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Abstract: Active suspension system has been widely used to improve ride comfort in passenger
cars by adjusting the force between the tyre and the vehicle body such that the effect of the
rough road surfaces will be minimally felt by the passengers. Control algorithms for active
suspension are frequently designed using the well-known quarter-car model, which is a linear
approximation of the system. In this paper, multi-input uncorrelated periodic signals are applied
on a laboratory-scale active suspension system. The signals incorporate harmonic suppression
allowing more accurate estimation of the frequency response functions and quantification of
nonlinearities and noise. The results reveal significant amount of nonlinearities, which should
be taken into account during controller design.
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1. INTRODUCTION

Vehicle suspension is a vital component to lessen unde-
sirable vibrations caused by rough road surfaces. These
road surfaces induce vertical displacements to the vehicle
body and a poorly designed vehicle suspension system will
lead to the passenger experiencing ride discomfort, viz
perceiving undesirable vehicle body movement (see e.g.
Goodarzi and Khajepour (2017)).

In general, vehicle suspension systems can be classified
into three categories – passive, semi-active and active
(see, e.g. Huang et al. (2020)). The passive and semi-
active suspension systems rely on preset dampers and
springs (see, e.g. Huang et al. (2020)) and adjustable
hydraulic dampers (see, e.g. Ballo (2007)), respectively, to
reduce those undesirable vibrations. The tuning of these
dampers and springs is often based on the traditional
tuning criterion (Olley (1942); Barak (1991)). Meanwhile,
the active suspension systems employ active actuators
to produce relevant forces to counteract those unwanted
vibrations (see, e.g. Du et al. (2020)).

Since the inception of active suspension system by the
Formula One teams such as Lotus and Williams in the late
1980’s and early 1990’s (Howard (2001)), this technology
has made its way to passenger cars due to its effectiveness
in improving ride comfort. This has subsequently led
to extensive research in this area to further improve
the performance of the active suspension system either
through key parameter optimisation approach (Lee et al.

(2009); Thoresson et al. (2009a,b)) or optimal/adaptive
control approach (Hrovat and Hubbard (1981); Zou et al.
(2013); Deshpande et al. (2016); Mustafa et al. (2019)).

These aforementioned design methods often employ the
well-known quarter-car model, which assumes negligible
contribution from nonlinearities. To what extent this as-
sumption holds depends on the physical construction of
the system. It is important to verify this assumption prior
to using the linear model for controller design. Hence, it
is of interest to study how effective one can identify and
quantify the amount of noise and nonlinearities in the
active suspension system. In this paper, following the suc-
cess from some previous studies (Cham et al. (2017); Tan
(2018)), an identification test is performed using carefully
designed perturbation signals. In particular, multi-input
uncorrelated periodic signals are applied on a laboratory-
scale active suspension system. The identification test
serves a dual-role of frequency response function (FRF)
estimation, and quantification of noise and nonlinearities.
An important advantage of such an identification test is
that only a single experiment is required. It also allows
useful analysis to be carried out, which can provide addi-
tional guide for suspension designers.

The rest of the paper is organised as follows. The
laboratory-scale active suspension system and the deriva-
tion of the quarter-car model are presented in Section 2.
Section 3 discusses the design of the multi-input uncorre-
lated periodic signals. Results are presented in Section 4
and conclusions are given in Section 5.
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signals, system identification, uncorrelated signals

1. INTRODUCTION

Vehicle suspension is a vital component to lessen unde-
sirable vibrations caused by rough road surfaces. These
road surfaces induce vertical displacements to the vehicle
body and a poorly designed vehicle suspension system will
lead to the passenger experiencing ride discomfort, viz
perceiving undesirable vehicle body movement (see e.g.
Goodarzi and Khajepour (2017)).

In general, vehicle suspension systems can be classified
into three categories – passive, semi-active and active
(see, e.g. Huang et al. (2020)). The passive and semi-
active suspension systems rely on preset dampers and
springs (see, e.g. Huang et al. (2020)) and adjustable
hydraulic dampers (see, e.g. Ballo (2007)), respectively, to
reduce those undesirable vibrations. The tuning of these
dampers and springs is often based on the traditional
tuning criterion (Olley (1942); Barak (1991)). Meanwhile,
the active suspension systems employ active actuators
to produce relevant forces to counteract those unwanted
vibrations (see, e.g. Du et al. (2020)).

Since the inception of active suspension system by the
Formula One teams such as Lotus and Williams in the late
1980’s and early 1990’s (Howard (2001)), this technology
has made its way to passenger cars due to its effectiveness
in improving ride comfort. This has subsequently led
to extensive research in this area to further improve
the performance of the active suspension system either
through key parameter optimisation approach (Lee et al.

(2009); Thoresson et al. (2009a,b)) or optimal/adaptive
control approach (Hrovat and Hubbard (1981); Zou et al.
(2013); Deshpande et al. (2016); Mustafa et al. (2019)).

These aforementioned design methods often employ the
well-known quarter-car model, which assumes negligible
contribution from nonlinearities. To what extent this as-
sumption holds depends on the physical construction of
the system. It is important to verify this assumption prior
to using the linear model for controller design. Hence, it
is of interest to study how effective one can identify and
quantify the amount of noise and nonlinearities in the
active suspension system. In this paper, following the suc-
cess from some previous studies (Cham et al. (2017); Tan
(2018)), an identification test is performed using carefully
designed perturbation signals. In particular, multi-input
uncorrelated periodic signals are applied on a laboratory-
scale active suspension system. The identification test
serves a dual-role of frequency response function (FRF)
estimation, and quantification of noise and nonlinearities.
An important advantage of such an identification test is
that only a single experiment is required. It also allows
useful analysis to be carried out, which can provide addi-
tional guide for suspension designers.

The rest of the paper is organised as follows. The
laboratory-scale active suspension system and the deriva-
tion of the quarter-car model are presented in Section 2.
Section 3 discusses the design of the multi-input uncorre-
lated periodic signals. Results are presented in Section 4
and conclusions are given in Section 5.
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2. SYSTEM DESCRIPTION

The active suspension system used in this study is a
laboratory-scale system developed by Quanser (Quanser
(2013)) as shown in Fig. 1 (left). The dimensions of the
suspension system are 30.5cm in length, 30.5cm in width
and 61cm in height and its total weight is 15kg. The system
comprises three masses that represent the road, tyre and
body, which move along stainless steel shafts using linear
bearings. These three masses are represented by silver,
red and blue colour plates, respectively. The suspension
system uses a brushed dc motor that is connected to a
belt-drive mechanism to simulate the road surface and a
brushless dc motor to implement the active suspension
control.

A suspension system is usually modelled using the quarter-
car model, where each of the components is represented
using a classical mechanical translational component such
as mass, spring or damper. The schematic of this repre-
sentation is shown in Fig. 1 (right). Here, Ms and Mus

represent the sprung mass (vehicle body) and unsprung
mass (tyre), respectively. The suspension and tyre stiff-
nesses are denoted by Ks and Kus, respectively, while the
suspension and tyre damping coefficients are denoted by
Bs and Bus, respectively. The two inputs to the system
are the road profile denoted by zr and the actuating force
denoted by Fc, while the two outputs are the displacements
of the sprung and unsprung masses denoted by zs and zus,
respectively. The values of the suspension parameters are
given in Table 1 (Quanser (2013)).

Table 1. Quanser active suspension parameters
(Quanser (2013))

Parameter Value Unit

Ms 2.45 kg
Mus 1.00 kg
Ks 900 N/m
Kus 1250 N/m
Bs 7.5 Ns/m
Bus 5 Ns/m

The Quanser suspension system has operating limits such
that the maximum displacements of the road, body and
tyre are constrained to ±22 mm, ±25.4 mm and ±19 mm,
respectively, from their reference positions. The conclu-
sions from this work are thus applicable to the case where
the car is travelling at a low to moderate velocity, or to the
case where the road is not too rough. This follows from the
relationship between velocity, spatial frequency and cyclic
frequency as explained in Tan et al. (2022).

To obtain the relationship between the input and output,
often the interaction between all the variables are assumed
to be linear. Using Newton’s law of motion, the equations
of motion of the suspension system can be derived and are
given by

Musz̈us = −Bs(żus − żs) +Bus(żr − żus)

−Ks(zus − zs) +Kus(zr − zus)− Fc

Msz̈s = Bs(żus − żs) +Ks(zus − zs) + Fc (1)

The four transfer functions Zus(s)
Zr(s)

, Zs(s)
Zr(s)

, Zus(s)
Fc(s)

and Zs(s)
Fc(s)

,

can be obtained by taking Laplace Transform of Eqn.

(1), assuming zero initial condition. After some algebraic
manipulation, these transfer functions are given by

Zus(s)

Zr(s)
=

a0s
3 + a1s

2 + a2s+ a3
∆D

Zs(s)

Zr(s)
=

a4s
2 + a2s+ a3

∆D

Zus(s)

Fc(s)
=

−Mss
2

∆D

Zs(s)

Fc(s)
=

Muss
2 +Buss+Kus

∆D
(2)

where a0 = MsBus a1 = (BusBs+MsKus), a2 = (BusKs+
BsKus), a3 = KusKs, a4 = BsBus and ∆D is given by

∆D = s4MusMs + s3(MusBs +MsBs +MsBus)

+ s2(MusKs +BsBus +MsKs +MsKus)

+ s(BusKs +BsKus) +KusKs

By obtaining the frequency responses of Eqn. (2), one can
identify the resonance of the system, which can facilitate
the re-calibration of the suspension parameters or the
design of relevant control strategies to reduce the effect
of resonance in order to improve ride comfort.

While the above derivation with the linearity and noise-
free assumption is widely used within the automotive
industry, in practice it is known that suspension systems
are rarely linear due to nonlinearities in the springs and
dampers in particular when operating outside their linear
regime. Moreover, the presence of noise in the sensor would
often affect the overall performance of the suspension sys-
tem. To our knowledge, a systematic approach in quantify-
ing these nonlinearities and noise in suspension systems is
still lacking thereby forming the motivation of this study.
The effects of nonlinearities and noise can be quantified by
exciting the system with perturbation signals containing
certain properties. Here, the approach employed in Cham
et al. (2017) is applied, where multi-input uncorrelated
periodic signals are used to characterise the linear dynam-
ics, nonlinear distortion and disturbing noise in a multi-
input system, in our case the active suspension system,
using simultaneous perturbation in a single experiment. A
brief discussion about these signals is presented in the next
section. For more details, see Cham et al. (2017).

3. MULTI-INPUT UNCORRELATED PERIODIC
SIGNALS

The perturbation signals u1 := zr and u2 := Fc are chosen
as multisine signals that are uncorrelated and orthogonal
with one another. Multisine signals are chosen given their
flexibility in specifying their harmonics (Pintelon and
Schoukens (2012)).

A multisine signal is defined by

u(n) =
∑
p∈γ

Ap cosωpn+ φp (3)

where n denotes the discrete time index, γ represents the
set consisting of nonzero harmonics (excluding zero har-
monics), Ap is the amplitude, ωp = 2πp

N is the normalised
angular frequency with period N and φp is the phase
associated with harmonic p.
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suspension system are 30.5cm in length, 30.5cm in width
and 61cm in height and its total weight is 15kg. The system
comprises three masses that represent the road, tyre and
body, which move along stainless steel shafts using linear
bearings. These three masses are represented by silver,
red and blue colour plates, respectively. The suspension
system uses a brushed dc motor that is connected to a
belt-drive mechanism to simulate the road surface and a
brushless dc motor to implement the active suspension
control.

A suspension system is usually modelled using the quarter-
car model, where each of the components is represented
using a classical mechanical translational component such
as mass, spring or damper. The schematic of this repre-
sentation is shown in Fig. 1 (right). Here, Ms and Mus

represent the sprung mass (vehicle body) and unsprung
mass (tyre), respectively. The suspension and tyre stiff-
nesses are denoted by Ks and Kus, respectively, while the
suspension and tyre damping coefficients are denoted by
Bs and Bus, respectively. The two inputs to the system
are the road profile denoted by zr and the actuating force
denoted by Fc, while the two outputs are the displacements
of the sprung and unsprung masses denoted by zs and zus,
respectively. The values of the suspension parameters are
given in Table 1 (Quanser (2013)).

Table 1. Quanser active suspension parameters
(Quanser (2013))

Parameter Value Unit

Ms 2.45 kg
Mus 1.00 kg
Ks 900 N/m
Kus 1250 N/m
Bs 7.5 Ns/m
Bus 5 Ns/m

The Quanser suspension system has operating limits such
that the maximum displacements of the road, body and
tyre are constrained to ±22 mm, ±25.4 mm and ±19 mm,
respectively, from their reference positions. The conclu-
sions from this work are thus applicable to the case where
the car is travelling at a low to moderate velocity, or to the
case where the road is not too rough. This follows from the
relationship between velocity, spatial frequency and cyclic
frequency as explained in Tan et al. (2022).

To obtain the relationship between the input and output,
often the interaction between all the variables are assumed
to be linear. Using Newton’s law of motion, the equations
of motion of the suspension system can be derived and are
given by

Musz̈us = −Bs(żus − żs) +Bus(żr − żus)

−Ks(zus − zs) +Kus(zr − zus)− Fc

Msz̈s = Bs(żus − żs) +Ks(zus − zs) + Fc (1)

The four transfer functions Zus(s)
Zr(s)

, Zs(s)
Zr(s)

, Zus(s)
Fc(s)

and Zs(s)
Fc(s)

,

can be obtained by taking Laplace Transform of Eqn.

(1), assuming zero initial condition. After some algebraic
manipulation, these transfer functions are given by
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where a0 = MsBus a1 = (BusBs+MsKus), a2 = (BusKs+
BsKus), a3 = KusKs, a4 = BsBus and ∆D is given by

∆D = s4MusMs + s3(MusBs +MsBs +MsBus)

+ s2(MusKs +BsBus +MsKs +MsKus)

+ s(BusKs +BsKus) +KusKs

By obtaining the frequency responses of Eqn. (2), one can
identify the resonance of the system, which can facilitate
the re-calibration of the suspension parameters or the
design of relevant control strategies to reduce the effect
of resonance in order to improve ride comfort.

While the above derivation with the linearity and noise-
free assumption is widely used within the automotive
industry, in practice it is known that suspension systems
are rarely linear due to nonlinearities in the springs and
dampers in particular when operating outside their linear
regime. Moreover, the presence of noise in the sensor would
often affect the overall performance of the suspension sys-
tem. To our knowledge, a systematic approach in quantify-
ing these nonlinearities and noise in suspension systems is
still lacking thereby forming the motivation of this study.
The effects of nonlinearities and noise can be quantified by
exciting the system with perturbation signals containing
certain properties. Here, the approach employed in Cham
et al. (2017) is applied, where multi-input uncorrelated
periodic signals are used to characterise the linear dynam-
ics, nonlinear distortion and disturbing noise in a multi-
input system, in our case the active suspension system,
using simultaneous perturbation in a single experiment. A
brief discussion about these signals is presented in the next
section. For more details, see Cham et al. (2017).

3. MULTI-INPUT UNCORRELATED PERIODIC
SIGNALS

The perturbation signals u1 := zr and u2 := Fc are chosen
as multisine signals that are uncorrelated and orthogonal
with one another. Multisine signals are chosen given their
flexibility in specifying their harmonics (Pintelon and
Schoukens (2012)).

A multisine signal is defined by

u(n) =
∑
p∈γ

Ap cosωpn+ φp (3)

where n denotes the discrete time index, γ represents the
set consisting of nonzero harmonics (excluding zero har-
monics), Ap is the amplitude, ωp = 2πp

N is the normalised
angular frequency with period N and φp is the phase
associated with harmonic p.

M
s

M
us

K
s

B
s

z
s

F
c

K
us

z
us

-F
c

B
us

z
r

Fig. 1. Left: Laboratory-scale active suspension system. Figure is taken from Quanser (2013). Right: Schematic of the
suspension system depicted using quarter-car model.

To design γ for the active suspension system, note that
N = fs/fres, where fs and fres are the sampling
frequency and frequency resolution, respectively. From
Quanser (2013), fs = 1000 Hz. The frequency resolution
is given by fres = fmin/NG, where we set fmin = 0.06
Hz following the range suggested in Attia et al. (2017)
and NG = 6, which is the gap between two consecutive
excited harmonics in each perturbation signal. With that
N = 1000/0.01 = 100000.

The multisine signals have uniform Discrete Fourier Trans-
form (DFT) magnitude at the excited harmonics as fol-
lows:

Signal A perturbing u1: γSignalA = {1, 7, 13, ..., 39997}
Signal B perturbing u2: γSignalB = {5, 11, 17, ..., 39995}

For practical consideration, the highest harmonics of the
perturbation signals are set to 0.4N following the recom-
mendation in Tan and Godfrey (2019). Signal A and Signal
B are uncorrelated, as they do not have any common
excited harmonics. This property allows their effects to
be separated at the outputs. For example, the power at
harmonic 1 can be attributed to Signal A whereas that at
harmonic 5 can be attributed to Signal B. The suppression
of even harmonics (i.e., the signals having no power at
harmonics 2, 4, 6, ...) enables the effects of even order non-
linearities to be detected and separated. This ensures that
estimates of the frequency responses will not be affected by
the even order nonlinearities. Further to this, additional
suppression of harmonics which are integer multiples of
3 (i.e., the signals having no power at harmonics 3, 9,
15, ...) permits the effects of odd order nonlinearities to
be detected and their influence on the linear dynamic
estimates to be reduced. Fig. 2 shows the two input signals
that are used in this work. Note that u1 and u2 are scaled
by factors of 0.5 and 500, respectively, to ensure that the
input and output signals operate within constraints.

4. RESULTS

4.1 FRF of Suspension System from Transfer Functions

A typical approach in tuning the suspension system to
provide the appropriate ride comfort is to identify where
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Fig. 2. DFT plots for γSignalA = {1, 7, 13, ..., 39997} and
γSignalB = {5, 11, 17, ..., 39995} (top row) and their
corresponding time-domain representations (bottom
row). Left column: Road profile (Signal A). Right
column: Actuating force (Signal B). For the DFT
plots, only the first 30 harmonics are shown for better
visualisation.

the resonant peaks are and then adjust the damping
and/or spring coefficients to reduce those resonant peaks.
To facilitate the identification of the resonant peaks, the
FRF is usually used. In the case of a linear system, where
the system transfer function can be derived (Eqn. (2)), the
MATLAB function bode can be used to generate the FRF.

Substituting the relevant values of the suspension param-
eters given in Table 1 into Eqn. (2), the corresponding
FRFs for the four transfer functions in Eqn. (2) are shown
in Fig. 3. From Fig. 3, the presence of two resonant peaks
at approximately between 13-15 rad/s (2.07-2.39 Hz) and
48-50 rad/s (7.64-7.96 Hz) is observed. Note that these two
frequencies are close to the typical natural frequencies of
the vehicle body and tyre, respectively (see e.g. Gillespie
(1992); Wong (2008)).
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Fig. 3. FRF for the four transfer functions given in Eqn.
(2) plotted using MATLAB bode function.

If the suspension is subject to a road surface that excites
these two frequencies, the passenger will experience poor
ride comfort. Thus, it is imperative that efficient suspen-
sion tuning can be developed to counter the effect of the
resonant frequencies.

4.2 Estimation of FRF using Multisine Signals

The identification of the resonant frequencies to improve
ride comfort is possible if the system is free from nonlinear
distortion and noise. As was illustrated in the previous
section, if a noise-free linear system is assumed in the
derivation of the equations of motion, one can easily
obtain the transfer function and compute the FRF in a
straightforward manner.

The identification of the resonant frequencies can be more
challenging if the contributions from nonlinearities and
noise are prominent. To determine how large these contri-
butions are, it is possible to exploit the advantage of mul-
tisine signals described by Eqn. (3). The multisine signals
(i.e., Signal A and Signal B) in Section 3 can be used to es-
timate the FRF and quantify the contributions from non-
linearities and noise. For the latter, due to the multisine
signals having certain harmonics suppressed, this special
feature can be exploited to identify the contributions from
nonlinearities and noise. If the system is dominantly linear
and the noise contribution is negligible, the output signals
when subject to the multisine inputs will only have power
at the excited harmonics. The output power at the non-
excited (suppressed) harmonics will provide information
regarding the contributions from nonlinearities and noise.
This is further discussed in Section 4.3.

In this section, the use of multisine signals to estimate the
transfer function from the FRF will be explored. Following
the approach in some previous studies (Cham et al. (2017);
Tan (2018)), the suspension system is excited with input
zr = u1 = Signal A and Fc = u2 = Signal B as shown in
Fig. 2, where they respectively represent the road profile
and actuator input. The outputs zus = y1 and zs = y2 are
measured. Four periods of the multisine signals are used,
with a total measurement time of 400s. However, the initial
part of the measurement is affected by transient effects in

the time domain; these correspond to leakage effects in
the frequency domain. It is important that these effects
be removed in order for them not to distort the FRF.
Thus, the measurement corresponding to the first period
is discarded, leaving three steady state periods (P = 3)
for further analysis.

The FRF is estimated by taking the DFT of both inputs
and outputs and then computing Gij(z) = Yi(z)/Uj(z),
where Y (z) and U(z) represent the FRF of the output
and input, respectively, while the subscripts i and j can
take the values of either 1 or 2.

Fig. 4. FRF of the system computed using simulated
output. The first 1600 harmonics are shown here for
better visualisation. Black solid line: First period,
Blue solid line: Second period, Red solid line: Third
period, Green solid line: Average of the three individ-
ual steady state periods.

Fig. 5. FRF of the system using measured output. The
first 1600 harmonics are shown here for better visual-
isation. Black solid line: First period, Blue solid line:
Second period, Red solid line: Third period, Green
solid line: Average of the three individual steady state
periods.

Figs. 4 and 5 show the FRF of the four transfer functions
for the simulated and measured outputs, where we consider
the FRF for each period and the average of the three
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Fig. 3. FRF for the four transfer functions given in Eqn.
(2) plotted using MATLAB bode function.

If the suspension is subject to a road surface that excites
these two frequencies, the passenger will experience poor
ride comfort. Thus, it is imperative that efficient suspen-
sion tuning can be developed to counter the effect of the
resonant frequencies.

4.2 Estimation of FRF using Multisine Signals

The identification of the resonant frequencies to improve
ride comfort is possible if the system is free from nonlinear
distortion and noise. As was illustrated in the previous
section, if a noise-free linear system is assumed in the
derivation of the equations of motion, one can easily
obtain the transfer function and compute the FRF in a
straightforward manner.

The identification of the resonant frequencies can be more
challenging if the contributions from nonlinearities and
noise are prominent. To determine how large these contri-
butions are, it is possible to exploit the advantage of mul-
tisine signals described by Eqn. (3). The multisine signals
(i.e., Signal A and Signal B) in Section 3 can be used to es-
timate the FRF and quantify the contributions from non-
linearities and noise. For the latter, due to the multisine
signals having certain harmonics suppressed, this special
feature can be exploited to identify the contributions from
nonlinearities and noise. If the system is dominantly linear
and the noise contribution is negligible, the output signals
when subject to the multisine inputs will only have power
at the excited harmonics. The output power at the non-
excited (suppressed) harmonics will provide information
regarding the contributions from nonlinearities and noise.
This is further discussed in Section 4.3.

In this section, the use of multisine signals to estimate the
transfer function from the FRF will be explored. Following
the approach in some previous studies (Cham et al. (2017);
Tan (2018)), the suspension system is excited with input
zr = u1 = Signal A and Fc = u2 = Signal B as shown in
Fig. 2, where they respectively represent the road profile
and actuator input. The outputs zus = y1 and zs = y2 are
measured. Four periods of the multisine signals are used,
with a total measurement time of 400s. However, the initial
part of the measurement is affected by transient effects in

the time domain; these correspond to leakage effects in
the frequency domain. It is important that these effects
be removed in order for them not to distort the FRF.
Thus, the measurement corresponding to the first period
is discarded, leaving three steady state periods (P = 3)
for further analysis.

The FRF is estimated by taking the DFT of both inputs
and outputs and then computing Gij(z) = Yi(z)/Uj(z),
where Y (z) and U(z) represent the FRF of the output
and input, respectively, while the subscripts i and j can
take the values of either 1 or 2.

Fig. 4. FRF of the system computed using simulated
output. The first 1600 harmonics are shown here for
better visualisation. Black solid line: First period,
Blue solid line: Second period, Red solid line: Third
period, Green solid line: Average of the three individ-
ual steady state periods.

Fig. 5. FRF of the system using measured output. The
first 1600 harmonics are shown here for better visual-
isation. Black solid line: First period, Blue solid line:
Second period, Red solid line: Third period, Green
solid line: Average of the three individual steady state
periods.

Figs. 4 and 5 show the FRF of the four transfer functions
for the simulated and measured outputs, where we consider
the FRF for each period and the average of the three

periods. These respective FRFs are plotted using black,
blue, red and green solid lines. For the FRFs obtained
using simulated data, as expected the FRFs are smooth
and have similar FRF shapes as the ones shown in Fig. 3.
As there are no nonlinearities and noise considered in the
simulation, the FRFs for each period and the average of
the three periods are indistinguishable as they are plotted
on top of each other. Notably, the two resonant frequencies
are clearly observed like the ones shown in Fig. 3. With
fres = 0.01Hz, each harmonic number corresponds to
2π(0.01) = 0.0628 rad/s. With that, the two resonant
frequencies between 13-15 rad/s (2.07-2.39 Hz) and 48-50
rad/s (7.64-7.96 Hz) correspond to harmonic numbers 207-
239 and 764-796, respectively, which is what is observed in
Fig. 4. The slight difference in the FRF shapes with Fig.
3 is attributed to the conversion from continuous-time to
discrete-time.

On the other hand, the four FRFs shown in Fig. 5 are
significantly different from the ones obtained in Fig. 4.
Each period results in different FRFs suggesting the sig-
nificant contribution of noise in the system. For instance,
the output 2 due to input 1 seems the noisiest with some
of the FRFs from individual periods deviating the furthest
from the average FRF. This could be due to the effect of
the road profile being highly damped prior to being man-
ifested as displacement of the vehicle body. In addition,
the resonant frequencies are not obvious in the measured
FRFs (e.g., |G21| and |G22|) and this could pose challenges
in suspension tuning for achieving better ride comfort.

4.3 Quantification of Nonlinearities and Noise

Here, the second role of the multisine signals, namely the
quantification of the nonlinearities and noise, is discussed.
The estimation of FRF in Section 4.2 reveals the ‘noisy’
FRFs obtained using the measured output. Whether this
‘noisy’ FRF is purely due to noise or results from nonlin-
earities will be analysed in this section.

To analyse and quantify the nonlinearities and noise
present in the Quanser suspension system, we employ the
output DFT computation approach used in some previous
studies (Cham et al. (2017); Tan (2018)). Given that
N × P = 100000 × 3 = 300000, a 300000-point DFT is
computed using the 300000 time samples associated with
three distinctive steady state periods. The computation of
the output DFT allows the contributions from the linear,
nonlinear and noise terms to be clearly separated.

With P = 3 and the DFT taken over three periods, the lin-
ear contributions corresponding to u1 and u2, respectively,
appear at the following harmonics, {1, 7, 13, ..., 39997} ×
3 = {3, 21, 39, ..., 119991} and {5, 11, 17, ..., 39995} × 3 =
{15, 33, 51, ..., 119985}.
On the other hand, the effects of even and odd nonlin-
ear distortions appear at (non-excited harmonics × P ),
i.e., {2, 4, 6, ..., 50000} × 3 = {6, 12, 18, ..., 150000} and
{3, 9, 15, ..., 49999} × 3 = {9, 27, 45, ..., 149997}, respec-
tively.

The harmonics at other locations, i.e. {1, 2, 4, ..., 149999},
represent the noise contribution. Like in Section 4.2, two
cases are considered, where the output DFTs are com-
puted using the simulated output from Eqn. (1) and the

measured output from the Quanser suspension system.
The 300000-point DFT for both simulated and measured
outputs are shown in Figs. 6 and 7.

Fig. 6. DFT magnitude for simulated outputs. The
first 3600 harmonics are considered for better
visualisation. Black circles: Power at harmonics
{3, 21, 39, ...119991}. Green diamonds: Power at har-
monics {15, 33, 51, ...119985}. Blue plusses: Even or-
der nonlinear distortion, Cyan asterisks: Odd order
nonlinear distortion, Red dots: Noise.

Fig. 7. DFT magnitude for measured outputs. The
first 3600 harmonics are considered for better
visualisation. Black circles: Power at harmonics
{3, 21, 39, ...119991}. Green diamonds: Power at har-
monics {15, 33, 51, ...119985}. Blue plusses: Even or-
der nonlinear distortion, Cyan asterisks: Odd order
nonlinear distortion, Red dots: Noise.

For the simulated output DFT (Fig. 6), as expected, the
contributions from the nonlinear (blue plusses and cyan
asterisks) and the noise (red dots) terms are negligible
with their magnitudes in the range of −250 to −170 dB.
Note that no noise is added to the system in obtaining the
simulated output data. Thus, the presence of ‘noise’ (red
dots) is attributed to rounding errors and not the actual
noise. The contributions of the linear terms are clearly
visible.
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On the other hand, for the measured output DFT (Fig. 7),
significant contributions from the nonlinear (blue plusses
and cyan asterisks) and noise (red dots) terms are ob-
served. For Y1, odd order nonlinear distortion dominates
over even order nonlinear distortion and noise, as the cyan
asterisks are generally above the blue plusses and the red
dots. The even order nonlinear distortion is roughly at
the same level as the noise. In particular, the effects of
odd order nonlinear distortion are about 13 dB and 8
dB below the linear effects from u1 and u2, respectively.
The even order nonlinear distortion and noise both have a
magnitude of approximately 10 dB below that of the odd
order nonlinear distortion. However, for Y2, the effects of
even order nonlinear distortion are significant, especially
at higher frequencies. Further investigations using different
scaled inputs that operate within the constraints of the
Quanser suspension system yield similar results suggesting
that different input amplitudes do not significantly affect
the relative contributions of noise and nonlinearities.

5. CONCLUSIONS

Traditionally, the derivation of the equations of motion
for the suspension system assume that the forces acting
on the mass, damper and spring are linear, and that they
correspond to the acceleration, velocity and displacement,
respectively. This enables the derivation of the transfer
functions allowing the computation of FRF to identify
the resonant frequencies such that an appropriate tuning
approach can be undertaken to improve ride comfort.
In this study, using multisine input signals, the effects
of nonlinearities and noise in a suspension system were
analysed and quantified using measured outputs from a
laboratory-scale suspension system. The results show that
the effects of nonlinearities and noise are significant to
the extent of eluding the resonant frequencies that were
previously identified using the linear model. These findings
also suggest that some additional measures need to be
taken when developing tuning approaches. These measures
include, but are not limited to, nonlinearities and noise
compensation techniques and the use of nonlinear models.
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