.
Before moving onto our results relating to the various partitions defined above, for vertices

x 6= y ∈ L(M) we additionally define E3/9(M,x, y) to be the collection containing the following sets

E```(M,x, y) := {e ∈M | e1, e2, e3 are x-little and y-little}
E``L(M,x, y) := {e ∈M | e1 and e2 are x-little and y-little;

e3 is x-large and y-large}
E``N (M,x, y) := {e ∈M | e1 and e2 are x-little and y-little;

e3 is not-small}
E`LL(M,x, y) := {e ∈M | e1 is x-little and y-little;

e2 and e3 are x-large and y-large}
E`LN (M,x, y) := {e ∈M | e1 is x-little and y-little; e2 is x-large and y-large;

e3 is not-small}
E`NN (M,x, y) := {e ∈M | e1 is x-little and y-little; e2 and e3 are not-small}
ELLL(M,x, y) := {e ∈M | e1, e2, e3 are x-large and y-large}
ELLN (M,x, y) := {e ∈M | e1 and e2 are x-large and y-large; e3 is not-small}
ELNN (M,x, y) := {e ∈M | e1 is x-large and y-large; e2 and e3 are not-small}
ENNN (M,x, y) := {e ∈M | e1, e2, e3 are not-small}

Note that this is not necessarily a partition of M . We introduce this definition to avoid any
ambiguity later. Given E1E2 ∈ E3/9(M,x, y)(2), we say that {e, f} ∈

(
M
2

)
is of type E1E2 for x and

y if there exist i, j ∈ {1, 2} with i 6= j such that e ∈ Ei and f ∈ Ej .

3.2. Results.

Proposition 3.4. Let H be a 3-graph and e, f be disjoint 3-sets of vertices in V (H). Let x, y ∈
V (H) \ (e ∪ f) and |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 4. Then {e, f} has an {x, y}-matching.

Proof. Let E∗ = E(Lx(e, f)) ∩ E(Ly(e, f)). We separate into cases based on |E∗|.
If |E∗| ≥ 4, then it is straightforward to see that we can find a matching of size two on the edges

of E∗, which yields an {x, y}-matching.
If |E∗| = 3 and contains two disjoint edges then we obtain an {x, y}-matching. Else, the three

shared edges all share a vertex. Without loss of generality, let this vertex be e1 ∈ e. Consider
the edge in E(Lx(e, f)) \ E∗. This edge does not contain e1 and contains only one of the three
neighbours of e1 in f . Thus taking this edge for x, at least one of the edges containing e1 is disjoint
and can be taken for y, yielding an {x, y}-matching for {e, f}.
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Suppose now that |E∗| = 2. Either this is an {x, y}-matching, or the two edges share a vertex.
Without loss of generality, suppose this vertex is e1 ∈ e. Then between the four edges which are
not shared there exists an edge which does not contain e1. Then we find an {x, y}-matching by
taking this edge, and any edge in E∗ which does not intersect the chosen edge.

If |E∗| = 1, then there are a total of six edges which are not shared. At least one of these is
disjoint from the edge in E∗, allowing us to find an {x, y}-matching.

Finally suppose that E∗ = ∅. Since |E(Lx(e, f))| ≥ 4, it follows that Lx(e, f) must have a vertex
of degree at least two in e. Without loss of generality, let this vertex be e1. Then there exists an
edge in E(Ly(e, f)) not containing e1 (as |E(Ly(e, f))| ≥ 4). Without loss of generality let this
edge be e2f1. Since e1 has degree at least two in E(Lx(e, f)), there exists j ∈ {2, 3} such that
e1fj ∈ E(Lx(e, f)). Then {xe1fj , ye2f1} is an {x, y}-matching for {e, f}. �

To prove the next lemma, we use the following definitions: for a phantom matching M in H and
phantom edges e, f ∈ M , let e = {e1, e2, e3} and f = {f1, f2, f3}. Let x ∈ V (H) \ (e ∪ f). For
g ∈ (e ∪ f), we say that Lx(e, f) has a star at g if dLx(e,f)(g) = 3. If there exist i, j ∈ {1, 2, 3}
such that there are stars at ei and fj in Lx(e, f) then we say that Lx(e, f) has a fan at eifj . In
addition, we remind the reader that we take the convention of ordering the vertices in a phantom
edge according to the order on their vertex type with respect to relevant parameters (x and y), and
splitting ties arbitrarily.

Lemma 3.5. Let γ > 0 and H be a 3-graph on n vertices as given in Theorem 2.1. Let M be
a phantom matching in H, let x, y ∈ L(M) be 3/9th vertices with IH(x) > IH(y), and consider

{e, f} ∈
(
M
2

)
. Suppose there exists i ∈ {4, 5, 6, 7, 8} such that {e, f} ∈ T iM,x and {e, f} ∈ T iM,y.

Suppose further that there exist types E1, E2 with {E1, E2} ∈ E3/9(M,x, y)(2) such that {e, f} is of
type E1E2 for x and y; and |E(Lx(e, f))|, |E(Ly(e, f))| ≥ i. Then {x, y} is a swapping pair for
{e, f}.

Proof. First note that, given IH(x) > IH(y) and {e, f} being of type E1E2 for both x and y, we
have that z ∈ (e ∪ f) is x-little (x-large) if and only if it is y-little (y-large). Indeed, assume for a
contradiction that z is both x-little and y-large. Then, in order for {e, f} to be of type E1E2 for
both x and y, there exists z′ ∈ (e ∪ f) such that z′ is both x-large and y-little. But IH(x) > IH(y)
and so no vertex can be both x-large and y-little. Hence no such z exists. Thus throughout what
follows whenever we say a vertex is x-little (x-large) we implicitly mean it is also y-little (y-large),
and vice versa.

Recall that we say an {x, y}-matching is good for {e, f} if it is witness for {x, y} being a swapping
pair for {e, f}. Note that {e, f} having {x, y} as a swapping pair is monotonous with respect to
the partial order, that is, if {e, f} was instead of type F1F2 and E1E2 ≤ F1F2, then {x, y} would
still be a swapping pair for {e, f}. We prove the lemma by considering the different cases.

Case 1: i = 4. Since |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 4, by Proposition 3.4 we have that {e, f}
has an {x, y}-matching. Observe that, since {e, f} ∈ T 4

M,x and {e, f} ∈ T 4
M,y, whichever vertices

of e and f are in this {x, y}-matching for {e, f}, we either have that at least one of the remaining
vertices is not-small, or both the remaining vertices are x-large and y-large respectively. Hence
{x, y} is a swapping pair for {e, f}.

Case 2: i = 5. It suffices to prove that Lemma 3.5 holds for {e, f} of type E``NE`NN , E``LELNN ,
E`LNE`LN and E`LLELLN . We consider these cases one by one, recalling our convention that
e = {e1, e2, e3} and f = {f1, f2, f3}.

Case 2.1: {e, f} is of type E``NE`NN for x and y. By convention, e1, e2, f1 are x-little and
e3, f2, f3 are not-small. If either e1f1 or e2f1 is an edge in either Lx(e, f) or Ly(e, f), without loss
of generality assume that e1f1 is an edge in Lx(e, f). Then either Ly(e, f) contains an edge disjoint
from e1f1, which in turn yields that {x, y} is a 4/9th swapping pair for {e, f}, or Lx(e, f) = Ly(e, f)
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and they are both precisely the fan at e1f1. Then choosing an {x, y}-matching that covers e1 and
f1, we see that {x, y} is a 4/9th swapping pair for {e, f}.

Else we have that neither e1f1 or e2f1 are edges in Lx(e, f) and Ly(e, f). If e3f1 is an edge in
either Lx(e, f) and Ly(e, f) we see that {x, y} is a 4/9th swapping pair for {e, f}, since there is
certainly an {x, y}-matching containing f1. Otherwise Lx(e, f) and Ly(e, f) only have edges incident
to f2 and f3. Since |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 5 we have that there exist i, j ∈ {1, 2}, i 6= j, and
k, ` ∈ {2, 3}, k 6= `, such that {xeifk, yejf`} is a good {x, y}-matching for {e, f}.

Case 2.2: {e, f} is of type E``LELNN for x and y. By convention, e1, e2 are x-little, e3, f1 are
x-large and f2, f3 are not-small. We showed in Case 2.1 that either we obtain a matching leaving
one of f2 or f3 unmatched, or we obtain a matching leaving e3 and f1 unmatched. In this setting,
the same argument yields that {x, y} is a 4/9th swapping pair for {e, f} in the first case, and a
large swapping pair for {e, f} in the second case.

Case 2.3: {e, f} is of type E`LNE`LN for x and y. By convention, e1, f1 are x-little, e2, f2
are x-large and e3, f3 are not-small. We start as in Case 2.1. If e1f1 is an edge in either Lx(e, f)
or Ly(e, f), without loss of generality assume that e1f1 is an edge in Lx(e, f). Then either Ly(e, f)
contains an edge disjoint from e1f1, which in turn either swaps out at least one 4/9th vertex, or
two x-large vertices, yielding that {x, y} is a swapping pair for {e, f}, or Ly(e, f) = Lx(e, f) and
they are both precisely the fan at e1f1. Then choosing an {x, y}-matching that covers e1 and f1,
we see that {x, y} is again a swapping pair for {e, f}.

So suppose neither Lx(e, f) nor Ly(e, f) contains the edge e1f1. Suppose that e1 is not isolated
in Lx(e, f) and f1 is not isolated in Ly(e, f) (or vice versa). Then again, choosing an edge which
covers e1 and another to cover f1 yields a good swapping pair. So in the remaining case we have that
precisely one of e1 or f1 is isolated in both Lx(e, f) and Ly(e, f) (since |E(Lx(e, f))|, |E(Ly(e, f))| ≥
5, so we cannot have that both are isolated). Without loss of generality, assume that e1 is isolated.
If Lx(e, f) = Ly(e, f), then we can either take e2f1 and e3f2 or e2f2 and e3f1 to yield a good
swapping pair. If Lx(e, f) 6= Ly(e, f) then their union is a K2,3, and in each graph at most one of
the edges of K2,3 is missing. So e2f1 is an edge in one of the link graphs; without loss of generality
let e2f1 ∈ Lx(e, f). If e3f2 /∈ Ly(e, f) then we must have e3f2 ∈ Lx(e, f) and also e2f1 ∈ Ly(e, f).
In either case we yield that {x, y} is a swapping pair for {e, f}.

Case 2.4: {e, f} is of type E`LLELLN for x and y.
By convention, e1 is x-little, e2, e3, f1, f2 are x-large and f3 is not-small. First note that if we can

cover e1 by an {x, y}-matching, then we are done. We consider the number of edges in both Lx(e, f)
and Ly(e, f) containing e1. Assume e1 is incident to at least 2 edges in, without loss of generality,
Lx(e, f). Then there exist i, j ∈ {1, 2, 3} with i 6= j, and k ∈ {2, 3} such that {xe1fi, yekfj} is a
good {x, y}-matching for {e, f}.

So assume there is at most one edge incident to e1 in Lx(e, f) and at most one edge incident
to e1 in Ly(e, f). If Lx(e, f) (Ly(e, f)) has an edge incident to e1 then there exists i ∈ {1, 2, 3}
such that e1fi ∈ Lx(e, f) (Ly(e, f)). Then Ly(e, f) (Lx(e, f)) has an edge not intersecting e1fi (as
|E(Ly(e, f))| (|E(Lx(e, f))|) ≥ 5) and {x, y} is a swapping pair for {e, f}.

Hence assume Lx(e, f) and Ly(e, f) only have edges incident to e2 and e3. Since
|E(Lx(e, f))|, |E(Ly(e, f))| ≥ 5 we have that there exist i, j ∈ {2, 3} with i 6= j, and k, ` ∈ {1, 2}
with k 6= `, such that {xeifk, yejf`} is a good {x, y}-matching in {e, f}.

Case 3: i = 6.
It suffices to prove that Lemma 3.5 holds for {e, f} of type E``NE``N and E``LELLN .
Case 3.1: {e, f} is of type E``NE``N for x and y.
By convention, e1, e2, f1, f2 are x-little and e3, f3 are not-small. Since

|E(Lx(e, f))| ≥ 6 we must have that there exist i, j ∈ {1, 2} such that eifj ∈ Lx(e, f). Then
either Ly(e, f) is the union of {e3, f3} and the fan at eifj , or one of the edges in Ey := {e[2]\{i}f3,
e3f[2]\{j}, e[2]\{i}f[2]\{j}} is in E(Ly(e, f)). In the latter case, we have that {xeifj , yab} is a good

11



{x, y}-matching for {e, f} where ab ∈ Ey. In the former, since |E(Lx(e, f))| ≥ 6 we observe that at
least one of the following edges is in E(Lx(e, f)): e[2]\{i}f[2]\{j}, e[2]\{i}fj , eif[2]\{j}, e[2]\if3, e3f[2]\j .
It is then easy to find a good {x, y}-matching for {e, f} which does not include at least one of e3
or f3.

Case 3.2: {e, f} is of type E``LELLN for x and y.
By convention, e1, e2 are x-little, e3, f1, f2 are x-large and f3 is not-small. Observe that if we can

find an {x, y}-matching avoiding e3 or f3 then we have a good {x, y}-matching for {e, f}. Suppose
at least one of Lx(e, f) and Ly(e, f) has three edges containing e3. Without loss of generality let it
be Ly(e, f). Then in Lx(e, f), there are at least three edges which are incident to e1 or e2, and so at
least one of e1 and e2 has an edge avoiding f3. Without loss of generality let e2 have such an edge.
Then there exists i ∈ {1, 2} such that both xe2fi and ye3f[2]\{i} are edges, yielding a good {x, y}-
matching for {e, f}. Else, both Lx(e, f) and Ly(e, f) have at most two edges containing e3. In this
case they both have at least four edges avoiding e3 and it is possible to find an {x, y}-matching
avoiding e3, and hence {x, y} is a swapping pair for {e, f}.

Case 4: i = 7.
It suffices to prove that Lemma 3.5 holds for {e, f} of type E```E``N , ELLLE``L and E`LLE`LL.
Case 4.1: {e, f} is of type E```E``N for x and y.
By convention, e1, e2, e3, f1, f2 are x-little and f3 is not-small. Since |E(Lx(e, f))|, |E(Ly(e, f))| ≥

7, it follows that both have at least four edges incident to f1 and f2. Hence there exist i, j ∈ {1, 2, 3}
with i 6= j, and k, ` ∈ {1, 2} with k 6= `, such that {xeifk, yejf`} is a good {x, y}-matching for
{e, f}.

Case 4.2: {e, f} is of type ELLLE``L for x and y.
The same argument as in Case 4.1 yields that {x, y} is a large swapping pair for {e, f}.
Case 4.3: {e, f} is of type E`LLE`LL for x and y.
By convention, e1, f1 are x-little and e2, e3, f2, f3 are x-large. Note that since we have that

both |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 7, neither Lx(e, f) nor Ly(e, f) contains an isolated vertex. If
e1f1 ∈ Lx(e, f) (Ly(e, f)) then, since |E(Ly(e, f))| (|E(Lx(e, f))|) ≥ 7, there exist i, j ∈ {2, 3} such
that {xe1f1, yeifj} ({xeifj , ye1f1}) is a swapping pair for {e, f}. Otherwise it is possible to take
two disjoint edges, one in Lx(e, f) containing e1 and one in Ly(e, f) containing f1, and we see that
{x, y} is a large swapping pair for {e, f}.

Case 5: i = 8.
It suffices to prove that Lemma 3.5 holds for {e, f} of type E``LE``L. By convention, e1, e2, f1, f2

are x-little and e3, f3 are x-large. Since |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 8, it follows that both have at
least three edges avoiding both e3 and f3. Hence there exist i, j ∈ {1, 2} with i 6= j and k, ` ∈ {1, 2}
with k 6= ` such that {xeifk, yejf`} is a good {x, y}-matching for {e, f}. �

Lemma 3.6. Let H be a 3-graph on n vertices as given in Theorem 2.1 and M be a phantom
matching in H. Let x ∈ L(M). Then x is in at most 3γ

(
n
2

)
edges that are not of the form xcd

where c belongs to a phantom edge e in M , d belongs to a phantom edge f in M , and e 6= f .

Proof. Recall that a phantom matching always has size bn−γn3 c. Observe that all edges containing
x that are not of the form xcd, as given above, either include at least one vertex in L(M) that is
not x or are of the form xe1e2 where e1 and e2 both belong to the same phantom edge in M . There
are at most γn2 of the former and at most n− γn of the latter. Hence Lemma 3.6 holds. �

Lemma 3.7. Let H be a 3-graph on n vertices as given in Theorem 2.1 and M be a phantom match-
ing in H. Let x, y ∈ L(M) and {e, f} ∈

(
M
2

)
. Suppose there exists i ∈ {4, 5, 6, 7} and {F1, F2} ∈

E5/9(M)(2) such that {e, f} ∈ SiM , where {e, f} is of type F1F2 and |E(Lx(e, f))|, |E(Ly(e, f))| ≥ i.
Then {x, y} is a 5/9th swapping pair for {e, f}.
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Proof. Consider the following injective map f : E5/9(M) → E3/9(M,x) for any x ∈ L(M), given
by:

f(Ebbb(M)) = E```(M,x),
f(EbbB(M)) = E``N (M,x),
f(EbBB(M)) = E`NN (M,x),
f(EBBB(M)) = ENNN (M,x).

Observe that {x, y} is a 4/9th swapping pair for {e, f} of type f(F1)f(F2) if and only if {x, y} is
a 5/9th swapping pair for {e, f} of type F1F2.

From Case 1 in the proof of Lemma 3.5, if {e, f} is of type E```ENNN with
|E(Lx(e, f))|, |E(Ly(e, f))| ≥ 4, then {x, y} is a 4/9th swapping pair for {e, f}. Hence, if {e, f}
is of type EbbbEBBB with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 4, then {x, y} is a 5/9th swapping pair for
{e, f}.

Similarly, from Case 2.1 in the proof of Lemma 3.5, if we have that {e, f} is of type E``NE`NN
with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 5, then {x, y} is a 4/9th swapping pair for {e, f}. Hence, if
{e, f} is of type EbbBEbBB with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 5, then {x, y} is a 5/9th swapping
pair for {e, f}.

From Case 3.1 in the proof of Lemma 3.5, if we have that {e, f} is of type E``NE``N with
|E(Lx(e, f))|, |E(Ly(e, f))| ≥ 6, then {x, y} is a 4/9th swapping pair for {e, f}. Hence, if {e, f}
is of type EbbBEbbB with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 6, then {x, y} is a 5/9th swapping pair for
{e, f}.

Finally, from Case 4.1 in the proof of Lemma 3.5, if we have that {e, f} is of type E```E``N with
|E(Lx(e, f))|, |E(Ly(e, f))| ≥ 7, then {x, y} is a 4/9th swapping pair for {e, f}. Hence, if {e, f}
is of type EbbBEbbb with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 7, then {x, y} is a 5/9th swapping pair for
{e, f}.

By the partial order on E5/9(M)(2), this suffices to prove the Lemma. �

We remind the reader that for H a 3-graph on n vertices with degree sequence d1 ≤ . . . ≤ dn,
there exists a bijection IH : V (H) → [n] such that IH(x) = i implies that dH(x) := di, which
implies an ordering 1, . . . , n of the vertices according to their position in the degree sequence.

Lemma 3.8. Let H be a 3-graph on n vertices as given in Theorem 2.1 and M be a phantom match-
ing in H. Let x ∈ L(M) ∩ V3/9. Then there exists i ∈ {4, 5, 6, 7, 8} and {E1, E2} ∈ E3/9(M,x)(2)

such that there are at least γ
(
n
2

)
/500 pairs {e, f} ∈ T iM,x of type E1E2 for x with |E(Lx(e, f))| ≥ i.

Proof. Let j ∈ [q] such that IH(x) = j. We start by noting that, by Lemma 3.6,

(2) |E(Lx(M))| ≥
(

1

3
+ γ

)(
n

2

)
+ jq.

Observe that one can place at most ∑
i∈{4,5,6,7,8,10}

(i− 1)|T iM,x|

link edges into E(Lx(M)) such that there does not exist i ∈ {4, 5, 6, 7, 8} and {e, f} ∈
(
M
2

)
with

{e, f} ∈ T iM,x and |E(Lx(e, f))| ≥ i. Since there are at most q small vertices in H, we have that

q ≥ |V (M) ∩ V3/9|, and by considering the different types of phantom edges in M according to
E3/9(M,x), we see that

q ≥3|E```|+ 3|E``L|+ 3|E`LL|+ 3|ELLL|+ 2|E``N |(3)

+ 2|E`LN |+ 2|ELLN |+ |E`NN |+ |ELNN |.
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Similarly, we know that the number of x-little vertices in V (M) is at most j − 1, and so from
E3/9(M,x), we also have that

(4) j ≥ 3|E```|+ 2|E``L|+ 2|E``N |+ |E`LL|+ |E`LN |+ |E`NN |.
One can construct a lower bound for jq using (3) and (4) and, since∑

i∈{4,5,6,7,8,10}

|T iM,x| =
(
|M |

2

)
≤ 1

9

(
n

2

)
,

we have that
1

3

(
n

2

)
≥ 3

∑
i∈{4,5,6,7,8,10}

|T iM,x|.

We claim that

(5)
∑

i∈{4,5,6,7,8,10}

(i− 1)|T iM,x| ≤
1

3

(
n

2

)
+ jq.

Note that ∑
i∈{4,5,6,7,8,10}

(i− 1)|T iM,x| = 3
∑

i∈{4,5,6,7,8,10}

|T iM,x|+
∑

i∈{4,5,6,7,8,10}

(i− 4)|T iM,x|.

We want to show that ∑
i∈{4,5,6,7,8,10}

(i− 4)|T iM,x| ≤ jq.

Indeed, noting that

(6)
∑

i∈{4,5,6,7,8,10}

(i− 4)|T iM,x| = |T 5
M,x|+ 2|T 6

M,x|+ 3|T 7
M,x|+ 4|T 8

M,x|+ 6|T 10
M,x|,

and using the lower bound on jq described above, we see that

(7) jq −
∑

i∈{4,5,6,7,8,10}

(i− 4)|T iM,x| ≥ 0,

as required (see Appendix B).

We say that a pair {e, f} ∈
(
M
2

)
is good for x if {e, f} ∈ T iM,x and |E(Lx(e, f))| ≥ i for some

i ∈ {4, 5, 6, 7, 8}. It follows from (2) and (5) that there are at least γ
(
n
2

)
link edges in good pairs

{e, f} ∈
(
M
2

)
for x. Since each good pair contains at most nine edges, this yields at least γ

(
n
2

)
/9 good

pairs. Since each pair {e, f} is one of 55 types for x, we have that there exists an i ∈ {4, 5, 6, 7, 8, 10}
and {E1E2} ∈ E3/9(M,x)(2) such that there are at least γ

(
n
2

)
/500 pairs {e, f} ∈ T iM,x of type E1E2

for x with |E(Lx(e, f))| ≥ i. �

Lemma 3.9. Let H be a 3-graph on n vertices as given in Theorem 2.1 and M be a phantom
matching in H. Let x ∈ L(M) ∩ V4/9. Then there exists i ∈ {4, 5, 6, 7} and {F1, F2} ∈ E5/9(M)(2)

such that there are at least γ
(
n
2

)
/200 pairs {e, f} ∈ SiM of type F1F2 with |E(Lx(e, f))| ≥ i.

Proof. The proof follows a similar outline to that of the proof of Lemma 3.8. By Lemma 3.6,

(8) |E(Lx(M))| ≥
(

4

9
+ γ

)(
n

2

)
,

and we have that one can place at most ∑
i∈{4,5,6,7,10}

(i− 1)|SiM |
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link edges into E(Lx(M)) such that there does not exist i ∈ {4, 5, 6, 7} and {e, f} ∈
(
M
2

)
with

{e, f} ∈ SiM and |E(Lx(e, f))| ≥ i. Since |M | = bn−γn3 c, we have that |EBBB| = bn−γn3 c− (|Ebbb|+
|EbbB|+ |EbBB|). Furthermore, since there are in total between |V3/9|+ |V4/9|−γn and |V3/9|+ |V4/9|
small and medium vertices in V (M), we have that |V3/9|+ |V4/9|−γn ≤ 3|Ebbb|+2|EbbB|+ |EbBB| ≤
|V3/9|+ |V4/9|. Thus there exists

(9) − γn

3
≤ k ≤ 2γn

3
,

such that 3|Ebbb|+ 2|EbbB|+ |EbBB|+ k = |V3/9|+ |V4/9| − γn/3 ≤ n−γn
3 . Hence

(10) |EBBB| ≥ 2|Ebbb|+ |EbbB|+ k.

Now, since
∑

i∈{4,5,6,7,10} |SiM | =
(|M |

2

)
≤ 1

9

(
n
2

)
, we have that

4

9

(
n

2

)
≥ 4

∑
i∈{4,5,6,7,10}

|SiM |.

We claim that

(11)
∑

i∈{4,5,6,7,10}

(i− 1)|SiM,x| ≤
(

4

9
+
γ

2

)(
n

2

)
.

To see this, note that∑
i∈{4,5,6,7,10}

(i− 1)|SiM | = 4
∑

i∈{4,5,6,7,10}

|SiM |+
∑

i∈{4,5,6,7,10}

(i− 5)|SiM |,

and thus if we can show that

(12)
∑

i∈{4,5,6,7,10}

(i− 5)|SiM | ≤
γ

2

(
n

2

)
,

then (11) holds. Indeed, noting that

(13)
∑

i∈{4,5,6,7,10}

(i− 5)|SiM | = −|S4
M |+ |S6

M |+ 2|S7
M |+ 5|S10

M |,

and using (9) and (10), we find that (12) holds (see Appendix C).

We say that a pair {e, f} ∈
(
M
2

)
is good if {e, f} ∈ SiM and |E(Lx(e, f))| ≥ i for some i ∈

{4, 5, 6, 7}. It follows from (8) and (11), that there are at least γ
(
n
2

)
/2 edges in good pairs {e, f} ∈(

M
2

)
for x. Since each good pair contains at most nine edges, this yields at least γ

(
n
2

)
/18 good

pairs. Since each pair {e, f} is one of 10 types, we have that there exists an i ∈ {4, 5, 6, 7, 10} and

{E1E2} ∈ E5/9(M)(2) such that there are at least γ
(
n
2

)
/200 pairs {e, f} ∈ SiM of type E1E2 with

|E(Lx(e, f))| ≥ i. �

We are now in a position to prove Lemma 2.4:

Proof. [Proof of Lemma 2.4] Let M be a phantom matching, such that |L(M) ∩ V5/9| is as large

as possible. Suppose that |L(M) ∩ V5/9| =: r ≤ 2γn
75 . Let s = 2γn

75 + 1 − r. We wish to update M
to a (phantom) matching M∗ such that the number of matching edges does not decrease, and we

have swapped out at least an additional s vertices of V5/9 so that |L(M∗) ∩ V5/9| ≥ s+ r > 2γn
75 .

Suppose first that |L(M) ∩ V4/9| ≥ γn/25. By Lemmas 3.7 and 3.9, and taking n sufficiently
large, since

γn

25
·
γ
(
n
2

)
200

≥
(
bn−γn3 c

2

)
,

15



there exist two 4/9th vertices x, y ∈ L(M) and {e, f} ∈
(
M
2

)
such that {x, y} is a 5/9th swapping

pair for {e, f}. So we may update M by swapping e and f for a disjoint pair of edges e′ and f ′

containing x and y respectively, such that ((e∪f)\(e′∪f ′))∩V5/9 6= ∅. Then the updated phantom
matching has at least the same number of matching edges, and we have an updated leave which
loses two 4/9th vertices but gains at least one 5/9th vertex. Hence, if there exist, say, at least
3γn/25 vertices in L(M)∩ V4/9, then one may apply Lemmas 3.7 and 3.9 and this process at most

s ≤ 2γn
75 + 1 times to get an updated phantom matching M∗ with leave L(M∗) containing strictly

more than 2γn
75 vertices in V5/9, as required.

If |L(M) ∩ V5/9| ≤ 2γn
75 and |L(M) ∩ V4/9| ≤ 3γn/25, we have that |L(M) ∩ V3/9| ≥ 4γn/5. By

Lemmas 3.5 and 3.8, since |L(M) ∩ V3/9| ≥ γn/25 and taking n sufficiently large, we have that

γn

25
·
γ
(
n
2

)
500

≥
(
bn−γn3 c

2

)
,

and hence there exist two small vertices x, y ∈ L(M) and {e, f} ∈
(
M
2

)
, such that {x, y} is a

swapping pair for {e, f}. So we may update M by swapping e and f for a pair of disjoint edges e′

and f ′ containing x and y respectively, such that one of the following holds:

(1) ((e ∪ f) \ (e′ ∪ f ′)) ∩ V5/9 6= ∅,
(2) ((e ∪ f) \ (e′ ∪ f ′)) ∩ V4/9 6= ∅,
(3) ((e ∪ f) \ (e′ ∪ f ′)) ∩ V3/9 = {e3, f3} with IH(e3) > IH(x) and IH(f3) > IH(y).

Then the updated phantom matching has at least the same number of matching edges, and we
have an updated leave, which loses two 3/9th vertices, and either gains at least one 5/9th vertex,
at least one 4/9th vertex, or two new 3/9th vertices which have strictly larger indices. As long as
there are at least γn/25 small vertices in the leave, we can do one of these swaps. Eventually we

must end up with at least 3γn/25 medium vertices, or at least b2γn75 c+ 1 big vertices. In the latter
case we are done, and in the former we know that we can continue by swapping medium vertices
to big vertices until we have at least b2γn75 c+ 1 big vertices, as in the previous case. �

Proof. [Proof of Theorem 2.1] To prove this requires no further ideas than those in the proof of
Lemma 2.4. In particular, we simply show that we can continue the swapping process until we
obtain M with |L(M) ∩ V5/9| ≥ 2

3 |L(M)|, as required. By Corollary 2.5 we have a matching M

such that |L(M) ∩ V5/9| > 2γn
75 and |M | = bn−γn3 c. Now suppose that |L(M) ∩ V5/9| < 2

3 |L(M)|.
From the proof of Lemma 2.4, if we have either at least γn/25 small vertices or at least γn/25
medium vertices we can continue to swap until we either gain an additional medium vertex or an
additional big vertex. No swap ever reduces the number of big vertices, or the number of edges
in the matching, though it may reduce the number of medium vertices in order to obtain a big
vertex. Since |L(M)| = n − 3|M | ≥ γn and |L(M) ∩ V5/9| < 2

3 |L(M)|, we have |L(M) \ V5/9| ≥
1
3 |L(M)| ≥ γn

3 − 1. Hence we have at least γn/25 small vertices or at least γn/25 medium vertices.

Thus we may repeatedly swap until we obtain a matching M∗ with |M∗| = |M | = bn−γn3 c, and

|L(M∗) ∩ V5/9| ≥ 2
3 |L(M∗)|, as required. �

4. Absorbing

In this section we prove our absorbing lemma. The proof follows very closely that of [6, Lemma
2.4], but our degree sequence means that we cannot use their result directly as a black box, and
hence we include the proof here for completeness.

Whilst our absorbing lemma is focused only on 3-graphs and minimum vertex degree, we note
that [6, Lemma 2.4] gives a more general absorbing lemma for k-graphs defined by their minimum
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t-degree. However, the same ideas here allow for possible adaptations enabling it for use in proving
further degree sequence results in other k-graphs. See Section 5 for further discussion on this.

Lemma 4.1. Let 1
2000 ≥ γ > 0. There exists n′ = n′(γ) ∈ N such that the following holds. Suppose

H is a 3-graph on n ≥ n′ vertices and q ∈ [(1−
√

2
3)n] with degree sequence d1 ≤ . . . ≤ dn such that

di ≥


(13 + γ)

(
n
2

)
if 1 ≤ i ≤ q,

(49 + γ)
(
n
2

)
if q < i ≤ n

3 ,
5
9

(
n
2

)
if n

3 < i.

Then there exists a matching M in H of size at most γ4n/3 such that for any set W ⊆ V (H)\V (M)
with |W | ∈ 3Z, |W | ≤ γ8n and |W ∩ V5/9| ≥ 2

3 |W |, there exists a matching covering precisely the
vertices V (M) ∪W .

Note that here we do not require the additional γ
(
n
2

)
in the vertices with degree at least 5

9

(
n
2

)
,

as in Theorem 1.3.4

Proof. Let T ∈
(
V (H)

3

)
. We say that a set A ∈

(
V (H)

6

)
is an absorbing set for T if there exists a

matching of size two in H[A] and a matching of size three in H[A ∪ T ].

Proposition 4.2. For every T ∈
(
V (H)

3

)
with at least two vertices in V5/9 := V5/9(H, 0) there are

at least γ3

400

(
n
2

)3
absorbing sets for T .

Proof. Let T = {v1, v2, v3} and fix this ordering of vertices in T . Without loss of generality let
v2, v3 ∈ V5/9. There are at most 2n edges which contain v1 and either v2 or v3. Furthermore, since

there are at most q ≤ (1−
√

2
3)n small vertices in H we have that there are at most

q(n− q) +

(
q

2

)
≤

(
1−

√
2

3

)√
2

3
n2 +

(
(1−

√
2
3)n

2

)
≤ 1

3

(
n

2

)
edges containing v1 and at least one small vertex. Hence, since v1 has degree at least

(
1
3 + γ

) (
n
2

)
and n is sufficiently large there are at least γ

(
n
2

)
−2n ≥ γ

2

(
n
2

)
edges containing v1 and not containing

v2, v3 or any small vertex. Fix such an edge {v1, u2, u3}. Since v2 ∈ V5/9 and u2 ∈ V4/9(H, γ)∪V5/9,
we have that there exist at least γ

(
n
2

)
− 5n ≥ 3γ

4

(
n
2

)
pairs of vertices {a2, b2} such that a2, b2 /∈

{v1, v2, v3, u2, u3} and {v2, a2, b2} and {a2, b2, u2} are edges in H. Fix {a2, b2}. Then similarly

there are at least 3γ
4

(
n
2

)
pairs of vertices {a3, b3} such that a3, b3 /∈ {v1, v2, v3, u2, u3, a2, b2} and

{v3, a3, b3} and {a3, b3, u3} are edges in H. Thus there are at least

γ
(
n
2

)
2
·

(
3γ
(
n
2

)
4

)2

≥ γ3

4

(
n

2

)3

ordered collections which make up absorbing sets for T . This may be an over count of the absorbing
sets themselves, but no set can be counted more than 90 (= 6!

23
) times. Hence we obtain at least

γ3

400

(
n
2

)3
absorbing sets for T . �

4In fact, as long as two thirds of the vertices have degree at least ( 5
9
− γ

5
)
(
n
2

)
, the proof below goes through without

any modification.
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Let L(T ) denote the family of all those sets absorbing T . By Proposition 4.2 we have that

|L(T )| ≥ γ3

400

(
n
2

)3
. Choose a family of sets F ⊆

(
V (H)

6

)
by selecting each set in

(
V (H)

6

)
independently

with probability

(14) p =
γ4n

2
(
n
2

)3 ,
and note that

(15) 2

(
n

2

)3

≥ 2n

(
n

5

)
≥ 12

(
n

6

)
.

Then E(|F|) =
(
n
6

)
p ≤ γ4n

12 , and E(|L(T ) ∩ F|) = |L(T )|p ≥ γ7n
800 . Thus, by Chernoff’s bound (see

e.g. [9]), with high probability we have that F has the following properties:

(16) |F| ≤ γ4n/6

(17) |L(T ) ∩ F| ≥ γ7n/1000

for every T with at least two vertices in V5/9.
Using (15) we have that the expected number of intersecting sets in F is at most

6

(
n

6

)(
n

5

)
p2 ≤ γ8n/4.

Then, by Markov’s inequality, we see that with probability at least 3/4

(18) F contains at most γ8n intersecting pairs of sets.

Thus, with positive probability F satisfies (16), (17) and (18). For each of the at most γ8n
intersecting pairs, arbitrarily removing one from each pair, and additionally removing any set that
is not an absorbing set for some 3-set T , we obtain F ′ ⊆ F , a collection of disjoint absorbing sets
such that

(19) |L(T ) ∩ F ′| ≥ γ7n/1000− γ8n ≥ γ8n
for all T with at least two vertices in V5/9. Then, since F ′ is a family of pairwise disjoint absorbing

sets, H[V (F ′)] contains a perfect matching, M , of size at most γ4n/3. Moreover, for any W ⊆
V (H) \V (M) such that |W ∩V5/9| ≥ 2

3 |W |, and γ8n ≥ |W | ∈ 3Z, we can partition W into at most

γ8n/3 3-sets, each containing at least two vertices in V5/9, and then absorb each one with a distinct
absorbing set in F ′ by (19). Thus V (F ′) ∪W contains a perfect matching. �

We now prove Theorem 1.3.

Proof. [Proof of Theorem 1.3]
Without loss of generality, suppose that 0 < γ ≤ 1

2000 and let γ be fixed. Applying Lemma 4.1

yields n′ and letting γ1 = γ/2 and γ2 = γ81 , by applying Theorem 2.1 with γ1 in place of γ, we

obtain n′′. Define n0 := max{n′, n′′

1−2γ4 }. Let H be a 3-graph on n ≥ n0 vertices such that n ∈ 3Z

and let q ∈ [(1−
√

2
3)n]. Suppose that H has degree sequence d1 ≤ . . . ≤ dn satisfying

di ≥


(
1
3 + γ

) (
n
2

)
+ iq if 1 ≤ i ≤ q,(

4
9 + γ

) (
n
2

)
if q < i ≤ n

3 ,(
5
9 + γ

) (
n
2

)
if n

3 < i.
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Then by Lemma 4.1, there is a matching M in H of size at most γ4n/3 such that for any set W ⊂
V (H)\V (M) with |W | ≤ γ8n, |W | ∈ 3Z and |W ∩V5/9| ≥ 2

3 |W |, we have that H[V (M)∪W ] has a

perfect matching. Now let H1 := H[V (H) \V (M)]. Then n1 := |V (H1)| = n−|V (M)| ≥ n(1− γ4)
and H1 is a 3-graph on n1 vertices with degree sequence d1 ≤ . . . ≤ dn1 such that

di ≥


(
1
3 + γ1

) (
n1

2

)
+ iq if 1 ≤ i ≤ q,(

4
9 + γ1

) (
n1

2

)
if q < i ≤ n

3 ,(
5
9 + γ1

) (
n1

2

)
if n

3 < i.

Now, suppose that there are strictly fewer than 2n1
3 vertices v satisfying

d(v) ≥
(

5

9
+ γ1

)(
n1
2

)
.

Let r be the number of vertices satisfying d(v) ≥
(
5
9 + γ1

) (
n1

2

)
, and let s = 2n1

3 − r. Note that

s ≤ γ4n/3. Consider a vertex v ∈ V4/9(H1, γ1). The number of edges containing v and at least two
vertices in V5/9(H1, γ1) is at most(

r

2

)
≤
(2

3n1 − s
2

)
≤
(2

3n1
2

)
=

4

9

(
n1
2

)
− n1

9
.

Hence v is in at least one edge e containing at most one vertex from V5/9(H1, γ1). Add e to M . We
may repeat this process until we have added a set F of edges to M to obtain M1 = M ∪ F , such
that H2 := H1[V (H1) \ V (F )] and |V (F )| ≤ 3s ≤ γ4n, and |V5/9(H1 \ V (F ), γ1/2)| = 2

3 |V (H2)|.
This is possible since at each iteration of the process, we either get that two-thirds of remaining
vertices are in V5/9(H1 \V (F ), γ1/2), or that there is a vertex in V4/9(H1 \V (F ), γ1/2) contained in
an edge with at most one vertex from V5/9(H1 \ V (F ), γ1/2) and hence we can repeat the process.

At the end of the process we obtain H2 on n2 ≥ n1 − 3s ≥ n1 − γ4n vertices with degree sequence
d1 ≤ . . . ≤ dn2 such that

di ≥


(
1
3 + 4γ2

) (
n2

2

)
+ iq if 1 ≤ i ≤ q,(

4
9 + 4γ2

) (
n2

2

)
if q < i ≤ n2

3 ,(
5
9 + γ

3

) (
n
2

)
if n2

3 < i,

where
(
5
9 + γ

3

) (
n
2

)
≥
(
5
9 + 4γ2

) (
n2

2

)
. Since n2 ≥ n−2γ4n ≥ n0(1−2γ4) ≥ n′′, and q ≤ (1−

√
2
3)n ≤

(1−
√

2
3)(n2+2γ4n) ≤ n2

3
√
2
, it follows from Theorem 2.1 that H2 has a matching M2 covering all but

at most γ2n2 + 2 ≤ γ8n vertices in H2. Let L := V (H2) \ V (M2). Then |L ∩ V5/9(H, γ/3)| ≥ 2
3 |L|,

and by construction we have that L ∈ 3Z. By Lemma 4.1, it follows that H has a perfect matching
M3 on V (M1) ∪ L. Thus M∗ := M2 ∪M3 is a perfect matching for H. �

5. Concluding discussion and remarks

Our methods give an array of degree sequences, with a key aspect being the relationship between
the number of vertices below the 4/9 barrier, and the step-size between such vertices. In particular,
our strategy requires that the step-size is at least as big as the number of vertices over which it is
used, however we were unable to come up with extremal examples to demonstrate that this really
is necessary. In addition, whilst the almost-perfect matching would allow up to n

3
√
2

vertices below

the 4/9 barrier, our absorbing lemma only permits at most (1−
√

2
3)n vertices with degree below

this barrier. It would be interesting to know whether this disparity can be avoided through an
alternative absorbing strategy.
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5.1. Other vertex degree sequences for 3-graphs. In general, it would be interesting to try
and push for even better degree sequences. Whilst our results are tight in the number of vertices
at or below the 4/9 barrier, due to evasive extremal examples, it is unclear what the maximum
number of vertices that can be lowered below this is, and how far these can be lowered. We have
given degree sequences with linear step-size, but it seems plausible that best possible sequences
may instead have vertex degrees which rise in pairs and/or have a quadratic step-size. To illustrate
what one might mean by a quadratic step-size, consider a degree sequence where we replace the step

‘iq’ by something like
∑

j≤i(q − j) = iq − i(i+1)
2 for some appropriate value of q and i ≤ q.5 When

looking for extremal examples, with some element of a degree sequence containing a stepping
passage, some of the natural structures you might consider do have this kind of step-size. For
example, consider subsets of the vertex set A = {v1, . . . , vn/3} and B = {u1, . . . , un/3}, then adding
all edges viujul such that i ∈ [n/3], j ≤ i and l ≥ j yields precisely an additional neighbourhood of

size
∑

j≤i(
n
3 − j) = in3 −

i(i+1)
2 for each vertex vi ∈ A. It seems feasible that these naturally arising

curves in such a degree sequence might lend themselves to extremal examples as much as linear
step-size would.

In addition, it would be interesting to know whether we can find a Posá-type degree sequence
with either

(i) many6 vertices below the 1/3 barrier, or
(ii) more than n/3 vertices below the 5/9 barrier.

For (i) it is feasible to adapt the absorbing argument, (provided we have enough vertices at the 4/9
barrier), however the proof of Lemma 3.8, which enables the swapping arguments to go through,
relies on vertices nearly all being asymptotically close to or above the 1/3 barrier. For (ii), the
original space barrier which shows that Theorem 1.1 is asymptotically best possible shows that you
cannot have more than 2n/3 vertices below the 5/9 barrier.

5.2. Exact results. Our methods rely on the additional o(n2) pairs of neighbours for each vertex
in the degree sequence. Whilst the exact value of m1(3, n) is known for sufficiently large n, it is not
entirely clear how to turn our results into exact results (i.e. omit the γ

(
n
2

)
term). One obstacle is

that the proof of the exact result for m1(3, n) does not require the additional γ
(
n
2

)
vertex degree for

the absorption part of the argument, since they use the absorbing lemma ([6, Lemma 2.4]) which
only needs minimum vertex degree at least (1/2 + γ)

(
n
2

)
� m1(3, n). However, since our degree

sequence includes a third of the vertices with degree below 1
2

(
n
2

)
, our absorbing lemma really does

require the additional γ
(
n
2

)
degree for vertices in at least one of V4/9 or V5/9.

Another obstacle is that a standard method for obtaining exact results is to split into cases,
namely depending on whether H is close to the extremal setting or not.7 Since tight extremal
examples evade us, it is not so clear how one might implement this idea with our current results,
though our discussion for Extremal example 2 may hint at an exact degree sequence with tight
extremal example.

5.3. Degree sequence results for other hypergraphs and spanning structures. It is natural
to consider what degree sequence results may be obtained which improve on known minimum degree
thresholds for perfect matchings and other spanning structures, such as Hamilton cycles and tilings
of subgraphs other than Kk

k in any k-graphs, not just for k = 3.
Schülke [21] asks about vertex degree sequences that guarantee the existence of a Hamilton cycle

in a 3-graph. Though the existence of a perfect matching does not imply the existence of a Hamilton

5Hence why we refer to such a step-size as quadratic.
6Where ‘many’ denotes cn vertices where c is a constant not depending on γ.
7This is the method used in [16].
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cycle, our extremal examples containing no perfect matchings do clearly imply degree sequences
for which a Hamilton cycle is not guaranteed.

Whilst for k ≥ 6 proofs for a minimum vertex degree threshold remain elusive, there are many
combinations of t and k for which mt(k, n) is known, and finding degree sequence results which
improve on these would be extremely interesting.
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[23] A. Treglown, A degree sequence Hajnal–Szemerédi theorem, J. Combin. Theory B, 118 (2016), pp. 13–43. 2, 4
[24] W. Tutte, The factorization of linear graphs, J. London Math. Soc., 22 (1947), pp. 107–111. 1
[25] Y. Zhao, Recent advances on Dirac–type problems for hypergraphs, The IMA Volumes in Mathematics and its

Applications, Recent Trends in Combinatorics, 159 (2016), pp. 145–165. 1

Appendix A. For the proof of Lemma 2.3

In [6, Theorem 4.4], Hàn, Person and Schacht show that assuming the largest matching in a
3-graph H with minimum degree δ1(H) ≥ (59 + 4γ)

(
n
2

)
leaves γn or more vertices unmatched, one

can derive a contradiction (so in fact there exists a matching leaving strictly fewer than γn vertices
unmatched). They do this by fixing a phantom matching N and first noting that for any v ∈ L(N),
since δ1(H) ≥ (59 + 4γ)

(
n
2

)
,

|E(Lv(N))| ≥ degH(v)− 3|N | − |L(N)|(n− |L(N)|)−
(
|L(N)|

2

)
>

(
5

9
+ γ

)(
n

2

)
,

which is [6, (4.1)]. In our setting, since the minimum degree is much smaller, we cannot claim this
for every vertex v ∈ L(N), but it certainly does hold for each v ∈ B(N) which is what we claim.
Hàn, Person and Schacht go on to show that either we in fact did not choose the largest matching,
as we can make a switch that increases the number of matching edges in N , or there is a vertex
v ∈ L(N) such that the pairs {e, f} ∈

(
N
2

)
satisfying |E(Lv(e, f))| ≥ 6 contribute at most γn2/5

edges to Lv(N). This yields the required contradiction since, as per [6, (4.2)], we have

|E(Lv(N))| ≤ 5

(
|N |
2

)
+ γn2/5 <

(
5

9
+ γ

)(
n

2

)
.

In our setting - the statement of Lemma 2.3 - we do not assume that M is a largest matching in
H, but we show that if M is not sufficiently large then we must be able to make a switch that
finds a larger matching than M . So we may take their strategy to deduce that either there is a
larger matching than M (giving M∗ as desired), or there is a vertex v ∈ L(N) such that the pairs

{e, f} ∈
(
N
2

)
satisfying |E(Lv(e, f))| ≥ 6 contribute at most γn2/5 edges to Lv(N). The former

is what we want to show and the latter yields a contradiction (thus yielding that the former must
occur), provided that we show there is such a vertex v ∈ B(N) (rather than just v ∈ L(N)).

The way that Hàn, Person and Schacht show that there is a vertex v ∈ L(N) such that the pairs

{e, f} ∈
(
N
2

)
satisfying |E(Lv(e, f))| ≥ 6 contribute at most γn2/5 edges to Lv(N) is as follows.

They consider four distinct subsets Y1, Y2, Y3 and Y4 of L(N) and deduce that either we get a larger

matching, or every vertex v ∈ L(N)\
⋃
i∈[4] Yi is a vertex such that the pairs {e, f} ∈

(
N
2

)
satisfying

|E(Lv(e, f))| ≥ 6 contribute at most γn2/5 edges to Lv(N). Hence if L(N)\
⋃
i∈[4] Yi 6= ∅ then they

have found v such that the contradiction occurs. Now in our case, we need that B(N)\
⋃
i∈[4] Yi 6= ∅,

but in fact the calculations in the proof of [6, Theorem 4.4] show this and no extra work is required
of us. In particular, Facts 4.6, 4.8, 4.10 and 4.12 show that |Yi| ≤ γn

150 for each i ∈ [4] respectively

so that
∑

i∈[4] |Yi| ≤
2γn
75 . Then the details following the proof of Fact 4.12 show that any vertex

v ∈ L(N) \
⋃
i∈[4] Yi satisfies |E(Lv(N))| ≤ 5

(|N |
2

)
+ γn2/5. Now this is only a contradiction in our

setting if there is a vertex in B(N) \
⋃
i∈[4] Yi, but since we have |B(N)| > 2γn

75 this follows.
22



Appendix B. For the proof of Lemma 3.8

For brevity, we set
A = |E`,`,`|
B = |E`,`,L|
C = |E`,L,L|
D = |EL,L,L|
E = |E`,`,N |
F = |E`,L,N |
G = |EL,L,N |
H = |E`,N,N |
I = |EL,N,N |
J = |EN,N,N |

By (3) and (4), we have that

jq ≥ (3A+ 2B + C + 2E + F +H)(20)

· (3A+ 3B + 3C + 3D + 2E + 2F + 2G+H + I)

= 9A2 + 15AB + 12AC + 9AD + 12AE + 9AF + 6AG+ 6AH + 3AI

+6B2 + 9BC + 6BD + 10BE + 7BF + 4BG+ 5BH + 2BI + 3C2

+3CD + 8CE + 5CF + 2CG+ 4CH + CI + 6DE + 3DF + 3DH

+4E2 + 6EF + 4EG+ 4EH + 2EI + 2F 2 + 2FG+ 3FH + FI

+2GH +H2 +HI.

From (6), we have that

∑
i∈{4,5,6,7,8,10}

(i− 4)|T iM,x|(21)

= |T 5
M,x|+ 2|T 6

M,x|+ 3|T 7
M,x|+ 4|T 8

M,x|+ 6|T 10
M,x|

= 6

(
A

2

)
+ 6AB + 6AC + 6AD + 3AE + 3AF + 3AG+ 3AH + 3AI + 4

(
B

2

)
+4BC + 3BD + 3BE + 3BF + 2BG+ 3BH +BI + 3

(
C

2

)
+ 3CD + 3CE

+3CF + CG+ 3CH + CI + 3DE + 3DF + 3DH + 2

(
E

2

)
+ 2EF + 2EG

+EH + EI +

(
F

2

)
+ FG+ FH + FI +GH +

(
H

2

)
+HI.

Comparing coefficients in (20) and (21), one can see that (7) indeed holds.

Appendix C. For the proof of Lemma 3.9

For brevity, we set
V = |Eb,b,b|
W = |Eb,b,B|
Y = |Eb,B,B|
Z = |EB,B,B|

Using (13) and (10), we have that
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∑
i∈{4,5,6,7,10}

(i− 5)|SiM |(22)

= −|S4
M |+ |S6

M |+ 2|S7
M |+ 5|S10

M |

= −
(
Z

2

)
− ZY − ZW − ZV −

(
W

2

)
+ 2Y V + 2MV + 5

(
V

2

)
≤ V +

W

2
− 3WV −W 2 −WY − 3V 2

2
− k(3V + 2W + Y ) +

k

2
− k2

2
.

Using (9) and that 3V + 2W + Y ≤ n−γn
3 − k, we have from (22) that∑

i∈{4,5,6,7,10}

(i− 5)|SiM |(23)

≤ V +
W

2
− 3WV −W 2 −WY − 3V 2

2
+
γn2

9
+
γn

3

≤ γ

2

(
n

2

)
.
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