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Abstract

In this thesis, we focus on continuum versions of random walks in random environ-

ments in one spatial dimension; these can be thought of as modelling the trajectory

of a particle in a turbulent fluid. We study the density of a cloud of particles all

moving through the same environment. In Section 1.1, we review random walks in

random environments; in the following sections, we discuss their continuum coun-

terparts and our results for them.
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CHAPTER 1

Introduction

1.1 Random Walks in Random Environments

A random walk in a random environment (RWRE) is simply a random walk whose

transition probabilities are given by an environment consisting of random variables

attached to each point in space and time. We will focus on one-dimensional random

walks in dynamic random environments, that is, random walks on Z with random

transition probabilities that depend on both time and space. We define the random

environment as a family of [0, 1] valued random variables ω = (ωx,t)x,t∈Z, with

law and expectation P, and E respectively. Throughout we will assume that the

environment is independent and identically distributed in time and has a translation

invariant distribution in space, i.e. for ωt := (ωx,t)x∈Z, the random variables (ωt)t∈Z

are i.i.d. and ωt is equal in distribution to (ωx+z,t)x∈Z for any z ∈ Z. The simplest

such setting is where the environment consists of i.i.d. random variables, but we

will also consider the case with spatial correlations that decay with distance.

We then define the random walk in a random environment via the transition prob-

abilities:

Pω(X(t+ 1) = x+ 1| X(t) = x) = ωx,t;

Pω(X(t+ 1) = x− 1| X(t) = x) = 1− ωx,t.

Where Pω and Eω denote, respectively, the law of the RWRE conditional on the
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environment and its expectation. By considering the random transition probabilities

Pω(Xt = y| X0 = x), we can also consider this model as describing how a cloud

of particles is spread through a turbulent fluid after time t. If P(ωx,t ∈ {0, 1}) < 1

then a cluster of particles can break apart, representing the individual particles’

independent molecular diffusivity.

Much of the previous work on random walks in random environments has focused

on the case where the environment is static, that is, ωt is constant in t, as opposed

to the case we consider, where the environment is dynamic. Many of the results do

not apply in our case, as they require an ellipticity condition on the environment,

more precisely they require an ε > 0 such that Pω(Xt+1 = x+ v|Xt = x) > ε for all

x and v with |v| = 1. Whilst the process (t,Xt) is a random walk in a static random

environment on Z2, the ellipticity assumption is clearly not satisfied. However,

several large deviation results exist, for example, [RASY11] gives a quenched large

deviation principle for a more general class of RWRE covering the case considered

here and [RASY16], by the same authors, provide formulae for both the averaged and

quenched large deviation principles under the same assumptions on the environment

we have made here: i.i.d. in time and translation invariant in space.

An important idea for studying the random walks in random environments we are

considering are the n-point motions, we run n random walks independently through

a sampling of the environment, and then average out the environment; this breaks

the particles’ independence. That is, if X(t) = (X1(t), ..., Xn(t)) is the n-point

motion then

P(X(t+ 1) = y|X(t) = x) = E

[
n∏
i=1

Pω(Xi(t+ 1) = yi|Xi(t) = xi)

]
.

Alternatively we can view the n-point motions as describing the behaviour of n

particles thrown into the fluid. The n-point motions have a natural consistency

property: any k coordinates of the n point motion have the same distribution as

the k-point motion; they are also Markov processes because of our assumption that

the environment is independent in time. The individual coordinates of the n-point

motions behave as independent simple random walks on Z when far enough apart.

However, when they are close enough to see correlated parts of the environment

they have an interaction. In the case where the ωx,t are i.i.d., the probability that

a cluster of n particles in the same location all move upwards is greater than the

probability they all move up when in distinct locations. This can be seen directly

by applying Jensen’s inequality. The probability of n particles all moving up when

in the same location is simply E[ωn], where ω is a copy of an environment variable.
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Thus, as a consequence of Jensen’s inequality we have the desired inequality,

E[ωn] ≥ E[ω]n.

The right hand side is the probability n particles all move up, given they are all in

distinct locations. Similar behaviour occurs when the environment has spatial corre-

lations that decay rapidly with distance. However, the interactions no longer simply

occur when particles meet, but when they become close enough to see correlated

parts of the environment. A group of particles situated at the same site, x, at time

t can break into at most two groups. For a general environment, the probability of

a group of n particles breaking into two groups of size k and l, with the k moving

to x+ 1 and the l to x− 1, is

E[ωkx,t(1− ωx,t)l].

Hence, the distribution of ω can be viewed as controlling the rate at which groups

of particles break up and the size of the groups they tend to break into. When

the environment has spatial correlations of some finite length similar behaviour is

observed, however the particles no longer need to meet to interact.

As an example, we can consider the case where the environment random variables

are chosen to be i.i.d. in space and time with P(ωx,t ∈ {0, 1}) = 1. In this case,

the n-point motions become coalescing simple symmetric random walks, and their

behaviour in a given realisation of the environment is deterministic; from the particle

point of view, this means there is no molecular diffusivity. The environment can be

viewed as a discretisation of the Brownian web, as described in [SSS16], a collection

of paths of coalescing Brownian motions starting from every point in space and time.

Another example, at the opposite end of the scale in terms of environment strength,

is given by taking the environment to be deterministic and given by ωt,x = 1
2 for

every t and x. The n-point motions are then simply independent simple symmetric

random walks.

An important example of RWREs is the Beta random walk in a random environment

(Beta RWRE), where the ωt,x are i.i.d. and have a Beta distribution. This case is

studied by Barraquand and Corwin in [BC17], where they find Fredholm determi-

nant expressions for the cumulative distribution of the n-point motions. This was

done by showing an equality in law between the partition functions of an exactly

solvable polymer model, and the cumulative probabilities of the Beta random walk

in a random environment. A difference equation for the moments of said partition

functions (at fixed times but mixed in space) was then solved via the Bethe ansatz,
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the proof using a non-commutative binomial formula from [Pov13]. Using their for-

mulae for the cumulative distributions, Barraquand and Corwin showed that the

Beta RWRE is in the KPZ universality class. Additionally, Balázs, Rassoul-Agha

and Seppäläinen showed in [BRAS19] that conditioning the Beta RWRE to escape

at an atypical velocity led to a wandering exponent of 2
3 in agreement with the

characteristic scaling of the KPZ universality class. After a brief review of the KPZ

equation and its universality class, we discuss this and other relevant results in the

next section.

1.2 The KPZ equation and Universality

The stochastic heat equation is the stochastic partial differential equation

∂tz =
ν

2
∆z + κzẆ , (1.2.1)

driven by a space-time white noise Ẇ . The logarithm of the stochastic heat equation,

h = ν
2δ log z, is the Cole-Hopf solution to the KPZ equation:

∂th =
ν

2
∆h+ δ(∂xh)2 + κẆ . (1.2.2)

The KPZ equation is the canonical model for random surface growth and lies at the

centre of the KPZ universality class [KPZ86], a class of models with fluctuations

given by the Tracy-Widom distributions of random matrix theory and common

scaling exponents, for more detailed information on the KPZ universality class see

the survey articles [Cor12], [Qua11]. The KPZ universality class is expected to

contain evolving interface models whose dynamics, like those of the KPZ equation

itself, have the following three features: smoothing, slope dependent growth and a

space-time uncorrelated driving noise. This is known as strong KPZ universality to

distinguish it from the universality of the KPZ equation itself, which is known as

weak KPZ universality. It has been shown that a large class of continuous surface

growth models lie in the weak KPZ universality class [HQ18]. In addition, it has

been shown that certain observables of some discrete models converge to those of

the KPZ equation, via convergence to the stochastic heat equation. The earliest

such result was for the height function of the weakly asymmetric exclusion process

[BG97]. More recently, convergence to the KPZ equation has been shown for the

free energy of directed random polymers in the intermediate disorder limit [AKQ14].

Following this result, weak KPZ universality has been shown for a generalisation of

ASEP [CST18], a class of weakly asymmetric non-simple exclusion processes [DT16],

the Higher-Spin Exclusion process [CT17] and the related Stochastic 6-vertex model
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[CGST20]. Most relevant for us, in [CG16] Corwin and Gu showed that the transition

probabilities for the random walk in a random environment evaluated in the large

deviation regime, after rescaling, converge to the solution to the stochastic heat

equation.

The models mentioned in the above paragraph rely on discrete versions of the Cole-

Hopf transform (called Gärtner transforms) for their proofs so that they may instead

show convergence towards the much more manageable stochastic heat equation. An-

other approach, which avoids the need for a Gärtner transform, is to show conver-

gence to a so called energy solution of the KPZ equation, as was used in [GJ10]

for weakly asymmetric, conservative particle systems with respect to the stationary

states. The existence and uniqueness of energy solutions of the KPZ equation were

shown in [GP15]; in addition, the authors showed that the energy solution to the

KPZ equation differs from the Cole-Hopf solution by a linear drift term.

Returning to random walks in random environments, Barraquand and Corwin [BC17]

showed that when the transition probabilities are chosen to be Beta distributed, the

model becomes exactly solvable. They then used their formulae to show that the tail

probabilities of the Beta Random walk in a random environment have Tracy-Widom

GUE fluctuations of size N1/3, placing the model in the strong KPZ universality

class. Furthermore, the same result is expected to hold for the density of the tran-

sition probabilities evaluated at a point in the tail, not just for the cumulative tail

probabilities [TLD16].

In the next sections, we will introduce the continuum analogues of random walks

in random environments. We are interested in two cases: the first is where the

environment variables are independent and identically distributed, the second is

where the environment variables have correlations that decay rapidly with distance.

To get interesting behaviours in the diffusive scaling limit, we need to adjust the

distributions of the environment as we scale; in both cases, diffusive scaling dampens

the effects of the environment, meaning we need to reinforce it. There are two ways

to strengthen the effect of the environment: the first is to make the environment

random variables closer to being Bernoulli 0, 1 random variables so that the n-point

motions behave like coalescing random walks with a small probability of breaking

apart; the second is to increase the distance at which the environment variables

remain correlated so that the correlation length remains fixed as we diffusively scale.

In the following sections, we will discuss the two cases and outline our results for

them.
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1.3 Sticky Brownian Motions

We will begin by describing Brownian motion with a sticky point at 0 before dis-

cussing Brownian motions with sticky interactions as scaling limits of random walks

in random environments. A Brownian motion with a sticky point at 0 with parame-

ter θ > 0 is a diffusion on R on natural scale with speed measure 2dx+ 2
θδ0(dx).The

process can be constructed from a standard Brownian motion via a time change. Let

(Bt)t≥0 be a standard Brownian motion on R, and (L0
t (B))t≥0 be its local time at

0. Let θ > 0 be a parameter and define the continuous, strictly increasing function

α : R≥0 → R≥0, as follows

α(t) := t+
1

θ
L0
t (B).

The function, α, has a continuous and strictly increasing inverse, α−1. The process

(Xt)t≥0 := (Bα−1(t))t≥0 is called a Brownian motion with a sticky point at 0 with

parameter θ. Because the local time of Brownian motion only increases when the

Brownian motion is at 0, the resulting sticky Brownian motion spends a positive

amount of time at 0. θ determines how sticky the point at 0 is, the larger θ is

the less time the sticky Brownian motion spends at 0, when θ → 0 the behaviour

approaches that of a Brownian motion absorbed at 0. In [Bas14] and [EP14] it was

shown that sticky Brownian motion is the unique weak solution to the following

system of stochastic differential equations.

dXt = 1Xt 6=0dBt,

1Xt=0dt =
1

θ
dL0

t (X).

We are interested in a diffusion in Rn where each coordinate is a Brownian motion,

and the difference between each pair of coordinates is Brownian motion with a

sticky point at 0. Such a process was first defined on the circle using Dirichlet

forms [LJR04b], and they were shown to arise as diffusive scaling limits of the n-

point motions of RWRE on Z/nZ when the random environment consisted of i.i.d.

Beta( θn ,
θ
n) random variables [LJL04]. Later Howitt and Warren [HW09] proved

the following result, which we state in a reformulation proved in [SSS10], giving a

condition for the convergence of the n-point motions of a general RWRE to have

sticky Brownian motion as the diffusive scaling limit.

Theorem 1.3.1. Suppose (X(t))t>0 is the n-point motion of a RWRE, where the

random environment consists of i.i.d. random variables with law µε satisfying the
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following: ∫ 1

0
(2q − 1)µε(dq) = 0,

1

ε
q(1− q)µε(dq) =⇒ ν(dq), as ε→ 0,

where ν is a finite measure on [0, 1]. Then the laws of the processes (εX(ε2t))t≥0

converge weakly to a diffusion we call sticky Brownian motions with characteristic

measure ν.

Howitt and Warren also showed that the sticky Brownian motions with characteris-

tic measure ν exist and are the unique solution to a martingale problem, which we

will state in full in Chapter 2. For the sticky Brownian motions, there is a positive

probability that more than two particles can all meet at the same time, and the

interaction between pairs does not determine the interaction between multiple par-

ticles. Instead, the characteristic measure determines this interaction through the

values θ(k, l) =
∫ 1

0 q
k(1− q)lν(dq) which can be thought of as the rate, in a certain

excursion theoretic sense, at which a cluster of k + l particles breaks up into two

clusters of k and l particles.

Recall that Barraquand and Corwin [BC17] showed that when the environment is

given by i.i.d. random variables with the Beta distribution, the RWRE becomes

exactly solvable using the Bethe ansatz. It is easy to check that if for a θ > 0, µε

is given by the Beta(θε, θε) distribution, Theorem 1.3.1 is satisfied with ν = θ
2dx,

where dx is the Lebesgue measure on [0, 1]. This suggests that the sticky Brownian

motions with characteristic measure θ
2dx should inherit the exact solvability of the

discrete model. In Chapter 2, we first prove an explicit formula for an invariant

measure for an ordered version of the sticky Brownian motions. We then prove an

exact formula for the transition density for the ordered process with respect to the

invariant measure.

Working independently of us, Barraquand and Rychnovsky [BR20] derived exact

formulae for the tail probabilities of the sticky Brownian motions with characteristic

measure θ
2dx by taking appropriate limits of the exact formulae for the Beta RWRE.

Using their formulae, they showed that the tail of the Howitt-Warren flows has

Tracy-Widom GUE fluctuations of size t1/3. Further, they conjectured the tails of

the Howitt-Warren flows converge, as the stickiness is removed and under suitable

rescaling, to the stochastic heat equation, based on the convergence of the moments.

Barraquand and Le Doussal then showed that the same convergence of moments

holds in a moderate deviation regime, distance t
3
4 away from the origin as t→∞,

for a fixed stickiness [BD20].
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In order to state our results, we first must introduce some notation. Let Wn :=

{x ∈ Rn| x1 > x2 > ... > xn} and Wn := {x ∈ Rn| x1 ≥ ... ≥ xn} denote the

principal Weyl chamber and its closure respectively. The images of the principal

Weyl chamber under a permutation are called simply Weyl chambers; however, we

may sometimes refer to the principal Weyl chamber as just the Weyl chamber. Let

Πn denote the collection of ordered partitions, (π1, ..., πk), of {1, .., n} such that if

a ∈ πj , b ∈ πk and j < k, then a < b. That is the elements of the partition each

consist of intervals intersected with Z and are indexed according to the size of their

elements.

To each partition π ∈ Πn, we associate a subset of Wn defined by

Wn
π := {x ∈Wn| xα = xβ if and only if there is a πi ∈ π such that α, β ∈ πi}.

In other words, all the points in Wn whose coordinates are equal if and only if their

indices are in the same element of π. Notice for π = {{1}, ..., {n}}, Wn
π = Wn.

In addition, Wn = ∪π∈ΠnWn
π, and the sets Wn

π are disjoint. There is a natural

continuous bijection Iπ : Wn
π →W|π|, given by Iπ(x) = (xp1 , ..., xp|π|) for any choice

of pi ∈ πi. We can now define a Borel measure on Wn
π as the pushforward of the

Lebesgue measure λ on W|π|, λπ := (Iπ)−1
∗ λ. The measure can be extended to a

Borel measure on Wn via the formula λπ(A) := λπ(A ∩Wn
π).

Definition 1.3.2. For θ > 0 the Borel measure m
(n)
θ on Wn is defined as

m
(n)
θ :=

∑
π∈Πn

θ|π|−n

(∏
πι∈π

1

|πι|

)
λπ.

Suppose θ > 0 and X = (X(t))t≥0 is the process of sticky Brownian motions in

Rn with characteristic measure θ
21[0,1]dx and initial condition x under Px. Then we

define Y = (Y (t))t≥0 as the process obtained by ordering the coordinates of X, i.e.

for each t ≥ 0 Y (t) = (Y 1(t), ..., Y n(t)) = (Xσ(1)(t), ..., Xσ(n)(t)) for some σ ∈ Sn
such that Y 1(t) ≥ ... ≥ Y n(t).

Theorem 1.3.3. For every bounded Lipschitz continuous function f : Wn → R,

x ∈Wn and t > 0

Ex[f(Yt)] =

∫
ut(x, y)f(y)m

(n)
θ (dy).

Where Ex is the expectation under the measure Px and ut : Rn ×Rn → R is defined

8



for each t > 0 by

ut(x, y) :=
1

(2π)n

∫
Rn
e−

1
2
t|k|2

∑
σ∈Sn

eikσ ·(x−yσ)
∏
α<β:

σ(β)<σ(α)

iθ(kσ(α)−kσ(β))+kσ(β)kσ(α)

iθ(kσ(α)−kσ(β))−kσ(β)kσ(α)
dk,

where Sn denotes the group of permutations on {1, ..., n} and kσ = (kσ(1), ..., kσ(n)).

For a fixed characteristic measure ν, the sticky Brownian motions in Rn, for n ∈ N,

form a family of Feller processes. Further, the family is consistent in the following

sense; any k distinct coordinates of the sticky Brownian motions in Rn are equal in

law to the sticky Brownian motions in Rk. In [SSS10] Le Jan and Raimond showed

that any consistent family of Feller processes are the n-point motions of a stochastic

flow of kernels, which is a family of random probability kernels indexed by start and

end times. They are analogous to the random transition probabilities for the RWRE,

and their n-point motions are defined in a similar way to those for RWRE. The flows

corresponding to the sticky Brownian motions are called Howitt-Warren flows, they

are studied in depth in [SSS10] where, among many other results, it is shown that

the sticky Brownian motions can be constructed as processes that are independent

conditional on a random environment. The random environment is constructed from

the Brownian web by marking special points where paths are allowed to branch into

two separate paths; the sticky Brownian motions follow a path in the web until they

meet such a point where they independently choose one of the two possible paths

to follow, in a manner determined by the characteristic measure. Another result

of [SSS10] shows that the Howitt-Warren flows, for deterministic times and a fixed

starting point, are almost surely purely atomic measures. We can use Theorem

1.3.3 to show that in the large time limit, the size of a random atom in the Howitt-

Warren flow behaves as 1√
t

multiplied by an exponential random variable with rate

θ, in Section 2.5.3 we provide further details and a precise statement of this result.

In the next section, we describe the other continuum model we are interested in,

which arises when we consider spatially correlated random environments instead of

i.i.d. ones.

1.4 Brownian Motions with White Noise Drifts

Another interpretation of the random walk, (Xt)t≥0, in a random environment,

ω = (ωx,t)x,t∈Z, is as a random walk with a random velocity. In this setting, we

assume that the environment is independent in time and correlated in space with a

finite correlation length. Clearly Eω[Xt+1 −Xt| Xt = x] = 2ωx,t − 1, we can there-

fore decompose Xt into two components, where one component is mean 0 for each

9



realisation of the environment, and the other is some function of the environment

and the path of X up to time t− 1,

Xt =
t−1∑
k=0

w(k,Xk) + βt.

Here w(t, x) := (2ωx,t − 1) and βt := Xt −
∑t−1

k=0w(k,Xk) so that Eω[βt] = 0

almost surely. It is easy to see that we also have the following equalities holding

almost surely Eω[(βt − βt−1)2| Xt = x] = 1− w(t− 1, x)2 and Eω[(βt − βt−1)w(t−
1, Xt−1)] = 0. Furthermore, the coordinate processes of the n-point motions can

each be decomposed in the same way, and the resulting collection of β processes are

uncorrelated for any realisation of the environment. Below we introduce a continuum

version of this model via an SDE mirroring the above decomposition of the RWRE.

Suppose Wρ is a Gaussian field on R>0 ×R with correlations E[Wρ(s, x)Wρ(t, y)] =

(s∧ t)ρ̃(x− y), where ρ̃ =
∫
ρ(· − y)ρ(y)dy for some symmetric function ρ ∈ C∞c (R)

(C∞c (R) denotes the set of smooth compactly supported functions on R). We con-

sider the SDE

dXt = µWρ(dt,Xt) + σdBt, (1.4.1)

where B is an independent standard Brownian motion on R and µ, σ > 0 are pa-

rameters. Both integrals are to be interpreted in the Itô sense, see [Kun94b] for

definitions, applying Theorem 3.4.1 in [Kun94b] shows the SDE has a unique solu-

tion. Just as in the discrete setting X consists of two components, one representing

the effect of the environment and the other the randomness of the walk itself. Fol-

lowing this analogy, in the continuum version σ2 plays the role of the quantity

1 − E[w(t − 1, x)2], the variance of a single step of β in the discrete version. The

function ρ simply gives the spatial correlation structure of the environment, and we

take Wρ to be Brownian in time to mimic the independence in time of the discrete

environment. The parameter µ controls the strength of the environment; it plays

the role of the quantity E[w(t, x)2]
1
2 in the discrete setting. Note that Xt simply

behaves as a Brownian motion with diffusivity σ2 + µ2ρ̃(0). However, we do get

interesting behaviour when we instead consider the behaviour conditional on the

environment. This behaviour can be studied through the associated stochastic flow

of kernels, (Us,t)s≤t, which can be thought of as the density of an infinite number of

particles in the same environment. (Us,t)s≤t is given by the simple relation

Us,t(x,A) = PB(Xt ∈ A| Xs = x), (1.4.2)
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where PB is the law of the Brownian motion B.

We are interested in the behaviour of large numbers of particles in the same fluid; n

particles are described by taking n solutions to the stochastic differential equation

(1.4.1) with respect to a common Gaussian field but independent Brownian motions.

The resulting process in Rn is the n-point motion of U and can be thought of as

an interacting particle system. Because the correlations of the velocity field are

rapidly decaying in space, the particles behave independently when separated and

then become correlated when close. However, the additional noise provided by B

allows the particles to break apart. The result is a system of particles with an

attractive local interaction; the strength of this interaction is determined by the

molecular diffusivity σ2 and the correlation length of Wρ in space. The longer the

correlation length and the smaller the additional diffusivity, the stronger the effect

of the interaction. It is possible to take σ2 to 0 along with the correlation length

whilst preserving the interaction. The limiting process is given by sticky Brownian

motions with an explicit splitting measure [War15].

The model is an example of the compressible Kraichnan model for turbulence, where

the velocity field is simplified to be white in time; see the review [FGmcV01]. In

our case, we take the spatial correlations to be of short length and smooth in space,

similar to the case considered in [GH04], where the authors showed that removing

the molecular diffusivity, at the same time as reducing the correlation length of the

velocity field, led to sticky interactions between pairs of particles in the limiting

process. For the model we consider, this result was extended to a full description

of the interactions between any number of particles in the limiting process [War15].

This result suggests the convergence of the random transition density associated

with the Brownian motion running through the random drift field W towards a

Howitt-Warren flow. In [DG21], the authors study the same model and show that the

fluctuations of the density of the flow of kernels solve an stochastic partial differential

equation (SPDE). In addition, they show the density is well approximated as t→∞
by the product of the heat kernel and the stationary solution to that SPDE.

We study the fluctuations of the density in the tail of the random transition density,

that is, at a distance t away from the origin. In particular, we will show that

the fluctuations are governed by the KPZ equation when the environment noise is

small. This work was motivated by the non-rigorous arguments in [DT17], as well

as the results for RWRE mentioned in Section 1.2. Further, we conjecture that

the KPZ equation also appears when the independent diffusivity of the particles is

small instead of the environment; in this regime, the behaviour of particles is much

different and closer to that of sticky Brownian motions.
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It is known that the kernels (Us,t)s≤t have continuous densities, u, with respect to

the Lebesgue measure, so that u(s, t;x, y)dy = Us,t(x, dy), [DG21]. Further, the

density solves the following SPDE [LJR04a] [DG21] when the noise is interpreted in

the Itô sense; for an introduction to SPDEs see, [Wal86].

∂tu = ν
2 ∆u− µ∂y

(
uẆρ

)
. (1.4.3)

Here, ν = σ2 + ‖ρ‖22 and Ẇρ is the formal time derivative of Wρ. It should be noted

that, apart from the ‖ρ‖22 term in front of the Laplacian, this SPDE is just the

Fokker-Planck equation for a Brownian motion with diffusivity σ2 moving through

a velocity field Ẇρ. The additional ‖ρ‖22 term acts like an Itô correction to the noise

term and does not have a physical meaning. Indeed, the solution only exists as a

continuous function if σ > 0. If instead σ = 0, the solution to the SDE 1.4.1 is

entirely determined by the environment, and the resulting flow of kernels (1.4.2) is

almost surely for any fixed s, t and x a point mass so that there is a flow of maps

solution to the SDE [LJR04a].

We evaluate u at distances of order λt away from the origin and rescale to define

the tilted kernel v with tilt λ via the formula

v(t, y) = e
λ2

2
νt+λ(y−x)u(0, t;x, y + λνt). (1.4.4)

Then function v satisfies the SPDE

∂tv = ν
2 ∆v + λµvẆρ − µ∂y

(
uẆρ

)
. (1.4.5)

This SPDE is a perturbation of the stochastic heat equation (1.2.1), and it suggests

that by choosing ρ as an approximation to a delta function, and µ = 1
λ to be small,

we can recover the stochastic heat equation itself as a limit. Indeed, the SPDE

suggests that the stochastic heat equation should arise under these choices, even if

we also take σ to 0. This turns out to be misleading; in the following subsection, we

will discuss the various scaling regimes and our results for them.

1.4.1 Fluctuations in the Tail

First, we introduce a new parameter controlling the correlation length of the Gaus-

sian field. Suppose ρ ∈ C∞c (R) is non-negative and symmetric, then for n ∈ N,

let ρn := nρ(n·) and Wn := Wρn . The variable n governs the correlation length

of the underlying Gaussian field, and µ > 0 is an additional parameter governing

the strength of the environment on the particle. As before, we take the molecular

diffusivity to simply be some σ > 0 and the tilt to be λ > 0.
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Remark 1.4.1. Instead of changing the underlying Gaussian field by varying n,

we can diffusively rescale the density. For a set of parameters (σ, µ, ρ), the diffu-

sively rescaled density u(ε)(s, t;x, y) = 1
εu( s

ε2
, t
ε2

; xε ,
y
ε ) is equal in distribution to the

density with parameters (σ,
√
εµ, ε−1ρ(ε−1·)). We can also diffusively rescale the

tilted density (1.4.4) in the same way, which changes the parameters (σ, µ, ρ, λ) to

(σ,
√
εµ, ε−1ρ(ε−1·), ε−1λ).

Apart from looking at the SPDE (1.4.5), we can also use moment calculations using

the n-point motions to guess the right choice of scalings. We will discuss the moment

calculations in further detail in Chapter 3. For now, we describe the scaling regimes

under which we get convergence of the moments of v towards the moments of a

stochastic heat equation. To begin, we choose all parameters to depend on n, for

the tilt we set λ = nβ where β > 0, for the remaining parameters we set nµ2

σ2 = n2α

for some α ∈ R. The quantity nµ2

σ2 can be thought of as a measure of the interaction

strength between the n-point motions; it is the ratio between the diffusivity con-

tributed by the environment and the molecular diffusivity. Recall that each particle

has its own independent molecular diffusivity but moves through the same environ-

ment. We add the condition that if α ≥ 0, then nµ2 is held constant, and if α ≤ 0,

then σ is held constant. The result is figure (1.1), for which the line represents the

choices of parameters for which we conjecture the stochastic heat equation appears

as the limit of the tilted kernels, defined by 1.4.4, as n → ∞ with the preceding

choice of parameters.

Heat Equation Sticky Flow

SHE

Figure 1.1: Above the line, we expect the limit to be 0 in probability. Below the
line, the limit is the heat equation. On the β = 0 axis the limit is a sticky flow for
α = 1, for α > 1 it is the Arratia flow.

Below, we summarise the distinct regimes in which we conjecture the appearance
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of the stochastic heat equation based on our above moment calculations. We also

state the conjectured coefficients of the limiting stochastic heat equations, using the

parameter labels as in (1.2.1).

1. Weak environment, where we have nµ(n)2 vanishing in the limit and σ(n)

is constant, so α < 0 in figure 3.1. We also take λ(n) = µ(n)−1, so that

β = 1
2 − α. This regime agrees with the scalings suggested by the SPDE; the

coefficients for the SHE are ν = σ2 and κ = 1.

2. Weak diffusivity, where we have nµ(n)2 constant and σ(n) vanishing in the

limit, so we have µ(n) = n−
1
2 and α > 0 in figure 3.1. Here we require λ(n)2

nσ(n) to

converge, which disagrees with the scalings suggested by the SPDE, so we set

λ(n) = nσ(n) = n
1−α

2 . Hence, we have β = 1−α
2 in Figure 3.1; the coefficients

for the SHE are ν = ρ̃(0) and κ =
(
π‖ρ‖22
‖ρ′‖2

) 1
2
. Since we need λ(n) → ∞ as

n→∞, we require α ∈ (0, 1). Note that for α = 1 the limit is a sticky flow.

3. Fixed diffusivity and environment, where nµ(n)2 and σ(n) are held con-

stant, i.e. µ(n) = n−
1
2 and σ(n) = σ > 0, we also take λ(n) = µ(n)−1 = n

1
2 .

In the diagram, this is the green dot where the line hits the β axis, when

α = 0. This regime agrees with the scalings suggested by the SPDE, however

the limiting SHE disagrees, instead of κ = 1, the limiting SHE has κ > 1.

In Chapter 3, we discuss the weak environment regime. In this setting, we can use

an explicit formula for the chaos expansion of the density u from [LJR04a] to prove

convergence when α < −1. We get the following result for the tilted densities (1.4.4)

with choice of parameters (σ, µ, ρ, λ) = (σ, n−
1
2
−α, ρn, n

1
2
−α) for α < −1.

Theorem 1.4.2. Let zx ∈ C((0, T );C(R)) 1 be the solution to the stochastic heat

equation (3.1.19) with diffusivity ν, driving noise W defined on the probability space

(Ω,A,P) and initial condition δ(x− y), where x is taken as a constant and y is the

space variable. Then for every f ∈ C∞c (R) and t > 0∫
v(t, x, y)f(y)dy →

∫
zx(t, y)f(y)dy, in L2(Ω).

In the weak diffusivity regime, we can no longer use the chaos expansion, as the

limiting stochastic heat equation is not driven by the same noise. Because of this,

we need a way of determining the solution to the stochastic heat equation without

reference to the underlying noise. To achieve this, we would like to use the martingale

1Where, for topological spaces X and Y , the space C(X;Y ) denotes the space of continuous
functions from X to Y endowed with the topology of uniform convergence on compact sets. As
before C(R) is the space of continuous functions on R and we also endow it with the topology of
uniform convergence on compact sets.
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problem, which characterises the solution to the stochastic heat equation, leading

to a second problem. The martingale problem for the stochastic heat equation

requires the squaring of the solution. However, when σ → 0, the behaviour of the

densities is so bad that their square diverges. This is not that surprising as we

only expect the densities to converge weakly, but it does stop us from showing limit

points satisfy the martingale problem directly. For this reason, instead of working

with the density itself, we work with a smoothed version of the density, removing

the smoothing slowly enough that the square of the smoothed density remains well

behaved. Pursuing this, we get the following result. Once again vn is the tilted

density, this time with parameters (σ, µ, ρ, λ) = (n−α, n−
1
2 , ρn, n

1−α
2 ) for α ∈ (0, 1),

and ψ : R→ R is assumed to be a mollifier.

Theorem 1.4.3. Suppose m = m(n) is a real valued sequence such that m(n) →
∞ as n → ∞ and m(n)n−

1
2 → 0 as n → ∞, and there is a weakly convergent

subsequence of the sequence of random variables (vn(·) ∗ ψm)∞n=1 ⊂ C((0, T ), C(R))

with limit v such that there is a constant C > 0 with E[v(t, y)2] ≤ Cpt(x − y) for

every t > 0 and y ∈ R, where pνt denotes the heat kernel with diffusivity ν. Then

v is equal in distribution to the solution to the stochastic heat equation, with initial

condition δx:

∂tzx =
‖ρ‖22

2
∆zx +

√
π‖ρ‖2
‖ρ′‖1/22

zxẆ . (1.4.6)

This will be proved in Chapter 4. Note that this does not show that the sequence vn∗
ψm is convergent in C((0, T ), C(R)), only that all limit points satisfy the stochastic

heat equation. Proving convergence requires we prove tightness of the sequence of

smoothed densities in the appropriate space, which we have not shown; however,

this would be a natural next step for further work.
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CHAPTER 2

The Bethe Ansatz for Sticky Brownian Motions

2.1 Introduction

In this chapter, we study the sticky Brownian motions introduced in Section 1.3. The

process consisting of sticky Brownian motions is a diffusion in Rn, the coordinates

of which evolve as independent one-dimensional Brownian motions when they are

distinct and have an attractive, so called sticky interaction when they are equal. The

diffusion can be interpreted as the evolving positions of n particles on the real line,

which interact when they meet. In particular, the difference between two coordinates

is described by a one-dimensional sticky Brownian motion, recently studied as the

weak solution to an SDE in [Bas14], and [EP14]. Recall from Section 1.3 that sticky

Brownian motion with parameter θ > 0 is a diffusion in R on natural scale with

speed measure m(dx) = 2dx + 2
θ δ0(dx). The diffusion in Rn can visit the diagonal

{x ∈ Rn| x1 = ... = xn} for a set of times with positive Lebesgue measure, quite

unlike a standard Brownian motion in Rn. The interaction between coordinates at

such times is not determined solely by specifying the parameter θ describing the

stickiness. It was shown in [HW09] that the possible interactions can be specified

by a finite measure on [0, 1] called the characteristic, or splitting, measure. The

diffusions are consistent, in that for any k < n, any k coordinates of the sticky

Brownian motions in Rn with characteristic measure ν, are sticky Brownian motions

in Rk with the same characteristic measure, ν. An example of such a diffusion was

originally investigated by Le Jan and Raimond [LJR04b] using Dirichlet forms (on
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the torus rather than Euclidean space), and then the more general case was studied

by Howitt and Warren [HW09] via a martingale problem which we describe later.

The consistency property means that we can also consider such systems of sticky

Brownian motions to be the n-point motions of a stochastic flow of kernels. A flow

of kernels (Ks,t(x, dy))s≤t is essentially a random family of transition probability

measures for a Markov process. Le Jan and Raimond introduced flows of kernels

in [LJR04a] as a generalisation of flows of maps to study stationary evolutions of

turbulent fluids. The n-point motions can then be thought of as describing the

behaviour of n particles thrown into the fluid. Stochastic flows of kernels whose n-

point motions are described by sticky Brownian motions are called Howitt-Warren

flows in [SSS10], where their properties are studied in detail. As discussed in the

previous chapter, sticky behaviour arises in certain limits of the Kraichnan model

for turbulent advection, as shown by Gawedzki and Horvai, [GH04]. Warren then

proved the convergence of n particles towards sticky Brownian motions with an

explicit characteristic measure [War15]. Sun, Swart and Schertzer studied Howitt-

Warren flows, constructing them directly as flows of mass in the Brownian web

[SSS10] by marking special separation points and attaching extra random variables

to them that tells the mass following a path in the web how to split. The law of these

additional random variables is described by the characteristic measure. Amongst

other results, they showed that the Howitt-Warren flows are almost surely purely

atomic at deterministic times.

In this chapter, we will derive the Kolmogorov backwards equation for the sticky

Brownian motions with ordered coordinates from the martingale problem character-

isation. In the case that the characteristic measure is uniform, we apply the Bethe

ansatz to find an exact formula for the transition density of this process. The choice

of uniform characteristic measure seems to be essential, only in this case is the dif-

fusion exactly solvable by the Bethe ansatz. Further, this seems to be the only case

the diffusion is reversible, at least with respect to a measure we can write down ex-

plicitly. Note that we are finding the transition density for the process with ordered

coordinates. Whilst it is possible to retrieve the transition density of the original

process for two particles, it is unclear if it is possible for an arbitrary number of par-

ticles. Our method is similar to that used by Tracy and Widom for the delta Bose

gas [TW08]; however, the importance of interactions between more than two parti-

cles adds significant complexity. A discussed in section 1.3, sticky Brownian motions

with a uniform characteristic measure arise as the scaling limit of the exactly solv-

able random walk in a Beta random environment model. The Beta RWRE has close

connections to the KPZ universality class, see [BC17] and [BRAS19]. Barraquand

and Rychnovsky [BR20], working independently of us, derived exact solutions for
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the point to half-line probabilities of sticky Brownian motions with uniform char-

acteristic measures by taking limits of the exact formulae for the Beta RWRE. An

asymptotic analysis then led to the discovery of GUE Tracy-Widom fluctuations in

the large deviations of sticky Brownian motions.

The main part of this chapter will be the proof of Theorem 1.3.3, that sticky Brown-

ian motions are exactly solvable via Bethe ansatz. Let us briefly sketch the method,

which is based on [TW08]. Let (Yt)t≥0 be the ordered sticky Brownian motions

discussed above Theorem 1.3.3; we begin by showing that if u satisfies the below

PDE, then
∫
R ut(x, y)f(y)dy = Ex[f(Yt)].

∂ut
∂t = 1

2∆ut, for all x ∈Wn;

θ
(
∂u
∂xb
− ∂u

∂xa

)
= (b− a) ∂2u

∂xa∂xb
, when xa = xb, for some a < b.

(2.1.1)

We then show that the PDE can be solved with the Bethe ansatz, which we construct

by first considering the n = 2 problem. Using a similar idea to how the transition

density for a reflected Brownian motion in one dimension can be found, we try to

combine solutions with permuted coordinates so that the boundary conditions are

satisfied.

ut(x, y) =
1

(2π)n

∫
R2

e−
1
2
t|k|2

(
A(k)eik·(x−y) +B(k)eik·((x2,x1)−y)

)
dk. (2.1.2)

Notice that when x1 = x2, the exponential terms become equal. Thus, the boundary

conditions will be satisfied if we have

(iθ(k2 − k1) + k1k2)A(k) + (iθ(k1 − k2) + k1k2)B(k) = 0.

It turns out that setting A(k) = 1 and B(k) = iθ(k2−k1)+k1k2

iθ(k2−k1)−k1k2
ensures the correct

initial condition is satisfied. The Bethe ansatz then suggests we guess the following

solution for general n:

ut(x, y) :=
1

(2π)n

∫
Rn
e−

1
2
t|k|2

∑
σ∈Sn

eikσ ·(x−yσ)
∏
α<β:

σ(β)<σ(α)

iθ(kσ(α)−kσ(β))+kσ(β)kσ(α)

iθ(kσ(α)−kσ(β))−kσ(β)kσ(α)
dk,

where Sn denotes the group of permutations on {1, ..., n} and kσ = (kσ(1), ..., kσ(n)).

The construction ensures that the boundary conditions for xa = xa+1 are always

satisfied; in Section 2.4.2, we will prove the remaining conditions. Next, we make

some remarks on the Bethe ansatz.

Remark 2.1.1. Note that the function ut is well defined (the integral always con-
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verges), because for every t > 0, x, y, k ∈ Rn, and every permutation σ ∈ Sn∣∣∣∣∣∣∣∣e
ikσ ·(x−yσ)

∏
α<β:

σ(β)<σ(α)

iθ(kσ(α)−kσ(β))+kσ(β)kσ(α)

iθ(kσ(α)−kσ(β))−kσ(β)kσ(α)

∣∣∣∣∣∣∣∣ = 1.

The function above is not continuous at points where there are distinct α, β such that

kα = kβ = 0 (where the denominator vanishes), but since the modulus is constant the

value can simply chosen to be 1 here, and it does not affect the integral because such

points have measure zero. It is easily seen that we can pass derivatives under the

integral, and thus we have ut(·, y) ∈ C2
0 (Rn) for all t > 0 and y ∈ Rn. In particular,

ut(·, y) ∈ C2
0 (Wn) for all t > 0 and y ∈Wn when restricted to Wn. As we will show

later, it is also the case that ut(x, y) = ut(y, x) for all t > 0 and x, y ∈ Rn.

Remark 2.1.2. Another representation ut(x, y) is in terms of a product of eigen-

functions of the generator of the ordered sticky Brownian motions. For each k ∈ Rn

we have an eigenfunction given by

Ek(x) :=
∑
σ∈Sn

eikσ ·x
∏
α<β:

σ(β)<σ(α)

iθ(kσ(α)−kσ(β))+kσ(β)kσ(α)

iθ(kσ(α)−kσ(β))−kσ(β)kσ(α)
.

The transition density is given by

ut(x, y) =
1

(2π)n

∫
Wn

e−
1
2
t|k|2Ek(x)Ek(y)dk.

The proof the above expression for ut(x, y) agrees with the one previously given is

straightforward, and so omitted.

Furthermore, we prove that m
(n)
θ (Definition 1.3.2) is in fact the stationary measure

of the ordered sticky Brownian motions, and that they are reversible with respect

to m
(n)
θ .

The Howitt-Warren flows are almost surely purely atomic; it is possible to interpret

the values of the transition densities of the ordered n-point motions, the process

Y above, as the moments of the size of the atom at a given location. Using this

interpretation, we consider the fluctuations of the sizes of the atoms as t → ∞
and find them to be exponentially distributed when taken to be ∼

√
t away from

the origin, with parameter determined by θ. This result is similar to the Gamma

fluctuations found in the same regime for the point to point probabilities of the Beta

random walk in a random environment by Thierry and Le Doussal [TLD16]. In the

same paper, the authors found that in the large deviation regime, the fluctuations
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have Tracy-Widom GUE fluctuations, just as for the point to half-line probabilities.

It thus seems reasonable to conjecture the same fluctuations appear in the size of

atoms of the Howitt-Warren flows, but we do not pursue the necessary asymptotic

analysis here.

The outline of the chapter is as follows: In Section 2.2 we define the diffusion via a

martingale problem, in Section 2.3 we derive the Kolmogorov backwards equation for

the ordered n-point motions, and show that the generator of the process is symmetric

with respect to the measure m
(n)
θ when restricted to a certain class of C2 functions.

In Section 2.4 we show that the backwards equation is solvable by the Bethe ansatz,

and as a consequence, we show that the ordered n point motions are reversible with

respect to m
(n)
θ . Finally, in Section 2.5 we introduce stochastic flows of kernels and

apply our results to Howitt-Warren flows.

2.2 A Consistent Family of Sticky Brownian Motions

We introduce the Howitt-Warren martingale problem in Rn with drift β ∈ R and

characteristic measure ν (a finite measure on [0, 1]), as formulated in [HW09]. So-

lutions are processes in Rn representing the positions of n particles each moving as

one dimensional Brownian motions with drift β. When two or more particles meet,

they undergo sticky interactions determined by ν. The solutions are consistent, in

the sense that if X is the solution to martingale problem in Rn with characteristic

measure ν and drift β, then for any choice of distinct i1, ..., ik ∈ {1, ..., n} with k < n,

(Xij )kj=1 is a solution to the martingale problem in Rk with characteristic measure

ν and drift β.

To each point x ∈ Rn we associate a partition of the set {1, ..., n}, π(x), where

i, j ∈ {1, ..., n} are in the same component of π(x) if and only if xi = xj . Next, for

each pair of disjoint subsets I, J ⊂ {1, ..., n}, we define the vectors vI,J ∈ Rn as

(vI,J)i =


1, if i ∈ I;

−1, if i ∈ J ;

0, otherwise.

Note that I and J are allowed to be empty. Then we define the set of vectors V(x)

as

V(x) := {vI,J : I ∪ J ∈ π(x), I ∩ J = ∅.}.

V(x) keeps track of the directions in which the process can infinitesimally move.

We’ll use this to describe the interactions. Define the parameters θ(k, l) for k, l ≥ 1
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by

θ(k, l) :=

∫ 1

0
xk−1(1− x)l−1ν(dx). (2.2.1)

For k, l ≥ 0, first set θ(1, 0)− θ(0, 1) = β and θ(0, 0) = 0, imposing the consistency

property θ(k, l) = θ(k+1, l)+θ(k, l+1) for all k, l ≥ 0 gives definition to all k, l ≥ 0.

Definition 2.2.1. Let Dn be the collection of functions f : Rn → R which are

continuous and are such that for all Weyl chambers A ⊂ Rn the restriction of f to A

is linear, so that if A ⊂ R is a Weyl chamber and x, y ∈ A then f(x+y) = f(x)+f(y).

For functions f ∈ Dn we define the operator Aθn by

Aθnf(x) :=
∑

vI,J∈V(x)

θ(|I|, |J |)∇vI,Jf(x).

Where ∇vI,J denotes the one sided derivative in direction vI,J .

Definition 2.2.2. Let (X(t))t≥0 =
((
X1(t), ..., Xn(t)

))
t≥0
⊂ Rn be a continuous

square integrable semi-martingale with initial condition X(0) = x ∈ Rn, defined on

a filtered probability space (Ω,F , (Ft)t≥0,P). Then (X(t))t≥0 is a solution to the

Howitt-Warren martingale problem with drift β and characteristic measure ν

if for any i, j ∈ {1, ..., n}:

〈Xi, Xj〉(t) =

∫ t

0
1{Xi(s)=Xj(s)}ds,

and the following process is a martingale with respect to the filtration generated by

X, for every function F ∈ Dn,

F (X(t))−
∫ t

0
AθnF (X(s))ds.

Note that the first condition implies that 〈Xi, Xi〉(t) = t, and it follows from the

second condition and the definition of Aθn that Xi(t)− βt is a martingale for each i.

Hence each coordinate must be a Brownian motion with drift β. The well posedness

of this martingale problem and that the solutions do indeed form a consistent family

of Feller processes is shown in [HW09].
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2.3 The Backwards Equation

2.3.1 The Generator of Ordered Sticky Brownian Motions

Define the functions F (i) : Rn → R by F (i)(x) = xj where xj is the ith largest

coordinate of x, and F : Rn → Wn by F (x) := (F (1)(x), ..., F (n)(x)). Note that

these functions are in Dn. Further, suppose X = (X(t))t≥0 is a solution to the

Howitt-Warren martingale problem in Rn with characteristic measure ν, drift β = 0

and initial condition x ∈ Wn. Then define the process Y = (Y (t))t≥0 by Y (t) :=

F (X(t)). Note that we defined Y from x started inside the Weyl chamber. This

process lies entirely in the Weyl chamber Wn, making it admissible to the Bethe

ansatz. This section aims to identify the Kolmogorov Backwards equation for Y

and from it the invariant measure for Y .

Remark 2.3.1. Before talking about its Kolmogorov backward equation, we need to

know Y is a Markov process. For this, we refer to Dynkin’s criterion [RP81]. In

particular, we only need to show that Ex [f ◦ F (Xt)] = EF (x)[f(Yt)] for every x ∈ Rn.

The equality holds by definition for x ∈Wn; for x ∈ Rn \Wn, we need to show that

for any permutation σ ∈ Sn σ(X(t)) := (Xσ(1)(t), ..., Xσ(n)(t)) remains a solution

to the same Howitt-Warren martingale problem, but with initial condition σ(x).

It is clear σ(X) remains a continuous square-integrable semi-martingale and has

initial condition σ(x). Further, it is immediate that σ(X) has the correct quadratic

variations. Finally, because the function σ is a continuous, linear, and maps Weyl

chambers to Weyl chambers, {F ◦ σ : F ∈ Dn} = Dn, the martingale problem is

still satisfied by σ(X). For each x ∈ Rn, there exists a permutation σ ∈ Sn such

that σ(x) ∈ Wn, and by definition, σ(x) = F (x). By uniqueness of solutions to the

martingale problem, we have Ex[f ◦ F (Xt)] = Ex[f ◦ F ◦ σ−1 ◦ σ(Xt)] = Eσ(x)[f ◦
F ◦ σ−1(Xt)] but clearly F ◦ σ−1 = F . Hence Ex[f ◦ F (Xt)] = Eσ(x)[f ◦ F (Xt)] =

EF (x)[f(Yt)] as required; thus, Y = F (X) is a Markov process.

We proceed by deriving the action of the generator of Y on certain C2 functions.

Definition 2.3.2. Let Dθ denote the set of functions f ∈ C2
0 (Wn) such that for any

a, b ∈ {1, ..., n} with a < b, xa = xb implies

1

2

∑
a≤i,j≤b:
i 6=j

∂2f

∂xi∂xj
(x)

=

b∑
i=a

∂f

∂xi
(x)

b−a+1∑
k=0

(
b− a+ 1

k

)
θ(k, b− a+ 1− k) sign(k − i+ a− 1). (2.3.1)

Where sign(0) is taken to be 1 here.
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Proposition 2.3.3. Suppose f ∈ Dθ then, denoting the generator of the process Y

by Gθ (in the sense of [RY13]), we have

Gθf =
1

2
∆f.

The same calculations will also give us a backwards equation for the process.

Proposition 2.3.4. Suppose g ∈ C2(R>0 × Wn), and g(t, ·) ∈ Dθ for all t > 0.

Further, suppose that g satisfies the PDE

∂g

∂t
=

1

2
∆g, for all t > 0, x ∈Wn. (2.3.2)

With the initial condition g(0, x) = f(x) for a function f ∈ Cb(Wn). To be

precise, we require that g(t, ·) → f uniformly as t → 0. Then for each t > 0

(g(t− s, Y (s)))s∈[0,t] is a continuous local martingale.

Proof of Proposition 2.3.3. Since X solves the martingale problem, and F (i) ∈ Dn,

Y is a semi-martingale. For f ∈ C2
0 (Wn), Itô’s formula gives

Ex[f(Y (t))] = f(x)

+
n∑
i=1

Ex
[∫ t

0

∂f

∂xi
(Y (s))dY i(s)

]
+

1

2

n∑
i,j=1

Ex
[∫ t

0

∂2f

∂xi∂xj
(Y (s))d〈Y i, Y j〉(s)

]
.

We need to calculate the quadratic covariations for Y . Before we proceed to the

rather abstract proof we’ll provide a heuristic for what the answer should be. We

know from the martingale problem for the sticky Brownian motions, Definition 2.2.2,

that for the unordered process the bracket is given by

〈Xi, Xj〉(t) =

∫ t

0
1Xi(s)=Xj(s)ds.

However, we also know that the ordered process behaves the same as the unordered

process, apart from a drift when particles meet that maintains the order of the par-

ticles. Thus, making the reasonable assumption that this drift does not contribute

to the bracket, we should expect

〈Y i, Y j〉(t) =

∫ t

0
1Y i(s)=Y j(s)ds.

This heuristic turns out to be correct, which we show below.

Let Pi = {A ⊂ {1, ..., n}| |A| = n−i+1} be the set of subsets of {1, ..., n} with exactly
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n − i + 1 elements; define fA : Rn → R as fA(x) = maxa∈A xa and gi : RPi → R
as gi((yA)A∈Pi) = minA∈Pi yA. Then F (i)(x) = gi ((fA(x))A∈Pi), fA is a convex

function and gi is a concave function. Referring to [Gri13, Proposition 8] we can write

the local martingale part of F (i)(X) in terms of a linear combination of stochastic

integrals with respect to the Xi. In particular, we can write

fA(Xt) = fA(x) +
∑
a∈A

∫ t

0
1BAa

(Xs)dX
a
s + Ct.

Where Ct has finite variation, and BA
a = {x : mink∈A{k : maxj∈A xj = xk} = a}.

Notice that for a fixed x and A there is only one a such that 1BAa (x) is non zero.

Now we put an ordering on the set Pi. The specific ordering does not matter; we just

need to be able to minimise over the indices of elements in RPi . Suppose A,B ∈ Pi
are distinct, define (aj)

n−i+1
j=1 and (bj)

n−i+1
j=1 as the elements of A and B respectively

in increasing order. We say A < B if for l := min{k ∈ N : bk 6= ak, 1 ≤ k ≤ n−i+1}
we have al < bl; if instead bl < al, then B < A. This ordering is a total ordering

for Pi. Supposing Z is a semi-martingale taking values in RPi with decomposition

Zt = Z0 + Mt + Kt where M is a local martingale and K a process with finite

variation. Then, using that for y ∈ RPi −gi(−y) = −maxA∈Pi(−yA), we have

−gi(−Zt) = −gi(−Z0) +
∑
A∈Pi

∫ t

0
1BA(Zs)dZ

A
s +Dt,

here D has finite variation and BA := {z ∈ RPi : min{B ∈ Pi : infC∈Pi zC = zB} =

A} with the minimum understood in terms of the ordering we just defined on Pi.

That is, BA is the subset of z ∈ RPi such that zA ≤ zB for any B ∈ Pi, and for

any B < A (according to the ordering defined in the previous paragraph) zB > zA.

Notice that for a fixed z there is only one A such that 1BA(z) is non zero. The local

martingale part of Y i = gi((fA(X))A∈Pi) is given by

∑
A∈Pi

∑
a∈A

∫ t

0
1BAa

(Xs)1BA((fC(Xs))C∈Pi)dX
a
s .

Giving that the quadratic covariation processes are

〈Y i, Y j〉t

=
∑
A∈Pi,
B∈Pj

∑
a∈A,
b∈B

∫ t

0
1BAa

(Xs)1BA((fC(Xs))C∈Pi)1BBb
(Xs)1BB ((fC(Xs))C∈Pi)1{Xa

s=Xb
s}ds.

Recall fC(x) = maxc∈C xc so that 1BA((fC(x))C∈Pi) is non zero precisely when A is
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the subset of {1, ..., n} with indices corresponding to the first i−1 largest coordinates

of Xs removed, call this set Ai(Xs). Then 1
B
Ai(Xs)
a

(Xs) is non zero if and only if a is

the smallest element of {1, ..., n} such that Xa
s is equal to the ith largest coordinate

of Xs, i.e. Y i
s . Hence we have

〈Y i, Y j〉t =

∫ t

0
1{Y is=Y js }ds.

The martingale problem also tell us that for each i

Y i(t)−
∫ t

0
AθnF (i)(X(s))ds

is a martingale. Recall f ∈ C2
0 (Wn), thus ∂f

∂xi
is bounded on Wn so that the stochas-

tic integral with respect to the martingale part of Y is a true martingale. Thus, we

can rewrite the expectation as

Ex[f(Y (t))] = f(x) +
n∑
i=1

Ex
[∫ t

0

∂f

∂xi
(Y (s))AθnF (i)(X(s))ds

]

+
1

2

n∑
i,j=1

Ex
[ ∫ t

0

∂2f

∂xi∂xj
(Y (s))1{Y i(s)=Y j(s)}ds

]
. (2.3.3)

By evaluating AθnF (i), and then differentiating equation (2.3.3) in time, we can

determine the generator of Y .

Let x ∈ Rn and denote y = F (x) ∈Wn. We have

AθnF (i)(x) =
∑

v∈V(x)

θ(v)∇vF (i)(x), (2.3.4)

where ∇v is the directional derivative in direction v. Recall v ∈ V(x) is defined by

the disjoint subsets I, J ⊂ {1, ..., n} such that I ∪ J ∈ π(x). With vi = 1 if i ∈ I,

−1 if i ∈ J , and 0 otherwise. For each element, B, of the partition π(x) there is

a corresponding element, C, of the partition π(y) such that for each i ∈ B there

is a ji ∈ C with xi = yji , and the ji can be chosen so that the mapping i 7→ ij is

injective. Letting C denote the element of π(y) corresponding to I ∪ J ∈ π(x), it is

clear that if i /∈ C then ∇vF (i)(x) = 0, and for i ∈ C the derivative is either 1 or −1

depending only on the sizes of I and J . Since y ∈Wn there is an a ∈ {1, ..., n} and
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m > 0 such that C = {a, ..., a+m− 1}. Hence line (2.3.4) is equal to

m∑
k=0

(
m

k

)
θ(k,m− k) sign(k − i+ a− 1),

where sign(0) is taken to be 1 here. In particular, this means that when yi is distinct

from all other coordinates, the above equals θ(1, 0)− θ(0, 1) = β = 0.

n∑
i=1

∂f

∂yi
(y)AθnF (i)(x)

=
∑

C∈π(y)

∑
i∈C

∂f

∂yi
(y)

|C|∑
k=0

(
|C|
k

)
θ(k, |C| − k) sign(k − i+ inf C − 1), (2.3.5)

where each of the partial derivatives are evaluated at y. Putting (2.3.5) into (2.3.3)

we can compute the limit

lim
t→0

1

t
(Ex [f(Y (t))]− f(x))

= lim
t→0

1

2t

∫ t

0
Ex[∆f(Y (s))]ds

+
1

t

(∫ t

0
Ex
[ ∑
C∈π(y)

∑
i∈C

∂f

∂yi
(y)

|C|∑
k=0

(
|C|
k

)
θ(k, |C| − k) sign(k − i+ inf C − 1)

]

+
1

2

∑
i 6=j

Ex
[
∂2f

∂yi∂yj
(Y (s))1{Y i(s)=Y j(s)}

]
ds

)
.

In particular, if we have f ∈ Dθ then the term in the bracket cancels to 0, leaving

only the term on the first line. Recalling that F : Rn →Wn is continuous and Y (t) =

F (X(t)), we can use the Feller property of X. Since ∆f ∈ C0(Wn), ∆f ◦F ∈ C0(Rn)

(since F (x)→∞ as |x| → ∞). Hence, 1
2t

∫ t
0 Ex[∆f(Y (s))]ds converges uniformly to

1
2∆f(y) as t→ 0 and thus for f ∈ Dθ

lim
t→0

1

t
(Ex [f(Y (t))]− f(x)) =

1

2
∆f(y), with respect to the uniform norm.

Hence, if f ∈ Dθ, it is in the domain of the generator of Y , and Gθf = 1
2∆f .

We now use the above calculations to prove Proposition 2.3.4.

Proof. Proof of Proposition 2.3.4 By applying Itô’s formula as we did in the preced-

ing proof, we see that for any function g satisfying the assumptions of the proposition

there is an adapted process (M(u))u∈[0,t] that is a continuous local martingale on
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[0, s] for each s < t such that

g(t− s, Y (s)) = −
∫ s

0

∂g

∂t
(t− u, Y (u))du+

∫ s

0
∆g(t− u, Y (u))du+M(s),

= M(s).

Now we just need to show that M(s) is a local martingale on [0, t]. Since g(t, ·)→ f

uniformly as t→ 0 we have

|M(s)| = |g(t− s, Y (s))| ≤ ‖g(t− s, ·)− f‖∞︸ ︷︷ ︸
→0 as s→t

+‖f‖∞.

Thus, there is an ε > 0 such that M(s) is bounded on [t − ε, t]. Therefore M(s) −
M(t − ε) is a martingale on [t − ε, t]. It follows that M(s) is a local martingale on

[0, t]. Clearly M(0) = g(t, x), and M(t) = f(Y (t)) since

|M(s)− f(Y (t))| = |g(t− s, Y (s))− f(Y (t))|

≤ ‖g(t− s, ·)− f‖∞ + |f(Y (s))− f(Y (t))|.

The first term vanishes as s→ t due to the uniform convergence of g to f , and the

second almost surely due to the continuity of f and Y .

Hence, we can find the transition probabilities of Y by looking for the Green’s

function for (2.3.2), providing solutions are sufficiently regular to make g(t−s, Y (s))

a true martingale. In general, it is not clear that there should be solutions to (2.3.2);

it is not even clear whether Dθ is non-trivial. In the rest of the paper we focus on

the case of a uniform characteristic measure: ν = 1
2θ1[0,1]dx. Since we know ν, we

can calculate the constants θ(k, l). By definition we have

θ(k, l) =
θ

2

∫ 1

0
xk−1(1− x)l−1dx,

=
θ

2

(l − 1)!(k − 1)!

(k + l − 1)!
. (2.3.6)

In this case, we also have θ(k, 0) = θ(0, k) for all k ∈ N. Hence, for the characteristic

measure ν = 1
2θ1[0,1]dx, (2.3.1) can be rewritten as

1

2

∑
a≤i,j≤b:
i 6=j

∂2f

∂xi∂xj
(x) = −θ

2

b∑
i=a

∂f

∂xi
(x)a(b− a+ 1, i), whenever xa = xb. (2.3.7)
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Where the coefficients are defined

a(b− a+ 1, i− a+ 1) :=

b−a∑
k=1

b− a+ 1

k(b− a+ 1− k)
sign(k − i+ a− 1). (2.3.8)

In the following section, this particular form of the constants θ(k, l) will allow us to

replace the conditions in line (2.3.7) with far simpler conditions. In particular, we

will find each of the second derivatives in terms of the first derivatives.

Remark 2.3.5. If we try to derive the Kolmogorov Backwards equation for the

original process X, we run into problems: the action of the generator of X within the

set of C2
0 functions does not determine the process. We can see this by considering

a pair of sticky Brownian motions with parameter θ > 0 X1, X2. We have by Itô’s

formula for all f ∈ C2
0 (R2)

Ex[f(X1(t), X2(t))] =f(x1, x2) +
1

2

∫ t

0
Ex[∆f(X1(s), X2(s))]ds

+

∫ t

0
Ex[1{X1(s)=X2(s)}

∂2f

∂x1∂x2
(X1(s), X2(s))]ds.

So that f is in the domain of the generator if ∂2f
∂x1∂x2

(x1, x2) = 0 whenever x1 = x2.

But this does not depend on the parameter θ, and thus the generator restricted to

this set cannot determine the law of the sticky Brownian motions.

2.3.2 Rearranging the Boundary Conditions

Henceforth we consider the case where the characteristic measure is uniform, i.e.

ν(dx) = θ
21[0,1]dx. Let us first note that if we set |C| = 2 in (2.3.7), we see f ∈ Dθ

satisfies
∂2f

∂xa∂xa+1
= θ

(
∂f

∂xa+1
− ∂f

∂xa

)
, whenever xa = xa+1.

We will show that we can replace the full boundary conditions with equivalent ones

of the above form, that is

Lemma 2.3.6.

Dθ =

{
f ∈ C2

0 (Wn)| for a < b , if xa = xb then
θ

b− a

(
∂f

∂xb
− ∂f

∂xa

)
=

∂2f

∂xa∂xb

}
.

Remark 2.3.7. Essentially we are solving for the second derivatives of functions in

Dθ, given their first derivatives. Whilst this should be possible for any characteristic

measure, our method relies on the special form of the parameters θ(k, l) in the case

of the uniform characteristic measure.
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Proof. Note that because we are in the Weyl chamber, xa = xb implies xa = xa+1 =

· · · = xb. Thus the condition for xa = ... = xb−1 must also hold when xa = ... = xb

etc. Using an inductive argument, we prove that the original conditions (2.3.7) are

equivalent to the new conditions. That is, we prove that the new condition for

xa = xb is equivalent to the old conditions, assuming the new conditions for xc = xd

are satisfied for all a ≤ c < d ≤ b such that d− c < b− a.

Hence we assume that the boundary conditions (2.3.7) for xc = xd are satisfied for

all a ≤ c < d ≤ b and that for all a ≤ c < d ≤ b with d− c < b− a

∂2f

∂xc∂xd
(x) =

θ

d− c

(
∂f

∂xd
(x)− ∂f

∂xc
(x)

)
, if xc = ... = xd. (2.3.9)

Without loss of generality, we can relabel (xa, ..., xb) as (x1, ..., xm) for m = b−a+1.

Then for u ∈ Dθ, we can rewrite the sum over mixed derivatives.

1

2

∑
i 6=j

∂2f

∂xi∂xj
=

1

2

∑
i 6=j
i,j 6=m

∂2f

∂xi∂xj
+

m−1∑
k=2

∂2f

∂xk∂xm
+

∂2f

∂x1∂xm
.

Using equations (2.3.7) and (2.3.9), when x1 = ... = xm we have the equality

∂2f

∂x1∂xm
=− θ

2

m∑
j=1

∂f

∂yj
(y)

m−1∑
k=1

m

k(m− k)
sign(k − j)−

∑
i<j

θ

j − i

(
∂f

∂xj
− ∂f

∂xi

)

+
θ

m− 1

(
∂f

∂xm
− ∂f

∂x1

)
. (2.3.10)

We have the following equalities

∑
i<j

θ

j − i

(
∂f

∂xj
− ∂f

∂xi

)
=

m∑
j=2

j−1∑
i=1

θ

j − i
∂f

∂xj
−
m−1∑
j=2

j−1∑
i=1

θ

j − i
∂f

∂xi

=
m∑
j=2

j−1∑
i=1

θ

j − i
∂f

∂xj
+

m−1∑
j=1

m∑
i=j+1

θ

j − i
∂f

∂xj

=θ

m∑
j=1

∂f

∂xj

∑
i 6=j

1

j − i
.

So that we are finished if for each j ∈ {1, ..., n}

1

2

m−1∑
k=1

m

k(m− k)
sign(k − j) +

∑
i 6=j

1

j − i
= 0.
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Noting that we have m
k(m−k) = 1

k + 1
m−k , we get

1

2

m−1∑
k=1

m

k(m− k)
sign(k − j) =

1

2

m−j∑
k=j

m

k(m− k)

=
1

2

m−j∑
k=j

(
1

k
+

1

m− k

)

=

m−j∑
k=j

1

k
. (2.3.11)

In addition

∑
i 6=j

1

j − i
=

j−1∑
i=1

1

j − i
−

m∑
i=j+1

1

i− j

=

j−1∑
k=1

1

k
−
m−j∑
k=1

1

k
= −

m−j∑
k=j

1

k
.

With the convention that, when a < b,
∑a

k=b ck = −
∑b

k=a ck. Putting this into line

(2.3.10), we see

∂2f

∂x1∂xm
=

θ

m− 1

(
∂f

∂xm
− ∂f

∂x1

)
.

As noted previously, for m = 2 both conditions are equivalent; thus, by induction

the old conditions imply the new conditions. Finally it is easy to see that assuming

the new conditions hold on xc = xd for all a ≤ c < d ≤ b and the old conditions

on xc = xd for all a ≤ c < d ≤ b such that d − c < b − a, we can follow the above

argument in reverse to prove the new conditions imply the old ones. Hence the

equivalence of the two sets of conditions is proven.

As a consequence we can reframe proposition 2.3.4. For g ∈ C2
0 (R>0×Wn) satisfying

the PDE 
∂g
∂t = 1

2∆g, for x ∈Wn;

∂2u
∂xa∂xb

= θ
b−a

(
∂g
∂xb
− ∂g

∂xa

)
, if b > a and xa = xb.

(2.3.12)

with initial condition g(t, ·) → f uniformly as t → 0, where f ∈ Cb(Wn), we have

g(t, x) = Ex [f(Y (t))] . This rearrangement will simplify the combinatorics required

to show that we can solve the PDE with the Bethe ansatz.
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2.3.3 Invariant Measure

In this section, we prove an integration by parts formula for the generator of the

ordered n-point motion of the Howitt-Warren flow with uniform characteristic mea-

sure. First, we introduce some useful notation.

Recall that for π ∈ Πn, Wn
π consists of all x ∈ Wn such that if i and j are in

the same element of π, then xi = xj . Thus, by replacing the multiple indices in

each block of π with a single index, as the corresponding xi are all equal, we can

map Wn
π into W|π|, providing a natural bijection between W|π| and Wn

π which we’ll

denote Iπ : Wn
π → W|π|. To be precise, let πi = min{a ∈ πi} and set Iπ(x)i = xπi .

For a function u : Wn → R, denote by uπ : W|π| → R the function defined by

uπ(x) := u ◦ (Iπ)−1(x) for all x ∈ W|π|. For u, v ∈ C1(Wn) such that the below

integrals converge, we define

(u, v)θ :=
∑
π∈Πn

θ|π|−n

(∏
πι∈π

1

|πι|

)∫
W|π|
∇uπ · ∇vπdx. (2.3.13)

Now we can state the integration by parts formula for the measure m
(n)
θ from defi-

nition 1.3.2.

Proposition 2.3.8. Suppose u ∈ Dθ and v ∈ C1
b (Wn), such that there exists a, c > 0

such that |∇u(x)| ≤ ae−c|x|. We have∫
Wn

∆u(x)v(x)m
(n)
θ (dx) = − (u, v)θ , (2.3.14)

whenever the above integrals are finite.

Proof. Since u ∈ Dθ we can relate ∆uπ and (∆u)π. Clearly we have

∆uπ =
∑
πι∈π

∑
j,k∈πι

(
∂2u

∂xj∂xk

)
π

.

Hence

∆uπ − (∆u)π =
∑
πι∈π

∑
j,k∈πι
j 6=k

(
∂2u

∂xj∂xk

)
π

=2
∑
πι∈π

∑
j,k∈πι
j<k

(
∂2u

∂xj∂xk

)
π

.

Clearly, the second sum is empty whenever |πι| = 1, so we can exclude those terms
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from the first sum. Using equations (2.3.7), (2.3.8) and the notations πι := inf πι,

πι := supπι = |πι|+ πι − 1, the previous expression is equal to

− θ
∑
πι∈π:
|πι|>1

∑
j∈πι

(
∂u

∂xj

)
π

a(|πι|, j − πι + 1).

Now we consider the left hand side of equation (2.3.14). Using Definition 1.3.2, this

is equal to

∑
π∈Πn

θ|π|−n

(∏
πι∈π

1

|πι|

)∫
Wn
π

∆u(x)v(x)λπ(dx). (2.3.15)

We can rewrite the integral in the summand above in terms of a Lebesgue integral

over a lower dimensional space, the result is the integral is equal to∫
W|π|

(∆u)π(x)vπ(x)dx

=

∫
W|π|

(
∆uπ(x) + θ

∑
πι∈π:
|πι|>1

∑
j∈πι

(
∂u

∂xj

)
π

a(|πι|, j − πι + 1)

)
vπ(x)dx. (2.3.16)

Since the Weyl chamber has a piecewise smooth boundary, we can apply Green’s

identity to the first term in each integral. Applying the identity on W|π|∩{x ∈Wn :

|x| < R} and then taking R→∞, the exponential bound on |∇u| together with the

boundedness of v ensures the only boundary term to survive in the limit will be the

integral over ∂W|π|.

The smooth part of the boundary of the Weyl chamber W|π| can be written in terms

of the disjoint union of W|π|π̃ over the set Mπ := {π̃ ∈ Π|π| : |π̃| = |π|−1}. Note that

if |π| = 1 this union is empty, and the boundary integral vanishes. Each π̃ in Mπ

consists of |π| − 2 singletons and one set {l, l + 1} for some l ∈ {1, ..., |π|}. Further,

the outward unit normal on W|π|π̃ is given by

n(x)r =


− 1√

2
, if r = l;

1√
2
, if r = l + 1;

0, otherwise.
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Finally, the boundary measure is given by
∑

π̃∈Mπ

√
2λπ̃, so that (2.3.16) equals( ∑

π̃∈Mπ

∫
W|π|π̃

(
∂uπ
∂yl+1

− ∂uπ
∂yl

)
vπdλ

π̃ −
∫
W|π|
∇uπ(x) · ∇vπ(x)dx

+ θ
∑
πι∈π:
|πι|>1

∑
j∈πι

∫
W|π|

(
∂u

∂xj

)
π

a(|π|, j − πι + 1)vπ(x)dx

)
,

where l depends on π̃ and is defined as above. We have written the partial derivatives

of uπ with respect to y to emphasise the fact that uπ is a function on W|π| rather

than Wn. Hence, to complete the proof it is enough to show that the first and third

terms cancel. Rewriting the integrals with respect to λπ̃, the first term is equal to

∑
π̃∈Mπ

∫
W|π̃|

(
∂uπ
∂yl+1

− ∂uπ
∂yl

)
π̃

(vπ)π̃dλ
π̃.

Clearly, this is equal to

∑
π̃∈Mπ

∫
W|π̃|

 ∑
j∈πl+1

∂u

∂xj


π

−

∑
j∈πl

∂u

∂xj


π


π̃

(x) (vπ)π̃(x)dx.

Summing this over π ∈ Πn with the appropriate coefficients, we see that (2.3.15) is

equal to

∑
π∈Πn

∑
π̃∈Mπ

θ|π|−n

(∏
πι∈π

1
|πι|

)
∫
W|π|−1

∑
j∈πl+1∪πl

((
∂u

∂xj

)
π

)
π̃

(x) sign(j − πl+1) (vπ)π̃(x)dx.

Notice that for each π ∈ Πn and π̃ ∈Mπ we can rewrite the summand in terms of a

new partition, π̂, formed from π by merging two adjacent blocks to form the πl+1∪πl
block. Further, because the partitions are in Πn, there are exactly |πl+1 ∪ πl| − 1

partitions that yield π̂ by merging two blocks to form πl+1 ∪ πl. Rewriting the sum

in terms of π̂ we get

∑
π̂∈Πn

θ|π̂|+1−n

∏
π̂ι∈π̂

1
|π̂ι|

 ∑
π̂ι∈π̂:
|π̂ι|>1∫

W|π̂|

|π̂ι|−1∑
k=1

|π̂ι|
k(|π̂ι|−k)

∑
j∈π̂ι

(
∂u

∂xj

)
π̂

(x) sign(j − π̂ι − k) vπ̂(x)dx.
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Here, the sum over j is over the partitions whose blocks have been merged to get

π̂, with k corresponding to the size of the lower block. The extra factor |π̂ι|
k(|π̂ι|−k)

is simply a correction to the product to write it in terms of π̂ rather than the π

partition whose blocks we merged.

Recalling that sign(0) = 1 here, equation (2.3.8) yields that the above is precisely

equal to

−
∑
π∈Πn

θ|π|+1−n

(∏
πι∈π

1

|πι|

) ∑
πι∈π:
|πι|>1

∑
j∈πι

∫
W|π|

(
∂u

∂xj

)
π

(x)a(|π|, j − πι + 1)vπ(x)dx.

Hence (2.3.15) is equal to

−
∑
π∈Πn

θ|π|−n
∏
πι∈π

1

|πι|

∫
W|π|
∇uπ(x) · ∇vπ(x)dx

=− (u, v)θ.

Thus, if we denote by L2(m
(n)
θ ) the L2 space on Wn with respect to the measure m

(n)
θ

and the standard L2 inner product, then the generator is symmetric onDθ∩L2(m
(n)
θ ).

This symmetry suggests the process is reversible with respect to this measure, but

because our calculations are only done for u ∈ Dθ, and we do not know how rich the

set Dθ is, this is not enough for a proof. However, taking v = 1, the right-hand side

of (2.3.14) vanishes, giving us the following helpful corollary.

Corollary 2.3.9. For u ∈ Dθ such that there are a, c > 0 with |∇u(x)| ≤ ae−c|x| we

have
1

2

∫
∆u(x)m

(n)
θ (dx) = 0.

In the next section, we find the Green’s function for the backwards equation, and

thus the transition density for the process (with respect to the measure m
(n)
θ ). Using

this we can prove that m
(n)
θ is the stationary measure, and that Y is reversible with

respect to m
(n)
θ .

2.4 Bethe Ansatz for Sticky Brownian Motions

We are trying to find a solution to the PDE (2.3.12), which we restate below, for

each fixed y ∈Wn and θ some positive constant, with the initial condition u0(x, y) =
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δ(x− y), where δ is the Dirac delta distribution.
∂ut
∂t = 1

2∆ut, for all x ∈Wn;

θ
(
∂u
∂xb
− ∂u

∂xa

)
= (b− a) ∂2u

∂xa∂xb
, when xa = xb, for some a < b.

(2.4.1)

The Bethe ansatz suggests that if we define

Sα,β(k) :=
iθ (kβ − kα) + kαkβ
iθ (kβ − kα)− kαkβ

, (2.4.2)

then the solution is given by the following equation,

ut(x, y) =
1

(2π)n

∫
Rn
e−

1
2
t|k|2

∑
σ∈Sn

eikσ ·(x−yσ)
∏
α<β:

σ(β)<σ(α)

Sσ(β),σ(α)(k)dk, (2.4.3)

where Sn denotes the group of permutations on {1, ..., n} and kσ = (kσ(1), ..., kσ(n)).

The idea here is similar to that used to find the transition density of a reflected

Brownian motion. Since we are considering a process with ordered coordinates, we

combine solutions to the interior equation with permuted coordinates, the permuta-

tions representing possible orderings of the original process. The more complicated

boundary conditions require us to combine our solutions in a more complicated way.

In particular, we take linear combinations in Fourier space in such a way that the

boundary conditions where b − a = 1 are satisfied; this is how we find the form of

(2.4.2). In fact, it forces this ansatz onto us, leaving no freedom to deal with the

additional conditions which correspond to b− a > 1 in (2.4.1).

Barraquand and Rychnovsky conjectured in [BR20] that the Backwards equation

for the system of sticky Brownian motions was the heat equation with the boundary

conditions corresponding to b− a = 1 in (2.4.1), based on the Bethe ansatz answer

for the system. It is important to note that for any other choice of characteristic

measure ν with ν([0, 1]) = θ
2 , the boundary conditions corresponding to b − a = 1

would be the same, so we do not expect these boundary conditions alone to give

uniqueness of the PDE. However, to simplify the boundary conditions in Definition

2.3.2 to those in (2.4.1), we assume the solution to be C2 in space. It is possible that

the b − a = 1 boundary conditions do determine the solution under this additional

regularity assumption and the transition densities for all of the other systems of

sticky Brownian motions are not C2 in space.

It is clear that (2.4.3) satisfies the first condition in (2.4.1) and our choice of (2.4.2)

guarantees the second condition holds when b − a = 1. However, when b − a > 1,
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it is not clear that they are still satisfied. Fortunately, and surprisingly, the second

condition turns out to be satisfied in its entirety. Moreover, we can show the initial

condition holds; hence, we obtain our main result, which we restate here:

Theorem 2.4.1. Suppose θ > 0, and X = (X(t))t≥0 is a solution to the Howitt-

Warren martingale problem in Rn with characteristic measure θ
21[0,1]dx and zero

drift. Let Y = (Y (t))t≥0 be the process obtained by ordering the coordinates of

(X(t))t≥0. Then for every bounded and Lipschitz continuous function f : Wn → R,

x ∈Wn and t > 0

Ex[f(Yt)] =

∫
ut(x, y)f(y)m

(n)
θ (dy).

Where u is as in (2.4.3), m
(n)
θ is defined in Definition 1.3.2.

In the following section, we shall prove Theorem (2.4.1), first we show the boundary

conditions are satisfied and then the initial condition. To ensure we can perform the

necessary exchanges of integral and derivative we start with some bounds for the

Bethe ansatz.

2.4.1 Bounds for Dominated Convergence

Lemma 2.4.2. For every x ∈ Wn and t > 0 we have ut(x, ·) ∈ L1(m
(n)
θ ), where

ut(x, ·) is defined as in (2.4.3). Further, for each x ∈ Wn and t > 0, there exist

a, c > 0 such that |∇yut(x, y)| ≤ ae−c|y| for all y ∈Wn. The same statement holds if

we instead consider the x derivative and vary x with y being fixed. Similarly for each

x ∈Wn and s > 0 we can find a, c > 0 such that |ut(x, y)|, |∂tut(x, y)| ≤ ae−c|y| for

all t > s and y ∈Wn.

We leave the proof of this lemma to the end of Section 2.4.3, as it is a simplification

of the methods used in that section.

The second part of the above lemma provides the necessary bounds to justify passing

derivatives through the first integral in
∫
ut(x, y)f(y)m

(n)
θ (dy). Further, it is easy

to see we can apply Dominated convergence to find

∂ut
∂xa

=
1

(2π)n

∫
Rn
e−

1
2
t|k|2

∑
σ∈Sn

ikσ(a)e
ikσ ·(x−yσ)

∏
α<β:

σ(β)<σ(α)

Sσ(β),σ(α)(k)dk,

∂2ut
∂xa∂xb

= − 1

(2π)n

∫
Rn
e−

1
2
t|k|2

∑
σ∈Sn

kσ(a)kσ(b)e
ikσ ·(x−yσ)

∏
α<β:

σ(β)<σ(α)

Sσ(β),σ(α)(k)dk.

This allows us to not only confirm that
∫
ut(x, y)f(y)m

(n)
θ (dy) solves the heat equa-

tion but also to reduce the boundary conditions to a combinatorial problem.
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2.4.2 Boundary Conditions

Proposition 2.4.3. ∫
ut(x, y)f(y)m

(n)
θ (dy) ∈ Dθ.

Using the same ideas as in the previous subsection, we can derive sufficient bounds

to show
∫
ut(x, y)f(y)m

(n)
θ (dy) ∈ C2

0 (Wn). Hence, we just need to show it satisfies

the correct boundary conditions from the PDE (2.4.1). The proof will follow from

several lemmas. To begin, we derive the combinatorial identity that implies the

above proposition.

Fix a, b ∈ {1, ..., n} with a < b, then for t > 0 we can differentiate under the integral

as noted in the previous subsection to see that the corresponding boundary condition

is satisfied if for all a < b, xa = xb implies∑
σ∈Sn

eikσ ·(x−yσ)
(
iθ(kσ(b) − kσ(a)) + (b− a)kσ(b)kσ(a)

) ∏
α<β:

σ(β)<σ(α)

Sσ(β),σ(α)(k) = 0.

(2.4.4)

This can be simplified by splitting the summand into parts dependent on σ(a), ..., σ(b)

and on the remaining values σ takes. Noting that we have xa = ... = xb

b∏
c=a

eikσ(c)(xc−yσ(c)) =
b∏

c=a

eikσ(c)(xa−yσ(c)) =
∏

c̃∈{σ(a),...,σ(b)}

eikc̃(xa−yc̃).

Notice that the last expression above depends only on the set {σ(a), ..., σ(b)} =

σ({a, ..., b}), and not the order of the values σ takes on {a, .., , b}. Thus, the ex-

ponential factor of the summand in (2.4.4) only depends on σ({a, ..., b}) and not

σ(a), ..., σ(b) themselves. Now we split the product∏
α<β:

σ(β)<σ(α)

Sσ(β),σ(α)(k) =
∏

α<a≤β≤b:
σ(β)<σ(α)

Sσ(β),σ(α)(k)
∏

a≤α≤b<β:
σ(β)<σ(α)

Sσ(β),σ(α)(k)

∏
α,β∈{a,...,b}c:

α<β,
σ(β)<σ(α)

Sσ(β),σ(α)(k)
∏

a≤α<β≤b:
σ(β)<σ(α)

Sσ(β),σ(α)(k).

Note that Sσ(β),σ(α) does not depend on α and β, but on σ(α) and σ(β). Suppose, for

a given permutation σ, Sσ(β),σ(α) appears in the first product, then for any permu-

tation τ with σ(c) = τ(c) for every c ∈ {a, ..., b}c, we have σ(β) ∈ {σ(a), ..., σ(b)} =

{τ(a), ..., τ(b)}. Thus, there exists γ ∈ {a, ..., b} such that τ(γ) = σ(β), and so we
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have τ(α) = σ(α) > σ(β) = τ(γ) and α < a ≤ γ. Hence, Sτ(γ),τ(α) = Sσ(β),σ(α)

appears in the product for τ . This shows the first product doesn’t depend on

{σ(a), ..., σ(b)}, and similarly the second doesn’t either. The third product clearly

doesn’t depend on {σ(a), ..., σ(b)}, leaving only the fourth product. Finally, we

note that the fourth product doesn’t depend on the values σ takes outside {a, ..., b}.
Hence we can split the sum into a sum over possibilities for the permutation outside

{a, ..., b} and then a sum over possibilities inside {a, .., b}. Pulling the parts depend-

ing only on the values of σ outside {a, ..., b} out of the second sum we see that it is

sufficient for the second sum to vanish; thus, our condition will hold if∑
σ∈Sm

(
iθ(kσ(m) − kσ(1)) + (m− 1)kσ(m)kσ(1)

) ∏
1≤α<β≤m:
σ(β)<σ(α)

Sσ(β),σ(α)(k) = 0,

where we have relabelled ka, ..., kb to k1, ..., km. Hence, it is enough to prove the

following

Proposition 2.4.4. For every n ∈ N we have the identity∑
σ∈Sn

(
iθ
(
kσ(n) − kσ(1)

)
+ (n− 1)kσ(n)kσ(1)

) ∏
α<β:

σ(β)<σ(α)

Sσ(β),σ(α) = 0. (2.4.5)

First, we simplify the left hand side by pulling out the common denominator. Re-

calling (2.4.2)∏
σ(β)<σ(α)

(
iθ(kσ(α) − kσ(β))− kσ(β)kσ(α)

) ∏
α<β:

σ(β)<σ(α)

Sσ(β),σ(α)

=
∏

σ(β)<σ(α)

(
iθ(kσ(α) − kσ(β))− kσ(β)kσ(α)

) ∏
α<β:

σ(β)<σ(α)

iθ(kσ(α) − kσ(β)) + kσ(α)kσ(β)

iθ(kσ(α) − kσ(β))− kσ(α)kσ(β)

=
∏
β<α:

σ(β)<σ(α)

(
iθ(kσ(β) − kσ(α))− kσ(α)kσ(β)

) ∏
α<β:

σ(β)<σ(α)

(
iθ(kσ(α) − kσ(β)) + kσ(α)kσ(β)

)
.

Thus, multiplying both sides of (2.4.5) by
∏
σ(β)<σ(α)

(
iθ(kσ(α) − kσ(β))− kσ(β)kσ(α)

)
(since permutations are bijections, this does not depend on σ) gives the equivalent
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equation

0 =
∑
σ∈Sn

(
iθ
(
kσ(n) − kσ(1)

)
+ (n− 1)kσ(n)kσ(1)

)
∏
β<α:

σ(β)<σ(α)

(
iθ(kσ(α) − kσ(β))− kσ(α)kσ(β)

) ∏
α<β:

σ(β)<σ(α)

(
iθ(kσ(α) − kσ(β)) + kσ(α)kσ(β)

)
.

We can get rid of the iθ factors by replacing each kj with iθkj , since θ > 0 this

change of variables is invertible. We are left with the following equivalent equation,

which we will prove for k ∈ Cn.

0 =
∑
σ∈Sn

((
kσ(n) − kσ(1)

)
+ (n− 1)kσ(n)kσ(1)

)
∏
α<β:

σ(α)<σ(β)

(
(kσ(β) − kσ(α))− kσ(α)kσ(β)

) ∏
α<β:

σ(β)<σ(α)

(
(kσ(α) − kσ(β)) + kσ(α)kσ(β)

)
.

Where we have cancelled off a factor of (iθ)2((n2)+1).

We’ll now split the equation into two parts and simplify before showing they cancel.

Making the following rearrangements, and defining the polynomial B∏
β<α:

σ(β)<σ(α)

(
(kσ(α) − kσ(β))− kσ(α)kσ(β)

) ∏
α<β:

σ(β)<σ(α)

(
(kσ(α) − kσ(β)) + kσ(α)kσ(β)

)
.

(2.4.6)

=
∏
α<β

sign(σ(β)− σ(α))
(
kσ(β) − kσ(α) − kσ(α)kσ(β)

)
= sign(σ)

∏
α<β

(
kσ(β) − kσ(α) − kσ(α)kσ(β)

)
=: sign(σ)B(kσ).

We proceed by considering the expressions∑
σ∈Sn

sign(σ)(n− 1)kσ(n)kσ(1)B(kσ); (2.4.7)

∑
σ∈Sn

sign(σ)
(
kσ(n) − kσ(1)

)
B(kσ). (2.4.8)

It is clear that both (2.4.7) and (2.4.8) are polynomials in the kj ; we will now make

some more general statements about polynomials of this form.

It is clear that if f : Rn → R is a polynomial, then∑
σ∈Sn

sign(σ)f(kσ)B(kσ) (2.4.9)
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is an alternating polynomial. To see this suppose a < b and we exchange ka and kb

in the above expression. Then kσ becomes k(a,b)◦σ giving∑
σ∈Sn

sign(σ)f(k(a,b)◦σ)B(k(a,b)◦σ) = −
∑
σ∈Sn

sign((a, b) ◦ σ)f(k(a,b)◦σ)B(k(a,b)◦σ)

= −
∑
σ∈Sn

sign(σ)f(kσ)B(kσ).

In particular, whenever we have kα = kβ, for α 6= β, any such polynomial must van-

ish. Hence we must be able to take the Vandermonde determinant,
∏
α<β(kβ − kα),

out as a factor; since this is itself alternating, whatever remains must be symmet-

ric. Thus for any polynomial f : Rn → Rn, there exists a symmetric polynomial

g : Rn → R such that∑
σ∈Sn

sign(σ)f(kσ)B(kσ) = g(k)
∏
α<β

(kβ − kα). (2.4.10)

In the case of (2.4.7) and (2.4.8), the polynomial f is also multilinear (no variable

appears with exponent higher than one), and depends only on two variables. The

following lemma will allow us to make further statements about g based on these

assumptions.

Lemma 2.4.5. If i, j ∈ {2, ..., n−1} with i 6= j, and κ ∈ Rn such that we fix κi = −1

and κj = 1, then B(κ) has degree at most n− 2 when considered as a polynomial of

κ1 or κn.

Proof. Recalling the formula for B(k), (2.4.6), we have

B(κ) =
∏
α<β:
α,β 6=i,j

(κβ − κα − κακβ)
∏
α 6=i,j

(sign(j − α)(1− κα)− κα)

×
∏
α 6=i,j

(sign(i− α)(−1− κα) + κα) (2 sign(j − i) + 1) .

The first product contains (n − 3) factors with κ1 and κn each. The second and

third contribute a factor of the form:

(1− 2κ1)(−1)

for κ1, and a factor of the form

(−1)(2κn + 1) (2.4.11)
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for κn. Leaving a total of n− 2 factors involving κ1 and κn each, which proves the

statement.

Now we can apply the above lemma to the expressions we are interested in.

Lemma 2.4.6. If f : R2 → R is a multilinear polynomial, then there exists constants

C0, C1 and C2 such that∑
σ∈Sn

sign(σ)f(kσ(1), kσ(n))B(kσ) =
∏
α<β

(kβ − kα)

×

C0 +

bn/2c∑
m=1

C1

∑
α1<...<α2m

kα1 ...kα2m + C2

∑
α1<...<α2m+1

kα1 ...kα2m+1

 .

Proof. The discussion preceding Lemma 2.4.5 shows that we at least have equation

(2.4.10), and that g must be symmetric. To get the form given in the statement,

we will show that g is also multilinear. This tells us we can write it as a linear

combination of elementary symmetric polynomials, and then that the coefficients in

this combination are of the form given above. Both of these arguments proceed by

considering the exponents of the variables kj .

To show multilinearity, we note that for each kj ,
∏
α<β(kβ−kα) contains n−1 linear

factors of kj . Furthermore, each B(kσ) also contains exactly n− 1 linear factors of

kj . But f is multilinear, so in the summand sign(σ)f(kσ)B(kσ) the largest possible

power of kj is n. Hence the largest possible power of kj in g(k) is 1. This holds for

each j; thus, g(k) is multilinear.

Since g(k) is multilinear and symmetric it must be of the form

g(k) = C0 +

n∑
m=1

Cm
∑

α1<...<αm

kα1 ...kαm .

Now we show that the constants Cm satisfy C1 = C2m+1 and C2 = C2m for all

m ≤ n/2. Setting κ = (k1, ..., kn−2,−1, 1), we have the equality

∑
σ∈Sn

sign(σ)f(κσ(1), κσ(n))B(κσ) = 2g(κ)
∏

α<β<n−1

(kβ − kα)

n−2∏
γ=1

(1− kγ)(−1− kγ).

(2.4.12)

Since g is symmetric polynomial, if one of its terms contains kn−1 but not kn, there

is a term otherwise equal where kn−1 is replaced with kn, and vice versa. Using κ as

defined in the previous proof, in g(κ), these terms cancel, leaving only the terms that
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contain both or neither. For κ, we have set kn−1kn = −1, so we have the following.

g(κ) = C0 +

n−2∑
m=1

(Cm − Cm+2)
∑

α1<...<αm<n−1

kα1 ...kαm .

The next step is to consider the exponents on the left hand side of (2.4.12) for each

term in the sum, and show g(κ) must be constant. First B(kσ) contains (n − 1)

linear factors of each kj , so the only way a kj with exponent n can appear is if it

also occurs in f(κσ(1), κσ(n)); hence, only if j = σ(n) or σ(1). But the previous

lemma tells us that B(κσ) has degree n− 2 as a polynomial of κσ(1) or κσ(n). Thus

the highest possible power of any of the kj on the left hand side of (2.4.12) is n− 1.

However, the right hand side still contains n− 1 linear factors of each kj outside of

g(κ), so g(κ) must be constant. Hence, Cm = Cm+2 for every m > 0, proving the

result.

Remark 2.4.7. Using the general formula for the sum of elementary symmetric

polynomials on n variables,
∏n
j=1(1 + xj), together with the above lemma, gives us

that for a multilinear polynomial f : R2 → R, there are constants Cm and Dm such

that ∑
σ∈Sn

sign(σ)f(kσ(1), kσ(n))B(kσ)

=
∏
α<β

(kβ − kα)

(
C0 +

1

2
C1

 n∏
j=1

(1 + kj) +

n∏
j=1

(1− kj)− 2


+

1

2
C2

 n∏
j=1

(1 + kj)−
n∏
j=1

(1− kj)

)

=
∏
α<β

(kβ − kα)

D0 +D1

n∏
j=1

(1 + kj) +D2

n∏
j=1

(1− kj)


= det

(
kj−1
i

)
(D0 +D1 det ((1 + kj)δij) +D2 det ((1− kj)δij)) .

Now we can return to our original expressions (2.4.7) and (2.4.8). These two lemmas

imply that we have constants C
(n)
0 , C̃

(n)
0 , C1, C̃

(n)
1 , C

(n)
2 and C̃

(n)
2 such that∑

σ∈Sn

sign(σ)(kσ(n) − kσ(1))B(kσ) =
∏
α<β

(kβ − kα) (2.4.13)

C(n)
0 +

bn/2c∑
m=1

C(n)
1

∑
α1<...<α2m

kα1 ...kα2m + C
(n)
2

∑
α1<...<α2m+1

kα1 ...kα2m+1

 .
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∑
σ∈Sn

sign(σ)(n− 1)kσ(n)kσ(1)B(kσ) =
∏
α<β

(kβ − kα) (2.4.14)

C̃(n)
0 +

bn/2c∑
m=1

C̃(n)
1

∑
α1<...<α2m

kα1 ...kα2m + C̃
(n)
2

∑
α1<...<α2m+1

kα1 ...kα2m+1

 .

The next lemma provides a link between these constants for different values of n

that will allow us to find their value inductively.

Lemma 2.4.8. For m = 0, 1, 2 and n ≥ 3, we have that C
(n)
m = (n− 1)C

(n−1)
m and

C̃
(n)
m = (n− 1)C̃

(n−1)
m .

Proof. Take kn = 0 in (2.4.13) we get the equality

∑
σ∈Sn

sign(σ)(kσ(n) − kσ(1))B(kσ)|kn=0 =
n−1∏
α=1

(−kα)
∏

α<β<n

(kβ − kα)

C(n)
0 +

bn/2c∑
m=1

(
C

(n)
1

∑
α1<...<α2m<n

kα1 ...kα2m + C
(n)
2

∑
α1<...<α2m+1<n

kα1 ...kα2m+1

) .

Recalling how we defined the polynomial B in line (2.4.6), we see that the left-hand

side of the above equality is equal to

∑
σ∈Sn:

σ(1),σ(n)6=n

(kσ(n) − kσ(1))

(
n−1∏
α=1

(−kα)

)
Dσ(k) (2.4.15)

+
∑
σ∈Sn:
σ(1)=n

kσ(n)

(
n−1∏
α=1

(−kα)

)
Dσ(k)−

∑
σ∈Sn:
σ(n)=n

kσ(1)

(
n−1∏
α=1

(−kα)

)
Dσ(k).

Where we have used the shorthand

Dσ(k) =
∏

α<β<n

(
kβ − kα − sign

(
σ−1(β)− σ−1(α)

)
kβkα

)
=

∏
α<β:

α,β 6=σ−1(n)

sign(σ(β)− σ(α))(kσ(β) − kσ(α) − kσ(α)kσ(β)).

Note that σ−1(n) plays no role in the terms of the first sum on line (2.4.15). Thus,

we can relabel each permutation in that sum to one in Sn−1, with each one occurring

n− 2 times. For example, when n = 4, we would replace the permutations (1 2 3 4
1 4 3 2)

and (1 2 3 4
1 2 4 3) with (1 2 3

1 3 2) and (1 2 3
1 2 3) respectively. Note that this replacement does not

change sign
(
σ−1(β)− σ−1(α)

)
, and thus does not change the summand. We can do
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the same with the two sums on the next line, these have no repeats as σ−1(n) must be

1 or n depending on the sum. Under this relabelling, Dσ(k) becomes sign(σ)B(kσ).

Thus, we get

(n− 2)
n−1∏
α=1

(−kα)
∑

σ∈Sn−1

sign(σ)(kσ(n−1) − kσ(1))B(kσ)

+

n−1∏
α=1

(−kα)
∑

σ∈Sn−1

sign(σ)kσ(n−1)B(kσ)−
n−1∏
α=1

(−kα)
∑

σ∈Sn−1

sign(σ)kσ(1)B(kσ).

Which is equal to

(n− 1)

n−1∏
α=1

(−kα)
∑

σ∈Sn−1

sign(σ)(kσ(n−1) − kσ(1))B(kσ).

Applying equation (2.4.13) in the n− 1 case, we get that the above is equal to

(n− 1)

n−1∏
α=1

(−kα)
∏

α<β<n

(kβ − kα)

(
C

(n−1)
0

+

b(n−1)/2c∑
m=1

C(n−1)
1

∑
α1<...<α2m

kα1 ...kα2m + C
(n−1)
2

∑
α1<...<α2m+1

kα1 ...kα2m+1

).
Comparing coefficients with what we started with, it is clear that C

(n)
m = (n −

1)C
(n−1)
m for m = 0, 1, 2 as required.

The proof for the C̃
(n)
m follows the same lines as above.

Finally, we just need to establish the values C
(2)
0 , C

(2)
1 , C

(2)
2 , C̃

(2)
0 , C̃

(2)
1 and C̃

(2)
2 to

find all the remaining values by induction. (2.4.7) in the n = 2 case is

k1k2(k2 − k1 − k1k2) + k1k2(k2 − k1 + k1k2) = 2(k2 − k1)k1k2.

Thus C
(2)
0 = 0, C

(2)
1 = 0 and C

(2)
2 = 2. Combining the two lemmas above this

implies for m = 0, 1 C
(n)
0 = 0 for every n, and C

(n)
2 = 2(n− 1)! for every n. (2.4.8)

in the n = 2 case is

(k2 − k1)(k2 − k1 − k1k2) + (k1 − k2)(k2 − k1 + k1k2) = −2(k2 − k1)k1k2.

Thus C̃
(2)
0 = 0, C̃

(2)
1 = 0 and C̃

(2)
2 = −2. Combining the two lemmas above this

implies for m = 0, 1 C̃
(n)
m = 0 for every n, and C̃

(n)
2 = −2(n−1)! for every n. In par-

ticular, this shows that the sum of (2.4.7) and (2.4.8) is 0, proving Proposition 2.4.4.
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As a consequence, we have proven Proposition 2.4.3, concluding this subsection.

2.4.3 Initial Condition

Proposition 2.4.9. For any bounded Lipschitz continuous function f : Wn → R,

we have ∫
ut(·, y)f(y)m

(n)
θ (dy)→ f uniformly, as t→ 0.

Where the definitions of m
(n)
θ and ut are given in definition 1.3.2 and Definition

(2.4.3) respectively.

First we’ll show

Lemma 2.4.10. ∫
ut(x, y)m

(n)
θ (dy) = 1 for all x ∈Wn, t > 0.

Proof. Lemma 2.4.2 allows us to calculate the time derivative by passing it through

the integral

∂

∂t

∫
ut(x, y)m

(n)
θ (dy) =

∫
1

2
∆ut(x, y)m

(n)
θ (dy)

= 0.

The first equality is clear from the definition of u. The second equality follows from

Corollary 2.3.9 and Lemma 2.4.2. This shows the integral is constant, to finish we

shall show convergence to 1 as t → ∞. Scaling k by t−
1
2 and y by t

1
2 we see the

following∫
ut(x, y)m

(n)
θ (dy)

=

∫
1

(2π)n

∫
Rn
e−

1
2
t|k|2

∑
σ∈Sn

eikσ ·(x−yσ)
∏
α<β:

σ(β)<σ(α)

Sσ(β),σ(α)(k)dk m
(n)
θ (dy)

=
∑
π∈Πn

θ|π|−n

(∏
πι∈π

1

|πι|

)
1

(2π)nt
1
2

(n−|π|)

∫ ∫
Rn
e−

1
2
|k|2

∑
σ∈Sn

eikσ ·(x/
√
t−yσ)

∏
α<β:

σ(β)<σ(α)

Sσ(β),σ(α)(k/
√
t)dk λπ(dy).

We can justify applying Dominated convergence to this by referring to lemma 2.4.2

to take t → ∞. It is clear that Sσ(β),σ(α)(
k√
t
) → 1 as t → ∞ for almost every k.

Notice that all terms with |π| < n in the sum over partitions vanish in the limit,
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leaving only the partition consisting exclusively of singletons. For this partition, λπ

is just the Lebesgue measure on the Weyl chamber. Thus, we have∫
ut(x, y)m

(n)
θ (dy) =

n!

(2π)n

∫
Wn

∫
Rn
e−

1
2
|k|2−ik·ydkdy,

= 1.

The n! comes from the sum over permutations, the resulting integral in k is just the

Fourier transform of a Gaussian; hence, the integral over the Weyl chamber is easily

calculated.

Now we can write∫
ut(x, y)f(y)m

(n)
θ (dy)− f(x) =

∫
ut(x, y) (f(y)− f(x))m

(n)
θ (dy).

It follows directly from the definition of m
(n)
θ that∣∣∣∣∫ ut(x, y) (f(y)− f(x))m

(n)
θ (dy)

∣∣∣∣
≤
∑
π∈Πn

θ|π|−n
∏
πi∈π

1
|πi|

∣∣∣∣∫ ut(x, y) (f(y)− f(x))λπ(dy)

∣∣∣∣ . (2.4.16)

Thus we can restrict our attentions to the integral with respect to λπ for a fixed

π ∈ Πn.

Let us briefly outline the proof. We begin by rearranging ut(x, y) into a more conve-

nient form, and then we split the sum over permutations, so that we first sum over

permutations σ for which the images (σ(πι))
|π|
ι=1 are fixed. We then bound ut(x, y) by

making contour shifts, following the same idea used to calculate the Fourier trans-

form of the Gaussian density. This step is complicated by the presence of poles in

the integral defining ut(x, y); however, our previous step gives us some control over

where the poles appear, and we can further use that x and y are both in the Weyl

chamber to derive Gaussian bounds on ut(x, y). In the final step, we combine these

bounds with the Lipschitz property for f to derive the desired uniform convergence.

This requires bounding of the contribution from Wπ to
∫
|ut(x, y)|m(n)

θ (dy) and some

care in considering what happens when x is near, but not in, Wπ to ensure we get

uniform convergence.

To begin our rearrangements, we prove that ut(x, y) is symmetric under swaps of x

and y.
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Lemma 2.4.11. For every x, y ∈Wn and t > 0

ut(x, y) = ut(y, x).

Proof. Recall that u is defined in (2.4.3) as

ut(x, y) = 1
(2π)n

∫
Rn
e−

1
2
t|k|2

∑
σ∈Sn

eikσ ·(x−yσ)
∏
α<β:

σ(α)>σ(β)

iθ(kσ(α)−kσ(β))+kσ(α)kσ(β)

iθ(kσ(α)−kσ(β))−kσ(α)kσ(β)
dk.

If we first take the sum outside the integral, then perform the change of variables in

the k integral, k → −kσ−1 , this becomes

1
(2π)n

∑
σ∈Sn

∫
Rn
e−

1
2
t|k|2+ikσ−1 ·(xσ−1−y)

∏
α<β:

σ(α)>σ(β)

iθ(kβ−kα)+kαkβ
iθ(kβ−kα)−kαkβ dk.

Notice that we can relabel the product as follows∏
α<β:

σ(α)>σ(β)

iθ(kβ−kα)+kαkβ
iθ(kβ−kα)−kαkβ =

∏
α<β:

σ−1(α)>σ−1(β)

iθ(kσ−1(α)−kσ−1(β))+kσ−1(α)kσ−1(β)

iθ(kσ−1(α)−kσ−1(β))−kσ−1(α)kσ−1(β)
.

Hence by relabelling the sum to be over σ−1 ∈ Sn, we see that we get ut(y, x) as

desired.

Now we proceed with the proof of the proposition, we can rewrite the summand of

(2.4.16) (ignoring the constants) as∣∣∣∣∫ ut(y, x) (f(y)− f(x))λπ(dy)

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫ ∫

Rn
e−

1
2
t|k|2

∑
σ∈Sn

eikσ ·(y−xσ)
∏
α<β:

σ(α)>σ(β)

Sσ(β),σ(α)(k) dk (f(y)− f(x)) λ
π(dy)

(2π)n

∣∣∣∣∣∣∣∣ .
(2.4.17)

For a partition π ∈ Πn and permutation σ ∈ Sn define the set of ordered pairs

σ(π) := {(π1, σ(π1)), ..., (π|π|, σ(π|π|))} (where σ(A) denotes the image of A under

σ). We can rewrite the sum in the above integral as follows∑
τ∈Sn:

τ |πι is increasing ∀ι

∑
σ∈Sn:

σ(π)=τ(π)

eikσ ·(y−xσ)
∏
α<β:

σ(α)>σ(β)

Sσ(β),σ(α)(k).
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Let’s consider eikσ ·(y−xσ) = e−ik·x
∏n
j=1 e

ikτ(j)yj . We’ll use the notation πι := supπι,

and πι := supπι. We know that for each πι ∈ π, α, β ∈ πι implies yα = yβ λ
π-a.e.

Hence
∏n
j=1 e

ikσ(j)yj =
∏
πι∈π

∏
α∈πι e

ikσ(α)yπι λπ-a.e. But since σ(π) = τ(π) this

is just equal to
∏
πι∈π

∏
α∈πι e

ikτ(α)yπι which equals eikτ ·y. Hence we can pull the

exponential out of the second sum to make the previous expression equal λπ-a.e. to∑
τ∈Sn:

τ |πι is increasing ∀ι

eikτ ·(y−xτ )
∑
σ∈Sn:

σ(π)=τ(π)

∏
α<β:

σ(α)>σ(β)

Sσ(β),σ(α)(k).

Now we can consider the product; in particular, we can show that when α and β

are in different elements of π then the appearance of Sσ(β),σ(α)(k) in the product

depends only on τ , and not the specific σ. Suppose α < β are in different elements

of π and that σ(β) < σ(α). Since π is an ordered partition, there exists ι < j

such that α ∈ πι and β ∈ πj . Now since σ(π) = τ(π), there must exist γ ∈ πι

and δ ∈ πj (thus γ < δ) such that τ(γ) = σ(α) > σ(β) = τ(δ). Hence, for each

such α < β such that σ(β) < σ(α), where α and β are in different elements of π,

there are γ < δ in different elements of π such that τ(δ) < τ(γ). Similarly, we

can go in the other direction, so that if α and β are in different elements of π then

(σ(β), σ(α)) is an inversion for σ if and only if it is an inversion for τ (That is if α

and β are in different elements of π then α < β with σ(β) < σ(α) occurs if and only

if τ−1(σ(α)) < τ−1(σ(β)) with σ(β) < σ(α)). Hence, we can split off the part of the

product where α and β are in different elements of π and rewrite entirely in terms

of τ . Thus, the previous expression is equal to

∑
τ∈Sn:

τ |πι is increasing ∀ι

eikτ ·(y−xτ )

∏
ι<j

∏
α∈πι, β∈πj :
τ(β)<τ(α)

Sτ(β),τ(α)(k)

 ∑
σ∈Sn:

σ(π)=τ(π)

Aoσ,π(k). (2.4.18)

Where Aoσ,π is shorthand for the summand of the second sum and defined as follows.

Aoσ,π(k) :=
∏
πι∈π

∏
α<β:

σ(α)>σ(β),
α,β∈πι

Sσ(β),σ(α)(k)

We can calculate the second sum using the formula in the following lemma.

Lemma 2.4.12. Suppose m ∈ N and θ > 0 then for all k ∈ Rm such that kα 6= 0
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for all α ∈ {1, . . . ,m}

∑
σ∈Sm

∏
α<β:

σ(α)>σ(β)

Sσ(β),σ(α)(k) = m!
∏
α<β

iθ(kβ − kα)

iθ(kβ − kα)− kαkβ
.

Proof. First, we prove the following equality holds for all ξ ∈ Cm

∑
σ∈Sm

 ∏
α<β:

σ(β)<σ(α)

(−1)


∏
α<β

ξσ(α) − ξσ(β) − 1

 = m!
∏
α<β

(ξα − ξβ). (2.4.19)

It is clear that the left hand side is a degree
(
m
2

)
polynomial, which we shall denote

P (ξ). Thus if we can prove that P (ξ) is also alternating, it must be a constant

multiple of the right hand side. We then just need to check the constant to finish

the proof.

To prove the left hand side is alternating it is enough to consider swaps of consecutive

variables, e.g. ξj and ξj+1 for some j ∈ {1, ...,m− 1}. Let sj = (j, j + 1) ∈ Sn, i.e.

the permutation that swaps j and j + 1 leaving everything else fixed. Clearly, for

all σ ∈ Sn ∏
α<β:

σ(β)<σ(α)

(−1) = −
∏
α<β:

σ◦sj(β)<σ◦sj(α)

(−1). (2.4.20)

It follows, by relabelling the sum in its definition, that P (ξsj ) = −P (ξ). Hence, P

is an alternating polynomial, and there is a c ∈ R such that

∑
σ∈Sm

 ∏
α<β:

σ(β)<σ(α)

(−1)


∏
α<β

ξσ(α) − ξσ(β) − 1

 = c
∏
α<β

(ξα − ξβ).

To finish, we just have to note that if we expand the bracket on the left hand side

we get m!
∏
α<β(ξα − ξβ) plus additional terms of lower degree. But we know that

the left hand side, P , is a constant multiple of
∏
α<β(ξβ−ξα); thus, the lower degree

terms must cancel. This proves (2.4.19).

To prove the lemma, we just need to divide both sides of (2.4.19) by
∏
α<β(ξα−ξβ−1)

then set ξj = iθ/kj for each j. An application of the following equality on the left
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hand side, and some simple rearrangements, give the desired identity.

∏
α<β

ξα − ξβ − 1

 =

 ∏
α<β:

σ(β)<σ(α)

ξσ(β) − ξσ(α) − 1


 ∏

α<β:
σ(α)<σ(β)

ξσ(α) − ξσ(β) − 1

 .

Hence, we get that (2.4.18) is equal to |π|∏
ι=1

|πι|!

 ∑
τ∈Sn:

τ |πι is increasing ∀ι

eikτ ·(y−xτ )T τ,π(k).

Where T τ,π : Cn → Cn is defined (for a.e. k ∈ Cn) as follows

T τ,π(k) :=

∏
ι<j

∏
α∈πι, β∈πj :
τ(β)<τ(α)

Sτ(β),τ(α)(k)


∏
πι∈π

∏
α<β:
α,β∈πι

iθ(kτ(β)−kτ(α))

iθ(kτ(β)−kτ(α))−kτ(α)kτ(β)

 .

This rearrangement, together with the triangle inequality, gives us that (2.4.17) is

bounded above by

∏|π|
ι=1 |πι|!
(2π)n

∑
τ∈Sn:

τ |πι is increasing ∀ι

∫ ∣∣∣∣ ∫
Rn
e−

1
2
t|k|2+ikτ ·(y−xτ )T τ,π(k)dk

∣∣∣∣|f(y)− f(x)|λπ(dy).

(2.4.21)

Now we can move on to the next step, which we briefly motivate. We want to get

control on the k integral in the above expression, and we need the bound to be

integrable in y with respect to λπ and to be vanishing as t → 0 whenever y 6= x.

Note that we can rewrite the exponent appearing in the integrand as follows

−1

2
t|k|2 + ikτ · (y − xτ ) = −1

2
t

n∑
α=1

(kτ(α) −
i

t
(yα − xτ(α)))

2 −
(yα − xτ(α))

2

2t
.

Suggesting that we should use Cauchy’s residue theorem to shift the kτ(α) contour

from R to Cα := {z ∈ C : z − i
t(yα − xτ(α)) ∈ R} for each α ∈ {1, ..., n}, and then

parametrise the resulting contour integral as an integral over R. Supposing we can

50



do this without encountering any poles, the exponent becomes

−1

2
t

n∑
α=1

k̃2
τ(α) −

(yα − xτ(α))
2

2t
.

Where k̃τ(α) ∈ R is our new integration variable. The second term of the summand

gives us the necessary control in the y variable, and the first term should allow us

to control the resulting k integral. However, this approach is complicated by T τ,π

which contribute poles that hinder our contour shifting. We end up not being able

to shift the integration contours for all of the k variables without encountering poles;

however, we are still able to make some of the desired contour shifts. To see which

shifts can be made, we need check where these poles occur. Note that by definition

T τ,π(k) :=
∏
ι<j

∏
α<β:

τ(β)<τ(α),
α∈πι, β∈πj

iθ(kτ(α)−kτ(β))+kτ(α)kτ(β)

iθ(kτ(α)−kτ(β))−kτ(α)kτ(β)


∏
πι∈π

∏
α<β:
α,β∈πι

iθ(kτ(β)−kτ(α))

iθ(kτ(β)−kτ(α))−kτ(α)kτ(β)


(2.4.22)

The following lemma provides us with the desired information.

Lemma 2.4.13. We’ll use the notation H = {x+ iy ∈ C| x ∈ R, y ∈ R>0} for the

upper half complex plane. The function (z, w) 7→ iθ(z − w) − zw has no zeroes in

the set H×−H.

Proof. For w ∈ −H there are a ∈ R and b ∈ R>0 such that w = a − bi. It is easily

checked that iθ(z − w)− zw = 0 if and only if we have

z =
θ2a− iθ((θ + b)b+ a2)

(θ + b)2 + a2
∈ −H.

Thus, there are no zeroes inside H×−H as claimed.

Observing the structure of the products in (2.4.22), we define the set Eτ,π ⊂ Cn

defined as ×nk=1E
τ,π
k where Eτ,πk is the upper half complex plane if there is a πι ∈ π

such that k = supπι and τ(α) < τ(k) for all α < k, the lower half complex plane if

there is a πι such that k = inf πι and τ(β) > τ(k) for all β > k, the whole complex

plane if both of these conditions are satisfied, and the real line if neither are satisfied.

Lemma 2.4.13 shows the denominator of T τ,π as in (2.4.22) has no zeroes in the set

Eτ,π (2.4.22), and thus we can perform our contour shifts as long as the contours
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remain within this set. To simplify our notation slightly we’ll henceforth write

πι := supπι and πι := inf πι for each πι ∈ π.

We’ll now use these ideas to get a following bound on the k integral in line (2.4.21).

First, we need to find a family of indices for which contour shifts can be made, that

is a collection of α such that Eτ,πα contains at least one complex half plane.

Lemma 2.4.14. Suppose π ∈ Πn and τ ∈ Sn such that τ |πι is increasing for every

πι ∈ π. For each πι ∈ π there are aι ≤ ι ≤ bι such that τ(πbι) ≤ τ(πaι), and the

following properties hold

� τ(πbι) < τ(β) for every β > πbι;

� and τ(πaι) > τ(α) for all α < πι.

Further, given such a (aι, bι), we can define mι := sup{τ(α)| πaι ≤ α ≤ πbι} and

lι := inf{τ(β)| πaι ≤ β ≤ πbι} if πaι < πbι; and mι := τ(πaι) and lι := τ(πbι) if

πaι ≥ πbι. The following properties hold for mι and lι:

� there are πc, πd ∈ π such that τ−1(mι) = πd and τ−1(lι) = πc;

� for all α < τ−1(mι) we have τ(α) < mι;

� and for all β > τ−1(lι) we have τ(β) > lι.

Proof. First we define µι := πaι where aι := inf{a ≤ ι : τ(πa) ≥ τ(πι)}, and then

from it we define νι := πbι where bι := sup{b ≥ ι : τ(µι) ≥ τ(πb)}. µι and νι are

introduced for convenience and will be used throughout this section. In Figure 2.1

we provide an example of a permutation and partition and the resulting values of

µι and νι.

It is easy to see that the aι and bι satisfy the first two properties we claimed for

them, namely that aι ≤ ι ≤ bι and τ(νι) = τ(πbι) ≤ τ(πaι) = τ(µι).

Now we show τ(νι) < τ(β) for all β > νι, and τ(µι) > τ(α) for all α < µι. Starting

with µι, if there is an α < µι such that τ(µι) < τ(α) then by definition of µι α must

be in a different element of π to µι, say πc, with c < aι. Since τ is increasing on

every element of π this means we must have τ(πc) > τ(α) > τ(µι) = τ(πaι) which

contradicts the definition of aι, so no such α exists. By a similar argument, there is

no β > νι such that τ(νι) > τ(β).

It just remains to prove the second set of statements, those about mι and lι. Suppose

we are given (aι, bι), as in the first part of the lemma, and once more define µι := πaι

and νι := πbι . The first property for mι and lι follows immediately from the fact

that τ |πj is increasing for all πj ∈ π, the definitions of mι and lι, and from π ∈ Πn.
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Figure 2.1: The bottom row displays the values of (µι, νι) for the permutation
τ = (1, 3, 4) in S5 and partition π = ({1}, {2, 3}, {4}, {5}). Lines connect pairs of
indices which τ inverts, so i < j are connected if τ(j) < τ(i). µι is the largest
element of the leftmost block of π connected to πι by a line. Similarly, νι is the least
element of the rightmost block of π connected to πι by a line.

For the second and third statements we consider two cases separately: µι < νι and

νι ≤ µι. For the latter case we have mι = τ(νι) and lι = τ(µι), so the statements

are the same as those we just proved. If instead we have µι < νι we can argue

the second statement as follows. Clearly for all α such that µι ≤ α ≤ νι we have

τ(α) < mι, thus we only need to check that α < µι implies τ(α) < mι. Suppose

this is false, i.e. there is an α < µι such that τ(α) > mι. Since mι > τ(µι) this

implies τ(α) > τ(µι), since we also have α < µι this is a contradiction as we know

from previously that τ(µι) > τ(α) whenever µι > α. A similar argument proves the

third statement, thereby proving the lemma.

In the following proposition, we will assume we have a π ∈ Πn with a family

(aι, bι)πι∈π given by the above lemma, and adopt the notation of the above proof,

namely µι := πaι and νι := πbι . The above lemma ensures that whenever α =

µι, τ
−1(mι) the set Eτ,πα contains the upper half complex plane, and if β = νι, τ

−1(lι)

then Eτ,πβ contains the lower half complex plane.

Proposition 2.4.15. Suppose π ∈ Πn and τ ∈ Sn such that τ |πι is increasing for

every πι ∈ π, and for each πι ∈ π we have aι ≤ ι ≤ bι as in the above lemma. There

is a constant C > 0, depending only on π and n, such that the following bound holds
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for all x, y ∈Wn∣∣∣∣∫
Rn
e−

1
2
t|k|2+ikτ ·(y−xτ )T τ,π(k)dk

∣∣∣∣
≤Ct−

1
2
|π|| log(t)||π|e−

|y−χ|2
12nt

∏
πι∈π

e−
1

24nt((xmι−χι)2+(xlι−χι)2). (2.4.23)

Where χ = χ(x) ∈ Rn is defined by χα := χι := 1
2(xτ(µι) + xτ(νι)) for all α ∈ πι.

We begin the proof with the following intermediate bound.

Lemma 2.4.16. Let Γα,x,y = Cα if x, y ∈ Wn are such that the Cα contour lies in

Eτ,πα , and R otherwise.∣∣∣∣∫
Rn
e−

1
2
t|k|2+ikτ ·(y−xτ )T τ,π(k)dk

∣∣∣∣ ≤e− |y−χ|212nt

(∏
πι∈π

e−
1

24nt((xmι−χι)2+(xlι−χι)2)

)
∫
×nα=1Γα,x,y

e−
1
2
t
∑n
α=1 Re(kτ(α))

2 |T τ,π(k)| dk.

(2.4.24)

Proof. We can apply Cauchy’s residue theorem to shift the contours of the integral

into the complex plane, onto the contours Γα,x,y to be precise. This is possible

because we have defined the contours Γα,x,y in such a way that they are either R,

and thus no deformation is required, or the integrand is analytic in whichever half

plane they occupy. The result is the following equality∫
Rn
e−

1
2
t|k|2+ikτ ·(y−xτ )T τ,π(k)dk = e

− 1
2t

∑
α:Γα,x,y 6=R(yα−xτ(α))

2

×
∫
×nα=1Γα,x,y

e
− 1

2
t
∑n
α=1 Re(kτ(α))

2+i
∑
α:Γα,x,y=R kτ(α)(yα−xτ(α))T τ,π(k)dk. (2.4.25)

Note that on the right hand side, when the contour for kj is not the real line, we

have rewritten the exponential by completing the square: k2
j − 2i

t kj(yτ−1(j) − xj) =

(ki − i
t(yτ−1(i) − xi))2 + 1

t2
(yτ−1(i) − xi)2.

From (2.4.25), we see that to prove lemma 2.4.16 we must bound the exponential

appearing in front of the integral, which means we need to consider which contour

shifts have been made. That is, we want to check when the condition for Γα,x,y = Cα

is true, for α = µι, νι. Thus, we want to check when Cα lies inside Eτ,πα . We

know from lemma 2.4.14 that Eτ,πµι contains the upper half complex plane, and Eτ,πνι

contains the lower half complex plane. Thus, Cµι ⊂ Eτµι when yµι ≥ xτ(µι), and
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Cνι ⊂ Eτνι when yνι ≤ xτ(νι). Hence we have the following inequalities:

− 1

2t
1{Γµι,x,y 6=R}(yµι − xτ(µι))

2 ≤ − 1

2t
1{(yµι≥xτ(µι))}(yµι − xτ(µι))

2;

− 1

2t
1{Γνι,x,y 6=R}(yνι − xτ(νι))

2 ≤ − 1

2t
1{(yνι≤xτ(νι))}(yνι − xτ(νι))

2.

There are two cases of interest, the first is when µι < νι. In this case, the two indices

are in different elements of π. The second case is when µι ≥ νι, for which the two

indices are in the same element of π. Let us deal now with the first case.

By definition we have τ(µι) ≥ τ(νι); thus, since x, y ∈Wn, it follows that we always

have yνι ≤ yµι . Hence, if we have both yνι > xτ(νι) and yµι < xτ(µι), it follows that

xτ(νι) < xτ(µι), but since x ∈ Wn this is a contradiction. Hence, for all x, y ∈ Wn

at least one of yµι ≥ xτ(µι) and yνι ≤ xτ(νι) must be true. This means we have the

following equality

− 1

2t
1{(yµι≥xτ(µι))}(yµι − xτ(µι))

2 − 1

2t
1{(yνι≤xτ(νι))}(yνι − xτ(νι))

2

=


− 1

2t(yµι − xτ(µι))
2, if yµι ≥ xτ(µι) and yνι > xτ(νι);

− 1
2t(yνι − xτ(νι))

2, if yµι < xτ(µι) and yνι ≤ xτ(νι);

− 1
2t(yµι − xτ(µι))

2 − 1
2t(yνι − xτ(νι))

2, if yνι ≤ xτ(νι) and yµι ≥ xτ(µι).

(2.4.26)

Let χι := 1
2(xτ(µι) + xτ(νι)), we can rewrite the first line as

− 1

2t

(
(yµι − χι)2 +

1

4
(xτ(µι) − xτ(νι))

2

)
+

1

2t
(yµι − χι)(xτ(µι) − xτ(νι)).

We have τ(µι) > τ(νι) and x ∈ Wn, so that (xτ(µι) − xτ(νι)) < 0. From y ∈ Wn

and µι < νι, it follows that yµι ≥ 1
2(yµι + yνι), which, under the conditions of the

first line, is bounded below by χι = 1
2(xτ(µι) + xτ(νι)). Thus yµι − χι > 0, and the

last term above is negative. We also have yνι − χι ≥ yνι − xτ(νι) > 0 in this case;

thus, using yνι ≤ yµι , we get −(yµι − χι)2 ≤ −(yνι − χι)2. It follows that the above

expression is bounded above by

− 1

4t

(
(yµι − χι)2 + (yνι − χι)2 +

1

2
(xτ(µι) − xτ(νι))

2

)
.

The same ideas yield the same bound on the cases of the second and third lines, so

that the above expression is a bound for (2.4.26).

Now we need to look at the contour shifts for mι and lι. Recall mι = sup{τ(α)| µι ≤
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α ≤ νι} and lι = inf{τ(β)| µι ≤ β ≤ νι}. Note that it is quite possible for mι = τ(µι)

or for lι = τ(νι). We need to check when Cτ−1(mι) ⊂ E
τ,π
τ−1(mι)

. From Lemma 2.4.14

we know Eτ,π
τ−1(mι)

contains the upper half complex plane. Therefore Γτ−1(mι),x,y =

Cτ−1(mι) if yτ−1(mι) ≥ xmι . Therefore we have

− 1

2t
1{Γτ−1(mι),x,y

6=R}(yτ−1(mι) − xmι)
2 ≤ − 1

2t
1{(yτ−1(mι)

≥xmι )}(yτ−1(mι) − xmι)
2.

We can combine this with our previous bound to get the following

− 1

2t
1{Γµι,x,y 6=R}(yµι − xτ(µι))

2 − 1

2t
1{Γνι,x,y 6=R}(yνι − xτ(νι))

2

− 1

2t
1{Γτ−1(mι),x,y

6=R, mι 6=τ(µι)}(yτ−1(mι) − xmι)
2

≤− 1

4t

(
(yµι − χι)2 + (yνι − χι)2 + (xτ(µι) − xτ(νι))

2
)

− 1

2t
1{yτ−1(mι)

≥xmι , mι 6=τ(µι)}(yτ−1(mι) − xmι)
2. (2.4.27)

We aim to show this is bounded above, for some positive constants C1, C2, by

−C1

t

(
(yµι − χι)2 + (yνι − χι)2 + (xτ(µι) − xτ(νι))

2
)
− C2

t
(xmι − χι)2.

Thus we consider the various cases for the indicator in (2.4.27).

If mι = τ(µι), then it follows from xmι ≤ χι ≤ xτ(νι) that (xτ(µι) − xτ(νι))
2 ≤

(xmι − χι)2, so that our desired bound is easily seen.

In the case that mι 6= τ(µι) and yτ−1(mι) ≥ xmι , if we further assume yτ−1(mι) ≥ χι

then it follows

− (yµι − χι)2 − (yτ−1(mι) − xmι)
2

=− (yµι − yτ−1(mι))
2 − (χι − xmι)2 + 2(yµι − xmι)(χι − yτ−1(mι))

≤− (yµι − yτ−1(mι))
2 − (χι − xmι)2 ≤ −(χι − xmι)2.

Where the last line is true because y ∈ Wn, so that yµι ≥ yτ−1(mι); thus, our

assumptions imply the last term on the third line above is negative. If instead,

xmι ≤ yτ−1(mι) < χι, then y ∈Wn implies that yνι ≤ yτ−1(mι); thus, 0 > yτ−1(mι) −
χι ≥ yνι − χι. Hence

− (yνι − χι)2 − (yτ−1(mι) − xmι)
2

≤− (yτ−1(mι) − χ
ι)2 − (yτ−1(mι) − xmι)

2

=− 2(yτ−1(mι) −
1

2
(xmι + χι))2 − 1

2
(xmι − χι)2 ≤ −1

2
(xmι − χι)2.
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Hence, when yτ−1(mι) ≥ xmι we have the bound on (2.4.27)

− 1

8t
(xmι − χι)2. (2.4.28)

If instead we have mι 6= τ(µι) and yτ−1(mι) < xmι , then we have x, y ∈Wn; therefore,

yνι ≤ yτ−1(mι) < xmι ≤ χι. Thus, −(yνι − χι)2 ≤ −(xmι − χι)2, so that expression

(2.4.28) is a bound on (2.4.27) for any x, y ∈ Wn, as desired. Following the same

steps for lι, we get the analogous bound

− 1

2t
1{Γµι,x,y 6=R}(yµι − xτ(µι))

2 − 1

2t
1{Γνι,x,y 6=R}(yνι − xτ(νι))

2

− 1

2t
1{Γτ−1(lι),x,y

6=R, lι 6=τ(νι)}(yτ−1(lι) − xlι)
2

≤− 1

4t

(
(yµι − χι)2 + (yνι − χι)2 + (xτ(µι) − xτ(νι))

2
)

− 1

2t
1{yτ−1(lι)

≥xlι , lι 6=τ(νι)}(yτ−1(mι) − xmι)
2

≤− 1

8t
(xlι − χι)2. (2.4.29)

Combining the bounds in (2.4.27), (2.4.28), and (2.4.29) we get the following bound

when νι > µι,

− 1

2t
1{Γµι,x,y 6=R}(yµι − xτ(µι))

2 − 1

2t
1{Γνι,x,y 6=R}(yνι − xτ(νι))

2

− 1

2t
1{Γτ−1(mι),x,y

6=R, mι 6=τ(µι)}(yτ−1(mι) − xmι)
2

− 1

2t
1{Γτ−1(lι),x,y

6=R, lι 6=τ(νι)}(yτ−1(lι) − xlι)
2

≤− 1

12t

(
(yµι − χι)2 + (yνι − χι)2

)
− 1

24t

(
(xmι − χι)2 + (xlι − χι)2

)
≤− 1

12(πbι − πaι)t

πbι∑
α=πaι

(yα − χι)2 − 1

24t

(
(xmι − χι)2 + (xlι − χι)2

)
. (2.4.30)

Where for the last line, we have used that from by definition µι = πaι and νι = πbι ,

and that under λπ, we have that for any πj ∈ π, if α, β ∈ πj then yα = yβ a.e.

as well as having that y ∈ Wn, so that (yµι − χι) ≥ (yα − χι) ≥ (yνι − χι) for all

πaι ≤ α ≤ πbι ; thus, either −(yα−χι)2 ≤ −(yµι−χι)2 or −(yα−χι)2 ≤ −(yνι−χι)2.

Before we use this to get the bound on (2.4.21), we need to deal with the second

case: νι ≤ µι.

In the second case, µι and νι are both in πι, and therefore, under λπ we have yµι = yνι

almost everywhere. Further, since τ is increasing on every element of π, it follows

that mι := τ(µι) = sup{τ(α)| νι ≤ α ≤ µι} and lι := τ(νι) = inf{τ(β)| νι ≤ β ≤ µι}.
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Following the same steps as before, if we assume both yνι > xτ(νι) and yµι < xτ(µι)

then since yµι = yνι , it follows that xτ(νι) < xτ(µι), which is a contradiction since

τ(νι) < τ(µι) and x ∈Wn. Thus, at least one of yνι ≤ xτ(νι) and yµι ≥ xτ(µι) must

hold for all x, y ∈Wn. With similar ideas to those used above, we find

− 1

2t
1{Γµι,x,y 6=R}(yµι − xτ(µι))

2 − 1

2t
1{Γνι,x,y 6=R}(yνι − xτ(νι))

2

≤− 1

4t

(
(yµι − χι)2 + (yνι − χι)2 + (xmι − xlι)2

)
≤− 1

12t

(
(yµι − χι)2 + (yνι − χι)2

)
− 1

24t

(
(xmι − χι)2 + (xlι − χι)2

)
(2.4.31)

≤− 1

12(µι − νι)t

µι∑
α=νι

(yα − χι)2 − 1

24t

(
(xmι − χι)2 + (xlι − χι)2

)
. (2.4.32)

Where the idea behind the bounds is similar, but this time we use yµι = yνι , and

we used that xlι ≥ χι ≥ xmι for the second inequality. The constants appearing

in the denominator have been chosen to be consistent with (2.4.30), and so are not

optimal.

Applying the bounds (2.4.30) and (2.4.32) to (2.4.25) leads to the following inequality∣∣∣∣∫
Rn
e−

1
2
t|k|2+ikτ ·(y−xτ )T τ,π(k)dk

∣∣∣∣ ≤e− 1
12nt
|y−χ|2

(∏
πι∈π

e−
1

24nt((xmι−χι)2+(xlι−χι)2)

)
∫
×nα=1Γα,x,y

e−
1
2
t
∑n
α=1 Re(kτ(α))

2 |T τ,π(k)| dk,

(2.4.33)

where we have used µι − νι, πbι − πaι < n for all ι to get the form of the Gaussian

bound given above.

We complete the proof of Proposition 2.4.15 with the following lemma.

Lemma 2.4.17. There is a constant C > 0, depending only on π and n, such that∫
×nα=1Γα,x,y

e−
1
2
t
∑n
α=1 Re(kτ(α))

2 |T τ,π(k)| dk ≤ Ct−
1
2
|π|| log(t)||π|. (2.4.34)

Proof. Now we bound the k integral in the above expression, for which we need to

collect some bounds on the factors appearing in the products (2.4.22). We need to

make sure the bound covers the new contours; therefore, it is sufficient to bound for

k ∈ Eτ,π. This can be done for the factors in the first product by bounding for all
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ha, hb ≥ 0 and ka, kb ∈ R∣∣∣∣ iθ((ka + iha)− (kb − ihb)) + ((ka + iha))((kb − ihb))
iθ((ka + iha)− (kb − ihb))− ((ka + iha))((kb − ihb))

∣∣∣∣
=

∣∣∣∣ iθ(ka − kb)− θ(hb + ha) + i(kbha − kahb) + kakb + hahb
iθ(ka − kb)− θ(hb + ha)− i(kbha − kahb)− kakb − hahb

∣∣∣∣
=
(
θ2(ka−kb)2+(kbha−kahb)2−2θ(k2

bha+k2
ahb)+θ

2(hb+ha)2−2θhahb(hb+ha)+(kakb+hahb)
2

θ2(ka−kb)2+(kbha−kahb)2+2θ(k2
bha+k2

ahb)+θ
2(hb+ha)2+2θhahb(hb+ha)+(kakb+hahb)2

) 1
2

≤1, because ha, hb ≥ 0. (2.4.35)

Here, the k variables are the real part of the integration variables, and the h variables

are the imaginary part. Hence, we have that for all k ∈ Eτ,π∫
×nα=1Γα,x,y

e−
1
2
t
∑n
α=1 Re(kτ(α))

2 |T τ,π(k)| dk

≤
∏
πι∈π

∫
×α∈πιΓα,x,y

e−
1
2
t
∑
α∈πι Re(kτ(α))

2 ∏
α<β:
α,β∈πι

∣∣∣ iθ(kτ(β)−kτ(α))

iθ(kτ(β)−kτ(α))−kτ(α)kτ(β)

∣∣∣ dk. (2.4.36)

Similar to the previous argument it suffices to bound for ka, kb ∈ R and ha, hb ≥ 0∣∣∣∣ iθ((ka + iha)− (kb − ihb))
iθ((ka + iha)− (kb − ihb))− ((ka + iha))((kb − ihb))

∣∣∣∣
=
(

θ2(ka−kb)2+θ2(hb+ha)2

θ2(ka−kb)2+(kbha−kahb)2+2θ(k2
bha+k2

ahb)+θ
2(hb+ha)2+2θhahb(hb+ha)+(kakb+hahb)2

) 1
2

≤


1,

θ

(
|ka−kb|

((kbha−kahb)2+(kakb+hahb)2)
1
2

)
+ θ

(
|hb+ha|

((kbha−kahb)2+(kakb+hahb)2)1/2

)
≤

1,

2θ
(

1
|ka| + 1

|kb|

)
.

(2.4.37)

The last line follows by expanding the brackets in the denominator, removing some

non-negative terms, and then applying the triangle inequality.

Returning to (2.4.36), we can divide each contour integral into two parts: one where

|Re(kα)| < ε/
√
t and another where |Re(kα)| ≥ ε/

√
t; this gives the following

∏
πι∈π

∫
×α∈πιΓα,x,y

e−
1
2
t
∑
α∈πι Re(kτ(α))

2

∏
α∈πι

(
1{|Re(kα)|<ε/

√
t} + 1{|Re(kα)|≥ε/

√
t}

) ∏
α<β:
α,β∈πι

∣∣∣ iθ(kτ(β)−kτ(α))

iθ(kτ(β)−kτ(α))−kτ(α)kτ(β)

∣∣∣ dk.
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We can simplify as follows: expanding the first product, in each term where an

indicator for |kα| < ε/
√
t appears, we bound all factors in the second product which

depend on kα by 1 using the first line bound in (2.4.37); it is then easy to see

that the contribution from the kα integral to that term is at most 2ε/
√
t. We can

then bound any remaining terms in the second product by the second line bound

in (2.4.37) (remembering that the k in that estimate represents the real part of the

complex integration variable), the resulting integral depends only on the number of

kα for which |Re(kα)| ≥ ε/
√
t. Relabelling the remaining variables, we see that the

previous expression is equal to the one below.

∏
πι∈π

|πι|∑
j=1

(
|πι|
j

)
2|πι|−j+(j2)θ(

j
2)(ε/

√
t)|πι|−j

∫
Rj :

|kα|≥ε/
√
t, ∀α

e−
1
2
t|k|2

∏
α<β

(
1
|kα| + 1

|kβ |

)
dk.

Rescaling the k variables by 1√
t
, we see that this equals

∏
πι∈π

|πι|∑
j=1

(
|πι|
j

)
2|πι|−j+(j2)θ(

j
2)ε|πι|−jt

1
2((j2)−j)

∫
Rj :

|kα|≥ε, ∀α

e−
1
2
|k|2

∏
α<β

(
1
|kα| + 1

|kβ |

)
dk.

(2.4.38)

Since the product runs through all pairs of α, β ∈ {1, ..., j}, upon expanding the

brackets, every term will involve at least j − 1 of the kγ . Further, at most one has

exponent −1, with the rest having exponent at most −2. It is clear from repeated

integration by parts, that for each y 6= 1 there is some constant C > 0 such that∫
|x|≥ε

1

|x|y
e−

1
2
|x|2dx ≤ Cε1−y, when ε ∈ (0, 1).

For y = 1, we instead have that there is a constant C > 0 such that∫
|x|≥ε

1

|x|
e−

1
2
|x|2dx ≤ C| log(ε)|, when ε ∈ (0, 1).

Hence, since the sum of all the powers of all the kγ in each term of the expanded

brackets is
(
j
2

)
, and because the product runs through all pairs of indices so that in

each term in the expansion there can be at most one kγ appearing with power 1,

there is some constant C > 0 depending only on n and π such that for all ε ∈ (0, 1),

(2.4.38) is bounded by

≤ C
∏
πι∈π

|πι|∑
j=1

ε|πι|−j+j−1−(j2)| log(ε)|t
1
2((j2)−j).
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Which, if we set ε =
√
t is clearly bounded above by

Ct−
1
2
|π|| log(t)||π|.

Which is the desired upper bound.

Proof of Proposition 2.4.15. This proposition follows by combining the above lemma

and Lemma 2.4.16.

We now apply this bound to complete the proof of the main proposition of the

subsection.

Proof of Proposition 2.4.9. Proposition 2.4.15 implies that (2.4.21) is bounded by

Ct−
1
2
|π|| log(t)||π|

∑
τ∈Sn:

τ |πι is increasing ∀ι∫
e

1
12nt
|y−χ|2

∏
πι∈π

e−
1

24nt((xmι−χι)2+(xlι−χι)2)|f(y)− f(x)|λπ(dy)

(2.4.39)

We can replace the function f : Wn → R with its symmetric extension f : Rn → R,

that is the function f : Rn → R such that for any σ ∈ Sn, x ∈ Rn we have

f(xσ) = f(x) and f |Wn = f . Then, after rescaling y by
√
t, (2.4.39) is bounded by

C| log(t)||π|
∑
τ∈Sn:

τ |πι is increasing ∀ι∫
W|π|

e−
1

12n
|y|2
(∏
πι∈π

e−
1

24nt((xmι−χι)2+(xlι−χι)2)

)
|f(
√
ty + χ)− f(xτ )|dy.

In the above, χ ∈ Rn is defined by χα := χι when α ∈ πι, y is defined by y
α

= yι

for all α ∈ πι, and we have used f(x) = f(xτ ). We have also rewritten the integral

with respect to λπ as an integral with respect to the Lebesgue measure. Since f is a

Lipschitz function, it is straightforward to show that f is also Lipschitz; therefore,

the above expression is bounded by

C| log(t)||π|
∑
τ∈Sn:

τ |πι is increasing ∀ι∫
W|π|

e−
1

12n
|y|2
(∏
πι∈π

e−
1

24nt((xmι−χι)2+(xlι−χι)2)

)(√
t|y|+ |χ− xτ |

)
dy.
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The integrand is non negative and |y| ≤ |π||y|; therefore, this is bounded above (for

a new constant C) by

C| log(t)||π|
∑
τ∈Sn:

τ |πι is increasing ∀ι∫
R|π|

e−
1

12n
|y|2
(∏
πι∈π

e−
1

24nt((xmι−χι)2+(xlι−χι)2)

)(√
t|y|+ |χ− xτ |

)
dy

≤C| log(t)||π|
∑
τ∈Sn:

τ |πι is increasing ∀ι

(2.4.40)

∫
R|π|

(|y|+ 1)e−
1

12n
|y|2dy

(√
t+ |χ− xτ |e−

1
24nt

∑
πι∈π((xmι−χι)2+(xlι−χι)2)

)
.

(2.4.41)

Now we note that |χ−xτ | ≤
∑n

α=1 |χα−xτ(α)|, but for all α ∈ [µι, νι] (or [νι, µι]) we

have xmι ≤ xτ(α), χα ≤ xlι (or xlι ≤ xτ(α), χα ≤ xmι). Hence, either |χα − xτ(α)| ≤
|χα − xmι | or |χα − xτ(α)| ≤ |χα − xlι |. Note that that for any c > 0 and x ∈ R we

have the inequality |x|e−c|x|2 ≤ (2ec)−
1
2 . Hence, (2.4.41) is bounded by

C
√
t| log(t)||π|

∑
τ∈Sn:

τ |πι is increasing ∀ι

∫
R|π|

(|y|+ 1)e−
1

12n
|y|2dy

≤C
√
t| log(t)||π|.

Where we have bounded the integral independently of |π|, and the constant C has

changed between lines. Summing over π ∈ Πn, and using that since Πn is a finite

set the constants C in the above expression have a finite maximum, we get, for a

new constant C > 0 depending only on n,

sup
x∈Wn

|
∫
ut(x, y)f(y)m

(n)
θ (dy)− f(x)| ≤C

√
t
∑
π∈Πn

| log(t)||π|

≤C
√
t log(t)n → 0, as t→ 0.

The last inequality is valid for t < 1/e. Hence, we have the desired uniform conver-

gence, and Proposition 2.4.9 is proven.

As a consequence of Proposition 2.4.3 and Proposition 2.4.9, we can apply Proposi-

tion 2.3.4 to our function
∫
ut(x, y)f(y)m

(n)
θ (dy) to prove

∫
ut−s(Ys, y)f(y)m

(n)
θ (dy)

is a local martingale. Suppose that f ∈ C∞c (Wn), i.e. f has an extension to an

open set U containing Wn that is smooth and compactly supported. Then since∫
ut(x, y)f(y)m

(n)
θ (dy) converges uniformly to f as t → 0, and f is bounded, there
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must be some ε > 0 such that
∫
ut(x, y)f(y)m

(n)
θ (dy) is bounded for t ∈ [0, ε] and

x ∈Wn. We also have |
∫
ut(x, y)f(y)m

(n)
θ (dy)| ≤ 1

(2πt)n/2

∫
|f(y)|m(n)

θ (dy), which is

bounded for t ∈ [ε,∞). Hence,
∫
ut(x, y)f(y)m

(n)
θ (dy) is bounded as a function of

(t, x) ∈ R>0 ×Wn. It follows that
∫
ut−s(Ys, y)f(y)m

(n)
θ (dy) is a true martingale;

thus, Ex[f(Yt)] =
∫
ut(x, y)f(y)m

(n)
θ (dy). In particular, if f(x) ≥ 0 for all x ∈ Wn,

then
∫
ut(x, y)f(y)m

(n)
θ (dy) ≥ 0. Since this holds for every f ∈ C∞c (Wn), we have

that for each t > 0, x ∈Wn ut(x, y) ≥ 0 m
(n)
θ almost everywhere.

Returning to the case where f is merely bounded and Lipschitz, we can use the non-

negativity of ut(x, y) and Lemma 2.4.10 to get the bound |
∫
ut(x, y)f(y)m

(n)
θ (dy)| ≤

‖f‖∞. Hence, the local martingale
∫
ut−s(Yt, y)f(y)m

(n)
θ (dy) is in fact a true mar-

tingale for s ∈ [0, t], and so Ex[f(Yt)] =
∫
ut(x, y)f(y)m

(n)
θ (dy). Thus, the proof of

Theorem 2.4.1 is completed.

As a consequence we can also prove the following.

Theorem 2.4.18. m
(n)
θ is a stationary measure for Y , and Y is reversible with

respect to m
(n)
θ .

Proof. For f a bounded, integrable, Lipschitz continuous function, we have for all

t > 0

d

dt

∫
Ex[f(Yt)]m

(n)
θ (dx) =

d

dt

∫ ∫
ut(x, y)f(y)m

(n)
θ (dy)m

(n)
θ (dx) (2.4.42)

= 0. (2.4.43)

With the first equality a consequence of Theorem 2.4.1 and the second equality a

consequence of Corollary 2.3.9 and Fubini’s theorem. The necessary bounds to pass

the derivatives through the integrals, and then apply Fubini follow in the same way

as Lemma 2.4.2. The same bounds, together with the uniform convergence we just

proved, gives

lim
t→0

∫
Ex[f(Yt)]m

(n)
θ (dx) =

∫
f(x)m

(n)
θ (dx). (2.4.44)

We can extend this to any L1(m
(n)
θ ) function by a density argument, proving that

m
(n)
θ is the stationary measure for Y .
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If f and g are bounded, Lipschitz continuous, and integrable; Fubini’s theorem gives∫
Ex[f(Yt)]g(x)m

(n)
θ (dx) =

∫ ∫
ut(x, y)f(y)m

(n)
θ (dy)g(x)m

(n)
θ (dx)

=

∫ ∫
ut(x, y)g(x)m

(n)
θ (dx)f(y)m

(n)
θ (dy)

=

∫
Ey[g(Yt)]f(y)m

(n)
θ (dy).

Where we have used the symmetry ut(x, y) = ut(y, x) in the last line. Hence, Y is

reversible with respect to m
(n)
θ .

Finally, we return to prove Lemma 2.4.2.

Proof of Lemma 2.4.2. The proof of this lemma is a simplified version of the meth-

ods we apply in Section 2.4.3; as such, we omit the main details to avoid repetition

and instead sketch the proof. Following the arguments used to prove Proposition

2.4.15, with π = {{1}, {2}, ..., {n}}, we can derive a Gaussian bound on the sum-

mand in (2.4.3). We can then adapt the arguments in Lemma 2.4.17 to bound the

resulting contour integrals, which will have additional factors of k due to the deriva-

tives. In fact, the proof can be significantly simplified in this case as we do not

need to consider the t→ 0 limit, and therefore we do not need to ensure we get the

optimal exponent for t. The above arguments give us a bound in the form of a finite

sum of Gaussian kernels, multiplied by a negative power of t, from which the above

bounds follow easily (note that for the bound on the x derivatives, we can apply the

bound on the y derivatives, as ut(x, y) = ut(y, x) which we prove later in Lemma

2.4.11).

2.5 Stochastic Flows of Kernels

2.5.1 Random Walks in Random Environments

We will begin by recalling the definitions for the discrete counterparts of Howitt-

Warren flows and sticky Brownian motions: Random walks in space-time i.i.d. ran-

dom environments on Z and their n-point motions, discussed in Section 1.1. A

random walk in a random environment on Z is simply a random walk on Z whose

transition probabilities are themselves random variables. We define the Random

Environment as a family of i.i.d [0, 1] valued random variables ω = (ωt,x)t,x∈Z with

law and expectation P and E, respectively. We then define a random walk running
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through realisation of the environment with transition probabilities:

Pω(X(t+ 1) = x+ 1| X(t) = x) = ωx,t;

Pω(X(t+ 1) = x− 1| X(t) = x) = 1− ωx,t.

Where Pω denotes the law of the RWRE, and Eω its expectation, both of which

depend on the environment. By considering the random transition probabilities

Pω(Xt = y| X0 = x) we can also consider this model as a random flow of a fluid,

where the quantities describe how a point mass at x is spread through the fluid at

time t.

An important idea for studying such models are the n-point motions, we run n ran-

dom walks independently through a sampling of the environment, and then average

out the environment. The averaging over the law of the environment will break the

particles’ independence. That is, if X(t) = (X1(t), ..., Xn(t)) is the n-point motion,

then

P(X(t+ 1) = y|X(t) = x) = E

[
n∏
i=1

Pω(Xi(t+ 1) = yi|X(t) = xi)

]
.

Alternatively, we can view the n-point motions as describing the behaviour of n

particles thrown into the fluid. Notice now that since the environment is i.i.d,

the coordinate processes of the n-point motion behave independently when they

are apart. However, when they meet, they interact. In particular, it is a simple

consequence of Jensen’s inequality that they are more likely to move in the same

direction when together than when apart:

E[ωn] + E[(1− ω)n] ≥ E[ω]n + E[1− ω]n,

ω being a copy of an environment variable. A group of particles situated at the same

site, x, at time t can break into at most two groups. The probability of a group of

n particles breaking into two groups of size k and l, with the k moving to x+ 1 and

the l to x− 1, is

E[ωkx,t(1− ωx,t)l].

Hence, the distribution of ω can be viewed as controlling the rate at which groups

of particles break up, and the size of the groups they tend to break into. At the

extreme ends, if the environment variables are chosen to be {0, 1} valued Bernoulli

random variables, then the n-point motions become coalescing simple random walks.

On the other hand, it the environment variables are chosen to be deterministic with
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value 1
2 , then the n-point motions will simply be independent simple random walks.

Thus, the strength of the effect of the environment on the interaction between the

n-point motions is related to how probable it is that the environment variables take

values near 0 or 1.

If we take the diffusive scaling limit of these n-point motions in an environment

having a fixed distribution, then the contribution of the environment is overcome in

the limit, and we simply end up with independent Brownian motions (assuming the

environment variables are mean 1/2 so there is no drift).

It was shown by Howitt and Warren [HW09] that by changing the distribution of

the ω as we take the diffusive scaling limit, we can obtain Brownian motions which

still interact; specifically, they are sticky when they meet, see also Schertzer, Sun

and Swart [SSS10]. To preserve the interaction into the diffusive scaling limit the

strength of the interaction has to be increased; this means taking the laws of the

environment random variables to be closer to that of a Bernoulli random variable.

This requirement is made explicit in the second condition of Howitt and Warren’s

theorem, stated below.

Theorem 2.5.1. Suppose X(t) is the n-point motion of a RWRE, where the envi-

ronment variables have law µ(ε) satisfying the following:

1

ε

∫ 1

0
(1− 2q)µ(ε)(dq)→ β, as ε→ 0;

1

ε
q(1− q)µε(dq) =⇒ ν(dq), as ε→ 0.

Then the laws of the processes (εX(ε2t))t≥0 converge weakly to the law of a solution

to the Howitt-Warren martingale problem with drift β and characteristic measure ν.

In the special case of ν(dx) = θ/2dx, where dx is the Lebesgue measure the above

result shows the solution to the Howitt-Warren martingale problem is the scal-

ing limit of the Beta random walk in a random environment. That is, choose

µ(ε)(dq) = Γ(2θε)
Γ(θε)Γ(θε)q

θε−1(1 − q)θε−1dq, then for any function Cb([0, 1]) the Dom-

inated Convergence Theorem implies

1

ε

∫ 1

0
f(q)q(1− q)µ(ε)(dq) =

Γ(2θε)

εΓ(θε)Γ(θε)

∫ 1

0
f(q)qθε(1− q)θεdq

→ θ

2

∫ 1

0
f(q)dq,

using Γ(x) = Γ(x+1)
x ∼ 1

x as x → 0. Hence 1
εq(1 − q)µ(ε) ⇒ θ

2dx; since we also

have
∫ 1

0 (1 − 2q)µ(ε)(dq) = 0 for all ε > 0 the theorem implies the convergence of
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the n-point motions of the Beta random walk in a random environment to solutions

of the Howitt-Warren martingale problem with characteristic measure θ
21[0,1]dx and

zero drift. This is the key motivator for looking for exact solutions in the sticky

Brownian motion case and was used by Barraquand and Rychnovsky in [BR20]

to find Fredholm determinant expressions in the sticky Brownian motions case by

taking limits of those found for the Beta random walk in a random environment in

[BC17].

2.5.2 The Howitt-Warren process

We now briefly introduce stochastic flows of kernels, these are essentially random

transition probabilities (Ks,t(x, dy))s≤t, with the following additional assumptions:

independent increments in the sense that for any t0 < ..., tn the random kernels

Kt0,t1 , ...,Ktn−1,tn are independent; stationarity, that is the law of Ks,t depends only

on t−s. They can be thought of as the continuum version of the random environment

that is i.i.d. in space and time we considered in the previous section.

The n-point motions of a stochastic flow of kernels are the family of Markov processes

(Xn)∞n=1 with Xn taking values in Rn with transition probabilities

P(Xn(t) ∈ E| Xn(s) = x) = E
[ ∫

E

n∏
i=1

Ks,t(xi, dyi)
]
, for x ∈ Rn, E ∈ B(Rn).

Notice that this is very similar to the definition of the n-point motions in the RWRE

case, with K taking the place of the random transition probabilities.

Le Jan and Raimond [LJR04a] have shown that any consistent family of Feller

processes are the n-point motions of some stochastic flow of kernels. A family of

Feller processes (Xn)∞n=1, Xn : R>0 → Rn is consistent, if for any k ≤ n and any

choice of k coordinates from Xn: (Xi1
n , ..., X

ik
n ) is equal in law to Xk. For a more

complete introduction to stochastic flows of kernels we refer to [LJR04a]. When

the family of n-point motions, (Xn)∞n=1, are sticky Brownian motions characterised

by a Howitt-Warren martingale problem the resulting flow of kernels is called a

Howitt-Warren flow. These flows have been studied extensively by Schertzer, Sun,

and Swart [SSS10].

Definition 2.5.2. The stochastic flow of kernels whose n-point motions solve the

Howitt-Warren martingale problem, as stated in Definition 2.2.2, with characteristic

measure ν and drift β is called the Howitt-Warren flow with characteristic measure

ν and drift β.

Rather than look at the flow directly, we want to consider the Howitt-Warren process
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a measure valued process that describes how an initial mass is carried by the flow.

In our case, we are interested in the case where all mass starts at the origin; thus,

we consider the Howitt-Warren process with initial condition δ0. That is, for the

Howitt-Warren flow (Ks,t)s≤t with characteristic measure ν and drift β we define

the Howitt-Warren process started from δ0 with characteristic measure ν and drift

β to be the measure valued process given by

ρt(A) := K0,t(0, A), for every Borel set A ⊂ R. (2.5.1)

If f : Rn → R is a symmetric function, then Ex[f(X(t))] = Ex[f(Y (t))] for all

x ∈Wn. Hence, we have the following corollary of our main result, Theorem 2.4.1,

that allows us to study the Howitt-Warren process.

Corollary 2.5.3. If f : Rn → R is a symmetric function, and its restriction to Wn

is a bounded, Lipschitz continuous function, then for a Howitt-Warren flow (Ks,t)s≤t

with characteristic measure θ
2dx and drift zero we have

E

[∫
f(y)

n∏
i=1

Ks,t(xi, dyi)

]
=

∫
ut−s(x, y)f(y)m

(n)
θ (dy) for all x ∈Wn.

From which it clearly follows that for the Howitt-Warren process started from δ0 with

characteristic measure θ
21[0,1] and drift 0, we have that

E
[∫

f(y)ρ⊗nt (dy)

]
=

∫
ut(0, y)f(y)m

(n)
θ (dy). (2.5.2)

This allows us to study the process directly, via u, which we will pursue further in

the next subsection.

2.5.3 Atoms of the Howitt-Warren process

Schertzer, Swart, and Sun proved [SSS10, Theorem 2.8] that any Howitt-Warren

process is almost surely purely atomic for fixed times t. Thus, almost surely we can

write the Howitt-Warren process at time t as a linear combination of delta measures

ρt(dy) =
∑

iwiδyi(dy), where the wi and yi are both random. One can think of

the Howitt-Warren process as the density of an infinite number of sticky Brownian

motions evolving in time. Thus, the fact that the process is atomic shows that when

the number of particles is very large, the sticky behaviour leads to the formation of

large clusters of particles. This is very different from the behaviour of large numbers

of independent Brownian motions.
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We can think of the collection of pairs (yi, wi) as a point process on R×R>0. Note

that the Howitt-Warren process conserves mass, so that for any t > 0 we will have∑
iwi = 1. However, due to another result of [SSS10], the total number of points

will be infinite a.s. This point process has an associated intensity measure γt on

R× R>0 defined by

γt(A1 ×A2) = E

[∑
i

1yi∈A1, wi∈A2

]
.

We will use this intensity to study the behaviour of the weight of a single atom

at a given point in space. See [Bor09] for an introduction to point processes. For

any n ∈ N and f : R → R that is bounded and Lipschitz continuous, we have the

equalities

∫
R×R>0

f(y)wn γt(dy, dw) =E

[∑
i

f(yi)w
n
i

]

=E
[∫

Dn
f⊗n(y)ρ⊗nt (dy)

]
=

∫
Dn
f⊗n(y)u

(n)
t (0, y)m

(n)
θ (dy)

=n−1θ1−n
∫
R
f(y)u

(n)
t (0, (y, ..., y))dy. (2.5.3)

Above, Dn := {(y, ..., y) ∈ Rn : y ∈ R}, and we have written u
(n)
t for the transition

density ut on Rn, which we do for the rest of the section to indicate the dependency

on dimension. The first equality can be seen by approximating by simple functions,

the second is direct from the definitions, the third is a consequence of Corollary 2.5.3

and the fourth from Definition 1.3.2.

Equality (2.5.3) also shows that the measure γt(dy, dw) can be written in the form

γt(y, dw)dy, and that we have for each n ∈ N and almost every y ∈ R the equality∫
R>0

wnγt(y, dw) = n−1θ1−nu
(n)
t (0, (y, ..., y)). (2.5.4)

We will study the asymptotic behaviour of the measure γt(y, dw) for certain choices

of y. We can interpret γt(y, dw) as describing the distribution of the size of an

atom at y. However, γt(y, dw) is not a probability distribution; the measure of any

neighbourhood of w = 0 is infinite. Introducing size biasing, and instead considering

the measure wγt(y, dw), we do get a finite measure which describes the size of an

atom picked at random from ρt, using the sizes of the atoms as probabilities and

conditioning the chosen atom to be at y.

69



Proposition 2.5.4. For each x ∈ R, we have as t→∞

t−
1
2

√
2πe

x2

2 wγt

(√
tx,

dw√
t

)
⇒ θ
√

2πe
x2

2 e−θ
√

2πe
x2

2 wdw.

Where the right hand side is the exponential distribution with rate θ
√

2πe
x2

2 .

Proof. Note that the measure on the left hand side in the proposition has been

normalised and is a probability measure. Thus, it is enough to show pointwise

convergence of the moment generating functions on a neighbourhood of 0. With

Theorem 2.4.1, we can rewrite the expression for the moments derived in line (2.5.4)

as follows.∫
R>0

wn
√

2πt−
1
2 e

x2

2 wγt

(√
tx, dw√

t

)
=
√

2πe
x2

2 t
n+1

2

∫
R>0

wn+1γt

(√
tx, dw

)
=
√

2πe
x2

2 t
n+1

2
u

(n+1)
t ((0,...,0),

√
t(x,...,x))

(n+1)θn

=
√

2π e
x2

2 t
n+1

2
(n+1)θn(2π)n+1

∫
Rn+1

e−
1
2 t|k|

2−i
√
tk·x ∑

σ∈Sn+1

∏
α<β:

σ(β)<σ(α)

iθ(kσ(α)−kσ(β))+kσ(β)kσ(α)

iθ(kσ(α)−kσ(β))−kσ(β)kσ(α)
dk

=
√

2π n!e
x2

2 t
n+1

2
θn(2π)n+1

∫
Rn+1

e−
1
2 t|k|

2−i
√
tk·x ∏

α<β

iθ(kβ−kα)
iθ(kβ−kα)−kαkβ dk

=
√

2π n!e
x2

2
θn(2π)n+1

∫
Rn+1

e−
1
2 |k|

2−k·x ∏
α<β

iθ(kβ−kα)

iθ(kβ−kα)−t−
1
2 kαkβ

dk.

To go from the first to the second line we have used line (2.5.4) and to go from the

third to the fourth line we have used the summation formula from Lemma 2.4.12.

We can now write the moment generating function in terms of the moments.

√
2πt−

1
2 e

x2

2

∫
R>0

eλwwγt

(√
tx,

dw√
t

)

=

∞∑
n=0

√
2π

λne
x2

2

θn(2π)n+1

∫
Rn+1

e−
1
2
|k|2−k·x

∏
α<β

iθ(kβ − kα)

iθ(kβ − kα)− t−
1
2kαkβ

dk.

To take t → ∞, we want to apply the Dominated Convergence Theorem to pass

the limit through both the sum and the integral. Similarly to what we have seen

previously, line (2.4.37) to be precise, the modulus of the product within the integral

is bounded above by 1. With this bound we find that the modulus of the nth term of

the series is bounded above for all t > 0 by λnex
2/2

θn , which is summable for |λ| < θ,

and so we can take the limit t → ∞ through the sum. Further the bound on the
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integral allows us to take the limit through the integral. Hence, for |λ| < θ, we have

lim
t→∞

∞∑
n=0

√
2π

λne
x2

2

θn(2π)n+1

∫
Rn+1

e−
1
2
|k|2−ik·x

∏
α<β

iθ(kβ − kα)

iθ(kβ − kα)− t−
1
2kαkβ

dk

=
∞∑
n=0

√
2π

λne
x2

2

θn(2π)n+1

∫
Rn+1

e−
1
2
|k|2−ik·xdk =

∞∑
n=0

λe−x2

2

θ
√

2π

n

.

This is exactly the moment generating function of an exponential random variable

with parameter θ
√

2πex
2/2, and thus the statement is proved.

We note that this result is analogous to Thiery and Le Doussal’s result in [TLD16],

where they found that the fluctuations of the transition probabilities of the Beta

RWRE were Gamma distributed in the large t limit. In a remark, Sun, Swart and

Schertzer showed that the stationary distribution of the Howitt-Warren process with

a uniform interaction measure is given by a Poisson point process with intensity mea-

sure dx 1
we
−wdw [SSS10]. This remark was based on a similar result by Le Jan and

Raimond for sticky flows on the circle [LJR04b]. In the same work, the authors

show that when the Howitt-Warren process is started from a distribution with in-

finite mass, it converges towards the stationary solution. The following corollary

concerns the case when the starting mass is instead finite.

Corollary 2.5.5.

t−
1
2wγt

(√
tx,

dw√
t

)
dx⇒ θe−θ

√
2πe

x2

2 wdxdw.

Proof. This statement follows from the previous proposition by a simple application

of the Dominated convergence theorem.

We also have the following Fredholm determinant formula, which is analogous to

formula (52) in [TLD16].

Proposition 2.5.6.

1 +
∞∑
n=1

∫
R>0

(λw)n

n!(n− 1)!
γt(y, dw) = θ det

(
I +

λ

θ2π
K

)
. (2.5.5)

Above, the determinant is a Fredholm determinant, and K is an integral operator

on L2(R) with kernel

K(x, y) =
xye−

1
4
t(x2+y2)

iθ(y − x) + xy
. (2.5.6)
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Proof. Equation (2.5.4) and the summation formula in Lemma 2.4.12 give the equal-

ity ∫
R>0

wnγt(y, dw) =
(n− 1)!

θn−1(2π)n

∫
Rn
e−

1
2
t|k|2−ik·y

∏
α<β

iθ(kβ − kα)

iθ(kβ − kα)− kαkβ
dk.

The proof is completed by the following identity, which is a consequence of the

equalities (A.1) and (D.1) in [TLD16]

∑
σ∈Sn

∏
α<β

iθ(kσ(β) − kσ(α))

iθ(kσ(β) − kσ(α))− kσ(α)kσ(β)
= n! det

1≤α,β≤n

[
kβkα

iθ(kβ − kα) + kαkβ

]
. (2.5.7)

It would be interesting to use the above formula to analyse the behaviour of γt in

the large deviation regime: y
t converges to a non zero number as t →∞, where we

expect the appearance of GUE Tracy-Widom fluctuations. Unfortunately, the above

Fredholm determinant is not in an ideal form for asymptotic analysis. We would

instead want an analogue of the conjectured formula (92) in [TLD16]. In [BR20],

Barraquand and Rychnovsky considered the tails of the Howitt-Warren process,

ρt([tx,∞]), and derived a Fredholm determinant formula for the Laplace transform

via a scaling limit from the Beta random walk in a random environment, with which

they were able to prove the existence of GUE fluctuations. In a non-rigorous work

Thiery and Le Doussal [TLD16] show the existence of GUE fluctuations for the

transition probabilities of the Beta RWRE evaluated at a point. This suggests the

following conjecture for the fluctuations of the individual atoms.

Conjecture 2.5.7. If Xx,t is a random variable on R with law
√

2πte−t
x2

2 wγt(tx, dw),

then there are functions J : R→ R and σ : R→ R such that

lim
t→∞

P
(

log(Xx,t) + J(x)t

t1/3σ(x)
< z

)
= FGUE(z), (2.5.8)

where FGUE is the cumulative function for the Tracy-Widom GUE distribution.
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CHAPTER 3

Brownian motions with White Noise Drifts

3.1 Introduction

We consider a model of turbulent advection describing particle trajectories in one-

dimensional turbulent fluids. The particles each have their own independent molec-

ular diffusivity σ2 and are transported through a Gaussian random drift field W ,

which is Brownian in time and smooth in space but rapidly decorrelating. The field

W represents the effect of the fluid on the particles. Associated with this model is

a stochastic flow of kernels [LJR04a], which can be thought of as the density of a

cloud of particles in the fluid, or as the random transition density of a single particle

running through a realisation of the drift field W . Among other results in [LJR04a],

the authors show a more general class of flows of kernels solve stochastic partial

differential equations (SPDEs) similar to a Fokker-Planck equation for a Brownian

motion with drift. In [DG21] the authors study the specific case we are interested in

and show that the fluctuations of the density of the flow of kernels are well approxi-

mated, at large times, by the product of the heat kernel and the stationary solution

to the SPDE. The two-dimensional version of this SPDE has been studied recently

in [HK20], wherein the authors discuss the existence, uniqueness and regularity of

solutions before studying the rate at which the solution dissipates.

As discussed in Section 1.4, the model is a continuum analogue of the random walks

in random environments from Section 1.1. It is also an example of the compressible

Kraichnan model for turbulence, where the velocity field is simplified to be white in

73



time, see the review [FGmcV01]. In our case, we make some further simplifications;

in the usual Kraichnan model, the spatial correlations are chosen to mimic physically

observed scaling phenomena, whereas we assume the spatial correlations are taken

to be of short length and smooth in space. This is similar to the case considered

in [GH04], where the authors showed that removing the molecular diffusivity, at

the same time as reducing the correlation length of the velocity field, led to sticky

interactions between pairs of particles in the limiting process. For the model we

consider, this result was extended by Warren [War15], who proved that the limiting

process for n particles was the n point motion of a Howitt-Warren flow with an

explicit interaction measure. This suggests the convergence of the associated flow of

kernels towards the Howitt-Warren flow.

We are interested in the fluctuations of the density in the tail, that is, O(t) away

from the origin. In particular, we will show that the fluctuations are governed by

the KPZ equation when the environment noise is taken to be small. This work was

motivated by analogous results in [CG16] for a discrete version of our model, which

we will discuss in more detail shortly, and by the non-rigorous arguments in [DT17].

Further, we conjecture that the KPZ equation also appears when the independent

diffusivity of the particles is taken to be small instead of the environment.

Similar results exist for sticky Brownian motions and the associated Howitt-Warren

flows in the integrable case studied in Chapter 2. This is not the same case that

arises in the limit of our model, but universality leads us to expect the results to

hold more generally. Barraquand and Rychnovsky [BR20] showed that the tail of

the Howitt-Warren flows has Tracy-Widom GUE fluctuations of size t1/3. Further,

they conjectured the tails of the Howitt-Warren flows converge, as the stickiness is

removed and under suitable rescaling, to the stochastic heat equation, based on the

convergence of the moments. Barraquand and Le Doussal [BD20] then showed that

the same convergence of moments happens in a moderate deviation regime, t
3
4 away

from the origin, for a fixed stickiness.

In this chapter, we show that the flow of kernels associated with our model converges

to the solution to the stochastic heat equation when observed far from the origin,

whilst the strength of the random environment and the correlation length are both

taken to 0 at suitable speeds. This result is analogous to the result of Corwin and

Gu [CG16] for the RWRE, and we follow similar ideas for the proof. We make use

of two distinct descriptions for the flow of kernels: the first is the family of SDEs

describing the motion of n particles in the fluid, the second is the SPDE which has

an explicit Wiener chaos expansion, given in [LJR04a]. The first step in the proof

is to show the termwise L2 convergence of the chaos expansion towards the chaos
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expansion of the solution to the stochastic heat equation; the second step is to show

the convergence of the second moments, for which we use the associated two-point

motion.

Before moving on to the proofs, we introduce the model in detail. We will also

derive the correct rescalings to get convergence to the stochastic heat equation by

performing a non-rigorous moment calculation. From this calculation, we conjecture

other scaling regimes under which we expect to also get convergence to the stochastic

heat equation.

3.1.1 The Model

Let ρ ∈ C∞c (R) be a non-negative, symmetric function that is non-increasing on

R>0 and satisfies
∫
ρ(x)dx = 1 (C∞c (R) denotes the space of smooth compactly

supported functions on R). Then, suppose that Wρ is a cylindrical Brownian motion

on L2(R;R) with covariance E[Wρ(s, x)Wρ(t, y)] = (s∧ t)ρ̃(x−y), where ρ̃ is defined

as the self convolution of ρ, i.e. ρ̃ := ρ ? ρ. For a sequence of independent standard

Brownian motions, (Bk)k∈N, and an orthonormal basis of L2(R), (ek)k∈N, we can

write Wρ(t, x) =
∑∞

k=1 ρ ∗ ek(x)Bk(t). For parameters µ, σ > 0 we are interested in

the solutions to the SDE

dX(t) = µWρ(dt,X(t)) + σdB(t). (3.1.1)

In the above SDE, B is a Brownian motion on R independent of Wρ and both

stochastic integrals are understood in the Itô sense, see [Kun94b] for definitions. The

solution is distributed as a Brownian motion with diffusivity µ2
∫
ρ(x)2dx+σ2, which

can be checked directly by calculating the quadratic variation and recalling Lévy’s

characterisation of Brownian motion. Alternatively, the solution can be thought

of as a Brownian motion with diffusivity σ2, running through the time dependent

Gaussian random field Wρ, which we can think of as a random velocity field. We

then consider the transition function (Us,t)s≤t of the process (X(t))s≤t conditional

on W :

Us,t(x,A) := PB(X(t) ∈ A| X(s) = x), (3.1.2)

where PB is the law of the Brownian motion B. We will later use P to denote the

joint law of W and B and E its expectation. Note that the family of kernels (Us,t)s<t

depend only on the field W , and form a stochastic flow of kernels as introduced by Le

Jan and Raimond in [LJR04a], which we briefly discussed in Section 2.5 in relation

to sticky Brownian motions. Further, because X is itself a Brownian motion, if we

75



average Us,t over the law of W we get the heat kernel.

E[Us,t(x,A)] = P νs,t(x,A), (3.1.3)

here P ν denotes the heat kernel with diffusivity ν.

It is known [DG21] that the family of probability kernels (U(s, t, ·, dx))s<t are a

stochastic flow of kernels, as described in Section 2.5 of the previous chapter. Fur-

thermore, the kernels have continuous densities with respect to the Lebesgue mea-

sure, u(s, t, x, ·), which solve the stochastic partial differential equations

∂tu(s, t, x, y) =
ν

2
∆yu(s, t, x, y)− µ∂y

(
u(s, t, x, y)Ẇρ(t, y)

)
, (3.1.4)

together with the initial condition u(s, s, x, y) = δ(x−y), where δ is the Dirac delta.

Here, ν = µ2
∫
ρ(x)2dx + σ2 and Ẇρ is the (formal) time derivative of Wρ, so that

it is white in time and smoothly correlated in space. By solution, we mean it is a

generalised solution in the sense of [Kun94a], which we describe by recalling [DG21,

Proposition 2.1] briefly below.

Proposition 3.1.1. The process u(0, t, x, ·), considered as a time-indexed family of

tempered distributions on R, is the unique solution to (3.1.4). That is, for every

s, x ∈ R and every Schwartz function f : R→ R the following equality holds almost

surely for every t > s∫
R
u(s, t, x, y)f(y)dy

=f(x) +
ν

2

∫ t

s

∫
R
u(s, r, x, y)f ′′(y)dydr + µ

∫ t

s

∫
R
u(s, r, x, y)f ′(y)Wρ(dr, y)dy.

(3.1.5)

Here, the stochastic integral is interpreted in the Itô sense; for a general introduction

to SPDEs see [Wal86] or [DPZ92].

Proof. The proof is essentially an application of [Kun94a, Theorem 3.1] and can be

found in [DG21].

The same SPDE, in a slightly different formulation, was derived for the flow of

kernels (3.1.2) in [LJR04a, Section 5]. The solution to the SPDE can be constructed

directly in terms of a Wiener chaos expansion, [LJR02, Theorem 3.2]. Note that this

is the same as the Fokker-Planck equation for a Brownian motion with diffusivity σ2

moving through a velocity field µẆρ, where the coefficient of the Laplacian part is

ν instead of σ2 because of the Itô correction from the stochastic integral. A version
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of the corresponding Backwards equation was studied in [ANV00], with an added

non-linearity, where existence of solutions was shown. Notice that ν is exactly the

diffusivity of the Brownian motion X solving the SDE (3.1.1).

3.1.2 The Stochastic Heat Equation as a Limit

We are interested in the fluctuations of u far from the origin; hence, we look at the

rescaled quantities

v(t, x, y) := e
ν
2
λ2t+λ(y−x)u(0, t, x, y + λνt) (3.1.6)

Where λ ∈ R is a parameter, and the prefactor is motivated by fixing the average

of v. From equation (3.1.3), we see

E [v(t, x, y)] =e
ν
2
λ2t+λ(y−x)E [u(0, t, x, y + λνt)] (3.1.7)

=e
ν
2
λ2t+λ(y−x) 1√

2πνt
e−

(x−y−λνt)2
2νt (3.1.8)

=
1√

2πνt
e−

(x−y)2

2νt . (3.1.9)

Note, this is independent of λ. It is easily shown that v satisfies its own SPDE. Let

f ∈ C∞c (R) and define g(t, y) := e−
ν
2
λ2t+λ(y−x)f(y − λνt). By definition, we have∫

R v(t, x, y)f(y)dy =
∫
R u(0, t, x, y)g(t, y)dy. Thus, a straightforward calculation

using equation (3.1.5) leads to the equality∫ t

0

∫
R
∂sg(s, y)u(0, s, x, y)dyds+ f(x)

=

∫
R
v(t, y)f(y)dy − ν

2

∫ t

0

∫
R
∂2
yg(s, y)u(0, s, x, y)dyds

− µ
∫ t

0

∫
R
e−

ν
2
λ2t+λ(y−x)(λf(y − λνt) + f(y − λνt))u(0, s, x, y)Wρ(ds, y)dy.

Noticing that ∂tg(t, y) = −ν
2∂

2
yg(t, y) + ν

2e
− ν

2
λ2t+λ(y−x)f ′′(y − λνt), we get∫

R
v(t, y)f(y)dy − f(x) (3.1.10)

=
ν

2

∫ t

0

∫
R
v(s, y)f ′′(y)dyds+ µ

∫ t

0

∫
R
v(s, y)

(
λf(y) + f ′(y)

)
Wρ(ds, y + λνt)dy.

(3.1.11)
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Finally, we note that the field Wρ is translation invariant in space, it follows that v

is equal in distribution to the solution to the SPDE below.

∂tv =
ν

2
∆yv + λµvẆρ − µ∂y

(
vẆρ

)
, v(0, ·) = δx. (3.1.12)

We aim to vary µ, λ, σ and ρ in such a way that v converges to the stochastic heat

equation in the limit. The SPDE (3.1.12) suggests we should have λ = 1
µ and

take µ to 0 in the limit so that the middle term in the SPDE remains fixed, whilst

the final term hopefully vanishes. We also need Ẇρ to converge to a space-time

white noise. Thus, take ρ to be a mollifier and replace it with ρn(x) := nρ(nx),

so that the desired limit is achieved as n → ∞. The quantity 1
n determines the

correlation length of the random environment Wρn ; the larger this correlation length

is the farther the distance within which particles begin to interact; thus, a larger

correlation length increases the effect of the environment. For simplicity, we let the

remaining parameters depend on n, with λ(n) = 1
µ(n) and µ(n) → 0 as n → ∞.

The final constraint is on the diffusivity, given below; we require it to converge to a

positive constant in the limit.

ν(n) =µ(n)2

∫
ρn(x)2dx+ σ(n)2 (3.1.13)

=nµ(n)2

∫
ρ(x)2dx+ σ(n)2. (3.1.14)

The requirement that the diffusivity, (3.1.13), converges suggests two other cases

of interest: In the first we choose σ(n) such that σ(n) → 0 as n → ∞, and take

µ(n) = n−
1
2 ; For the second we take µ(n) = n−

1
2 and keep σ(n) > 0 constant to

keep the diffusivity ν(n) fixed. Interestingly, for these two cases, looking at the

moments suggests different scaling regimes to looking at the SPDE. In the next

section we study the moments of v under various parameter choices and conjecture

three regimes where the stochastic heat equation should appear.

3.1.3 Convergence of Moments

We can use the N point motions of u to find the moments of v when tested against a

function. The N point motions of u are the Markov processes in RN with transition

function defined for x ∈ RN and A ⊂ RN by PNt−s(x,A) = E[
∫
A

∏N
i=1 u(s, t, xi, yi)dy].

They can also be described as the coordinates of the solution to a system of SDEs.

Let B = (B1, ..., BN ) be a standard Brownian motion in RN , and Wn := Wρn be

an independent Brownian motion on L2(R;R), as described in Section 3.1.1, and

suppose both are defined on a filtered probability space (Ω,A,F ,P), where F is the
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filtration generated by (B,Wn). We consider the following system of SDEs.

dXi(t) = µWn(dt,Xi(t)) + σdBi(t). (3.1.15)

As a consequence of [Kun94b, Theorem 3.4.1], the system of SDEs has a unique

solution adapted to the filtration generated by (Wn, B). Indeed, each Xi depends

only on (W,Bi), so that the Xi are conditionally independent given W . We also have

that the solution is a continuous martingale under P, and calculating the quadratic

variation of Xi, we find 〈Xi〉(t) = νt. It follows from Levy’s characterisation of

Brownian motion that each Xi is a Brownian motion. The fact that the process X

is the N point motion for the flow of kernels u follows directly from the definitions

and that the Xi are conditionally independent with respect to Wn.

In the following, the probability measure Px with expectation Ex denotes the law of

X = (X1, X2), which is the solution to (3.1.15) with initial condition (x, x).

We can also check under which scalings the variance converges to that of the stochas-

tic heat equation. For arbitrary λ, µ, σ, ρ, it follows directly from the definitions of

v, (3.1.6), and u, (3.1.2), that we have the following equality.

E

[(∫
v(t, x, y)f(y)dy

)2
]

=E

[(∫
R
e
ν
2
λ2t+λ(y−x)u(0, t, x, y + λνt)f(y)dy

)2
]

=Ex
[
e−νλ

2t+λ(X1(t)−x+X2(t)−x)f(X1(t)− λνt)f(X2(t)− λνt)
]
. (3.1.16)

By Girsanov’s theorem, see for example [RY13], under P̃x := E(X1 + X2)(t) · Px,

where E(X1 + X2) := eλ(X1(·)−x+X2(·)−x)− 1
2
λ2〈X1+X2〉(·) is the exponential martin-

gale, the processes (Xi(t)−〈Xi, λ(X1+X2)〉(t))t≥0 are local martingales for i = 1, 2.

We denote the expectation under P̃x by Ẽx. We can easily find the quadratic varia-

tions from (3.1.15): 〈X1〉(t) = 〈X2〉(t) = νt so that (Xi(t)−〈Xi, λ(X1 +X2)〉(t))t≥0

are Brownian motions with diffusivity ν under P̃x. It follows that (3.1.16) can be

rewritten as

Ẽx
[
eλ

2〈Y 1,Y 2〉(t)f(Y 1(t))f(Y 2(t))
]
, (3.1.17)

where Y i(t) := Xi(t)− λνt. We have the following description of the process Y .

Proposition 3.1.2. Under P̃x, the process (Y )t>0 is a diffusion with generator G
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which acts on f ∈ C∞c (R2) as follows

Gf(y) =
1

2

2∑
i,j=1

(σ2δi,j + µ2ρ̃(yi − yj))
∂2f

∂yi∂yj
(y) +

2∑
i=1

λµ2ρ̃(y1 − y2)
∂f

∂yi
(y).

(3.1.18)

δi,j denotes the Kronecker delta.

Proof. From the discussion above, we know that the processes (M i(t))t≥0 := (Y i(t)−
λµ2

∫ t
0 ρ̃(Y 1

s −Y 2
s )ds)t≥0 are continuous local martingales under P̃x. Further, we know

〈Y i〉(t) = νt, and thus, the M i are Brownian motions by Lévy’s characterisation.

For any f ∈ C∞c (R2), we have from the above discussion and Itô’s formula that,

under P̃x,

f(Y (t)) =f((x, x)) +

∫ t

0
∇f(Y (s)) · dY (s)

+
ν

2

∫ t

0
∆f(Y (s))ds+ µ2

∫ t

0

∂2f

∂y1∂y2
(Y (s))ρ̃(Y 1(s)− Y 2(s))ds

=f((x, x)) +

∫ t

0
∇f(Y (s)) · dM(s) + λµ2

2∑
i=1

∫ t

0

∂f

∂yi
(Y (s))ρ̃(Y 1(s)− Y 2(s))ds

+
ν

2

∫ t

0
∆f(Y (s))ds+ µ2

∫ t

0

∂2f

∂y1∂y2
(Y (s))ρ̃(Y 1(s)− Y 2(s))ds.

Notice that the right hand side is a constant plus a stochastic integral plus
∫ t

0 Gf(Y (s))ds.

Since we know that the M i are Brownian motions and f ∈ C∞c (R2), the expectation

of the stochastic integral is just 0. Therefore, we have the equality

Ẽx [f(Y (t))] = f((x, x)) + Ẽx
[∫ t

0
Gf(Y (s))ds

]
,

which proves the statement.

We can compare (3.1.17) to the corresponding second moment for the stochastic

heat equation with diffusivity η and initial condition δx

∂tz =
η

2
∆yz + κzẆ . (3.1.19)

From [BC95], we have that the variance can be written in terms of a pair of inde-

pendent Brownian motions with diffusivity η.

E

[(∫
z(t, y)f(y)dy

)2
]

= Ex
[
e
κ2

2η
L0
t (B

1−B2)
f(B1

t )f(B2
t )

]
. (3.1.20)
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In the above equation, B1, B2 are a pair of independent Brownian motions in R,

each with diffusivity η, both starting from x under Ex. L0
· (B

1 − B2) is the local

time of B1 −B2 at 0, see [RY13] for details. From Proposition 3.1.2, we have

〈Y 1 − Y 2〉(t) = 2νt− 2µ2

∫ t

0
ρ̃(Y 1(s)− Y 2(s))ds

= 2

∫ t

0
σ2 + µ2(ρ̃(0)− ρ̃(Y 1(s)− Y 2(s)))ds.

Hence, the occupation times formula gives

〈Y 1, Y 2〉(t) =
µ2

2

∫ t

0

ρ̃(Y 1(s)− Y 2(s))

σ2 + µ2(ρ̃(0)− ρ̃(Y 1(s)− Y 2(s)))
d〈Y 1 − Y 2〉(s)

=
µ2

2

∫
ρ̃(z)

σ2 + µ2(ρ̃(0)− ρ̃(z))
Lzt (Y 1 − Y 2)dz. (3.1.21)

The above equality provides a link between equations (3.1.17) and (3.1.20), which

we can exploit to show the convergence of (3.1.17) towards (3.1.20).

Once more replace ρ with ρn, and let µ, σ, and λ depend on n. We shall proceed

formally, and leave the details for later. If we can show λ(n)2〈Y 1, Y 2〉(t) is converging

to a multiple of the local time at 0, whilst λ(n) → ∞ as n → ∞, then the bracket

〈Y 1, Y 2〉(t) must be vanishing in the limit, suggesting (Y 1, Y 2) is converging to a

pair of independent Brownian motions with diffusivity limn→∞ ν(n), which we need

to be positive. Consequently, the limit of the expectation (3.1.17) is of the same

form as the variance of the stochastic heat equation (3.1.20).

From (3.1.21) we see

λ(n)2〈Y 1, Y 2〉(t) =
λ(n)2µ(n)2

2

∫
ρ̃n(z)

σ(n)2 + µ2(ρ̃n(0)− ρ̃n(z))
Lzt (Y 1 − Y 2)dz

(3.1.22)

=
λ(n)2µ(n)2

2

∫
ρ̃(z)

σ(n)2 + nµ(n)2(ρ̃(0)− ρ̃(z))
Lz/nt (Y 1 − Y 2)dz.

(3.1.23)

This equality suggests several choices of scalings depending on the behaviour of the

denominator in the above integral. The first is to keep both terms in the denominator

fixed, i.e. choose a constant σ(n) = σ constant and set µ(n) = n−
1
2 . We then

need to fix the prefactor, so we substitute λ(n) = µ(n)−1 =
√
n. In this case,

we have ν(n) = µ(n)2
∫
ρn(x)2dx + σ(n)2, µ(n) = n−

1
2 and σ(n) = σ, so that

ν(n) =
∫
ρ(x)2dx + σ2 = ν is constant and positive. If we substitute (3.1.23) into

(3.1.17) with these choices and take n→∞, then we expect that (3.1.17) converges
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to

Ex
[
e

1
2
CρL0

t (Y
1−Y 2)f(Y 1(t))f(Y 2(t))

]
, (3.1.24)

where Y 1, Y 2 are independent Brownian motions with diffusivity ν under Px and

Cρ =
∫ ρ̃(z)
σ2+ρ̃(0)−ρ̃(z)

dz. We will call this the fixed diffusivity and environment regime.

Since we assumed that ρ is non negative, this is also true of ρ̃ and thus

Cρ =

∫
ρ̃(z)

σ2 + ρ̃(0)− ρ̃(z)
dz >

1

σ2 + ρ̃(0)

∫
ρ̃(z)dz =

1

σ2 + ρ̃(0)
=

1

ν
, (3.1.25)

using that
∫
ρ̃(z)dz =

∫ ∫
ρ(z−y)ρ(y)dydz = (

∫
ρ(y)dy)2 = 1, and that by symmetry

of ρ we have ρ̃(0) =
∫
ρ(−y)ρ(y)dy =

∫
ρ(y)2dy. This suggests that if the SHE is

appearing in the limit then it appears with parameter κ = (Cρν)
1
2 > 1, which differs

from the parameter suggested by our consideration of the SPDE (3.1.12) at the end

of Section 3.1.2, where the discussion lead us to anticipate κ = 1.

The second regime we can consider involves choosing a constant σ(n) = σ, but

allowing nµ(n)2 to vanish as n→∞. Letting nµ(n)2 = n2α for α < 0, we again need

to fix the prefactor, so we must choose λ(n) = µ(n)−1 = n
1
2
−α. Since nµ(n)2 → 0 as

n→∞, we have ν(n)→ σ2 > 0 as n→∞. In this case, we get that the expectation

should converge to

Ex
[
e

1
2σ2L0

t (B
1−B2)f(B1(t))f(B2(t))

]
, (3.1.26)

here, B1 and B2 are independent Brownian motions with diffusivity σ2 under Px.

This suggests v is converging towards the SHE, (3.1.19), with η = σ2 and κ = 1.

Notice that these parameters agree with our prediction from the SPDE itself, at the

end of Section 3.1.2. We’ll call this the weak environment regime.

The third is to take σ(n)→ 0 as we take n→∞. We will set σ(n) = n−α for some

α > 0. In order to ensure ν(n), (3.1.13), converges to something positive, we must

have µ(n) = n−
1
2 . Thus, (3.1.23) becomes

λ(n)2

2nσ(n)2

∫
ρ̃(z)

1 + σ(n)−2(ρ̃(0)− ρ̃(z))
Lz/nt (Y 1 − Y 2)dz (3.1.27)

=
λ(n)2

2n1−α

∫
ρ̃(n−αz)

1 + n2α(ρ̃(0)− ρ̃(n−αz))
Ln−α−1z
t (Y 1 − Y 2)dz. (3.1.28)

With σ(n) → 0, the above integral is converging as n → ∞, so that the above

expression converges as n → ∞ as long as λ(n)2

nσ(n) converges. This suggests we make

the choice λ(n) = n
1−α

2 . Note that this choice disagrees with the λ(n) = µ(n)−1

82



requirement suggested by the SPDE! (3.1.28) then becomes

1

2

∫
ρ̃(n−αz)

1 + n2α(ρ̃(0)− ρ̃(n−αz))
Ln−(α+1)z
t (Y 1 − Y 2)dz. (3.1.29)

Which we can expect to converge to πρ̃(0)

2
√
−ρ̃′′(0)

L0
t (B

1 − B2), where B1 and B2 are

independent Brownian motions with diffusivity ρ̃(0) =
∫
ρ(y)2dy, both starting at

x. Therefore, in this regime we expect (3.1.17) to converge to

Ex
[
e

πρ̃(0)

2
√
−ρ̃′′(0)

L0
t (B

1−B2)
f(B1(t))f(B2(t)))

]
. (3.1.30)

We’ll call this the weak diffusivity regime. This limit suggests the limiting SHE has

κ =
√
πρ̃(0)

(−ρ̃′′(0))
1
4

=
(
π‖ρ‖22
‖ρ′‖2

) 1
2
. However, with this choice of scalings, both noise terms

in the SPDE (3.1.12) have vanishing coefficients. Despite this, we conjecture the

limit is not the deterministic heat equation as looking at the SPDE suggests.

It is possible to generalise the above argument to show convergence of all moments

towards the corresponding moments of the stochastic heat equation. However, since

the moments do not determine the distribution of the stochastic heat equation, this

would be insufficient for a proof of the convergence of v towards the stochastic heat

equation.

If we set nµ(n)2

σ(n)2 = n2α and λ(n) = nβ, we get the phase diagram in Figure 3.1 de-

scribing the conjectured n→∞ limit of v under the different choices of parameters.

For (α, β) below the SHE line, the limit is the heat equation. This can be shown

via moment convergence using a straightforward extension of the arguments used

above, which we cover more rigorously for the weak environment regime in Section

3.2.2. Above the line we conjecture the limit is 0 in probability; we expect that

most of the mass is collecting into large spikes, which occur at a given point with

low probability.

Below we summarise the distinct regimes in which we conjecture the appearance of

the stochastic heat equation, based on our above moment calculations.

1. Weak environment, where we have nµ(n)2 vanishing in the limit and σ(n)

is constant, so α < 0 in figure 3.1. We also take λ(n) = µ(n)−1, so that

β = 1
2 − α. The coefficients for the SHE are η = σ2 and κ = 1.

2. Weak diffusivity, where we have nµ(n)2 constant and σ(n) vanishing in the

limit, so we have µ(n) = n−
1
2 and α > 0 in figure 3.1. Here we require λ(n)2

nσ(n)

to converge, so we set λ(n) = n
1−α

2 . Hence, we have β = 1−α
2 in figure 3.1;
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Heat Equation Sticky Flow

SHE

Figure 3.1: Above the line we expect the limit to be 0 in probability, below the line
the limit is the heat equation. On the β = 0 axis the limit is a sticky flow for α ≥ 1,
for α > 1 it is the Arratia flow.

the coefficients for the SHE are η = ρ̃(0) and κ =
(
π‖ρ‖22
‖ρ′‖2

) 1
2
. Since we need

λ(n)→∞ as n→∞, we require α ∈ (0, 1). Note that for α = 1 the limit is a

sticky flow.

3. Fixed diffusivity and environment, where nµ(n)2 and σ(n) are held con-

stant, i.e. µ(n) = n−
1
2 and σ(n) = σ > 0, we also take λ(n) = µ(n)−1 = n

1
2 .

In the diagram, this is the green dot where the line hits the β axis and α = 0.

In this regime, the limiting SHE should have κ = Cρ > 1 and η = 1.

Interestingly, it is only the weak environment regime which agrees with the choice of

scalings suggested by looking at the SPDE, which we discussed at the end of Section

3.1.2. A possible reason for this comes from observing that the termwise limits of

the chaos expansion of v in the other two regimes have second moments that are

strictly less than the limit of the second moments of v. One interpretation of this is

that the limit, if it exists, is no longer a functional of the noise W . In this chapter,

we will consider the Weak environment regime, where we can make use of the chaos

expansion to study the limit.

Remark 3.1.3. For fixed parameters (ρ, σ, µ, λ), it is not difficult to show that the

diffusively scaled tilted density ε−1v(ε−2t, ε−1y) is equal in distribution to the tilted
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density with parameters (ρε−1 , σ, ε
1
2µ, ε−1λ). Thus, if we set µ = ε1/2 and fix the

parameters ρ, σ and λ, whilst diffusively scaling v as described, then we are in the

weak environment regime corresponding to (α, β) = (−1
2 , 1) in figure 3.1. This is the

regime studied by Corwin and Gu, in the discrete setting of random walks in random

environments, [CG16].

3.2 Weak Environment Scaling

In this section, we’ll consider the weak environment scaling, and therefore fix σ > 0.

A special case of this regime was studied by Corwin and Gu for the discrete analogue

of our model, a random walk in a dynamic random environment. For an i.i.d space-

time random environment, the probability density function of the RWRE has been

shown to have fluctuations that are governed by the stochastic heat equation in a

[CG16] in the diffusive scaling limit, on trajectories that are at t distance from

the origin. This was shown by proving the termwise convergence of discrete Wiener

chaos expansions to their continuum counterpart for the stochastic heat equation.

Following the proof for the discrete case, we will show termwise convergence of

the Wiener chaos expansion towards that of the stochastic heat equation. The

method requires some restrictive assumptions on the choice of scaling parameters,

which we do not believe to be necessary for the convergence to hold, namely the

environment coefficient, µ(n), must be chosen to decay faster than 1
n , whilst the

moment calculations of the previous section suggest that the result should hold as

long as µ(n) decays more quickly than 1√
n

. In the discrete setting, the result was

proven for the case corresponding to µ(n) = 1
n , see remark 3.1.3.

Let W be a cylindrical Brownian motion on L2(R;R) defined on a probability space

(Ω,F ,P), so that we have the formal covariance E[W (t, x)W (s, y)] = (s∧t)δ0(x−y).

Let ρ ∈ C∞c (R) be as described at the beginning of Section 3.1.1 and set ρn(x) :=

nρ(nx). It is easily shown that ρn satisfies the same assumptions as ρ. Define

Wn := Wρn = W ∗ ρn, where the convolution is in the space variable. Note that for

f, g ∈ L2([0, T ]× R) we have E[(f, Ẇn)(g, Ẇn)] =
∫ T

0

∫
R f ∗ ρn(s, y)g ∗ ρn(s, y)dyds,

where, once again, the convolutions are both in the space variable and Ẇn denotes

the formal time derivative of Wn, so that the integral is defined via a stochastic

integral. This is simply equal to
∫ T

0

∫
R f(s, y1)g(s, y2)ρ̃n(y1−y2)dyds where ρ̃n(x) :=∫

ρn(x − y)ρn(y)dy. For a constant β > 1, set µ = n−β. Let un be the density of

the flow of kernels, as in Section 3.1.1. Denoting the formal time derivative of Wn
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by Ẇn, un is the solution to the SPDE

∂tun =
νn
2

∆un − n−β∂y
(
unẆn

)
. (3.2.1)

In the above equation, νn = n−2β
∫
ρn(y)2dy + σ2 = n1−2β

∫
ρ(y)2dy + σ2. Thus,

n1−2β
∫
ρ(y)2dy governs the strength of the random environment in the above equa-

tion, so that in the limit as n→∞ the effect of the environment should disappear.

We define the tilted density as in equation (3.1.6), with our choice of parameters.

vn(s, t, x, y) := e
νn
2
n2β(t−s)+nβ(y−x)un(s, t, x, y + nβνn(t− s)). (3.2.2)

We will most often suppress the s variable and use the notation vn(t, x, y) = vn(0, t, x, y).

In the following, we will assume we defined un with respect to the tilted field defined

by W̃n(t, x) := Wn(t, x − nβνnt), note that this does not affect the distribution of

the stochastic integrals. The SPDE for vn is then

∂tvn(t, x, y) =
νn
2

∆yvn(t, x, y) + vnẆn(t, y)− n−β∂y
(
vn(t, x, y)Ẇn(t, y)

)
. (3.2.3)

Note that vn(0, x, y) = en
β(y−x)u(0, 0, x, y) = δ(x − y), where the multiplication

makes sense because the exponential is a smooth function.

For X the solution to the SDE (3.1.1) with initial condition x, we have∫
un(0, t, x, y)f(y)dy = EB[f(Xt)]. (3.2.4)

Where EB is the expectation over the law of the Brownian motion B. So that the

rescaled quantity vn satisfies∫
vn(t, x, y)f(y)dy = e−

νn
2
n2βtEB[en

β(Xt−x)f(Xt − nβνnt)]. (3.2.5)

We aim to show that as n → ∞, this converges in an L2 sense to the solution to

the stochastic heat equation with diffusivity σ2 integrated against f . The proof

proceeds in two parts: in Section 3.2.1, we’ll show termwise convergence of the

chaos expansion, and in Section 3.2.2, we’ll show the second moment converges to

the correct limit. Together this suffices to prove the desired L2 convergence.

3.2.1 Chaos expansion

It was shown by Le Jan and Raimond [LJR04a], that for any f ∈ C∞c (R) the random

variables
∫
R f(y)un(s, t;x, y)dy are given by an explicit Wiener chaos expansion.
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This can be seen as a Le Jan and Raimond originally considered this chaos expansion

in [LJR02], where they used it to show that strong solutions to non-Lipschitz SDEs

are given by random Markovian kernels. The aim of this section is to show the term

by term convergence of the chaos expansion of vn towards that of the stochastic heat

equation. We’ll begin with a brief introduction to chaos expansions, see [Jan97] for

full details.

Let Λk := {t ∈ Rn|0 ≤ t1 < ... < tn}, for f ∈ L2(Λk × Rk) we can consider the

stochastic integral∫
Λk

∫
Rk
f(t1, ..., tk, y1, ..., yk)W (dt1, dy1)...W (dtk, dyk) =

∫
Λk

∫
Rk
f(t, y)W⊗k(dt, dy),

which can be defined by iteration. For f ∈ L2(Λk × Rk) and g ∈ L2(Λj × Rj) we

have

E
[∫

Λk

∫
Rk
f(t, y)W⊗k(dt, dy)

∫
Λj

∫
Rj
g(t, y)W⊗j(dt, dy)

]
= 〈f, g〉L2δj,k.

Where δj,k is the Kronecker delta. In fact, the stochastic integrals above provide

an isometry between L2 random variables measurable with respect to σ(W ) and

⊗∞k=1L
2(Λk × Rk). For linear SPDEs it is often possible to find an explicit chaos

expansion for the solution, which we now demonstrate for the stochastic heat equa-

tion. Let z be the solution to the stochastic heat equation with driving noise W and

initial condition δx, where x is a constant and y is the space variable, i.e.

∂tz =
σ2

2
∆z + zẆ . (3.2.6)

We will denote by P νt the Heat operator with diffusivity ν, and by pνt the corre-

sponding kernel; that is,

P νt f(x) =

∫
R
pνt (x− y)f(y)dy =

1√
2πtνn

∫
R
e

(x−y)2

2tνn f(y)dy.

Following the survey [Qua11], we can write the equation in Duhamel form.

z(t, y) = pσ
2

t (y − x) +

∫ t

0

∫
R
pσ

2

t−s(y − y′)z(s, y′)W (ds, dy′).

Iterating this equation we see that z can be written explicitly in terms of a chaos

expansion, for further details on the chaos representation of the stochastic heat
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equation see the review [Qua11]. Let Λk(t) := {t ∈ Λk|tk < t}, then

z(t, y) = pσ
2

t (y − x)

+

∞∑
k=1

∫
Λk(t)

∫
Rk
pσ

2

s1 (y1 − x)pσ
2

s2−s1(y2 − y1)...pσ
2

t−sk(y − yk)W (ds1, dy1)...W (dsk, dyk).

When z is integrated against a test function f ∈ C2
c (R) we can write∫

z(t, y)f(y)dy

=P σ
2

t f(x) +

∞∑
k=1

∫
Λk(t)

P σ
2

s1

(
W (ds1)P σ

2

s2−s1

(
...W (dsk)P

σ2

t−skf
))

(x). (3.2.7)

Now we move on to the chaos expansion for the flow of kernels from Le Jan and

Raimond [LJR04a]∫
un(t, x, y)f(y)dy = P νnt f(x) +

∞∑
k=1

Jk0,tf(x). (3.2.8)

Where Jks,tf(x) is defined via the inductive formula below.

Jks,tf(x) = n−β
∫ t

s
Jk−1
s,u

(
W̃n(du, ·)∂yP νnt−uf

)
(x). (3.2.9)

With J1
s,tf(x) = n−β

∫ t
s P

νn
u−s

(
W̃n(du, ·)∂yP νnt−uf

)
(x). The stochastic integral is

constructed as follows, for an orthonormal basis of L2(R), (ek)k∈N there is a sequence

of independent Brownian motions (W k)k∈N such that Wn(t, y) =
∑∞

k=1 ρn∗ek(y)W k
t ,

the above expression is given by the following sum

n−β
∞∑
k=1

∫ t

s
Jk−1
s,u

(
ρn ∗ ek(·+ nβνnu)∂yP

νn
t−uf

)
(x)dW k

u . (3.2.10)

The above stochastic integrals are defined using the usual Itô integration.

By iterating equation (3.2.9) we can write Jks,tf(x) in closed form.

n−kβ
∫
s≤s1≤···≤sk≤t

P νns1−sWn(ds1)∂yP
νn
s2−s1Wn(ds2) . . .Wn(dsk)∂yP

νn
t−skf(x).

It is clear that if f ∈ C2
c (R) then en

β(·−x)f is as well; thus, we can find the chaos

expansion for
∫
R un(0, t;x, y + nβνnt)e

nβ(y−x)f(y)dy, from which we can find the
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chaos expansion for vn. Ultimately, we get the following equality.∫
vn(t, x, y)f(y)dy = P νnt f(x) +

∞∑
k=1

Ik,n0,t f(x). (3.2.11)

Where I is defined through the following recursion, and the stochastic integrals are

defined as in (3.2.10).

Ik,ns,t f(x) =

∫ t

s
Ik−1,n
s,u

(
Wn(du, ·)

(
1 + n−β∂y

)
P νnt−uf

)
(x). (3.2.12)

This is seen by noting that since∫
vn(t, x, y)f(y)dy =

∫
R
un(0, t;x, y + nβνnt)e

nβ(y−x)+ νn
2
n2βtf(y)dy,

we must have∫
vn(t, x, y)f(y)dy =en

β(y−x)+ νn
2
n2βtP νnt (f(· − nβνnt))(x)

+

∞∑
k=1

en
β(y−x)+ νn

2
n2βtJk0,t(f(· − nβνnt)(x).

We can define Ik,ns,t f(x) := en
β(y−x)+ νn

2
n2βtJk0,t(f(· − nβνnt)(x). It is easily checked

that the first term on the right hand side is exactly P νnt f(x). It is then easy to

derive the recursion relation (3.2.12) from the recursion for J (3.2.9) by using an

induction argument.

Our aim is to show that the Wiener chaos expansion for vn, (3.2.11), is converging

term by term in L2 to the Wiener chaos expansion of the solution to the stochastic

heat equation in line (3.2.7). To show this, we will expand each term in the chaos

expansion (3.2.11) using the following basic equality.

∂xP
νn
t f(x) = P νnt f ′(x). (3.2.13)

This follows immediately by integrating by parts, after a straightforward application

of the dominated convergence theorem to pass the derivative through the integral.

This allows us to rewrite the recursion formula, (3.2.12).

Ik,ns,t f(x) =

∫ t

s
Ik−1,n
s,u

(
Wn(du, ·)P νnt−u(f + n−βf ′)

)
(x) (3.2.14)

=

∞∑
j=1

∫ t

0
Ik−1,n
s,u

(
(ρn ∗ ej)P νnt−u(f + n−βf ′)

)
(x)dW j

u . (3.2.15)
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Iterating this equation, we get an explicit formula for Ik,ns,t .

Ik,ns,t f(x)

=

∞∑
j1,...,jk=1

∫
s≤uk≤...≤u1≤t

(ρn ∗ ejk)P νnuk−uk−1
(3.2.16)(

(1 + n−β∂y)(ρn ∗ ejk−1
)P νnuk−1−uk−2

...P νnt−u1
(f + n−βf ′)

)
(x)dW j1

u1
...dW jk

uk
.

We show this converges to the corresponding term in the chaos expansion for the

stochastic heat equation in the following proposition.

Proposition 3.2.1. For each x ∈ R, t > 0 and k ∈ N the following convergence

holds, as n→∞, in the L2 sense

Ik,n0,t f(x)→ Ik0,tf(x).

Above Ik0,tf(x) denotes the kth term in the chaos expansion for the stochastic heat

equation, integrated against f , in terms of W as written in line (3.2.7).

Proof. We begin the proof by expanding the expression on line (3.2.16), using the

fact that derivatives commute with the heat operator. Writing out the heat operators

in full, and denoting the kth spatial derivative of Wn by W
(k)
n , so that W

(k)
n =∑∞

j=1(ρ
(k)
n ∗ ej)W k, where f

(k)
n denotes the kth derivative of the function f , we can

rewrite (3.2.16) as

k∑
j=0

n−jβ
∑
d∈Dj,k

Nd

∫
0≤s1≤···≤sk≤t

∫
pνns1 (x, y1)Wn(ds1, y1)

∫
pνns2−s1(y1, y2)

W (d1)
n (ds2, y2)

∫
pνns3−s2(y2, y3) . . .W

(dk−1)
n (dsk, yk) (3.2.17)∫

pνnt−sk(yk, yk+1)f (dk)(yk+1)dyk+1 . . . dy1.

Here, Dj,k := {d = (d1, . . . , dk) ∈ Nk0|
∑k

i=1 di = j,
∑l

i=1 di ≤ l} and Nd ∈ N
depends only on d ∈ Dj,k and accounts for repetitions; it is easy to see that when

d = 0 ∈ Nk0, we have Nd = 1.

Now we’ll show that all terms of the above sum for which we do not have d = 0

vanish in the limit in the L2 sense. We’ll start by looking at the variance of the

stochastic integrals in each term of the sum.

It is easily shown that we have E[W (i)(s, x)W (i)(t, y)] = s ∧ t
∫
R ρ

(i)
n (x − z)ρ(i)

n (z −
y)dz = (s ∧ t)(−1)i ρ̃

(2i)
n (x − y), where we have used integration by parts to get
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the second equality. Therefore, we have the following equality for the stochastic

integrals.

E
[(∫

0≤s1≤···≤sk≤t

∫
pνns1 (x, y1)Wn(ds1, y1)

∫
pνns2−s1(y1, y2)W (d1)

n (ds2, y2)

. . .W
(dk−1)
n (dsk, yk)

∫
pνnt−sk(yk, yk+1)f (dk)(yk+1)dyk+1 . . . dy1

)2]
=(−1)

∑k−1
i=1 di

∫
0≤s1≤···≤sk≤t

∫
pνns1 (x, y1)pνns1 (x, y′1)ρ̃n(y1 − y′1)

· · ·
∫
pνnsk−sk−1

(yk−1, yk)p
νn
sk−sk−1

(y′k−1, y
′
k)ρ̃

(2dk−1)
n (yk − y′k)∫

pνnt−sk(yk, yk+1)pνnt−sk(y′k, y
′
k+1)f (dk)(yk+1)f (dk)(y′k+1)dydy′ds.

The above expression can be rewritten as

∣∣∣∣ ∫
0≤s1≤...sk≤t

∫
Rk+1

∫
Rk+1

(
k∏
i=1

pνnsi−si−1
(yi−1, yi)p

νn
si−si−1

(y′i−1, y
′
i)ρ̃

(2di−1)
n (yi − y′i)

)

pνnt−sk(yk, yk+1)pνnt−sk(y′k, y
′
k+1)f (dk)(yk+1)f (dk)(y′k+1)dydy′ds

∣∣∣∣.
Where we have set y0 = y′0 = x and s0 = d0 = 0. Since f, ρ ∈ C∞c (R), we can

perform a change of variables by replacing yi with yi/n + y′i for each 1 ≤ i ≤ k,

we can also use the bound pνnt (y) ≤ (2πνnt)
− 1

2 to get that the above expression is

bounded by

n2(j−dk)

(2πνn)
k+1

2

∫
0≤s1≤...sk≤t

∫
Rk+1

∫
Rk+1

(
k∏
i=1

(si − si−1)−
1
2 pνnsi−si−1

(y′i−1, y
′
i)|ρ̃(2di−1)(yi)|

)
(3.2.18)

(t− sk)−
1
2 pνnt−sk(y′k, y

′
k+1)|f (dk)(yk+1)f (dk)(y′k+1)|dydy′ds, (3.2.19)

where the extra powers of n come from rewriting the derivatives of the ρn in terms of

ρ, and using the equality
∑k−1

i=1 di = j−dk. Since f, ρ ∈ C∞c (R), there are constants

C, C̃ > 0 depending only on f, ρ and k such that the above expression is bounded

by

Cn2(j−dk)

∫
0≤s1≤···≤sk≤t

1
√
s1
√
s2 − s1

√
s3 − s2 . . .

√
sk − sk−1

√
t− sk

ds (3.2.20)

=C̃t
1
2

(k−1)n2(j−dk). (3.2.21)
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Hence, we get the following bound on the variance of each term in line (3.2.17)

C̃N2
d t

1
2

(k−1)n2(j−dk)−2jβ. (3.2.22)

Where the constant C̃ has changed between lines, but remains positive and depen-

dent only on ρ, f, j and k. It’s clear from 0 ≤ dk ≤ j that 2(j−dk)−2jβ ≤ 2j(1−β),

which is strictly negative if j > 0 and β > 1. This proves, for β > 1, that all terms

in the sum (3.2.17) apart from that with j = 0 vanish as n→∞. Since the sum is

finite, and the constants are dependent only on ρ, f, d and k, this shows that their

sum vanishes as well.

Remark 3.2.2. The above step is the only part of the proof of the main result where

the assumption β > 1 is required. It should be stressed that the result is expected to

hold for all β > 1
2 , and that we believe the need for β > 1 is a technical requirement

of the proof only.

Hence, only when we have j = 0 in line (3.2.17) does the term survive to the L2

limit, in this case Dj,k only contains a single element, d = 0, for which Nd = 1.

Thus, the only term in (3.2.17) that survives into the n→∞ limit is the one below.∫
0≤s1≤···≤sk≤t

∫
pνns1 (x, y1)Wn(ds1, y1)

∫
pνns2−s1(y1, y2)Wn(ds2, y2)∫

pνns3−s2(y2, y3) . . .Wn(dsk, yk)

∫
pνnt−sk(yk, yk+1)f(yk+1)dyk+1 . . . dy1. (3.2.23)

We just need to show that this converges to the corresponding term in the chaos

expansion for the stochastic heat equation. Recalling that we defined Wn = ρn ∗W ,

this amounts to showing the stochastic integral with respect to the mollified noise

converges to the stochastic integral with respect to the original noise, which we now

show.

Once again we need to show L2 convergence, Itô’s isometry gives us that the variance

of the difference between (3.2.23) and the limit (where Wn(ds, y)dy is replaced with
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W (ds, dy)) is given by the following expression.∫
0≤s1≤···≤sk≤t

∫ ∫
pνns1 (x, y1)pνns1 (x, y′1) . . . pνnt−sk(yk, yk+1)pνnt−sk(y′k, y

′
k+1)(

k∏
i=1

ρ̃n(yi − y′i)

)
f(yk+1)f(y′k+1)dydy′ds

+

∫
0≤s1≤···≤sk≤t

∫ ∫
pσ

2

s1 (x, y1)pσ
2

s1 (x, y1) . . . pσ
2

t−sk(yk, yk+1)pσ
2

t−sk(yk, yk+1)

f(yk+1)f(y′k+1)dydy′

− 2

∫
0≤s1≤···≤sk≤t

∫ ∫
pνns1 (x, y1)pσ

2

s1 (x, y′1) . . . pνnt−sk(yk, yk+1)pσ
2

t−sk(y′k, y
′
k+1)(

k∏
i=1

ρn(yi − y′i)

)
f(yk+1)f(y′k+1)dydy′ds.

Following the same lines as before, we make the change of variables yi 7→ yin + y′i.

A straightforward application of the dominated convergence theorem shows that

the resulting expression converges to 0, as required. Hence, we have term by term

convergence of the chaos expansion for v to the chaos expansion for the solution to

the stochastic heat equation (3.2.7). That is, the L2(Ω) limit of the kth term in the

chaos expansion for v (3.2.11) is given by∫
0≤s1≤···≤sk≤t

∫
pσ

2

s1 (x, y1)W (ds1, dy1)

∫
pσ

2

s2−s1(y1, y2)W (ds2, dy2) (3.2.24)∫
pσ

2

s3−s2(y2, y3) . . .W (dsk, dyk)

∫
pσ

2

t−sk(yk, yk+1)f(yk+1)dyk+1. (3.2.25)

Here, p is the heat kernel with diffusivity σ2. This is the same as the kth term of

the stochastic heat equation.

Termwise convergence of the chaos expansions is not enough on its own to prove

convergence, we must also show that nothing is escaping description by the chaos

expansion in the limit, leading us to consider the second moments.

3.2.2 The 2-point motions

We want to show the convergence of the second moment to the corresponding quan-

tity for the SHE. Once again, let z be the solution to the stochastic heat equation

(3.1.19) with initial condition δx. Bertini and Cancrini, [BC95], proved a formula

for the moments of the stochastic heat equation, below we state the formula for the
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second moment of the solution integrated against a test function.

E

[(∫
z(t, y)f(y)dy

)2
]

= Ex
[
e
κ2

2η
L0
t (B

1−B2)
f(B1(t))f(B2(t))

]
. (3.2.26)

L0
t denotes local time at 0 up to time t, and B1 and B2 are independent Brownian

motions in R with diffusivity η, both starting from x.

We’re interested in looking at the variance of the rescaled quantity (3.2.2) integrated

against a test function f ∈ C2
c (R), i.e. the quantity given in line (3.2.11). This

reduces to computing an expectation of the 2-point motions. That is, if X1
n and X2

n

are the 2-point motion of the flow of kernels solving the SPDE (3.2.1) then

E
[∫

vn(t, x1, y1)f(y1)dy1

∫
vn(t, x2, y2)f(y2)dy2

]
=Ex

[
e−n

2βνnt+nβ(X1
n(t)−x1+X2

n(t)−x2)f(X1
n(t)− nβνnt)f(X2

n(t)− nβνnt)
]
. (3.2.27)

Denote the law of (X1
n, X

2
n) by Pnx. We have that the quadratic variations are given

by

〈X1
n, X

2
n〉(t) = n1−2β

∫ t

0
ρ̃(n(X1

n(s)−X2
n(s)))ds,

Thus, Girsanov’s theorem tells us that under the measure

Qn
x := e−n

2βνnt+nβ(X1
n(t)−x1+X2

n(t)−x2)−n
∫ t
0 ρ̃(n(X1

n(s)−X2
n(s)))ds · Pnx,

we have that Xi
n(t) − nβνnt − n1−β ∫ t

0 ρ̃(n(X1
n(s) −X2

n(s)))ds is a continuous local

martingale under Qn
x. Denoting the expectation with respect to Qn

x by EQn
x we get

that line (3.2.27) is equal to

EQn
x

[
e
∫ t
0 ρ̃n(Y 1

n (s)−Y 2
n (s))dsf(Y 1

n (t) + n−β
∫ t

0
ρ̃n(Y 1

n (s)− Y 2
n (s))ds)

f(Y 2
n (t) + n−β

∫ t

0
ρ̃n(Y 1

n (s)− Y 2
n (s))ds)

]
.

Where Y i
n(t) := Xi

n(t) − nβνnt − n−β
∫ t

0 ρ̃n(Y 1
n (s) − Y 2

n (s))ds, so that Y i
n(t) is a

continuous local martingale under Qn
x. In fact, 〈Y i

n〉(t) = 〈Xi
n〉(t) = νnt; thus, the

Y i
n are both Brownian motions by Levy’s characterisation.

Since Y 1
n and Y 2

n are both Brownian motions (with diffusivity νn → σ2 as n→∞),

it follows easily that the sequences Y 1
n and Y 2

n are both tight in C([0, T ];R) and

therefore the sequence of C([0, T ];R2) valued random variables, (Y 1
n , Y

2
n ), is tight.
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Taking a weakly converging subsequence, the Skorokhod representation theorem

gives us a sequence of processes (Zn)n∈N, defined on a probability space (Ω,F ,P)

and taking values in C([0, T ];R2), which is converging almost surely to some limit

Z, with Zn equal in distribution to Yn under Qn
x for all n ∈ N. We start by showing

that Z is an R2 Brownian motion, the first step is the following lemma.

Lemma 3.2.3. The following convergence holds in L1(Ω) for each t > 0, and in

L1(Ω× [0, T ])

nβ〈Z1
n, Z

2
n〉(t) = n−β

∫ t

0
ρ̃n(Z1

n(s)− Z2
n(s))ds→ 0, as n→∞.

Proof. Since ρ̃ is symmetric and decreasing on R>0, we have that for any α ∈ (0, 1),

n−β
∫ t

0
ρ̃n(Z1

n(s)− Z2
n(s))ds

=n1−β
∫ t

0
ρ̃
(
n(Z1

n(s)− Z2
n(s))

) (
1{|Z1

n(s)−Z2
n(s)|≤n−α} + 1{|Z1

n(s)−Z2
n(s)|>n−α}

)
ds

≤n1−β ρ̃(n1−α)t+ n1−β
∫ t

0
ρ̃(n(Z1

n(s)− Z2
n(s)))1{|Z1

n(s)−Z2
n(s)|≤n−α}ds. (3.2.28)

For any α ∈ (0, 1), n1−β ρ̃(n1−α) → 0 as n → ∞. It remains to bound the second

term.

n1−β
∫ t

0
ρ̃(n(Z1

n(s)− Z2
n(s)))1{|Z1

n(s)−Z2
n(s)|≤n−α}ds

≤n
1−β

2

∫ t

0

1{|Z1
n(s)−Z2

n(s)|≤n−α}

σ2 + n1−2β(ρ̃(0)− ρ̃(n(Z1
n(s)− Z2

n(s))))
d〈Z1

n − Z2
n〉(s)

≤n
1−β

2σ2

∫ n−α

−n−α
Lyt (Z1

n − Z2
n)dy. (3.2.29)

Where the the last line follows from and application of the occupation times formula,

see [RY13, Corollary 1.6, Chapter VI]. From (3.2.28) and (3.2.29) we get

Ex[|n1−β
∫ t

0
ρ̃
(
n(Z1

n(s)− Z2
n(s))

)
ds|]

≤n1−β ρ̃(n1−α)t+
n1−β

2σ2
Ex[

∫ n−α

−n−α
Lyt (Z1

n − Z2
n)dy]

=n1−β ρ̃(n1−α)t+
n1−β

2σ2

∫ n−α

−n−α
Ex[|Z1

n(t)− Z2
n(t)− y| − |x1 − x2 − y|]dy

≤n1−β ρ̃(n1−α)t+
n1−β−α

σ2

√
2νnt

π
.

Choosing α with 1− β < α < 1 and taking n→∞ we get the desired convergence.
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As a consequence we prove the limit of Zn is as desired.

Lemma 3.2.4.

Zn ⇒ Z.

Where Z is a Brownian motion in R2 with diffusivity σ2.

Proof. Notice that for any k ≥ 0, choice of functions f, h1, ..., hk ∈ C2
0 (R2), and any

0 ≤ t1 < ... < tk ≤ t < t+ s we have the following∣∣∣∣∣E
[(

f(Zn(t+ s))− f(Zn(t))−
∫ t+s

t

σ2

2
∆f(Zn(u))du

) k∏
i=1

hi(Zn(ti))

]∣∣∣∣∣
≤

∣∣∣∣∣E
[(∫ t+s

t
∇f(Zn) · dZn +

∫ t+s

t

∂2f

∂x1∂x2
(Zn)d〈Z1, Z2〉(u)

) k∏
i=1

hi(Zn(ti))

]∣∣∣∣∣
+

∣∣∣∣∣E
[(

n1−2β ρ̃(0)

∫ t+s

t
∆f(Zn)du

) k∏
i=1

hi(Zn(ti))

]∣∣∣∣∣
Since f and the hi are all in C2

0 (R2), it follows that they are bounded, further that
∂2f

∂x1∂x2
is bounded. Giving, for some constant C > 0 depending only on f and the

hi, the bound∣∣∣∣∣E
[∫ t+s

t
∇f(Zn) · dZn

k∏
i=1

hi(Zn(ti))

]∣∣∣∣∣+ CE
[∣∣∣∣n1−2β

∫ t+s

t
ρ̃(n(Z1

n − Z2
n))du

∣∣∣∣]
+ C̃n1−2β ρ̃(0)s.

We can use the martingale property for Zn to show the first term is just 0, and

the previous lemma gives that the middle term vanishes in the limit, the last term

vanishes because β > 1
2 . Since the action of the generator of a Brownian motion

with diffusivity σ2 on R2 is given by σ2

2 ∆, an application of [EK09, Theorem 8.2]

yields the convergence of the finite dimensional distributions of Zn to those of a

Brownian motion. Since we already have that the sequence is tight, the result is

proven.

Now we want to show the convergence of
∫ t

0 ρ̃n((Z1
n − Z2

n))ds to a multiple of the

local time L0
t (Z

1 − Z2).
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Lemma 3.2.5.∫ t

0
ρ̃n(Z1

n − Z2
n)ds→ 1

2σ2
L0
t (Z

1 − Z2), in L2(Ω) for each t > 0.

Proof. We start by once again applying the occupation times formula to get the

equalities∫ t

0
ρ̃n(Z1

n − Z2
n)ds =

n

2

∫ t

0

ρ̃(n(Z1
n(s)− Z2

n(s)))

σ2 + n1−2β(ρ̃(0)− ρ̃(n(Z1
n(s)− Z2

n(s)))
d〈Z1

n − Z2
n〉(s)

=
1

2

∫
ρ̃(y)

σ2 + n1−2β(ρ̃(0)− ρ̃(y))
Lyn

−1

t (Z1
n − Z2

n)dy.

Hence, we need to show that the sequence of local times converges at least locally

uniformly. Let Mn := Z1
n − Z2

n, we have from Tanaka’s formula

|Lyn
−1

t (Mn)− L0
t (Mn)|

=

∣∣∣∣|Mn(s)− yn−1| − |Mn(s)|+
∫ t

0

(
sign(Mn(s)− yn−1)− sign(Mn(s))

)
dMn(s)

∣∣∣∣
≤|y|n−1 +

∣∣∣∣∫ t

0

(
sign(Mn(s)− yn−1)− sign(Mn(s))

)
dMn(s)

∣∣∣∣
=|y|n−1 + 2

∣∣∣∣∫ t

0
sign(y)1{|Mn(s)|≤|y|n−1}dMn(s)

∣∣∣∣ .
Hence, we have

Ex[|Ly/nt (Mn)− L0
t (Mn)|2]1/2 ≤ |y|

n
+

(
Ex[2

∫ t

0
1{|Mn(s)|≤|y|/n}d〈Mn〉(s)]

)1/2

=
|y|
n

+

(
Ex[

∫ |y|/n
−|y|/n

Lzt (Mn)dz]

)1/2

≤|y|
n

+

(∫ |y|/n
−|y|/n

Ex[|Mn(t)− z| − |x1 − x2 − z|]dz

)1/2

≤|y|
n

+

(
2|y|
n

√
2νnt

π

)1/2

. (3.2.30)

Where the last line follows from the fact that Mn = Z1
n − Z2

n where Z1
n and Z2

n are

Brownian motions with diffusivity νn. This vanishes as n → ∞. Next we need to

show the local time is converging. Defining M = Z1 − Z2, analogously to Mn, we
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have the bound∣∣∣∣|M(t)| − |Mn(t)|+
∫ t

0
sign(M(s))dM(s)−

∫ t

0
sign(Mn(s))dMn(s)

∣∣∣∣
≤|M(t)−Mn(t)|+

∣∣∣∣∫ t

0
(sign(M(s))− sign(Mn(s))) dM(s)

∣∣∣∣
+

∣∣∣∣∫ t

0
sign(Mn(s))d(M −Mn)(s)

∣∣∣∣ .
From which it follows that

Ex[|L0
t (M)− L0

t (Mn)|2]1/2

≤Ex[|M(t)−Mn(t)|2]1/2 + Ex

[∣∣∣∣∫ t

0
(sign(M(s))− sign(Mn(s))) dM(s)

∣∣∣∣2
]1/2

+ Ex

[∣∣∣∣∫ t

0
sign(Mn(s))d(M −Mn)(s)

∣∣∣∣2
]1/2

≤Ex[|Z(t)− Zn(t)|2]1/2 + Ex
[
2

∫ t

0
(sign(M(s))− sign(Mn(s)))2 ds

]1/2

+ Ex [〈M −Mn〉(t)]1/2

≤2Ex[|Z(t)− Zn(t)|2]1/2 + Ex
[
2

∫ t

0
(sign(M(s))− sign(Mn(s)))2 ds

]1/2

=2Ex[|Z(t)− Zn(t)|2]1/2 +

(
8

∫ t

0
Px (M(s) Mn(s) < 0) ds

)1/2

. (3.2.31)

For any ε > 0 the following equality is true.

Px (M(s) Mn(s) < 0)

≤Px (M(s) ∈ [−ε, ε], |M(s)−Mn(s)| < ε) + Px (|M(s)−Mn(s)| ≥ ε) .

Since 1√
2
M = 1√

2
(Z1 − Z2) is a Brownian motion, the first probability is bounded

above by 2ε√
2πs

. The second probability vanishes as n → ∞, because Mn → M

almost surely; thus, also in probability. Hence, dominated convergence gives that

the second probability in (3.2.31) vanishes. Further, since we can get uniform bounds

on the fourth moments of |Z(t) − Zn(t)|, the almost sure convergence of Zn(t) to

Z(t) gives L2(Ω) convergence of Zn(t) to Z(t). Therefore,

Ex[|L0
t (M)− L0

t (Mn)|2]1/2 → 0, as n→∞. (3.2.32)
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Since we also have Zn → Z a.s. in C([0, T ]) by construction, the same idea gives

(∫ T

0
Ex[|L0

t (M)− L0
t (Mn)|2]dt

)1/2

→ 0, as n→∞.

Hence,using the occupation times formula once again, we have

Ex

[(∫ t

0
ρ̃n(Z1

n − Z2
n)ds− 1

2σ2
L0
t (Z

1 − Z2)

)2
]1/2

≤Ex

[(∫ t

0
ρ̃n(Mn(s))ds− 1

2σ2

∫
ρ̃n(y)

νn − n−2β ρ̃n(y)
dyL0

t (M)

)2
]1/2

+

∣∣∣∣12
∫

ρ̃(y)

σ2 + n1−2β(ρ̃(0)− ρ̃(y))
dy − 1

2σ2

∣∣∣∣Ex[L0
t (M)2]1/2

=Ex

[(
1

2

∫
ρ̃(y)

νn − ρ̃(y)

(
Ly/nt (Mn)− L0

t (M)
)
dy

)2
]1/2

+

∣∣∣∣12
∫

ρ̃(y)

σ2 + n1−2β(ρ̃(0)− ρ̃(y))
dy − 1

2σ2

∣∣∣∣Ex[L0
t (M)2]1/2

≤
(

1

4

∫
ρ̃(y)

νn − ρ̃(y)
dy

∫
ρ̃(y)

νn − ρ̃(y)
Ex
[(
Ly/nt (Mn)− L0

t (M)
)2
]
dy

)1/2

+
n1−2β

2σ2

∫
ρ̃(x)(ρ̃(0)− ρ̃(x))

σ2 + n1−2β(ρ̃(0)− ρ̃(x))
dxEx[L0

t (M)2]1/2.

Where the last inequality is a consequence of Jensen’s inequality. Since |y|ρ̃(y) is

integrable and because the expectation vanishes due to (3.2.32) and (3.2.30), we can

apply dominated convergence to see that the first term above vanishes. The second

also vanishes, because the integral is bounded above by ρ̃(0)/σ2 and the expectation

is finite. Thus, the result is proven.

Finally, we show the desired convergence of the expectation.

Proposition 3.2.6. For f ∈ C∞c (R), we have

Ex
[
e
∫ t
0 ρ̃n(Z1

n(s)−Z2
n(s))dsf(Z1

n(t) + nβ〈Z1
n, Z

2
n〉(t))f(Z2

n(t) + nβ〈Z1
n, Z

2
n〉(t)))

]
→Ex

[
e

1
2σ2L0

t (Z
1−Z2)f(Z1(t))f(Z2(t))

]
, as n→∞.

As a direct consequence, we have

E
[∫

vn(t, y)f(y)dy2

]
→ E

[∫
z(t, y)f(y)dy2

]
, as n→∞.
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Proof. First note∣∣∣Ex[e∫ t0 ρ̃n(Z1
n(s)−Z2

n(s))dsf(Z1
n(t) + nβ〈Z1

n, Z
2
n〉(t))f(Z2

n(t) + nβ〈Z1
n, Z

2
n〉(t)))

− e
1

2σ2L0
t (Z

1−Z2)f(Z1(t))f(Z2(t))
]∣∣∣

≤
∣∣∣Ex[ (e∫ t0 ρ̃n(Z1

n(s)−Z2
n(s))ds − e

1
2σ2L0

t (Z
1−Z2)

)
f(Z1

n(t) + nβ〈Z1
n, Z

2
n〉(t))f(Z2

n(t) + nβ〈Z1
n, Z

2
n〉(t)))

]∣∣∣
+
∣∣∣Ex[e 1

2σ2L0
t (Z

1−Z2)(
f(Z1

n(t) + nβ〈Z1
n, Z

2
n〉(t))f(Z2

n(t) + nβ〈Z1
n, Z

2
n〉(t)))− f(Z1(t))f(Z2(t))

)]∣∣∣.
From Lemma 3.2.3 we know nβ〈Z1

n, Z
2
n〉(t) → 0 as n → ∞ in L1(Ω); thus, there

is a subsequence converging almost surely. Hence, as long as eL
0
t (Z

1−Z2) has finite

expectation, the dominated convergence theorem gives that the second expectation

vanishes on this subsequence. But, since every subsequence must contain a subse-

quence for which this convergence holds, it follows that∣∣∣Ex[e 1
2σ2L0

t (Z
1−Z2)(

f(Z1
n(t) + nβ〈Z1

n, Z
2
n〉(t))f(Z2

n(t) + nβ〈Z1
n, Z

2
n〉(t)))− f(Z1(t))f(Z2(t))

)]∣∣∣
→ 0, as n→∞. (3.2.33)

To complete the above argument, we need to show the exponential of the local time

has finite expectation, later we will also need to bound the exponential moments.

Denoting Mn = Z1
n − Z2

n as previously, it is a consequence of the monotone conver-

gence theorem that

Ex
[
e

1
2σ2L0

t (Mn)
]

=

∞∑
k=0

σ2kpk

2kk!
Ex[L0

t (Mn)k]. (3.2.34)

Hence, we need a bound on the moments of the local time. For this we apply
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Tanaka’s formula, setting Mn(0) = x1 − x2 = m0 we have

Ex
[
|Lyt (Mn)|k

] 1
k

=Ex

[∣∣∣∣|Mn(t)− y| − |m0 − y| −
∫ t

0
sign(Mn(s)− y)dMn(s)

∣∣∣∣k
] 1
k

≤Ex
[
|Mn(t)−m0|k

] 1
k

+ Ex

[∣∣∣∣∫ t

0
sign(Mn(s)− y)dMn(s)

∣∣∣∣k
] 1
k

≤2Ex
[∣∣Z1

n(t)− x1

∣∣k] 1
k

+

2∑
i=1

Ex

[∣∣∣∣∫ t

0
sign(Mn(s)− y)dZin(s)

∣∣∣∣k
] 1
k

. (3.2.35)

Where the last line comes from the fact that Mn = Z1
n − Z2

n, and that Z1
n and

Z2
n are both Brownian motions with diffusivity νn for all n ∈ N. Since the first

term is just the moments of a Brownian motion they are easily calculated. For the

moments of the stochastic integrals, we first note that they are clearly continuous

local martingales with quadratic variation

〈
∫ ·

0
sign(Mn(s)− y)dZin(s)〉(t) = νn

∫ t

0
sign(Mn(s)− y)2ds

= νnt.

With the last line following from the fact that Px(Mn(s) − y = 0) = Px(Z1
n(s) =

Z2
n(s)− y) = 0 for all s > 0. In particular, the stochastic integral is also a Brownian

motion with diffusivity νn; thus, (3.2.35) is given by

4Ex
[∣∣Z1

n(t)− x1

∣∣k] 1
k

= 4π−
1
2k
√

2νnt Γ

(
k + 1

2

) 1
k

. (3.2.36)

Giving us the bound

Ex
[
|Lyt (Mn)|k

]
≤ (4
√

2)kπ−
1
2 (νnt)

k Γ

(
k + 1

2

)
. (3.2.37)

Putting this bound into (3.2.34), we get

Ex
[
epCρL

0
t (Mn)

]
≤ 1√

π

∞∑
k=0

(2
√

2σ2pCρνnt)
k

k!
Γ

(
k + 1

2

)
.

Which is finite for all p ∈ R, proving (3.2.33) is satisfied.
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It remains to show∣∣∣Ex[ (e∫ t0 ρ̃n(Z1
n(s)−Z2

n(s))ds − e
1

2σ2L0
t (Z

1−Z2)
)

f(Z1
n(t) + nβ〈Z1

n, Z
2
n〉(t))f(Z2

n(t) + nβ〈Z1
n, Z

2
n〉(t)))

]∣∣∣
→ 0, as n→∞.

Using the boundedness of f ∈ C∞c (R), we see∣∣∣Ex[ (e∫ t0 ρ̃n(Z1
n(s)−Z2

n(s))ds − e
1

2σ2L0
t (Z

1−Z2)
)

f(Z1
n(t) + nβ〈Z1

n, Z
2
n〉(t))f(Z2

n(t) + nβ〈Z1
n, Z

2
n〉(t)))

]∣∣∣
≤CEx

[
e

1
2σ2L0

t (Z
1−Z2)

∣∣∣e∫ t0 ρ̃n(Z1
n(s)−Z2

n(s))ds− 1
2σ2L0

t (Z
1−Z2) − 1

∣∣∣] .
Once again, we want to use almost sure convergence along a subsequence. How-

ever, in this case we cannot apply dominated convergence directly, so we split the

expectation.

=CEx
[
e

1
2σ2L0

t (Z
1−Z2)

∣∣∣e∫ t0 ρ̃n(Z1
n(s)−Z2

n(s))ds− 1
2σ2L0

t (Z
1−Z2) − 1

∣∣∣1{en(t)≤ε}

]
+ CEx

[
e

1
2σ2L0

t (Z
1−Z2)

∣∣∣e∫ t0 ρ̃n(Z1
n(s)−Z2

n(s))ds− 1
2σ2L0

t (Z
1−Z2) − 1

∣∣∣1{en(t)>ε}

]
.

Where en(t) := |n
∫ t

0 ρ̃(n(Z1
n(s)− Z2

n(s)))ds− 1
2σ2L0

t (Z
1 − Z2)|. Lemma 3.2.5 gives

that there is a subsequence along which n
∫ t

0 ρ̃(n(Z1
n(s)−Z2

n(s)))ds converges almost

surely to 1
2σ2L0

t (Z
1 − Z2); hence, dominated convergence shows that the first term

in the above expression vanishes as n → ∞ along such a subsequence. Again,

this argument gives that every subsequence contains a subsequence for which the

desired convergence holds, so it holds for the whole sequence. Applying the triangle

inequality, and then the generalised Hölder inequality, we see the second term is

bounded by

C

(
Ex
[
e

1
σ2L0

t (Z
1−Z2)

] 1
2

+ Ex
[
e2

∫ t
0 ρ̃n(Z1

n(s)−Z2
n(s))ds

] 1
2

)
P (en(t) > ε)

1
2 . (3.2.38)

Hence, we need a bound on the exponential moments of
∫ t

0 ρ̃n(Z1
n(s) − Z2

n(s))ds.

Using the occupation times formula for the first line and then Jensen’s inequality
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for the second, we have(∫ t

0
ρ̃n(Z1

n(s)− Z2
n(s))ds

)k
=

(
1

2

∫
ρ̃(y)

σ2 + nα−1(ρ̃(0)− ρ̃(y))
Lyn

−α

t (Z1
n(t)− Z2

n(t))dy

)k
≤σ

2(1−k)

2k

∫
ρ̃(y)

σ2 + nα−1(ρ̃(0)− ρ̃(y))
Lyn

α−1

t (Z1
n(t)− Z2

n(t))kdy.

Where, for the application of Jensen’s inequality, we used that∫
ρ̃(y)

σ2 + nα−1(ρ̃(0)− ρ̃(y))
dy ≤ σ−2.

Hence, we can apply the bound (3.2.37) to find that the expectation is bounded

independently of n. Lemma 3.2.5 implies
∫ t

0 ρ̃n(Z1
n(s)−Z2

n(s))ds converges in prob-

ability to 1
2σ2L0

t (Z
1 − Z2). So that the above bound, together with the previous

bound on the exponential moments of L0
t (Z

1 − Z2), implies (3.2.38) vanishes as

n→∞, proving the statement.

Theorem 3.2.7. Let z ∈ C((0, T );C(R))1 be the solution to the stochastic heat

equation (3.2.6) with driving noise W and initial condition δx, where x is taken as

a constant and y is the space variable. Then for every f ∈ C∞c (R) and t > 0∫
vn(t, x, y)f(y)dy →

∫
z(t, y)f(y)dy, in L2(Ω).

Proof. This follows from the termwise L2(Ω) convergence of the chaos expansion,

and the convergence of the L2(Ω) norm to the correct value, (3.2.26), that we have

just shown. To see this, note that for wn(t) :=
∫
vn(t, x, y)f(y)dy, and zf (t) :=∫

z(t, y)f(y)dy we have

‖wn(t)− zf (t)‖2L2(Ω) = ‖wn(t)‖2L2(Ω) − ‖zf (t)‖2L2(Ω) + 2(zf (t)− wn(t), zf (t))L2(Ω).

(3.2.39)

The first two terms cancel in the limit as n → ∞ due to Proposition 3.2.6. We

can write the last term as a sum using the chaos expansions. For any N ∈ N,

the first N terms of this sum will vanish due to the termwise convergence of the

chaos terms. Applying Proposition 3.2.6 again, we see that the remaining terms

1Where, for topological spaces X and Y , the space C(X;Y ) denotes the space of continuous
functions from X to Y endowed with the topology of uniform convergence on compact sets. As
before C(R) is the space of continuous functions on R and we also endow it with the topology of
uniform convergence on compact sets.
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in the chaos expansion are bounded, for n sufficiently large, by (2‖zf (t)‖L2(Ω) +

1)
(∑

k=N+1 ‖Ik0,tf‖2L2(Ω)

)1/2
, where Ik0,tf is the kth term of the chaos expansion for

zf (t) from (3.2.7). Since we have ‖zf (t)‖2L2(Ω) =
∑∞

k=0 ‖Ik0,tf‖2L2(Ω) < ∞, taking

N →∞ gives the desired result.

In the next section, we outline possible further work related to the weak environment

regime.

3.3 Further Work

Theorem 3.2.7 has several obvious extensions. The first of these is to remove the

restriction that β > 1, which we made at the start of Section 3.2, and complete

the analysis of the weak environment regime; we discuss this more at the end of

Chapter 4. The next extension is to strengthen the type of convergence; in princi-

ple this should follow from vn being tight in an appropriate topology, as Theorem

3.2.7 does serve to determine the limit. However, tightness results pose significant

problems, due to the necessity of dealing with moments of vn itself, rather than the

integral of vn against a nice function. Further, tightness requires control of higher

moments than the second, and beyond the second moment the estimates become

difficult to deal with, as the tilted diffusions become very complicated. Indeed, since

Kolmogorov’s criterion requires bounds on the moments of a Hölder semi-norm, we

would need to control at least the fourth moments, because the stochastic heat equa-

tion is 1
2

−
Hölder continuous in space and 1

4

−
Hölder continuous in time [Qua11].

This means we need control on higher moments than the fourth moment of the time

increments and the second of the space increments.

Another question we can ask is whether the RWRE model we discussed in Section

1.1 has an analogue of the weak environment regime. The weak environment regime

for the RWRE corresponds to letting the distribution of the random environment be

very close to a deterministic one. That is, for a sequence of space-time i.i.d. random

environments ω(n) = (ω
(n)
t,x )t,x∈Z, we let ω

(n)
t,x = 1

2 + nawt,x, where (wt,x)t,x∈Z is an

i.i.d. collection of mean zero [−1
2 ,

1
2 ] valued random variables. As in Section 1.1,

Pω,n refers to the law of the RWRE in a given realisation of the environment, ω(n).

For a ∈ [−1
2 , 0) and some b determined by a, we are interested in the fluctuations of

the quantity

nPω,n(X(dn2te2) = dn2+bλt+ nye2|X(0) = 0). (3.3.1)

Here d·e2 := 2d ·2e and λ > 0 is a fixed parameter, for b = 0 we add the restriction
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that λ < 1 to ensure that we are evaluating Pω,n away from the edge of its support.

After a suitable rescaling, we conjecture that the above quantity has fluctuations

described by the stochastic heat equation in the n → ∞ limit. We conjecture the

statement holds when b is given by b = −1
2−a. This is an adaptation to the condition

for α and β in the weak environment regime displayed in Figure 3.1. The reason

the conditions are different is because we are diffusively scaling at the same time as

we are looking far from the origin. So that a and b are not directly analogous to α

and β. Instead, (a, b) is analogous to (α, β − 1). The effect of diffusive scaling on

the continuum model is discussed in Remark 3.1.3.

As we discussed in Remark 3.1.3, Corwin and Gu [CG16] showed that when (a, b) =

(−1
2 , 0) quantity (3.3.1) converges to the solution to the stochastic heat equation,

when rescaled so that the mean converges to the solution to the heat equation. Note

that the mean is given by the transition probabilities for the simple symmetric ran-

dom walk, making the convergence of the mean to the solution to the heat equation

relatively straightforward. Hence, the appearance of the SHE in the weak environ-

ment is already known. We know of no results for other values of a and b. It should

be said that for b > 0, no such result can hold, as the RWRE can only move one step

in space for every one step in time. Therefore, if b > 0, then quantity (3.3.1) would

eventually be 0 almost surely. We can however ask if there are analogous results

for the case b ∈ (−1
2 , 0). This corresponds to setting β ∈ (0, 1) in the continuous

model, so that proving the result for b ∈ (−1
2 , 0) would provide further evidence for

the conjecture on the left side of Figure 3.1.
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CHAPTER 4

Weak Diffusivity Scaling

In this chapter, we investigate the weak diffusivity regime for the stochastic partial

differential equations introduced in the previous chapter, as we described in Section

3.1.2. In the following section, we will briefly recall the setup of our model from

Section 3.1.1 and the details of the weak diffusivity regime. After this, we will

discuss the major qualitative differences between the weak diffusivity and the weak

environment regimes and then the results we have for the weak diffusivity regime.

4.1 Setup

Just as in the previous chapter, we start with a cylindrical Brownian motion on

L2(R;R), W , and take a mollifier ρ : R → R satisfying the same assumptions as

at the start of section 3.1.1, and set Wn := W ∗ ρn := W ∗ (nρ(n·)). Suppose that

(σn)∞n=1 is a null sequence of positive numbers and let νn = 1
2(ρ ∗ ρ(0) + σ2

n). We’re

interested in the weak diffusivity regime described in section (3.1.3). In this setting,

the tilted kernel vn defined in equation (3.1.6), with λ = (nσ(n))
1
2 , solves the SPDE,

∂tvn =
νn
2

∆νn + σ1/2
n vnẆn − n−

1
2∂y

(
vnẆn

)
, (4.1.1)

together with the initial condition vn(0, y) = δx(y). An explicit form for vn can be

found in terms of the solution to an SDE. Given a standard Brownian motion on
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the real line, B, let X be the solution to the SDE:

dX(t) = n−
1
2Wn(dt,X(t)) + σndB(t). (4.1.2)

Where the stochastic integrals are understood in the Itô sense, see [Kun94b] for

definitions. Let EB denote the expectation over the law of the Brownian motion B.

Then vn is given explicitly by the following formula

vn(t, y)dy =enσn
νn
2
t+(nσn)

1
2 (y−x)U0,t(x, dy + (nσn)

1
2 νnt). (4.1.3)

In the above equation, U is the flow of kernels associated to the SDE (4.1.2) by the

formula Us,t(x, dy) = P(X(t) ∈ dy|W,X(s) = x), and x ∈ R is assumed to be fixed.

The relation (4.1.3) allows us to rewrite the moments of Vn in terms of the solutions

to a system of SDEs (3.1.15) called the n-point motions, which we introduced in

Section 3.1.3. In particular, for the second moment, we have the following equality

E
[∫

R
vn(t, y)f(y)2dy

]
=Ex

[
eνnt+(nσn)

1
2 (X1(t)+X2(t)−2x)f(X1(t)− (nσn)

1
2 νnt)f(X2(t)− (nσn)

1
2 νnt)

]
= Ẽx

[
eσn

∫ t
0 ρ̃n(Y 1(s))−Y 2(s)dsf(Y 1(t))f(Y 2(t))

]
. (4.1.4)

Where, following the discussion at the start of Section 3.1.3, we have performed a

change of measure in the second equality and the processes Y i(t) = Xi(t)−(nσn)
1
2 νnt

were described in Proposition 3.1.2. From this, we can show the convergence of the

moments towards the solution of the stochastic heat equation. This was briefly

discussed in Section 3.1.3, and will be discussed further in Section 4.2.

4.1.1 The Stochastic Partial Differential Equation

In [LJR04a, Proposition 5.4], Le Jan and Raimond show that the flow of kernels

(Us,t)s<t, defined in (3.1.2), is equivalent to a flow of Markovian operators. The

same authors showed the flow of Markovian operators were the solution to a SPDE

in a certain weak sense, [LJR02, Theorem 3.2]. Recently, Dunlap and Gu, [DG21],

showed the flow of kernels satisfy the same SPDE as a generalised solution in the

sense of [Kun94a], . Further, they showed that the flow of kernels have continuous

densities with respect to the Lebesgue measure.

As discussed in the introduction for the previous chapter (in particular, see equation

(3.1.10)), the tilted density vn, from equation (4.1.3), is the solution to equation
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(4.1.1) in the following sense. Let (vn(t), f) =
∫
R vn(t, y)f(y)dy. For all f ∈ C∞c (R)

(vn(t), f) =f(x) +
νn
2

∫ t

0
(vn(s), f ′′)ds

+ σn
1
2

∫ t

0
(vn(s), fWn(ds))︸ ︷︷ ︸

=?

+n−
1
2

∫ t

0
(vn(s), f ′Wn(ds))︸ ︷︷ ︸

=†

. (4.1.5)

Where both stochastic integrals are understood as in the previous chapter.

Using the same ideas as in Section 3.2.2, we can show that E[†2]→ 0 as n→∞. We

use Itô’s isometry for the space-time white noise to turn the second moment of the

stochastic integral into a deterministic integral, which we calculate using equation

(4.1.4), from Proposition 3.1.2.

E[†2] = n−1E

[(∫ t

0
vn(s), f ′Wn(ds)

)2
]

= n−1E
[(∫ t

0

∫
R

(vn(s)f ′) ∗ ρn(y)2dyds

)]
= n−1Ẽx

[∫ t

0
eσn

∫ s
0 ρ̃(Y 1(r)−Y 2(r))drf ′(Y 1(s))f ′(Y 2(s))ρ̃n(Y 1(s)− Y 2(s))ds

]
≤ ‖f ′‖2∞n−1Ẽx

[∫ t

0
eσn

∫ s
0 ρ̃(Y 1(r)−Y 2(r))drρ̃n(Y 1(s)− Y 2(s))ds

]
= ‖f ′‖2∞(nσn)−1Ẽx

[
eσn

∫ t
0 ρ̃(Y 1(r)−Y 2(r))dr − 1

]
.

In a similar way to the arguments for the weak environment setting from Section

3.2.2, we can show the expectation on the final line above is converging; thus, we

have that E[†2] vanishes as n→∞.

Further, using similar ideas to the above argument which we cover in Section 4.2,

it can be shown that E[?2] converges to E[(κ
∫ t

0 (zx(s), fW (ds)))2], where zx is the

solution to the SHE, (3.1.19), with parameters κ =
√
π ‖ρ‖2
‖ρ′‖1/22

and η = ‖ρ‖22. Thus,

we hope that ? must converge to the noise term in the SHE. This is counter-intuitive

because the coefficient in front of ? is converging to 0, and if vn is converging, then

it seems reasonable to expect that stochastic integral should also converge. Thus,

the whole term should converge to 0 and not to the noise term in the SHE. However,

this assumes that vn is converging in a “nice” topology, for example uniformly on

compact sets, which we do not believe to be the case. As σ(n) gets very small,

the mass of the density vn collects into large spikes, which leads to the increasingly

irregular behaviour of the product (vn(s)f,Wn(s)).

The discussion in the previous paragraph presents a second problem, it is not clear
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that (vn,Wn) is converging to (zx,W ) where zx is the solution to the SHE driven by

W . This means we cannot show convergence to the to the solution of the stochastic

heat equation directly, because we do not have a way of coupling the sequence vn

with the limiting noise W . Instead, we must show convergence in distribution. To

show convergence in distribution, we need to find a way to determine the limit point

as a solution to the SHE without reference to the noise W . This can be done with

a martingale problem.

4.1.2 The Martingale Problem for the Stochastic Heat Equation

We begin by stating an equivalent formulation for the stochastic heat equation via a

martingale problem. Uniqueness for the martingale problem was proven in [KS88].

We use the formulation from [BG97], adapted for a delta initial condition, as in

[ACQ11]. The survey paper [Qua11] contains a short review of the martingale

problem approach to the SHE.

Definition 4.1.1. zx ∈ C((0, T );C(R)) is the solution to the martingale problem for

the stochastic heat equation, ∂tzx = η
2∆zx + κvẆ , if there exists a constant C > 0

such that E[zx(t, y)2] ≤ Cpt(x − y)2 for all t ∈ (0, T ) and y ∈ R and, for every

φ ∈ C∞c (R), N(zx, φ) and Λ(zx, φ), defined below, are martingales with respect to a

common filtration.

Nνn,κ(zx, φ)(t) :=

∫
R
φ(y)zx(t, y)dy − φ(x)− η

2

∫ t

0

∫
R
φ′′(y)zx(s, y)dyds, and

(4.1.6)

Λνn,κ(zx, φ)(t) := Nt(φ)2 − κ2

∫ t

0

∫
R
φ(y)2zx(s, y)2dyds. (4.1.7)

It follows from (4.1.5) that the following processes are martingales with respect to

the filtration generated by W .

Nn(vn, φ)(t) :=

∫
R
φ(y)vn(t, y)dy − φ(x)− νn

2

∫ t

0

∫
R
φ′′(y)vn(s, y)dyds, and

(4.1.8)

Λn(vn, φ)(t) := Nn
t (φ)2 −

∫ t

0

∫
R

((
vn(s, ·)σ1/2

n φ+ n−1/2φ′
)
∗ ρn(y)

)2
dyds. (4.1.9)

Where we have used that for any square integrable g : R→ R the following equality

holds ∫
R
g ∗ ρn(y)2dy =

∫
R2

g(y1)g(y2)ρ̃n(y1 − y2)dy,
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where ρ̃n := ρn ∗ ρn. We want to show that the sequence vn is tight in a suitable

topology, namely one where the mappings v 7→ N(v, φ) and v 7→ Λ(v, φ) are contin-

uous, and then derive the martingale properties for any subsequential limits of the

vn by using the above martingales. The main problems are: in what topology might

the sequence vn be tight that is strong enough to derive the martingale property for

Λ(v, φ) from the martingale property from Λn(vn, φ).

One potential answer to this problem is to add some smoothing to vn and hope

that the resultant process will be tight in a strong enough topology to determine its

limit points as the solution to our martingale problem. In the next section, we will

show that, for a limit point, (4.1.7) is a martingale. We will show this by using that

(4.1.9) has the martingale property with respect to the filtration generated by W .

4.2 Convergence to the Stochastic Heat Equation

Let ψ ∈ C∞c (R) be a symmetric mollifier and vn be as in Section 4.1. The aim of

this section will be to prove the following theorem.

Theorem 4.2.1. Suppose m = m(n) is a real valued sequence such that m(n) →
∞ as n → ∞ and m(n)n−

1
2 → 0 as n → ∞. Suppose further that there is a

weakly convergent subsequence of the sequence of random variables (vn(·)∗ψm)∞n=1 ⊂
C((0, T ), C(R)), with limit v, such that there is a constant C > 0 with E[v(t, y)2] ≤
Cpνt (x − y)2 for every t > 0 and y ∈ R, where pνt denotes the heat kernel with

diffusivity ν. Then v is equal in distribution to the solution to the stochastic heat

equation, with initial condition δx:

∂tzx =
‖ρ‖22

2
∆zx +

√
π‖ρ‖2
‖ρ′‖1/22

zxẆ . (4.2.1)

Proof. Throughout the proof, we will write κ =
√
π‖ρ‖2
‖ρ′‖1/22

. To prove the statement

we will show that any subsequential limit of the process must satisfy the martingale

problem (4.1.6). For a limit point, v, of vn∗ψm we can easily show Nν,κ(v, φ) satisfies

the martingale property, with respect to the filtration generated by v, from the

martingale property for Nn(vn, ψm ∗φ), (4.1.8). This leaves checking the martingale

property for Λν,κ(v, φ). To prove the martingale property, we use the properties of

the flow of kernels. By independence of increments, and from the SPDE for vn, we
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have (for the filtration (Ft)t≥0 generated by the noise W )

E[Λνn,κ(vn ∗ ψm, φ)(t)|Fs]

=Λνn,κ(vn ∗ ψm, φ)(s)

+ E
[∫ t

s

∫
R

(
(vn(r;x, ·)(σ

1
2
nψm ∗ φ+ n−

1
2ψ′m ∗ φ)

)
∗ ρn(z)2dzdr|Fs

]
− E

[
κ2

∫ t

s

∫
R

(vn(r;x, ·) ∗ ψm)(z)2φ(z)2dzdr|Fs
]
.

Note that this equality comes from applying the martingale property for Λn(vn, ψm∗
φ).

It is sufficient to show the difference between the second and third terms vanishes

in the limit. Using the flow and independent increment properties for vn(s, t;x, y)

(which carry over from the original flow of kernels U , as defined in Section 3.1.1, see

[LJR04a]), we can rewrite this difference as∫
R2

vn(0, s;x,w1)vn(0, s;x,w2)

E
[
σn

∫ t

s

∫
R

(vn(s, r)(ψm ∗ φ)) ∗ ρn(z)2dz − κ2

∫
R

∫
R

(vn(s, r) ∗ ψm)(z)2φ(z)2dzdr

(4.2.2)

+ 2

√
σn
n

(vn(s, r)(ψm ∗ φ)) ∗ ρn(z)
(
vn(s, r)(ψ′m ∗ φ)

)
∗ ρn(z) (4.2.3)

+
1

n

(
vn(s, r)(ψ′m ∗ φ)

)
∗ ρn(z)2

]
dw. (4.2.4)

The stationarity property for stochastic flows of kernels also carries over to the tilted

density vn. Therefore, the expectation in the above expression can be rewritten in

terms of vn(0, r − s;x, ·). For line (4.2.2), we have from (4.1.4)∫ t−s

0
E
[ ∫

R
σn (vn(r;x, ·)(ψm ∗ φ)) ∗ ρn(z)2 − κ2(vn(r;x, ·) ∗ ψm)(z)2φ(z)2dz

]
dr.

(4.2.5)

=σn

∫ t−s

0
Ẽw
[
eσn

∫ r
0 ρ̃n(Y 1−Y 2)(τ)dτ ρ̃n(Y 1 − Y 2)(r)(φ ∗ ψm)⊗2(Y (r))

]
dr (4.2.6)

− κ2

∫ t−s

0

∫
R
Ẽw
[
eσn

∫ r
0 ρ̃n(Y 1−Y 2)(τ)dτψm(z − Y 1(r))ψm(z − Y 2(r))

]
φ(z)2dzdr.

(4.2.7)

In the above, we use the shorthand g⊗2 for the tensor product of the function g

with itself. The process Y = (Y 1, Y 2) and the tilted expectation Ẽw are defined in
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the same way as in Section 3.2.2 for the weak environment setting, its generator for

general parameters was discussed in Proposition 3.1.2. The proof of the theorem

is completed by showing that the above expression, together with the terms on

line (4.2.3) and (4.2.4), vanish as n → ∞. The proof that the above expression

vanishes will follow in the remains of this section. Here, we will show that lines

(4.2.3) and (4.2.4) both vanish as n→∞. First note that since ψ, φ ∈ C∞c (R), and∫
R ψ(y)dy = 1 we have

ψm ∗ φ(z) =

∫
R
ψm(y)φ(y − z)dy ≤ ‖φ‖∞.

Note that φ′ ∈ C∞c (R) as well, so we can apply the same bound to ψ′m ∗φ. It follows

easily that the contribution to the expectation from line (4.2.3) is at most

2

√
σn
n
E
[∫ t−s

0

∫
R2

vn(r;x, y1)vn(r;x, y2)ρ̃n(y1 − y2)dydr

]
=2

√
σn
n
Ẽx

[∫ t−s

0
eσn

∫ r
0 ρ̃(Y 1(τ)−Y 2(τ))dτ ρ̃n(Y 1(r)− Y 2(r))dr

]
=

1
√
nσn

Ẽx

[
eσn

∫ t−s
0 ρ̃(Y 1(r)−Y 2(r))dr − 1

]
.

Where we used (4.1.4) to get the second line. We will show in Lemma 4.2.2, below,

that the expectation is bounded. Thus line (4.2.3) vanishes as n → ∞, repeating

the same steps for line (4.2.4) shows that it will also vanish, finishing this part of

the proof.

Before we complete the above proof by calculating the limit of the final expression,

we first collect some useful facts about the diffusion Y = (Y 1, Y 2).

Lemma 4.2.2. For any t > 0, w, y ∈ R and k ∈ N we have the following inequality

for Z = Y 1 − Y 2

Ẽw
[
Lyt (Z)k

]
≤ 4(4

√
2νnt)

kΓ
(
k+1

2

)
√
π

.

Proof. Because the finite variation components of Y 1 and Y 2 are equal we may write

Z = Y 1,m − Y 2,m where Y 1,m and Y 2,m are the martingale parts, under Ẽ, of Y 1

and Y 2 respectively. Because the quadratic variation of both Y 1 and Y 2 is given by
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νnt, the martingale parts are both Brownian motions. Tanaka’s formula yields

Ẽw
[
Lyt (Z)k

]
≤2k

(
Ẽw
[
|Z(t)|k

]
+ Ẽw

[∣∣∣∣∫ t

0
sign(Z(s)− y)dZs

∣∣∣∣k
])

≤4k
(
Ẽw
[
|Y 1,m(t)|k

]
+ Ẽw

[
|Y 2,m(t)|k

]
+ Ẽw

[∣∣∣∣∫ t

0
sign(Z(s)− y)dY 1,m(s)

∣∣∣∣k
]

+ Ẽw

[∣∣∣∣∫ t

0
sign(Z(s)− y)dY 2,m(s)

∣∣∣∣k
])

.

To finish the proof, we just have to note that the two stochastic integrals on the last

line are continuous local martingales with quadratic variation process νnt, and so are

Brownian motions by Levy’s characterisation. The inequality follows by calculating

the moments of the Brownian motions.

Lemma 4.2.3. For Y = (Y 1, Y 2) we have(
Y, σn

∫ ·
0
ρ̃n(Y 1 − Y 2)(s)ds

)
⇒
(
B,

π‖ρ‖22
2‖ρ′‖2

L0
· (B

1 −B2)

)
.

Here, B is a Brownian motion on R2, with diffusivity ρ̃(0) and L0
· (B

1 − B2) the

local time of B1 −B2 at 0.

Proof. To show that Y ⇒ B we refer to [EK09, Theorem 8.2], and use that we know

both the quadratic variations for the process Y and the semi-martingale decompo-

sition from the discussion preceding Proposition 3.1.2, we recall both below.

〈Y i, Y j〉(t) = σ2
nδi,j +

∫ t

0
ρ̃
(
n
(
Y i − Y j)(s)

)
ds; (4.2.8)

Y i −
√
nσn

∫ ·
0
ρ̃
(
n
(
Y 1 − Y 2)(s)

)
ds is a Brownian motion on R, for i = 1, 2.

(4.2.9)

The necessary bounds on
∫ ·

0 ρ̃
(
n(Y 1 − Y 2)(s)

)
ds come from the occupation times

formula, see [RY13], and the previous lemma.

To prove the joint convergence of the local time we apply the Skorokhod repre-

sentation theorem to realise Y on a probability space where the convergence to a

Brownian motion holds almost surely. The convergence is then a straightforward

consequence of the Tanaka formula for the local time.
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We can now return to the unproven statement at the end of the proof of Theorem

4.2.1. We begin by computing the limit of line (4.2.6). We will then show it is

cancelled by the limit of line (4.2.7), thereby proving the statement.

Lemma 4.2.4. The following convergence holds, for any t > 0, as n→∞.

σn

∫ t

0
Ẽw
[
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)drρ̃n(Y 1 − Y 2)(s)(φ ∗ ψm)⊗2(Y (s))

]
ds (4.2.10)

→ π‖ρ‖22
2‖ρ′‖2

Ew

[∫ t

0
e
π‖ρ‖22
2‖ρ′‖2

L0
s(B

1−B2))
φ(B1(s))φ(B2(s))dL0

s(B
1 −B2)

]
.

Proof. Rescaling the integral over R2 and applying Fubini’s theorem, (4.2.10) is

equal to∫
R2

Ẽw
[∫ t

0
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)drσnρ̃n(Y 1 − Y 2)(s)φ⊗2( zm + Y (s))ds

]
ψ⊗2(z)dz.

(4.2.11)

Applying Itô’s formula to eσn
∫ t
0 ρ̃n(Y 1−Y 2)(s)dsφ(z1/m + Y 1(s))ψ(z2/m + Y 2(s)), it

becomes clear that the above expression is equal to∫
R2

Ẽw
[
eσn

∫ t
0 ρ̃n(Y 1−Y 2)(s)dsφ⊗2( zm + Y (t))− φ⊗2( zm + (x, x)) (4.2.12)

−
∫ t

0
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)drφ′(z1/m+ Y 1(s))φ(z2/m+ Y 2(s))dY 1(s) (4.2.13)

−
∫ t

0
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)drφ(z1/m+ Y 1(s))φ′(z2/m+ Y 2(s))dY 2(s) (4.2.14)

−1

2

∫ t

0
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)dr

2∑
i,j=1

∂2φ⊗2

∂yi∂yj
( zm + Y (s))d〈Y i, Y j〉(s)

]
ψ⊗2(z)dz.

(4.2.15)

Of course, 〈Y i, Y j〉 is known and given at the start of the proof of Lemma 4.2.3.

We’ll find the limit of the expectation, line by line, as n→∞, and then apply DCT

to get the full limit.

Because φ is smooth and compactly supported, and for each n ∈ N the exponential

term is bounded, the expectation on line (4.2.13) is equal to (ignoring the minus
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sign)

Ẽw
[
√
nσn

∫ t

0
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)dr(φ′ ⊗ φ)( zm + Y (s))ρ̃

(
n
(
Y 1 − Y 2)(s)

)
ds

]
(4.2.16)

≤C(nσn)−
1
2 Ẽ
[
eσn

∫ t
0 ρ̃n(Y 1−Y 2)(s)ds − 1

]
. (4.2.17)

Where we have just used that φ and its derivative is bounded. Expanding the expo-

nential via a Taylor expansion, and using the occupation times formula to rewrite

the time integral in terms of Lyt (Y 1−Y 2) we can show the expectation is bounded as

a consequence of Lemma 4.2.2. Since (nσ)−1 → 0 as n→∞, the above expectation

vanishes in the limit. Thus, line (4.2.13), and by the same argument (4.2.14), dis-

appear when we take n → ∞. Similarly the i 6= j parts of the sum on line (4.2.15)

vanish. Putting everything together, the combined limit of lines (4.2.12), (4.2.13),

(4.2.14), and (4.2.15) is, for B a Brownian motion on R2 with diffusivity ρ̃(0),

Ew
[
e
π‖ρ‖22
2‖ρ′‖2

L0
t (B

1−B2))
φ⊗2(B(t))− φ(x)2 − ρ̃(0)

2

∫ t

0
e
π‖ρ‖22
2‖ρ′‖2

L0
s(B

1−B2))
∆φ⊗2(B(s))ds

]
.

Applying Itô’s formula to the semi-martingale (B1, B2,L0
· (B

1 − B2)) we get that

the above expression is equal to the following.

π‖ρ‖22
2‖ρ′‖2

Ew

[∫ t

0
e
π‖ρ‖22
2‖ρ′‖2

L0
s(B

1−B2))
φ⊗2(B(s))dL0

s(B
1 −B2)

]
. (4.2.18)

This is just equal to E[κ2
∫ t

0

∫
R zx(t, y)2φ(y)2dy], where zx is the solution to the SHE

with initial condition δx(y).

Now we need to show the same limit is achieved by the second line, (4.2.7), which

we do in the following lemma.

Lemma 4.2.5. For each t > 0 the following convergence holds as n→∞

Ẽw
[
κ2

∫ t

0

∫
R
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)drψm(z − Y 1(s))ψm(z − Y 2(s))φ(z)2dzds

]
→ π‖ρ‖22

2‖ρ′‖2
Ew

[∫ t

0
e
π‖ρ‖22
2‖ρ′‖2

L0
s(B

1−B2))
φ(B1(s))φ(B2(s))dL0

s(B
1 −B2)

]
.

Proof. Once again we want to use Itô’s formula to perform an integration by parts,

in this case to get around the singular term ψm(z− Y 1(s))ψm(z− Y 2(s)). First, we
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translate the z integral up by Y 1(s) and rescale, to get the following

Ẽw
[
κ2

∫ t

0

∫
R
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)drψm( zm + Y 1(s)− Y 2(s))φ( zm + Y 1(s))2ψ(z)dzds

]
.

(4.2.19)

From (4.2.8), we know the quadratic variation of Y 1 − Y 2 to be given by

〈Y 1 − Y 2〉(t) = 2

∫ t

0
σ2
n + ρ̃(0)− ρ̃

(
n(Y 1 − Y 2)(s)

)
ds. (4.2.20)

Thus, it follows from the occupation times formula for continuous semi-martingales

that∫ t

0
ψm( zm + Y 1 − Y 2)(s)ds =

1

2

∫
R

ψ(z + y1)

σ2
n + ρ̃(0)− ρ̃( nmy1)

L
y1

m
t (Y 1 − Y 2)dy1. (4.2.21)

Using this we can rewrite the time integral as a Riemann-Stieltjes integral in terms

of the local time. It is easy to see that we can still rearrange the integrals however

we wish. We end up with the following expression.

Ẽw
[
κ2

2

∫
R

∫
R

ψ(z + y1)

σ2
n + ρ̃(0)− ρ̃( nmy1)∫ t

0
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)drφ( zm + Y 1(s))2dL

y1

m
s (Y 1 − Y 2)dy1ψ(z)dz

]
. (4.2.22)

In the following, we will show that the limit as n → ∞ of the above expression is

the same as that of the one below

Ẽw
[
κ2

2

∫
R

∫
R

ψ(z + y1)

σ2
n + ρ̃(0)− ρ̃( nmy1)∫ t

0
e

1
2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
s (Y 1−Y 2)

φ( zm + Y 1(s))2dL
y1

m
s (Y 1 − Y 2)dy1ψ(z)dz

]
.

(4.2.23)

To show this we will estimate the difference. We begin with the following equality,

which is the consequence of the occupation times formula.

σn

∫ t

0
ρ̃n(Y 1 − Y 2)(s)ds =

1

2

∫
R

ρ̃(σny2)

1 + σ−2
n (ρ̃(0)− ρ̃(σny2))

Lσn/ny2

t (Y 1 − Y 2)dy2.

(4.2.24)
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We can use equality (4.2.24), to estimate

∣∣∣∣ ∫ t

0

(
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)dr − e

1
2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
s (Y 1−Y 2)

)
(4.2.25)

φ( zm + Y 1(s))2dL
y1

m
s (Y 1 − Y 2)

∣∣∣∣. (4.2.26)

Using the simple inequality |ex−ey| ≤ |x−y|ex+y for x, y ≥ 0, together with (4.2.24),

the above expression is bounded above by

‖φ‖2∞
2

∫ t

0

∫
R

ρ̃(σny2)

1 + σ−2
n (ρ̃(0)− ρ̃(σny2))

|Lσn/ny2
s (Y 1 − Y 2)− L

y1

m
s (Y 1 − Y 2)|dy2

(4.2.27)

e
σn

∫ s
0 ρ̃n(Y 1−Y 2)(r)dr+ 1

2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
s (Y 1−Y 2)

dLy1/n
s (Y 1 − Y 2).

(4.2.28)

The exponential is an increasing function of time, and so can be bounded above by

its value at t, we want to do the same thing for the difference between the two local

times. In the following we will write Z := Y 1−Y 2 and estimate this difference. The

following bound for |Lzs(Z)− Lys(Z)| follows easily from the triangle inequality∣∣∣∣|Zs − z| − |z| − |Zs − y|+ |y| − ∫ s

0
sign(Zr − z)dZr +

∫ t

0
sign(Zr − y)dZr

∣∣∣∣
≤2|z − y|+

∣∣∣∣∫ s

0
sign(Zr − z)− sign(Zr − y)dZr

∣∣∣∣ .
Below, we estimate the modulus of the difference between (4.2.22) and (4.2.23) by

first rewriting it in terms of (4.2.28), and then applying the bound we just derived.
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To shorten notation we will let Z := Y 1 − Y 2.∣∣∣∣Ẽw[κ2

2

∫
R

∫
R

ψ(z+y1)

σ2
n+ρ̃(0)−ρ̃(

n
my1)∫ t

0

(
eσn

∫ s
0 ρ̃n(Y 1−Y 2)(r)dr − e

1
2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
s (Y 1−Y 2)

)
φ( zm + Y 1(s))2dL

y1

m
s (Y 1 − Y 2)dy1ψ(z)dz

]∣∣∣∣ (4.2.29)

≤Ẽw
[
κ2

2

∫
R

∫
R

ψ(z + y1)

σ2
n + ρ̃(0)− ρ̃( nmy1)

∫ t

0

∫
R

ρ̃(σny2)

1 + σ−2
n (ρ̃(0)− ρ̃(σny2))(

2
∣∣∣σny2

n
− y1

m

∣∣∣+

∣∣∣∣∫ s

0
sign(Zr −

σny2

n
)− sign(Zr −

y1

m
)dZr

∣∣∣∣) dy2

e
σn

∫ s
0 ρ̃n(Z)(r)dr+ 1

2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
s (Z)

dL
y1

m
s (Z)dy1ψ(z)dz

]
. (4.2.30)

This is then bounded above by

≤Ẽw
[
κ2‖φ‖2∞

4

∫
R

∫
R

ψ(z + y1)

σ2
n + ρ̃(0)− ρ̃( nmy1)(

2
∣∣∣σny2

n
− y1

m

∣∣∣+ sup
0≤s≤t

∣∣∣∣∫ s

0
sign(Zr −

σny2

n
)− sign(Zr −

y1

m
)dZr

∣∣∣∣) dy2

L
y1

m
t (Z)e

σn
∫ t
0 ρ̃n(Z)(r)dr+ 1

2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
t (Z)

dy1ψ(z)dz

]
. (4.2.31)

Where we used that used that the exponential term increases in time. For the

next steps we want to move the expectation inside all the integrals, and then ap-

ply Hölder’s inequality. Now we collect the necessary bounds to control the above

expression, beginning with

Ẽw

Ly1

m
t (Z)e

σn
∫ t
0 ρ̃n(Z(r))dr+ 1

2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
t (Z)

 (4.2.32)

≤Ẽw

[∣∣∣∣Ly1

m
t (Z)

∣∣∣∣3
]1

3

Ẽw
[
e3σn

∫ t
0 ρ̃n(Z)(r)dr

]1
3 Ẽw

e 3
2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
t (Z)


1
3

.

(4.2.33)

Lemma 4.2.2 gives us a uniform in n bound on this expression. Next we want a
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bound on

Ẽw
[
L
y1

m
t (Z)e

σn
∫ t
0 ρ̃n(Z(r))dr+ 1

2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
t (Z)

(4.2.34)

sup
0≤s≤t

∣∣∣∣∫ s

0
sign(Zr −

σny2

n
)− sign(Zr −

y1

m
)dZr

∣∣∣∣ ] (4.2.35)

≤Ẽw
[
L
y1

m
t (Z)4

]1
4
Ẽw
[
e4σn

∫ t
0 ρ̃n(Z(r))dr

]1
4 Ẽw

e2
∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
t (Z)


1
4

(4.2.36)

Ẽw

[
sup

0≤s≤t

∣∣∣∣∫ s

0
sign(Zr −

σny2

n
)− sign(Zr −

y1

m
)dZr

∣∣∣∣4
]1

4

. (4.2.37)

The expectations on line (4.2.36) are uniformly bounded in n, again as a consequence

of Lemma 4.2.2. Using the Burkholder-Davis-Gundy inequality the expectation on

line (4.2.37) is bounded above, for some constant C > 0, by

CẼw
[∫ s

0

(
sign(Zr −

σny2

n
)− sign(Zr −

y1

m
)
)2
d〈Z〉(r)2

]1
4

(4.2.38)

=
√

2CẼw
[∫ s

0
1{Z(r)∈(

σny2

n ,
y1

m )}
(
σ2
n + ρ̃(0)− ρ̃(nZ(r))

)
dr2

]1
4

(4.2.39)

=
√

2CẼw

∣∣∣∣∣
∫ y1

m

σny2

n

(σ2
n + ρ̃(0)− ρ̃(ny3))Ly3

t (Z)dy3

∣∣∣∣∣
2


1
4

(4.2.40)

Where the final equality follows from the occupation times formula for continuous

martingales. Since ρ̃ is non-negative and has its maximum at 0, we can replace the

bracket in the integrand with νn = σ2
n + ρ̃(0). Following this with an application of

Jensen’s inequality to the spatial integral, we get the upper bound

√
2νnC

(∣∣∣y1

m
− σny2

n

∣∣∣ ∫ y1

m

σny2

n

Ẽw
[
Ly3
t (Z)2

]
dy3

)1
4

. (4.2.41)

The variance of the local time is bounded uniformly in n by Lemma 4.2.2. Hence,

we have that there is a constant C > 0, independent of n, such that line (4.2.31) is
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bounded above by

κ2C

2

∫
R

∫
R

ψ(z + y1)

σ2
n + ρ̃(0)− ρ̃( nmy1)

∫
R

ρ̃(σny2)

1 + σ−2
n (ρ̃(0)− ρ̃(σny2))(∣∣σny2

n − y1

m

∣∣+
∣∣σny2

n − y1

m

∣∣1/2) dy2dy1ψ(z)dz. (4.2.42)

Since ρ̃ has compact support, there is some constant L such that |σny2ρ̃(σny2)| ≤
Lρ̃(σny2). Using the triangle inequality alongside the simple inequality |a+ b|1/2 ≤
|a|1/2 + |b|1/2, we get∫

R

ρ̃(σny2)

1 + σ−2
n (ρ̃(0)− ρ̃(σny2))

(∣∣σny2

n − y1

m

∣∣+
∣∣σny2

n − y1

m

∣∣1/2) dy2

≤
∫
R

ρ̃(σny2)

1 + σ−2
n (ρ̃(0)− ρ̃(σny2))

dy2

(
L

n
+

√
L

n
+
|y1|
m

+

√
|y1|
m

)
.

It is not hard to show that the y2 integral is converging to a finite limit as n→∞,

from which it follows that the integral is bounded. Therefore, line (4.2.42) is bounded

above by the following expression

C

∫
R

ψ̃(y1)

σ2
n + ρ̃(0)− ρ̃( nmy1)

(
1

n
+

√
1

n
+
|y1|
m

+

√
|y1|
m

)
dy1.

Where C has absorbed all the other constants and we have written ψ̃(y) =
∫
R ψ(z+

y)ψ(z)dz. ρ̃ is a smooth symmetric function that has a global maximum at 0 with

ρ̃′′(0) < 0; it follows that there is an ε > 0 such that for some δ > 0 we have

ρ̃′′(y) < −δ < 0 for all y ∈ (−ε, ε). We also have that for all ε > 0 there is

some γ > 0 such that ρ̃(0)− ρ̃(y) > γ for all |y| > ε. By using Taylor’s theorem on

ρ̃(0)− ρ̃( nmy1), in combination with the two facts we just stated, we get the following

bound on the above expression.

C

(∫ m
n
ε

−m
n
ε

ψ̃(y1)

σ2
n + δ

2( nmy1)2

(
1

n
+

√
1

n
+
|y1|
m

+

√
|y1|
m

)
dy1

+

∫
|y|>m

n
ε

ψ̃(y1)

η

(
1

n
+

√
1

n
+
|y1|
m

+

√
|y1|
m

)
dy1

)
.

Once again absorbing all constants into C > 0, and using that ψ ∈ C∞c (R) to bound

the right hand integral, we get that the above expression is bounded above by

C

(
m

n
3
2σn

+
1√
m

)
.
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Where we have used that n ∈ N to get rid of higher order terms. Since we have

chosen m to be such that mn−
1
2 is vanishing as n → ∞, the above expression

vanishes as n→∞.

It follows that the limit as n → ∞ of line (4.2.22) is the same as the limit of line

(4.2.23), as claimed. Now we compute the limit of line (4.2.23), which we recall

below.

κ2

2

∫
R

∫
R

ψ(z + y1)ψ(z)

σ2
n + ρ̃(0)− ρ̃( nmy1)

Ẽw
[ ∫ t

0
e

1
2

∫
R

ρ̃(σny2)

1+σ−2
n (ρ̃(0)−ρ̃(σny2))

dy2L
y1

m
s (Y 1−Y 2)

φ( zm + Y 1(s))2dL
y1

m
s (Y 1 − Y 2)

]
dy1dz.

(4.2.43)

We start by computing the limit of the expectation, we can compute the limit in

the same way as we did in the proof of Lemma 4.2.4. We perform the integration

by parts (with Itô’s formula) on the time integral in the above expression, then

compute the limit of each term. Applying Itô’s formula to that limit we see it is

given by the following expectation, where B1, B2 are independent Brownian motions

with diffusivity ρ̃(0) in R, both starting from x under Ex.

Ex

[∫ t

0
e
π‖ρ‖22
2‖ρ′‖2

L0
s(B

1−B2)
φ(B1(s))2dL0

s(B
1 −B2)

]
.

It is fairly straightforward, using the estimates on the moments of the local time

we have already derived and the fact that ψ ∈ C∞c (R), to see that we can apply

the Dominated convergence theorem to line (4.2.43), to get that the the limit of

line (4.2.43) as n → ∞ is simply the above expression multiplied by κ2

2ρ̃(0) = π‖ρ‖2
2‖ρ′‖2 .

That the above expression is equal to the one on line (4.2.18) follows easily from the

support properties of the local time, see [RY13] for further details.

With this Lemma, the proof of Theorem 4.2.1 is completed.

In the next section we will discuss some potential further work related to the weak

diffusivity regime.

4.3 Further Work

The most obvious next step is to complete the proof of convergence in Theorem

4.2.1 by proving the boundedness condition, E[zx(t, y)2] ≤ Cpt(x− y)2, for the limit

point and tightness of vn ∗ ψm as a sequence of random variables taking values in
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C((0, T ), C(R)). One potential method for tightness would be to attempt to apply

Kolmogorov’s criterion, as discussed for the weak environment setting in Section

3.3. Whilst the bounds for both tightness and the boundedness condition should

follow from a calculation using the n-point motions, they become complicated for the

same reasons as discussed in Section 3.3 for the weak environment regime. Another

approach is to apply the Aldous’ criterion for tightness, which should allow us to

use second moments of the time increments, rather than higher moments. However,

we still need higher moments for the space increments.

If tightness can be proven, the next question of interest would be whether the same

methods can also be used to prove convergence to the stochastic heat equation for the

fixed environment and diffusivity regime and the whole weak environment regime,

extending the arguments from Chapter 1.4, which only apply when the effect of

the environment is taken to 0 sufficiently quickly, β > 1 in Figure 3.1. This would

complete proof of the conjectured SHE line from Figure 3.1.

Another interesting question is whether or not there is an analogue of the weak diffu-

sivity regime for the RWRE model. As has been previously mentioned, a particular

instance of the weak environment regime was proven by Corwin and Gu, [CG16],

but no result analogous to the weak diffusivity regime exists that we know of.

Following the notation used at the start of Section 1.4, let w(n) = (w
(n)
t,x )t,x∈Z be a

sequence of i.i.d. space-time random environments, where the wnt,x are mean zero

and take values in [−1, 1]. The random walk in random environment is the simple

random walk defined by the random transition probabilities

Pw,n (X(t+ 1) = x± 1|X(t) = x) =
1

2
(1± w(n)

t,x ).

We are interested in the case where the sequence of random variables w
(n)
t,x is con-

verging to a {−1, 1} valued Bernoulli random variable. In this case, the path of

the Random walk in the random environment is almost entirely determined by the

environment, just as in the weak diffusivity setting for the continuous model.

The quantity E[(w
(n)
t,x )2] − 1 is the discrete analogue to the molecular diffusivity,

σ2. Thus, we suppose that E[(w
(n)
t,x )2] − 1 = n−2α for some α > 0 and study the

fluctuations of the quantity

nPw,n
(
X(dn2te2) = dnβ+1t+ nye2|X(0) = 0

)
. (4.3.1)

where d·e2 := 2d ·2e. If β = 1−α
2 , after suitable rescaling by some exponential factor,

we expect the fluctuations as n→∞ to be described by the stochastic heat equation.
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Another related result which would be of interest is whether or not similar statements

hold for Howitt-Warren flows, when viewed as the continuum analogues of quantity

4.3.1. Such a conjecture was made by Barraquand and Rychnovsky, [BR20], where

they showed convergence of the moments of uniform Howitt-Warren flows (the case

studied in Chapter 2) towards the moments of the solution to the SHE. Whilst

convergence of the moments does not imply full convergence, because the moments

of the SHE do not determine its distribution, it is highly suggestive. The universality

of the KPZ equation, discussed in Section 1.2, suggests the convergence should hold

for more general Howitt-Warren flows.

The final part of Figure 3.1 to discuss is the behaviour above the line, where we

conjecture the limit to be 0. This is based on the behaviour of the second moments,

which can be rewritten in terms of the two point motions. Recall that the tilted

density (3.1.6) can be rewritten in terms of the tilted two point motions (3.1.17).

For (α, β) above the SHE line in Figure 3.1, the exponential term in (3.1.17) is no

longer converging, in fact it appears to diverge to infinity. This means that the

second moments are diverging to infinity whilst the first moments remain fixed. As

a consequence, we believe the mass of the tilted density, 3.1.6, is collecting into large

spikes, which occur at a given location with low probability. This suggests that the

tilted density should converge to 0 in probability. However, this is simply a heuristic,

and nowhere near a full proof. One starting point might be to consider the RWRE

instead, and compare the model with polymers, where similar results already exist;

see the review [Com17] for further details.
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