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ABSTRACT 

Motivated by the growth of the e-mobility sector and the fact that large arrays of welds are required 
for each finished assembly, this article first reviews some of the most established and adopted sensor 
technologies and closed-loop control strategies for laser beam welding; and, then discusses current 
challenges and future perspectives towards the full digitalisation of the laser beam welding in line with 
the current trend of Industry 4.0 and Industrial Internet of Things. 

LASER WELDING IN E-MOBILITY: SITUATION TODAY 

Laser Beam Welding (LBW) currently 
covers between 60% to 80% of all 
joining for e-mobility manufacturing 
for high-volume production above 150k 
vehicles/year [1]. Typical battery 
systems comprise hairpins, contact and 
terminals, bus-bars, modules/pack and 
enclosures. These are complex 
assemblies that involve multiple layers 
of dissimilar materials (copper, 
aluminium, nickel, steel) with a wide 
range of thicknesses (from tens of 
microns to few millimetres), and 
multiple fabrication processes (forming, 
casting, extrusion). Figure 1 shows 
typical weldments obtained with 
remote laser welding (no filler wire and 
no shielding gas). The high flexibility of 
current LBW technologies allows to 
introduce sophisticated welding 

patterns, fast beam re-positioning, laser power modulation and beam shaping. The combination of 
these features has been proven successful to weld challenging materials such as non-ferrous alloys 
and highly reflective materials. The manufacturing of each battery pack requires joining a large 
number of connections - up to 20,000. One single defective weld can cause the scrap of the whole 
battery pack [2]. Re-weld of a defective weld though possible, nonetheless, increases the tendency of 
cracks formation and brittle intermetallics - the latter applies especially to dissimilar material welding.  
Therefore, monitoring and control of the weld quality can significantly reduce scrap rate. Additionally, 
control strategies can help to increase weld durability and prevent weld degradation. Reports have 
indicated that weld degradation can ultimate in the catastrophic event of thermal runaway [3]. It is 
therefore clear that the classical 6-sigma approach currently in use in automotive industry for quality 
control must be revisited to accommodate for zero-defect manufacturing strategy.  

AUTONOMOUS ASSEMBLY SYSTEMS: WHERE DO WE STAND WITH LASER BEAM WELDING? 

There is undoubtedly a gradual transition towards autonomous assembly and welding systems 
brought on by tools from Industry 4.0 such as Machine Learning (ML) / Artificial Intelligence (AI) and 
computer-aided physical simulations [4]. Those tools hold promises of improving productivity and 

 
Figure 1. Typical weldments (both similar and dissimilar materials) 

obtained by remote laser welding technology. 
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quality (towards zero-defect), optimise energy 
consumption and reduce scrap. Rather than 
relying entirely on the open-loop nature of 
traditional welding process development – 
meaning robust design optimisation and then 
“reactive” adjustment of the process 
parameters on the production line to satisfy 
the design tolerances - autonomous 
production systems leverage a number of 
digital twin assets which gather in-process data 
and in real-time, and provide continuous 
feedback information for “predictive” decision 
making. Sensor technologies play a pivotal role 
since they serve as the “surveillant” of a 
process. The need for sensor technologies is 
very timely indeed for the explosive growth of 
the e-mobility where large number of joints are 
generated for each assembly. While LBW has 

been rapidly absorbed by the industry, the sensor technology itself is lagging for industry 4.0 
requirements especially when it comes to providing closed-loop feedback.  

WELD QUALITY AND SENSOR TECHNOLOGY 

The quality of laser weldments is assessed by measuring multiple features such as: (1) surface features 
– for example, melt pool width, concavity, convexity; and, (2) sub-surface features – for example, weld 
depth, interface width, weld pores and cracks. Figure 2 shows typical weld defects which are 
encountered while welding similar and dissimilar materials. Direct measurement of surface features 
is a well-established area and comprises of CMOS/CCD camera-based or laser-based sensors. While 
multiple sensors can be installed on the same laser welding head to measure multiple features, direct 
measurement of sub-surface features remains an un-solved problem. Sub-surface features are 
ultimately what drives the functional performances of the weld, along with mechanical, durability and 
electrical resistance (in those applications involving electrical connectors). There have been few 
efforts in recent years to address sub-surface feature monitoring. High-speed X-ray [5] offers the 
superior capability to 
detect weld pores (and 
eventually micro-
cracks) at high spatial 
and temporal resolution 
(below 500 μm). 
However, X-ray 
inspection is only used 
for off-line process 
characterisation – 
applications to full scale 
in-process monitoring 
are currently 
disregarded owing to 
high implementation 
costs and safety 
hurdles. Latest 
advancements in 
Optical Coherence 

 
Figure 2. Example of defective welds. 

 
Figure 3. Typical signal generated by OCT technology. Adapted from [10]. 
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Tomography (OCT) have shown promising 
results towards direct measurement of weld 
penetration depth (Figure 3 shows typical OCT 
signals). For example in [6], OCT has been 
combined with Adjustable Ring Mode laser for 
battery tabs connectors (450 µm aluminium to 
300 µm copper). Results showed that the OCT 
sensor was capable of direct measurement of 
the weld penetration depth with accuracy 
within 100 µm, when compared to off-line/off-
process metallographic analysis. However, the 
study concluded that the accuracy was highly 
sensitive to the selection of the welding 
process parameters. As such, the sensor 
needed to be re-calibrated every time any 

process parameter was about to be changed. Furthermore, the absence of the keyhole mode would 
have made the OCT sensor unsuitable for measuring the weld penetration depth. The sensitivity to 
welding process parameters is overcome by those sensors which passively observe process emissions. 
Photodiodes are the most established sensors in this category. While photodiode-based monitoring 
has been largely implemented for structural welds – such as, door closures, seat frames and side 
frames in automotive body construction - applications for welding of thin foils and dissimilar metals 
remain an uncharted area of investigation. We have recently demonstrated that both part-to-part gap 
and laser power variations can be diagnosed by observing the step-change in the plasma signal. Figure 
4 illustrates representative plasma signals with varying part-to-part gap.  However, those results have 
limitations due to the fact that the photodiodes only provide indirect measurements in the form of 

correlated signals (plasma, 
temperature and back-
reflection) to the actual welding 
features. A good example which 
re-affirms the inefficiency of 
indirect measurements is shown 
in Figure 5 (class[1]: lack of 
bonding; class[2]: over-
penetrated weld; class[3]: sound 
weld). Though the correlation 
between plasma and weld depth 
is approximately 90% and the 
cases with over-penetrated 
welds are well diagnosed (i.e., 
weld (5) and (6)), this is not 
sufficient to provide full 
diagnosability of weld defects. 
For instance, weld (1) – clear lack 
of bonding but total fusion of the 
bottom plate – shows 
comparable level of plasma 
generated in weld (2) – which is 
a sound weld. Additionally, 
determining the correlation 
demands lengthy metallographic 

 
Figure 4. Example of plasma signals - variable part-to-part 

gap for 200 µm Cu to 300 µm steel (the red curve is the 
filtered signal, while black dots are raw data). 

 
Figure 5. Example of process monitoring via photodiode-based signal  
(200 µm Cu to 300 µm steel). (a) plasma signal; (b) weld fusion depth 

measured via metallographic analysis; (c) process parameters mapped 
against plasma signal; (d) representative cross-sections. 
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analyses, which incur significant cost and manual labour. 

FEEDBACK CONTROL SYSTEMS  

Only single-feature control systems have been common for the control of LBW, where either the laser 

power or the focal position is used as control parameter to maintain a reference value of the weld 

penetration [7]. Other good examples are seam tracking and gap bridging control systems that cope 

with the intrinsic manufacturing tolerances (i.e., gap and trim edge variation). However, irrespective 

of the material quality and manufacturing tolerances, the LBW system needs to be manually re-

optimised and re-calibrated every time a new scenario is introduced (i.e., new material alloy, part 

geometry, processing conditions, etc.). This incurs costly and lengthy optimisation loops. ML/AI 

principles offer the tools to overcome current limitations and set-up automated feedback control 

systems. Despite the potential, applications of ML/AI in LBW for closed-loop control systems are still 

at an infancy [8]. Major challenges arise first from the substantially limited amount of process data – 

ML/AI methods are data-hungry and they require large amount of data to train the models and 

determine predominant patterns. Large datasets are rare in LBW applications. This is due to cost and 

time required to generate experimental samples. Second, it can be argued that conventional ML/AI 

approaches can find complex non-linear patterns but they are only reliable in the subdomain in which 

they have been derived and trained, and therefore they may be unable to accurately characterise un-

trained cases with a large variety of material property profiles (chemical composition, thermal and 

rheological properties), and product variants (part geometry, joint geometry, thickness, etc.). Third, it 

is also worth noting that while ML/AI-based models have showed outstanding performances towards 

the generation of actionable models for adaptive control, they fail to explain the causality between 

input process parameters and outputs variables. 

The aforementioned challenges could be overcome by the model-driven controllers which, rather than 

inferring the control law from a “black-box” data-driven model, make direct use of the first-principle 

physical equations. Nonetheless, applications of physics-based controllers have been rarely reported 

owing to the inherent highly complex underlying physical phenomena [9] involved in LBW. These 

phenomena include multiple reflections (also known as Fresnel reflections), Marangoni and buoyancy 

effects and recoil pressure, and complex thermal-mechanical-fluid coupling. Those complex 

mechanisms have been widely studied by the applied physics community which has developed highly 

accurate models for the purpose of off-line optimisation of process parameters. The cost of such 

accuracy is the computational complexity and especially in time critical applications such as in-process 

monitoring and feedback control, the real-time evaluation of a complex physics-based model requires 

prohibitive amounts of computational power. Paradoxically the best feature of LBW, its speed (up to 

4000 mm/s for extreme high-speed processes), is also the greatest threat when it comes to in-process 

monitoring and control – for instance, higher processing speeds and variable computational delays 

can affect the spatial and temporal resolution of the monitoring device, and the stability of the control 

architecture.  

FUTURE PERSPECTIVES 

Motivated by stringent requirements brought by the growing e-mobility sector and the fact that large 

arrays of welds are required to produce each finished assembly, novel methodologies and 

technologies are urgently needed to uplift current laser welding solutions to make them Industry 4.0-

compatible.  A bolder approach is to use a combined methodology, which makes use of the strength 

of both ML/AI-based methods and physics-based models, and fuse them with best-in-class sensors. 

Although this seems daunting, with the emergence of digital technologies and large computations 

available on multi-core Graphics Processor Units (GPUs), the time is now ripe to address the issues of 

in-process monitoring and adaptive feedback control of multiple weld features. Further developments 
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are expected in the forthcoming years that will pave the way towards full digitalisation of the LBW 

technology in line with the current trend of Industry 4.0 and Industrial Internet of Things. 
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