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Football Group Draw Probabilities and Corrections
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Gareth O. Roberts! and Jeffrey S. Rosenthal?

(Version of: May 11, 2022)

1. Introduction.

Major football (soccer) tournaments such as the FIFA World Cup, European Champi-
onships, and UEFA Champions League hold public draws to decide who plays whom. It is
customary to employ one or more celebrities to draw balls from pots to sequentially con-
struct the draw, to add excitement and increase interest in the competition. However, such
mechanisms can affect the draw probabilities in unexpected ways.

This article will focus on the group draw for the FIFA World Cup, although similar
ideas could be applied to other competitions. This draw has various restrictions (based on
geographical constraints) about which assignments are permissible, leading to a complicated
space of potential draws. In addition, the draw should take place sequentially, to allow
for public interest and transparency. The statistical challenge, then, is to simulate from
the uniform distribution on a non-symmetric high-dimensional space in a way which is also
sequential and entertaining. We shall present several potential solutions that we have de-
veloped to address this challenge; they are available for interactive use [18], and have been

reported on in the media [20, 13].
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1.1. The 2022 FIFA World Cup group draw.

The 2022 FIFA World Cup will take place in November/December 2022, in Qatar. It
will involve 32 national teams — 31 who qualified through competition, plus the host team
Qatar who qualify automatically. These 32 teams needed to be partitioned into 8 groups of
4 teams each, who will all play each other in the first round of the Cup.

The group assignments were subject to various restrictions, as follows. The 32 teams
were first partitioned into 4 seeded pots, with Pot 1 consisting of the hosts Qatar plus the
seven most highly ranked teams (according to the official FIFA national team rankings),
Pot 2 consisting of the next 8 highest ranked teams, and so on. In addition, each team is
affiliated to one of the 6 continental federation regions: UEFA (Europe; 13 teams; henceforth
Eu), CONMEBOL (South America; 4 or 5 teams; henceforth SA), CONCACAF (North and
Central America; 3 or 4 teams; henceforth NA), AFC (Asia; 5 or 6 teams; henceforth As),
CAF (Africa; 5 teams; henceforth Af), and OFC (Oceania; 0 or 1 team; henceforth Oc).
The assigned pots were as follows:

Pot 1: Qatar[As|, Belgium[Eu], Brazil[SA], France[Eu], Argentina[SA], England[Eul],
Portugal[Eu], Spain[Eul].

Pot 2: Denmark[Eu|, Netherlands[Eu|, Germany[Eu], Switzerland[Eu], Croatia[Eul],
Mexico[NA], USA[NA], Uruguay[SA].

Pot 3: Iran[As|, Serbia[Eu], Japan[As], Senegal[Af], Tunisia[Af], Poland[Eu], Kore-
aRep[As], Morocco[Af].

Pot 4: Wales/Scot/Ukr[Eu], Peru/UAE/Au[SA,As|, CostaRica/NZ[NA,Oc|, Saudi-
Arabia[As|, Cameroon[Af], Ecuador[SA], Canada|[NA], Ghana|Af].

(The reason for the uncertainty in three of the team names in Pot 4 is that, due to delays
caused by Covid-19 and the war in Ukraine, not all teams had been finalised by the time
of the draw, so placeholders were used. Two of the placeholders corresponded to two dif-

ferent potential regions, so they had to satisfy the geographical constraints for both of the



corresponding regions. )

In terms of these specifications, the restrictions on group formations were that each group
needed to include one team from each of the 4 pots, and furthermore include either 1 or 2
teams from Eu plus either 0 or 1 teams from each of the other regions.

The FIFA group draw, on 1 April 2022, then proceeded as follows [9]. First, the host
team Qatar was automatically placed in Group A. Then, the remaining teams from Pot 1
were selected one at a time, uniformly at random, and each placed into the next group from
B through H. Then, the teams from Pot 2 were selected one at a time, uniformly at random,
and assigned to the next available group, i.e. the first group which would not cause a conflict
with any of the geographical restrictions (either immediately in the group where they were
placed, or subsequently by making it impossible to validly fill in the remainder of the draw).
This procedure was then repeated with Pot 3, and then with Pot 4 to conclude the draw.
Each random selection was performed by a celebrity footballer, who picked a ball uniformly
at random from a round bowl, and opened it to reveal the chosen team. (Each team was
also randomly assigned a “position” within their group, to determine the order in which the
matches would be played, but we do not consider that issue here.)

Without the geographical constraints, just drawing the teams in random order from the
four pots in sequence, there would be 7! x (81)3 = 3.3 x 10'" possible draws that could be
produced. We shall see below that about 1 in 560 of these unconstrained draws satisfy the
geographical constraints. Hence, the number of valid draws is approximately 5.9 x 10*. A
uniform draw is one for which all 5.9 x 10 valid draws have an equal chance of materialising.
This article will explore the non-uniformity in the FIFA 2022 draw procedure, and also

propose various methods of refining the draw to achieve complete uniformity.

1.2. Previous literature.

It has long been known that sequential draws such as those adopted by FIFA and UEFA

led to non-uniform probabilities, see e.g. [14, 4, 16]. Various papers have looked at different



mechanisms for carrying out different sorts of sequential draws; see e.g. [4]. Much of the
literature has focused on how to obtain a balanced draw rather than a uniform one, i.e.
trying to make each group roughly equal in strength [10, 11]. (Indeed, balance is what
inspired FIFA to create the seeded pots based on world rankings rather than continental
affiliation, for both the 2018 and 2022 World Cup group draws. But that is separate from
the question of uniformity.)

Various papers have proposed solutions to the non-uniformity. Some produce sequential
procedures which are closer to uniform than existing methods [2], but are still not completely
uniform. Others propose completely new draw mechanisms, e.g. [12]. The paper [16] even
briefly postulates a possible Markov chain procedure (specifically an exclusive Gibbs sampler)
for the UEFA Champions League draw. However, none of these methods respect the desired

sequential nature of the draw while also achieving perfect uniformity, which is our goal here.

2. Comparing Uniform and FIFA Probabilities.

Before proposing alternative solutions, we investigate the extent to which the FIFA Se-
quential Algorithm (described in Section 1.1 above) is non-uniform.

A preliminary look illustrates the nature of the problem. For example, consider the
question of whether the USA is assigned to Group A with Qatar. (This is an important
question, since Qatar is weaker than the other teams in Pot 1, so Group A is the most
desirable placement.) Under the FIFA method, any of the 8 teams in Pot 2 is equally likely
to be selected first, and none of them have any regional conflict with Qatar, so the USA
has probability exactly 1/8 or 12.5% of being placed in Group A. But under the uniform
distribution, the USA should be less likely to land in Group A, because that leaves fewer
ways for the numerous Eu teams to be placed in the other groups. (Indeed, we shall see
below that the uniform distribution gives probability 9.0% to the USA being in Group A,

which is significantly smaller.)



To compute the differences between the two distributions, we shall use a Monte Carlo
approach. Thus, we need to repeatedly simulate from both the uniform distribution U, and
the distribution P of draws created by the FIFA sequential method. We now consider each

of these problems in turn, in Sections 2.1 and 2.2 below.

2.1. Uniform Simulation by Rejection Sampling.

To obtain draws with equal probabilities, the simplest way is to use a Rejection Sampler.

This algorithm proceeds as follows:

1. First, assign a draw completely randomly, without regard to the geographical con-
straints. That is, select uniformly at random from the 7! x (8!)® = 3.3 x 10'7 possible

unconstrained draws discussed in Section 1.1 (which is straightforward).

2. Then, compute the number of teams from each region in each group, and check if the
geographic constraints are satisfied (i.e., 1 or 2 Eu teams plus 0 or 1 from each other

region in each group).
3. If the constraints are satisfied, then output the chosen draw.

4. If the constraints are not satisfied, then reject the chosen draw, and start again at

step 1 above with a fresh unconstrained draw.

It is well-known (e.g. [5, Section I1.3]) that this Rejection Sampler produces a draw which
is uniform over all possible valid draws, i.e. which is distributed as the uniform distribution
U. Then, by sampling many times and averaging the results, we can get a good estimate
(by the Law of Large Numbers) of the expected value according to U of any functional, or
the probability of any particular event [19].

In addition, our simulations [19] show that about 1 in 560 of the proposed draws were
accepted, i.e. satisfied the geographical constraints. This means that the total number of

valid draws is approximately 7! x (8!)% /560 = 5.9 x 10™.
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2.2. Simulating the FIFA Sequential Draw.

Although the FIFA Sequential Draw method is easy to describe (see Section 1.1), and can
usually be implemented without difficulty, it is surprisingly challenging to simulate with a
computer program. This is because potential group assignments have to be skipped whenever
they would conflict with the geographical constraints.

Now, immediate conflicts are simple to detect. Indeed, if adding a team to a group would
create a third Eu team, or a second team from any other region, then obviously that group
must be skipped. However, subsequent conflicts are much more complicated. It may be that
assigning a certain team to a certain group would then make it impossible to fill in the rest
of the draw in a valid way, either due to being forced to later add a third Eu team or second
team from another region to a group, or failing to add at least one Eu team to a group.
These subsequent conflicts are usually relatively simple to resolve (and indeed, they did not
occur at all in the actual FIFA 2022 draw), but this is not guaranteed.

For an extreme example, suppose a draw in progress has teams from the various regions

as follows:
Group: | A B C D E F G H To Go
Pot 1 Af | NA | NA | NA | NA | NA | NA | NA
Pot 2 As? SA ,SA,SA SA SA SA SA
Pot 3 Eu,Eu.Eu,Eu Eu Eu,NA SA
Pot 4 0Oc,0c¢,0c¢c,0c,0c¢,0c,0c,Oc

Then placing the As team from Pot 2 into Group A already creates a subsequent conflict,
since the seven SA teams from Pot 2 must then be placed in Groups B through H, and then
in Pot 3 the NA and SA teams cannot both be placed in valid groups without violating
their respective geographic constraints. (Instead, the As team in Pot 2 must be placed in
some other group besides Group A, thus leaving e.g. Group A for the NA team from Pot 3,
and the other group for the SA team from Pot 3.) However, this subsequent conflict might
not become apparent until the very end of the Pot 3 placements.

This example illustrates that a general program to simulate the FIFA method must be



robust enough to detect subsequent conflicts many steps later. Our approach [19] was to
program this recursively. We created a subroutine “placerest()” which, given a partial draw,
randomly selects a team to place next, and then attempts to place that team in the next
available slot. It then recursively calls itself with that one additional placement, to see if
the rest of the draw can then be filled in successfully. If it can, then the draw is complete.
If it cannot, then it instead attempts to place that team in the subsequent available slot.
Continuing in this way, it eventually successfully places every team. The recursive nature of
the program ensures that any subsequent conflicts will be dealt with, no matter how much
further along they occur; for details see the computer program at [19].

Thus, this algorithm produces a draw with probabilities as in the current FIFA sequential
method, i.e. which is distributed as the FIFA distribution P. Then, by sampling many times
and averaging the results, we can get a good estimate (by the Law of Large Numbers) of the

expected value according to P [19] of any functional, or the probability of any event.

2.3. Specific Probability Comparisons.

Armed with our computer program [19], we can now compare the probabilities of various
events according to the uniform distribution U and the FIFA Sequential Method P.

For example, the probability that England is in the same group as Germany should be
10.6% under U, but increases to 11.8% under P. The probability that Germany is in the
same group as Qatar should be 13.6% under U, but decreases to 12.5% under P. The
probability that Canada is with Qatar should be 15.4% under U, but increases to 16.5%
under P. And, the probability that USA is with Qatar should be just 9.0% under U, but
increases to 12.5% under P (a relative increase of 39%). Probabilities of other events can
similarly be computed [19].

These probability differences are not huge, but they are large enough to illustrate that the
FIFA method is significantly different from a uniform draw, and could lead to significantly

different group assignments. We now consider how to fix this problem, to achieve uniform



group draws while still preserving the interest and excitement of the FIFA method.

3. A Motivating Example.

To see more clearly why FIFA’s sequential procedure (described in Section 1.1 above)
fails to achieve uniformity, and how we might correct that, consider a simplified set up with
only 6 teams to be allocated to 3 groups (of 2 teams each). Suppose there are two seeded
pots (a subset of the actual World Cup 2022 pots):

Pot 1: Qatar (Q) [Af], France (F) [Eu], Brazil (B) [SA]

Pot 2: Mexico (M) [NA], Switzerland (S) [Eu], Uruguay (U) [SA]

Qatar, as hosts, are automatically assigned to Group A. Without loss of generality, assume
that France is placed in Group B, and Brazil in Group C. Then the two SA teams, Brazil in
Pot 1 and Uruguay in Pot 2, must be kept apart, so Uruguay cannot be placed in Group C.
There are thus four possible draws for assigning the three different groups:

Dy: QM, FU, BS.

D: QS, FU, BM.

Ds: QU, FM, BS.

D,: QU, FS, BM.

Let P be the probability measure resulting from FIFA’s sequential procedure described
above (adapted to this simplified setting), and let U be the probability measure which
assigns equal probability to each valid draw. Thus U(D;) = 1/4 for i = 1,2, 3,4. However,
a simple calculation gives that P(D,) = P(Ds) = 1/3 while P(D3) = P(D4) = 1/6. In
particular, if QU is the event that Qatar is paired with Uruguay, then P(QU) = 1/3 whereas
U(QU) = 1/2. This clearly illustrates the potential non-uniformity arising from FIFA’s

sequential procedure.



3.1. In search of debiasing: random order sequential procedures.

It is natural to ask how to fix the biases of the above example while retaining the se-
quential nature of the draw. Perhaps the most obvious try is to randomise the order in
which opponents for the Pot 1 teams are found. In the usual FIFA method, the first drawn
team in Pot 2 is first attempted to be placed in Group A with Qatar. To emphasise that we
start with Qatar, write Pg for the probabilities induced by this method (so Pg = P from
above). If instead the first drawn team in Pot 2 is attempted to be placed in Group B with
France, then this leads to different probabilities Pr, and similarly Pp if the first team is
attempted to be placed in Group C with Brazil. Alternatively, if the first drawn team in
Pot 2 is attempted to be placed in Group A or B or C with probability 1/3 each, then such a
procedure could be called a random order sequential draw, with resulting probabilities given
by Prong = %(PQ + Pr + Pp). (In principle, we could also specify that the second team
drawn from Pot 2 should have their attempted group randomised among the two remaining
teams, but this example is sufficiently simple that we can ignore that.)

In this example, it can be checked that Pg and P g are both non-uniform, but P 5z happens

to be uniform, i.e. P = U. Moreover, a simple calculation yields that
1
Prand = §<PQ +PF+PB) = U7

i.e. the random order sequential draw is uniform in this case. This leads to the question of
whether random order sequential draws are always uniform.

To answer this question, consider a modification of our simple example. Suppose that we
also forbid pairings between two Eu teams, thus disallowing D, (which pairs France with

Switzerland). In that case,
U(D)) = U(Dy) = U(Dy) = 1/3.

For this modified example, P = Py is easily seen to be non-uniform, but Pz and Pp

both turn out to be uniform. Moreover, for the random order sequential draw P,q.q =



3(Pg + Pp + Pp), we calculate that
Poona(D1) =5/18;  Prana(D2) = 13/36;  Prana(D3) = 13/36 .

So, in this case, FIFA’s fixed order draw F is uniform, while the randomised order draw P44
is non-uniform. This shows that randomised order draws do not solve the non-uniformity
problem. In fact, they can sometimes make the non-uniformity worse, or even introduce

non-uniformity in case where the original FIFA algorithm happened to be uniform.

3.2. In search of debiasing: multiple ball procedures.

We now return to the original example, where the only constraint is on the two SA
teams. Then we see from the above that two of the possible draws (D3 and D) put Uruguay
in Group A with Qatar, while only one (D;) puts Mexico in Group A, and one (D5) puts
Switzerland in Group A. This suggests that, to achieve the uniform distribution U, when
selecting the team from Pot 2 to put in Group A, we could use a bowl with two Uruguay
balls, and only one from each of Mexico and Switzerland. The next team in the draw is then
selected uniformly at random from those four balls, just as before. This simple “multiple
balls solution” thus achieves the correct conditional probability (in terms of U) for the team
from Pot 2 to be placed in Group A.

More formally, this solution could be described as follows. When selecting the team
from Pot 2 to put in Group A, we first count, for each team in Pot 2, the number of valid
draws which have that team in that position (while keeping all of the previously-selected
teams in their previously-selected positions, too). In the above example, we have ny = 2
for Uruguay, and ny; = 1 for Mexico, and ng = 1 for Switzerland. We then place ny balls
for Uruguay, nj; balls for Mexico, and ng balls for Switzerland, all into a bowl, and then
sample one of the balls uniformly at random. In this way, we select Uruguay with probability
ny/(ny +np +ng), and so on. This ensures the correct conditional probability for the next

position. Hence, if this procedure is repeated for each new position, then it ensures the
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correct full uniform probability U for the entire draw.

Can this procedure be extended to larger draws? In principle, yes. However, the number
of balls would soon get completely out of hand. For instance in the World Cup 2022 draw,
when choosing the Pot 2 team to play Qatar, we would need to put about (8!)3/560 = 10!
balls into the bowl, clearly impossible in practice. Nevertheless, we shall see in Section 5
below that we can exhibit a practical and completely uniform multiple balls solution to this

problem, using far smaller total numbers of balls.

4. A Metropolis Algorithm Solution.

The Rejection Sampler algorithm of Section 2.1 provides a perfectly uniform group draw
distributed according to U, so in some sense it completely solves the problem. However,
use of this algorithm would require the public to “trust” the computer to sample correctly,
and would not provide any drama or entertainment value during the draw. So, we next
consider ways to achieve a more interesting and entertaining and transparent draw while
still preserving the uniform probabilities U.

One solution is as follows. Begin with a Rejection Sampler uniform sample as above.
Then, repeatedly choose two teams at random from the same pot, and “swap” their group
assignments provided that swap does not violate any of the geographical constraints. (If the
swap would violate any constraint, then the group assignments are left unchanged.) The

validity of this solution follows from:

Proposition 1 If we begin with a valid draw chosen from U (e.g. using a Rejection Sampler
as in Section 2.1), and then repeatedly perform a fixred number of swap moves as described

above, then the distribution of the draw remains equal to the uniform distribution U.

Proof. First note that the proposed swaps are symmetric, since making the same swap
twice is equivalent to not changing at all. Furthermore, they are accepted if the swapped

draw is still valid, otherwise they are rejected. It follows that the swap moves correspond
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to a Metropolis algorithm [17] with stationary distribution U. Hence, U is a stationary
distribution for the Markov chain corresponding to this method, i.e. this method induces a
Markov chain Monte Carlo (MCMC) algorithm [3] which preserves the distribution U as it
runs. Hence, the overall distribution of the group assignment remains uniform no matter

how many swap moves are attempted. [ |

The swap moves used by this method can easily be performed manually, by choosing pairs
of teams by drawing balls from bowls, and checking directly if any geographic constraints
would be violated by swapping them. Unlike the FIFA Sequential Draw of Section 2.2, there
are no subsequent conflicts, just immediate conflicts, so they can be checked very easily.

As more swaps are performed, the overall group assignment continues to change randomly;,
in unexpected and entertaining ways which could make for an exciting spectacle. If desired, a
large number of initial swaps could be performed quickly by a computer. Then, a certain fixed
number of final swaps could be performed manually, by physically selecting balls from urns to
determine which two teams are selected next for possible swap. The final assignment would
then be whatever configuration remains after the final manual swap has been performed.

An interactive simulation of this method is available at [18].

5. A Multiple-Balls Solution.

We now investigate how to generalise the multiple-ball method introduced in Section 3.1
to a full World Cup draw.

This method fills in the groups one team at a time. At each step, the computer generates
a collection of balls corresponding to all the teams who could potentially occupy the next
spot. One of those balls is then chosen uniformly at random, and that team is placed in the
next spot. Once all spots are filled, it provides a complete group draw.

Recall that, for this method to generate the uniform distribution U, the next team needs

12



to be selected from its correct conditional probability according to U. That is, given a
partial draw, if n; is the number of ways of completing the draw which put team j in the
next position, then we should select team j with probability proportional to n;.

This approach immediately presents several challenges. How could we compute the n;
values, or at least the corresponding probabilities p; = n; / >-.n;?7 And even if we knew
the p;, how could we sample with probabilities proportional to them, in a practical way
without needing a massive collection of ), n; different balls? We first consider the second
problem, of sampling with probabilities p; (Section 5.1). We then explain how it suffices to
use estimates of the p;, so that they do not need to be computed analytically (Section 5.2).

This leads to a practical algorithm for conducting the draws (Section 5.3).

5.1. Discrete Random Rational Simulation.

Consider the problem of simulating a discrete random event from J possible values with
given non-negative probabilities p;,...,p; summing to 1. Call this distribution D. We
wish to sample from D using a rational simulation algorithm, i.e. select some small non-
negative integer number m; of balls representing each value j, and then draw each ball with
probability 1/M where M = Z;le m;.

Now, if the p; were small integer multiples of each other, then this would be easy. For
example, if p; = 1/2, p» = 1/3, and p3 = 1/6, then we could choose m; = 3, my = 2,
and mz = 1, and then drawing uniformly at random from the 3 4+ 2 + 1 = 6 balls would
accomplish our task. However, we do not wish to assume that the p; are rationally related,
and we want the total number of balls M to remain moderate even if the ratios of the p; have
no simple fractional form. We therefore propose the following algorithm. (Our solution uses
the stratified sampling strategy common in Sequential Monte Carlo [15, 8]. Other resampling

strategies could also be used; see [6] for a discussion of options.)

1. Let M = [max{(1/p;) : p; > 0}] be the ceiling of the reciprocals of the non-zero p;.

13



2. Set r; = M p;, for 1 < j < J. (Note that our choice of M ensures that r; > 1 for

each j with p; > 0, which guarantees at least one ball of type j below.)
3. For each 1 < j < J, place a; := [r;] balls of type j into the bowl.

4. Set u; =r;—a;, and v; = ZZZI up for 1 < j < J, with vg = 0. Also set K = v;. (Thus

K=3uj=>%r— > ;a;=M—3%;a; which is a non-negative integer.)
5. Simulate independent uniform random variables Uy, . .., Ux with U; ~ Uniform[i—1, 7).

6. For each 1 < j < J, let b; = #{i : U; € [vj_1,v;)} be the number of random variables
U; which lie in the interval [v;_1, v;), and add b; additional balls of type j to the bowl.
(Note that we must have 0 < b; <2, and } ;b; = K = M — . a;. Furthermore, the

total number of balls of type j is m; = a; +b;, so the total number of balls in the bowl
is ijj ZZjaj+Zjbj :Zjaj+(M_Zjaj) =M.)

7. Select a ball uniformly at random from the M balls in the bowl.

Proposition 2 Given a collection py,...,p; of non-negative probabilities summing to 1, the

above procedure selects a ball of type j with probability p;.

Proof. The interval [v;_y,v;) has length v; — v;_; = u; < 1. If it lies entirely inside an
interval [i — 1,4), then P(U; € [vj_1,v;)) = u;, so E(b;) := E[#{i : U; € [vj_1,v;)}] = u;.
Or, if there is an integer ¢ with i — 2 < v;_y <i—1 < v; <1, then P(U;—1 € [vj_1,75)) =
(i — 1) — vj_1 and P(U; € [vj_1,v;)) = v; — (i — 1), so we still have E(b;) := E[#{i : U; €
[vj—1,v;)}] = (i = 1) —vj-1 +v; — (i — 1) = u;. Hence, in any case, E(b;) = u;, whence
E(m;) = a;+u; = a;+(r; —a;) = r; = Mp;. That is, the expected number of balls of type j
is proportional to p;. Hence, the probability that a ball drawn uniformly at random will be
of type j is also proportional to p;. Then, since ) b =1, this probability is actually equal

to pj, as claimed. |

14



5.2. Estimating the Probabilities.

To use the previous algorithm for group draws would require that we know the conditional
probabilities p; = n; / >, n; for the next team to be chosen in a partially-completed group
draw, where n; is the number of ways of completing the draw with team j in the next
position.

Now, it might perhaps be possible to compute the n; directly. We first observe that
the number of possible completions depends only on the geographic region match-ups of the
various teams, not on the actual team names. So, in the 2022 FIFA World Cup as described
in Section 1.1, Pot 1 can be distributed arbitrarily without affecting the subsequent ;.
Then, all we need to know about the Pot 2 teams is how many Eu teams were put in the
same group as a Eu team from Pot 1, whether the two NA teams were put with Eu or As
or SA teams, and so on. This leads to cascading combinatorial counts for the numbers of
ways of putting different regions into different positions in the draw. Then, multiplying by
corresponding factorials gives the numbers of ways of placing actual teams into the draw.

Such combinatorial problems can eventually be solved. However, they quickly become
rather complicated and messy. Furthermore, they have to be re-computed for each possible
partial draw, and the calculations are entirely different for different regional distributions of
the teams in each pot. So, this does not appear to be a feasible way of proceeding.

Fortunately, there is a practical alternative. Proposition 2 remains true if the above

algorithm instead used values p; which were unbiased estimates of the p;. That is:

Proposition 3 Given a collection py,...,p; of non-negative unbiased estimators summing
to 1, with E(p;) = p;, if we replace p; by p; throughout in the above procedure, then it will

still select a ball of type j with probability p;.

Proof. Conditional on the values of the estimators p;, the proof of Proposition 2 shows
that the probability of selecting a ball of type j is equal to p;. Hence, taking expectations

over the pj, it follows that the probability that the algorithm using the estimators p; will
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select a ball of type j is given by E(p;) = p;, as claimed. [ |

Remark. The approach of using an estimator p; for simulation, without knowing the true
value p; is the defining feature of a collection of simulation techniques known as retrospective
sampling, see [1]. However, our use of these methods here is rather different from those in the
literature which have focused largely on Bayesian inference and exact diffusion simulation

problems.

The advantage of Proposition 3 is that there is a natural way to estimate the p; in an
unbiased way: classical Monte Carlo samples. That is, given a partial draw, we can generate
a large number N of valid draw completions using a Rejection Sampler similar to Section 2.1
above. (In fact it is even easier, since part of the draw is already chosen and does not need
to be sampled.) Then, we can estimate p; by the fraction of those valid draw completions
which have team j in the next position. This gives a good unbiased estimator p; of the true
conditional probability p; that team j would be placed in the next position according to the
uniform distribution U. That provides the final piece of the puzzle for us to produce an

effective Multiple-Balls uniform draw sample, which we now present.

5.3. Generating Draws with Multiple Balls.

Combining the previous ideas together gives the following algorithm for choosing the team
in the next position of a uniform group draw with distribution U, by drawing uniformly at

random from a modest number of balls, as follows:

1. Select a positive integer valued algorithm parameter N.

2. Simulate N different uniformly-distributed completions of the current partial draw,

using a Rejection Sampler.
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3. For each team j, let n; be the number of such completions which have team j in the

next position, and set p; = n;/N.
4. Let M = [max{(1/p;) : p; > 0}] be the ceiling of the reciprocals of the non-zero p;.
5. Set r; = M p;, for 1 < j < J. (So, r; > 1 whenever n; > 0.)
6. For each 1 < j < J, place a; := |r;| balls of type j into the bowl.
7. Set uj =r; —a;, and v; = Z?:fdf for 1 < j < J, with vg = 0. Also set K = v;.
8. Simulate independent uniform random variables Uy, . .., Uk with U; ~ Uniform[i—1, 7).

9. For each 1 < j < J, let b; = #{i: U; € [vj_1,v;)} be the number of random variables
U; which lie in the interval [v;_1, v;), and add b; additional balls of type j to the bowl

(so the total number of balls of type j is m; = a; + b;).

10. Select a ball uniformly at random from the M balls in the bowl.

Then, it follows from Proposition 3 that:

Proposition 4 If the above procedure is used sequentially for each position of a group draw,
then the final group draw will have distribution U, i.e. will be equally likely to be any of the

potential valid draws.
An interactive simulation of this group draw generation method is available at [18].

Remark. The above procedure can be improved in a few minor ways. For example, the
true conditional probabilities p; must be the same for all teams in the same geographical
region, so it is possible after step 3 to replace each p; by the average of the p; over all teams
in the same region as team j. Also, if it happens after step 9 that the final numbers of balls
m; have a non-trivial common factor, i.e. ged{m;} > 1, then each m; can be divided by this

common factor to produce a simpler draw which still maintains the same probabilities.
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6. A Multiple-Rejections Solution.

Finally, we present a somewhat different solution, which still selects the teams sequentially
one position at a time, and still uses uniform draws from bowls with modest-sized numbers
of balls representing the different teams, and still produces a completely uniform valid draw
having distribution U, but with details which are somewhat different as we now describe.

Given a partial draw, suppose we know the number n; of valid ways of completing the
draw with team j in the next position. In terms of this, let 7 be the set of all teams with
n; > 0, and set Ny, = maxjern;. Then, for each team j € T, we sample a geometric
random variable G; ~ Geometric(n;/nmq,). (The G; could be produced automatically by a
computer in advance.) Thus, G; > 1. Also, if nj = Nyes, then G; = 1. Furthermore, if the
n; are all roughly equal, then most (if not all) of the G will be equal to 1.

Given these G; values, the selection process proceeds as follows:

1. Choose one of the teams j € 7, uniformly at random (e.g. from balls in a bowl).

2. If team j has now been chosen a total of G; times, then select team j for the next

position in the draw.

3. Otherwise, return to step 1 and again choose a team uniformly at random.

In this way, the above procedure produces a “race” in which the different teams are each
trying to be the first to be chosen G; times. Eventually one team will be chosen G times,
and will then be selected for the next position in the draw.

The usefulness of this procedure is given by:

Proposition 5 If the above procedure is used sequentially for each position of a group draw,
then the final group draw will have distribution U, i.e. will be equally likely to be any of the

potential valid draws.
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Proof. It suffices to show that each new position of the draw is filled with the correct
conditional probability according to U. This follows because the above procedure is actually
a way of carrying out a corresponding Rejection Sampler. Indeed, consider a Rejection Sam-
pler with proposal distribution which is uniform on 7, with acceptance probability n;/nmaes
for each team j. Then each choice of team in step 1 corresponds to one proposal from the
Rejection Sampler. And, G corresponds to the number of times that team j must be pro-
posed before it is finally accepted. Hence, team j being the first to be chosen G; times is
precisely equivalent to team j being the team selected by a Rejection Sampler with target

probabilities proportional to nj/nma,, i.e. proportional to n;. The result follows. [

Although this multiple-rejections solution produces a valid uniform draw, it requires
knowledge of the actual n; values, which might be difficult in practice (as discussed in
Section 5.2 above). Hence, for actual group draws, we believe that the methods of Sections 4

and 5 above are preferable.

7. Discussion.

This paper has considered the challenge of designing football group draw mechanisms
which have the uniform distribution over all valid draw assignments, but are also entertain-
ing, practical, and transparent. We have explained (Section 2) how to simulate the FIFA
Sequential Draw method, to compute the non-uniformity of its draws by comparison to
a uniform Rejection Sampler. We have then proposed two practical methods (Sections 4
and 5) of achieving the uniform distribution while still using balls and bowls in a way which
is suitable for a televised draw. These two solutions can be tried interactively at [18].

Our approach also has implications for other football draws, such as the upcoming UEFA
(European) tournament in August 2022. UEFA uses a slightly different procedure from FIFA,

first determining the set of teams which are eligible for the next slot and then selecting one
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of them uniformly at random. This procedure, like the FIFA procedure, again leads to non-

uniform draws. In fact, it can be seen as an approximation to a Sequential Monte Carlo

algorithm (e.g. [7]) in which all of the non-zero incremental particle weights are assumed to

be equal. We plan to study the UEFA draw in greater detail in subsequent work.
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