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Towards real-time physics-based variation simulation of 

assembly systems with compliant sheet-metal parts 

based on reduced-order models 

Abstract. Variation Simulation (VS) allows early validation and certification of 

the assembly process before parts are built. State-of-the-art VS models of assem-

bly systems with compliant sheet-metal parts are based on Finite Element Method 

(FEM) integrated with statistical approaches (i.e., Monte Carlo simulation). A 

critical technical barrier is the intense computational cost. This paper proposes a 

novel real-time physics-based VS model of assembly systems with compliant 

sheet-metal parts based on Reduced-Order Model (ROM). Compared to the lit-

erature on the topic, this study reports the first application of a ROM, developed 

for VS by using both intrusive and non-intrusive techniques.  

The capability of the proposed method is illustrated in a case study concerning 

the assembly process of the vertical stabiliser for commercial aircrafts. Results 

have shown that the accuracy of ROM (based on proper orthogonal decomposi-

tion) depends on the sampling strategy as well as on the number of reduced 

modes. Whilst a large CPU time reduction by several orders of magnitude is 

achievable by non-intrusive techniques (based on radial basis functions for inter-

polation), intrusive models provide more accurate results compared to the full-

order models.  

Keywords: real-time physics-based simulation, variation simulation analysis, 

sheet metals, compliant assembly, reduced-order models, proper orthogonal de-

composition, radial basis functions. 

Nomenclature 

VS Variation Simulation 𝐾𝐹𝑂𝑀  Stiffness matrix of the FOM 

FOM Full Order Model 𝐹𝐹𝑂𝑀  Load vector of the FOM 

ROM Reduced Order Model 𝑘𝑝  Penalty stiffness 

µ Vector of input parameters 𝜀𝑔𝑎𝑝  Gap tolerance 

u Output performance indicators 𝑁𝑃  Number of parameters 

Tµ Constraints on input parameters 𝑁𝑆  Number of sampled points 

Tu Constraints on output indicators 𝑁𝐷𝑂𝐹  Number of Degrees of Freedom 

𝑢𝑠
𝑖   Displacement of the i-th slave node 𝑆𝑠𝑛𝑎𝑝  Snapshot matrix 

𝑢𝑠−𝑚
𝑖   Displacement of the projection of Ψ  Reduced basis 

 

𝑃𝑠
𝑖  

the i-th slave node on master surface 𝑅  Number of retained modes 

i-th slave node 𝑢𝑅𝑂𝑀   Displacement vector of the ROM 

𝑃𝑠−𝑚
𝑖   Projection of i-th slave node on the 𝐾𝑅𝑂𝑀   Stiffness matrix of the ROM 

 

𝑁𝑐  

master surface 𝐹𝑅𝑂𝑀  Load vector of the ROM 

Normal vector of the master element POD Proper Orthogonal Decomposition 

𝑔𝑖𝑛𝑖𝑡  Initial gap between 𝑃𝑠
𝑖 and 𝑃𝑠−𝑚

𝑖  RBF Radial Basis Function 

𝑢𝐹𝑂𝑀  Displacement vector of the FOM MPE Mean Percentage Error 
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1 Introduction 

Combining high strength with the ability to be formed and cut with good dimensional 

accuracy at relatively low cost, sheet-metal parts are widely employed in automotive 

and aerospace applications as exterior panels and interior structural components. How-

ever, the intrinsic flexibility of these parts adds variability to the process, since real 

(non-ideal) compliant parts need to be clamped and forced to the targeted assembly 

position before fastening operations. Consequently, assembled panels tends to spring 

back once fastening tools are released [1]. 

Variation Simulation (VS) techniques allow simulating the generation and propaga-

tion of variations throughout the assembly process, thus enabling early validation and 

certification even before assemblies are built. State-of-the-art VS models of assembly 

systems with compliant sheet-metal parts are based on Finite Element Method (FEM) 

integrated with statistical approaches (i.e., Monte Carlo simulation or polynomial chaos 

[2]). VS methods have been used to accelerate strategies for right-first-time and digi-

talisation of the manufacturing process [3]. The mechanistic models for VS can be 

grouped into two main categories: (1) VS-based analysis and (2) VS-based synthesis. 

VS-based analysis addresses the problem of finding the effect of input parameters 

on output performance indicators, under specific design constraints; whereas, the re-

verse problem is faced by the VS-based synthesis. Most of the publications have been 

addressing problems related to VS-based analysis but fewer attempts have been made 

to develop efficient models to face the VS-based synthesis. Urged by the need to reduce 

defects and waste during manufacturing, VS-based synthesis has become a critical pri-

ority since allows product and process optimisation at early design stages. 

VS-based synthesis covers topics related to process optimisation, parametric and 

sensitivity analyses [1–7]. The common denominator is the desire to generate accurate 

results in a reasonable time (ideally in real-time), which is sometimes not achievable 

due to the complexity of the problem even with powerful computational systems (High 

Performance Computing - HPC, cloud computing, etc.). In fact, typical VS applications 

involve a large number of input parameters (up to 1,000 for a typical body-in-white 

assembly process in automotive) related to both product and process. The leading chal-

lenge is driven by the dimensionality of the design space. For instance, finding global 

optima in high-dimensional problems is extremely challenging since the number of 

evaluations required to explore the design space increases exponentially with its dimen-

sionality (this is also known as the “curse of dimensionality”). Several authors have 

been facing this problem. For example, the optimisation algorithm developed by Xing 

[4], who optimised the location of locators for an inner hood assembly, took 1,687 hours 

to ensure the global best solution. Aderiani et al. [5] applied a new method to optimise 

the fixture layout to two simple single-station cases, elapsing 110 hours and 160 hours, 

respectively. Sinha et al. [6] proposed a Deep Learning-based methodology to aid mul-

tiple root causes analysis for an assembly process. To train their Deep Neural Network 

(DNN), they conducted 9 runs of 10,000 FEM simulations by varying the positions of 

only 5 clamps. 

Other approaches implement the Response Surface Methodology (RMS), which, 

trained on a pre-existing dataset, aims at obtaining a model that can be deployed to 
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solve the optimisation problem [7]. Unfortunately, RSM approaches are pure data-

driven and they are regarded as “black-box” models in the sense that they can find 

complex non-linear patterns on tested/trained cases. However, they are unable to ex-

plain the cause-effect mechanisms between variables and outside of the training dataset. 

Recently, the Reduced-Order Models (ROM) have been applied to solve computa-

tional intense problems, such as fluid-structure interaction problem [8], computational 

fluid-dynamics [9] and structural dynamics [10]. ROM methods are attractive since 

they allow reducing the dimensionality of the model. ROM techniques compute off-

line the solution of several complete Full-Order Models (FOM) and extract the modes 

that best describe the solution to the full problem. Therefore, differently from RSM, 

ROM techniques exploit the known physical behaviour represented by the modes. The 

number of such modes determines the ratio between accuracy and computational time. 

Finding the right balance between accuracy and computational efficiency is an open 

topic and will be discussed in this paper. 

This paper proposes a novel methodology to accelerate the transition towards real-

time physics-based variation simulation of assembly systems with compliant sheet-

metal parts. This is the first time that a ROM approach is developed for VS using both 

intrusive and non-intrusive techniques. 

The novelty of the paper is twofold: (1) implementation of a ROM approach to ena-

ble real-time VS of compliant sheet-metal parts; (2) integration of ROM with Active 

Set Method for contact modelling and thus avoid part-to-part penetration. The paper 

extends the work of Lindau et al. [11] who proposed to combine the method of influence 

coefficients [12] with a simplified contact search algorithm. However, this method was 

only limited to triangular mesh elements and node-to-node contact modelling. The ap-

proach proposed in our paper goes beyond the state-of-the-art since is independent of 

the mesh density and implements a node-to-surface contact model. 

The reminder of the paper is as follows: Section 2 describes the problem formulation. 

Section 3 shows the proposed methodology. Section 4 presents the case study along 

with results and discussions. Section 5 concludes the paper with future opportunities. 

2 Problem formulation 

2.1 Representation of the VS model 

A typical VS model conceptually involves finding the relationship between input pa-

rameters, 𝜇, and output performance indicators, 𝑢, under specific design constraints, T. 

Input parameters define the design space and may be related to both the product (e.g., 

shape errors) and the process (e.g., positioning errors, shape and position of clamps, 

etc.). The mechanistic model for variation propagation can be conceptually represented 

as in equation (1), where 𝑓 embeds the physics-based model to simulate the compliancy 

of the sheet-metal parts and to avoid part-to-part penetration. 

 {
𝑢 = 𝑓(𝜇)

s.t.: 𝜇 ⊆ 𝑇𝜇  and 𝑢 ⊆ 𝑇𝑢  (1) 
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2.2 Physics-based model and computational challenges 

The physics-based model is based on a FEM kernel and the following modelling as-

sumptions are made: (i) points which are candidate to come in contact are computed 

once on the un-deformed structure, according to the node-to-surface search method 

[13], shown in Fig. 1(a); and, (ii) frictionless contact between mating surfaces. For each 

i-th iteration, the displacements of all potential points belonging to the slave part are 

constrained to those of the master part as in equation (2) (see also Fig. 1(b)), where 𝑢𝑠
𝑖  

and 𝑢𝑠−𝑚
𝑖  are the displacements of the slave vertex 𝑃𝑠

𝑖  and its projection on the master 

part, 𝑃𝑠−𝑚
𝑖 , respectively; 𝑁𝑐 is the normal vector of the master element, and 𝑔𝑖𝑛𝑖𝑡

  is the 

initial gap of the contact pair. 

 

Fig. 1. Representation of the part-to-part contact model. 

The constitutive non-linear equations are defined in equation (3), where 𝑢𝐹𝑂𝑀 is the 

primary variable (both master and slave), 𝐹𝐹𝑂𝑀 is the load vector, and 𝐾𝐹𝑂𝑀is the stiff-

ness matrix. 

 {
𝑔𝑖𝑛𝑖𝑡

 = (𝑃𝑠
𝑖 − 𝑃𝑠−𝑚

𝑖 ) ∙ 𝑁𝑐

𝑔𝑖𝑛𝑖𝑡
 + 𝑁𝑐 ∙ (𝑢𝑠

𝑖 − 𝑢𝑠−𝑚
𝑖 )  ≥  0

 (2) 

 𝐾𝐹𝑂𝑀(𝑢𝐹𝑂𝑀 , 𝜇) ∙ 𝑢𝐹𝑂𝑀(𝜇) = 𝐹𝐹𝑂𝑀(𝑢𝐹𝑂𝑀 , 𝜇) (3) 

Equations (2-3) constitute the Full-Order Model (FOM). In this paper, the Penalty 

method has been implemented to enforce the conditions in (2). Other methods (such as 

Lagrange Multipliers) are possible but for the sake of demonstrating the methodology, 

we have limited the formulation only to the Penalty method. The solution 𝑢𝐹𝑂𝑀 of 

equation (3) is obtained by the Active Set Method: the model is iteratively solved by 

activating the contact pairs only where there has been part-to-part penetration (i.e., neg-

ative gaps) in the previous iteration. This translates to the fact that the active pairs are 

moved away by enabling the penalty stiffness, kp (see Fig. 1(c)). The solution converges 

only if the gaps of all the active contact pairs are lower than a pre-set gap tolerance, 

εgap, and all pairs are in compression (negative load). Since the Penalty method tends to 

approximate the conditions in equation (2), the accuracy of the solution is highly influ-

enced by the choice of the penalty stiffness itself. The case study will show the sensi-

tivity to the selection of the penalty stiffness. 
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Since VS-based synthesis involves a large set of input parameters and also the need 

to recompute the stiffness matrix itself (due, for example, to variations in material prop-

erties), the solution of equations (2-3) would require a prohibitive amount of time. This 

paper aims at providing accurate solutions of the VS model in equations (2-3) and with 

a significant reduction in computational time.  

3 Proposed methodology 

The methodology is hinged on a ROM approach and combines both intrusive [14,15] 

and non-intrusive [8,10] methods. Intrusive methods act directly on the constitutive 

equations defined in (3) and they aim at reducing the time spent to perform each itera-

tion of the non-linear set of equations. Conversely, non-intrusive techniques build a 

surrogate model in a hybrid space and the solution to any un-tested configuration of the 

input parameters is obtained by interpolating the surrogate model. As such, non-intru-

sive techniques do not require modifications of the constitutive equations as opposed 

to intrusive techniques. 

Since those two approaches have pros and cons, this paper has implemented both to 

explore their full potential. Details of the methodology (Fig. 2) are: 

 

OFF-line stage (training): this stage is intended for generating the training dataset. 

Step (1) Define parameter space, 𝝁. The parameter space, whose dimensionality 

is 𝑁𝑃,  is sampled (𝑁𝑆 is the number of sampled points) using various techniques, 

such as uniform, random, full factorial or Latin hypercube.  

Step (2) Generate snapshots, 𝒖𝑭𝑶𝑴 (full-order model). For each sample in the 

parameter space, a specific solution of u is obtained from the FOM model in equa-

tions (2-3). Each solution is named snapshot. The full set of solutions are then 

stored in the Snapshot matrix, 𝑆𝑆𝑛𝑎𝑝 = [𝑢𝐹𝑂𝑀(𝜇1), … , 𝑢𝐹𝑂𝑀(𝜇𝑁𝑠
)] ∈ ℝ𝑁𝐷𝑂𝐹×𝑁𝑆, 

where 𝑁𝐷𝑂𝐹  is the number of degrees of freedom of the FOM. The snapshot ma-

trix is represented in the field space. 

Step (3) Generate field space & compute reduced basis, 𝚿. This is the core step 

of the methodology and a reduced basis Ψ ∈ ℝ𝑁𝐷𝑂𝐹×𝑅 is computed by extracting 

from the snapshot matrix 𝑅 orthogonal modes that represent the most significant 

patterns hidden in the field space. 

ON-line stage (deployment): Ψ is used to reduce the dimensionality of the model 

for each new parameter instance, 𝜇(𝑑), not sampled during the OFF-line stage.  

Step (4) Intrusive method  

Step (4.1) Forward projection of constitutive equations. The constitutive 

equations in equation (3) are projected into the reduced space, lowering the di-

mensionality from 𝑁𝐷𝑂𝐹  to 𝑅 ≪ 𝑁𝐷𝑂𝐹 , thus obtaining the reduced stiffness ma-

trix 𝐾𝑅𝑂𝑀 ∈ ℝ𝑅×𝑅 and reduced load vector 𝐹𝑅𝑂𝑀 ∈ ℝ𝑅×1.  

Step (4.2) Solve reduced model, 𝒖𝑹𝑶𝑴
(𝒅)

. The result of the projection is the sys-

tem of non-linear equations (4), which for instance, defines the reduced-order 

model: 
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 𝐾𝑅𝑂𝑀(𝑢𝐹𝑂𝑀 , 𝜇) ∙ 𝑢𝑅𝑂𝑀(𝜇) = 𝐹𝑅𝑂𝑀(𝑢𝐹𝑂𝑀 , 𝜇) (4) 

where 𝑢𝑅𝑂𝑀 ∈ ℝ𝑅×1 is the reduced solution. Being the dimensionality 𝑅 lower 

than 𝑁𝐷𝑂𝐹 , the inversion of 𝐾𝑅𝑂𝑀 is much faster than FOM in equations (2-3). 

Step (5) Non-intrusive method 

Step (5.1) Forward projection of snapshots. The snapshots are projected into 

the reduced basis. Opposed to step (4.1), no manipulation of the constitutive 

equations is required. 

Step (5.2) Compute interpolation, 𝒖𝑹𝑶𝑴
(𝒅)

. A surrogate model is built within the 

hybrid space which maps the parameter space into the reduced space.  

Step (6) Backward projection and approximated solution. This is the final step, 

common to both intrusive and non-intrusive methods, and the reduced solution is 

back-projected into the field space. 

Table 1. Main features of the implemented ROM methods. 

 Intrusive ROM Non-intrusive ROM 

OFF-line 

stage 

Step (2) 𝑆𝑆𝑛𝑎𝑝 = [𝑢𝐹𝑂𝑀(𝜇1), … , 𝑢𝐹𝑂𝑀(𝜇𝑁𝑠
)] 

Step (3) Singular Value Decomposition (SVD) and truncation 

ON-line 

stage 

ROM solution 

For each iteration (step 4.2): 

𝑢𝑅𝑂𝑀(𝜇) = 𝑖𝑛𝑣(𝐾𝑅𝑂𝑀(𝑢𝐹𝑂𝑀, 𝜇))
∙ 𝐹𝑅𝑂𝑀(𝑢𝐹𝑂𝑀, 𝜇) 

1-off solution (step 5.2) 

interpolated 𝑢𝑅𝑂𝑀(𝜇) 

Approximated 

solution (step 6) 

For each iteration 

𝑢𝐹𝑂𝑀(𝜇) ≅ Ψ ∙ 𝑢𝑅𝑂𝑀(𝜇) 

1-off solution 

𝑢𝐹𝑂𝑀(𝜇) ≅ Ψ ∙ 𝑢𝑅𝑂𝑀(𝜇) 

Implementation steps and hurdles of the two methods are summarised in Table 1. It is 

worth noting that if, on one hand, the non-intrusive ROM generates a surrogate model 

of u, the intrusive ROM needs to re-run the physics-based kernel and the constitutive 

equations must, therefore, be projected during each iteration. 
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Fig. 2. Proposed methodology for real-time physics-based variation simulation. 

4 Case study 

4.1 Implementation 

The implementation of the proposed methodology uses the Proper Orthogonal Decom-

position (POD) [9,14–16], since it has proven to be advantageous in terms of easiness 

of implementation, reduction of computational cost, and accuracy of results. POD 

methods rely on the SVD (Singular Value Decomposition) of the Snapshot matrix 

𝑆𝑆𝑛𝑎𝑝 = 𝑈𝛴𝑉𝑇 and extract the reduced basis by collecting the first 𝑅 left singular vec-

tors 𝛹 = 𝑈(: ,1: 𝑅), namely, the POD-modes of the system. Its intrusive version [9,15] 

is generally called POD-Galerkin, taking its name from the projection. The non-intru-

sive version, called POD-RBF [9,16], uses the Radial Basis Functions (RBF) to inter-

polate the approximated solution in the hybrid space. The methodology has been coded 
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in MATLAB® R2020b and the adopted physics-based simulations have been calculated 

in the Variation Response Method (VRM) toolkit [17,18]. All calculations have been 

run on a laptop with 12 GB of RAM and a quad-core CPU operating at Max Turbo 

Frequency of 3.60 GHz. 

4.2 Description of the case study: aircraft vertical stabilizer 

The methodology has been tested on the vertical stabiliser of a commercial aircraft, 

shown in Fig. 3. The assembly comprised of 2 skins (left- and right-handed), 1 rib, 14 

clips, and 9 rib posts. All components are made from aluminium, with Young’s modu-

lus 70 GPa and Poisson’s ratio 0.3. The model has been discretized with 20,497 shell 

elements (Fig. 3(b)), resulting in NDOF=128,644.  

 

Fig. 3. Vertical stabilizer. (a) CAD geometry and (b) mesh of the selected assembly. 

 

Fig. 4. Deformation field (in mm) during the 3 consecutive assembly stages. Deformation has 

been magnified 5 times. The colour code represents the y displacements in mm. 

The assembly process is modelled with three consecutive stages (shown in Fig. 4 for a 

given instance of the input process parameters): stage (1) incoming skins are deforma-

ble and are subject to form errors – the Morphing Mesh Procedure (MMP), developed 

in [11] has been used to emulate form errors. It is worth noting that the methodology 
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works regardless and scanning data can be also fed to the model. Stage (2) positioning 

of rib, clips, and rib posts which are assumed rigid. Stage (3) positioning of the skin 

panels and contact simulation. The output performance indicators are the deformation 

field (in x, y, and z axis) for each node in the mesh model. 

Table 2. Definition of the input parameters. 

Input 

parameters, μ 

Uniform Distribution Gaussian Distribution 

Interval Mean Std. deviation 

Form 

errors 

Normal deviation of 3 control 

points of the left skin 
[−5𝑚𝑚, 5𝑚𝑚] 0𝑚𝑚 1.67𝑚𝑚 

Normal deviation of 3 control 

points of the right skin 
[−5𝑚𝑚, 5𝑚𝑚] 0𝑚𝑚 1.67𝑚𝑚 

Z-rotation of Rib Post 1÷9 [−5𝑚𝑚, 5𝑚𝑚] 0𝑚𝑚 1.67° 

 

 

The parameter space comprises 15 parameters (Table 2). Two sampling strategies have 

been used, unform and gaussian, both with NS=640. The snapshots were generated by 

setting εgap=0.6 mm. Results of the model reduction are then tested against 60 new in-

stances of process parameters, generated with uniform random sampling. The accuracy 

is quantified by 3 indicators: (1) Mean Percentage Error (MPE) and the (2) Pearson’s 

Correlation coefficient over all the 60 new instances computed between FOM and ROM 

solutions. The (3) CPU time ratio (i.e., time spent by the ROM compared to the FOM) 

measures the computational efficiency. 

4.3 Results 

Preliminary tests showed that the accuracy of the intrusive method is strongly influ-

enced by the penalty stiffness (Fig. 5). It was found that when the penalty is relatively 

low (approx. 102 N/mm), the solution converges without respecting the gap tolerance, 

while it fails to converge for penalty stiffness above 107 N/mm. Only for kp=[104; 106] 

N/mm there is good accuracy (MPE below 0.3%) with significant reduction in compu-

tational time – up to 50% saving. The results presented hereinafter have been generated 

by setting the penalty stiffness, kp=105 N/mm. 
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Fig. 6 shows the results of the sensitivity study on the number of modes against the 

sampling strategy. While the general trend is that the MPE tends to exponentially de-

crease with the increasing number of modes, better accuracy is reached with the uni-

form sampling. This is explained by the fact that, compared to the gaussian sampling, 

the uniform sampling allows to scan the entire parameter space. The next set of results 

has been generated using uniform sampling. 

 

Fig. 5. Sensitivity to penalty stiffness for the POD-Galerkin method. 

 

Fig. 6. Sensitivity to no. of modes with both uniform and gaussian sampling for POD-Galerkin. 

Fig. 7 depicts the contour plots of the displacements and errors along y-axis of the right 

skin for 2 different parameter instances, while Fig. 8(a) shows the results in terms of 

errors and pattern reproducibility via Pearson’s Correlation coefficient. Results of the 

POD-Galerkin with less than 50 modes are not shown since the reduced model exhib-

ited convergence problems. Conversely, POD-RBF error reaches a plateau just after 10 

modes, indicating that the reduced basis does not have enough information to represent 

the entire variability in the field space. Further reduction in error could be achieved by 

increasing the number of sampled points in the parameter space. It is therefore clear 

that the intrusive method, with the same number of modes and sampled points, is more 

accurate than the non-intrusive counterpart. 

With regards to the computational efficiency, Fig. 8(b) shows the CPU time ratio for 

the major steps of POD-Galerkin. It is clear that the forward projection is the bottleneck 
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of the procedure, and the CPU time ratio increases with the increasing number of 

modes. Summary of findings is in Table 3. 

 

Fig. 7. Comparison between the FOM, POD-Galerkin and POD-RBF. The colour code represents 

the displacements (mm) and errors (mm) along y-axis of the right skin for two instances of pa-

rameters. 

 

Fig. 8. Comparison between the POD-Galerkin and POD-RBF in terms of accuracy and compu-

tational efficiency. 

Table 3. Summary of the main findings in terms of accuracy and computational efficiency. 

Models 
Computational 

time 

CPU 

time ratio 

Mean 

Percentage Error 

FOM 3,000 s - - 

POD-Galerkin 
50 modes 830 s 27.7% 8.7% 

450 modes 1,500 s 50% 1.7% 

POD-RBF 
5 modes 2.5 s 0.09% 16.7% 

50 modes 2.5 s 0.09% 10.6% 
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5 Conclusions 

This paper proposed a novel methodology to accelerate the transition towards real-time 

physics-based variation simulation of assembly systems with compliant sheet-metal 

parts. Results have shown that the accuracy of the proposed Reduced-Order Model for 

variation simulation strictly depends on the number of input parameters and sampled 

points, as well as the sampling strategy and the number of reduced modes. Further, 

though intrusive methods are much more accurate than the non-intrusive counterpart 

since they exploit the physical knowledge in the reduced space, they are limited only 

up to 4x reduction (with MPE just below 10%) of computational time compared to Full 

Order Models. Conversely, non-intrusive methods can go as high as 1000x. However, 

their accuracy is dictated by the number of sampled points. 

This paper represents the first attempt to bridge the gap between advanced CAE 

simulations and VS models with the final aim of generating simulation data in real-

time. This research has opened interesting new avenues in the field of variation simu-

lation and dimensional/quality management. Opportunities for hybrid approaches based 

on ROM and physics-driven Machine Learning will be explored in future works. 
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