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Communicated by D. Gerard-Varet

Abstract. We study the L∞ stability of the Navier-Stokes equations in the half-plane with a viscosity-dependent Navier
friction boundary condition around shear profiles which are linearly unstable for the Euler equation. The dependence from
the viscosity is given in the Navier boundary condition as ∂yu = ν−γu for some γ ∈ R, where u is the tangential velocity.
With the no-slip boundary condition, which corresponds to the limit γ → +∞, a celebrated result from E. Grenier (Comm.

Pure Appl. Math. 53:1067–1091, 2000) provides an instability of order ν1/4. M. Paddick (Differ. Integral Equ. 27:893–930,
2014) proved the same result in the case γ = 1/2, furthermore improving the instability to order one. In this paper, we
extend these two results to all γ ∈ R, obtaining an instability of order νϑ, where in particular ϑ = 0 for γ ≤ 1/2 and ϑ = 1/4
for γ ≥ 3/4. When γ ≥ 1/2, the result denies the validity of the Prandtl boundary layer expansion around the chosen shear
profile.
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1. Introduction

A central problem in mathematical fluid dynamics is the approximation of inviscid flows with low viscosity
flows, especially when boundaries are present [6,13]. When a boundary is present, the theory is especially
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suspectible to the type of boundary condition prescribed for the viscous flow. In this paper, we will focus
on a Navier boundary condition, which allows slip at the boundary with a slip length depending on a
power of the viscosity.

Assume that our spatial domain is two-dimensional with a flat boundary, e.g. R × R+ or T × R+,
and let ν > 0 be the viscosity. A viscous flow uν = (uν(t, x, y), vν(t, x, y)) is assumed to satisfy the
Navier-Stokes equations with the no-slip boundary condition

⎧
⎪⎨

⎪⎩

∂tuν + uν · ∇uν + ∇pν = νΔuν ;
∇ · uν = 0;
uν = 0 at y = 0;

(1.1)

whereas an inviscid flow uE = (uE(t, x, y), vE(t, x, y)) satisfies the Euler equations
⎧
⎪⎨

⎪⎩

∂tuE + uE · ∇uE + ∇pE = 0;
∇ · uE = 0;
vE = 0 at y = 0.

(1.2)

The main obstacle to the convergence of uν to uE as ν → 0 is the difference between the boundary
conditions 1.13 and 1.23.

To overcome this issue, in 1904 Prandtl [9] proposed the existence of a boundary layer with a
size of order

√
ν where the fluid undergoes a transition from non-viscous flow to match the bound-

ary condition (1.1)3. In the boundary layer, some new equations for the flow may be derived, called the
Prandtl equations. These are formally obtained by applying the change of variables y �→ ỹ := y/

√
ν,

(uν , vν) �→ (uP , vP ) := (uν , vν/
√

ν) to (1.1):
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu
P + uP ∂xuP + vP ∂ỹuP + ∂xpP = ∂ỹỹuP ;

∂xuP + ∂ỹvP = 0;
limỹ→+∞ uP = uE |y=0;
uP = vP = 0; at ỹ = 0.

(1.3)

Moreover, Prandtl’s model predicts that, given

ub = (ub,
√

νvb) := (uP − uE |y=0,
√

νvP )

then the following boundary layer expansion holds:

uν(t, x, y) ∼ uE(t, x, y) + ub

(

t, x,
y√
ν

)

as ν → 0. (1.4)

A long-standing problem is whether the above formula is mathematically valid. There are different ques-
tions which may be formulated in this context. For instance, the problem of the well-posedness of the
Prandtl equations (1.3) is still open depending on the functional setting - see for instance the review [6],
Section 3.4. In this paper, we will focus on the instability in time of (1.4).

Grenier [2] showed the nonlinear instability of the above expansion around a certain class of shear
profiles. Namely, fix a profile Us ∈ C∞(R+), such that limy→+∞ Us(y) = U∞ ∈ R. Suppose that Us is
linearly unstable for the Euler equations, meaning there exists an exponentially growing solution to the
linearized Euler equations around Us (see Definition 1). Now let us(t, ỹ) be the unique evolution of Us

given by the heat equation
⎧
⎪⎨

⎪⎩

∂tus(t, ỹ) = ∂ỹỹus(t, ỹ);
us(t, 0) = 0;
us(0, ỹ) = Us(ỹ);

(1.5)

which upon substituting ỹ = y/
√

ν is just the Navier-Stokes equations (1.1) in the special case of a shear
flow uν(t, x, y) = (us(t, y), 0).

The result proven in [2] is the following:
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Theorem 1.1. Given a smooth shear profile Us, linearly unstable for the Euler equation, and an arbitrary
integer N > 0, there exists a family of solutions {uν(t, x, y)}ν>0 to the Navier-Stokes equations and
constants C, δ > 0 such that

‖us(0, y/
√

ν) − uν(0, x, y)‖L∞ ≤ CνN ,

but

‖us(T ν , y/
√

ν) − uν(T ν , x, y)‖L∞ ≥ δν1/4 (1.6)

after a time T ν ∼ √
ν log ν ↘ 0 as ν → 0.

This tells us that the boundary layer expansion (1.4) is unstable, as the Navier-Stokes solutions us

and uν have the same boundary layer expansion at time t = 0, but they differ by an order of ν1/4 at time
T ν .

The above result assumes that the viscous flow satisfies the no-slip boundary condition (1.1)3. It
is therefore natural to ask if the instability remains when we replace the no-slip condition (1.1)3 with
boundary conditions which produce weaker boundary layers, such as the Navier boundary condition, which
was originally proposed by Navier in 1823 [7]. This boundary condition, like the no-slip condition, forbids
penetration of the fluid through the boundary, but allows a slip which is proportional to the normal
derivative of the tangential velocity. In this paper, we will focus on the following viscosity-dependent
condition:

{
∂yu(t, x, 0) = ν−γu(t, x, 0);
v(t, x, 0) = 0.

(1.7)

When γ = 0, so that νγ - known as the slip length - is independent of the viscosity, Iftimie and Sueur [4]
proved the validity of the following boundary layer expansion with an amplitude of order

√
ν, which is

the factor multiplying ub:

uν(t, x, y) = uE(t, x, y) +
√

νub

(

t, x,
y√
ν

)

+ O(ν).

However if γ > 0, the boundary layers become significant again. Notice that in the limit γ → +∞ we
recover the no-slip case. The corresponding appropriate boundary layer expansion, as investigated in [12],
is the following for γ ≥ 0:

uν(t, x, y) ∼ uE(t, x, y) + νmax{1/2−γ;0}ub

(

t, x,
y√
ν

)

, (1.8)

which corresponds to the expansion found in [4] when γ = 0. The factor νmax{1/2−γ;0} represents the
amplitude of the boundary layer. Hence it makes sense to identify γ = 1/2 as the critical exponent, where
we transition from order one amplitude (γ ≥ 1/2) to a small amplitude which vanishes with the viscosity
(γ < 1/2).

In [8], Paddick considers the case γ = 1/2 and proves an instability result akin to Theorem 1.1.
Remarkably, the result in [8] is stronger, as a full instability of order one is obtained. This is in spite of
the fact that similar techniques are used but the boundary layer is weaker, so one would expect better
stability.

The main disadvantage of the exponents γ = 1/2 is that the evolution of the shear profile Us will
have to explicitly depend on the viscosity. Indeed, following (1.5) we must define a family of flows uν

s

satisfying
⎧
⎪⎨

⎪⎩

∂tu
ν
s (t, ỹ) = ∂ỹỹuν

s (t, ỹ);
∂ỹuν

s (t, 0) = ν1/2−γuν
s (t, 0);

uν
s (0, ỹ) = Us(ỹ).

(1.9)

Because of the ν1/2−γ factor appearing in the boundary condition (1.9)2, it would be impossible for a
single flow to satisfy (1.9) for all ν if γ = 1/2.
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In the main result of this paper, Theorem 4.1, we extend Paddick’s and Grenier’s instability results
to all exponents γ ∈ R, while the invalidity of the boundary layer expansion (1.8) can be generalized to
all γ ≥ 1/2. Indeed, the initial condition Us(ỹ) for uν

s is a function of y/
√

ν, so the shear flow uν
s can

only satisfy the boundary layer expansion (1.8) at time t = 0 if the amplitude of the boundary layer is of
order one, i.e. if γ ≥ 1/2. In general, we obtain an L∞ instability result for the Navier-Stokes equations
which is of order νϑ, where ϑ is a continuous and increasing function of γ given by

ϑ :=

⎧
⎪⎨

⎪⎩

1
4 γ ≥ 3

4 ;
γ − 1

2
1
2 < γ < 3

4 ;
0 γ ≤ 1

2 .

This interpolates Grenier’s original result (limit for γ → +∞) and Paddick’s for γ = 1/2. From γ = 1/2
the order of the instability decays until γ = 3/4, where it stabilizes at ν1/4, as in Grenier’s case. The
reason why this occurs is simply a consequence of the boundary layer expansion (1.8), and the use in the
proof of an isotropic change of variables mapping γ to 2γ − 3/2.

For γ = 1/2, as discussed above, we have to replace the single shear flow us in the statement of
Theorem 1.1 with a family of viscosity-dependent shear flows uν

s (t, y/
√

ν), defined as the solution of
(1.9). We refer to Sect. 4.1 for the details and the precise statement.

The main consequence of this choice is that Grenier’s method must be complemented with some
uniform-in-ν estimates on uν

s (Lemmas 4.2 and 4.3). Because we need these uniform bounds to hold in
Sobolev spaces of arbitrarily high orders, the shear flows uν

s must satisfy the compatibility conditions
of all orders at (t, ỹ) = (0, 0). This is only possible if all the derivatives of Us vanish at ỹ = 0, which
will have to be added as an assumption. This is a heavy limitation, as it eliminates the possibility of
using analytic shear flows. However, this assumption still includes shear flows that are smooth, or in an
arbitrary non-analytic Gevrey class. In Sect. 3, we apply a result from [5] to show that there exist flows
satisfying this assumption which are linearly unstable for the Euler equation.

We remark that there are also positive results for the validity of the formula (1.8). In [4], the validity
is proven when γ = 0; in the more recent paper [11], the authors establish it for γ ∈ (0, 1/2] and initial
data in the Gevrey class (2γ)−1, which for γ = 1/2 is just the analytic class. However, our result proves
the invalidity of the boundary layer expansions only when γ ≥ 1/2, and is therefore not in contradiction
with these results.

We also point out that more recently E. Grenier and T. Nguyen proved [3] in a stronger result of order
one instability in L∞ for the no-slip condition. In light of this, it is likely that the order one instability
can be extended for the full range γ ≥ 1/2, using similar techniques. This problem is currently under
scrutiny by the authors of this paper.

Organization of the paper. In Sect. 2, we gather some preliminary results on the heat equation with
a mixed boundary condition, which are required in various moments of the proof of our main result. In
Sect. 3, we prove that shear profiles satisfying all the assumptions of our main result do exist. Finally, in
Sect. 4, we state and prove our main result.

2. Some Bounds for the Heat Equation with a Mixed Boundary Condition

In the proof of our main result Theorem 4.1, we will construct an instability using an asymptotic expansion
in the viscosity ν where some of the terms satisfy some (possibly inhomogeneous) heat equations with
boundary conditions involving the solution and its first derivative. Specifically, let u0 ∈ C∞(R+)∩L∞(R+)
and a ≥ 0 (which will later represent a real power of the viscosity). We consider the unique smooth and
bounded solution of the problem

⎧
⎪⎨

⎪⎩

∂tu(t, y) = ∂yyu(t, y) (t, y) ∈ R+ × R+;
∂yu(t, 0) = au(t, 0) y = 0;
u(0, y) = u0(y) t = 0.

(2.1)
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In this section, we will state two types of bounds for the solutions of these problems.
1. Bounds concerning the behavior as the parameter in the boundary condition approaches the limiting

cases a → +∞ and a → 0+ (Sect. 2.1);
2. Bounds establishing a controlled exponential growth in time with given inhomogeneous data satis-

fying the same bounds (Sect. 2.2).
We will leave most of the proofs and details to the Appendix A.

Recall the heat kernel on the real line

K(t, y) :=
1√
4πt

e− y2
4t , t > 0, y ∈ R. (2.2)

Then the unique solution u = ua(t, y) to (2.1) is given by

ua(t, y) = K(t, y) � ua
0(y), (2.3)

where the convolution is on R and ua
0 is the continuous extension of u0 to R such that ∂yua

0 − aua
0 is an

odd function. This extension can be explicitly computed (see the Appendix A.1).
Notice that if a = 0, this is simply the even extension of u0, which reduces (2.1) to a Neumann

problem. Conversely if a → +∞, the contribution of the first derivative vanishes. Therefore, we define
u∞

0 to be the odd extension of u0, and correspondingly u∞ := K � u∞
0 , which is the solution to the

Dirichlet problem.

2.1. Asymptotic Behavior in the Limits a → +∞ and a → 0

In this section, we want to establish convergence results of the type ua → u∞ when a → +∞ (Proposi-
tion 2.1) and ua → u0 as a → 0+ (Proposition 2.2). The convergence holds in L2 as well as L∞ based
norms with all the derivatives, but only under certain assumptions on the initial condition u0.

For the limit a → ∞, we will work under the following assumption:
{

∂ku0(0) = 0,
∂k+1u0 ∈ L1(R+),

∀k ≥ 0. (2.4)

The first condition is equivalent to the requirement that the extension ua
0 is smooth at the origin (see the

Appendix). This is crucial as it allows us to consider the derivatives of ua
0 in Sobolev spaces of all orders.

The second condition, together with u0 ∈ C∞
b (R+), implies that u0 ∈ W∞,p for any p ∈ [1,∞], in

particular u0 ∈ Hs for all s ≥ 0. Furthermore, since u0 ∈ W k+1,1(R+) implies limy→+∞ ∂ku0(y) = 0, we
deduce that

lim
y→+∞ u0(y) = c ∈ R, lim

y→+∞ ∂ku0(y) = 0 ∀k ≥ 1.

Unfortunately, these assumptions also imply that we must exclude non-trivial profiles u0 which are
analytic on R+. However, we can include profiles in the Gevrey class Gρ for all ρ > 1, such as u0(y) =

e−y−(ρ−1)−1

.
Using the explicit expression of the k-th order derivatives of ua

0 and u∞
0 (see the Appendix A.1) we

obtain the following.

Proposition 2.1. Assuming (2.4), for all k ∈ Z≥0 and p ∈ [1,∞] we have

‖ua − u∞‖W k,p = O(a−1), as a → +∞. (2.5)

Consider now the limit a → 0+. We must replace (2.4) with the new assumption:

∂ku0(0) = 0; ∂ku0 ∈ L1(R+) ∀k ≥ 0. (2.6)

In other words, we additionally require that u0 is integrable over R+. In particular, limy→+∞ u0(y) = 0.
This is necessary to obtain uniform convergence of ua

0 to u0
0. In spite of this further condition, the order

of convergence for L2-based norms is only O(a1/2), but this will suffice for our purposes.
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Proposition 2.2. Assume (2.6). Then for all k ≥ 0,

‖ua − u0‖Hk = O(a1/2),

‖ua − u0‖W k,∞ = O(a),

as a → 0+.

Proof. See the Appendix A.1. �

Example 1. The order of convergence of a1/2 from Proposition 2.2 is optimal, at least for k = 0. Indeed,
suppose u0(y) = e−y, which is in L1(R+) with all its derivatives. Then

ua
0(y) =

{
e−y y ≥ 0;
ey − 2a

a−1 (ey − eay) y < 0.

Then as a → 0+,
(∫ ∞

−∞
|ua

0(y) − u0
0(y)|2 dy

)1/2

=
2a

|a − 1|
( 1

2 (a − 1)2

a(a + 1)

)1/2

=
√

2a.

To be precise, we need to multiply u0(y) = e−y by a smooth cut-off function χ with χ(k)(0) = 0 for all
k ≥ 0 and χ(y) = 1 for all y ≥ 1. Then, assumption (2.6) is fulfilled and the same estimates hold.

2.2. Bounds in Time for the Inhomogeneous Problem

Let a, b ≥ 0, (a, b) = (0, 0). Let u0, f ∈ Hk(R+) and r ∈ Hk(R+ ×R+) for all k ∈ Z≥0. In this subsection,
we will consider the following inhomogeneous problem:

⎧
⎪⎨

⎪⎩

∂tu(t, y) = ∂yyu(t, y) + r(t, y) t ≥ 0, y ≥ 0
au(t, 0) − b∂yu(t, 0) = f(t) t ≥ 0
u(0, y) = u0(y) y ≥ 0.

(2.7)

As long as the data r, f satisfy an exponential-type bound in time, then the unique smooth and
bounded solution u will satisfy the same bound, without any additional growth in time. Both an L2-based
estimate (Proposition 2.3) and a pointwise estimate with exponential decay at infinity (Proposition 2.4)
will be needed in the Proof of Theorem 4.1. Similar results were implicitly used in Grenier’s and Paddick’s
works, but they were never stated explicitly.

Hereafter, we will denote with Ck an arbitrary positive constant depending on k, which may vary from
line to line. These constants are always independent from t and y.

Proposition 2.3 (Hk estimates). Suppose there exist α > 0, β ≥ 0 such that

‖∂k
y r(t)‖L2(R+) + |f (k)(t)| ≤ Ck

eαt

(1 + t)β
∀t ≥ 0, k ∈ Z≥0.

Let u(t, y) be the classical solution of (2.7). Then, for all k ∈ Z≥0, we have

‖u(t)‖Hk(R+) ≤ CCk
eαt

(1 + t)β
∀t ≥ 0, (2.8)

where C is independent from r, f or u0, and also from a and b as long as either a or b is bounded away
from 0.

Proof. See the Appendix A.2. �
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Proposition 2.4 (Pointwise estimates). Suppose there exist α > 0, β ≥ 0, and a constant λ > 0 such that
⎧
⎪⎨

⎪⎩

|f (k)(t)| ≤ Ck
eαt

(1+t)β ,

|∂k
y r(t, y)| ≤ Ck

eαt

(1+t)β e−λy,

|∂k
y u0(y)| ≤ Cke−λy,

∀t ≥ 0, k ∈ Z≥0.

Let u(t, y) be unique smooth and bounded solution of (2.7). Then there exists a constant μ > 0 independent
from t such that

|∂k
y u(t, y)| ≤ CCk

eαt

(1 + t)β
e−μy ∀t ≥ 0, y ≥ 0, k ∈ Z≥0,

where C is independent from f, r or u0, and also from a and b as long as either a or b is bounded away
from 0.

Proof. By Proposition 2.3, using Sobolev embeddings we know that

|u(t, 0)| ≤ CCk
eαt

(1 + t)β
∀t ≥ 0.

We can now see u(t, y) as the solution of (2.7) in the special case of the Dirichlet problem (a, b) = (1, 0),
with a boundary condition f(t) = u(t, 0) satisfying the above estimate. Then u is given by u = u1+u2+u3,
where

u1(t, y) = −2∂yK(t, y) � f(t) = −2
∫ t

0

∂yK(s, y)u(t − s, 0) ds,

u2(t, y) = K(t, y) � u∞
0 (y),

u3(t, y) = K(t, y) �t,y r̃(t, y) =
∫ t

0

∫

R

K(t − s, y − x)r̃(s, x) dxds,

and u∞
0 and r̃ are the odd extensions in the y variable of u0 and r respectively. We then have

(
eαt

(1 + t)β

)−1

|∂k
y u1(t, y)| ≤

∫ t

0

2|∂k+1
y K(s, y)| e−αs

(1 − s/(1 + t))β
ds

≤ Cα,β

∫ ∞

0

2|∂k+1
y K(s, y)|e− α

2 s ds

= Cα,β

∫ ∞

0

p(s, y)
s(3+2k)/2

e− y2
8s e− 1

8s (y2+4αs2) ds

≤ Cα,βq(y)e−√
αy/2 ≤ Ce−√

αy/3.

where p and q are polynomials, and in the second-to-last step we simply used the inequality −A2 −B2 ≤
−2AB. Consider now u2 and u3. We have

∂k
y u2(t, y) = ∂k

y K(t, y) � ua
0(y) ≤ eαt

(1 + t)β

∫

R

∂k
xK(t, x)e−λ|y−x| dx ≤ C

eαt

(1 + t)β
e−λy,

and finally

∂k
y u3(t, y) := ∂k

xK(t, y) �t,y r̃(t, y) ≤
∫

R

∫ t

0

∂k
xK(t − s, x)

eαs

(1 + s)β
ds e−λ|y−x| dx

≤ C ′
α,β

eαt

(1 + t)β

∫

R

e−μxe−λ|y−x| dx

≤ C ′
α,βe−μ′y eαt

(1 + t)β
.

where μ′ < min {μ;λ} .
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Since all the partial solutions u1, u2, u3 satisfy the required estimate, then the full solutions u =
u1 + u2 + u3 also does. �

3. A Class of Linearly Unstable Shear Flows

The goal of this section is to prove that there exists an ample class of shear flows Us satisfying either
assumption (2.4) or (2.6) which are linearly unstable for the Euler equation in the sense of Definition 1.
We rely on a sufficient condition for linear instability is given by Z. Lin in [5]. We state his main result
in the half-line case. First of all, for a shear flow Us ∈ C2(R+) admitting an inflexion point y0, define the
inflexion value U0 := Us(y0) and the function

K(y) :=
−U ′′

s (y)
Us(y) − U0

.

We say that Us is in class K+ if K is a bounded and strictly positive function on (0,+∞). We stress
that it is not necessary that K(0) > 0. This is important because a profile satisfying (2.4) or (2.6) will
necessarily have K(0) = 0.

It is not difficult to construct profiles in the class K+. In essence, all that is required is that if the
value of Us increases after an inflexion point, then the second derivative U ′′

s must be negative until the
next inflexion point is reached if it exists, and vice versa. A simple example is the function sin y or cos y.

Notice To overcome this that if Us ∈ K+ then, while it can admit multiple inflexion points, the
inflexion value U0 must be unique. Indeed by definition the sign of U ′′

s must change at any inflexion point
ȳ, hence the sign of Us − U0 must also change at ȳ if we want K > 0.

Secondly, if ȳ is an inflexion point, then, assuming that Us ∈ C3(R+) we have

K(ȳ) = − lim
y→ȳ

U ′′′
s (y)

U ′
s(y)

> 0,

which implies that U ′
s(ȳ) = 0. If the sign of this derivative is positive, then Us(y) − U0 > 0 in a right

neigbhorhood of ȳ, and therefore U ′′
s < 0. If, instead, U ′

s(ȳ) < 0, then Us(y) − U0 < 0 and U ′′
s > 0 in a

right neighborhood of ȳ. These signs cannot change until the next inflection point (if it exists at all).
The following result is a restatement of Theorem 1.2 from [5] for shear profiles defined on the half-line.

It is similar to Theorem 1.5(i) in [5], which covers the case of the full line. This version of the statement
can be retrieved in [8], Theorem 4.2, however here we have explicitly removed the requirement that
K(0) > 0. The proof presented below focuses on clarifying why this requirement can be removed.

Theorem 3.1. Let Us ∈ C2(R+), U(y) → U∞ ∈ R as y → +∞, and assume U(y) takes the value U∞ at
most a finite amount of times. Suppose that Us ∈ K+ and limy→+∞ K(y) = 0. If the operator −∂yy−K on
H1

0 (R+) ∩ H2(R+) has a strictly negative eigenvalue, then Us is linearly unstable for the Euler equation.

Proof. The proof is the same as Theorem 1.5(i) in [5], except that for each n ∈ Z≥0 we consider the
interval In = [n−1, n], on which K is strictly positive, taking n large enough so that In contains an
inflexion point of Us. �

The next result is a generalization of the argument used in [8] to prove that the profiles

uδ(y) = arctan(y − δ) + c

for δ, c ∈ R satisfy the assumptions of Theorem 3.1. Of course, the above family of profiles in unsuitable
to us, as they do not satisfy (2.4) or (2.6).

Proposition 3.2. Suppose that Us ∈ K+ and Us satisfies assumption (2.4) or (2.6). Let U∞ := limy→+∞ Us

and suppose that Us takes the value U∞ at most a finite amount of times. Then Us satisfies all the
assumptions of Theorem 3.1, and is therefore linearly unstable for the Euler equation.
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Proof. By (2.4) or (2.6), we know that all the derivatives of Us are integrable over R+ and vanish at
infinity.

The operator −∂yy − K2 having a strictly negative eigenvalue is equivalent to the quadratic form

Q(φ) :=
∫

R+

(|φ′|2 − K|φ|2) , φ ∈ H1
0 (R+),

taking a negative value for some function φ. We will construct such a function from the profile Us.
1. First of all, define for all η > 0

Us,η(y) := Us(y + y0 − η) − U0, y ∈ [η − y0,+∞).

This implies that Us,η(y) has an inflexion point at y = η, and the inflexion value is Us,η(η) = 0.
2. Next, define the functions

wn
η :=

{
0 y ≤ η

Us,ηχ(y/n) y ≥ η,

where χ is a smooth cut-off function supported in [0, 2], with χ = 1 in [0, 1]. Then wn
η ∈ H1

0 (R+).
Since K ∈ L∞(R+), and by (2.4) or (2.6) all the derivatives of Us are integrable over R+ and vanish
at infinity, we have

lim
n→+∞ Q(wn

η ) =
∫ +∞

η

(|U ′
s,η|2 − K|Us,η|2) =: Q(η).

Let us show that Q(y0) = 0.

Q(y0) =
∫ ∞

y0

(

|U ′
s(y)|2 +

U ′′
s (y)

Us − U0
|Us(y) − U0|2

)

dy

=
∫ ∞

y0

(|U ′
s(y)|2 + U ′′

s (y)(Us(y) − U0)
)

dy

= −U0

∫ ∞

y0

U ′′
s + [UsU

′
s]

∞
y0

= (−U0 + U∞) lim
y→+∞ U ′

s(y) = 0.

If we compute the derivative of Q as a real variable function, we obtain that for any η > 0,

Q′(η) =
∫ ∞

η

(−2U ′′
s,ηUs,η + 2KU ′

s,ηUs,η

) − |U ′
s,η(η)|2.

In particular,

Q′(y0) = −4
∫ ∞

y0

U ′
sU

′′
s − |U ′

s(y0)|2 = −2[(U ′
s)

2]∞y0
− (U ′

s(y0))2 = (U ′
s(y0))2 > 0.

3. We know that Q(y0) = 0 and Q′(y0) > 0. Therefore, for some η0 ∈ (0, y0) we must have Q(η0) < 0.
Hence, for some n ∈ Z≥0 we have Q(wn

η0
) < 0. This concludes the proof.

�

Example 2. An explicit example of a flow satisfying the assumptions of Proposition 3.2 is given by

Us(y) = e−y
− 1

ρ−1
, ρ > 1.

Indeed, its first three derivatives are

U ′
s(y) =

1
ρ − 1

y− ρ
ρ−1 e−y

− 1
ρ−1

,

U ′′
s (y) =

1 − ρy
1

ρ−1

(ρ − 1)2y
2ρ

ρ−1

e−y
− 1

ρ−1
,
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Fig. 1. A linearly unstable shear profile satisfying assumption (2.6)

U ′′′
s (y) =

1 + 2ρ2y
2

ρ−1 − ρy
1

ρ−1

(
3 + y

1
ρ−1

)

(ρ − 1)3y
3ρ

ρ−1

e−y
− 1

ρ−1
,

so that U ′
s > 0, there is a unique inflexion point at y = y0 := ρ1−ρ, with U ′′

s > 0 for y ∈ (0, y0) and

U ′′
s < 0 for y > y0, and U ′′′

s (y0) = − ρ3ρ−1

eρ(ρ − 1)3
< 0. This implies that Us ∈ K+. Indeed K(y) > 0 for

y = 0, y0. Moreover, by De L’Hopital’s rule we have

lim
y→y0

K(y) = − lim
y→y0

U
(3)
s (y)
U ′

s(y)
= −U

(3)
s (y0)
U ′

s(y0)
> 0.

By (4.3), we have limy→+∞ Us(y) = U∞ ∈ R, and limy→+∞ K(y) = 0. Since U ′
s > 0, it never actually

takes the value U∞. One can argue by induction that all the derivatives are bounded, integrable and
vanish at y = 0. Thus, this is a linearly unstable shear flow satisfying assumption (2.4).

Remark 1. The above flow belongs to the Gevrey class Gρ(R+).

The flow from the previous example does not satisfy assumption (2.6), as U∞ = 0. To construct a
linearly unstable flow with Us(0) = U∞ = 0, we need at least two inflexion points y1, y2, with Us(y1) =
Us(y2) = U0. One can then easily construct a smooth profile Us with Us > 0 on (0,∞) satisfying all the
requirements by requiring the following:

1. U ′
s > 0, U ′′

s > 0 on (0, y1);
2. U ′′

s < 0 on (y1, y2), and U ′
s changes its sign somewhere in (y1, y2),

3. U ′
s < 0, U ′′

s > 0 on (y2,+∞). (Fig. 1)

4. Grenier’s Instability with a Viscosity-dependent Navier Boundary Condition

Let γ ∈ R. Let Us : R+ → R be a smooth shear flow, which we will later require to be linearly unstable
for the Euler equation in the sense of Definition 1 (see Sect. 4.3). Consider the following Navier-Stokes
equations with the Navier boundary condition:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tuν + uν · ∇uν + ∇pν = νΔuν ;
∇ · uν = 0;
∂yuν = ν−γuν at y = 0;
vν = 0 at y = 0.

(4.1)

Let ỹ = y/
√

ν, and let uν
s = uν

s (t, ỹ) be the solution to the heat equation
⎧
⎪⎨

⎪⎩

∂tu
ν
s (t, ỹ) = ∂ỹỹuν

s (t, ỹ) (t, ỹ) ∈ R+ × R+;
∂Y uν

s (t, 0) = ν1/2−γuν
s (t, 0) t ∈ R+;

uν
s (0, ỹ) = Us(ỹ) ỹ ∈ R+.

(4.2)

We will also use uν
s to denote the shear flow (uν

s , 0) which is therefore a solution to (4.1) in the original
variables (t, x, y).
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If we take the limit as ν → 0 in (4.2), we expect convergence of uν
s to the solution of the Dirichlet

or Neumann problem for the heat equation, respectively if γ > 1/2 or γ < 1/2. In order to establish
our main result, we will need the convergence results Proposition 2.1 and Proposition 2.2 respectively.
For those to hold, we must require the following assumption on the profile Us, depending on the sign of
γ − 1/2:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

limy→+∞ Us(y) = U∞ ∈ R;
U

(k)
s (0) = 0 ∀k ∈ Z≥0;

U
(k)
s ∈ L1(R+) ∀k ≥ 1 if γ > 1/2;

U
(k)
s ∈ L1(R+) ∀k ≥ 0 if γ < 1/2.

(4.3)

Notice that under this assumption, since all the derivatives of Us vanish at the origin, Us satisfies the
compatibility conditions of (4.2) for all orders, and for all ν > 0. Thus uν

s is smooth up to the boundary.
In Sect. 3 we confirmed the existence of profiles satisfying (4.3) which are linearly unstable for the

Euler equation. These profiles cannot be analytic, but they can be found in the Gevrey classes Gρ for
any ρ > 1 (see Example 2). When ρ ≤ 2, for these flows the Prandtl equation is well-posed (see [1]).
Hence, by the next result, instability of the boundary layer expansion for the Navier boundary condition
can occur even when the Prandtl equation is well-posed, in line with the no-slip case.

Finally, we remark that as the case γ = 1/2 has already been treated in [8], throughout this paper we
will focus on the case γ = 1/2.

We are now ready to state the main result of this paper.

Theorem 4.1. For ν > 0, let uν
s = (uν

s , 0) ∈ C∞(R+) be a family of shear flows defined by (4.2). Then
for any N ∈ Z≥1 there exists a family of solutions uν = (uν , vν) to (4.1), constants C, δ > 0 and times
T̃ ν ↘ 0 such that for all ν > 0,

‖uν(0, x, y) − uν
s (0, y/

√
ν)‖L∞ ≤ CνN (4.4)

‖uν(T̃ ν , x, y) − uν
s (T̃ ν , y/

√
ν)‖L∞ ≥ δνϑ, (4.5)

where ϑ is a continuous and increasing function of γ given by

ϑ :=

⎧
⎪⎨

⎪⎩

1
4 γ ≥ 3

4 ;
γ − 1

2
1
2 < γ < 3

4 ;
0 γ ≤ 1

2 .

(4.6)

Moreover, for all s > 2ϑ + 1, we have

‖uν(T̃ ν , x, y) − uν
s (T̃ ν , y/

√
ν)‖Ḣs → +∞. (4.7)

Notice that (t, x, y) �→ uν
s (t, y/

√
ν) satisfies (4.1). This shows that the Navier-Stokes equations (4.1)

are unstable around the family of shear flows uν
s . When γ ≥ 1/2, the above result also shows the instability

of the boundary layer expansion

uν(t, x, y) ∼ uE(t, x, y) + ub

(

t, x,
y√
ν

)

as ν → 0, (4.8)

with limỹ→+∞ ub(t, x, ỹ) = 0. Notice that such a boundary layer expansion is necessarily unique. Indeed,
suppose there was another expansion for uν given by ũE , ũb, so that

uE(t, x, y) + ub

(

t, x,
y√
ν

)

∼ ũE(t, x, y) + ũb

(

t, x,
y√
ν

)

.

Taking the limit ν → 0 pointwise, we obtain uE = ũE , and hence ub = ũb. In this case, the inequality
(4.4) tells us that at time t = 0 the boundary layer expansion (4.8) of uν and uν

s must coincide. However,
(4.5) tells us that at time T̃ ν the boundary layer expansions diverge by at least O(νϑ).
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On the other hand, when γ < 1/2, Theorem 4.1 does not yield any information about boundary layer
expansions. Indeed, the expected boundary layer expansion would be

uν(t, x, y) ∼ uE(t, x, y) + νmin{1/2−γ;1/2}ub

(

t, x,
y√
ν

)

.

However, the shear flows uν
s cannot satisfy the above formula at t = 0, as uν

s |t=0= Us(y/
√

ν), which
appears with a coefficient of order one with respect to the viscosity. This is also why our result is not in
contradiction with the result of boundary layer expansion validity by Iftimie and Sueur [4] when γ = 0
(viscosity-independent slip length), or with the result of convergence of Navier-Stokes to Euler by Paddick
[8] which establishes L2 convergence of order ν

1−γ
2 for all γ < 1.

4.1. General Strategy

As the case γ = 1/2 has already been treated in [8], we will focus our proof on the two cases γ > 1/2 and
γ < 1/2. As in [2] and [8], we start by applying the isotropic scaling

(t, x, y) �→
(

t√
ν

,
x√
ν

,
y√
ν

)

.

From now on, we will work exclusively with the new variables, which we will still denote with (t, x, y).
After the scaling, 4.1 is transformed into the following:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tuν + uν · ∇uν + ∇pν =
√

νΔuν ;
∇ · uν = 0;
∂yuν = ν1/2−γuν at y = 0;
vν = 0 at y = 0.

(4.9)

Notice that the Navier-Stokes equations are preserved, except the new viscosity is
√

ν, while in the
boundary condition, γ becomes γ − 1/2 (or 2γ − 1 with respect to

√
ν). For instance, the exponent

γ = 1/2, considered by Paddick, is trasformed into γ = 0. If γ > 1/2, then the boundary condition
converges to the no-slip condition uν = 0 as ν → 0, whereas it converges to the condition ∂yuν = 0 if
γ < 1/2. Because of this, we will consider the two ranges of γ as separate cases in Sects. 4.2 and 4.7.

The new boundary layer expansion for uν , as per 1.8, becomes

uν(t, x, y) ∼ uE(t, x, y) + νζub (t, x, Y ) , (4.10)

where Y := y/ν1/4, and ζ is a non-negative number representing the amplitude of the boundary layer,
defined as

ζ :=
1
4

− ϑ =

⎧
⎪⎨

⎪⎩

0 γ ≥ 3
4 ;

3
4 − γ 1

2 < γ < 3
4 ;

1
4 γ ≤ 1

2 ;
. (4.11)

Thus the critical exponent becomes γ = 3/4. The Euler equation is invariated, as are L∞ norms, whereas
spatial L2 norms are increased by a factor of ν−1/2. The shear flows are written as us = us (

√
νt, y) in

the new coordinates, which means that their dependence from ν is now smooth.
An approximate solution to 4.9 is a solution up to some error function Rapp, which can be made

arbitrarily small. Taking inspiration from the boundary layer expansion 4.10, we will construct our ap-
proximate solution as

(uapp, vapp)(t, x, y) = (uν
s , 0)(

√
νt, y) + (uI , vI)(t, x, y) + νζ(ub, ν1/4vb) (t, x, Y ) . (4.12)

In first order, uν
s (

√
νt)+uI(t) will therefore satisfy the Euler equations, while ub = (ub(t, x, Y ), ν1/4vb

(t, x, Y )) will satisfy a Stokes equation. The boundary conditions will be chosen appropriately so that
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uapp(t, x, y) will satisfy the Navier boundary condition up to a small error:
{

∂yuapp = ν1/2−γuapp + rapp
1 ;

vapp = rapp
2 ;

at y = 0.

A heuristic justification for the value of ζ can be given as follows. Let uE(t) := uI(t) + uν
s (

√
νt).

Plugging the ansatz 4.12 into 4.93 and multipying by νγ−1/2, we obtain

νγ−1/2∂yuE + νγ+ζ−3/4∂Y ub − νζub = uE ,

up to a small error which can be assumed to be smaller than all the other terms. As ν → 0, for the above
relation to hold, the left-hand side must be asymptotic to a constant. But this is only possible if at least
one between γ + ζ − 3/4 and ζ is zero, and the other is greater or equal to zero, which leads to ζ being
defined as in 4.11.

Fix δ > 0. We first construct an approximate solution to 4.9 uapp, a bounded subset ΩA ⊂ R
2
+ and

times T ν with T̃ ν :=
√

νT ν → 0 such that

‖ (uapp − uν
s ) |t=0 ‖L2 ≤ CνN ; (4.13)

‖uapp(T ν) − uν
s (

√
νT ν)‖L2(ΩA) ≥ 2δνϑ. (4.14)

Starting from uapp, we then construct an exact solution uν to 4.9 such that

uν(0) = uapp(0); (4.15)

‖ (uν − uapp) |t=T ν ‖L2 ≤ δνϑ; (4.16)

where ϑ is defined as in 4.6. Once we have these, then

‖uν(T ν) − uν
s (

√
νT ν)‖L∞ ≥ ‖uν(T ν) − uν

s (
√

νT ν)‖L∞(ΩA)

� ‖uapp(T ν) − uν
s (

√
νT ν)‖L2(ΩA) − ‖(uν − uapp)(T ν)‖L2

≥ 2δνϑ − δνϑ = δνϑ.

The estimates at time t = 0, 4.15 and 4.13, will hold by construction. The estimate 4.16 will be deduced
from energy estimates, as in Sects. 4.6 and 4.14 will follow from the construction of uapp. Note that 4.14
and 4.16 do not imply the instability of Theorem 4.1 in the L2 norms, as after scaling back to the original
variables, we lose a

√
ν factor.

4.2. Structure of the Approximate Solution

From now on, we will focus on the case γ > 1/2 and refer to Sect. 4.7 for the modifications needed
to treat the case γ < 1/2. We want to construct uν starting from an approximate solution uapp. This
is built according to 4.12, where uI = (uI , vI) is constructed so that uν

s + uI satisfies the Navier-
Stokes equations with an error Rapp and the slip boundary condition, and ub = (ub, ν1/4vb) corrects the
boundary condition. Ultimately, uapp(t) − uν

s (
√

νt) will satisfy the Navier-Stokes equations 4.9 with the
Navier boundary condition up to a small error rapp.

The standard procedure for the construction is to expand the terms uI and ub as power sums with
respect to the viscosity (4.19). In this subsection we will derive the equations satisfied by the terms in
these sums, and prove that all the terms appearing in these equations are bounded with respect to the
viscosity (Lemmas 4.2 and 4.3).

Let n ∈ Z, n ≥ 2 be such that
{

2−n ≤ γ − 3
4 if γ ≥ 3

4 ;
2−n ≤ γ − 1

2 if 1
2 < γ < 3

4 ;
(4.17)

Note that in each case, 2−n ≤ ϑ.
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Denote w(t) := uapp(t) − uν
s (

√
νt). Constructing uapp is then equivalent to constructing w, which

must satisfy the equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tw + (Us · ∇)w + (w · ∇)Us + (w · ∇)w + ∇p =
√

νΔw + ν2−n

Sw;
∇ · w = 0;
∂yw · τ = ν1/2−γw · τ ;
w · n = 0;

(4.18)

where

Sw(t) :=
Us − uν

s (
√

νt)
ν2−n · ∇w(t) + w(t) · ∇

(
Us − uν

s (
√

νt)
ν2−n

)

.

The reason behind this definition is that as we will prove in Lemma 4.2, Sw = O(1) as ν → 0.
We are going to implement the ansatz 4.12 for the construction of uapp. The term uI will be constructed

so that it solves 4.18, but without the Navier boundary condition 4.183. This way, 4.18 reduces to
a linearized Euler equation around Us in first order approximation. The term ub will be constructed so
that uI +νζub fully solves 4.18, correcting the boundary condition. Since ub is a function of

(
t, x, y/ν1/4

)
,

it will satisfy a Stokes equation with a Dirichlet, Neumann or mixed boundary condition, depending on
the value of γ.

Of course, the approximate solution uapp we are constructing also needs to satisfy 4.14. To achieve
this, in general, the function w will not satisfy 4.18 exactly but will leave a remainder Rapp, which needs
to be small enough so that 4.16 holds by energy estimates.

Choose M ∈ N, which may be arbitrarily high. Since we want (uapp − uν
s ) |t=0= O(νN ) as ν → 0, we

will use the following ansatz:

uI = νN
M∑

j=0

νj2−n

uI
j ; ub = νN

M∑

j=0

νj2−n

ub
j . (4.19)

This, by the definition of n, ensures that the terms of order νγ−1/2 and νγ−3/4 can be moved to a higher
order, so that they only appear in the remainder of the respective equations. Recall that ub is then
multiplied by a factor νζ where ζ = max {3/4 − γ; 0}.

The construction of w will start from uI
0, which exhibits the required estimates, but does not solve the

required equation. However, from uI
0 we can construct an approximate solution uI of 4.18 by adding lower

order terms in ν. On top of that we need a boundary term ub, which corrects the boundary condition so
that the Navier boundary condition is satisfied. Such a term is a function of

(
t, x, y/ν1/4

)
, therefore its

L2 norm scales as ∼ ν1/8. As a result, 4.14 will hold:

‖uapp(T ν) − us(
√

νT ν)‖L2(ΩA) ≥

≥ νN

⎛

⎝‖uI
0‖L2(A) −

M∑

j=1

νj2−n‖uI
j‖L2 −

M∑

j=0

νj2−n‖ub
j‖L2(y)

⎞

⎠

≥ νN

⎛

⎝‖uI
0‖L2(A) − ν2−n

M∑

j=1

ν(j−1)2−n‖uI
j‖L2 − ν1/8

M∑

j=0

νj2−n‖ub
j‖L2(Y )

⎞

⎠

� νN

2
‖uI

0‖L2(A) as ν → 0.

We can now study the equations satisfied by uI
j and ub

j . Each of the equations that follow should
be paired with an initial condition uI

j,0(x, y) or ub
j,0(x, Y ). Because we are constructing an approximate

solution, we can choose the initial condition arbitrarily, as long as it satisfies the following conditions:

• it is compatible with the boundary condition and remainder;
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• together with its derivatives, it is in L2 and decays exponentially at infinity: in other words,

|∂�
x∂k

Y uI
j,0(x, y)| ≤ |gI

j,k,�(x)|e−λjy,

|∂�
x∂k

Y ub
j,0(x, Y )| ≤ |gb

j,k,�(x)|e−λjY , (4.20)

for some λj > 0, g∗
j,k,� ∈ L2(R).

The equations satisfied by uI
j involve all the terms of order in the interval N + [j2−n, (j + 1)2−n). We

obtain the following inhomogeneous linearized Euler equations:
⎧
⎪⎨

⎪⎩

∂tuI
j + Us · ∇uI

j + uI
j · ∇Us + ∇pI

j = RI
j ;

∇ · uI
j = 0;

vI
j = −νa+1/4−2−n

vb
j−1;

(4.21)

where

RI
j = SuI

j−1 + ΔuI
j−2n−1 +

∑

j1+j2=j−2nN

uI
j1 · ∇uI

j2 . (4.22)

Notice that ζ + 1/4 − 2−n ≥ ζ ≥ 0, and 0 ≤ ϑ − 2−n < 2−n. Thus us + uI satisfies the Navier-Stokes
equations with the slip boundary condition 4.213 and an error RI consisting of all the terms of order
greater or equal to N + (M + 1)2−n. Therefore,

RI = νN
∑

j≥M+1

νj2−n

RI
j . (4.23)

Notice that the above sum is actually finite, as RI
j = 0 for j > M + 2nN .

The equations satisfied by ub
j = (ub

j , ν
1/4vb

j) involve all the terms where ub
j is of order between N +

ζ + j2−n and N + ζ + (j + 1)2−n.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tub
j − ∂Y Y ub

j + ∇x,Y pb
j = Rb

j ;
∇x,Y · ub

j = 0;
B.C.(ub

j , γ);
limY →+∞ vb

j = 0.

(4.24)

where B.C.(ub
j , γ) is the appropriate boundary condition on ub

j , depending on γ, which we will derive in
the next subsection, and

Rb
j =

[
uν

s

ν2−n · ∇ub
j−1 + ub

j−1 · ∇
(

uν
s

ν2−n

)]

− ∂xxu
j−2n−1

b + νζ
∑

k+�=j−2nN

ub
k · ∇ub

�

+
∑

j1+j2=j−2nN

(
uI

j1∂xub
j2 + uI

j1∂yub
j2+2n−2 + ub

j2 · ∇uI
j1

)
(4.25)

First notice that all the terms in the above equation appear with index strictly smaller than j. A special
remark must be given for the term containing ∂yub

j2+2n−2 . The extra 2n−2 indices arise to compensate
for the differentiation by y causing a loss of a ν1/4 factor. However, as j2 ≤ j − 2nN , we know that

j2 + 2n−2 ≤ j + 2n−2(1 − 4N) < j,

which holds since N ≥ 1.
Secondly, vb

j can be derived from ub
j using the divergence free condition 4.242:

vb
j(t, x, Y ) = −

∫ +∞

Y

∂xub
j(t, x, Z) dZ; (4.26)

using this expression, the condition at infinity 4.244 is automatically satisfied.
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Thus us + uI + νζub satisfies the Navier-Stokes equations with error Rapp = RI + νζRb, where Rb

consists of all the terms of order greater or equal to N + a + (M + 1)2−n:

Rb = νN
∑

j≥M+1

νj2−n

Rb
j . (4.27)

As with RI , the sum is actually finite.
As in Proposition 2.3, we can then estimate the value of ub

j in terms of Rb
j and the terms appearing

at the boundary. To do this, we need to prove bounds on the individual terms appearing in Rb
j . The only

difference compared to [8] and [2] is in the terms

uν
s (

√
νt, y) − Us(y)

ν2−n ,
uν

s (
√

νt, ν1/4Y )
ν2−n , (4.28)

which need to be bounded uniformly in ν. More precisely, he first term needs to be bounded in Hs for
all s ≥ 0. For the second term a pointwise bound of the derivatives for all t, Y ≥ 0 with slow growth as
Y → +∞ suffices. Indeed we are ultimately multiplying these terms by a rapidly decaying function in Y ,
therefore some growth in Y is allowed.

Lemma 4.2. Assume that Us ∈ C∞
b (R+), and Us satisfies 4.3. Then the function

ν �→ uν
s (

√
νt, y) − Us(y)

ν2−n (4.29)

is bounded in Hs(R+) for all s ≥ 0, uniformly as ν → 0.

Proof. Replacing ν = 0 in uν
s , we know that

u0
s(

√
νt, y) − Us(y)√

ν
= ∂yyu0

s(
√

ντ, y), τ = τ(t) ∈ [0, 1],

where u0
s satisfies the Dirichlet problem for the heat equation. But

‖∂yyu0
s(

√
ντ)‖Hs = ‖K(

√
ντ) � Ũ ′′

s ‖Hs ≤ ‖Ũ ′′
s ‖Hs ,

where Ũs is the odd extension of Us from R+ to R, which is independent from ν. Notice that n ≥ 2, so
2−n ≤ 1/2.

We want to show that
(uν

s − u0
s)(

√
νt, y)

νγ−1/2
is uniformly bounded in Hs, which allows us to conclude

since 2−n ≤ γ − 1/2 by definition. But we know from Proposition 2.1, with a = ν1/2−γ , that

‖uν
s (t) − u0

s(t)‖Hs ≤ Csν
γ−1/2, ∀t ≥ 0,

which immediately provides the desired result. �

Remark 2. For profiles that do not satisfy assumption 4.3, the above estimate does not hold, even for
s = 0. For instance, take γ > 1/2, Us(y) = 1 for all y ≥ 0, so that all its derivatives are integrable. Then
letting a := ν1/2−γ , we have for all a > 0,

Ũa
s (y) = χ[0,∞) + (−1 + 2aeay) χ(−∞,0].

The evolution of the profile is given by

ua
s(t, y) = Erf

(
y

2
√

t

)

+ aea(at+y)Erfc
(

a
√

t +
y

2
√

t

)

.

Then for y ≥ 0 we have

‖ua
s(

√
νt, y) − Us(y)‖L2 ∼ Cν1/2−γ‖Erfc

(
y

2
√

tν1/4

)

‖L2 ∼ Ct1/4ν5/8−γ .

Then if γ ≥ 5/8, the above quantity does not vanish as ν → 0+. Moreover, for each additional derivative,
we gain an additional factor of ν1/2−γ which prevents convergence for a wider range of γ.



JMFM Instability of Boundary Layers Page 17 of 28    91 

Lemma 4.3. Assume that Us ∈ C∞
b (R+), and Us satisfies 4.3. Then

|u
ν
s (

√
νt, ν1/4Y )
ν2−n | ≤ C1Y + C2 ∀Y ≥ 0, (4.30)

|∂
k
Y uν

s (
√

νt, ν1/4Y )
ν1/4

| ≤ C3, ∀Y ≥ 0, k ≥ 1, (4.31)

where C1, C2, C3 > 0 do not depend on t ≥ 0 or on ν → 0.

Proof. We have

|uν
s (

√
νt, ν1/4Y )| ≤ |uν

s (
√

νt, 0)| + ν1/4Y ‖∂yuν
s (

√
νt)‖L∞

≤ |u0
s(

√
νt, 0)| + ν1/4Y ‖∂yu0

s(
√

νt)‖L∞ + O(νγ−1/2)

≤ ν1/4Y ‖∂yU0
s ‖L∞ + O(νγ−1/2).

Hence, 4.30 follows. For 4.31, recall that Y = ν−1/4y and therefore

∂k
Y uν

s (
√

νt, ν1/4Y ) = νk/4∂yuν
s (

√
νt, y)

= νk/4
(
∂yu0

s(
√

νt, y) + O(νγ−1/2)
)

= νk/4‖∂yU0
s ‖L∞ .

�
4.3. The Inviscid Linear Instability

We first start by constructing a term uI
0(t, x, y) displaying the instability, but solving a linearized Euler

equation. The construction follows from our assumption that the shear profile Us is linearly unstable for
the linearized Euler equation, and proceeds exactly as in [2] or [8]. We sketch it here for the reader’s
convenience.

Let us first specify exactly what we mean by linearly unstable. Consider the linearized Euler equation
around the shear profile Us:

{
∂tu + u · ∇Us + Us · ∇u + ∇p = 0;
v = 0 y = 0.

Then there exists a (nontrivial) solution u in the form

u(t, x, y) = eik(x−ct)(φ′(y),−ikφ(y)), k ∈ R, c ∈ C,

if and only if φ is a (nontrivial) solution of the Rayleigh equation
{

(Us − c)(∂yy − k2)φ − U ′′
s φ = 0;

φ(0) = limy→+∞ φ(y) = 0.
(4.32)

Definition 1. For each fixed k ∈ R we say that c is an eigenvalue for the Rayleigh equation if there exists
a nontrivial solution to the Rayleigh equation 4.32. The shear profile Us is called linearly unstable for the
Euler equation when the associated Rayleigh equation admits an eigenvalue c with �c > 0.

For each wavenumber k ∈ R, let σ(k) be the supremum of the real parts of the associated eigenvalues
of the Rayleigh equation. By Theorem 4.1 from [2], this supremum is always attained at some eigenvalue
λk ∈ C; moreover, k �→ σ(k) is real analytic, non-negative, and

lim
k→0

σ(k) = lim
|k|→+∞

σ(k) = 0.

In particular, σ admits a maximum σ0 = σ(k0) ≥ 0 over R. Since Us is by assumption linearly unstable
for Euler, σ(k) is not identically zero, so σ0 > 0. Because k �→ σ(k) is continuous, we have σ(k) > 0 in a
neighborhood I of k0. Thus for all k ∈ I, we have a maximally unstable solution of the Euler equation

uk(t, x, y) = eikx+λkt(ψ′
k(y),−ikψk(y)),
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where ψk solves the Rayleigh equation with wavenumber k and eigenvalue λk. We thus define

uI
0(t, x, y) :=

∫

R

ϕ(k)uk(t, x, y) dk,

where ϕ is supported in a small enough neighborhood I ′ ⊂ I of k0. Notice that thanks to this cut off, we
have uI

0 ∈ Hs(R×R+) for all s ≥ 0. We remark that if the domain of the x variables is bounded instead,
e.g. x ∈ T, we could simply define uI

0 := uk0 .
We thus obtain

‖uI
0(t)‖2

Hs ∼
∫

I′
e2σ(k)t dk.

To estimate this integral, we can use a Taylor expansion of σ(k) around σ(k0). Since k0 is a maximum
and σ is real analytic and non-constant, we have

σ(k) ∼ σ0 − μσ(2m)(k0)(k − k0)2m,

for some μ > 0 and m ≥ 1. Therefore,
∫

I′
e2σ(k)t dk ∼ e2σ0t

∫

I′
e−2μt(k−k0)

2m

dk ∼ C
e2σ0t

t1/2m
, as t → +∞.

In the remainder of the argument, in line with [8] we just assume m = 1 (i.e. σ0 is a nondegenerate
maximum), in order to simplify the notation. All the results still hold for arbitrary m.

In this case, for all s ≥ 0 there exists Cs > 0 such that

‖uI
0(t)‖Hs ≤ Cs

eσ0t

(1 + t)1/4
, ∀t ≥ 0. (4.33)

Additionally (see [8], Section 3.2.2), there exists a bounded subset ΩA ⊂ R
2
+, with measure of order√

1 + t such that

‖uI
0‖L2(ΩA) ≥ C ′ eσ0t

(1 + t)1/4
, ∀t ≥ 0. (4.34)

Assuming N ≥ 1 and ν ≤ 1, we can define times T ν
ϑ > 0 such that

eσ0T ν
ϑ

(1 + T ν
ϑ )1/4

= νϑ−N . (4.35)

Notice that limν→0+ T ν
ϑ = ∞, but in the original variables, limν→0+

√
νT ν

ϑ = 0. Moreover, for τ > 0 small
enough depending on ν, we have T ν := T ν

ϑ − τ > 0, and by 4.34

‖νNuI
0 |t=T ν ‖L2(ΩA) ≥ δ(τ)νϑ.

This proves 4.14, for some value δ depending on the choice of τ . In other words, we can always subtract
a value τ as large as we want from T ν

ϑ , and the instability will hold at t = T ν
ϑ − τ , as long as ν is small

enough. We will choose the specific value of τ > 0 later on.

4.4. Correction of the Boundary Condition

As discussed above, we want uapp to satisfy the Navier boundary condition 4.93. But since it is constructed
using an asymptotic expansion, we cannot in principle expect it to be satisfied exactly. Instead, it will
leave a remainder rapp = (rapp

1 , rapp
2 ), which will be determined in this subsection.

Let us first consider the equation for the first component:

∂y(uν
s + uI + νζub) − ν1/2−γ(uν

s + uI + νζub) = 0 at y = 0.
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By assumption, the shear flow uν
s satisfies the Navier condition ∂yuν

s − ν1/2−γuν
s = 0, so it can be

eliminated from the above condition and we are left with

ub = νγ−3/4∂Y ub + νγ−1/2−ζ∂yuI − ν−ζuI .

The leading order terms of the above equation as ν → 0 depend on the choice of γ. The resulting equations
are summarized in the following table. (Table 1)

Notice that regardless of the value of γ, the terms with uI do not appear at a higher order compared
to the terms with ub. This means that we can obtain the same estimates for ub

j as we do for uI
j . It would

no longer be true if the value of ζ was higher.
Let us plug the ansatze 4.19 for uI and ub into the boundary conditions. Then we can derive recursive

equations which determine the value of ub
j . As discussed in Sect. 2, if ub

j or ∂yub
j appear with a coefficient

vanishing with the viscosity, the solution cannot be bounded uniformly with respect to the viscosity.
Hence we need to move such term in the next order. This is possible in each case thanks to our choice of
n.

Notice that these are mixed boundary conditions where either the coefficient of ∂Y ub
j or ub

j is equal
to 1, and in particular is bounded away from 0 and thus satisfies the assumptions of Proposition 2.4.
The other coefficients remain bounded as ν → 0, therefore do not cause any issues when applying our
estimates.

As for the second component vb
j , from 4.213 it follows that for all j ≤ M we have

vI
j + νa+1/4−2−n

vb
j−1 = 0 at y = 0.

Therefore,

vapp = νN+a+1/4−2−n+M2−n

vj
M =: rapp

2 at y = 0. (4.36)

4.5. Construction of uI
j and ub

j

We will now uI
j and ub

j by induction on j ∈ Z≥0. The induction is organized as follows. We start from
uI

0, which was constructed in Sect. 4.3. From uI
0 we can construct ub

0, applying the boundary condition
derived in Sect. 4.4. Next, suppose we have constructed uI

j′ and ub
j′ for all 0 ≤ j′ ≤ j. In the equation 4.21

satisfied by uI
j+1, R

I
j+1 only depends on u′I

j for j′ ≤ j, while the boundary condition depends on ub
j , all of

which have already been constructed. Thus we can derive uI
j+1. Similarly, by 4.25, all the terms in Rb

j+1

Table 1. Boundary condition satisfied by ub depending on the value of γ

Range for γ Range for ζ Equation satisfied by ub

1/2 < γ < 3/4 ζ = 3/4 − γ ∂Y ub = ν3/4−γub + uI − νγ−1/2∂yuI

γ = 3/4 ζ = 0 ∂Y ub − ub = uI − ν1/4∂yuI

γ > 3/4 ζ = 0 ub = νγ−3/4∂Y ub + νγ−1/2∂yuI − uI

Table 2. Boundary condition satisfied by the ub
j and final error in the boundary condition for ub.

Each term appearing with a negative index should be replaced with 0

Range Equation satisfied by ub
j Error in the boundary condition

1
2 < γ < 3

4 ∂Y ub
j = ν3/4−γ−2−n

ub
j−1 + uI

j −νγ−1/2∂yuI
j rapp

1 = ν3/4−γ−2−n+M2−n

ub
M

γ = 3/4 ∂Y ub
j − ub

j = uI
j − ν1/4∂yuI

j None

γ > 3/4 ub
j = νγ−3/4−2−n

∂Y ub
j−1 + uI

j − νγ−1/2∂yuI
j rapp

1 = νγ−3/4−2−n+M2−n

∂Y ub
M
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only depend on ub
j′ for j′ < j + 1 and uI

j′ for j′ ≤ j + 1, and the same goes for the boundary condition
(see Sect. 4.4). Thus we obtain ub

j+1. By induction, we can construct uI
j and ub

j for all j = 0, . . . , M .
In what follows, to ease the notation we introduce for all j = 1, . . . , M the quantity

kj := 1 +
j

2nN
.

Proposition 4.4. For all s ≥ 0 there exists a constant C = C(s, j) > 0 such that for all t ≥ 0, and
j = 0, . . . ,M , we have

‖uI
j (t)‖Hs ≤ C

eσ0kjt

(1 + t)kj/4
, (4.37)

‖ub
j(t)‖Hs(Y ) ≤ C

eσ0kjt

(1 + t)kj/4
, ∀t ≥ 0. (4.38)

Moreover, there exist functions hk,�,j(x) ∈ L2(R), μj > 0 such that for all k, � ∈ Z≥0, and for all t ≥
0, (x, y) ∈ R × R+,

|∂k
x∂�

Y ub
j(t, x, Y )| ≤ |hk,�,j(x)| eσ0kjt

(1 + t)kj/4
e−μjY , j = 0, . . . , M. (4.39)

Proof. The proof is by induction. The estimate 4.37 for j = 0 is simply 4.33, whereas 4.39 and 4.38 follow
from Proposition 2.4. Now suppose 4.37 and 4.38 hold for j < J . We first look to obtain 4.37 for j = J .
We know that uI

J satisfies 4.21 and 4.22. We want to find an Hs estimate on the remainder RI
J . Recall

that, for all f, g ∈ Hs, for any s ≥ 0 by Sobolev embeddings we have

‖fg‖Hs ≤ Cs (‖f‖Hs‖g‖L∞ + ‖f‖L∞‖g‖Hs) ≤ C‖f‖Hs+2‖g‖Hs+2 .

Therefore, using Lemma 4.2,

‖RI
J‖Hs � ‖uI

J−1‖Hs+1 + ‖uI
J−2‖Hs+2 +

∑

j1+j2=J−2nN

‖uI
j1‖Hs+2‖uI

j2‖Hs+3

� ‖uI
j−1‖Hs +

eσ0(kj1+kj2 )t

(1 + t)(kj1+kj2 )/4

� eσ0kJ t

(1 + t)kJ/4
,

where we used the equality

kj1 + kj2 = kj1+j2+2nN .

Finally, using well-known spectral estimates on the linearized Euler equations (see Theorem 3.1 from
[8]), since ub

J−1 satisfies 4.38, we deduce that

‖uI
J‖Hs−2 � ‖RI

J‖Hs � eσ0kJ t

(1 + t)kJ/4
.

Since the estimate works for all s ≥ 0, we conclude that 4.37 holds for the index j.
Next, we look to prove the estimates for ub

J . It suffices to prove 4.39 as 4.38 immediately follows from
it. Moreover, it is enough to prove 4.39 for the first component ub

J , as we can then deduce them for the
second component vb

J by the divergence-free condition, as in 4.26. Recall that ub
J satisfies 4.24 and 4.25

with the boundary conditions given in Table 2. For each x ∈ R, this is a heat equation in Y with a
remainder Rb

J as in 4.25, an initial condition satisfying 4.20, and a boundary condition given by a sum
of uI

j , u
b
j and their derivatives for j ≤ J . For the uI

j terms, by taking the trace at the boundary in 4.37
we deduce that

|∂�
x∂k

Y uI
j (t, x, 0)| ≤ |fk,�,J(x)| eσ0kJ t

(1 + t)kJ/4
,
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where fk,�,J(x) ∈ L2(R). Together with the inductive assumption 4.39, we deduce that the inhomogeneous
part of the boundary condition as a whole satisfies the same estimate.

Now consider the remainders Rb
J . The only potential danger is the terms in the remainders containing

us(
√

νt, y)ν−1/8 which need to be replaced with uν
s (

√
νt, y)ν−2−n

. More precisely these terms are of the
form

uν
s (

√
νt, ν1/4Y )
ν2−n · ∇x,Y ub

J−1 + ub
J−1 · ∇x,Y

(
uν

s (
√

νt, ν1/4Y )
ν2−n

)

. (4.40)

By Proposition 4.3, since n ≥ 2, these terms and their derivatives can be bound pointwise by

|C1Y + C2| · |∇x,Y ub
J−1(t, x, Y )| + C3 · |ub

J−1(t, x, Y )|, (4.41)

Thus assuming ub
J−1 satisfies 4.39, then the terms in 4.40 also do, after decreasing the value of μJ−1 by

an arbitrarily small quantity to accomodate for the extra linear growth in Y . Therefore the remainder
Rb

J satisfies the estimate 4.39. Since the estimate holds for Y -derivatives of all orders, we deduce that

|∂�
x∂k

y Rb
J(t, x, Y )| ≤ |Rk,�,J(x)| eσ0kJ t

(1 + t)kJ/4
e−μJY ,

where Rk,�,J ∈ L2(R). By Proposition 2.4, we conclude that

|∂�
x∂k

y ub
J(t, x, Y )| ≤ |hk,�,J(x)| eσ0kJ t

(1 + t)kJ/4
e−μJY ,

where, given the bound gb
j(x) ∈ L2(R) for the initial conditions of ub

j as in 4.20,

|hk,�,J(x)| ≤ C
(|Rk,�,J(x)| + |fk,�,J(x)| + |gb

j(x)|) ,

and thus hk,�,J(x) ∈ L2(R).
Hence, by induction, 4.39 is verified for all 0 ≤ J ≤ M . Since it holds for derivatives of all orders, the

Hs estimate immediately follows. �

Corollary 4.5. For all s ≥ 0, we have

‖RI‖Hs ≤ Cs

(

νN eσ0t

(1 + t)1/4

)1+ M+1
2nN

∀t ≤ T ν
ϑ . (4.42)

Proof. By 4.37 and 4.23, we know that there exists an M ′ > M such that

‖RI(t)‖Hs ≤ Csν
N

M ′
∑

j=M+1

νj2−n eσ0kjt

(1 + t)kj/4
= Cs

M ′
∑

j=M+1

(

νN eσ0t

(1 + t)1/4

)kj

≤ Cs

(

νN eσ0t

(1 + t)1/4

)1+ M+1
2nN

+ Cs

M ′
∑

j=M+2

νϑkj

≤ Cs

(

νN eσ0t

(1 + t)1/4

)1+ M+1
2nN

.

�

This estimate will be necessary in order to prove corresponding estimates on the approximate solution
uapp.

In the same way as for RI in 4.42, we deduce the following estimate for Rb.

Corollary 4.6. For all �, k ∈ Z≥0 there exist constants Ck,�, μ > 0 such that for all t ≤ T ν
ϑ we have

|∂�
x∂k

Y Rb(t, x, Y )| ≤ Ck,�

(

νN eσ0t

(1 + t)1/4

)1+ M+1
2nN

e−μy. (4.43)
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Putting 4.42 and 4.43 together, we obtain the estimates for the remainder Rapp = RI + νζRb: for all
s ≥ 0, we have

‖Rapp(t)‖Hs ≤ Cs

(

νN eσ0t

(1 + t)1/4

)1+ M+1
2nN

. (4.44)

Now let us consider the remainder rapp in the Navier boundary condition. For the first component, we
have by 4.38,

‖rapp
1 (t)‖L2(y=0) ≤ CMνN+ M+1

2n
eσ0kM+1t

(1 + t)kM+1/4
= CM

(

νN eσ0t

(1 + t)1/4

)1+ M+1
2nN

. (4.45)

For the second component rapp
2 , by 4.36, discarding the νa+1/4−2−n

factor we similarly obtain, us-
ing 4.39,

|∂�
x∂k

y rapp
2 (t, x, 0)| ≤ Ck,�

(

νN eσ0t

(1 + t)1/4

)1+ M+1
2nN

. (4.46)

4.6. Energy Estimates

Define v := uν − uapp. Then v + uapp solves Navier-Stokes with an error Rapp, so that v solves the
equation

⎧
⎪⎨

⎪⎩

∂tv + (uapp · ∇)v + (v · ∇)uapp + (v · ∇)v + ∇p =
√

νΔv − Rapp;
∇ · v = 0;
v |t=0= 0;

with some boundary condition which we will specify later.
We want to prove 4.16, so we need to find an upper bound on the L2 norm of v at time t = T ν .

Deriving the standard energy estimate:
1
2
∂t‖v‖2

L2 − √
ν

∫

∂Ω

∂ivjvjni ≤ (‖∇uapp‖L∞ + β) ‖v‖2
L2 +

1
4β

‖Rapp‖2
L2 .

Because the domain is flat, we see that
∫

∂Ω

∂ivjvjni = −
∫

y=0

v1∂yv1 −
∫

y=0

v2∂yv2.

Suppose now that uapp satisfies the Navier boundary condition with an error rapp, i.e.
{

∂yuapp =
√

ν
1−2γ

uapp + rapp
1 ;

vapp = rapp
2 .

Then v satisfies the same boundary condition with error −rapp:
{

∂yv1 =
√

ν
1−2γ

v1 − rapp
1 ;

v2 = −rapp
2 .

Hence, for any α > 0,
∫

y=0

v1∂yv1 =
√

ν
1−2γ

∫

y=0

|v1|2 −
∫

y=0

rapp
1 v1 ≥ −1

4
νγ−1/2

∫

y=0

|rapp
1 |2. (4.47)

Since γ ≥ 1/2, then νγ−1/2 ≤ C for all ν small enough and the energy estimate becomes

1
2
∂t‖v‖2

L2 ≤ (‖∇uapp‖L∞ + β) ‖v‖2
L2 + C

(

‖Rapp‖2
L2 +

∫

y=0

|rapp
1 |2

)

−
∫

y=0

rapp
2 ∂yrapp

2 . (4.48)
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Define

P := 1 +
M + 1
2nN

.

Combining 4.44, 4.45 and 4.46, we have

‖Rapp(t)‖2 + ‖rapp(t)‖2
L2(y=0) +

∫

y=0

|rapp
2 ∂yrapp

2 | ≤ CM

(

νN eσ0t

(1 + t)1/4

)2P

. (4.49)

Next, choose M large enough so that

Pσ0 − 1 ≥ ‖∇uapp‖L∞ + β ∀ν > 0.

For this to work, we need ‖∇uapp‖L∞ to be bounded uniformly in ν. The only potential issue is with ub,
as it depends on y/

√
ν. Using 4.38 we have, for t ≤ T ν as defined in 4.35,

‖∇uapp(t)‖L∞ − ‖∂yuν
s (

√
νt)‖L∞ ≤ νN+ζ−1/4

M∑

j=0

νj2−n eσ0kjt

(1 + t)kj/4

≤ Cνζ−1/4
M∑

j=0

νϑ(1+ j
2nN ) ≤ Cνϑ+ζ−1/4.

The power of ν appearing above is non-negative if and only if ϑ ≥ 1/4 − ζ. Hence ϑ = 1/4 − ζ is
the best value we can get in the instability. Of course, ‖∂yuν

s (
√

νt)‖L∞ is bounded uniformly in ν by
Proposition 2.1 or Proposition 2.2.

Now 4.48 becomes

∂t‖v(t)‖2
L2 ≤ (2Pσ0 − 1)‖v(t)‖2

L2 + CM

(

νN eσ0t

(1 + t)1/4

)2P

.

To conclude the proof, we apply Lemma A.2 with ϕ(t) = ‖w(t)‖2
L2 , λ = 2Pσ0 − 1, μ = 2Pσ0. We obtain

‖v(t)‖L2 = ‖uν(t) − uapp(t)‖L2 ≤ C ′
M

(

νN eσ0t

(1 + t)1/4

)P

.

Choosing τ large enough in the definition of T ν = T ν
ϑ − τ , the above quantity is smaller than δνϑ

for t ≤ T ν , and we have verified 4.5; 4.7 follows by the embedding L∞ ↪→ Ḣs for s > 1. Therefore,
Theorem 4.1 is proven.

4.7. Modifications for the Case γ < 1/2

In this Section, we explain the changes that must be applied to Sect. 4.2 in order to treat the case γ < 1/2.
The construction of the approximate solution, as detailed in the first part of Sect. 4.2, remains the

same, except that the value of n must be changed so that it satisfies the following inequality instead:

2−n ≤ 1
4

− γ

2
.

In Lemmas 4.2 and 4.3 we need to prove the boundedness of terms containing uν
s as ν → 0, which in

the case of γ > 1/2 involves applying Proposition 2.1 since a = ν1/2−γ → ∞ as ν → 0. When γ < 1/2
we have a → 0 as ν → 0, so we simply replace γ − 1/2 with 1/4 − γ/2 ≥ 2−n in the proofs, and then use
Proposition 2.2 instead.

In Sect. 4.4, the boundary conditions must be adjusted as follows. For ub we obtain

∂Y ub = ν3/4−γub + ν1/2−γuI − ∂yuI ,

which leads to

∂Y ub
j = ν3/4−γ−2−n

ub
j−1 + ν1/2−γuI − ∂yuI ,
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with the error rapp
1 in the boundary condition given by the same expression as the case 1/2 < γ < 3/4:

rapp
1 = ν3/4−γ−2−n+M2−n

ub
M . (4.50)

Proposition 4.4 carries over after adjusting the boundary conditions, because Propositions 2.3 and
2.4 can be applied: the ub

j are still satisfying a heat equation with mixed boundary conditions and the
inhomogeneous terms vanish (or remain bounded) with the viscosity.

Finally, in the proof of the energy estimate in Sect. 4.6, the coefficient νγ−1/2 is now divergent as
ν → 0. However, we have

0 > γ − 1
2

≥ 2
(

γ − 1
2

)

≥ 2
(

γ − 3
4

+ 2−n

)

,

hence for ν ≤ 1, the right-hand side of (4.47) is bounded from below by

−1
4
ν2(γ−3/4+2−n)

∫

y=0

| rapp
1 |2 .

Therefore by (4.50),

νγ−3/4+2−n‖rapp
1 (t)‖L2(y=0) ≤ ‖ub

M‖L2(y=0) ≤ CM

(

νN eσ0t

(1 + t)1/4

)1+ M+1
2nN

. (4.51)

We can then use the above equation to obtain 4.49 and proceed as in the case γ > 1/2.
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A. Proofs of the Results from Section 2

In this Section, we fill out the details we left out from Sect. 2.

A.1. Results from Section 2.1

Here we will prove Propositions 2.1 and 2.2, while also providing a justification for the assumptions (2.4)
and (2.6).

Let us begin by giving the explicit expression of the extension ua
0 of u0 which makes ∂yua

0 − aua
0 an

odd function. We have

ua
0(−y) = e−ay

(

u0(0) +
∫ y

0

eaỹ (u′
0(ỹ) − au0(ỹ)) dỹ

)

, y ≥ 0. (A.1)

http://creativecommons.org/licenses/by/4.0/
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Integrating by parts, (A.1) can be rewritten as

ua
0(−y) = u0(y) − 2a

∫ y

0

e−a(y−ỹ)u0(ỹ) dỹ, (A.2)

or

ua
0(−y) = −u0(y) + 2e−ayu0(0) + 2

∫ y

0

e−a(y−ỹ)u′
0(ỹ) dỹ. (A.3)

Differentiating both sides of (A.3) and integrating by parts repeatedly, we can find an explicit expres-
sion for the derivatives of ua

0 :

(−1)k∂kua
0(−y) = −u

(k)
0 (y) + 2e−ay

k∑

j=0

(−a)k−ju
(j)
0 (0) + 2

∫ y

0

e−a(y−ỹ)u
(k+1)
0 (ỹ) dỹ (A.4)

= u
(k)
0 (y) + 2e−ay

k−1∑

j=0

(−a)k−ju
(j)
0 (0) − 2a

∫ y

0

e−a(y−ỹ)u
(k)
0 (ỹ) dỹ, (A.5)

where y > 0, k ∈ N. Taking y → 0 in the expression (A.5) we get

(−1)k lim
y→0+

∂kua
0(−y) = u

(k)
0 (0) + 2

k−1∑

j=0

(−a)k−ju
(j)
0 (0).

This tells us that ua
0 is continuous, but for higher derivatives the gap between ∂kua

0 and the ∂ku∞
0 increases

with a. In general, we have

∂kua
0(−y) − ∂ku∞

0 (−y) = 2e−ay
k∑

j=0

(−a)k−ju
(j)
0 (0) + 2

∫ y

0

e−a(y−ỹ)u
(k+1)
0 (ỹ)dỹ.

In particular, due to the discontinuity at y = 0, the derivative ∂kua
0 does not even belong to Lp(R)

unless u
(j)
0 (0) = 0 for all j = 0, . . . , k − 1. Requiring the weaker condition u

(2k+1)
0 (0) = au

(2k)
0 (0) for all

k ∈ Z≥0, which corresponds to enforcing the compatibility conditions of all orders, would also get rid of
the problematic terms. However, that can only be true for multiple values of a if u

(2k+1)
0 (0) = u

(2k)
0 (0) = 0.

This is the justification for the assumption (2.4).

Proof of Proposition 2.1. The first condition in the assumption (2.4) implies that (A.4) can be simplified
to

(−1)k∂kua
0(−y) = −u

(k)
0 (y) + 2

∫ y

0

e−a(y−ỹ)u
(k+1)
0 (ỹ) dỹ. (A.6)

By (A.6), for any k ∈ Z≥0 we have

‖∂kua
0 − ∂ku∞

0 ‖L∞ ≤ 2‖∂k+1u0‖L∞ sup
y≥0

∫ y

0

e−a(y−ỹ) dỹ

≤ 2
a
‖∂k+1u0‖L∞ = O(a−1),

and

‖∂kua
0 − ∂ku∞

0 ‖L1 ≤ 2
∫ ∞

0

∫ y

0

e−a(y−ỹ)|∂k+1u0(ỹ)|dỹ dy

= 2
∫ ∞

0

eaỹ

∫ ∞

ỹ

e−ay dy |∂k+1u0(ỹ)|dỹ

=
2
a
‖∂k+1u0‖L1 = O(a−1).
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By interpolation, we get that the initial conditions satisfy ‖ua
0 − u∞

0 ‖W k,p = O(a−1) as a → +∞. Let us
call ua and u∞, respectively, the evolutions of the initial data ua

0 and u∞
0 under (2.1), given by convolution

with the kernel K. Then

‖ua − u∞‖W k,p = ‖K � (ua
0 − u∞

0 )‖W k,p ≤ ‖ua
0 − u∞

0 ‖W k,p = O(a−1).

�
If we look at (A.2), we immediately notice that, under the assumption (4.3), there is an issue with

uniform convergence: we have, for all y > 0,

|ua
0(−y) − u0

0(−y)| ≤ 2a

∫ y

0

e−a(y−ỹ)|u0(ỹ)|dy.

However, the right hand side does not vanish as a → 0+ unless u0 ∈ L1(R+), which evades assumption
(2.4).

On the other hand, this limit is better behaved compared to a → +∞ in other aspects. Looking at
(A.5), we notice that this time the terms at the boundary

2e−ay
k−1∑

j=0

(−a)k−ju
(j)
0 (0)

all vanish uniformly in y as a → 0+. However, we still need to require u
(j)
0 = 0 for all j, otherwise ua

0

(and hence ua
0 − u0

0) does not belong to Hk for k ≥ 2. This justifies assumption (2.6).

Proof of Proposition 2.2. For the L2-based estimates we have, by Young’s inequality for convolutions:

‖∂kua
0 − ∂ku0

0‖L2 = 2a‖e−aỹ �[0,y] ∂ku0
0‖L2 ≤ 2a‖e−ay‖L2‖∂ku0

0‖L1

=
√

2a‖∂ku0
0‖L1 = O(a1/2).

Hence For the L∞-based estimates, from (A.5) we deduce that for all k ≥ 0,

‖(−1)k∂kua
0(y) − ∂ku0

0(y)‖L∞ ≤ 2e−ay
k−1∑

j=0

ak−j |u(j)
0 (0)| + 2a

∫ y

0

e−a(y−ỹ)|u(k)
0 (ỹ)|dỹ

≤ O(a) + 2a‖u
(k)
0 ‖L1 = O(a).

The estimates then extend with the same order to ua(t, y) by applying the heat kernel as in the Proof of
Proposition 2.1. �

A.2. Results from Section 2.2

In this subsection, we will prove Proposition 2.3. Let us begin with two technical lemmas.

Lemma A.1. Let α > 0 and β ≥ 0. Then there is a constant Cα,β > 0 such that
∫ t

0

eαs

(1 + s)β
ds ≤ Cα,β

eαt

(1 + t)β
, ∀t ≥ 0.

Proof. Let ϕ(t) := eαt

(1+t)β . Since t �→
∫ t
0 ϕ(s) ds

ϕ(t) is continuous over [0,∞), we just need to prove that

lim
t→+∞

∫ t

0
ϕ(s) ds

ϕ(t)
< ∞.

In fact, by L’Hopital’s rule, we see that

lim
t→+∞

∫ t

0
ϕ(s) ds

ϕ(t)
= lim

t→+∞
ϕ(t)

ϕ(t) (α − β(1 + t)−1)
=

1
α

.

�
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The following result is taken from [8], Lemma 3.4. We further include a proof.

Lemma A.2. Let ϕ : R+ → R satisfy

ϕ′(t) ≤ λϕ(t) + C
eαt

(1 + t)β
, ∀t ≥ 0, (A.7)

where 0 ≤ λ < α, β > 0 and C > 0 can depend on α, β but not on t. Then

ϕ(t) ≤ CCα−λ,β
eαt

(1 + t)β
, ∀t ≥ 0,

where Cα−λ,β is the constant from Lemma A.1.

Proof. Integrating (A.7) from 0 to t, we get

ϕ(t) ≤ ϕ(0) +
∫ t

0

λϕ(s) ds + C

∫ t

0

eαs

(1 + s)β
ds.

Hence, by an application of the Gronwall’s lemma (see [10], page 19) and Lemma A.1 - since α − λ > 0 -
we have

ϕ(t) ≤ Ceλt

(

ϕ(0) +
∫ t

0

e(α−λ)s(1 + s)−β ds

)

≤ Ceλt · Cα−λ,β
e(α−λ)t

(1 + t)β

≤ CCα−λ,β
eαt

(1 + t)β
.

�

We can now prove Proposition 2.3.

Proof of Proposition 2.3. We only consider the case k = 0, as the others follow by applying the result to
∂2k

y u, using the compatibility conditions to derive the appropriate boundary conditions and interpolating
for odd derivatives. Differentiating the energy, we get

1
2

d
dt

‖u(t)‖2
L2 = −‖∂yu(t)‖2

L2 − u(t, 0)∂yu(t, 0) + 〈r(t), u(t)〉L2 .

Now there are two different cases, depending on whether a or b are bounded away from 0.

• b � 0, a ≥ 0. We can replace ∂yu(t, 0) = 1
b (au(t, 0) − f(t)), so that

1
2

d
dt

‖u(t)‖2
L2 ≤ −‖∂yu(t)‖2

L2 − a

b
|u(t, 0)|2 +

1
b
u(t, 0)f(t) + 〈r(t), u(t)〉L2

≤ −‖∂yu(t)‖2
L2 +

ε

b
|u(t, 0)|2 +

1
4εb

|f(t)|2 + 〈r(t), u(t)〉L2

≤ −‖∂yu(t)‖2
L2 + C

ε

b

(‖u(t)‖2
L2 + ‖∂yu(t)‖2

L2

)
+ . . .

· · · +
1

4εb
|f(t)|2 + 〈r(t), u(t)〉L2

≤ ε

(
C

b
+ 1

)

‖u(t)‖2
L2 +

1
4εb

|f(t)|2 +
1
4ε

‖r(t)‖2
L2

≤ ε

(
C

b
+ 1

)

‖u(t)‖2
L2 +

C0

4ε

(
1
b

+ 1
)

eαt

(1 + t)β
,
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where we have chosen ε > 0 small enough so that ε
C

b
< 1 where C is the constant of the embedding

H1(R+) ↪→ L∞(R+). Further requiring 2ε
(

C

b
+ 1

)

< α, using the fact that b is bounded away

from 0, we can apply Lemma A.2 to obtain

‖u(t)‖2
L2 ≤ Cα,β

eαt

(1 + t)β
.

• a � 0, b ≥ 0. In this case starting from the energy inequality we replace u(t, 0) = 1
a (b∂yu(t, 0) +

f(t, 0)). Thus for any ε < a,
1
2

d
dt

‖u(t)‖2
L2 ≤ −‖∂yu(t)‖2

L2 − b

a
|∂yu(t, 0)|2 − 1

a
∂yu(t, 0)f(t) + 〈r(t), u(t)〉L2

≤ 1
4εa

|f(t, 0)|2 + ε‖u(t)‖2
L2 +

1
4ε

‖r(t)‖2
L2 .

Additionally requiring 2ε < α, as in the previous case, we apply Lemma A.2 to obtain the required
estimate, where the constant from (2.8) is independent from a and b since a � 0.

�
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