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Lithium-ion batteries can last many years but sometimes exhibit rapid, nonlinear degradation that severely limits battery
lifetime. In this work, we review prior work on “knees” in lithium-ion battery aging trajectories. We first review definitions for
knees and three classes of “internal state trajectories” (termed snowball, hidden, and threshold trajectories) that can cause a
knee. We then discuss six knee “pathways”, including lithium plating, electrode saturation, resistance growth, electrolyte and
additive depletion, percolation-limited connectivity, and mechanical deformation—some of which have internal state
trajectories with signals that are electrochemically undetectable. We also identify key design and usage sensitivities for
knees. Finally, we discuss challenges and opportunities for knee modeling and prediction. Our findings illustrate the
complexity and subtlety of lithium-ion battery degradation and can aid both academic and industrial efforts to improve battery
lifetime.
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Lithium-ion batteries are expected to play a critical role in
decarbonization via their use in electric vehicles and stationary
energy storage. One of the most challenging requirements for these
demanding applications is long lifetime, with typical warranties of
eight years for electric vehicles and ten years for grid storage.1–3

Battery lifetime requirements will become increasingly challenging
as “million-mile batteries”4 become the expectation for next-
generation electric vehicles. Furthermore, as concerns around battery
materials mining, manufacturing, and disposal increase,5 improving
battery lifetime is a straightforward way to decrease the environ-
mental impact of the lithium-ion battery lifecycle. Thus, under-
standing and improving the lifetime of lithium-ion batteries is a
critical research direction.

By definition, lithium-ion batteries can exhibit either linear,
sublinear, or superlinear aging trajectories (Fig. 1). In laboratory
settings (i.e., single-cell testing using battery cyclers), these aging
trajectories are often presented as capacity vs cycle number or
similar. Battery aging trajectories are often linear6–8 or sublinear.9–13

Sublinear degradation is often attributed to side reactions such as
solid-electrolyte interphase (SEI) growth, which grows approxi-
mately with the square root of time or cycle number due to its self-
passivating nature.9–14 While this type of degradation is largely
unavoidable, the decelerating degradation rate is a fortunate property
for long-lifetime applications. However, superlinear battery degrada-
tion is also commonly observed. This type of degradation goes by
many names in the battery literature, including “knee”,15,16 “rollover

failure”,6 “nonlinear aging”,7,17–22 “sudden death”,23–25 “saturation”,26

“second-stage degradation”27 or “two-phase degradation”,28 “capacity
plunge”,29 “drop-off”,30 etc.; we use the term “knee” in the remainder
of this work. Avoiding or delaying knees is critical to ensure long
battery lifetimes; furthermore, knees pose challenges for accurate
onboard state-of-health estimation, as batteries with identical states of
health (i.e., estimated capacity or energy retention) may have entirely
different remaining useful lives.27,31 However, despite many reports
on this topic, a comprehensive understanding of knees is lacking,
likely due to the variety and complexity of the observed degradation
mechanisms.

In this review, we survey the literature and critically examine
both experimental and modeling work on the subject of knees in
lithium-ion battery aging. We first review methods to identify the
knee point from an aging trajectory. We then identify six knee
“pathways” from the literature, including lithium plating, electrode
saturation, resistance growth, electrolyte and additive depletion,
percolation-limited connectivity, and mechanical deformation; each
of these knee pathways can be categorized into one or more of three
classes of “internal state trajectories” (”snowball”, “hidden”, or
“threshold”) that reflect the measurement requirements for modeling
and prediction. We also classify differences in experimentally
observed knee behavior as either differences in design, differences
in usage conditions, or cell-to-cell/testing variation. Finally, we
discuss the implications of our findings to modeling, predicting, and
avoiding knees; as a whole, knee prediction is challenging, but a
better understanding of the underlying physics will help. This review
can serve both academic and industrial efforts to understand and
improve lithium-ion battery lifetime.zE-mail: peter.m.attia@gmail.com
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Defining the Knee Point

Knees are often straightforward to identify by eye, especially in
single, smooth and ideal aging trajectories (e.g., the superlinear
aging trend in Fig. 1). While identifying the presence of a knee may
be sufficient for some analyses, we are often interested in the
location of the knee, known as the “knee point”. The battery
community has not aligned on a standardized definition of the
knee point; for instance, while IEEE Standard 485TM-2020 defines a
capacity knee as when “the capacity slowly declines throughout
most of the batteryʼs life, but begins to decrease rapidly in the latter
stages”,32 this definition is qualitative and thus unusable for
quantitative analysis. Here, we discuss approaches for quantitative
knee point estimation. This problem can be considered in both the
“offline” (i.e., methods that identify knee points given the complete
aging trajectory) and “online” (i.e., methods that identify knee points
during use) settings.

First, we note that the convention used for analyzing and
visualizing lifetime data impacts the definition and location of the
knee. The battery community has many such conventions. For
instance, time, cycle number, equivalent full cycles, or capacity/
energy throughput can be used to represent the x axis of a lifetime
plot. Similarly, the capacity, energy, or power can be used on the y
axis (power, or energy divided by time, is less commonly reported
but useful in some contexts, such as aviation). These values can be
reported as either absolute or normalized to the initial or nominal
value, and for either charge or discharge. Furthermore, these y values
can be either at moderate or high rates from a cycling experiment or
from low-rate periodic diagnostic tests. Figure 2 illustrates how the
same data plotted as a function of either cycle number or capacity
throughput (2a–2b), and cycle number or time (2c–2d), can change
the apparent severity of the knee. Finally, we mention that resistance
can also be used on the y axis, but these curves have been referred to
as “resistance elbows” instead of “knees” since the resistance
increases superlinearly.33

While the knee point is mathematically well defined in the offline
setting, the mathematical definition is difficult to apply in practice.
For a continuous function, the knee point is mathematically defined
as the maximum of its curvature, i.e., when the function deviates
most from a straight line. However, the curvature calculation
requires an estimate of the second derivative. Real-world battery

aging datasets are discrete (e.g., capacity vs cycle number is only
measured at cardinal number values of cycle number), noisy (e.g.,
due to environmental temperature fluctuations in lab data or due to
varying duty cycles and temperature fluctuations in field data), and
sometimes infrequently sampled (e.g., datasets where capacity
estimates come only from periodic diagnostic cycles). Numerical
differentiation is challenging under these conditions due to noise
amplification, and numerical second differentiation is even more
challenging as the noise amplification challenge becomes over-
whelming. While many methods have been proposed to obtain less
noisy numerical derivatives,35,36 often involving smoothing or curve
fitting, the numerical second derivative is highly sensitive to the
method used for the numerical first derivative. In summary,
identifying a knee point by calculating the maximum curvature—
the mathematically correct definition of the knee point—is difficult
for real-world battery aging trajectories.

A few methods have been proposed to deal with the specific
problem of offline knee point detection without requiring numerical
differentiation. Some of these methods apply to knee point detection
in any domain, while others are specific to knee point detection in
battery aging trajectories. We detail these methods in Supplementary
Discussion 1 (available online at stacks.iop.org/JES/169/060517/
mmedia). In Fig. 3, we implemented and applied these methods to
the capacity curve from a single cell in the Severson et al.37 dataset.
We compare the knee points as estimated by these five offline
methods in Fig. 3. All methods estimate the knee point at cycle
numbers within a 26 cycle range (365–391 cycles). Looking across
the Severson et al.37 dataset, the knee points estimated by these
methods were highly correlated across most cells (Figure S1;
quantile regression method not included). These results suggest
that all of these methods are generally comparable for offline knee
point estimation.

Finding the knee “online” is difficult because the end-of-life
capacity profile is not known and because the discharging conditions
are often inconsistent. Transforming the offline methods into online
methods is challenging since many of these methods require
the entire aging trajectory for knee point estimation (e.g., many
require data after the knee to fit an intersecting line). However, the
quantile regression method proposed by Zhang et al.40 can accom-
modate online knee point estimation since only the initial aging
trajectory is required. Of course, the challenge of uncontrolled usage
conditions and thus higher noise observations41 is inherent to online
state estimation; varying duty cycles and varying environmental
temperature in deployed systems could mask the knee. In principle,
knowledge of how similar cells knee under similar usage conditions
may enable more accurate online knee point estimation. These issues
remain opportunities for future work.

Pathways and Internal State Trajectories for Knee Points

In our review of the literature, we classified each proposed knee
observation/hypothesis into both “pathway” and “internal state trajec-
tory” categories. First, we identified six knee pathways, or failure
modes leading to knees grouped by the fundamentals of their
degradation. These pathways are schematically illustrated in Fig. 4.
Some of these pathways (e.g., lithium plating) have been extensively
characterized and modeled, while others (e.g., percolation-limited
knees) are primarily hypotheses at this stage. Here, we critically
examine the evidence for each pathway. For more extensively studied
pathways such as lithium plating, we consider both modes, defined as
high-level, mechanism-agnostic changes in cell state, and mechanisms,
defined as the specific failure that leads to a change in cell state. For
instance, loss of active material (LAM) is a degradation mode that
can be caused by electrode delamination, one of several possible
degradation mechanisms for this degradation mode. Degradation
mechanisms are often challenging to pinpoint exactly or experimen-
tally isolate, but degradation modes are usually identifiable through
common electrochemical measurements or characterization methods
and can help conceptually validate a proposed pathway.

Figure 1. Schematic of the three lithium-ion battery aging trajectories:
sublinear, linear, and superlinear degradation (“knees”). Here, the x axis is
labeled “cycle number”, although it could also represent equivalent full
cycles, capacity or energy throughput, time, or similar. Similarly, the y axis is
labeled “retention”, which could represent capacity, energy, or power
retention; furthermore, these values can be either at moderate-high rates
from a cycling experiment or from low-rate periodic diagnostic tests. We use
this convention (retention vs cycle number) in conceptual figures throughout
this work.
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Second, we considered the relationship between the directly
observable state variables (i.e., capacity, energy, power, or resis-
tance) and the trajectory of the internal states underlying their knees.
Figure 5 illustrates these three underlying “internal state trajectories”
that can lead to a knee. These internal states can be any internal
variable—e.g., remaining active material in the negative electrode,
charge-transfer kinetic parameters at the positive electrode, concen-
tration of a specific additive remaining in the electrolyte—that
dominates the observed variable. Snowball trajectories (Figs. 5a and
5d) occur when the underlying state variable has a direct relationship
with the observable state variable, but the underlying state variable is
increasing superlinearly (e.g., the functional form is exponential,
quadratic, cubic, etc.). Positive feedback between two degradation
mechanisms is a special case of a snowball trajectory, a point we
return to in our discussion of interactions and heterogeneity. Hidden
trajectories (Figs. 5b and 5e) occur when the observable state
variable, originally controlled by a slowly-increasing state variable,
becomes dominated by a second rapidly-increasing state variable.
Finally, threshold trajectories (Figs. 5c and 5f) occur when the
observable state variable changes when the underlying state variable
reaches a threshold. Each of these underlying internal state trajec-
tories has unique implications for detectability and prediction, a
point we return to throughout this work. Note that these classes of
internal state trajectories cannot always be precisely distinguished;
for instance, a hidden trajectory can sometimes be considered a
threshold trajectory, i.e., the threshold can be considered the crossing
point between two internal states.

Our ultimate goal is to provide a framework for modeling and
predicting knees in a new cell chemistry/form factor. Since we

primarily take a physics-driven approach to understanding knees, we
primarily focus on physics-driven and semi-empirical prediction
approaches here. Thus, measuring and extrapolating internal state
trajectories for all relevant knee pathways is often the most
straightforward way to predict knee onset for a given cell design
and usage condition—especially in the absence of a suitable training
set for data-driven approaches. However, each class of internal state
trajectories holds unique challenges for this prediction approach. For
instance, snowball trajectories require extrapolation of a superlinear
function (e.g., an exponential function), which is often an error-
prone exercise and is exacerbated by noisy measurements. Hidden
trajectories require knowledge of the functional forms and simulta-
neous measurements for two internal state variables. Lastly,
threshold trajectories require knowledge of the functional form,
the threshold, and measurements for one internal state variable. In
short, the requirements for each of these internal state trajectories
are nontrivial. Additionally, the difficulty of obtaining some of
these required components can vary substantially, as we discuss
throughout this work.

Figure 6 displays the connection between the six knee pathways
and the three internal state trajectories. We elaborate on each internal
state trajectories for each knee pathway in the subsequent discussion;
some knee pathways correspond to multiple internal state trajectories
if multiple degradation mechanisms can occur for a pathway (e.g.,
lithium plating). In theory, similar modeling and prediction ap-
proaches can apply to pathways with the same internal state
trajectories. In this section, we discuss the challenges and opportu-
nities for modeling and prediction for each pathway and internal
state trajectory.

Figure 2. Sensitivity of knees to data visualization choices. (a) Retention vs cycle number. The data is artificially generated from an exponential function.
(b) Retention vs capacity throughput, normalized by the nominal capacity. The throughput is calculated by taking the cumulative sum of the retention values.
Note how the knee appears earlier and sharper when viewed with throughput on the x axis. (c) Capacity retention vs cycle number for lithium iron phosphate/
graphite cells cycled at varying depth of discharge (DOD). Adapted from Fig. 3 of Wang et al.34 (d) Capacity retention vs time for lithium iron phosphate/
graphite cells cycled at varying DOD. Note how the curves collapse when plotted as a function of time. Adapted from Fig. 4 of Wang et al.34
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Figure 3. Results of various knee identification methods proposed in the literature illustrated on the batch 2, channel 12 cell from the Severson et al.37 dataset
(arbitrarily selected). The capacity is normalized by the nominal capacity of the cell. (a) Kneedle method, proposed by Satopää et al.38 (b) Bacon-Watts method,
proposed by Fermín-Cueto et al. 16 for use in battery aging trajectories. (c) Tangent-ratio method, proposed by Diao et al.15 (d) Bisector method, proposed by
Greenbank and Howey.39 (e) Quantile regression method, proposed by Zhang et al.40 The inset illustrates how voltage data is used to determine the initial aging
trajectory, and knees occur when this feature from voltage data falls below this initial trajectory. (f) Comparison of knee points as identified via these five
methods.

Figure 4. Schematics of the six knee “pathways” identified in the literature. Each of these pathways may have multiple degradation modes (e.g., loss of active
material), and each of these modes may have multiple degradation mechanisms (e.g., electrode delamination). This Fig. emphasizes particle- and electrode-level
effects, although many of these mechanisms occur on the nano- and macroscales as well. (a) Lithium plating, in which metallic lithium deposits on the surface of
the negative electrode particles. (b) Electrode saturation, in which the number of active sites in the electrode has decreased and can no longer accommodate the
incoming lithium inventory. (c) Resistance growth, in which high overpotentials lead to a rapid drop in available capacity. (d) Electrolyte depletion, in which the
local depletion of electrolyte leads to loss of active material, and additive depletion, in which the depletion of a critical electrolyte additive triggers a knee.
(e) Percolation-limited connectivity, in which a small change in ionic or electronic electrode connectivity leads to a large change in electrode active material.
(f) Mechanical deformation, in which microscale, mesoscale, or macroscale mechanical effects trigger an increasing rate of active material loss.
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Figure 5. Schematic of the three types of “internal state trajectories” leading to a knee. In each case, the retention curve looks the same (a–c), but the underlying
internal trajectories lead to knees via different mechanisms. (d) “Snowball” trajectory, in which the state variable is increasing via a superlinear functional form
(e.g., exponential, quadratic, cubic, etc.). (e) “Hidden” trajectory, in which a slowly-increasing state variable (state 1) is dominated by a rapidly-increasing state
variable (state 2). (f) “Threshold” trajectory, in which a dramatic change in observable state is triggered by a state variable reaching a threshold. The functional
forms for the internal state variables for the hidden and threshold trajectories may be linear, sublinear, or superlinear. Note that the curves in panels a–c are
illustrative and not explicitly derived from panels d–f.

Figure 6. Connection between the six knee pathways (Fig. 4) and the three internal state trajectories (Fig. 5). A knee pathway may have multiple internal state
trajectories if multiple degradation mechanisms can occur for the same pathway. We elaborate on each internal state trajectories for each knee pathway in the
subsequent discussion.
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Lithium plating knees.—Lithium plating occurs when lithium
ions form metallic lithium on the surface of the electrode rather than
intercalating into it. The plating reaction is favorable when the
reaction potential of Li/Li+ is greater than the equilibrium potential
for other alternative reaction pathways for Li+ (i.e., graphite
intercalation).42 Plating can be either “rate-independent”, i.e. plating
that occurs independent of the applied current (“overcharging”), or
“rate-dependent”, i.e. plating that only occurs if the applied current
exceeds some value (“fast charging”). Lithium plating can also occur
in either fresh cells or aged cells. Furthermore, lithium plating can
occur with various extents of reversibility within a cycle, defined as
the ratio of lithium plated during charge that is recovered in the
subsequent discharge (this ratio is always less than 100%, meaning
some irreverisble lithium plating always occurs).43,44 In contrast to
irreversible plating, reversible plating does not contribute to long-
term degradation. Thus, we use “plating” to refer to irreversible
plating throughout the remainder of this discussion.

Generally, lithium plating on graphite follows heterogeneous
nucleation and growth kinetics, in which rapid growth proceeds quickly
after an initial nucleation phase.42,45,46 Thus, lithium plating can often
be considered a “snowballing” knee (Figs. 5a and 5d). However, some
lithium plating pathways (e.g., lithium plating driven by active material
loss from the negative electrode, a hidden trajectory) leads to knees
independent of the nucleation and growth of plated lithium. In these
cases, the nucleation and growth kinetics of lithium plating will only
exacerbate these degradation mechanisms, and the degradation will be a
combination of the hidden and snowball trajectories.

Historically, lithium plating has been considered to be a primary
driver for capacity knees. Here, we discuss the mechanisms and sub-
pathways by which plating can lead to a knee (Fig. 7). We suggest
Waldmann et al.47 and Gao et al.42 for comprehensive general
overviews of lithium plating.

Rate-independent lithium plating.—Rate-independent lithium
plating occurs whenever the lithium capacity during charging exceeds
the negative electrode capacity, i.e., the negative electrode is unable to
host all lithium coming from the positive electrode. Generally, the
latter can be avoided in fresh cells by simply using a negative
electrode to positive electrode capacity ratio (n:p ratio) greater than 1
(Fig. 7a). However, if active material from the negative electrode is
lost during aging, rate-independent lithium plating will occur even in
cells with excess negative electrode capacity (Fig. 7b).

Rate-independent lithium plating in fresh cells. While rate-
independent lithium plating in fresh cells can be easily avoided by
proper cell design (Fig. 7a), this degradation mechanism is often

exploited for scientific studies of lithium plating. For instance,
Deichmann et al.48 created cells with n:p ratios of 0.75 and 0.5 to
intentionally deposit lithium metal on graphite electrodes. The
authors identified a relationship between decreased n:p and capacity
fade, which they attributed to high loss of lithium inventory using
differential capacity analysis and scanning electron microscopy. In a
creative study, Martin et al.49 used deposited lithium metal as a
mechanism to store extra capacity, enabling the cell to occasionally
discharge extra energy (i.e., when extra range is needed) without
requiring a substantially larger negative electrode. This cell design
used an n:p ratio of 0.6, where n:p is calculated using the lithium
capacity of the conventional graphite. A high upper cutoff voltage
during charging was used to intentionally plate lithium onto graphite;
unsurprisingly, irreversible lithium plating was found to be the
primary failure mechanism, with over 50% capacity loss in two of
the three electrolytes tested (although the cells did not exhibit knees).
Rate-independent lithium plating in fresh cells is trivial to model and
predict if the cell design is known; if rate-independent plating is
expected in fresh cells, a snowballing lithium plating knee (or, at a
minimum, high early-in-life capacity loss) may occur early in life.

Rate-independent lithium plating due to loss of active material.
Loss of active material—specifically, loss of active material from the
delithiated negative electrode (LAMdeNE)—during aging may result
in rate-independent lithium plating if the lithium capacity of the
negative electrode becomes limiting during charging (Fig. 7b). For
instance, if the rate of LAMdeNE exceeds that of the loss of lithium
inventory (LLI), the negative electrode will eventually be unable to
accommodate all lithium during charging, which will lead to rate-
independent lithium plating and thus a knee. Dubarry and
colleagues43,44,50,51 have extensively explored this scenario by
considering both different ratios of LAMdeNE to LLI and different
extents of reversible and irreversible plating (Fig. 8). This scenario is
a prototypical case of a hidden state (i.e., loss of active negative
electrode material) causing a knee: because the negative electrode is
typically oversized relative to the positive electrode, active material
loss from the negative electrode is hidden from the measured
capacity until the negative electrode capacity falls below the positive
electrode capacity. We discuss this effect more generally in our
discussion of the electrode saturation pathway. Fortunately, the onset
of rate-independent lithium plating due to LAMdeNE can often be
modeled and predicted via differential capacity analysis43,44,50,51 to
identify the rates of LLI and LAMdeNE. Note that differential
capacity analysis generally requires periodic low-rate cycling inter-
spersed within the cycling test. Lastly, we note that the high
predictive performance of features sourced from voltage curves

Figure 7. Sub-pathways for lithium plating knees. (a) Fresh cell lithium plating. Rate-independent lithium plating (“overcharging”) in fresh cells will occur if the
cell has more positive electrode capacity than negative electrode capacity. Rate-dependent lithium plating (“fast charging”) in fresh cells will occur if the use case
is too aggressive for what the cell can support; often, rate-dependent plating in fresh cells occurs due to low temperatures, high currents, or high compression. (b)
Aged cell lithium plating due to loss of active material (LAM). LAM can lead to rate-independent lithium plating if the remaining negative electrode capacity
falls below the remaining lithium inventory. LAM can lead to rate-dependent lithium plating if the local current density exceeds what the active negative
electrode material is able to support. (c) Aged cell lithium plating due to SEI growth. SEI growth can lead to rate-dependent lithium plating by decreasing the
porosity of the electrode, which will decrease electrolyte transport kinetics, or by decreasing the lithium transport kinetics through the SEI, which will decrease
the charge transfer kinetics. Note that the nucleation and growth kinetics of lithium plating adds an additional snowball trajectory on top of the other trajectories
associated with these sub-pathways.
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over the discharge capacity curves in Severson et al.37 was largely
attributed to this sub-pathway.

In principle, various degradation mechanisms can lead to
LAMdeNE, which occurs when active sites lose either ionic or
electronic connectivity with the electrode. Additionally, several of
these mechanisms can occur in parallel, leading to a snowball effect
where loss of active material due to one mechanism may result in
further stress on the remaining active sites, accelerating degradation
via rate-independent lithium plating. Electrode sites can lose
electronic connection via delamination,52–55 particularly for cells
with low external pressure.53 Particle cracking is another mechanism
for electronic disconnection of active sites, although graphite
particles are not expected to crack appreciably.56 Electrode sites
can lose ionic connection via electrolyte dry-out, which may be
driven by gas generation during cycling,25,57 or the growth of

microns-thick “covering layers”, an effect that we mention now but
explore in depth in our discussion on mechanical deformation knees.
While the exact mechanisms leading to LAMdeNE are challenging
to pinpoint exactly without extensive destructive analysis, LAM
can often be identified via differential capacity analysis.43,44,50,51

However, we note that active material loss from well-made,
graphitic negative electrodes cycling under “reasonable” conditions
is often low in practice,4,58–60 so this effect may be most pronounced
for cells with poorly made negative electrodes and/or cells with
appreciable silicon content in the negative electrode. Furthermore,
since negative electrode active material loss must outpace lithium
inventory loss for this mechanism to occur, and since the rate of
lithium inventory loss is more sensitive to high temperatures (∼40 °C)
than active material loss,4,60 this mechanism is more likely to occur at
lower temperatures than higher temperatures.

Rate-dependent lithium plating.—“Rate-dependent” lithium plating
occurs when excessive transport or reaction overpotentials cause the
local electrode potential to drop below that of Li/Li+. In other words,
rate-dependent lithium plating occurs at conditions when the plating
could otherwise be mitigated by lithiating the graphite at a sufficiently
low current. While rate-dependent lithium plating has the same criterion
as rate-independent lithium plating (i.e., the local potential falls below
that of Li/Li+), the dynamic nature of this process introduces additional
avenues for lithium plating knees to occur.

As Gao et al.42 describe, salt depletion in the electrolyte, poor
charge transfer kinetics, and surface crowding in the negative
electrode particles at the graphite surface further favor lithium plating
over intercalation. These three effects mirror the transport of lithium
from the electrolyte to the negative electrode (electrolyte transport,
charge transfer from the electrolyte to the negative electrode particles,
and solid-state transport within the negative electrode particles). While
solid-state transport within the negative electrode particles is generally
not expected to degrade with aging, both electrolyte transport and
charge transfer from the electrolyte to the negative electrode particles
can degrade with aging due to SEI growth (Fig. 7c).

Rate-dependent lithium plating in fresh cells. Rate-dependent
lithium plating can be driven by a wide range of cell designs and
usage conditions; the prototypical use case leading to lithium plating
is high charging rates at low temperature61,62 (Fig. 7a). Waldmann
et al.61 observed an increase in the rate of aging with a decrease in
temperature below 25 °C, attributing the increased aging rate to
lithium plating via dissections. Low temperatures increase both the
transport overpotentials for lithium ions within the electrolyte and
electrode and the reaction overpotential for lithium intercalation.
Note that “high” charging rate or “low” temperature do not have
consistent quantitative definitions, as plating will occur whenever
the local potential exceeds the energy barrier for lithium nucleation.
Thus, plating may be observed even at “standard” test conditions,
such as 1C constant-current charging near room temperature.63,64

Increasing temperature and more rate-capable cell designs (i.e., thinner
electrodes) may allow for more rapid charging before lithium plating
and these knees are observed;65,66 Lewerenz et al.67 cycled cells at rates
up to 8C, observing no knees at rates as high as 4C, though
microstructural evidence of plating was found even at 1C. The onset
of lithium plating is also sensitive to the charging protocol, with many
studies demonstrating that informed design of charging protocols can
substantially extend cell lifetime by preventing lithium plating.63,68,69

Optimizing electrode architectures to improve electrolyte transport
kinetics is a further path forward to increase charging rates without
lithium plating.70,71 Careful electrochemical modeling can enable
estimates of minimum negative electrode potential (and thus the plating
risk) as a function of cell design and charging protocol;65 if accurate
modeling suggests rate-dependent plating is expected in fresh cells, a
snowballing lithium plating knee is likely to occur early in life.

Mechanical stress may also lead to rate-dependent lithium
plating, as applied stress can compress the electrode or separator.
This compression decreases the local porosity of the electrodes,
which decreases the apparent diffusivity of electrolyte, increases the

Figure 8. Rate-independent lithium plating driven by loss of active negative
electrode material. (a) Evolution of aging parameters with cycling of cell
degradation. The left axis shows the experimental normalized cell capacity at
C/25 (triangle markers) from reference performance tests occurring
throughout cycling, and the dashed black line shows the results of cell
capacity simulations with the calculated aging modes at C/25. The right axis
shows the evolution of the degradation induced by the calculated aging
modes (markers and dashed lines) with cycling. Note that LAMdeNE

increases linearly, and at a rate higher than LLI. At cycle 750, the negative
electrode becomes the capacity-limiting electrode during charge, at which
point plating begins. (b) Capacity vs cycle number at C/25, depicting the
contributions to the total capacity fade as a function of cycle number.
The yellow region represents LLI from non-plating sources (i.e., SEI
growth), the green region represents LLI from irreversible lithium plating,
and the red region represents reversible plating estimated from incremental
capacity analysis (the reversible plating does not contribute to the capacity
fade). The total capacity fade, represented by triangles (same as above
panel), comes from the sum of LLI from SEI growth and LLI from
irreversible plating. Reproduced with permission from Figs. 7 and 8 of
Anseán et al.50 Copyright 2017, Elsevier.
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local polarization, and thus can cause lithium plating. Cannarella and
Arnold53 conducted a direct test of this mechanism, finding that high
external pressures can induce lithium plating in pouch cells and lead
to a knee. In a follow-up experiment, Liu and Arnold72 demonstrated
that localized lithium plating could be induced in densified regions
of the separator. Bach et al.18 applied a hose clamp around the
circumference of an 18650 cylindrical cell, and a post-test teardown
clearly showed lithium plating localized to the regions of the
electrodes that were under compressive stress. From this test,
the authors concluded that internal gradients in pressure induced
by the current-collecting tab can also cause lithium plating. Coin
cells and pouch cells are also sensitive to localized external
pressures.73–75 Rate-dependent lithium plating induced by mechan-
ical gradients can be considered a threshold trajectory, as the lithium
plating begins once the negative electrode porosity falls below a
critical porosity (again, lithium plating itself can be considered a
snowball trajectory). This effect may be challenging to model and
predict without a detailed understanding of the heterogeneous
porosity distributions in the electrodes and separator, which is
difficult to experimentally measure.

Rate-dependent lithium plating due to loss of active material.
As previously discussed, a hidden trajectory for rate-independent
lithium plating is loss of delithiated negative electrode active
material (Fig. 7b).43,44,50,51 Mechanisms for loss of active material
include delamination, particle cracking, electrolyte dry-out, and
covering layer growth. However, LAMdeNE can also drive rate-
dependent lithium plating, even if the negative electrode capacity
does not limit the charging capacity. Active material loss without a
corresponding loss in lithium flux will lead to an increased local
current density on the negative electrode surface; these high local
current densities can drive higher overpotentials and thus lithium plating.
Similarly to rate-independent lithium plating due to LAMdeNE, rate-
dependent lithium plating due to LAMdeNE can be modeled and predicted
via differential capacity analysis; however, since this technique typically
requires low-rate cycling data, a major complication to estimating if rate-
dependent LAMdeNE is high enough to drive lithium plating is combining
the rate-independent estimate from differential capacity analysis with the
rate-dependent kinetic effects. Overall, rate-dependent lithium plating
due to LAMdeNE can be considered a threshold trajectory, where the
internal state is the minimum negative electrode potential and the
threshold is the local plating potential.

Continuous active material loss will create increasingly larger
local current densities, which will drive increasingly larger lithium
plating potentials. Thus, in cell design/use case regimes where rate-
dependent lithium plating is expected, linearly increasing active
material loss can cause accelerating rates of lithium plating.
Furthermore, as previously discussed, the nucleation and growth
kinetics of lithium plating adds an additional snowball trajectory,
since additional growth of initially nucleated phases can occur
rapidly. This “double-snowball” effect is especially pernicious and is
expected to lead to sharp knees. To our knowledge, prior experi-
mental or modeling work has not considered this effect. Overall, this
effect highlights the high sensitivity of rate-dependent lithium
plating to active material loss of the negative electrode.

Rate-dependent lithium plating due to pore clogging. As SEI
grows, it precipitates mainly in the pores of the negative electrode,
decreasing the available volume fraction for electrolyte in the
electrode76 This decreased volume fraction increases the electrolyte
transport overpotentials, which can ultimately lead to lithium
plating. The plated lithium, which has a much lower density than
intercalated lithium, further decreases the porous volume fraction,
creating a positive feedback loop for additional lithium plating19

(Fig. 9a). Thus, this effect can be considered a threshold trajectory,
in which a knee is triggered when the porosity decreases below some
critical porosity, after which plating begins. A few works have modeled
this phenomenon,7,19,22,23 namely Yang et al.19 (Figs. 9b–9c). While this
mechanism has not been experimentally validated, decreasing negative
electrode porosity with cycling has been conclusively observed via X-ray
computed tomography77,78 (Figs. 9d–e) and inconclusively observed via

electrochemical impedance spectroscopy62,79–81 (attribution of spectral
shifts to specific underlying phenomena, particularly via full cell
electrochemical impedance spectroscopy, is challenging). Furthermore,
the “covering layer” effect discussed at a later point may be related to
this phenomenon, as models of lithium plating induced by pore clogging
suggest that the pore clogging occurs primarily at the separator-
electrode interface.19 One proposed countermeasure for rate-dependent
lithium plating due to pore clogging is to use a graded or stepped
porosity profile through the thickness of the negative electrode; since
most pore clogging occurs near the separator, having a higher porosity
near the separator and a lower porosity near the current collector can
slow the onset of the knee caused by pore clogging.23 We note that
measuring local porosity distributions in a commercially relevant form
factor is challenging and generally requires extensive ex-situ character-
ization. Furthermore, identifying the critical porosity at which plating
starts is nontrivial and requires accurate electrochemical modeling of the
porous electrode.

Rate-dependent lithium plating due to decreased charge-transfer
kinetics. SEI growth can also decrease the charge-transfer kinetics of
the negative electrode particles, since the increased thickness of the
SEI poses an additional barrier for lithium-ion intercalation.82–84 The
chemistry and morphology of the additional SEI thickness likely
influences its impact on the charge-transfer kinetics.85,86 Similarly to
the porosity mechanisms previously discussed, the charge-transfer
kinetics could decrease to the point that the negative electrode can
no longer accommodate the increased lithium flux. A few authors
have proposed this mechanism;87,88 Schuster et al.17 studied this
mechanism in depth via electrochemical impedance spectroscopy
and post-mortem analysis. An open question is if (or under what
conditions) SEI growth will cause lithium plating via decreased
porosity or increased charge-transfer resistance first.

Again, this effect can be considered a threshold trajectory, in
which a knee is triggered when the charge-transfer kinetics decrease
below some critical threshold, after which plating begins. Tracking
the charge-transfer kinetics over life can, in principle, be performed
via electrochemical impedance spectroscopy of either the full cell or
half cells harvested from the full cell,17,87,88 although interpreting
impedance spectra can be challenging. Furthermore, just as in the
case of porosity decrease, identifying the critical charge-transfer
kinetic parameters at which plating starts is nontrivial and requires
accurate electrochemical modeling of the porous electrode.

Electrode saturation.—As previously discussed, lithium plating
can occur if the active sites in the negative electrode cannot
accommodate the available lithium inventory, driving the local surface
potential to potentials at which lithium metal deposition is favorable.
More generally, if the rate of active material loss for one electrode
outpaces the rate of lithium inventory loss, the electrode can “saturate”
and reach the cutoff potential well before all lithium has transferred. If
this electrode is not limiting, its loss of active material will be hidden
from the overall capacity until this electrode becomes limiting;
furthermore, if the rate of active material loss is higher than the initial
rate of lithium inventory loss, a knee in capacity will manifest.
Dubarry et al.89 and Smith et al.90 captured this knee pathway by using
a functional form for active material loss that increases more rapidly
than that of lithium inventory loss (Fig. 10). This pathway can apply
for either electrode, but loss of active material from the negative
electrode is more likely to be a hidden trajectory since this electrode is
typically oversized relative to the positive electrode; the exception is
cells with lithium titanate electrodes, in which the positive electrode is
limiting and can cause a “hidden” knee.91,92

A richer picture emerges in models that capture the shifts in
electrode stoichiometry with cycling. Lin et al.26 and Kindermann
et al.93 modeled loss of lithium inventory driven by SEI growth and
loss of active material driven by mechanical effects in the positive
electrode. Sulzer et al.94 replicated a similar mechanism in Fig. 11 by
simulating continuous constant-current discharge and constant-current,
constant-voltage charge of a single particle model with SEI formation19

and loss of active material95,96 due to particle swelling.97,98 When the
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aging parameters (SEI reaction rate and particle cracking rate) are
chosen so that loss of active material in the positive electrode occurs at
a faster rate than loss of lithium inventory (e.g., compare Fig. 11c to
11d), the stoichiometric window of the positive electrode widens
(Fig. 11f), which increases the cell voltage for a given amount of
transferred lithium. This effect decreases the capacity between the
voltage limits. The knee occurs when the positive electrode becomes
fully saturated before the entire lithium inventory is transferred (around
cycle 600 in Fig. 11), despite the underlying rate of degradation
remaining linear (Figs. 11b–d). This scenario may occur in cells with
unstable positive electrodes, such as nickel-rich materials99–101 or
polycrystalline ternary oxide materials,4 cycling under conditions
such that the rate of positive electrode material loss exceeds the rate
of lithium inventory loss.

Electrode saturation can also be rate dependent, sometimes in
counterintuitive ways. Ma et al.6 found that single-crystal nickel
manganese cobalt oxide (NMC)/graphite cells exhibited no capacity

fade in 1C diagnostic cycles but exhibited capacity fade in C/20
diagnostic cycles. The authors attributed this result to the poor rate
capability of the single-crystal NMC particles. At low rates, the cells
are “negative electrode limited”; as lithium inventory loss shifts the
negative electrode voltage curve, the available discharge capacity
decreases and thus capacity loss is observed. At high rates, the cells
are “positive electrode limited” because the positive electrode
saturates before the negative electrode fully depletes; thus, the 1C
capacities are unaffected. We refer the reader to Ma et al.6 for further
discussion of this phenomenon.

Overall, electrode saturation can be modeled and predicted using
electrochemical modeling. This pathway can be considered either a
threshold trajectory, where the knee is triggered by electrode
saturation, or a hidden trajectory, where LAM of one electrode
outpaces both LAM of the other electrode and LLI. While modeling
of just the degradation modes (i.e., LLI, LAM, etc.) can capture the
key dynamics of this pathway, models that capture the shifts in

Figure 9. Rate-dependent lithium plating due to pore clogging. (a) Schematic illustration of pore clogging driven initially by SEI growth and then by plating.
Adapted from Fig. 8 of Yang et al.19 (b) Lithium inventory loss contributed by SEI growth and lithium plating, respectively, as modeled by Yang et al.19 (c)
Lithium inventory loss per cycle contributed by SEI growth and lithium plating, respectively, as modeled by Yang et al.19 The “snowballing” growth of lithium
plating occurs due to the accelerating decrease in porosity, which creates high transport overpotentials in the electrolyte and drives additional lithium plating. (d)
Pore size distributions of pristine and cycled subsections of graphitic negative electrode, as quantified via X-ray tomography phase contrast images. Adapted
from Fig. 3c of Frisco et al.77 (e) Comparison of the pristine and cycled samples via orthogonal virtual slices of the reconstructed X-ray phase contrast images.
Reproduced from Fig. 2c–d of Frisco et al.77 Copyright 2016, The Electrochemical Society.
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stoichiometry as a function of cycling can capture more subtle
effects. As Ma et al.6 demonstrate, periodic diagnostic cycles at
multiple rates can aid in identifying electrode saturation, especially
if the saturation is rate-dependent.

Resistance growth-induced knees.—Cell internal resistance
often increases during aging, in part due to the growth of side
reaction products on the surface of the electrode particles. This effect
is most pronounced for oxide-based positive electrode materials like
NMC, nickel cobalt aluminum oxide (NCA), lithium cobalt oxide
(LCO), and lithium manganese oxide (LMO), as they operate well
above the stability window of the electrolyte.6,101 Under constant
current conditions, the additional overpotential from increased
internal resistance will cause the cell to reach the cutoff voltage
more quickly, decreasing the capacity, energy, and power per cycle.
The magnitude of this overpotential growth rate is a product of both
the resistance growth rate (i.e., electrolyte reaction rate) and the
applied current.

Most modern lithium-ion batteries have voltage-capacity curves
that are relatively flat at higher voltages/states of charge (SOCs) (i.e.,
small dV/dQ) and relatively steep at lower voltages/SOCs (i.e., large
dV/dQ). Thus, when cycling at appreciable rates, the constant-
current portion of charge capacity is highly sensitive to small
increases in resistance growth. In contrast, the discharge capacity
is less sensitive to resistance growth—until the overpotential is large

enough such that the discharge ends in the flatter region of the
voltage-capacity curve (i.e., a small increase in overpotential leads to
a large decrease in capacity). When this flatter region is reached, the
discharge capacity becomes more sensitive to small changes in
overpotential (again, when cycling at appreciable rates), leading to a
knee in capacity, energy, and/or power.

Figure 12 displays a simple model illustrating a knee due to
ohmic resistance growth during cycling, inspired by the work of Ma
et al.6 and Mandli et al.20 The model arbitrarily assumes a constant
resistance growth rate of 0.2 mΩ per cycle, occurring at all SOCs;
the linearly increasing resistance with cycle number leads to linearly
increasing ohmic overpotential (Fig. 12a). The increased over-
potential then shifts the voltage-capacity curve downwards. To
demonstrate the impact of increasing resistance due to this downshift
in a “real” cell, we used voltage-capacity and voltage-energy
relationships recorded from an NMC/graphite cell at beginning-of-
life from Preger et al.8 (Fig. 12b). Figures 12c and 12d show the
impacts of this downshift on the voltage-capacity curve at lower
voltage cutoffs of 2 V and 2.8 V and discharge currents of 1C
(Fig. 12c) and 2C (Fig. 12d). In all cases, the discharge ends on the
steep portion of the voltage-capacity curve at the beginning of life.
However, as the cell ages and the resistance increases, the discharge
ends on the flat region of the voltage-capacity curve, resulting in an
increased rate of capacity loss (i.e., a knee) despite a linear increase
in resistance. Thus, this knee pathway is a threshold trajectory,
where the internal state variable is the overpotential and the
threshold is the “overpotential margin” between the lower cutoff
voltage and the flatter region of the voltage-capacity curve.

The impact of the resistance growth on the measured capacity
(Fig. 12e), energy (12f), and power (12g) during discharge is highly
sensitive to the discharge rate and the lower cutoff voltage—usage
parameters that are not often considered critical for their impact on
knees. Decreasing the discharge rates, of course, decreases the
overpotential and delays the onset of the knee. Decreasing the lower
cutoff voltage delays the knee by increasing the overpotential margin
between the lower cutoff voltage and the flatter region of the
voltage-capacity curve; however, note that low cutoff voltages can
also induce additional degradation mechanisms such as copper
dissolution.102,103 Naturally, energy and power knees (12f, 12g)
are more sensitive to rate than the capacity knees (12e). Because
these knees can “disappear” by cycling at lower rates or to lower
cutoff voltages, we sometimes refer to these knees as “pseudo-
knees”; furthermore, this knee mechanism may not be observed in
some practical settings (e.g., the slow weeks-long discharge of an
electric vehicle battery pack under typical usage). Finally, we note
that “resistance pseudo-knees” may also occur due to a stoichio-
metric decrease of lithium available to cycle, as explored by Mandli
et al.20 or a stoichiometric shifting of lithium to one electrode
preferentially during aging due to uneven loss of active material
across both electrodes.26

Ma et al.6 extensively studied this knee pathway using lab-made
230 mAh NMC532/graphite pouch cells, varying the upper cutoff
potential, discharging rate, electrolyte composition, and positive
electrode material coatings. Careful impedance measurements (on
both full cells and symmetric coin cells of the positive and negative
electrodes) were used to identify a dramatic increase of the positive
electrode impedance during aging. This resistance growth was
attributed to electrolyte oxidation at the positive electrode, which
was accelerated by high upper cutoff voltages and the use of more
reactive electrodes and electrolytes (i.e., uncoated positive electrode
particles, lower salt concentrations, and the use of oxidation-prone
additives such as methyl acetate). One practical consideration from
the work6 is that tests with high discharge rates exhibit resistance-
growth-induced knees earlier than tests with low discharge rates;
thus, tests with high discharge rates can be used as an early indicator
of resistance-growth-induced knees at lower rates. Alternately,
measurements of resistance throughout cycling (in tandem with the
voltage curve, discharge rate, and lower cutoff voltage) can be used
to estimate when the knee will occur.

Figure 10. Early models of “hidden” knee mechanisms due to electrode
saturation. (a) The exponentially increasing positive electrode loss eventually
limits the capacity and causes a knee. Adapted from Fig. 17 of Dubarry et
al.89 (b) The linearly decreasing negative electrode capacity eventually
overtakes the sublinearly decreasing lithium inventory, causing a knee in the
relative capacity. Adapted from Fig. 1 of Smith et al.90
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This knee pathway is also sensitive to electrode chemistry, as
each chemistry exhibits a unique voltage-capacity curve. For
instance, lithium iron phosphate (LFP)/graphite cells experiencing
high resistance growth would exhibit much sharper knees than
NMC/graphite cells due to their flatter voltage-capacity curves.
While LFP cells generally do not exhibit high resistance growth due
to their lower positive electrode operating voltages (well above the
electrolyte stability window),104,105 even moderate resistance growth
coupled with high discharge rates and high lower cutoff voltages
could lead to dramatic cell failure (although the magnitude of this
effect depends on the cutoff voltages).

Lastly, we mention that capacity knees are often correlated with
“resistance elbows”—that is, a rapid rise in the internal resistance.
While this correlation may be evidence for the prevalence of this
knee pathway, we note that other knee pathways may also lead to a
resistance increase at the knee (e.g., lithium plating due to loss of
active material or porosity decrease). We return to this topic at a later
point.

This “threshold” knee pathway is straightforward to model and
predict using standard electrochemical models and measurements of
resistance. However, convolutions with lithium inventory loss,
active material loss, etc. require care. Overall, given the high
sensitivity of this knee pathway to discharge rate and lower cutoff
voltage—parameters that vary widely in real-world usage—care
must be taken to transfer laboratory results to the field.

Electrolyte and additive depletion knees.—Both electrolyte and
additive depletion have been linked to knees. In principle, electrolyte
depletion can lead to a knee by driving either loss of active
material25,29,57 or lithium plating.106 In turn, electrolyte depletion
can be driven either by consumption via side reactions106–108 or via
local gas generation leading to particles disconnecting from the
electrolyte.25,57 Electrolyte depletion knees have been previously
modeled, although often with limited experimental validation. Park
et al.108 provided the first empirical model of a capacity knee due to
electrolyte depletion. Fang et al.29 modeled electrolyte depletion

knees occurring when the remaining electrolyte volume falls below
the pore volume. The associated loss of active material increases
local current density, which further increases the electrolyte dryout
rate in a positive feedback loop. Kupper et al.25 also developed a
model for electrolyte depletion knees using percolation theory to
capture the nonlinear knee behavior, a model we detail in the
subsequent pathway section. Experimentally, Sieg et al.106 attributed
capacity knees during fast charging of large pouch cells to electro-
lyte dryout via careful coin cell diagnostic studies; while the
electrode capacities remained healthy over life, lithium plating and
decreased fast charging times could be tracked to decreased local
electrolyte volumes. While the principles of the electrolyte depletion
knee pathway are clear, more work is needed to understand the
mechanistic details.

Additionally, robust work has linked the depletion of electrolyte
additives to knees. Electrolyte additives have a disproportionate
effect on lifetime relative to their amount in a cell; small quantities
of electrolyte additives can often delay the occurrence of the knee by
many cycles.6,109 Additive chemistry is complex; for instance, Burns
et al.110 showed how electrolyte performance often improves with
the number of additives used. Additives can certainly influence the
onset of other knee pathways, including lithium plating knees via
various mechanisms (e.g., electrolyte transport properties, SEI
growth rate and thus porosity decrease rate, etc.) and resistance
growth knee pahtways by controlling the rate of resistance growth.6

However, the depletion of electrolyte additives is another demon-
strated knee pathway. Here, we discuss perhaps the most widely
studied additive depletion knee mechanism: fluoroethylene carbo-
nate (FEC) depletion in silicon-containing cells.

FEC has been shown to substantially improve the capacity
retention of silicon electrodes.111,112 Among standard electrolyte
components, FEC preferentially reacts at the surface of silicon
particles; in fact, the rate of FEC consumption on silicon may be 10x
that of graphite, in part due to its large volume expansion (around
300%).113 Petibon et al.,114 Jung et al.,115 and Wetjen et al.113

performed comprehensive studies of Si-containing full cells with

Figure 11. Simulation showing a knee point due to positive electrode saturation, from Sulzer et al.94 Initially, all variables (LLI, LAMne, and LAMpe) increase
linearly with cycle number. Around cycle 600, the maximum stoichiometry in the positive electrode reaches unity, i.e., the electrode saturates. Electrode
saturation causes a knee in the capacity curve despite nearly linear rates of LAM and LLI. Note that LAMne and LAMpe do not directly correspond to LAM of
lithiated or delithiated electrode sites; see Sulzer et al.94 for more information.
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FEC-containing electrolytes and commercially-representative vo-
lumes, conclusively demonstrating that a knee occurs when FEC is
depleted from the electrolyte. Figure 13 displays key results from
Petibon et al.114 and Jung et al.,115 in which the dependence of the
knee on FEC concentration was confirmed via destructive measure-
ments of FEC concentration vs cycle number114 and cycling cells
with increasing initial FEC concentration.115 Louli et al.116 also
corroborated these findings. Earlier studies of the use of FEC in
high-Si cells111,112 did not observe knees due to their use of high
electrolyte volumes, which provided a large reservoir of FEC. Other
electrolyte components (namely, linear carbonates) are consumed
only after the knee, since FEC can no longer be preferentially
consumed;114 the cell polarization increases substantially after the
knee,113–115 possibly due to high reaction overpotential caused by
reactions of silicon with these nonpreferred electrolyte components.
This knee pathway is exacerbated by high upper cutoff voltages,114

higher cycling rates (presumably due to more mechanical damage to
the SEI layer),114 and (presumably) high temperatures (due to higher
SEI growth rates).

The electrolyte and additive depletion knee pathway, a clear
threshold trajectory, has a number of interesting implications. First,
since laboratory-built cells are often filled with high electrolyte
volumes, electrolyte-related knee mechanisms that are not present in
lab testing may manifest in more commercially representative form
factors. As Wetjen et al.113 emphasize, maintaining representative
electrolyte volumes in lab-scale cells is critical for accurately
capturing this knee pathway in production-scale cells. Second,
nominally identical cells, cycled identically, but with different initial
FEC concentrations exhibited minute electrochemical differences
before the knee.115 While the equivalent study has not been
performed for electrolyte depletion, we expect a similar result.
Since only the electrolyte or additive consumed in a given cycle
manifests in the electrochemical signals from cycling (e.g., differ-
ential capacity or differential voltage analysis), the remaining
electrolyte or additive is not electrochemically detectable as it
does not participate in reactions with the electrode. However, the
remaining electrolyte or additive amount is the key internal state
variable for this pathway. To estimate the remaining electrolyte or

Figure 12. Simple model illustrating “pseudo-knees” due to resistance growth; we use the term “pseudo-knees” here since the knee location is a function of rate
and lower cutoff voltage. Inspired by Fig. 16 of Ma et al.6 and the work of Mandli et al.20 (a) Assumed overpotential growth vs cycle number for a 1C and 2C
discharge. The assumed resistance growth rate is 0.2 mΩ/cycle. (b) Discharge capacity and energy vs the minimum discharge voltage for an example NMC/
graphite cell. Data obtained from Preger et al.8 (c, d) Voltage vs capacity as a function of cycle number for the (c) 1C discharge and (d) 2C discharge cases. The
final discharge capacity for each cycle is denoted by a marker. (e–g) (e) Discharge capacity, (f) discharge energy, and (g) discharge power (discharge energy/
discharge time) retention vs cycle number as a function of discharge current and the minimum voltage.
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additive amount, the internal electrolyte/additive amount and the
electrolyte/additive consumption over life must be known. However,
extracting electrolyte/additive consumption during cycling from
electrochemical data is challenging since side reaction signals are
often faint and occur concurrently with other electrochemical
processes. Furthermore, for commercial cells, the initial electro-
lyte/additive amount and the electrolyte/additive consumed during
formation are unknown, although obtaining these values may be
possible via electrolyte reverse engineering. Thus, knee onset for this
knee pathway is challenging to predict via standard electrochemical
signals. A proposal for future work is to evaluate electrochemical
tests or other nondestructive probes that may be sensitive to
remaining electrolyte/additive amounts. Fortunately, ultrasonic
probes appear well suited for detecting electrolyte loss in some
cell form factors, namely pouch cells.117,118

Percolation-limited connectivity knees.—Percolation theory119,120

is commonly used to describe statistical properties of clusters of
materials that are geometrically connected in porous media, including
porous electrodes used in modern lithium-ion batteries.121 In a porous
medium described by percolation theory, there exists a critical material
parameter above which the probability of a spanning cluster, i.e., a
cluster that spans the entire spatial extent of the porous medium, being
formed tends toward one and below which this probability tends
toward zero.121 In many percolating systems, this probability is highly
sensitive to the value of the critical material parameter. For lithium-ion
batteries, percolation theory can be used to describe both the ionic
conductivity of the liquid electrolyte that fills the porous electrode and
the electronic conductivity of the network of conductive additives. In
battery modeling and experimentation, the electrode is often implicitly
assumed to be sufficiently porous for the liquid electrolyte to
completely percolate it. On the other hand, much effort has been

spent on elucidating how the volume fraction of conductive additives
may or may not give rise to a percolating electrically conducting
network,122–125 which is especially important for ensuring electronic
conduction is not rate limiting in electrically insulating active
materials, such as lithium iron phosphate.123,125

Kupper et al.25 proposed an electrolyte depletion knee me-
chanism that incorporates percolation theory. In this proposed
electrolyte dry-out mechanism, they first define two new electrode
descriptors: “activity”, a, and “saturation”, s, given by

= ε
ε ε+

a LiC6

LiC6,inactive LiC6
and = ε

ε ε+
s elyt

elyt gas
, respectively. In these equa-

tions, ε is the volume fraction of the active graphite (εLiC6), inactive
graphite (εLiC ,inactive6 ), electrolyte (εelyte) and gas (εgas, which is
produced during SEI growth). Activity describes how much of the
electrode material is active and available for reaction, while
saturation describes the amount of pore space occupied by the liquid
electrolyte. The loss of ionic contact of graphite caused by
electrolyte dry-out is then described by a kinetic rate law that is
proportional to the difference in activity and equilibrium activity,
which is assumed to be a function of only saturation. To predict a
knee in cell capacity, the equilibrium activity-saturation relation-
ships were formulated to be nonlinear and contain a percolation
threshold value, around which the equilibrium activity varies rapidly
between 0 and 1. The functional forms of these relationships were
assumed given the absence of theoretical or experimental guidance.
Figure 14 plots two such nonlinear relationships, named relation-
ships 3 and 4, adapted from Fig. 5 of Kupper et al.25 The authors
concluded that relationship 4 best fitted experimental aging data.

The knee caused by this electrolyte dry-out model is a threshold
trajectory, where the threshold is the critical saturation value illustrated
in Fig. 14. Although Kupper et al.25 did not provide convincing
experimental validation to definitively prove that electrolyte dry-out

Figure 13. Additive depletion knees. (a) The capacity retention of a lithium cobalt oxide (LCO)/silicon-graphite pouch cell with 15% Si in the negative electrode
exhibits a knee at around 250 cycles, the same point at which the FEC is depleted from the electrolyte (from destructive gas chromatography-mass spectrometry
measurements of FEC concentration). Adapted from Fig. 8 of Petibon et al.114 CC-BY 4.0. (b) In half cells with 100% Si negative electrodes, the cycle number of
the knee increases with the FEC concentration in the electrolyte. Error bars reflect measurements from two nominally identical cells. Adapted from Fig. 1 of Jung
et al.115 CC-BY 4.0.
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resulted in sudden death of the cell and that relationship 4 was the
most plausible activity-saturation relationship, the proposed electrolyte
dry-out mechanism is plausible in principle and should be experi-
mentally studied in more detail. Furthermore, a similar effect may
apply for electronic conductivity networks; Guzmán et al.125 illu-
strated how the electronic conductivity of lithium iron phosphate
electrodes exhibits a percolation threshold based on the conductive
carbon content. If this effect is experimentally validated, we expect
that identifying both the activity-saturation relationship and nondes-
tructive measurements of saturation during aging will be challenging;
we note that ultrasonic probes have had success in detecting
electrolyte loss.117,118

Mechanical deformation knees.—Both microscale mechanical
effects occurring at the particle scale and macroscale mechanical
effects occurring at the cell scale can be pathways for knees. These
mechanical degradation mechanisms often interact in positive feed-
back loops (Fig. 15). Mechanical degradation mechanisms are
closely tied to other knee pathways. For instance, Cannarella and
Arnold53 showed how high external stack pressure can cause a
lithium plating knee; Bach et al.18 demonstrated a link between
heterogeneous pressure and localized lithium plating; and many loss
of active material mechanisms are mechanical in nature (e.g.,
delamination, particle cracking). Additionally, the growth of cov-
ering layers on the surface of the negative electrode (Fig. 16), often
reported on cells with knees,24,29,126,127 may lead to additional
mechanical stresses on the macroscale. Here, we focus on knees
more explicitly linked to mechanical effects.

At the microscale, repeated (de)intercalation can stress the
electrode particles, which can then lead to both loss of active
material through particle cracking and accelerated growth of side
reaction products (e.g., SEI and its analogue on the positive
electrode, often termed “CEI” for cathode-electrolyte interphase).
Reniers et al.95 illustrated a positive feedback mechanism between
the mechanical stress and loss of active material, leading to a
snowballing knee. They combine a fatigue model for loss of active

material due to stress from Laresgoiti et al.96 with a stress model
from Dai et al.128 higher stress causes higher loss of active material,
which in turn increases the current density and hence causes higher
stress. Other authors have suggested that mechanical effects can
accelerate SEI/CEI growth by causing SEI/CEI cracking and
revealing new active surface area to grow.25,83,116,129 Since growth
of these interphasial layers is self-limiting and thus sublinear,9–13

this effect alone is not enough to lead to a knee, but it could
accelerate the onset of knees in other pathways related to side
reactions (i.e., lithium plating induced by pore clogging on the
negative electrode126 or resistance growth driven by side reactions
on the positive electrode6,129). Overall, microscale mechanical
deformation mechanisms are challenging to model given the
difficulties of experimental validation and the complexity of their
interactions.

At the mesoscale, an additional LAMdeNE mechanism is the
growth of thick layers (1−10 μm) on the surface of the negative
electrode at the separator-facing interface, sometimes termed “cov-
ering layers”.24,67,126 Covering layer growth-driven LAMdeNE may
impede lithium-ion transport into the negative electrode during
charging, effectively isolating portions of the electrode and resulting
in an apparent loss of active material. This covering layer is
commonly observed in cells with knees and is often attributed to
manganese or iron dissolution from the positive electrode and/or
electrolyte salt decomposition.21,29,34,55,67,78–80,87,126,127,130,131 or
possibly dead lithium agglomerates,68 but the root cause has not
been definitively identified. Peculiarly, the size of these layers
(microns) is much larger than typical reported SEI thicknesses
(nanometers).132 Furthermore, this phenomenon is almost exclu-
sively observed in cylindrical cells. Lewerenz et al.67,126 thoroughly
documented covering layer growth, finding that increasing C rate
and larger depth-of-discharge could lead to earlier onset of a knee.
Earlier knee onsets were correlated with the presence of a thick
covering layer on cells that contained knees; cells without knees also
contained obvious covering layers, but with lower surface coverage
and less thickness. These covering layers sometimes seem to lead
directly to localized lithium plating due to the lack of active sites

Figure 14. Two activity-saturation relationships describing percolation-
limited electrolyte dry-out, adapted from Fig. 5 of Kupper et al.25

Relationships 3 and 4 model percolation of the liquid electrolyte where
activity depends nonlinearly on saturation. The key feature of both relation-
ships is the presence of a percolation threshold value (s = 0.5), around which
activity varies rapidly between 0 and 1. The sensitivity of activity to small
changes in saturation is apparent.

Figure 15. Positive feedback mechanisms between mechanical effects that
can lead to knees. During cycling, both particles and the SEI expand and
crack, leading to the regrowth of additional SEI. In addition, covering layers
may form on the surface of the negative electrode. Pressure due to volume
expansion can subsequently lead to jelly roll deformation in cylindrical cells.
This deformation can cause loss of active material, leading to more SEI/
covering layer growth and potentially lithium plating.
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available for lithium insertion, with lithium observed at the covering
layer/separator interface.130 Further investigation of these covering
layers is needed to understand this seemingly ubiquitous mechanism
for loss of active negative electrode material and its relationship to
knees.

On the macroscale (cell level), mechanical degradation manifests
differently depending on the form factor. For both pouch and
prismatic cells, the external pressure can impact cell lifetime.
Pouch and prismatic cells either without external pressure133 or
with high external pressure53 can show rapid knees, indicating an
intermediate value of pressure is optimal to avoid knees and
maximize lifetime. Cannarella and Arnold53 also found that the
surface layer is more pronounced with increasing external pressure.
Heterogeneous pressure distributions from internal cell components
(e.g., electrode tabs) or loading variation134 can also lead to knees.
Knees due to mechanical heterogeneity can perhaps be modeled and
predicted via a careful understanding of the porosity distributions
within the cell. This pathway can be considered either a snowball or
threshold trajectory.

For cylindrical cells, several studies135–139 have identified jelly
roll deformation, using X-ray computed tomography after cycle life
testing, in which the jelly roll deforms inwards toward the core of the
cell and can lead to a capacity knee. This deformation was attributed
to an increase in internal pressure of the cell over life, which itself is

driven by either side reaction growth (including covering layers),24

lithium plating,138 or high thermo-mechanical stress due to large
radial temperature gradients within the cell.135 Geometric hetero-
geneities (e.g., due to the internal tabs) can also exacerbate this
failure mode.136,137 This pathway can be considered a threshold
trajectory, where the jelly roll is eventually unable to accommodate
the increase in internal volume and pressure. Modeling and predicting
this mechanism, however, requires measuring and tracking the internal
pressure over life, as well as knowing the internal pressure at which
the jelly roll will deform. A center pin appears to help avoid this
failure mode,135,138 although we note that center pins may serve other
purposes such as facilitating gas flow along the cylindrical cell axis
during a safety event or creating an additional electrolyte reservoir.136

Interactions, heterogeneity, and variation.—While the six knee
pathways we have identified can occur independently, these path-
ways can clearly interact. For instance, loss of active material plays a
central role in four of our six pathways (lithium plating, electrode
saturation, percolation-driven connectivity, and mechanical defor-
mation). This coupling between degradation mechanisms can create
positive feedback mechanisms, a special case of snowball internal
trajectories. Reniers et al.95 explored a number of interacting
degradation mechanisms with a single-particle model, finding that
many have positive feedback. These interactions can also occur
across length scales (Fig. 15), as SEI growth on the nanometer level
can drive lithium plating on the centimeter level. Another interaction
effect is resistance growth: since each of these pathways has some
mechanism for increased resistance (most commonly via active
material loss increasing the local current density and thus increasing
the effective cell resistance), increased resistance growth caused by
one pathway may exacerbate internal state variable growth in
another pathway. Given the high sensitivity of snowball pathways
to small changes in state, interacting knee pathways can create
positive feedback mechanisms with high sensitivity to internal state.

As an extreme example of positive feedback coupling between
knee mechanisms, consider a hypothetical “quadruple snowball”
trajectory. Each individual component in this mechanism has been
previously discussed. First, particle cracking leading to loss of active
material can snowball since the local current density on the
remaining active particles is continuously increasing, driving addi-
tional mechanical stress. Second, loss of active material itself can
snowball with percolation-limited connectivity—i.e., if the active
material fraction drops below the critical percolation threshold.
Third, loss of active material from the negative electrode, upon
saturation, can cause rate-dependent lithium plating to snowball; the
local current density will keep rising on the remaining negative
electrode active material, increasing the driving force for lithium
plating over reversible interaction. Lastly, lithium plating can
snowball due to its nucleation and growth kinetics. While this
example is certainly contrived, feedback between multiple knee
pathways is perhaps probable given the shared sensitivities of many
of these mechanisms to the same levers.

Heterogeneity within a cell may also exacerbate these knee
pathways. Commercially-relevant form factors have electroche-
mical, thermal, and mechanical gradients due to intrinsic hetero-
geneity and inactive components; these gradients can drive localized
degradation. For instance, heterogeneous particle distributions or
porosity profiles on the electrode level can lead to localized lithium
plating.140 Furthermore, the presence and location of electrode tabs
in cylindrical cells can create electrochemical, thermal, and mechan-
ical gradients,18,137,141–148 in some cases also leading to localized
lithium plating.18,66 Heterogeneity can also arise from ambient
factors, e.g., thermal gradients induced by environment or thermal
management systems.149 Furthermore, local heterogeneity can lead
to positive feedback for degradation; for instance, the temperature of
a region that receives a higher local current density will rise, leading
to even higher local current density. Given the sensitivity and
positive feedback of many knee mechanisms, heterogeneity can
certainly exacerbate the presence of knees.

Figure 16. “Covering layers” as found via post-mortem analysis in cells
with knees. Covering layers are commonly observed in cells with knees but
are a poorly understood source of active material loss. a) A covering layer in
the middle of the negative electrode of an unwound cylindrical cell, along
with laser microscope images of top, middle and bottom Sections and
scanning electron micrographs of the middle Section with a covering layer.
The red arrow corresponds to a thickness of 10 μm. Reproduced with
permission from Fig. 5 of Lewerenz et al.126 Copyright 2017, Elsevier. b)
Optical microscopy cross-sections of fresh and aged electrodes with a visible
covering layer. Reproduced with permission from Fig. 12 of Stiaszny et al.127

Copyright 2014, Elsevier. c) Covering layer in the middle of the negative
electrode of an unwound cylindrical cell, as identified by post-mortem
dissection and confocal laser microscopy. Reproduced from Figs. 11 and 12
of Willenberg et al.24 CC-BY-4.0.
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Finally, we consider the impact of sample and testing variation.
Nominally identical cells cycled identically often show differences
in knee behavior. This sampling variability includes both intrinsic
variability from manufacturing (component-level variation, cell
assembly, etc.) and extrinsic variability from testing (cycler calibra-
tion, temperature control, etc.). These sources of variability require
rigorous equipment calibration to distinguish.

The magnitude of sampling variability is a function of the cell
design, manufacturing variability, and testing conditions. Sampling
variability may increase with more aggressive cell designs (e.g.,
higher silicon content), more manual cell assembly processes, and
more aggressive testing conditions (particularly for test setups with
no or poor temperature control). The magnitude of sampling
variability can be estimated using studies with fairly large sample
sizes (i.e., at least ∼10 cells);150 Beck et al.134 provide a detailed
review of cell-to-cell variation. Baumhöfer et al.151 and Harris
et al.152 studied this type of variation in 48 cells and 24 cells,
respectively, finding widely varying knee locations across their
datasets (Fig. 17). While the knee pathway and internal state
trajectories are unknown for these datasets, the Harris et al.152

dataset has much larger variability, perhaps due to its aggressive 10C
discharge rate. These studies did not identify a correlation between
beginning-of-life capacity and end-of-life capacity, suggesting that
differences in initial internal state trajectories did not manifest in the

initial capacity measurements (possibly implying that hidden or
threshold internal state trajectories caused these knees). In general,
sampling and testing variation also poses challenges for accurate
knee prediction; identifying the manufacturing and testing variation
of the internal state variable of interest is needed to evaluate the
accuracy of knee prediction methods in real-world settings. Lifetime
variability highlights the high sensitivity of knees to manufacturing
and testing variability.

In Fig. 18, we develop a simple model to consider the sensitivity
of knees on cell-to-cell/testing variation. We propose a simple one-
parameter exponential functional form for a cell retention curve with
a knee, = − ( )Q cn100 exp , where Q represents capacity, n repre-
sents cycle number, and c represents some parameter that varies
during cell manufacturing or testing that the knee is sensitive to. For
instance, c could represent variation in initial cell energy, initial cell
internal resistance, or testing temperature (among many other
possibilities). In Fig. 18a, we plot this function for c= 1/150. We
then visualize the distribution of retention curves if c is normally
distributed with various relative standard deviations (RSDs), in-
cluding 0.5% (18b), 2% (18c), 5% (18d), and 20% (18e). For each
distribution of retention curves, we also track the RSDs of two
lifetime metrics: the number of cycles until 80% retention and the
retention at 500 cycles. We find that the RSDs of the two output
metrics always equal or exceed the RSD of c (Fig. 18f). Moreover,
despite Gaussian input variation, the distribution of the number of
cycles until 80% retention and the retention at 500 cycles are non-
Gaussian and skewed (illustrated most clearly in Fig. 18e). While
simplistic, this model illustrates how cell-to-cell variation can have
an outsize effect on knee location given the nonlinear dependencies
of lifetime. This exercise could be repeated for other internal state
trajectories and all of their functional forms.

In summary, the impact of interactions, heterogeneity, and
variation on knee pathways and internal state trajectories is complex,
poorly understood, and an opportunity for future work.

Factors Influencing the Knee

With a foundation for the fundamentals of knee pathways and
internal state trajectories in place, we surveyed the literature to
identify empirical case studies in which the knee point can be
controlled via changes to a single variable. Table A·I classifies these
case studies into three categories based on the nature of the variable:
cell design, testing conditions, and sampling/testing variability
(a special case of these two categories). Some cell designs and
testing conditions have a consistent impact on the emergence of the
knee; for example, higher charging rates and wider cycling voltage
ranges accelerate the appearance of the knee. However, the impact of
other variables (e.g., discharging rate and rest times) is less clear and
may depend on the specific cell design and operating conditions.

Cell design.—While the dependence of knees on cell usage
conditions has been studied extensively, less attention has been
focused on the dependence of knees on cell design—likely due to the
challenges of representative lab-scale cell fabrication. Ma et al.,6 one
of the most comprehensive works on the impact of cell design on
knees, studied the impact of various electrodes and electrolytes on
the location of the knee. These knees were classified as resistance
“pseudo-knees” due to increased electrolyte oxidation on the positive
electrode, as evidenced by the strong dependence of the knee severity
on discharge rate as well as positive electrode impedance measure-
ments. For electrode design, Ma et al.6 and Klein et al.153 found that
positive electrode particle coatings and low positive electrode loadings
delayed the knee. Ma et al.6 and Glazier et al.154 also found that the
graphite type (i.e., natural or artificial) can substantially impact the
knee location; while natural graphite has larger irreversible expansion
and thus higher parasitic reaction rates,154 the root cause of the knee in
this case is unclear.

Electrode loadings (i.e., capacity per unit area) can also lead to
knees via the lithium plating pathway. Rate-independent plating can

Figure 17. Experimental studies of sample and testing variation with knees,
illustrating the sensitivity of knees to these sources of variation. (a) Retention
vs cycle number for 48 commercial NMC/graphite cylindrical cells. Adapted
from Fig. 6 of Baumhöfer et al.151 (b) Retention vs cycle number for 24
commercial lithium cobalt oxide (LCO)/graphite pouch cells. Adapted from
Fig. 2(a) of Harris et al.152
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occur if the ratio of negative electrode loading to positive electrode
loading is too low (i.e., n:p< 1);48 however, rate-dependent lithium
plating can occur at low loading ratios if the negative electrode is too
thick or the porosity is too low.19,135,153

Additionally, small changes in the electrolyte can play an
outsized role on the lifetime performance. Ma et al.6 demonstrated
the sensitivity of the knee location to the electrolyte additive
mixture; specifically, high methyl acetate (MA) concentrations
(MA is used to increase electrolyte transport capability) and low
LiPF6 concentrations consistently led to earlier knees. These knees
were all attributed to increased electrolyte oxidation on the positive
electrode via the resistance growth-induced pathway. Ma et al.6 also
identified other electrolyte systems with a strong knee sensitivity.
Note that while Ma et al.6 found that lower salt concentrations
accelerated the knee in NMC/graphite pouch cells, Wang et al.155

found that higher salt concentrations accelerated the knee in lithium

cobalt oxide (LCO)/graphite pouch cells over a similar range of salt
concentrations; both studies attributed the observed trends to
positive electrode impedance growth. Additionally, as previously
discussed, the additive depletion pathway can be a direct cause of
knees for some cell designs (e.g., cells with high silicon content in
the negative electrode and low FEC content in the electrolyte).114,115

Furthermore, mechanical deformation knees are naturally highly
sensitive to the cell form factor. For instance, deformation of the
core24,136,138 can only occur in wound cells, primarily cylindrical
cells. The presence of a mandrel in the core may prevent this
mechanical deformation.138

Lastly, the formation protocol can influence the location of the
knee. For instance, Weng et al.156 found that NMC/graphite cells
formed with a fast formation protocol that emphasizes time at high
SOCs exhibited later knees than cells formed with a slower baseline
formation protocol, which was attributed to the creation of

Figure 18. Impact of cell-to-cell and/or testing variation on knees. (a) A simple, one-parameter exponential model is defined to simulate a retention curve with a
knee, = − ( )Q cn100 exp , where n represents cycle number. The adjustable parameter, c, is given an initial value of 1/150. The retention model is simulated for
500 cells with a normal distribution of values for c, with relative standard deviations (RSDs) of (b) 0.5%, (c) 2%, (d) 5%, and (e) 20%. The RSDs of both the
number of cycles to 80% and the retention at 500 cycles is tracked; these RSDs are either equivalent or larger than the RSDs of c (f). Note that the distributions of
both the number of cycles to 80% and the retention at 500 cycles are non-Gaussian and skewed, despite Gaussian distributions of c.
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well-passivating SEI at high potentials to decrease the amount of
side reaction product formed during use.157 Klein et al.153 found that
decreasing the upper cutoff voltage in formation from 4.5 V to 4.3 V
delayed the knee in NMC/graphite cells, which was attributed to
decreased transition metal dissolution to cause plating. In principle,
the formation protocol can be optimized to avoid or delay knees for a
given use case.

Testing conditions.—The sensitivity of knees to testing condi-
tions has been extensively explored in the literature. We note that
many studies use accelerated aging protocols, which may introduce
failure modes that are unrepresentative of real-world usage. The
representativeness of an aging profile to the target application must
be considered when evaluating the sensitivity of knees to test
conditions. Field data may enable design of more representative test
conditions.158

Charging rate.—Many studies have found that increasing the
charging rate accelerates the onset of the knee.17,21,37,62–64,67,68,126

However, the critical charging rate leading to knees varies substan-
tially, with knees appearing at C rates as low as 0.5C–1C24,63 and as
high as 8C.67 This critical charging rate is likely a function of cell

design, temperature, and temperature control (e.g., air- vs liquid-
cooled).

High charging rates most commonly accelerate knees via lithium
plating and covering layer growth. Lewerenz et al.67,126 suggested
increased charging rates accelerated both lithium plating and
covering layer growth in cylindrical LFP/graphite cells, demon-
strating that knees occur reliably across a set of test replicates at a
charging rate of 8C and occur less reliably at charging rates as low as
2C. Petzl et al.62 and Burns et al.64 also found evidence of increased
charging rates driving lithium plating after knees were observed.
Note that interpretation of post-mortem analysis may be convoluted
by the rapid degradation that occurs after the knee; in other words,
lithium plating observed in a cell after a knee may be a cause or an
effect of the knee.

Discharging rate.—Unlike charging rate, the effect of dischar-
ging rate on knee location is mixed (Fig. 20a–b). In some systems,
an increased discharging rate accelerates the knee onset. Omar
et al.159 found that a higher discharging rate (1C to 15C) accelerated
the knee for cylindrical LFP/graphite cells (Fig. 20a). Diao et al.160

showed no effect of discharge rate except at 60 °C, where the cells
discharged at 2C degraded almost twice as quickly as the cells
discharged at 0.7C or 1C. High discharging rates may lead to earlier
knees if they lead to higher temperatures, which accelerate electro-
lyte reduction (i.e., SEI growth driving pore clogging) and electro-
lyte oxidation (i.e., positive electrode resistance growth driving
resistance growth pseudo-knees). High discharging rates may be
associated with mechanical stress on electrode particles as well,
accelerating side reaction rates.161–164 Additionally, high dischar-
ging rates can lead to resistance pseudo-knees when the resistance
growth or lower cutoff voltage is high (Fig. 12).6,20 Note that SEI
growth does not occur appreciably during discharge in carbonaceous
negative electrodes.165,166

In other systems, an increased discharging rate can delay the
onset of the knee. Keil et al.21 found that increasing discharging
current from 1C to 2C led to the elimination of the knee in nickel
manganese cobalt oxide (NMC)/graphite cylindrical cells at 25 °C
(Fig. 20b). Similarly, Atalay et al.22 found that increasing the
discharge rate from 1C to 4C at 25 °C decelerated the knee point
for nickel cobalt aluminum oxide (NCA)/graphite cylindrical cells.
Lastly, Keil et al.167 illustrated how discharging current had no
effect on cylindrical cells with blended transition metal oxide
positive electrodes and graphite negative electrodes at 25 °C, but a
lower discharging current (3A, 2.7C) led to faster degradation than a
higher discharging current (5A, 4.5C) for an LFP/graphite cylind-
rical cell when charged at 4.5C and cycled at 25 °C. The authors did
not identify a mechanism.

While more work is needed to understand these results, one
hypothesis for these observations is decreased calendar aging for
cells with faster discharge rates. In other words, cells with less time
spent cycling simply have less calendar aging. For instance, in
Figure S2b, we revisualized the Keil et al.21 dataset (shown in
Fig. 20b) using estimated time on the x axis. We found that the knee
locations appeared closer together, suggesting calendar aging is at
least partially responsible for the discharge rate sensitivity. In
general, if the onset of the knee is delayed at higher discharging
rates, decreased calendar aging may explain some or all of the
difference. This hypothesis further highlights the sensitivity of the
apparent severity of the knee to the choice of x axis (as illustrated in
Fig. 2).

Voltage limits.—A wider voltage window generally accelerates
the onset of the knee point.17,62,87,88,136,168 In one of the broadest
studies, Ecker et al.88 considered six depths of discharge (DODs)—
100, 80, 50, 20, 10, and 5%—with up to six voltage windows per
DOD. The authors found that the EFC systematically decreased with
increased DOD (Fig. 19). By 1000 EFC, all cells with DODs greater
than 25%–75% had a capacity below 80% and exhibited a knee.
When varying the voltage window with fixed DOD, the authors

Figure 19. Sensitivity of knees to voltage window/depth of discharge,
and the correlation between capacity knees and “resistance elbows”.
(a) Normalized capacity and (b) normalized resistance vs equivalent full
cycles for NMC/graphite cylindrical cells cycled at 1 C/1C and 35 °C.
Different depths of discharge around a mean SOC of 50% are compared.
Each trend displays a single cell. The number of equivalent full cycles
increased for cells with smaller depths of discharge. Furthermore, the
correlation between capacity knees and resistance elbows is evident.
Adapted from Fig. 12 of Ecker et al.88
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observed the highest degradation in cells cycled at low and high
SOCs; the lowest degradation was observed for a midpoint SOC of
50%. Keil and Jossen167 also studied the effect of upper cutoff
voltage on lifetime and found that while the lifetime of cells with
oxide-based positive electrode materials was at worst moderately
sensitive to upper cutoff voltage over a range of 250 mV, LFP cells
exhibited a sharp knee with a 50 mV increase in the upper cutoff
voltage. Other studies also observed accelerated degradation at
extreme SOCs.130,168,169

The impact of the voltage window on knee onset is typically
attributed to resistance growth stemming from enhanced expansion
and cracking of the positive electrode during intercalation, driving
electrolyte oxidation.6,14,169 For some positive electrodes, transition
metal migration (often manganese or iron) may also be exacerbated
by high voltages.168,170,171

Rest time.—Like discharging rate, the effect of rests during
cycling on the knee occurrence is mixed (Fig. 20c–d). Keil et al.21

found that decreasing rest time from 900 seconds to 10 seconds after
both charge and discharge delayed the knee in NMC/graphite
cylindrical cells (Fig. 20c). Ma et al.6 found a similar result:
removing the 30-minute rests after both charge and discharge
delayed the knee, but only with an upper cutoff voltage of 4.3 V.
The rest time had no effect at 4.1 V. These observations were
rationalized by less time at high potential when plotted as a function
of cycle number, which can induce knees driven by side reaction
product buildup. In fact, if the data in Fig. 20c is replotted as a

function of estimated time instead of cycle number, the curves
become much more similar (Figure S2c)—suggesting that the
degradation is primarily driven by time and not cycle number. In
contrast, Epding et al.172 found that longer rest times between cycles
delayed the knee occurrence (Fig. 20d). The authors proposed that
these rests offered reversibly plated lithium time to reintercalate;
another possibility is that the rests allowed for greater utilization of
cycleable lithium.173 Note that periodic rests interspersed throughout
a cycling test can substantially improve lifetime in some cases.174

Increased rest periods may delay the onset of knees driven by high
overpotentials (e.g., rate-dependent lithium plating at high rates or low
temperatures). For knees driven by side reaction product buildup (e.g.,
porosity decrease, positive electrode resistance growth, etc.), increased
rest may be beneficial or harmful for lifetime. Longer rests at high
temperature and high state of charge may exacerbate the onset of these
knees; in fact, Ecker et al.88 found that NMC/graphite cells stored at
50 °C, 100% SOC (4.162 V) exhibited a knee after 100 days of
storage, while cells stored at 50 °C and 85% SOC (4.018 V) or below
did not exhibit knees even after 400 days of storage. However,
increased LLI from high temperature, high SOC rests may delay
electrode saturation knees by increasing the amount of LAM required
for knee onset.57,175 Increased rest after high rate cycling will also
allow for the internal temperature of the cell to decrease, which will
decrease side reaction rates and delay knee onset; fully accounting for
the relationship between internal cell temperature, heating due to (dis)
charging, and cooling during rests requires detailed cell thermal
characterization and modeling. More work is needed to understand

Figure 20. Mixed effects of discharge rate and rest time on knee onset, depending on the testing conditions. (a) Higher discharge rate can accelerate knee onset.
Adapted from Fig. 8 of Omar et al.159 Note that while the environmental test temperature was ∼25 °C, the temperature at the surface reached as high as 55 °C for
the high rate discharge tests. (b) Lower discharge rate can accelerate knee onset. Adapted from Fig. 2(a) of Keil et al.21 (c) Longer rest time can accelerate knee
onset. Here, TOC and BOD refer to top-of-charge and bottom-of-discharge, respectively. Adapted from Fig. 2(a) of Keil et al.21 (d) Shorter rest time can
accelerate knee onset. Adapted from Fig. 1(a) of Epding et al.172 To isolate the influence of calendar aging, these data are replotted with an estimated time axis in
Fig. S2.
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the sensitivity of knees to rest at both low and high state of charge
across different cell designs and usage conditions.

Temperature.—The effect of temperature on knee onset depends
on the test conditions. For example, some studies have found that
knee onset is minimized at 25 °C40,61,63 or 35 °C.17 At lower
temperatures, knees are primarily attributed to lithium plating; at
elevated temperatures, knees are attributed to side reaction mechan-
isms, such as lithium plating induced by SEI growth-induced
porosity decrease, positive electrode resistance growth, electolyte
depletion, and additive depletion (Fig. 21a).14,17,40,61,63,107 In gen-
eral, the temperature that minimizes degradation is reportedly lower
for LFP cells than NMC cells8 and lower for power cells than energy
cells.65

Pressure.—Like temperature, studies of pressure dependence in
pouch and prismatic cells have demonstrated that lifetime perfor-
mance is optimized at an intermediate value. Cannarella and
Arnold53 demonstrated that the knee point can be accelerated by
either an absence or an excess of pressure (Fig. 21b). Additionally,
Wünsch et al.133 increased the cycle life of 37 Ah NMC/graphite

pouch cells from 500 cycles (no bracing) to 3200 cycles (optimal
spring compression) while investigating various methods of bracing.

For pouch and prismatic cells, some applied pressure is needed to
enhance ionic and electronic conductivity and particle contact.
However, when too much pressure is applied, the local porosity
will decrease, which can drive rate-dependent lithium plating.
Furthermore, mechanical stress from high pressure can be unevenly
distributed throughout the cell. This heterogeneity can drive dela-
mination, surface film formation, and uneven lithium distribution
and can cause heterogeneous lithium plating. Heterogeneous com-
pression in the test fixture can accelerate the knee point even in
cylindrical cells.18

Modeling and Predicting Knees

Finally, with both a fundamental and empirical understanding in
hand, we turn to knee modeling and prediction efforts. First, we
examine the relationship between knees and the number of cycles to
end-of-life, as well as the relationship between knees and resistance
elbows. We then offer an outlook on knee modeling and prediction
work based on our findings in this work.

Empirical relationship between knees, resistance elbows, and
end-of-life.—While predicting knees is important, predicting end-
of-life is more directly relevant for estimating product performance
and warranty costs. In Fig. 22, we display the relationship between
knee locations and end-of-life (defined as 80% of nominal capacity)
across 17 datasets (303 cells) with knees and different knee path-
ways, cell types (chemistry, geometry, size, lab-made vs commer-
cial, etc.), and testing conditions. The data used to generate Fig. 22 is
summarized in Table SI; data was obtained via direct access to the
corresponding databases when possible37,55,69,151,160 or via
WebPlotDigitizer.176 We find a strong linear relationship from the
knee point to the end-of-life (R2 = 0.874). Apart from the data
presented in Schuster et al.,17 the knee points take place at or before
the end-of-life. Thus, predicting the knee location can often provide
an estimate of end-of-life as well. For the Severson et al.37 method,
this correlation holds independent of the knee point identification
algorithm used (Figure S3). However, we note that the reverse
relationship (using the knee location to predict end-of-life) does not
necessarily hold, as we only selected cells with knees in this study
and many cells reach 80% capacity without exhibiting a knee (i.e.,
exhibit linear or sublinear degradation).

We also explored the relationship between capacity knees and
resistance “elbows”. Many aging studies have shown that capacity
knee onset is nearly always correlated to the onset of rapid resistance
growth, even across different cell chemistries, form factors, and test
protocols. Table A·II reports the relative capacity and resistance at
the knee onset point from several studies that reported both capacity
fade and resistance growth; all studies measured resistance using a
direct-current pulse except for Schuster et al.,17 which used electro-
chemical impedance spectroscopy. Of all these aging studies, cells
with capacity knees always displayed resistance elbows, and with the
exception of the work by Martinez-Laserna et al.,177 the reverse is also
true. For instance, the Ecker et al.88 dataset previously discussed
(Fig. 19) found a strong correlation between capacity knees and
resistance elbows. However, we cannot infer causality without more
careful study; in many cases, the resistance elbow may occur with
the capacity knee simply because the local current densities have
increased with the loss of active capacity. We expect that a resistance
elbow will almost always follow a capacity knee, but a capacity
knee will not necessarily follow a resistance elbow (i.e., during low
rate cycling). We note that our resistance growth-induced knee
pathway (Fig. 12) illustrated a capacity knee driven by linearly
increasing resistance. This correlation may provide opportunities to
estimate either capacity or resistance from measurements of the other,
e.g., in situations where one of these values is easy to measure and the
other is challenging. Lastly, this correlation highlights the value of

Figure 21. Transition in degradation mechanism based on (a) environmental
temperature and (b) applied pressure, illustrating an intermediate optimum
for each variable that balances two competing degradation mechanisms. In
panel (a), only data measured at 25 °C is shown (i.e., all points for the 25 °C
data and periodic measurements for data collected at other temperatures). In
panel (b), error bars represent one standard deviation of the average of three
cells. Adapted from Fig. 2 of Waldmann et al.61 and Fig. 5 of Cannarella and
Arnold.53
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periodic diagnostic tests at multiple rates to disentangle low-rate and
high-rate effects.

Modeling and prediction outlook.—As this work has demon-
strated, knees in lithium-ion batteries are complex given the variety of
knee pathways, internal state trajectories, and the combined effects of
interactions, heterogeneity, and variation. While three of the knee
pathways (lithium plating, electrode saturation, and resistance growth)
are largely dependent on bulk internal states (i.e., LLI, LAM, and
resistance) and are thus straightforward to detect and model via
electrochemistry, three knee pathways (electrolyte and additive
depletion, percolation-limited connectivity, and microscale mechanical
deformation) involve subtle effects that are challenging to detect via
electrochemical signals (e.g., porosity decrease, remaining additive
amount). Additionally, the nature of the three internal state trajectories
that cause knees also pose major challenges (i.e., extrapolation of a
superlinear function for snowball trajectories, simultaneously tracking
two internal states for hidden trajectories, etc.). Furthermore, interac-
tions, heterogeneity, and variability add additional layers of difficulty:
accurate modeling of these knee phenomena requires an understanding
of simultaneous interactions between many degradation mechanisms
over multiple length scales, heterogeneous electrochemical/thermal/
mechanical gradients within cells, and cell-to-cell variation along
multiple dimensions of cell design and manufacturing processes. A
final complication is translating lab testing results to a variety of field
usage conditions, which requires an accurate understanding of both
real-world usage behavior and battery degradation as a function of
infinite behavioral axes (e.g., distributions of temperature, state of
charge, rest time, etc.); these challenges are only starting to be
recognized by the academic community,158 as access to real field data
is an obvious challenge. Given this complexity, modeling and
predicting knees is undoubtedly a formidable task.

Despite these challenges, we remain optimistic about avenues for
improving knee modeling and prediction. The primary goal of this
work is to lay the foundation for a fundamental understanding of the

physics of knees; this understanding enables an accurate assessment of
the limits of todayʼs models and opportunities for future work. Our
findings suggest that some knee pathways, such as electrode saturation
or resistance growth, can be readily predicted from physics-driven or
“degradation mode” (e.g., ’Alawa44,89) modeling that uses cell-level
electrochemical signals; for instance, Anseán et al.,50 Sulzer et al.,94

and Mandli et al.20 demonstrated successful prediction of lithium
plating, electrode saturation, and resistance growth knees, respectively,
using bulk electrochemical state variables derived from differential
capacity analysis and direct-current resistance. For other knee path-
ways, such as plating due to porosity decrease and additive depletion,
the modeling is straightforward (e.g., Yang et al.19), but the methods to
estimate the relevant internal state variables are not (e.g., they require
laborious destructive measurements). We hope this work inspires future
research into a comprehensive knee prediction toolkit that generalizes
over a wide range of cell designs and use cases.

Lastly, we discuss the role of data-driven methods in this space.
Data-driven models may be well suited for knee pathways with bulk
electrochemical signals; for instance, the high predictive perfor-
mance of features sourced from the cell voltage responses during
discharge in Severson et al.37 was largely attributed to the detect-
ability of the knee pathway via bulk electrochemical signals (i.e.,
measuring LAMdeNE via differential capacity analysis). However,
data-driven models trained on cycling data will naturally be poorly
suited for knee pathways with signals that are challenging to
measure via electrochemistry. To this end, two promising research
directions are to develop input perturbations that magnify the
response of hard-to-detect signals and to introduce additional
characterization techniques into cell cycling tests. Our review has
highlighted the benefits of periodic low-rate diagnostic cycles;
perhaps more targeted electrochemical input signals could provide
major benefits. For instance, average charge and discharge voltage
are readily accessible features that can indicate rapid changes in
lithium inventory loss or internal resistance growth rates.178 As a
whole, datasets that span a variety of knee pathways for various cell

Figure 22. Relationship between knee point and capacity end-of-life (defined as 80% of nominal capacity) for a total of 303 cells across 17 datasets. The two
metrics are linearly correlated (R2 = 0.874). The Bacon-Watts algorithm was employed for knee point identification. See Table SI for details on the data.
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designs and use cases are needed for training generalizable data-
driven models. Generation of synthetic data sets using physics-based
models may be well suited for training generalizable models reliant
on electrochemical signals to identify knee pathways or predict
knees.44,179 Furthermore, quantifying the values of bulk internal
states from field data remains challenging.41,158,180

Conclusions and Future Work

Knees are a major challenge to developing long-lasting lithium-
ion batteries. In this work, we review the topic of “knees”—i.e.,
superlinear aging trajectories—in lithium-ion battery lifetime aging
trajectories (e.g., capacity vs cycle number). We first define knees,
illustrate the sensitivity of knees to the x and y variables used, and
compare various knee point estimation algorithms. We then cate-
gorize knees presented in the literature into one of six knee
“pathways” (lithium plating, electrode saturation, resistance growth,
electrolyte and additive depletion, percolation-limited connectivity,
and mechanical deformation) and one of three “internal state
trajectories” (snowball, hidden, and threshold). Each of these
pathway-trajectory pairs has different implications for modeling
and prediction; while some pairs have internal states that can be
measured and modeled via standard electrochemical signals and
models, others are dependent on internal states that are challenging
to detect via typical electrochemical signals (e.g., remaining additive
amounts, local porosity distributions, etc.). We also evaluate the role
of interactions, heterogeneity, and variation on knees, which add
additional layers of complexity. Next, we discuss key cell design and
usage conditions levers on the location of knees. We find that knees
are sensitive to many design and usage factors, perhaps most notably
electrode composition (artificial vs natural graphite, coated vs
uncoated NMC, NMC vs LFP, the presence of silicon, etc.),
loadings, electrolyte composition, and formation protocol on the
cell design side and charging rate, temperature, voltage limits, and
pressure on the usage conditions side. Finally, we consider the
outlook for knee modeling and prediction. Overall, accurate knee
modeling and prediction is quite challenging, but we hope this work
provides a starting point for a comprehensive knee prediction
framework.

Our findings suggest much future work is needed on this topic.
First, a better understanding of the fundamentals of knee pathways
and internal state trajectories will enable more accurate modeling
and data generation efforts. Both experimental and modeling efforts
can improve our understanding of knee fundamentals and reveal
other knee pathways and internal state trajectories not captured in
this work. In particular, the “covering layer” phenomenon observed
concurrently with knees in many studies deserves further experi-
mental study. Second, larger battery aging datasets over a variety of
cell designs and use cases will aid fundamental, modeling, and
prediction efforts to capture a variety of knee pathways and internal
state trajectories. Synthetic, lab-generated, and field-generated
datasets would all be useful for this purpose. Third, new character-
ization probes (or new state estimation methods using existing
probes) that can capture subtle changes in internal state, such as local
electrode porosity or remaining additive amount—ideally nondes-
tructively—would enable quantitative detection of internal state
trajectories over the lifetime of a cell. Lastly, a variety of modeling
and prediction approaches, spanning the physics-driven to data-
driven continuum, may unlock accurate lifetime estimation to

capture the most challenging lithium-ion battery degradation modes.
On the physics-driven end of the spectrum, multi-length-scale
modeling will be required given that the length scales of knee-
relevant degradation ranges from nanometers to centimeters; on the
other end of the spectrum, large datasets spanning the vast cell
design and usage space are imperative to advance data-driven
modeling efforts. Many of these research directions will require
substantial effort; however, with focused work on developing our
understanding of knees, lithium-ion batteries can be designed for
target applications and deployed with confidence that knees will be
avoided within their lifetimes.
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Table A·I. Summary of previous work studying the influence of experimental parameters (cell design, testing conditions, or cell-to-cell variation) on knee onset.

Variable Reference Cell Description Range of Variable Knee Acceleration Proposed Mechanism(s)

Cell design Electrode loading Ma et al. 20196 Lab-made pouch NMC/Gr 14.4–21.2 mg/cm2 Higher positive electrode
loading

Li plating

Positive electrode
coating

Ma et al. 20196 Lab-made pouch NMC/Gr Ti-based coating Uncoated positive electrode Positive electrode impe-
dance growth

Graphite type Ma et al. 20196 Lab-made pouch NMC/Gr Artificial (Kaijin AML-400),
natural (BTR-918)

Natural graphite N/A

Additive package and
concentration

Petibon et al. 2016114 Lab-made pouch LCO/Gr-Si N/A FEC consumed SEI growth

Jung et al. 2016115 Lab-made coin LFP/Gr-Si 0–20 wt.% FEC FEC consumed SEI growth
Ma et al. 20196 Lab-made pouch NMC/Gr 0%–20% methyl acetate additive Higher methyl acetate con-

centration
Positive electrode impe-
dance growth

Salt concentration Aiken et al. 2020169 Lab-made pouch NMC/Gr 0.2–1.2M LiPF6 Higher salt concentration Electrolyte oxidation
Ma et al. 20196 Lab-made pouch NMC/Gr 1.2–1.5M LiPF6 Lower salt concentration Positive electrode impe-

dance growth
Wang et al. 2014155 Lab-made pouch LCO/Gr 0.5–2M LiPF6 Higher salt concentration Positive electrode impe-

dance growth
Testing conditions Charging rate Lewerenz et al.

201767,126
OMT OMLIFE-8AH-HP LFP/Gr 1-8C Higher charging rate Li plating, SEI growth

Petzl et al. 201562 Commercial 26650 LFP/Gr 0.5–1C Higher charging rate Li plating
Burns et al. 201564 Panasonic 18650 NCA/Gr 0.1–1C Higher charging rate Li plating
Waldmann et al. 2015

63
Commercial 18650 NCA/Gr 0.25–1C, single vs multi-step

CC, optional CV
Higher charging rate, CV Li plating

Schuster et al. 201517 E-One Moli Energy IHR18650A NMC/
Gr

0.2–1C Higher charging rate Li plating, SEI growth

Severson et al. 201937 A123 APR18650M1A LFP/Gr 3.6–8C Higher charging rate LAM-induced Li plating,
SEI growth

Schindler et al.
201868

Samsung ICR18560-26F NMC/Gr 0.25–2C with AC pulse, current
derating, current interrupt

Higher charging rate, no AC
pulse or current interrupt

Li plating

Keil et al. 201921 Commercial 18650 NMC/Gr 0.7–1C Higher charging rate Li plating, SEI growth
Discharging rate Keil et al. 2016167 a) Sanyo UR18650SA LMO+NMC/Gr

b) Sony US18650VT1 LMO+LCO/Gr
c) A123 APR18650M1A LFP/Gr

a) 2.4–4C b) 2.7–4.5C c)
2.7–4.5C

a) No difference b) No differ-
ence c) Lower discharging
rate

Li plating

Keil et al. 201921 Commercial 18650 NMC/Gr 1–2C Lower discharging rate Li plating, SEI growth
Atalay et al. 202022 Commercial 18650 NCA/Gr 1–4C Lower discharging rate Li plating, SEI growth
Omar et al. 2014159 Commercial cylindrical LFP/Gr 1–15C Higher discharging rate SEI growth
Diao et al. 2019160 Commercial pouch LCO/GR 0.7–2C No difference at 10–45 °C

Voltage limits Broussely et al.
200514

Saft VLE NCA/Gr 50%-100% storage SOC Higher SOC Electrolyte oxidation

Aiken et al. 2020169 Lab-made pouch NMC/Gr 4.3–4.4V charge cutoff voltage Higher voltage Electrolyte oxidation
Ecker et al. 2014,88

Pfrang et al.
2018136

Sanyo UR18650E NMC/Gr 1) 0.5%–100% DOD, 50% SOC
midpoint 2) 10% DOD and
midpoint SOC of 10%–95%

1) Higher DOD 2) Extreme
midpoints

Mechanical deformation

Klett et al. 201487 Commercial 26650 LFP/Gr 30%–50% vs 5%–95% SOC Higher DOD SEI growth
Schuster et al. 201517 E-One Moli Energy IHR18650A NMC/

Gr
0.56–1.2V DOD, 3.6V midpoint Higher DOD Li plating

Ma et al. 2019168 Commercial prismatic NMC+LMO/Gr 0%–20%, 20%–60%, 60%–-
100%, 0%–100% SOC

1) Higher DOD 2) Higher
midpoint SOC

Li plating
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Table A·I. (Continued).

Variable Reference Cell Description Range of Variable Knee Acceleration Proposed Mechanism(s)

Petzl et al. 201562 Commercial 26650 LFP/Gr 0%–80% vs 0%–100% SOC Higher DOD Li plating
Zhu et al. 2021130 Samsung INR 18650 25R NMC+NCA/

Gr
20%–60% DOD, 15%–85%
SOC midpoint

Lower SOC SEI growth

Rests Keil et al. 201921 Commercial 18650 NMC/Gr 10–900s at TOC and BOD Longer rest time Li plating, SEI growth
Ma et al. 20196 Lab-made pouch NMC/Gr 0–30min at TOC and BOD Longer rest time Positive electrode impe-

dance growth
Epding et al. 2019172 Commercial prismatic NMC/Gr 0–every 100 cycles Shorter rest time Li plating

Temperature Zhang et al. 201940 Commercial NMC/Gr 25–45 °C Temperature above and below
25 °C

Li plating

Broussely et al.
200514

Saft VLE NCA/Gr 20–60 °C Higher temperature Electrolyte oxidation

Schuster et al. 201517 E-One Moli Energy IHR18650A NMC/
Gr

25–50 °C Temperature above and below
35 °C

Li plating, SEI growth

Safari et al. 2011105 Commercial 26650 LFP/Gr 25–45 °C Higher temperature LAM (graphite)
Waldmann et al.
201461

Commercial 18650 NMC+LMO/Gr −20–70 °C Temperature above and below
25 °C

Li plating, SEI growth

Coron et al. 202066 Commercial 18650 NMC+LMO/Gr
Commercial 18650 NMC/Gr

0–25 °C Lower temperature SEI growth, LAM

Waldmann et al.
201563

Commercial 18650 NCA/Gr 0–60 °C Temperature below 25 °C Li plating, SEI growth

Pressure Wunsch et al. 2019133 Commercial pouch NMC/Gr 4 bracing approaches More rigid bracing or zero
bracing

N/A

Cannarella and
Arnold 201453

Commercial pouch LCO/Gr 0–5 MPa Higher stack pressure or zero
pressure

LAM (graphite) or Li
plating

Bach et al. 201618 E-One Moli Energy IHR18650A NMC/
Gr

With and without hose clamp Heterogeneous compression Li plating

Cell-to-cell
variation

Harris et al. 2017152 Commercial pouch LCO/Gr 24 cells N/A N/A

Baumhofer et al.
2014151

Sanyo UR18650E NMC/Gr 48 cells N/A N/A

Willenberg et al.
202055

Samsung INR18650 35E NCA/Gr+Si 4 cells N/A Mechanical deformation

Stiaszny et al.
2014127

Commercial 18650 NMC+LMO/Gr 6 cells N/A N/A
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