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Abstract—By manipulating tens of thousands of internet-of-
things (IoT) enabled high-wattage electrical appliances (e.g.,
WiFi-controlled air-conditioners), large-scale load-altering at-
tacks (LAAs) can cause severe disruptions to power grid oper-
ations. In this work, we present a rare-event sampling approach
to identify LAAs that lead to critical network failure events
(defined by the activation of a power grid emergency response
(ER)). The proposed sampler is designed to ‘skip’ over LAA
instances that are of little interest (i.e., those that do not trigger
network failure), thus significantly reducing the computational
complexity in identifying the impactful LAAs. We perform
extensive simulations of LAAs using the Kundur two-area system
(KTAS) power network while employing the rare-event sampler.
The results help us identify the victim nodes from which the
attacker can launch the most impactful attacks and provide
insights into how the spatial distribution of LAAs triggers the
activation of ERs.

I. INTRODUCTION

Cyber attacks against power system grids can have signif-
icant social and economic consequences. The threats can be
broadly divided into two categories – (i) attacks that directly
target the power grid’s supervisory control and data acquisition
(SCADA) system, and (ii) attacks that indirectly target the
power grid’s control loops by manipulating end-user internet-
of-things (IoT) enabled electrical appliances. Direct attacks
against the SCADA system, such as false data injection attacks
and/or coordinated cyber-physical attacks against power grid
state estimation have received significant attention [1]–[3]. In
contrast, indirect attacks that target a large number of demand-
side appliances in a Botnet-type attack have been studied only
recently [4], [5]. Unlike the SCADA assets, these devices
cannot be monitored continuously due to their large numbers.

The focus of this work is on load-altering attacks (LAAs),
which refer to a sudden and abrupt change in the power grid
demand by synchronously turning on/off a large number of
IoT-enabled high-wattage appliances [4]–[8]. LAAs pose a
major threat to power grid operations since they can potentially
disrupt the balance between supply and demand. It has been
shown [4], [5] that such attacks can lead to unsafe frequency
excursions, line outages, and/or increase the grid’s operational
costs. Moreover, dynamic LAAs, in which the attacker injects
a series of load perturbations over time, can also destabilize the
power grid’s frequency control loop [7]. Subsequent work has
also focused on detecting LAAs using data-driven approaches
based on the data gathered from phasor measurement units
[9], [10].

Understanding the impact of LAAs is an important com-
ponent in risk analysis. Existing work on quantifying the
impact of LAAs can be categorized into two approaches – (i)
simulation-based approach [4]–[7], and (ii) analytical approach
[8]. Under the former, the attack impact is assessed by simulat-
ing the power grid’s control loops (e.g., frequency dynamics)
[4]–[6] or computing the system’s eigenvalues under LAAs
[7]. However, the results presented in these works correspond
to only a few specific LAA scenarios (i.e., specific load per-
turbations injected at the victim nodes). Evaluating the attack
impact under all possible spatial distributions of LAAs (over
the victim nodes) requires performing extensive simulations
considering different combinations of the victim nodes and
attack magnitudes, which can be computationally prohibitive.
To overcome these issues, an analytical approach based on
the theory of second-order dynamical systems was proposed in
[8]. The closed-form analytical functions to evaluate the attack
impact (in terms of the dynamic response and eigensolutions
of the power grid’s frequency control loop) only need to be
computed once, thus avoiding the requirement for repeated
simulations. However, the analytical approach is restricted to
a second-order model with a direct current (DC) power flow
model. Extending these results to higher-order models (e.g.,
one that considers both frequency and voltage dynamics) and
involving the non-linear alternating current (AC) power flow
model is non-trivial. This is important to obtain a realistic
assessment of the LAA impact.

To overcome the aforementioned limitations, we apply a
sampling approach to map LAA magnitudes and their spatial
distributions (across the different victim nodes) to their attack
impact. In particular, the focus of this work is on LAAs that
lead to the activation of power system emergency responses
(ERs) which disconnect critical power system components
(e.g., generators/load/transmission lines). A common sampling
approach is Monte Carlo simulations, which would apply
randomly generated realisations of LAAs from an underlying
distribution to a simulated model of the physical system. How-
ever, power grid design philosophies, such as N−1 scheduling,
make the grid resilient to various contingencies (including cy-
ber attacks). This implies component disconnections induced
by LAAs can be extremely rare. Consequently, Monte Carlo
sampling can be computationally expensive, as the majority of
sampled LAAs will not result in component disconnections,
requiring a large number of realisations applied to the power



system model to generate a sample of the rare event (i.e., the
activation of an ER).

To avoid an exhaustive search to locate potential LAAs
that lead to network failures, we instead employ a novel
methodology in the context of LAAs based on a Markov
chain Monte Carlo (MCMC) approach for rare-event sampling,
known as the skipping sampler. The proposed approach is
designed to reduce the time and computational effort spent
on evaluating LAAs that are of little interest (i.e. those that
do not result in an emergency response), allowing it to more
efficiently construct a sample of a rare event. The skipping
sampler has been applied to draw samples of low probability,
high impact events in power networks in the literature (see
[12] and [13]). Section III-B provides a detailed discussion on
the skipping sampler.

We evaluate the framework by performing extensive simu-
lations using the Kundur two-area system (KTAS) [11]. We
simulate the power grid’s transient dynamics by a third-order
model, which accounts for both the frequency as well as the
voltage dynamics [12]. The LAAs that perturb these dynamics
are modelled according to the Log-normal distribution (since
real-world cyber attack magnitudes are well modelled by this
distribution [13]). If the local frequency metrics at any node
exceed pre-set tolerances, appropriate ERs, such as genera-
tion/load shedding, are activated. Our results show that in the
KTAS network, most instances of ERs are activated for two
specific spatial distributions of LAAs, namely (i) when the
attacker increases the load throughout the system or (ii) when
the attacker decreases the load in the over-provisioned area
(with excess generation) and increases the load in the under-
provisioned area (with excess load). In particular, attacks that
exacerbate the power imbalance in the system (i.e., type (ii))
can trigger inter-connector line disconnections, and lead to
other network failures.

The rest of the paper is organised as follows. Section II
introduces the system model; Section III presents the statisti-
cal model and details of the rare event sampling approach.
Section IV describes the simulation results and Section V
concludes. The simulation parameters are provided in an
online Appendix found in [14].

II. SYSTEM MODEL

A. Power Grid Model

Using the third-order model for the generator, the power
system model for rare-event sampling simulations will also
include a model for governor action, automatic voltage regu-
lation and a model of protection system ERs if the frequency or
RoCoF exceeds pre-defined thresholds. We consider a power
grid represented by G = {N ,W}, where N is the set of
buses and W is the set of transmission lines. The set of buses
N consists of N generation buses and L load buses, with
|N | = N + L. At each generation bus i = 1, . . . N , the
dynamics for the phase angle δi, voltage magnitude Ei and
governor action ρi are given respectively by:



M(ψ)δ̈i +Dδ̇i = ψiχ
G
i − χL

i (Ri)−

Ei

N+L∑
j=1

Bij(Ωij)Ej sin(δij)

SiĖi = ψi(Ef,i − vi)− Ei +Xi

N+L∑
j=1

Bij(Ωij)Ej cos(δij)

ρ̇i = −Aiδ̇i(1− 1W [δ̇i]).

(1a)

(1b)

(1c)

In a similar manner, the dynamics for δi and Ei at each load
bus i = N + 1, . . . , N + L are given by:
M(ψ)δ̈i +Dδ̇i = −χL

i (Ri)− Ei

N+L∑
j=1

Bij(Ωij)Ej sin(δij)

SiĖi = ψiEf,i − Ei +Xi

N+L∑
j=1

Bij(Ωij)Ej cos(δij .)

(2a)

(2b)

In equations (1) and (2), ψi, Ωij and Ri are indicator vari-
ables associated with generator, line and load disconnections
respectively, explained in Section II-C. The system angular
momentum, M(ψ) =

∑N
j=1 ψjHj is given by the sum of

each generator’s inertia constant, Hi (see online Appendix for
parameter values).

TABLE I: Variables used in (1) and (2).

Symbol Meaning Units
Ai Governor’s droop response MW/rad

Bij(Ωij) Susceptance matrix p.u.
χG
i Net generation at node i p.u.

χL
i (R) Net loads at node i p.u.
D System damping %
δi Phase angle p.u
δij δi − δj p.u.
δ̇i Frequency p.u
δ̈i Rate of change of frequency (RoCoF) p.u.
Ei Voltage p.u.
Ef,i Machine i rotor field voltage p.u.
M(ψ) System angular momentum Ws2
Ωij Line disconnection indicator -
ψi Generator shed indicator -
Ri UFLS counter -
Si Machine i transient time constant s
Xi Machine i equivalent reactance ohms
W Governor’s deadband frequency range Hz

As we assume the network to be lossless, the elements of
Bij(Ωij) correspond to the imaginary part of the elements
of the network’s admittance matrix [11]. The net generation
at node i is given by χG

i = min{Pmax
i , PG

i + ρi}, where
Pmax
i is the nominal maximum power output of generator
i, PG

i is the equilibrium power of the generator and ρi is
the power contributed by a governor unit, whose dynamics
are given in (1c). The variable vi accounts for the action
of automatic voltage regulation (see online Appendix). The
net load at node i, χL

i , is inclusive of the LAA and a load
disconnection scheme, and is discussed in Sections II-B and
II-C. The remaining parameters are given in Table I.

B. Load-Altering Attack Model
Several security vulnerabilities have been identified in IoT-

enabled high-wattage consumer appliances (see, e.g., [5]).



These vulnerabilities can be exploited by a strategic attacker
to cause security incidents such as information disclosure
and privilege escalation, leading to a change in the device’s
operational settings (e.g., switch ON/OFF or change the mode
of operation). Considering a 2 kW power rating for the ACs,
and a Botnet-scale attack that potentially compromises tens of
thousands of such devices, LAAs can lead to a sudden load
change of several MWs of power [5].

Not all loads are expected to be susceptible to LAAs, thus
we decompose PL

i , the equilibrium load at bus i, into a
vulnerable part, given by νPL

i , where ν ∈ [0, 1] denotes the
proportion of equilibrium loads in the network vulnerable to
an LAA; and a secure part (i.e., protected or non-smart loads)
(1 − ν)PL

i . LAAs at node i, denoted ui, are modelled as
ui := ηiνP

L
i , where ηi ∈ [−1, 1] is the proportional change to

equilibrium vulnerable load. Thus, the load at node i, inclusive
of the LAA, is given by

χL
i = (1− ν)PL

i + νPL
i + ui

= (1− ν)PL
i + (1 + ηi)νP

L
i . (3)

This constrains the authority of the attacker to alter vulnerable
loads at node i to a minimum of 0 MW (i.e. min(ui) =
−PL

i ν), or, at maximum, double vulnerable load demand (i.e.
max(ui) = PL

i ν). This restriction to the maximum LAA
reflects the finite capacity of inactive loads the attacker can
activate during an LAA.
C. Emergency Responses

ERs refer to systems designed to protect sensitive power
system components from excessive frequency deviations fol-
lowing a change in the active power balance. In this section
we provide a brief discussion of ER employed, and refer the
reader to [15] and [16] for a detailed mathematical description.

Generation shedding: To protect synchronous generators,
we model two independent schemes intended to disconnect
the generator from the network: (i) RoCoF-induced generation
shedding (RIGS) - the generator is disconnected when nodal
RoCoF |δ̈i| exceeds an upper threshold; (ii) over frequency
generation shedding (OFGS) - generation is shed when nodal
frequency δ̇i exceeds a pre-set upper limit. The binary variable
ψi models the activation of generation shedding at node i
during the simulation: ψi = 1 initially under normal operation;
however, when either threshold is met and generator i is
disconnected, ψi is set to 0 until the end of the simulation.

Under-frequency load shedding (UFLS): We model UFLS
schemes as a progressive disconnection of loads when the
frequency δ̇i falls below a strictly decreasing sequence of four
frequency thresholds FU := {FU

1 , . . . , F
U
4 } where FU

j−1 >
FU
j . In our model, at each frequency threshold, 10% of

equilibrium loads PL
i is automatically disconnected to arrest

the decline in nodal frequency. Letting Ri ∈ {0, 1, 2, 3, 4}
count the total number of UFLS activations at node i at each
time step t in the simulation, the net load is a dynamic variable
in the power system model:

χL
i (Ri) =

(
1− 0.1Ri

)(
(1− ν)PL

i + (1 + ηi)νP
L
i

)
(4)

Line disconnection: In the KTAS network, we model the
disconnection of the line connecting Areas 1 and 2 when the
power flow through the line, given by ϕij := BijEiEjsin(δi−
δj), exceeds a pre-set power threshold Pϕ. When excess power
flow is detected through the inter-connector line, the indicator
Ωij switches from 1 to 0 for the remainder of the simulation,
setting the ijth element of Bij to 0 [16].

The ER model inspects the continuous time variables δ̇i(t),
δ̈i(t) and ϕij(t) from the power system model (1) at regular
time intervals. Once a criteria for activation is observed, the
corresponding ER is activated. This is represented in (1) as
a discontinuity, where changes to the relevant input variables
(power injection, load or network topology) are applied. Sub-
sequently, the simulation is resumed with the new network
parameters.

III. STATISTICAL MODEL FOR LAAS

In this section, we present the statistical model for the
distribution of LAAs and describe the proposed rare-event
sampling approach to identify the impactful LAAs.

A. Modeling the Unconditional Distribution of LAAs

There are several studies that document the frequency and
magnitude of cyber breaches in enterprise networks [13].
For instance, [13] demonstrates the size of data breaches
can be well-modelled by the log-normal family of distri-
butions. Assuming nodal LAAs magnitudes are independent
and follow a similar distribution, we model U ∈ RN+L :=
[|u1|, . . . , |uN+L|] as

U ∼
N+L∏
i=1

Lognormal(µi, σ
2
i ). (5)

We also note that our analysis is not restricted to the log-
normal family of distributions, and can be extended to any
underlying distribution in a straightforward manner.
B. Rare-Event Sampler for LAAs

If given an unconditional density ρ over RN+L and a rare
event of interest C ⊂ RN+L, rare-event sampling involves
drawing elements from ρ conditioned on the occurrence C.
The density of this conditional distribution for the element
U ∈ RN+L is:

π(U) =
ρ(U)1C(U)

ρ(C)
, (6)

where ρ(C) is the probability of the event C occurring, and

1C(U) =

{
1 U ∈ C

0 U /∈ C.
(7)

In the context of our research, C is the set of LAA magnitudes
which result in the activation of at least one ER and ρ is
the distribution in (5). As C is expected to be rare, we
employ the skipping sampler MCMC algorithm to efficiently
draw samples of U ∈ C. The skipping sampler is formalised
in Algorithm 1. We provide an intuitive explanation of the
algorithm in the following.



Algorithm 1: Skipping sampler algorithm

1 Input: initial state U1;
2 for i = 1 to n do:

3 Generate an initial proposal Z1 distributed according
to the density q(y − Ui)dy;

4 Calculate the direction Φ = (Z1 − Ui) / ∥Z1 − Ui∥;
5 Generate a halting index K ∼ Kφ;
6 Set k = 1 and:
7 while Zk /∈ C and k < K do
8 Generate a distance increment R distributed

according to qr|Φ (r|Φ);
9 Set Zk+1 = Zk +ΦR;

10 k=k+1;
11 end
12 Set Z := Zk;
13 Evaluate the acceptance probability:

α(Ui, Z) =

{
min

(
1, π(Z)

π(Ui)

)
if π(Ui) ̸= 0,

1, otherwise,
(8)

Generate a uniform random variable V on (0, 1);
14 if V ≤ α(Ui, Z) then
15 Ui+1 = Z;
16 else
17 Ui+1 = Ui;
18 end
19 return Ui+1.
20 Output: final sample [U1, . . . , Uh]

As a Metropolis-class algorithm [17], the skipping sampler
can be understood as a two step procedure: (1) a proposal step
where, starting from a state Un ∈ RN+L, a potential new state
Z for the final sample is generated; (2) an acceptance/rejection
step, which determines whether the proposed state Z is in-
cluded in the final sample, according to a specified acceptance
probability. This ensures the distribution of the sample follows
the desired target distribution π. If it is accepted, the proposal
is included in the final sample and becomes the starting state
for the next proposal step. This procedure is repeated a desired
number of times, after which the final sample is returned.

The skipping sampler improves the sampling of C by using
a specialised proposal function which ‘skips’ over Cc - the
set of LAAs which do not lead to the activation of an ER
(which are not of interest); until the rare event is sampled or
the skipping process is terminated. Thus, the proposal of the
skipping sampler was designed to enable efficient transitions
between connected components of C. Denoting the current
state Un, if the initial proposal Z1 /∈ C, we update the initial
proposal (or ‘skip’) by an adding an independent random
distance increment R2 in the direction Φ = Z1−Un

|Z1−Un| , where
Rk has the conditional distribution of ∥Z1 − Un∥ conditioned
on Φ. The proposal function continues this linear update
procedure until either C is entered or the budget for skipping
is exhausted [17].

IV. SIMULATIONS

A. Simulation Settings

Our case study is based on the KTAS power grid [11]. We
take a Kron reduced version consisting of N = 4 generation
buses and L = 2 load buses as shown in Figure 1. At t = 0−,
the system is modelled in equilibrium, with power flows from
Area 1 to Area 2 through the line connecting nodes 5 and 6
(tie line). The system parameters are such that the system is
N − 1 secure, in the sense that the loss of a generator (in the
absence of any other disturbance) does not trigger an ER. The
initial conditions of the above system of equations, denoted
δi (0), Ei (0), ρi(0), PG

i and PL
i are set equal to equilibrium

states which can be determined numerically, such that δ̈i ≈ 0.
These values along the those of the parameters of (1) and (2)
can be found in the online Appendix [14].
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Fig. 1: Schematic drawing of the Kundur two-area 4 node
network after Kron reduction. Generator buses (green circles)
correspond to nodes i = [1, . . . , 4] and load buses (brown
circles) correspond to nodes i = 5, 6. Line lengths are
indicated.

To generate LAA instances, we implement the skipping
sampler proposed in Section III-B. During each proposal
step, we sample an N + L−dimension LAA vector U from
Lognormal distribution as in (5). We investigated various
values for σi ∈ [1, 8] which controls the rareness of large
LAAs. For this study, we present the results for µi = 0 and
σi = 4 for i = 1, . . . , N+L, and reserve a detailed sensitivity
analysis for a dedicated manuscript. We apply U as an input to
the power system model (1) at t = 0, with frequency dynamics
simulated for 15 seconds following the LAA using MATLAB.
We conduct n = 60, 000 proposals, which generated a final
sample of h ≈ 10, 500 LAAs conditioned on the activation
of at least one ER. This is an acceptance rate of 17.5%,
within the 15 - 48% rate considered optimal for exploring
of a sample [18]. Following [17], no burn-in nor thinning
was required, thus all samples collected were available for
analysis. Since these responses are an undesirable event (from
a system operator’s point of view), we label such instances as
a “network failure”.
B. Simulation Results

We evaluate the susceptibility of the network to LAAs at
both a local and global scope for three regimes of network
vulnerability to LAAs- a ‘secure network’ (ν ≤ 45%), a
‘moderately vulnerable network’ (45% < ν ≤ 65%) and a
‘highly vulnerable network’ (ν > 65%).



Fig. 2: Distribution of the absolute value LAAs at each
node of the KTAS network conditioned on a network failure
event, for different levels of network vulnerability ν and the
unconditional distribution (ρ). Note - bins for successive values
of ν are offset slightly to the right to improve readability.

Local Analysis – Identifying the vulnerable nodes:
Figure 2 plots the distribution of LAA magnitudes at each
node, conditioned on the occurrence of a network failure, for
different degrees of network vulnerability ν. We observe the
following : (i) only at nodes 5 and 6 does the conditional
distribution of LAA magnitudes differ significantly from ρ,
with network failures associated with larger magnitude LAAs,
located in the low density region of ρ. This is driven by
the design of the KTAS network, where most loads are
concentrated at nodes 5 and 6, giving the attacker sufficient
leverage over system frequency to trigger a network failure.
Thus, network failures are primarily driven by LAAs at these
nodes, mostly independent of the LAA magnitude at nodes
1−4; (ii) as network vulnerability ν increases, the distribution
of LAA magnitudes at node 6 shifts rightwards, implying
larger magnitude LAAs at node 6 become more prevalent
in the sample; however (iii) we note that large magnitude
LAAs are rare under their assumed Log-normal distribution.
Thus, Fig. 2 reveals network failures, driven by large LAA
magnitudes at node 6, are indeed low probability events.
Summarily, these results suggest nodes 5 and 6 are the critical
nodes in the KTAS network from which the attacker can
launch the most impactful attacks, regardless of the degree
of network vulnerability.

Figure 3 illustrates the average number of activations of
each ER per sample for different levels of network vulnera-
bility, defined as

ϵf =
Total ERf activations in the sample

Sample size
. (9)

Fig. 3: Average number of each ER per sample ϵi, i = 1, . . . , 4
(defined in (9)) in the KTAS network for different degrees of
network vulnerability to LAAs.

Herein, the indices f = 1, . . . , 4 correspond to RoCoF-
induced generation shedding (RIGS), over-frequency generator
shedding (OFGS), UFLS activations, and inter-connector line
trips respectively. Note that ϵf ∈ [0, 1] for f = 1, 2, 4. How-
ever, ϵ3 ∈ [0, 4], as each node can experience a maximum of 4
UFLS events (f = 3) during the simulation (see Section II-C).

For secure networks, i.e, when ν ≤ 45%, the average
number of RIGS is comparatively small, as low-magnitude
LAAs are unable to induce sufficiently large RoCoF deviations
to trigger generator disconnection. Additionally, we observe
all generator nodes experience OFGS and UFLS events at
similar rates of ϵ2 ≈ 0.1 and ϵ3 ≈ 1 respectively. Together,
these imply for a secure KTAS network, each class of ER is
similarly likely at any node in the network. Thus, to counter
the potential threat of LAAs in a secure KTAS network will
require a system-wide solution, e.g. - a coordinated automatic
generation control (AGC) system.

As ν increases, it grants the attacker greater authority
over network loads and the ability to significantly disrupt the
active power balance of the network. This is associated with
increased rates of RIGS, UFLS and line disconnections, as
these are triggered by large power deviations. However, when
ν > 65%, the average number of OFGS responses declines, as
large changes in loads result in RIGS dominating generation
shedding events. In contrast to secure networks, where nodes
are similarly vulnerable to UFLS events under LAAs, Figure 3
reveals a differential in the nodal risk of an UFLS event
in moderately and highly vulnerable networks. For example,
when ν > 65%, nodes 3, 4 and 6 experience approximately
twice as many UFLS events as nodes 1, 2 and 5. This can
be best understood through a global analysis of the KTAS
network, which is discussed next.

Global Analysis - Spatial Distribution of LAAs: Recall
that the KTAS network is comprised of two areas- Area 1
(nodes 1, 2 and 5) with excess generation, and Area 2 (nodes



Fig. 4: Probability of network failure for increase/decrease of
system load in each area for the KTAS network.

3, 4 and 6) with excess demand. With sufficient authority over
network loads, an attacker can exploit the global pre-LAA
power imbalances of each area to trigger an ER by decreasing
loads in Area 1 to exacerbate the excess generation, and
increasing loads in Area 2 to exacerbate the generation deficit.
Thus, as ν increases, we observe fewer UFLS responses in
Area 1, more UFLS responses in Area 2, and a substantial
increase in power transferred across the inter-connector, in-
creasing the rates of line disconnections (Figure 3).

The global susceptibility of the KTAS network to LAAs
is also illustrated by Figure 4, which plots the probability
of the relative changes in loads in each Area of the KTAS
network, conditioned on the occurrence of a network failure.
First, we note the KTAS network is secure against global
reduction of loads in both Areas, as it is likely governors are
able to adjust generator output to handle the loss of loads
in all vulnerability regimes. Instead, we observe that failure
events occur primarily for large increases in loads, dominated
by two scenarios: (i) when the LAA increases the demand
in both Areas- this scenario is the primary driver of failure
events when KTAS is secure, as the attacker increases loads at
both nodes 5 and 6 beyond the maximum power capabilities
of generators, triggering a failure anywhere in the network;
(ii) the attacker decreases loads in Area 1 and increases them
in Area 2- this scenario is rare when the KTAS is secure,
as the attacker generally lacks sufficient authority to exploit
the imbalances of the KTAS network. However, as ν (and
the attacker’s authority) increases, so too does the conditional
probability of scenario (ii) (see Figure 3).

V. CONCLUSIONS AND FUTURE RESEARCH

In this work, we present a framework to evaluate the
impact of LAAs on power grid operations using a rare-
event sampling approach. The proposed approach provides a
comprehensive framework to examine the impact of LAAs

under different potential spatial distributions of LAAs across
the power network. Our results identify the nodes from which
the attacker can launch the most impactful LAA and further
illustrate how the attacker can exploit the inter-area power
imbalances in the network to trigger ER events. Future work
includes (i) an extension of the analysis to dynamic LAAs
against power grids [7], (ii) considering correlations in LAA
injections, (iii) showing scalability of the proposed method to
large-dimensional systems.
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