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a b s t r a c t

This paper considers a network formation model when links are potentially misclassified.
We focus on a game-theoretical model of strategic network formation with incomplete
information, in which the linking decisions depend on agents’ exogenous attributes and
endogenous network characteristics. In the presence of link misclassification, we derive
moment conditions that characterize the identified set for the preference parameters
associated with homophily and network externalities. Based on the moment equality
conditions, we provide an inference method that is asymptotically valid when a single
network of many agents is observed. Finally, we apply our misclassification-robust
method to study the preference parameters of a lending network in rural villages in
southern India.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Researchers across different disciplines have documented that measurement error of links is a pervasive problem in
etwork data (e.g., Holland and Leinhardt, 1973, Moffitt, 2001, Kossinets, 2006, Ammermueller and Pischke, 2009, Wang
t al., 2012, Angrist, 2014, de Paula, 2017, Advani and Malde, 2018). Although strategic network formation models
rovide essential information for learning about the creation of linking connections and peer effects when the network of
nteraction is endogenous, to the best of our knowledge, there has been no work addressing the effects of misclassifying
inks in strategic network formation models. In this paper, we consider identification and inference in a game-theoretical
odel of strategic network formation with potentially misclassified links.
We focus on a simultaneous game with incomplete information in which agents decide to form connections to

aximize their expected utility (cf. Leung, 2015, and Ridder and Sheng, 2020). The agents’ decisions are interdependent
ince the utility attached to creating a link depends on the agents’ observed attributes and network characteristics through
ink externalities (such as reciprocity, in-degree, and transitivity statistics). The misclassification problem will affect the
ink formation decisions in two different ways. First, the binary outcome variable representing an agent’s optimal linking
ecision is misclassified. Second, the link misclassification problem prevents us from directly identifying the belief system
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hat an agent uses to predict others’ linking decisions. In this sense, the misclassification problem occurs on the left- and
ight-hand sides of the equation describing the optimal linking decisions (as shown in Lemma 1).

We propose a novel approach for analyzing network formation models, which is robust to link misclassification.
pecifically, in a setup that allows for the links to be potentially misclassified, we characterize the identified set for
he structural parameters, which includes the preference parameters concerning homophily and network externalities.
notable innovation in our approach is that we derive the relationship between the choice probabilities of observed
etwork connections and the belief system (as shown in Lemma 2). This result is crucial in allowing us to control for
he endogeneity of the equilibrium beliefs and to reduce the model to a single-agent decision model in the presence of
isclassification.
We also propose an inference method that is asymptotically valid when one network with a large number of agents is

bserved. Our proposed confidence interval is computationally feasible and controls the size even when the parameters
re partially identified.
In practice, network links might be misclassified due to several reasons. First, true links might be listed as missing

ue to incomplete surveying of the individuals in the network or top-censoring of the number of links that can be
eported. Second, it might result from individuals being apprehensive about revealing certain connections, getting wearied
uring the interviews, or forgetting about some of their relationships. Third, perception biases may lead individuals to
eport non-existent links. Fourth, imputation mistakes of the researcher may lead to misclassifying non-existent links
s existing. In our setting, the links are allowed to be misclassified conditionally at random as positives or negatives.
he formal statement is provided in Assumption 3, where we also discuss the advantages and limitations of assuming a
isclassification process that is conditionally at random. In Appendix B, we discuss a generalization of the misclassification
rocess to a heterogeneous setting where the misclassification distribution is covariate-dependent.
In an empirical illustration, we apply our inference method to examine a lending network in Karnataka, an area in

outhern India (see Jackson et al., 2012 and Banerjee et al., 2013). We study the performance of our method when different
egrees of links misclassification are considered in the data, including both false positives and negatives. As a benchmark
cenario, we use the no link misclassification case. This corresponds to the analysis conducted by Leung (2015). Our
esults suggest that, even with misclassified links, the most important determinants driving the lending decisions of the
ndividuals in the network are reciprocation, homophily on gender, and whether or not the individuals are relatives.
oreover, this analysis documents the importance of using an inference method robust to the misclassification of network

inks. For instance, in a scenario that controls for up to 50% probability of link misclassification as negatives, the 95%
onfidence intervals obtained using our inference method can be up to 2.95 times larger in length than the confidence
ntervals that ignore the misclassification problem.

Our methodology contributes to the growing econometric literature studying the formation of networks (see Graham,
015, Chandrasekhar, 2016, and de Paula, 2017 for an overview). Within this literature, the studies by Leung (2015),
enzel (2015), Miyauchi (2016), Boucher and Mourifié (2017), Mele (2017), de Paula et al. (2018), Thirkettle (2019),
hristakis et al. (2020), Ridder and Sheng (2020), Sheng (2020), Badev (2021), and Gualdani (2021) have analyzed game-
heoretic models of network formation. The papers most similar to ours are those by Leung (2015) and Ridder and
heng (2020), which analyze the strategic formation of a directed network with incomplete information and network
xternalities. Relative to these papers, our paper allows for the links to be potentially misclassified and examines the
roblems arising from that misclassification in identifying and estimating the network formation model.1
Within the existing literature of network formation models, Chandrasekhar and Lewis (2016) and Thirkettle (2019)

have examined the effects of partially observed network data on recovering or bounding network statistics, such as
the Katz-Bonacich centrality or clustering measures. Their methodologies complement ours as they focus on sampled
networks where the observed part of the network is assumed not to suffer from any measurement error. Moreover, their
asymptotic framework assumes that multiple small networks are available to the researcher. In contrast, our methodology
allows for all the links in the network to be potentially misclassified, e.g., the observed links could represent false positives
with a fixed probability. In addition, our setting is designed for the case where only one large network is available to the
researcher.

This paper is also related to the literature of mismeasured discrete variables (e.g., Hausman et al., 1998; Mahajan, 2006;
Lewbel, 2007; Chen et al., 2008; Hu, 2008; Molinari, 2008 and Hu and Lin, 2018).2 Our approach to misclassified links is
based on Molinari (2008), who offers a general bounding strategy with misclassified discrete variables. Specifically, we
can also incorporate ex-ante restrictions on the misclassification probabilities and bound the underlying parameter of
interest.

There are several papers in the literature of social interactions that have examined the econometric challenges posed
by the limited availability of network data. The settings considered in those studies include partially observed links
(Blume et al., 2015; Kline, 2015; Lewbel et al., 2019; Griffith, 2019; Zhang, 2020), sampled network data (Liu, 2013;

1 A different strand of this literature has studied dyadic link formation models with unobserved node-specific heterogeneity (see, e.g., Graham,
2017; Charbonneau, 2017; Toth, 2017; Jochmans, 2018; Dzemski, 2019; Candelaria, 2020; Gao, 2020; Ma et al., 2020; Zeleneev, 2020; Auerbach,
2022). These papers rule out the presence of link misclassification in their setup.
2 Hu and Lin (2018) analyze a social interaction model where the decision variable is mismeasured, but the network of interaction is observed

without error.
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ta et al., 2018), aggregated network data (Alidaee et al., 2020; Boucher and Houndetoungan, 2020; Breza et al., 2020),
nd completely unobserved network data (Rose, 2015; Manresa, 2016; de Paula et al., 2019). However, their methods
iffer substantially from the ones proposed here since those papers have different objects of interest. In particular, they
ocus on estimating peer effects, network externalities, or network statistics, instead of investigating the effects that
imited network data have on the preference parameters that drive the formation of a network. In fact, most of these
apers take the network of interactions to be exogenously determined. In contrast, our paper studies the effects of link
isclassification on the preference parameters characterizing a strategic network formation model.
The remainder of the paper is organized as follows. Section 2 describes the network formation model as a game of

ncomplete information. Section 3 characterizes the identified set for the structural parameters. Section 4 introduces an
nference method based on the representation of the identified set. Section 5 presents an empirical application using data
n a lending network in rural villages in southern India. Section 6 provides concluding remarks. The appendix collects
dditional results and all the proofs of the paper.

. Network formation game with misclassification

We extend the directed network formation model discussed in Leung (2015) and Ridder and Sheng (2020) to account
or potentially misclassified links. In particular, we follow Leung (2015) and use a static game of incomplete information
s a framework to model the formation of a directed network.
Consider a network determined by a set of n agents, which we denote by Nn = {1, . . . , n}. We assume that each pair

f agents (i, j) with i, j ∈ Nn is endowed with a vector of exogenous attributes Xij ∈ Rd and an idiosyncratic shock εij ∈ R.
Let X = {Xij : i, j ∈ Nn} ∈ X n be a profile of attributes that is common knowledge to all the agents in the network,
εi = {εij : j ∈ Nn} be a profile of idiosyncratic shocks that is agent i’s private information, and ε = {εi : i ∈ Nn} collects
all the profiles of idiosyncratic shocks.

The network is represented by an n× n adjacency matrix G∗
n, where the ijth element G∗

ij,n = 1 if agent i forms a direct
link to agent j and G∗

ij,n = 0 otherwise. We assume that the network is directed, i.e., G∗

ij,n and G∗

ji,n may be different. The
diagonal elements are normalized to be equal to zero, i.e., G∗

ii,n = 0. The researcher observes Gn, a proxy of the true
underlying network G∗

n with potentially misclassified links.
Given the network G∗

n and information (X, εi), agent i has utility

Ui(G∗

i,n,G
∗

−i,n, X, εi) =
1
n

n∑
j=1

G∗

ij,n

⎡⎣⎛⎝G∗

ji,n,
1
n

∑
k̸=i

G∗

kj,n,
1
n

∑
k̸=i,j

G∗

ki,nG
∗

kj,n, X
′

ij

⎞⎠β0 + εij

⎤⎦ ,
where G∗

i,n = {G∗

ij,n : j ∈ Nn}, G∗

−i,n = {G∗

j,n : j ̸= i}, and β0 is an unknown finite dimensional vector in a parameter space
B.

Agent i’s marginal utility of forming the link G∗

ij,n depends on a vector of network statistics, the profile of exogenous
attributes, and the link-specific idiosyncratic component.3 The first component in the vector of network statistics captures
the utility obtained from a reciprocated link with agent j, G∗

ji,n. The second network statistic represents the in-degree of
gent j, 1

n

∑
k̸=i G

∗

kj,n, which captures the utility obtained from connecting with agents of high centrality in the network.
he last network statistic captures the utility of being connected to the same agents, 1

n

∑
k̸=i,j G

∗

ki,nG
∗

kj,n. The profile of
exogenous attributes captures the preferences for homophily on observed characteristics. Finally, εij is an unobserved
link-specific component affecting agent i’s decision to link with agent j.

Let δi,n(X, εi) denote a generic agent i’s pure strategy, which maps the information available to agent i, (X, εi), to an
ction in Gn

= {0, 1}n. Let σi,n(g∗

i,n | X) = Pr(δi,n(X, εi) = g∗

i,n | X) be the probability that agent i chooses action g∗

i,n ∈ Gn

iven X and σn(X) = {σi,n(g∗

i,n | X) : i ∈ Nn, g∗

i,n ∈ Gn
}. We call σn(X) a belief profile. Given a belief profile σn and the

nformation (X, εi), agent i chooses g∗

i,n from Gn to maximize the expected utility Ui(g∗

i,n, δ−i,n(X, ε−i), X, εi) given (X, εi, σn).
In an n-player game, a Bayesian Nash equilibrium σn(X) is a belief profile that satisfies

σi,n(g∗

i,n | X) = Pr(δi,n(X, εi) = g∗

i,n | X, σn)

for all X ∈ X n, g∗

i,n ∈ Gn, and i ∈ Nn, where

δi,n(X, εi) = argmax
g∗
i,n∈Gn

E
[
Ui(g∗

i,n, δ−i,n(X, ε−i), X, εi) | X, εi, σn
]
.

We impose the following assumption on the observed attributes and idiosyncratic shocks, which also has been used
by Leung (2015) and Ridder and Sheng (2020).

3 In this paper, we consider three different kinds of factors in the vector of network statistics. It is straightforward to generalize our results to
the complete specification in Leung (2015). A similar specification of this utility function has been used in Mele (2017), Thirkettle (2019), and Sheng
(2020).
3
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(i) For any A1, A2 ⊂ Nn disjoint, {Xij : i, j ∈ A1} and {Xkl : k, l ∈ A2} are independent.
(ii) {εij : i, j ∈ Nn} are identically distributed with the standard normal distribution, and {εi : i ∈ Nn} are independent.

(We use Φ for the standard normal cdf and φ for the pdf.)
(iii) ε and X are independent.
(iv) Attributes {Xij : i, j ∈ Nn} are identically distributed with finite support X =

{
x1, . . . , xJ

}
, and Pr

(
xj
)
> 0 for all

xj ∈ X .

Condition (i) allows for correlation across the pairs of attributes Xij and Xkl if they have a common index (i.e., i = k).
As a consequence, the attributes across all the dyads formed by one agent may be dependent. Condition (ii) assumes that
the idiosyncratic shocks are identically distributed with known standard normal distribution. This represents a regularity
condition as the results can be adjusted to the case that εij has an absolutely continuous distribution Fε(·; θε) that is known
up to a finite-dimensional parameter θε . In Appendix C, we relax this assumption to a setting where the distribution of εij is
not parametrically restricted and characterize the identified set in a semiparametric framework. Notice that this condition
also implies that the components of εi may be arbitrarily correlated. Condition (iii) rules out the possibility of agents
learning about others’ private information from the observed profile of attributes that is common knowledge. Condition
(iv) assumes that Xij is a discrete random vector with finite support and will be used to prove uniform convergence of a
nonparametric first-stage estimator. Requiring that Xij is discretely distributed is not necessary for our inference method
and can be relaxed. See Leung (2015, Appendix B) for further details when Xij is continuously distributed.

We focus on a symmetric equilibrium for our inference method (cf. Leung, 2015). This approach is suitable when
the identities of the individuals in the network are irrelevant. An equilibrium profile σn is symmetric if σi,n(g∗

i,n | X) =

σπ (i),n(π (g∗

π (i),n) | π (X)) for any i ∈ Nn, g∗

i,n ∈ Gn, and any permutation function π ∈ Π .4 Using Assumption 1, Leung (2015,
Theorem 1) has shown the existence of a symmetric equilibrium (cf. Ridder and Sheng, 2020, Proposition 1). We take that
result as given and summarize it in the next assumption.

Assumption 2. For any n, the agents play a symmetric equilibrium σn, i.e., there exists {δi,n : i ∈ Nn} such that for any
i ∈ Nn the following holds:

(i) G∗

i,n = δi,n(X, εi).
(ii) σi,n(g∗

i,n | X) = Pr(δi,n(X, εi) = g∗

i,n | X, σn).
(iii) δi,n(X, εi) = argmaxg∗

i,n∈Gn E
[
Ui(g∗

i,n, δ−i,n(X, ε−i), X, εi) | X, εi, σn
]
.

(iv) σn is symmetric.

Under our characterization of the equilibrium, the true underlying network is rationalized by a symmetric equilibrium
in a network game with n agents. Implicitly in Assumption 2, it is required that if there are multiple equilibria consistent
with the model, the agents coordinate on a symmetric equilibrium using an equilibrium selection mechanism. Finally,
since the inference method that we introduced is based on a large-network asymptotics that is conditional on the realized
equilibrium, uniqueness of the equilibrium is unnecessary (cf. Leung, 2015, and Ridder and Sheng, 2020).

The next lemma characterizes the optimal decision rule for the formation of each link in the network.

Lemma 1 (Theorem 1, Leung, 2015). Under Assumptions 1 and 2, G∗

ij,n = 1
{
(Z∗

ij,n)
′β0 + εij ≥ 0

}
, where

γ ∗

ij,n = E

⎡⎣⎛⎝G∗

ji,n,
1
n

∑
k̸=i

G∗

kj,n,
1
n

∑
k̸=i,j

G∗

ki,nG
∗

kj,n

⎞⎠′

| X, σn

⎤⎦
and

Z∗

ij,n =

(
γ ∗

ij,n
Xij

)
.

A direct implication of Lemma 1 is that each agent makes separate linking decisions for each of his/her potential links.
iven the misclassification problem, both the optimal action G∗

ij,n and the equilibrium beliefs about the network statistics
γ ∗

ij,n in the optimal decision rule will be misclassified. In other words, the misclassification problem affects both left and
right-hand side variables in the optimal decision rule.

We assume that the conditional distribution of the observed network Gn is related to that of the true state of the
network G∗

n as follows.

Assumption 3. There are two unknown real numbers ρ0, ρ1 ∈ [0, 1) with ρ0 + ρ1 < 1 such that the following
two statements hold for every n and every i, j, k ∈ Nn. (i) Gki,n and Gkj,n are independent given (G∗

ki,n,G
∗

kj,n, X, σn). (ii)
Pr(Gij,n ̸= G∗

ij,n | G∗

ij,n, X, σn) = ρ01{G∗

ij,n = 0} + ρ11{G∗

ij,n = 1}.

4 The permutation function π ∈ Π is defined as in Leung (2015, Page 184).
4



L.E. Candelaria and T. Ura Journal of Econometrics xxx (xxxx) xxx
Assumption 3 states that given the information (X, σn), the misclassification of each link is conditionally at random
with unknown probabilities ρ0 and ρ1. In particular, Condition (i) ensures that the misclassification of links can be
treated as a conditionally independent process across dyads {ki} and {kj} for i ̸= j. This condition is used exclusively
to control for the nonlinear endogenous factor 1

n

∑
k̸=i,j G

∗

ki,nG
∗

kj,n in terms of its observed counterpart; Lemma 2 provides
the exact statement. In other words, it plays no role in controlling for the reciprocity and in-degree statistics. Moreover,
this condition becomes redundant when the unobserved links-specific components are assumed to be independently
distributed, as it has been used in Menzel (2015), Chandrasekhar and Lewis (2016), Thirkettle (2019), Ridder and Sheng
(2020) and Sheng (2020). Remark 1 shows this result.

Condition (ii) characterizes the misclassification probabilities, and it states that given the information (X, σn), the
links can be misclassified as positives with probability ρ0 and as negatives with probability ρ1. These misclassification
probabilities are unknown and the degree of noise in the data cannot exceed 1, i.e., ρ0 + ρ1 < 1. Hausman et al. (1998)
have also used Condition (ii), but in the setting of a binary choice model with misclassification of the dependent variable.
A similar assumption has been used in Molinari (2008) to bound the latent misclassification distribution. In this paper,
we implement a bounding strategy that follows a similar logic to Molinari (2008).

Assumption 3 provides a simple and intuitive characterization of the misclassification process, which is suitable to
rationalize a setting where network links can be misclassified at random as negatives or positives. The misclassification
probabilities can be asymmetrical to represent different sources of link misclassification. For instance, if the main reasons
for links to be misclassified are that individuals are getting fatigued during the interview, forgetting their connections,
or are apprehensive about listing their links, then we can expect that false negatives are more likely to be present in Gn
than false positives, so that ρ1 ≥ ρ0 = 0.

The current setup is chosen to simplify the exposition; however, it is flexible enough that it can be used to characterize
heterogeneity in the misclassification process. In Appendix B we consider a generalization of the misclassification
probabilities to be covariate-dependent. In this setting, the heterogeneity in the misclassification probabilities is due to
differences in the individual’s observed types. This represents a desirable alternatively if the researcher believes that the
links of certain profiles of individuals are more likely to be misclassified.

An important limitation of the current setting is that it is not suitable to study top-censoring as a source of measure-
ment error in the network. Top-censoring binds the number of links that each individual can report, and thus represents
a restriction on the action space and utility that each individual draws from his/her total number connections. de Paula
et al. (2018) developed a network formation model of complete information where the total number of links that each
individual can establish is bounded. Incorporating this source of measurement error into our setting is an important
extension that we leave for future research.5

The following statement is a key observation in our analysis, which relates the observed network statistics γij,n to the
payoff relevant network statistics γ ∗

ij,n.

Lemma 2. If Assumptions 1–3 hold, then γ ∗

ij,n = c(ρ0, ρ1) + C(ρ0, ρ1)γij,n for every i, j, where

γij,n = E

⎡⎣⎛⎝Gji,n,
1
n

∑
k̸=i

Gkj,n,
1
n

∑
k̸=i,j

Gki,nGkj,n,
1
n

∑
k̸=i,j

(Gki,n + Gkj,n)

⎞⎠′

| X, σn

⎤⎦ ,
and, for any r0, r1 ≥ 0 such that r0 + r1 < 1,

c(r0, r1) = −

(1 0 0 0
0 1 0 0
0 0 1 0

)⎛⎜⎝1 − r0 − r1 0 0 0
0 1 − r0 − r1 0 0
0 0 (1 − r0 − r1)2 r0(1 − r0 − r1)
0 0 0 1 − r0 − r1

⎞⎟⎠
−1⎛⎜⎝r0

r0
r20
r0

⎞⎟⎠

C(r0, r1) =

(1 0 0 0
0 1 0 0
0 0 1 0

)⎛⎜⎝1 − r0 − r1 0 0 0
0 1 − r0 − r1 0 0
0 0 (1 − r0 − r1)2 r0(1 − r0 − r1)
0 0 0 1 − r0 − r1

⎞⎟⎠
−1

.

As γ ∗

ij,n = E
[(

G∗

ji,n,
1
n

∑
k̸=i G

∗

kj,n,
1
n

∑
k̸=i,j G

∗

ki,nG
∗

kj,n

)′

| X, σn

]
, we can equivalently write the statement of Lemma 2 as

E
[
G∗

ji,n | X, σn
]

= −(1 − ρ0 − ρ1)−1ρ0 + (1 − ρ0 − ρ1)−1E
[
Gji,n | X, σn

]
,

1
n

∑
k̸=j

E
[
G∗

kj,n | X, σn
]

= −(1 − ρ0 − ρ1)−1ρ0 + (1 − ρ0 − ρ1)−1 1
n

∑
k̸=j

E
[
Gkj,n | X, σn

]
, and

5 Top-censoring does not represent a drawback of the empirical application considered in this paper, as the reporting cap for the lending behavior
was reached in less than 0.02% of the survey’s total respondents, and these observations were not included in our final data. Section 5 discusses
the construction of the lending network in detail.
5
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1
n

∑
k̸=i,j

E
[
G∗

ki,nG
∗

kj,n | X, σn
]

= ρ2
0 (1 − ρ0 − ρ1)−2

+ (1 − ρ0 − ρ1)−2 1
n

∑
k̸=i,j

E
[
Gki,nGkj,n | X, σn

]
− ρ2

0 (1 − ρ0 − ρ1)−2 1
n

∑
k̸=i,j

E
[
Gki,n + Gkj,n | X, σn

]
.

The first three components in γij,n are the observed analog to the statistics in γ ∗

ij,n since they are determined by the
observed network Gn. The last component in γij,n is the sum of the in-degrees of agents i and j, and it is the result of
controlling for the unobserved network statistics 1

n

∑
k̸=i,j G

∗

ki,nG
∗

kj,n. In other words, the last two statistics in γij,n control
for the beliefs about the unobserved network statistic 1

n

∑
k̸=i,j G

∗

ki,nG
∗

kj,n, which is the only nonlinear endogenous factor.
The intuition behind this result is similar to the one found in polynomial regression models with mismeasured continuous
covariates (Hausman et al., 1991).

Remark 1 (Independent Link-specific Shocks εij). A common assumption invoked in the literature of strategic network
formation with network externalities is for εij to be independent across all i, j (see e.g., Menzel, 2015; Chandrasekhar and
Lewis, 2016; Thirkettle, 2019; Ridder and Sheng, 2020; Sheng, 2020). If we assume εij to be independent across all i, j,
Condition (ii) in Assumption 3 is sufficient to control the nonlinear endogenous factor 1

n

∑
k̸=i,j G

∗

ki,nG
∗

kj,n in terms of its
observed counterpart. This result follows from the conditionally independent formation of links, i.e., E

[
G∗

ki,nG
∗

kj,n | X, σn
]

=

E
[
G∗

ki,n | X, σn
]
E
[
G∗

kj,n | X, σn
]
. Then, Condition (ii) in Assumption 3 can be used to express E

[
G∗

ki,n | X, σn
]

= (1 − ρ0 −

ρ1)−1
(
E
[
Gki,n | X, σn

]
− ρ0

)
and similarly for the conditional expectation of G∗

kj,n.

Assumptions 1–3 imply the following relationship between the distributions of Gij,n and G∗

ij,n, which will be used in
our identification analysis. Since we observe Gij,n in the dataset but the outcome of interest is G∗

ij,n, it is crucial to connect
these two objects.

Lemma 3. Under Assumptions 1–3, Pr(Gij,n = 1 | Xij, γij,n, γ
∗

ij,n) = ρ0Pr(G∗

ij,n = 0 | Xij, γ
∗

ij,n)+ (1−ρ1)Pr(G∗

ij,n = 1 | Xij, γ
∗

ij,n).

3. Identification analysis

We characterize the identified set based on the joint distribution P0,n of the observed variables (Gij,n, Xij, γij,n).6 In this
section, we treat γij,n as observed because it can be estimated from the data as follows. For a generic value x in the support
of Xij, we can define

p̂(x) =
1
n2

∑
i,j

1{Xij = x}

γ̂ (x) =

1
n2
∑

i,j

(
Gji,n,

1
n

∑
k Gkj,n,

1
n

∑
k Gki,nGkj,n,

1
n

∑
k(Gki,n + Gkj,n)

)′
1{Xij = x}

p̂(x)
,

here p̂(x) is an estimator for Pr(Xij = x) and γ̂ij = γ̂ (Xij) is an estimator for γij,n. Then we can estimate the distribution
f (Gij,n, Xij, γij,n) using the empirical distribution of (Gij,n, Xij, γ̂ij).
To formalize our identification analysis, we introduce the following notation. Denote by P∗ the set of joint distributions

f (Gij,n,G∗

ij,n, Xij, γij,n, γ
∗

ij,n, εij). Define the parameter space Θ = B ×R, where B is the parameter space for β0 and R is a
ubset of {(r0, r1) : r0, r1 ≥ 0, r0 + r1 < 1}. Denote by P the set of joint distributions of (Gij,n, Xij, γij,n).
Given Assumptions 1–3 and based on the results summarized in Lemmas 1–3, we impose the following three conditions

n the true joint distribution P∗

0,n of the variables (Gij,n,G∗

ij,n, Xij, γij,n, γ
∗

ij,n, εij) and the true parameter value θ0 = (β, ρ0, ρ1).

Condition 1. Under P∗, the following holds: (i) εij is normally distributed with mean zero and variance one. (ii) εij and
(Xij, γ

∗

ij,n) are independent.

Condition 2. G∗

ij,n = 1
{
(Z∗

ij,n)
′b + εij ≥ 0

}
a.s. P∗, where Z∗

ij,n =
(
(γ ∗

ij,n)
′, (Xij)′

)′.
Condition 3. (i) P∗(Gij,n = 1 | Xij, γij,n, γ

∗

ij,n) = r0P∗(G∗

ij,n = 0 | Xij, γ
∗

ij,n) + (1 − r1)P∗(G∗

ij,n = 1 | Xij, γ
∗

ij,n). (ii)
γ ∗

ij,n = c(r0, r1) + C(r0, r1)γij,n a.s. P∗.

For each element P of P , we are going to define the identified set based on the three conditions above.

6 The identified set can be characterized based on the joint distribution of {(Gij,n, Xij, γij,n) : i, j ∈ Nn}. However, it is infeasible to estimate the
oint distribution of all the dyads in the network from a sample of n agents. Hence, the identified set based on {(Gij,n, Xij, γij,n) : i, j ∈ Nn} is not
mmediately useful for inference. In contrast, P can be estimated from our current sample.
0,n
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efinition 1. For each distribution P ∈ P , the identified set ΘI (P) is defined as the set of all θ = (b, r0, r1) in Θ for
hich there is some joint distribution P∗

∈ P∗ such that Conditions 1, 2, and 3 hold and the distribution of (Gij,n, Xij, γij,n)
nduced from P∗ is equal to P .

The definition of ΘI (P) does not depend on n, but the identified set ΘI (P0,n) under the data generating process P0,n can
epend on the sample size when the data distribution P0,n depends on n.
Using Definition 1, we characterize the identified set in Theorem 1. In the next theorem, we use the notation

= (b′

1, b
′

2)
′ for any generic b ∈ B, where b1 represents the first three components of b associated with the network

xternalities and b2 represents the remaining components in b associated with the homophily covariates Xij.

Theorem 1. Given a joint distribution P ∈ P , ΘI (P) is equal to the set of θ ∈ Θ satisfying

EP [Gij,n | Xij, γij,n] = Ψ (θ, Xij, γij,n), (1)

where, for a generic value (x, γ̌ij) of (Xij, γij,n), we define

Ψ (θ, x, γ̌ij) = r0 + (1 − r0 − r1)Φ((c(r0, r1) + C(r0, r1)γ̌ij)′b1 + x′b2).

Theorem 1 states that given a distribution P of (Gij,n, Xij, γij,n), the identified set is characterized as the set of parameter
values that satisfy the moment conditions in Eq. (1). Notice that under Assumptions 1–3, Conditions 1–3 hold for the true
joint distribution P∗

0,n and the true parameter value θ0. Therefore, we have the following result from Theorem 1.

Corollary 1. Under Assumptions 1–3, the true parameter value θ0 belongs to the set θ ∈ Θ satisfying Eq. (1). In other words,
he set θ ∈ Θ satisfying Eq. (1) is an outer identified set (i.e., a superset of the sharp identified set) for θ0 under Assumptions 1–3.

If the links were measured without error, the moment equation in Eq. (1) would degenerate into the model in Leung
2015): EP [Gij,n −Φ([γij,n]′123b1 + X ′

ijb2) | Xij, γij,n] = 0, where [γij,n]123 is a vector composed by the first three components
of γij,n.

Our characterization of the identified set in Theorem 1 uses the assumption that εij is normally distributed. However,
his condition is invoked for simplicity and is not essential for our analysis. In fact, the results can be extended to the case
hat εij has an absolutely continuous distribution Fε(·; θε) that is known up to a finite-dimensional parameter θε ∈ Θε .
oreover, in Appendix C, we characterize the identified set as a collection of moment inequalities in a semiparametric

ramework when the distribution of εij is unknown.

. Inference

In this section, we construct confidence intervals for θ based on the identification analysis in Theorem 1 and derive its
symptotic coverage when we observe one single network with many agents. As in Leung (2015) and Ridder and Sheng
2020), we use asymptotic arguments based on a symmetric equilibrium.

We derive two confidence intervals for a pre-specified significance level α ∈ (0, 1), and we suggest using Ĉn(α)
ntroduced in Section 4.2 rather than CIn(α) introduced in Section 4.1, because the computation of Ĉn(α) is much less
emanding. In particular, the computation of Ĉn(α) only requires us to calculate a quasi-maximum likelihood estimator
nd its confidence interval for pre-specified grid values of (r0, r1). On the other hand, the computation of CIn(α) requires
s to evaluate the test statistic that characterizes the confidence interval at every value of θ = (b, r0, r1), and therefore the
omputational cost of CIn(α) can be exponential in the number of the (exogenous and endogenous) regressors, determined
y the dimension of β .

.1. Confidence interval through test inversion

Consider the unconditional sample analog of the moment condition in Eq. (1):

m̂n(θ ) =
1
n2

∑
i,j

(
Gij,n − Ψ (θ, Xij, γ̂ij)

)
ζij,

where x1, . . . , xJ are all the support points for Xij and ζij = (1{Xij = x1}, . . . , 1{Xij = xJ})′. Note that m̂n is different from
the infeasible sample moment

mn(θ ) =
1
n2

∑
i,j

(
Gij,n − Ψ (θ, Xij, γij,n)

)
ζij,

ecause it replaces γij,n with the first-stage estimator γ̂ij.
As we show in the Appendix, the influence function for m̂n(θ0) is

ψk(θ0) =
1
n

∑
j̸=k

(
Gkj,n − ρ0 − (1 − ρ0 − ρ1)Φ(ukj(θ0))

)
ζkj

− (1 − ρ0 − ρ1)
1
n2

∑(
φ(ukj(θ0))β ′

1C(ρ0, ρ1)ψγ ,k,n(Xij)
)
ζij,
i,j

7
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w
here ukj(θ0) = (c(r0, r1)+C(r0, r1)γkj,n)′b1+X ′

kjb2, and the component ψγ ,k,n(x) is the influence function for the first-stage
estimator γ̂kj, defined by

ψγ ,k,n(x) =
1
n2

∑
i,j

(
1{Xi,j = x}

p̂(x)

)⎛⎜⎜⎜⎝
0

Gkj,n − E
[
Gkj,n | X, σn

]
Gki,nGkj,n − E

[
Gki,nGkj,n | X, σn

]
Gki,n + Gkj,n − E

[
Gki,n + Gkj,n | X, σn

]
⎞⎟⎟⎟⎠

+
1
n

∑
i

(
1{Xi,k = x}

p̂(x)

)⎛⎜⎜⎜⎝
Gki,n − E

[
Gki,n | X, σn

]
0
0
0

⎞⎟⎟⎟⎠ .
We estimate the variance of m̂n(θ ) by

Ŝ(θ ) =
1
n

n∑
k=1

ψ̂k(θ )ψ̂k(θ )′ −

(
1
n

n∑
k=1

ψ̂k(θ )

)(
1
n

n∑
k=1

ψ̂k(θ )

)′

,

where ψ̂k(θ ) denotes the (uncentered) estimated influence function for m̂n(θ ), given by

ψ̂k(θ ) =
1
n

∑
j̸=k

Gkj,nζkj −
1
n2

∑
l,j

⎛⎝ ∂

∂γ̌ ′

lj
Ψ (θ, Xlj, γ̌lj)

⏐⏐⏐⏐⏐
γ̌lj=γ̂lj,n

⎞⎠ ψ̂γ ,k,n(Xlj)ζlj,

and ψ̂γ ,k,n(x) denotes the (uncentered) estimated influence function for γ̂kj, given by

ψ̂γ ,k,n(x) =
1
n2

∑
i1,j1

1{Xi1,j1 = x}
p̂(x)

⎛⎜⎝ 0
Gkj1

Gki1Gkj1
Gki1 + Gkj1

⎞⎟⎠+
1
n

∑
i1

1{Xi1,k = x}
p̂(x)

⎛⎜⎝Gki1
0
0
0

⎞⎟⎠ .
We construct a confidence interval for θ as

CIn(α) = {θ ∈ Θ : nm̂n(θ )′Ŝ(θ )−1m̂n(θ ) ≤ q(χ2
J , 1 − α)},

where q(χ2
J , 1 − α) is the (1 − α) quantile of a χ2 distribution with J degrees of freedom. The degrees of freedom are

determined by the number of points in the support of Xij.
The following theorem demonstrates the asymptotic coverage for the confidence interval CIn(α).

Theorem 2. Suppose that (i) the minimum eigenvalue of Var(ψk(θ0) | X, σn) is bounded away from zero, and (ii)
lim infminx p̂(x) > 0. Under Assumptions 1–3,

lim inf
n→∞

Pr(θ0 ∈ CIn(α) | X, σn) ≥ 1 − α.

Condition (i) ensures that Ŝ(θ ) is non-singular. A similar condition is used in Leung (2015, Theorem 3). Condition (ii)
is imposed to guarantee that γ̂ij is a uniformly consistent estimator of γij,n.

The construction of CIn(α) requires us to evaluate the test statistics at every value of θ = (b, r0, r1), which can be
computationally intractable. An alternative approach could focus on computing valid confidence intervals for each com-
ponent of θ as min /maxθ∈CIn(α) θj for j = 1, . . . , d+3. However, this method requires the solution of 2(d+3) optimization
problems given a nonlinear constraint. Instead, in Section 4.2, we conduct valid inference in a computationally feasible
manner.

4.2. Confidence interval based on quasi-maximum likelihood estimator

In this section, we construct a more computationally feasible (but potentially larger) confidence interval for β , which
relies on the construction of a quasi-maximum likelihood estimator.

The intuition for this method is the following. Suppose that we knew that (ρ0, ρ1) = (r0, r1) for a given value
(r0, r1) ∈ R, then we could construct a confidence interval Cn(α; r0, r1) for β by computing the quasi-maximum likelihood
estimator β̂(r0, r1) and its estimated asymptotic variance ÂV (r0, r1) in the following way. We consider the quasi-maximum
likelihood estimator

β̂(r0, r1) = argmax Q̂ n(b, r0, r1)

b∈B

8
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here the feasible objective function is

Q̂ n(b, r0, r1) =
1
n2

∑
i,j

log
(
Ψ (b, r0, r1, Xij, γ̂ (Xij))Gij,n (1 − Ψ (b, r0, r1, Xij, γ̂ (Xij)))1−Gij,n

)
. (2)

Define the (uncentered) estimated influence function for the score function by

ψ̂Q ,k,n(θ ) =
1
n

∑
j

(Gkj,n − Ψ (θ, Xkj, γ̂ (Xkj)))v1(θ, Xij, γ̂ (Xkj))

+
1
n2

∑
i,j

{
Ψ (θ, Xij, γ̂ (Xij))V 1(θ, Xij, γ̂ (Xij)) − V 2(θ, Xij, γ̂ (Xij))

}
ψ̂γ ,k,n(Xij),

where

v1(θ, Xij, γ̌ij) =

∂
∂bΨ (θ, Xij, γ̌ij)

Ψ (θ, Xij, γ̌ij)(1 − Ψ (θ, Xij, γ̌ij))
,

v2(θ, Xij, γ̌ij) =

∂
∂bΨ (θ, Xij, γ̌ij)

1 − Ψ (θ, Xij, γ̌ij)
,

V 1(θ, Xij, γ̌ij) =
∂

∂γ̌ ′

ij
v1(θ, Xij, γ̌ij), and

V 2(θ, Xij, γ̌ij) =
∂

∂γ̌ ′

ij
v2(θ, Xij, γ̌ij).

The asymptotic variance for β̂(r0, r1) is estimated by

ÂV (r0, r1) =

(
∂2

∂b∂b′
Q̂ n(b, r0, r1)

⏐⏐⏐⏐
b=β̂(r0,r1)

)−1

Ŝ(r0, r1)

(
∂2

∂b∂b′
Q̂ n(b, r0, r1)

⏐⏐⏐⏐
b=β̂(r0,r1)

)−1

,

where

Ŝ(r0, r1) =
1
n

n∑
k=1

ψ̂Q ,k,n(β̂(r0, r1), r0, r1)ψ̂Q ,k,n(β̂(r0, r1), r0, r1)′

−

(
1
n

n∑
k=1

ψ̂Q ,k,n(β̂(r0, r1), r0, r1)

)(
1
n

n∑
k=1

ψ̂Q ,k,n(β̂(r0, r1), r0, r1)

)′

.

We can construct a (1 − α) confidence interval for β:

Cn(α; r0, r1) =

{
b ∈ B : n(β̂(r0, r1) − b)′ÂV (r0, r1)−1(β̂(r0, r1) − b) ≤ q(χ2

d+3, 1 − α)
}
,

where q(χ2
d+3, 1 − α) is the (1 − α) quantile of a χ2 distribution with d + 3 degrees of freedom.7

Since the true value of (ρ0, ρ1) is unknown, we construct a confidence interval for β by taking the union of Cn(α; r0, r1)
ver (r0, r1) ∈ R:

Ĉn(α) =

⋃
(r0,r1)∈R

Cn(α; r0, r1),

here R ⊆ {(r0, r1) : r0, r1 ≥ 0, r0 + r1 < 1}. The next theorem shows that Ĉn(α) contains the true parameter value with
orrect asymptotic size.
Notice that the construction of Ĉn(α) does not require the value of (ρ0, ρ1) to be known, but only to be covered by

. This is a mild condition if we set R = {(r0, r1) : r0, r1 ≥ 0, r0 + r1 < 1}. Evidently, the larger the set R is, the less
nformative the confidence interval Ĉn(α) will be. A similar remark has been discussed by Molinari (2008, Section 3).8

7 We can construct a confidence interval for a subvector η′β of a given vector η:

η′β̂(r0, r1) ± q(N(0, 1), 1 − α/2)

√
η′ÂV (r0, r1)η

n

where q(N(0, 1), 1 − α/2) is the (1 − α/2) quantile of the standard normal distribution. In the same way as β , we can also take the union over
(r0, r1) ∈ R and construct a feasible confidence interval for η′β .
8 Notice that it is possible to use the infeasible confidence interval Cn(α; r0, r1) to construct a sensitivity analysis in the spirit of the breakdown

frontier, as in Masten and Poirier (2020). In particular, the criterion in Cn(α; r0, r1) could be used to partition the space R into the set of values of
r0, r1) for which β0 is statistically significant and those for which the evidence is inconclusive. We thank an anonymous referee for pointing out
his connection.
9
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ltimately, the selection of R should be application-specific as the researcher might have a prior on the upper bounds of
ρ0, ρ1). For instance, the researcher might have reasons to believe that in the application at hand, false negatives are more
ike than false positives, r1 > r0, or the sum of the misclassification probabilities cannot exceed 30%, i.e., r0 + r1 ≤ 0.3. In
ection 5, we assess the informativeness of Ĉn(α) for different values of the misclassification probabilities.

heorem 3. Suppose that (i) lim infminx p̂(x) > 0, (ii) β0 is in the interior of a compact subset B of the Euclidean
pace, (iii) {((γ ∗

ij,n)
′, X ′

ij)
′

: i, j} is not contained in any proper linear subspace of Rd+3, and (iv) the minimum eigenvalue of[
1
n

∑n
k=1 ψQ ,k,nψ

′

Q ,k,n | X, σn
]
is bounded away from zero, where

ψQ ,k,n =
1
n

∑
j

(Gkj,n − Ψ (θ0, Xkj, γkj,n))v1(θ0, Xij, γij,n)

+
1
n2

∑
i,j

(
E
[
Gij,n | X, σn

]
V 1(θ0, Xij, γij,n) − V 2(θ0, Xij, γij,n)

)
ψγ ,k,n(Xij).

Under Assumptions 1–3,

lim inf
n→∞

Pr(β0 ∈ Ĉn(α) | X, σn) ≥ 1 − α.

Condition (i) is imposed to guarantee that γ̂ij is a uniformly consistent estimator of γij,n. Condition (ii) is a regularity
condition and is used to derive the asymptotic distribution of β̂(ρ0, ρ1). Condition (iii) is a rank condition and guarantees
that β0 is the unique maximizer of the limiting objective function when (r0, r1) = (ρ0, ρ1). This assumption guarantees
that the equilibrium beliefs about the network statistics γ ∗

ij,n have sufficient exogenous variations for any finite n. This
condition is analogous to the standard rank condition for the identification of discrete choice models (e.g., Aradillas-Lopez,
2010; Leung, 2015). As in Leung (2015, p.187), it restricts the equilibrium selection to choose an equilibrium network with
non-degenerate γ ∗

ij,n. Condition (iv) ensures that ÂV (ρ0, ρ1) is asymptotically invertible.
The size property of Ĉn(α) in Theorem 3 follows from

√
n(ÂV (ρ0, ρ1))−1/2(β̂(ρ0, ρ1) − β0) →d N(0, I), (3)

because Pr(β0 ∈ Ĉn(α) | X, σn) ≥ Pr(β0 ∈ Cn(α; ρ0, ρ1) | X, σn). Although Eq. (3) is proved in a similar manner to Leung
(2015, Theorem 3), it is not a direct implication of Leung (2015, Theorem 3) since we do not directly observe the true
underlying network G∗

n.

5. Empirical illustration

In this section, we implement the confidence interval introduced in Section 4.2 using a social network dataset from
rural villages in southern India. In particular, we investigate the robustness of the empirical results in Leung (2015) to
the presence of misclassified links. This dataset was assembled to study the introduction of a micro-finance program
(cf. Banerjee et al., 2013 and Jackson et al., 2012) and contains information on household and individual characteristics,
as well as data on social networks.

Among the different dimensions of social relationships contained in the dataset, we follow Leung (2015) and focus on
a lending network. This network measures individuals’ willingness to lend money. We construct the directed links in our
analysis using the raw answers to the following survey question: ‘‘Who do you trust enough that if he/she needed to borrow
Rs. 50 for a day you would lend it to him/her?’’9

Jackson et al. (2012) discuss potential measurement error issues that might be present in this dataset. In particular,
they argue that the most likely type of measurement error to appear in this dataset is the misclassification of true links
as non-existent, i.e., false negatives. This is because under the structure of the survey questions, which ask individuals
about actual actions (such as lending or borrowing money) rather than perceived relationships, individuals are more
likely to forget existing interactions than to imagine non-existent ones. Among the potential sources discussed by Jackson
et al. (2012) are (i) individuals not remembering their connections, (ii) people getting wearied during interviews, and (iii)
top-censoring of the number of social connections that individuals could report.10 In terms of the lending network, top-
censoring does not represent a concern as the reporting cap was not reached by any of the individuals included in this
sample. We explain this in detail below.

9 Our analysis does not use the adjacency matrices constructed by Banerjee et al. (2013), which are readily available with the original dataset
since they are undirected. Instead, we use the social connections reported by the individuals to construct directed adjacency matrices. Jackson et al.
2012) discuss this point in detail.
10 We assume that the set of individuals observed in our empirical application represents the complete list of nodes in the network. Network
ubsampling is an interesting and challenging setting that is beyond the scope of this paper. Liu (2013), Chandrasekhar and Lewis (2016), Ata
t al. (2018), and Thirkettle (2019) have analyzed the effects of using sampled network data when estimating social interaction models or network
xternalities.
10
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First, in this empirical illustration, we focus on the false-negative-only case (i.e., r0 = 0). Then we also consider the
alse-positive-only case (i.e., r1 = 0) and a fully flexible specification that includes both false positives and negatives.

We examine the relative importance that homophily on observed attributes and endogenous beliefs about trustworthi-
ess have in the formation of links in a lending network. Regarding the preferences for homophily, we study homophily
elations on gender, caste, language, religion, and family relationships. In terms of religion, Hinduism represents the large
ajority. Following Leung (2015), we avoid multicollinearity by using only the villages where the non-Hindu minorities
ave at least a 10% representation; there are nine of these villages in total.
We aggregate the information across these nine villages to implement the quasi-maximum likelihood estimator

escribed in Section 4.2.11 The total number of individuals in our sample is 2031. Our asymptotic framework is based on
he number of agents growing large and not the number of villages. Notice that an asymptotic analyses with many small
etworks may not be suitable for this empirical example, as the number of villages is much smaller than the number of
ndividuals.

The average in-degree and out-degree across the individuals is equal to 0.951. The largest in-degree value observed
or an individual is 10, which means that one individual in the sample was listed 10 times as someone to whom other
ndividuals would be willing to lend money. Meanwhile, the maximum out-degree observed across the individuals is
qual to 4. In other words, the maximum number of people to whom a single individual within our sample was willing
o lend money is equal to 4. This value suggests that the recording cap for the lending network, given by 5, was not
ttained in this sample. Thus, top-censoring does not represent a source of concern for the misclassification of links in
his application.

The direct link Gij,n, for any distinct individuals i and j, is recorded to be equal to 1 if individual i lists j as someone to
hom he or she is willing to lend Rs. 50, and 0 otherwise. We allow for Gij,n to be potentially misclassified. In the vector
f observed attributes Xij, we include individual i- and individual j-specific regressors, such as age, caste, gender, religion,
nd an indicator for whether or not i and j are heads of their household, as well as the controls for homophily described
bove.
In the vector of endogenous network statistics γ ∗

ij,n, we consider the conditional expectation of the following factors:
i) G∗

ji,n, which accounts for the value of reciprocation; (ii) n−1∑
k̸=i G

∗

kj,n, which measures the share of people willing to
lend money to j; and (iii) n−1∑

k̸=i,j G
∗

ki,nG
∗

kj,n, which is the supported trust or share of individuals that are willing to lend
to both i and j. We account for the misclassification on the endogenous network statistics via Lemma 2. As a first stage
estimator, we use the frequency estimator described in Section 3.

In order to examine the effects of potentially misclassified links on the estimation of the structural parameters of
a network formation model, we allow for the possibility that true underlying links in G∗

n are misclassified as missing
in Gn. In particular, we consider the following scenarios for the misclassification probabilities: we set the space R ={
(r0, r1) : r0 = 0, 0 ≤ r1 ≤ R̄1

}
with R̄1 ∈ {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.12 Notice that the set R does not restrict

the true misclassification probabilities (ρ0, ρ1) to be known. Instead, it represents an upper bound on the amount of
misclassification that might affect the network links, i.e., the probability of a false negative link is up to R̄1. This prior
allows us to construct confidence intervals Ĉn(α) that are robust up to an R̄1 probability of misclassifying links as negative.

Table 1 presents 95% confidence intervals using the quasi-maximum likelihood estimator of the network statis-
tics, the homophily parameters, and the constant term. In other words, we report the confidence intervals Ĉn(α) =⋃

0≤r1≤R̄1
Cn(α; 0, r1) for each of the parameters of interest. Column (1) of Table 1 presents the confidence intervals for

the no-misclassification case, i.e., r0 = r1 = 0. This scenario corresponds to the empirical analysis in Leung (2015), and
we use it as our baseline case.13 These results indicate that the network externalities given by reciprocation, in-degree,
and supported trust are important factors that determine the willingness of an individual to lend money. In other words,
an individual within the network is more willing to lend money to someone else if that trust is reciprocated, if a large
fraction of individuals in the network trust that individual, and if they have common connections that are willing to lend
money to both individuals. There is also evidence that individuals present preferences for homophily on gender, religion,
caste, and for being relatives when making money lending decisions. The intercept term takes a large negative value to
rationalize the fact that the observed network is sparse, and hence, many of the connections are not established.

Columns (2)–(7) of Table 1 present 95% confidence intervals for the parameter estimates that account for up to
r1 ≤ R̄1 misclassification probabilities with R̄1 ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Although both the network externalities
and homophily factors remain significant components driving the formation of a link on trust networks, the confidence
intervals become wider as the misclassification of links becomes more likely in the data. Nonetheless, this increase in the
width of the confidence intervals remains relatively small. Table 2 provides further evidence about this insight.

In Table 2, we compare the length of 95% confidence intervals that take misclassification into account, with the
length of the confidence intervals computed under the assumption of no misclassification, i.e., |Ĉn(α)|/|Cn(α, 0, 0)| when

11 In this empirical application, the quasi-maximum likelihood estimator is defined as β̂(r0, r1) = argmaxb∈B
∑M

m=1 Q̂m(b, r0, r1) where m denotes
he mth village and Q̂m(b, r0, r1) denotes the objective function for mth village as defined in Eq. (2).
12 Additional results with misclassification probabilities r1 of up to 90% are reported in Appendix D.
13 Unlike the empirical specification in Leung (2015), we do not include in-degree or out-degree statistics weighted by caste or religion as part

f the factors that capture network externalities. The results can be generalized to Leung (2015) complete specification.
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Table 1
95% confidence intervals Ĉn(α) with r0 = 0.

r1 = 0 r1 ≤ 0.05 r1 ≤ 0.1 r1 ≤ 0.2
(1) (2) (3) (4)

Reciprocation [ 1.342, 1.676] [ 1.314, 1.676] [ 1.283, 1.676] [ 1.213, 1.676 ]
In degree [ 26.361, 33.099] [ 25.226, 33.099] [ 24.104, 33.099] [ 21.852, 33.099 ]
Supported trust [ 59.482, 110.258] [ 56.958, 110.258] [ 53.072, 110.258] [ 44.181, 110.258 ]
Constant [ −3.896, −3.536] [ −3.896, −3.520] [ −3.896, −3.506] [ −3.896, −3.474 ]
Same religion [ 0.348, 0.492] [ 0.348, 0.495] [ 0.348, 0.497] [ 0.348, 0.504 ]
Same sex [ 0.565, 0.705] [ 0.565, 0.711] [ 0.565, 0.717] [ 0.565, 0.730 ]
Same caste [ 0.195, 0.309] [ 0.195, 0.312] [ 0.195, 0.314] [ 0.195, 0.319 ]
Same language [ −0.008, 0.077] [ −0.009, 0.077] [ −0.010, 0.077] [ −0.011, 0.078 ]
Same family [ 1.308, 1.537] [ 1.308, 1.572] [ 1.308, 1.608] [ 1.308, 1.685 ]

r1 ≤ 0.3 r1 ≤ 0.4 r1 ≤ 0.5
(5) (6) (7)

Reciprocation [ 1.134, 1.676] [ 1.042, 1.676] [ 0.938, 1.676 ]
In degree [ 19.584, 33.099] [ 17.270, 33.099] [ 14.907, 33.099 ]
Supported trust [ 35.230, 110.258] [ 26.994, 110.258] [ 19.644, 110.258 ]
Constant [ −3.896, −3.439] [ −3.896, −3.399] [ −3.896, −3.351 ]
Same religion [ 0.348, 0.513] [ 0.348, 0.525] [ 0.348, 0.540 ]
Same sex [ 0.565, 0.744] [ 0.565, 0.761] [ 0.565, 0.781 ]
Same caste [ 0.195, 0.326] [ 0.195, 0.333] [ 0.195, 0.343 ]
Same language [ −0.013, 0.078] [ −0.015, 0.079] [ −0.018, 0.079 ]
Same family [ 1.308, 1.771] [ 1.308, 1.867] [ 1.308, 1.983 ]

Note: Ĉn(α) is computed in Columns (2)–(7) as ∪r1≤R̄1
Cn(α; 0, r1), with R̄1 ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

Table 2
Ratio of lengths of 95% confidence intervals, |Ĉn(α)|/|Cn(α, 0, 0)|.

r1 ≤ 0.05 r1 ≤ 0.1 r1 ≤ 0.2 r1 ≤ 0.3 r1 ≤ 0.4 r1 ≤ 0.5
(1) (2) (3) (4) (5) (6)

Reciprocation 1.085 1.178 1.385 1.624 1.899 2.210
In degree 1.169 1.335 1.669 2.006 2.349 2.700
Supported trust 1.050 1.126 1.301 1.478 1.640 1.785
Constant 1.043 1.084 1.170 1.267 1.380 1.513
Same religion 1.017 1.037 1.085 1.146 1.225 1.331
Same sex 1.040 1.083 1.175 1.280 1.398 1.538
Same caste 1.021 1.042 1.088 1.143 1.210 1.295
Same language 1.008 1.017 1.038 1.063 1.095 1.135
Same family 1.153 1.311 1.648 2.020 2.439 2.946

R̄1 ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Given a misclassification probability of up to 5%, the coefficient for in-degree presents
he largest increase in interval length, which is 1.17 times (or equivalently 17%) larger than the baseline confidence
nterval. With a misclassification probability of up to 20%, the largest increase in the length of the confidence intervals is
.67 times (or equivalently 67%) larger than the confidence intervals that do not take measurement error into account.
inally, in the case that the misclassification probability is at most 50%, the largest increase in the length of confidence
ntervals is 2.95 times larger than the benchmark confidence intervals, and the second-largest increase is 2.70 times larger.

As in Leung (2015), this empirical illustration suggests that the network externalities and homophily factors affect
he lending decisions of the individuals in the network. These results are robust to the misclassification of existent
inks in G∗

n as negatives. Furthermore, we use different scenarios for the misclassification probabilities to compare the
ength of 95% confidence intervals computed under our method to the length of confidence intervals that assume no link
isclassification. The analysis suggests that with a misclassification probability of up to 50%, the 95% confidence intervals
re at most 2.95 times larger than the length of the baseline confidence intervals.

.1. Alternative designs: False positives and fully flexible

In this subsection, we consider two alternative designs. In the first design, we consider the case in which only non-
xisting links in G∗

n can be misclassified as existing in Gn, i.e., false positives. In the second design, we consider a fully
lexible specification in which both false positives and negatives can be present.

To analyze the false-positive-only case, we set the space R =
{
(r0, r1) : 0 ≤ r0 ≤ R̄0, r1 = 0

}
with the upper bound

iven by R̄0 ∈ {0, 0.01, 0.02, 0.03}. The probability of 3% represents a conservative upper bound on ρ0. In other words, for
his empirical application, the model rules out that the probability of false positives can be larger than 3%.14 Parallel to the

14 In particular, the semiparametric analysis in Appendix C yields moment inequalities that bound the misclassification probabilities (ρ0, ρ1). We
use an upper bound max 1 ∑n G ≈ 0.03 for ρ and max 1 ∑n 1 − G ≈ 1 for ρ .
k∈Nn n i=1 ik 0 k∈Nn n i=1 ( ik) 1

12
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Table 3
95% confidence intervals Ĉn(α) with r1 = 0.

r0 = 0 r0 ≤ 0.01 r0 ≤ 0.02 r0 ≤ 0.03
(1) (2) (3) (4)

Reciprocation [ 1.342, 1.676] [ 1.342, 2.033] [ 1.342, 2.303] [ 1.280, 2.503 ]
In degree [ 26.361, 33.099] [ −4.617, 36.248] [−11.529, 37.635] [ −27.082, 50.532 ]
Supported trust [ 59.482, 110.258] [ 35.522, 153.452] [−77.588, 233.503] [−302.054, 421.456 ]
Constant [ −3.896, −3.536] [ −3.896, −2.713] [ −4.849, −2.713] [ −5.526, −2.713 ]
Same religion [ 0.348, 0.492] [ 0.145, 0.492] [ −0.040, 0.492] [ −0.156, 0.492 ]
Same sex [ 0.565, 0.705] [ 0.323, 0.705] [ 0.323, 0.787] [ 0.321, 0.895 ]
Same caste [ 0.195, 0.309] [ 0.061, 0.438] [ −0.194, 0.438] [ −0.349, 0.438 ]
Same language [ −0.008, 0.077] [ −0.115, 0.077] [ −0.115, 0.232] [ −0.115, 0.304 ]
Same family [ 1.308, 1.537] [ 1.308, 2.047] [ 1.308, 2.631] [ 1.308, 2.954 ]

Note: Ĉn(α) is computed in Columns (2)–(4) as ∪r0≤R̄0
Cn(α; r0, 0), with R̄0 ∈ {0.01, 0.02, 0.03}.

Table 4
Ratio of lengths of 95% confidence intervals, |Ĉn(α)|/|Cn(α, 0, 0)|.

r0 ≤ 0.01 r0 ≤ 0.02 r0 ≤ 0.03
(1) (2) (3)

Reciprocation 2.071 2.881 3.664
In degree 6.065 7.297 11.519
Supported trust 2.323 6.127 14.249
Constant 3.281 5.922 7.801
Same religion 2.407 3.693 4.493
Same sex 2.732 3.317 4.102
Same caste 3.306 5.544 6.904
Same language 2.244 4.062 4.900
Same family 3.225 5.772 7.185

false-negative-only case, the set R does not restrict the true misclassification probabilities (ρ0, ρ1) to be known. Instead,
R̄0 represents an upper bound on the false positive rate. Table 3 presents 95% confidence intervals for the estimates of
the parameters of interest, which are computed as Ĉn(α) =

⋃
0≤r0≤R̄0

Cn(α; r0, 0). In Column (1) of Table 3, we report the
onfidence intervals for the no-misclassification case. Columns (2)–(6) of Table 3 present 95% confidence intervals for the
arameter estimates that account for up to r0 ≤ R̄0 misclassification probabilities. Given a misclassification probability
f up to 1%, the confidence intervals become wider, and the in-degree statistic is no longer statistically significant to
xplain the formation of the network links. If the probability of misclassifying links as positive is up to 2%, only the
actors accounting for reciprocation, same sex, and same family remain statistically significant at a 95% significance level.
he same conclusion is drawn when the misclassification probability takes the value of 3%.
Table 4 compares the length of 95% confidence intervals that take misclassification of non-existent links into account

ith the length of the confidence intervals computed under the assumption of no link misclassification. In particular,
e compute |Ĉn(α)|/|Cn(α, 0, 0)| when R̄0 ∈ {0.01, 0.02, 0.03}. The evidence suggests that, with an upper bound of 1%
robability, the confidence intervals can be 6.06 times wider in length than the baseline confidence intervals. With a
isclassification probability of up to 2%, the largest increase in the length of the confidence intervals is 7.30 times larger

han the confidence intervals that do not take measurement error into account. Finally, in the extreme case that the
isclassification probability is up to 3%, the 95% confidence intervals are at most 14.25 times larger than the length of

he baseline confidence intervals.
In the final design, we consider a setting that accounts for both false positives and negatives. Tables 5 and 7 present

he confidence intervals for the cases in which the false positive rate r0 is bounded up to 1% and 2%, respectively, and
1 ≤ 40%. The results indicate that when the misclassifications probabilities are r0 ≤ 1% and r1 ≤ 5%, all the factors other
han reciprocity and same language are statistically significant factors at a 95% significance level. This conclusion does
ot change as the upper bound for the probability of misclassifying links as negatives increases up to 40%; however, most
f the confidence intervals become wider to account for the higher uncertainty. In contrast, when the upper bound of
he probability of misclassifying links as positives increases to 2%, only the factors associated with reciprocity, same sex,
ame family, and the constant term remain statistically significant at a 95% for any r1 ≤ 4%.
Tables 6 and 8 compare the length of 95% confidence intervals that take both types of misclassification into account

ith the length of the confidence intervals computed under the assumption of no link misclassification. The results show
hat when r0 ≤ 1% and r1 ≤ 4% the confidence intervals can be even 8.21 times wider in length than the baseline
onfidence intervals. In contrast when r0 ≤ 2% and r1 ≤ 4%, the confidence intervals can be even 12.57 times wider in
ength than the baseline confidence intervals. Relative to both the false-negative-only and false-positive-only cases, the
idth of the confidence intervals is wider as it accounts for the two-sided link misclassification.
These results suggest that the estimates of the parameters in the network formation model might be sensitive to
isclassifying non-existent links as real links, even at small probabilities. One explanation behind these outcomes could
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Table 5
95% confidence intervals Ĉn(α).

r0 ≤ 0.01
r1 ≤ 0.05

r0 ≤ 0.01
r1 ≤ 0.1

r0 ≤ 0.01
r1 ≤ 0.2

r0 ≤ 0.01
r1 ≤ 0.3

r0 ≤ 0.01
r1 ≤ 0.4

(1) (2) (3) (4) (5)

Reciprocation [ 1.342, 2.033] [ 1.342, 2.109] [ 1.342, 2.109] [ 1.342, 2.109] [ 1.342, 2.109 ]
In degree [ −7.011, 37.492] [−11.421, 40.397] [−11.421, 40.397] [−11.421, 40.397] [−11.421, 40.397 ]
Supported trust [ 47.250, 145.528] [ 46.701, 145.528] [ 46.701, 145.528] [ 45.733, 145.528] [ 35.044, 145.528 ]
Constant [ −3.896, −2.594] [ −3.896, −2.426] [ −5.220, −2.426] [ −5.274, −2.426] [ −5.387, −2.426 ]
Same religion [ 0.116, 0.492] [ 0.103, 0.574] [ 0.103, 0.848] [ 0.103, 0.855] [ 0.103, 0.889 ]
Same sex [ 0.326, 0.708] [ 0.326, 0.829] [ 0.326, 1.281] [ 0.326, 1.360] [ 0.326, 1.455 ]
Same caste [ 0.047, 0.474] [ 0.047, 0.556] [ 0.047, 0.640] [ 0.047, 0.667] [ 0.047, 0.700 ]
Same language [ −0.121, 0.077] [ −0.121, 0.109] [ −0.121, 0.280] [ −0.121, 0.293] [ −0.121, 0.316 ]
Same family [ 1.308, 2.156] [ 1.308, 2.388] [ 1.308, 2.604] [ 1.308, 2.804] [ 1.308, 3.016 ]

Note: Ĉn(α) is computed in Columns (1)–(5) as ∪r0≤R̄0,r1≤R̄1
Cn(α; r0, r1), with R̄0 = 0.01 and R̄1 ∈ {0.05, 0.1, 0.2, 0.3, 0.4}.

Table 6
Ratio of lengths of 95% confidence intervals, |Ĉn(α)|/|Cn(α, 0, 0)|.

r0 ≤ 0.01
r1 ≤ 0.05

r0 ≤ 0.01
r1 ≤ 0.1

r0 ≤ 0.01
r1 ≤ 0.2

r0 ≤ 0.01
r1 ≤ 0.3

r0 ≤ 0.01
r1 ≤ 0.4

(1) (2) (3) (4) (5)

Reciprocation 2.070 2.298 2.298 2.298 2.298
In degree 6.605 7.690 7.690 7.690 7.690
Supported trust 1.936 1.946 1.946 1.965 2.176
Constant 3.610 4.077 7.749 7.898 8.211
Same religion 2.610 3.272 5.171 5.218 5.457
Same sex 2.728 3.591 6.822 7.389 8.062
Same caste 3.755 4.469 5.211 5.447 5.740
Same language 2.323 2.696 4.700 4.844 5.124
Same family 3.700 4.713 5.657 6.529 7.452

Table 7
95% confidence intervals Ĉn(α).

r0 ≤ 0.02
r1 ≤ 0.05

r0 ≤ 0.02
r1 ≤ 0.1

r0 ≤ 0.02
r1 ≤ 0.2

r0 ≤ 0.02
r1 ≤ 0.3

r0 ≤ 0.02
r1 ≤ 0.4

(1) (2) (3) (4) (5)

Reciprocation [ 1.342, 2.382] [ 1.342, 2.492] [ 1.342, 2.492] [ 1.342, 2.492] [ 1.342, 2.492 ]
In degree [−14.070, 40.397] [−14.679, 40.397] [−14.679, 40.397] [−14.679, 40.397] [−14.679, 40.397 ]
Supported trust [−92.558, 250.961] [−92.558, 250.961] [−92.558, 250.961] [−92.558, 250.961] [−92.558, 250.961 ]
Constant [ −5.387, −2.426] [ −5.387, −2.426] [ −5.387, −2.426] [ −5.387, −2.426] [ −5.387, −2.426 ]
Same religion [ −0.101, 0.889] [ −0.131, 0.889] [ −0.192, 0.889] [ −0.282, 0.889] [ −0.391, 0.889 ]
Same sex [ 0.326, 1.455] [ 0.326, 1.455] [ 0.326, 1.455] [ 0.326, 1.455] [ 0.326, 1.455 ]
Same caste [ −0.248, 0.700] [ −0.297, 0.700] [ −0.443, 0.700] [ −0.478, 0.700] [ −0.711, 0.700 ]
Same language [ −0.121, 0.316] [ −0.121, 0.316] [ −0.121, 0.316] [ −0.121, 0.316] [ −0.121, 0.316 ]
Same family [ 1.308, 3.016] [ 1.308, 3.055] [ 1.308, 3.463] [ 1.308, 3.653] [ 1.308, 4.189 ]

Note: Ĉn(α) is computed in Columns (1)–(5) as ∪r0≤R̄0,r1≤R̄1
Cn(α; r0, r1), with R̄0 = 0.01 and R̄1 ∈ {0.05, 0.1, 0.2, 0.3, 0.4}.

Table 8
Ratio of lengths of 95% confidence intervals, |Ĉn(α)|/|Cn(α, 0, 0)|.

r0 ≤ 0.02
r1 ≤ 0.05

r0 ≤ 0.02
r1 ≤ 0.1

r0 ≤ 0.02
r1 ≤ 0.2

r0 ≤ 0.02
r1 ≤ 0.3

r0 ≤ 0.02
r1 ≤ 0.4

(1) (2) (3) (4) (5)

Reciprocation 3.116 3.446 3.446 3.446 3.446
In degree 8.084 8.174 8.174 8.174 8.174
Supported trust 6.765 6.765 6.765 6.765 6.765
Constant 8.211 8.211 8.211 8.211 8.211
Same religion 6.868 7.078 7.498 8.126 8.880
Same sex 8.062 8.062 8.062 8.062 8.062
Same caste 8.328 8.755 10.035 10.348 12.394
Same language 5.124 5.124 5.124 5.124 5.124
Same family 7.452 7.623 9.406 10.233 12.570

be the sparsity of the networks considered in our empirical application. In other words, due to the reduced number of
links formed in the network, the effects of misclassifying links are asymmetric and more pervasive for the false-positive
case.
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. Conclusion

We study a network formation model with incomplete information and potentially misclassified links. We propose
novel approach for analyzing network formation models, which is robust to link misclassification. In the presence of

ink misclassification, we characterize the identified set for the preference parameters associated with homophily and
etwork externalities. Based on the identification result, we develop an inference method that is valid when a single
arge network is available. In an empirical application, we compute conservative confidence intervals that are robust to
ink misclassification using a lending network from rural villages in Karnataka, India. Our results suggest that reciprocity,
ame gender, and same family are statistically significant factors that explain the formation of a lending network even
nder link misclassification.

ppendix A. Proofs

.1. Proof of lemmas in Section 2

roof of Lemma 1. By Assumption 2,

G∗

i,n = argmax
g∗
i,n∈Gn

E
[
Ui(g∗

i,n,G
∗

−i,n, X, εi) | X, εi, σn
]

= argmax
g∗
i,n∈Gn

1
n

n∑
j=1

g∗

ij,n

[
(Z∗

ij,n)
′β0 + εij

]
.

Therefore, G∗

ij,n = 1
{
(Z∗

ij,n)
′β0 + εij ≥ 0

}
. □

Proof of Lemma 2. Define

D(r0, r1) =

⎛⎜⎝1 − r0 − r1 0 0 0
0 1 − r0 − r1 0 0
0 0 (1 − r0 − r1)2 r0(1 − r0 − r1)
0 0 0 1 − r0 − r1

⎞⎟⎠ .
y Assumption 3, we can derive

E
[
Gki,nGkj,n | X, σn

]
= E[Pr(Gki,n = Gkj,n = 1 | G∗

ki,n,G
∗

kj,n, X, σn) | X, σn]
= E[Pr(Gki,n = 1 | G∗

ki,n,G
∗

kj,n, X, σn)Pr(Gkj,n = 1 | G∗

ki,n,G
∗

kj,n, X, σn) | X, σn]

= ρ2
0Pr(G

∗

ki,n = 0,G∗

kj,n = 0 | X, σn) + ρ0(1 − ρ1)Pr(G∗

ki,n = 0,G∗

kj,n = 1 | X, σn)

+ ρ0(1 − ρ1)Pr(G∗

ki,n = 1,G∗

kj,n = 0 | X, σn) + (1 − ρ1)2Pr(G∗

ki,n = 1,G∗

kj,n = 1 | X, σn)

= ρ2
0 + (1 − ρ0 − ρ1)2E

[
G∗

ki,nG
∗

kj,n | X, σn
]
+ ρ0(1 − ρ0 − ρ1)E

[
G∗

ki,n + G∗

kj,n | X, σn
]
,

where the first equality is the law of iterated expectations, the second equality follows from Assumption 3(i), the
third equality follows from Assumption 3(ii), and the last equality follows from Pr(G∗

ki,n = 0,G∗

kj,n = 0 | X, σn) =

1 − E
[
G∗

ki,n + G∗

kj,n | X, σn
]
+ E[G∗

ki,nG
∗

kj,n | X, σn], Pr(G∗

ki,n = 0,G∗

kj,n = 1 | X, σn) = E
[
G∗

kj,n | X, σn
]
− E[G∗

ki,nG
∗

kj,n | X, σn],
Pr(G∗

ki,n = 0,G∗

kj,n = 1 | X, σn) = E
[
G∗

ki,n | X, σn
]
− E[G∗

ki,nG
∗

kj,n | X, σn], and Pr(G∗

ki,n = 1,G∗

kj,n = 1 | X, σn) = E[G∗

ki,nG
∗

kj,n |

X, σn]. It follows then

γij,n =

⎛⎜⎜⎜⎝
E
[
Gji,n | X, σn

]
1
n

∑
k E
[
Gkj,n | X, σn

]
1
n

∑
k E
[
Gki,nGkj,n | X, σn

]
1
n

∑
k E
[
Gki,n + Gkj,n | X, σn

]
⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
ρ0

ρ0

ρ2
0

ρ0

⎞⎟⎟⎟⎠+ D(ρ0, ρ1)

⎛⎜⎜⎜⎜⎝
E
[
G∗

ji,n | X, σn
]

1
n

∑
k E
[
G∗

kj,n | X, σn
]

1
n

∑
k E
[
G∗

ki,nG
∗

kj,n | X, σn
]

1
n

∑
k E
[
G∗

ki,n + G∗

kj,n | X, σn
]

⎞⎟⎟⎟⎟⎠ .
Since D(ρ0, ρ1) is invertible given 1 − ρ0 − ρ1 ̸= 0, it follows that⎛⎜⎜⎜⎜⎝

E
[
G∗

ji,n | X
]

1
n

∑
k E
[
G∗

kj,n | X, σn
]

1
n

∑
k E
[
G∗

ki,nG
∗

kj,n | X, σn
]

1 ∑ [
∗ ∗

]

⎞⎟⎟⎟⎟⎠ = D(ρ0, ρ1)−1

⎛⎜⎜⎜⎝γij,n −

⎛⎜⎜⎜⎝
ρ0

ρ0

ρ2
0

ρ

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .
n k E Gki,n + Gkj,n | X, σn 0
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T
he first three components of the right-hand side of the above equation are γ ∗

ij,n, so

γ ∗

ij,n =

(1 0 0 0
0 1 0 0
0 0 1 0

)
D(ρ0, ρ1)−1

⎛⎜⎝γij,n −

⎛⎜⎝ρ0ρ0
ρ2
0
ρ0

⎞⎟⎠
⎞⎟⎠ = c(ρ0, ρ1) + C(ρ0, ρ1)γij,n. □

Proof of Lemma 3. It suffices to show that Pr(Gij,n = 1 | Xij, γij,n, γ
∗

ij,n, X, σn) = ρ0Pr(G∗

ij,n = 0 | Xij, γ
∗

ij,n)+(1−ρ1)Pr(G∗

ij,n =

1 | Xij, γ
∗

ij,n). Since (Xij, γij,n, γ
∗

ij,n) are a function of (X, σn), it follows that

Pr(Gij,n = 1 | Xij, γij,n, γ
∗

ij,n, X, σn) = Pr(Gij,n = 1 | X, σn).

Using Assumptions 1–3,

Pr(Gij,n = 1 | X, σn) = ρ0Pr(G∗

ij,n = 0 | X, σn) + (1 − ρ1)Pr(G∗

ij,n = 1 | X, σn)
= ρ0Pr((Z∗

ij,n)
′b + εij < 0 | X, σn) + (1 − ρ1)Pr((Z∗

ij,n)
′b + εij ≥ 0 | X, σn)

= ρ0Pr((Z∗

ij,n)
′b + εij < 0 | Z∗

ij,n) + (1 − ρ1)Pr((Z∗

ij,n)
′b + εij ≥ 0 | Z∗

ij,n),

where the first equality follows from Assumption 3, the second follows from Lemma 1, and the last follows from the
independence between ε and X . □

A.2. Proof of Theorem 1

Proof. To show that every element θ of ΘI (P) satisfies Eq. (1), we can derive the following equalities:

P(Gij,n = 1 | Xij, γij,n) = P∗(Gij,n = 1 | Xij, γij,n)
= P∗(Gij,n = 1 | Xij, γij,n, γ

∗

ij,n)
= r0 + (1 − r0 − r1)P∗(G∗

ij,n = 1 | Xij, γ
∗

ij,n)
= r0 + (1 − r0 − r1)P∗((Z∗

ij,n)
′b + εij ≥ 0 | Xij, γ

∗

ij,n)
= r0 + (1 − r0 − r1)Φ((γ ∗

ij,n)
′b1 + X ′

ijb2)
= r0 + (1 − r0 − r1)Φ((c(r0, r1) + C(r0, r1)γij,n)′b1 + X ′

ijb2),

where the first equality follows from P = P∗ for the observables (Gij,n, Xij, γij,n), the second equality follows because γ ∗

ij,n
is a function of γij,n in Condition 3(ii), the third equality follows from Condition 3(i), the fourth equality follows from
Condition 2, the fifth equality follows from Condition 1, and the last equality follows from Condition 3(ii). The rest of the
proof is going to show that every element θ of Θ satisfying Eq. (1) belongs to ΘI (P).

Define the joint distribution P∗ in the following way. The marginal distribution of εij is standard normal. The conditional
distribution of (γij,n, γ ∗

ij,n, Xij) given εij is

P∗((γij,n, γ ∗

ij,n, Xij) ∈ B | εij) = P((γij,n, c(r0, r1) + C(r0, r1)γij,n, Xij) ∈ B) (4)

for all the measurable sets B. The conditional distribution of G∗

ij,n given (γij,n, γ ∗

ij,n, Xij, εij) is

P∗(G∗

ij,n = 1 | γij,n, γ
∗

ij,n, Xij, εij) = 1{(Z∗

ij,n)
′b + εij ≥ 0}. (5)

The conditional distribution of Gij,n given (G∗

ij,n, γij,n, γ
∗

ij,n, Xij, εij) is

P∗(Gij,n = 1 | G∗

ij,n, γij,n, γ
∗

ij,n, Xij, εij) =

{
r0 if G∗

ij,n = 0
1 − r1 if G∗

ij,n = 1.
(6)

Also it implies

P∗(Gij,n = 1 | G∗

ij,n, Zij, γ
∗

ij,n) =

{
r0 if G∗

ij,n = 0
1 − r1 if G∗

ij,n = 1.
(7)

Note that (P∗, θ ) satisfies Conditions 1–3, because Condition 1(i) follows because εij is normally distributed under P∗,
Condition 1(ii) follows from Eq. (4). Condition 2 follows from Eq. (5). Condition 3(i) follows from Eqs. (5) and (6), and
Condition 3(ii) follows from Eq. (4).

The distribution of (Gij,n, Xij, γij,n) induced from P∗ is equal to P . The distribution of (Xij, γij,n) induced from P∗ is equal
∗ ∗ ∗
to that from P , by the construction of P ((γij,n, γij,n, Xij) ∈ B | εij). The equality of P (Gij,n = 1 | Zij,n) = P(Gij,n = 1 | Zij,n)
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a
.s. under P∗ is shown as follows. Note that

γ ∗

ij,n = c(r0, r1) + C(r0, r1)γij,n a.s. under P∗. (8)

Then

P∗(Gij,n = 1 | Zij,n) = P∗(Gij,n = 1 | Zij,n, γ ∗

ij,n)

= r0P∗(G∗

ij,n = 0 | Zij,n, γ ∗

ij,n) + (1 − r1)P∗(G∗

ij,n = 1 | Zij,n, γ ∗

ij,n)

= r0 + (1 − r0 − r1)P∗(G∗

ij,n = 1 | Zij,n, γ ∗

ij,n)

= r0 + (1 − r0 − r1)EP∗ [P∗(G∗

ij,n = 1 | Zij,n, γ ∗

ij,n, εij) | Zij,n, γ ∗

ij,n]

= r0 + (1 − r0 − r1)P∗((Z∗

ij,n)
′b + εij ≥ 0 | Zij,n, γ ∗

ij,n)

= r0 + (1 − r0 − r1)Φ((Z∗

ij,n)
′b)

= r0 + (1 − r0 − r1)Φ((c(r0, r1) + C(r0, r1)γij,n)′b1 + X ′

ijb2)

= P(Gij,n = 1 | Zij,n),

where the first and seventh equalities follow from Eq. (8), the second follows from Eq. (7), the fifth follows from Eq. (5),
and the last follows from Eq. (1). □

A.3. Proof of Theorem 2

Theorem 2 follows because Lemmas 10 and 11 in this appendix imply that, conditional on (X, σn), nm̂n(θ )′Ŝ(θ )−1m̂n(θ )
converges in distribution to the χ2

J distribution.
In the proof of this theorem, all the statements are conditional on (X, σn). For any vector, the norm is understood as

the Euclidean norm, and for any matrix the norm is induced by the Euclidean norm. Define

uij(θ ) = (c(r0, r1) + C(r0, r1)γij,n)′b1 + X ′

ijb2
ûij(θ ) = (c(r0, r1) + C(r0, r1)γ̂ij,n)′b1 + X ′

ijb2,

where we use b = (b1, b2) ∈ B, and so b1 represents the first three components of b associated with the network
externalities and b2 represents the remaining components in b associated with the homophily covariates. For a generic
random variable RV, define

RV †
= RV − E[RV | X, σn],

and note that E[RV †
| X, σn] = 0. For example, G†

kj,n = Gkj,n − E
[
Gkj,n | X, σn

]
. Define

ψ̃k(θ0) =
1
n

∑
j̸=k

Gkj,nζkj − (1 − ρ0 − ρ1)
1
n2

∑
i,j

(
φ(uij(θ0))β ′

1C(ρ0, ρ1)ψ̂γ ,k,n(Xij)
)
ζij.

Lemma 4.

1{Xi1,j1 = Xij}

⎛⎜⎜⎜⎜⎜⎝
E[G∗

j1i1,n
| X, σn] − E[G∗

ji,n | X, σn]
1
n

∑
k(E[G∗

kj1,n
| X, σn] − E[G∗

kj,n | X, σn])
1
n

∑
k(E[G∗

ki1,n
G∗

kj1,n
| X, σn] − E[G∗

ki,nG
∗

kj,n | X, σn])

1
n

∑
k

(
E
[
G∗

ki1,n
+ G∗

kj1,n
| X, σn

]
− E

[
G∗

ki,n + G∗

kj,n | X, σn
])

⎞⎟⎟⎟⎟⎟⎠ = 0. (9)

Proof. This result follows from symmetry of the equilibrium and it is shown in a similar way to Lemma 1 in Leung
(2015). □

Lemma 5.

max{∥ψ̂γ ,k,n(Xij)∥, ∥ψγ ,k,n(Xij)∥} ≤
4

minx p̂(x)

max{∥ψ̃i(θ0)∥, ∥ψ̂i(θ0)∥, ∥ψi(θ0)∥} ≤ 1 + (1 − ρ0 − ρ1)φ(0)∥β ′

1C(ρ0, ρ1)∥
4

.

i minx p̂(x)
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P
roof. The bound for ∥ψ̂γ ,k,n(Xij)∥ is derived from

∥ψ̂γ ,k,n(x)∥ ≤
1
n2

∑
i1,j1

1{Xi1,j1 = x}
p̂(x)


⎛⎜⎜⎝

0
Gkj1

Gki1Gkj1

Gki1 + Gkj1

⎞⎟⎟⎠
+

1
n

∑
i1

1{Xi1,k = x}
p̂(x)


⎛⎜⎜⎝
Gki1

0
0
0

⎞⎟⎟⎠


≤

√
6

minx p̂(x)
+

1
minx p̂(x)

≤
4

minx p̂(x)
.

The bound for ∥ψγ ,k,n(Xij)∥ is similarly derived.
The bound for ∥ψ̃i(θ )∥ is derived from

∥ψ̃i(θ )∥ ≤ max
j̸=i

⏐⏐Gij,n
⏐⏐+ (1 − ρ0 − ρ1)max

l,j

⏐⏐⏐φ(ulj(θ0))β ′

1C(ρ0, ρ1)ψ̂γ ,i,n(Xlj)
⏐⏐⏐

≤ 1 + (1 − ρ0 − ρ1)φ(0)∥β ′

1C(ρ0, ρ1)∥
4

minx p̂(x)
.

The bound for ∥ψ̂i(θ )∥ is similarly derived.
The bound for ∥ψi(θ )∥ is derived from

∥ψi(θ0)∥ ≤ max
j̸=i

⏐⏐Gij,n − ρ0 − (1 − ρ0 − ρ1)Φ(uij(θ0))
⏐⏐

+ (1 − ρ0 − ρ1)max
l,j

∥φ(uij(θ0))β ′

1C(ρ0, ρ1)∥∥ψγ ,i,n(Xlj)∥

≤ 1 + (1 − ρ0 − ρ1)φ(0)∥β ′

1C(ρ0, ρ1)∥
4

minx p̂(x)
. □

Lemma 6.

γ̂ij − γij,n =
1
n

∑
k

ψγ ,k,n(Xij)

and

sup
i,j

γ̂ij − γij,n
 = Op(n−1/2) given (X, σn).

Proof. First, from Lemma 4 and Assumption 3, we can derive

1{Xi1,j1 = Xij}

⎛⎜⎜⎜⎝
E[Gj1 i1,n | X, σn] − E[Gji,n | X, σn]

1
n

∑
k(E[Gkj1,n | X, σn] − E[Gkj,n | X, σn])

1
n

∑
k(E[Gki1,nGkj1,n | X, σn] − E[Gki,nGkj,n | X, σn])

1
n

∑
k(E[(Gki1,n + Gkj1,n) | X, σn] − E[(Gki,n + Gkj,n) | X, σn])

⎞⎟⎟⎟⎠ = 0. (10)

Using Eq. (10), we have

γ̂ij − γij,n

=
1
n2

∑
i1,j1

1{Xi1,j1 = Xij}

1
n2
∑

i1,j1
1{Xi1,j1 = Xij}

⎛⎜⎜⎜⎝
Gj1 i1,n − E[Gji,n | X, σn]

1
n

∑
k(Gkj1,n − E[Gkj,n | X, σn])

1
n

∑
k(Gki1,nGkj1,n − E[Gki,nGkj,n | X, σn])

1
n

∑
k((Gki1,n + Gkj1,n) − E[(Gki,n + Gkj,n) | X, σn])

⎞⎟⎟⎟⎠

=
1
n2

∑
i1,j1

1{Xi1,j1 = Xij}

1
n2
∑

i1,j1
1{Xi1,j1 = Xij}

⎛⎜⎜⎜⎜⎝
G†
j1i1,n

1
n

∑
k G

†
kj1,n

1
n

∑
k(Gki1,nGkj1,n)

†

1
n

∑
k((Gki1,n + Gkj1,n))

†

⎞⎟⎟⎟⎟⎠
=

1
n

∑
ψγ ,k,n(Xij).
k
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P

Since Xij has a finite support, the uniform convergence over i, j follows from the point convergence for every i, j. By
Lyapunov’s central limit theorem, it suffices to show that E[ψγ ,k,n(Xij) | X, σn] = 0 and that ψγ ,k,n(Xij) is independent
across k given (X, σn). The equality E[ψγ ,k,n(Xij) | X, σn] = 0 follows from

E[ψγ ,k,n(Xij) | X, σn] =
1
n2

∑
i1,j1

(
1{Xi1,j1 = Xij}

p̂(Xij)

)⎛⎜⎜⎜⎜⎝
0

E
[
G†
kj1,n

| X, σn
]

E
[
(Gki1,nGkj1,n)

†
| X, σn

]
E
[
(Gki1,n + Gkj1,n)

†
| X, σn

]

⎞⎟⎟⎟⎟⎠

+
1
n

∑
i1

(
1{Xi1,k = Xij}

p̂(Xij)

)⎛⎜⎜⎝
E
[
G†
ki1,n

| X, σn
]

0
0
0

⎞⎟⎟⎠
= 0

since E
[
RV †

| X, σn
]

= 0 by definition of RV †. The conditional independence of ψγ ,k,n(Xij) across k is shown as follows.
Note that ψγ ,k,n(Xij) does not depend on G−k,n, so it is a function of εk, (X, σn). Therefore, it follows from Assumption 1
that ψγ ,k,n(Xij) is independent across k given (X, σn). □

Lemma 7. maxi ∥ψ̂i(θ0) − ψ̃i(θ0)∥ = op(1) given (X, σn).

Proof. Note that

ψ̂i(θ0) − ψ̃i(θ0) = −(1 − ρ0 − ρ1)
1
n2

∑
l,j

(
φ(ûlj(θ0)) − φ(ulj(θ0))

)
β ′

1C(ρ0, ρ1)ψ̂γ ,i,n(Xlj)ζlj.

Then

∥ψ̂i(θ0) − ψ̃i(θ0)∥ ≤ ∥β ′

1C(ρ0, ρ1)∥max
l,j

⏐⏐φ(ûlj(θ0)) − φ(ulj(θ0))
⏐⏐ ∥ψ̂γ ,i,n(Xlj)∥

≤ φ(0)∥β ′

1C(ρ0, ρ1)∥max
l,j

max{|ûlj(θ0)|, |ulj(θ0)|}|ûlj(θ0) − ulj(θ0)|∥ψ̂γ ,i,n(Xlj)∥,

where the last inequality follows from the mean value expansion of the normal pdf φ: |φ(u1) − φ(u2)| ≤ maxu1≤u≤u2
|φ′(u)| |u1 − u2| ≤ φ(0)max{|u1|, |u2|}|u1 − u2|. Since

|ulj(θ0)| ≤ (∥c(ρ0, ρ1)∥ + ∥C(ρ0, ρ1)∥∥γlj,n)∥∥β1∥ + ∥Xlj∥∥β2∥

≤ (∥c(ρ0, ρ1)∥ + 4∥C(ρ0, ρ1)∥)∥β1∥ + max
x

∥x∥∥β2∥

|ûlj(θ0)| ≤ (∥c(ρ0, ρ1)∥ + 4∥C(ρ0, ρ1)∥)∥β1∥ + max
x

∥x∥∥β2∥

|ûlj(θ0) − ulj(θ0)| = |C(ρ0, ρ1)(γ̂lj − γlj,n)′β1|

≤ ∥C(ρ0, ρ1)∥∥β1∥max
lj

∥γ̂lj − γlj,n∥,

it follows that

max
i

∥ψ̂i(θ0) − ψ̃i(θ0)∥ = Op(max
lj

∥(γ̂lj − γlj,n)∥) = op(1). □

Lemma 8. ψi(θ0) is independent across i given (X, σn).

Proof. ψi(θ0) does not depend on G−i,n, so it is a function of (εi, X, σn). By the independence of εi across i, it implies the
tatement of this lemma. □

Lemma 9. m̂n(θ0) =
1
n

∑n
i=1 ψi(θ0) + op(n−1/2) given (X, σn).

roof. Note that

m̂n(θ0) −
1
n

n∑
i=1

ψi(θ0)

= (1 − ρ0 − ρ1)
1
n2

∑(
Φ(ûij(θ0)) −Φ(uij(θ0)) − φ(uij(θ0))β ′

1C(ρ0, ρ1)(γ̂ij − γij,n)
)
ζij
i,j
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y the second-order Taylor expansion of the normal cdf Φ ,

Φ(u1) = Φ(u2) + φ(u2)(u2 − u1) + R(u1, u2)

where

|Rij| ≤
1
2

max
u1≤u≤u2

φ′(u)|u1 − u2|
2

≤
1
2
φ(0)max{|u1|, |u2|}|u1 − u2|

2.

ince

max{|ulj(θ0)|, |ûlj(θ0)|} ≤ (∥c(ρ0, ρ1)∥ + 4∥C(ρ0, ρ1)∥)∥β1∥ + max
x

∥x∥∥β2∥

|ûlj(θ0) − ulj(θ0)| ≤ ∥C(ρ0, ρ1)∥∥β1∥max
lj

∥γ̂lj − γlj,n∥,

it follows that

∥m̂n(θ0) −
1
n

n∑
i=1

ψi(θ0)∥ = Op(max
lj

∥(γ̂lj − γlj,n)∥2) = Op(n−1). □

Lemma 10. Conditional on (X, σn),

m̂n(θ0) = oP (1)

and

Var(ψi(θ0) | X, σn)−1/2√nm̂n(θ0) →d N(0, I).

roof. By Lemmas 5 and 8 and Lyapunov’s central limit theorem, it suffices to show E[ψi(θ0) | X, σn] = 0. We can derive

E[ψi(θ0) | X, σn] =
1
n

∑
j̸=i

(
E[Gij,n | X, σn] − ρ0 − (1 − ρ0 − ρ1)Φ(uij(θ0))

)
ζij

−(1 − ρ0 − ρ1)
1
n2

∑
l,j

(
φ(ulj(θ0))β ′

1C(ρ0, ρ1)E[ψγ ,i,n(Xlj) | X, σn]
)
ζlj

= 0,

because

E[Gij,n | X, σn] = ρ0 + (1 − ρ0 − ρ1)Φ(uij(θ0))

E[ψγ ,i,n(Xlj) | X, σn] =
1
n2

∑
i1,j1

(
1{Xi1,j1 = Xij}

p̂(Xij)

)⎛⎜⎜⎜⎝
0

E[G†
kj1,n

| X, σn]

E[(Gki1,nGkj1,n)
†

| X, σn]
E[(Gki1,n + Gkj1,n)

†
| X, σn]

⎞⎟⎟⎟⎠

+
1
n

∑
i1

(
1{Xi1,k = Xij}

p̂(Xij)

)⎛⎜⎝E[G†
ki1,n

| X, σn]
0
0
0

⎞⎟⎠
= 0.

Note that E[RV †
| X, σn] = 0 by the definition of RV †. □

Lemma 11. Ŝ(θ0) = Var(ψi(θ0) | X, σn) + op(1) given (X, σn).

Proof. First, we are going to show that Ŝ(θ0) =
1
n

∑n
i=1 ψ̃i(θ0)ψ̃i(θ0)′ −

( 1
n

∑n
i=1 ψ̃i(θ0)

) ( 1
n

∑n
i=1 ψ̃i(θ0)

)′
+ op(1). Since

Ŝ(θ0) −
1
n

n∑
i=1

ψ̃i(θ0)ψ̃i(θ0)′ +

(
1
n

n∑
i=1

ψ̃i(θ0)

)(
1
n

n∑
i=1

ψ̃i(θ0)

)′

=
1
n

n∑
i=1

(ψ̂i(θ0) − ψ̃i(θ0))(ψ̂i(θ0) − ψ̃i(θ0))′

+
1
n

n∑
ψ̃i(θ0)(ψ̂i(θ0) − ψ̃i(θ0))′
i=1
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T
L

t

+
1
n

n∑
i=1

(ψ̂i(θ0) − ψ̃i(θ0))ψ̃i(θ0)′

−

(
1
n

n∑
i=1

(ψ̂i(θ0) − ψ̃i(θ0))

)(
1
n

n∑
i=1

(ψ̂i(θ0))

)′

−

(
1
n

n∑
i=1

ψ̃i(θ0)

)(
1
n

n∑
i=1

(ψ̂i(θ0) − ψ̃i(θ0))

)′

,

it follows thatŜ(θ0) −
1
n

n∑
i=1

ψ̃i(θ0)ψ̃i(θ0)′ +

(
1
n

n∑
i=1

ψ̃i(θ0)

)(
1
n

n∑
i=1

ψ̃i(θ0)

)′


≤ max
i

∥ψ̂i(θ0) − ψ̃i(θ0)∥2
+ 3max

i
∥ψ̂i(θ0) − ψ̃i(θ0)∥max

i
∥ψ̃i(θ0)∥ + max

i
∥ψ̂i(θ0) − ψ̃i(θ0)∥max

i
∥ψ̂i(θ0)∥.

hus it suffices to show that maxi ∥ψ̂i(θ0) − ψ̃i(θ0)∥ = op(1) and maxi{∥ψ̃i(θ0)∥, ∥ψ̂i(θ0)∥} = Op(1). They are shown in
emmas 5 and 7.
Second, we are going to show that Ŝ(θ0) = Var(ψ̃i(θ0) | X, σn)+ op(1). It suffices to show E[∥ψ̃i(θ0)∥4

| X, σn] < ∞. By
he triangle inequality,

E[∥ψ̃i(θ0)∥4
| X, σn]1/4 ≤

1
n

∑
j̸=i

E
[Gij,n

4 | X, σn
]1/4

+
1
n2

∑
l,j

E
[φ(uij(θ0))β ′

1C(ρ0, ρ1)ψ̂γ ,i,n(Xlj)
4 | X, σn

]1/4
≤

1
n

∑
j̸=i

(
E[
Gij,n

4 | X, σn]1/4
)

+
1
n2

∑
l,j

φ(uij(θ0))β ′

1C(ρ0, ρ1)E
[ψ̂γ ,i,n(Xlj)

4 | X, σn

]1/4
≤ 1 +

1
n2

∑
l,j

φ(uij(θ0))β ′

1C(ρ0, ρ1)E
[ψ̂γ ,i,n(Xlj)

4 | X, σn

]1/4
< ∞,

where the last inequality follows from Lemma 5.
Third, we are going to show that Var(ψ̃i(θ0) | X, σn) = Var(ψi(θ0) | X, σn). Note that ψ̃i(θ0) − ψi(θ0) is a function of

(X, σn), so the conditional variances are the same. □

A.4. Proof of Theorem 3

As in the previous section, all the statements in this appendix are conditional on (X, σn). Theorem 3 follows from
Lemma 18.

Lemma 12. β is the unique maximizer of E [Q n(b) | X, σn], where

Q n(b) =
1
n2

∑
i,j

log
(
Ψ (b, ρ0, ρ1, Xij, γij,n)Gij,n (1 − Ψ (b, ρ0, ρ1, Xij, γij,n))1−Gij,n

)
.

Proof. Applying Jensen’s inequality to the logarithm function, we have

E [Q n(b) | X, σn] − E [Q n(β) | X, σn]

=
1
n2

∑
i,j

(
Ψ (θ0, Xij, γij,n) log

Ψ (b, ρ0, ρ1, Xij, γij,n)
Ψ (θ0, Xij, γij,n)

+ (1 − Ψ (θ0, Xij, γij,n)) log
1 − Ψ (b, ρ0, ρ1, Xij, γij,n)

1 − Ψ (θ0, Xij, γij,n)

)

≤ log

⎛⎝ 1
n2

∑
i,j

(
Ψ (θ0, Xij, γij,n)

Ψ (b, ρ0, ρ1, Xij, γij,n)
Ψ (θ0, Xij, γij,n)

+ (1 − Ψ (θ0, Xij, γij,n))
1 − Ψ (b, ρ0, ρ1, Xij, γij,n)

1 − Ψ (θ0, Xij, γij,n)

)⎞⎠
= 0.
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I
t suffices to show that the equality holds only when b = β . By Jensen’s inequality, the equality holds if and only if

Ψ (b, ρ0, ρ1, Xij, γij,n)
Ψ (θ0, Xij, γij,n)

= 1 for every i, j. (11)

Eq. (11) implies ((γ ∗

ij,n)
′, X ′

ij)β = ((γ ∗

ij,n)
′, X ′

ij)b for every i, j. Since {((γ ∗

ij,n)
′, X ′

ij)
′
: i, j} is not contained in any proper linear

subspace of Rd+3, we have β = b. □

Lemma 13. Conditional on (X, σn),

sup
b∈B

|Q n(b) − E [Q n(b) | X, σn] | = op(1)

sup
b∈B

∥
∂2

∂b∂b′
Q n(b) − E

[
∂2

∂b∂b′
Q n(b) | X, σn

]
∥ = op(1).

Proof. They follow from Jenish and Prucha (2009, Proposition 1) as in the proof of Leung (2015, Theorem 2). □

Lemma 14. β̂(ρ0, ρ1) →a.s. β .

Proof. By Lemma 12 and Gallant and White (1988, Theorem 3.3), it suffices to show that

sup
b∈B

|Q̂ n(b, ρ0, ρ1) − E [Q n(b) | X, σn] | →p 0.

By Lemma 13, we need to show that supb∈B |Q̂ n(b, ρ0, ρ1) − Q n(b)| →p 0. Some calculations yield

|Q̂ n(b, ρ0, ρ1) − Q n(b)|

=

⏐⏐⏐⏐⏐⏐ 1n2

∑
i,j

log

((
Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij))
Ψ (b, ρ0, ρ1, Xij, γij,n)

)Gij,n (1 − Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij))
1 − Ψ (b, ρ0, ρ1, Xij, γij,n)

)1−Gij,n
)⏐⏐⏐⏐⏐⏐

≤ max
i,j

max
{⏐⏐⏐⏐log(Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij))

Ψ (b, ρ0, ρ1, Xij, γij,n)

)⏐⏐⏐⏐ , ⏐⏐⏐⏐log(1 − Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij))
1 − Ψ (b, ρ0, ρ1, Xij, γij,n)

)⏐⏐⏐⏐}
≤ max

i,j

|Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij)) − Ψ (b, ρ0, ρ1, Xij, γij,n)|
min{Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij)),Ψ (b, ρ0, ρ1, Xij, γij,n), 1 − Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij)), 1 − Ψ (b, ρ0, ρ1, Xij, γij,n)}

≤ max
i,j

|Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij)) − Ψ (b, ρ0, ρ1, Xij, γij,n)|
min{Ψ (b, ρ0, ρ1, Xij, γij,n), 1 − Ψ (b, ρ0, ρ1, Xij, γij,n)} − |Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij)) − Ψ (b, ρ0, ρ1, Xij, γij,n)|

≤
term1

term2 − term1

where the second inequality follows from | log(x)| ≤ max{|x − 1|, |x − 1|/x} for x > 0 and the last equation uses

term1 = max
i,j

|Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij)) − Ψ (b, ρ0, ρ1, Xij, γij,n)|

term2 = min
i,j

min{Ψ (b, ρ0, ρ1, Xij, γij,n), 1 − Ψ (b, ρ0, ρ1, Xij, γij,n)}.

Since mini,j min{Ψ (b, ρ0, ρ1, Xij, γij,n), 1 − Ψ (b, ρ0, ρ1, Xij, γij,n)} is bounded away from zero (because the support of Xij is
finite), the uniform convergence of Q̂ n(b, ρ0, ρ1) − Q n(b) follows from

sup
b∈B

max
i,j

|Ψ (b, ρ0, ρ1, Xij, γ̂ (Xij)) − Ψ (b, ρ0, ρ1, Xij, γij,n)|

= (1 − ρ0 − ρ1) sup
b∈B

max
i,j

⏐⏐Φ(ûij(b, ρ0, ρ1)) −Φ(uij(b, ρ0, ρ1))
⏐⏐

= Op

(
max

ij
∥γ̂ij − γij,n∥

)
. □

Lemma 15. The minimum eigenvalue of {E
[

∂2
′ Q n(b) | X, σn

]⏐⏐⏐ } is bounded away from zero.

∂b∂b b=β
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P

i

i

L

P

roof. We have the following equalities:

E
[
∂2

∂b∂b′
Q n(b) | X, σn

]⏐⏐⏐⏐
b=β

=
1
n2

∑
i,j

∂
∂bΨ (b, ρ0, ρ1, Xij, γij,n)

⏐⏐
b=β

∂
∂b′Ψ (b, ρ0, ρ1, Xij, γij,n)

⏐⏐
b=β

Ψ (θ0, Xij, γij,n)(1 − Ψ (θ0, Xij, γij,n))

=
1
n2

∑
i,j

∂
∂bΨ (b, ρ0, ρ1, Xij, γij,n)

⏐⏐
b=β

∂
∂b′Ψ (b, ρ0, ρ1, Xij, γij,n)

⏐⏐
b=β

Ψ (θ0, Xij, γij,n)(1 − Ψ (θ0, Xij, γij,n))

=
(1 − ρ0 − ρ1)2

n2

∑
i,j

φ((Z∗

ij,n)
′β0)2

Ψ (θ0, Xij, γij,n)(1 − Ψ (θ0, Xij, γij,n))
Z∗

ij,n(Z
∗

ij,n)
′.

Note that the minimum eigenvalue of
∑

i,j Z
∗

ij,n(Z
∗

ij,n)
′ is bounded away from zero. Since

φ((Z∗

ij,n)
′β0)2

Ψ (θ0, Xij, γij,n)(1 − Ψ (θ0, Xij, γij,n))

s bounded from zero uniformly over i, j, n, the minimum eigenvalue of∑
i,j

φ((Z∗

ij,n)
′β0)2

Ψ (θ0, Xij, γij,n)(1 − Ψ (θ0, Xij, γij,n))
Z∗

ij,n(Z
∗

ij,n)
′

s bounded away from zero. □

emma 16. supb∈B

E [ ∂2

∂b∂b′ Q n(b) | X, σn
]

−
∂2

∂b∂b′ Q̂ n(b, ρ0, ρ1)
 = op(1) given (X, σn).

roof. By Lemma 13, we need to show that

sup
b∈B

 ∂2

∂b∂b′
Q̂ n(b, ρ0, ρ1) −

∂2

∂b∂b′
Q n(b)

 = op(1),

that is,

sup
b∈B

u′

(
∂2

∂b∂b′
Q̂ n(b, ρ0, ρ1) −

∂2

∂b∂b′
Q n(b)

) = op(1) for every vector u.

Since

u′

(
∂2

∂b∂b′
Q̂ n(b, ρ0, ρ1) −

∂2

∂b∂b′
Q n(b)

)
=

1
n2

∑
i,j

Gij,nu′

(
∂

∂b′
(v1(b, ρ0, ρ1, Xij, γ̂ (Xij)) − v1(b, ρ0, ρ1, Xij, γij,n))

)
−

1
n2

∑
i,j

u′

(
∂

∂b′
(v2(b, ρ0, ρ1, Xij, γ̂ (Xij)) − v2(b, ρ0, ρ1, Xij, γij,n))

)
=

1
n2

∑
i,j

Gij,n
∂

∂b′
(u′v1(b, ρ0, ρ1, Xij, γ̂ (Xij)) − u′v1(b, ρ0, ρ1, Xij, γij,n))

−
1
n2

∑
i,j

∂

∂b′
(u′v2(b, ρ0, ρ1, Xij, γ̂ (Xij)) − u′v2(b, ρ0, ρ1, Xij, γij,n)),

we have u′

(
∂2

∂b∂b′
Q̂ n(b, ρ0, ρ1) −

∂2

∂b∂b′
Q n(b)

)
≤

1
n2

∑
i,j

 ∂∂b′
(u′v1(b, ρ0, ρ1, Xij, γ̂ (Xij)) − u′v1(b, ρ0, ρ1, Xij, γij,n))


+

1
n2

∑ ∂∂b′
(u′v2(b, ρ0, ρ1, Xij, γ̂ (Xij)) − u′v2(b, ρ0, ρ1, Xij, γij,n))



i,j
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N

w

W

≤
1
n2

∑
i,j

sup
γ̌ij

 ∂2

∂b∂γ̌ ′

ij
u′v1(b, ρ0, ρ1, Xij, γ̌ij)

 ∥γ̂ (Xij) − γij,n∥

+
1
n2

∑
i,j

sup
γ̌ij

 ∂2

∂b∂γ̌ ′

ij
u′v2(b, ρ0, ρ1, Xij, γ̌ij)

 ∥γ̂ (Xij) − γij,n∥

≤ sup
i,j

sup
γ̌ij

 ∂2

∂b∂γ̌ ′

ij
u′v1(b, ρ0, ρ1, Xij, γ̌ij)

 supi,j ∥γ̂ (Xij) − γij,n∥

+ sup
i,j

sup
γ̌ij

 ∂2

∂b∂γ̌ ′

ij
u′v2(b, ρ0, ρ1, Xij, γ̌ij)

 supi,j ∥γ̂ (Xij) − γij,n∥.

Since ∂2

∂b∂γ̌ ′
ij
u′v1 and ∂2

∂b∂γ̌ ′
ij
u′v2 have bounded supports, we have

sup
b∈B

u′

(
∂2

∂b∂b′
Q̂ n(b, ρ0, ρ1) −

∂2

∂b∂b′
Q n(b)

) = Op

(
sup
i,j

∥γ̂ (Xij) − γij,n∥

)
= op(1). □

Lemma 17.

√
nE

[
1
n

n∑
k=1

ψQ ,k,nψ
′

Q ,k,n | X, σn

]−1/2

E
[
∂2

∂b∂b′
Q n(b) | X, σn

]⏐⏐⏐⏐
b=β

(β̂(ρ0, ρ1) − β) →d N(0, I) given (X, σn).

Proof. By Lemmas 14, 15, 16 and Gallant and White (1988, Theorem 5.1), it suffices to prove the following statements:

• E
[

∂2

∂b∂b′ Q n(b) | X, σn
]⏐⏐⏐

b=β
and E

[
1
n

∑n
k=1 ψQ ,k,nψ

′

Q ,k,n

]
are O(1);

• E
[

∂2

∂b∂b′ Q n(b) | X, σn
]
is continuous in b ∈ B uniformly in n; and

•

√
nE

[
1
n

n∑
k=1

ψQ ,k,nψ
′

Q ,k,n | X, σn

]−1/2
∂

∂b
Q̂ n(b, ρ0, ρ1)

⏐⏐⏐⏐
b=β

→d N(0, I) (12)

The first two statements follow from the error being normally distributed.
Before proving Eq. (12), we are going to show that

1
n2

∑
i,j

(Gij,n − E
[
Gij,n | X, σn

]
)V 1(θ0, Xij, γij,n)(γ̂ij − γij,n) = op(n−1/2). (13)

ote that
1
n2

∑
i,j

(Gij,n − E
[
Gij,n | X, σn

]
)V 1(θ0, Xij, γij,n)(γ̂ij − γij,n)

=
1
n2

∑
i,j

(Gij,n − E
[
Gij,n | X, σn

]
)V 1(θ0, Xij, γij,n)

1
n

∑
k

ψγ ,k,n(Xij)

=
1
n2

∑
i,k

term(i, k),

here

term(i, k) =
1
n

∑
j

(Gij,n − E
[
Gij,n | X, σn

]
)V 1(θ0, Xij, γij,n)ψγ ,k,n(Xij).

e will demonstrate the L2 convergence of 1
n2
∑

i,k term(i, k). Regarding the expectation of 1
n2
∑

i,k term(i, k), we have

E

[
1
n2

∑
i,k

term(i, k) | X, σn

]

=
1
n2

∑ 1
n

∑
E
[
(Gij,n − E

[
Gij,n | X, σn

]
)V 1(θ0, Xij, γij,n)ψγ ,k,n(Xij) | X, σn

]

i̸=k j
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E
b

a

+
1
n2

∑
i

1
n

∑
j

E
[
(Gij,n − E

[
Gij,n | X, σn

]
)V 1(θ0, Xij, γij,n)ψγ ,i,n(Xij) | X, σn

]
=

1
n2

∑
i̸=k

1
n

∑
j

E
[
(Gij,n − E

[
Gij,n | X, σn

]
) | X, σn

]
V 1(θ0, Xij, γij,n)E

[
ψγ ,k,n(Xij) | X, σn

]
+

1
n2

∑
i

1
n

∑
j

E
[
(Gij,n − E

[
Gij,n | X, σn

]
)V 1(θ0, Xij, γij,n)ψγ ,i,n(Xij) | X, σn

]
=

1
n2

∑
i

1
n

∑
j

E
[
(Gij,n − E

[
Gij,n | X, σn

]
)V 1(θ0, Xij, γij,n)ψγ ,i,n(Xij) | X, σn

]
= O(n−1).

where the second equality comes from the independence of {Gij,n : j} across i, the third equality follows from[
(Gij,n − E

[
Gij,n | X, σn

]
) | X, σn

]
= 0, and the last equality follows because Gij,n, V 1(θ0, Xij, γij,n), and ψγ ,i,n(Xij) are

ounded. Regarding the variance of 1
n2
∑

i,k term(i, k), we use

Cov (term(i1, k1), term(i2, k2) | X, σn) = 0 if k2 ̸= i1, k1, i2 (14)
Cov (term(i1, k1), term(i2, k2) | X, σn) = 0 if k1 ̸= i1, k2, i2 (15)
Cov (term(i1, k1), term(i2, k1) | X, σn) = 0 if i1 ̸= k1, i2, (16)

where they result from the fact that Gij,n −E
[
Gij,n | X, σn

]
and ψγ ,k,n(Xij) are mean-zero and independent across (i, k). We

have

Var

(
1
n2

∑
i,k

term(i, k) | X, σn

)
=

1
n4

∑
(i1,k1,i2,k2)

Cov (term(i1, k1), term(i2, k2) | X, σn)

=
1
n4

∑
(i1,k1,i2)

∑
k2=i1,k1,i2

Cov (term(i1, k1), term(i2, k2) | X, σn)

=
1
n4

∑
(i1,i2)

∑
k2=i1,i2

∑
k1

Cov (term(i1, k1), term(i2, k2) | X, σn)

+
1
n4

∑
(k1,i2)

∑
i1

Cov (term(i1, k1), term(i2, k1) | X, σn)

=
1
n4

∑
(i1,i2)

∑
k2=i1,i2

∑
k1=i1,i2

Cov (term(i1, k1), term(i2, k2) | X, σn)

+
1
n4

∑
(k1,i2)

∑
i1=k1,i2

Cov (term(i1, k1), term(i2, k1) | X, σn)

≤
6
n2 max

(i1,k1,i2,k2)
|Cov (term(i1, k1), term(i2, k2) | X, σn) |

= O(n−2),

where the third equality uses Eq. (14), the fifth equality uses Eqs. (15) and (16), and the last equality follows from
sup(i1,k1,i2,k2) |Cov (term(i1, k1), term(i2, k2) | X, σn)| = O(1).

Now we are going to show that Eq. (13) implies Eq. (12). The first-order Taylor expansions yield

sup
i,j

∥v1(θ0, Xij, γ̂ij) − v1(θ0, Xij, γij,n) − V 1(θ0, Xij, γij,n)(γ̂ij − γij,n)∥ = op

(
sup
i,j

∥γ̂ij − γij,n∥

)
sup
i,j

∥v2(θ0, Xij, γ̂ij) − v2(θ0, Xij, γij,n) − V 2(θ0, Xij, γij,n)(γ̂ij − γij,n)∥ = op

(
sup
i,j

∥γ̂ij − γij,n∥

)
,

nd

∂

∂b
Q̂ n(b, ρ0, ρ1)

⏐⏐⏐⏐
b=β

=
1
n2

∑
(Gij,n − Ψ (θ0, Xij, γij,n))v1(θ0, Xij, γij,n)
i,j
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w
v

T

A

A
g

+
1
n2

∑
i,j

(
Gij,n

(
v1(θ0, Xij, γ̂ (Xij)) − v1(θ0, Xij, γij,n)

)
−
(
v2(θ0, Xij, γ̂ (Xij)) − v2(θ0, Xij, γij,n)

))
=

1
n2

∑
i,j

(Gij,n − Ψ (θ0, Xij, γij,n))v1(θ0, Xij, γij,n)

+
1
n2

∑
i,j

(
Gij,nV 1(θ0, Xij, γij,n) − V 2(θ0, Xij, γij,n)

)
(γ̂ij − γij,n) + op(n−1/2)

=
1
n2

∑
i,j

(Gij,n − Ψ (θ0, Xij, γij,n))v1(θ0, Xij, γij,n)

+
1
n2

∑
i,j

(
E
[
Gij,n | X, σn

]
V 1(θ0, Xij, γij,n) − V 2(θ0, Xij, γij,n)

)
(γ̂ij − γij,n) + op(n−1/2)

=
1
n2

∑
i,j

(Gij,n − Ψ (θ0, Xij, γij,n))v1(θ0, Xij, γij,n)

+
1
n2

∑
i,j

(
E
[
Gij,n | X, σn

]
V 1(θ0, Xij, γij,n) − V 2(θ0, Xij, γij,n)

) 1
n

∑
k

ψγ ,k,n(Xij) + op(n−1/2)

=
1
n

∑
k

ψQ ,k,n + op(n−1/2),

here the third equality uses Eq. (13). We can apply Lyapunov’s central limit theorem to uniformly-bounded random
ariables ψQ ,k,n, and we have Eq. (12). □

Lemma 18.
√
nÂV (ρ0, ρ1)−1/2(β̂(ρ0, ρ1) − β) →d N(0, I) given (X, σn).

Proof. By Lemma 17, it is sufficient to show that

∂2

∂b∂b′
Q̂ n(b, ρ0, ρ1)

⏐⏐⏐⏐
b=β̂(ρ0,ρ1)

− E
[
∂2

∂b∂b′
Q n(b) | X, σn

]⏐⏐⏐⏐
b=β

= op(1)

Ŝ(ρ0, ρ1) − E

[
1
n

n∑
k=1

ψQ ,k,nψ
′

Q ,k,n | X, σn

]
= op(1).

he first statement follows from Lemma 16. The second statement can be shown similarly to Lemma 11. □

ppendix B. Covariate-dependent misclassification

In this section, we weaken Assumption 3 into the following assumption.

ssumption 4. The following two statements hold for every n and every i, j, k ∈ Nn. (i) Gki,n and Gkj,n are independent
iven (G∗

ki,n,G
∗

kj,n, X, σn). (ii) Pr(Gij,n ̸= G∗

ij,n | G∗

ij,n, X, σn) = ρ0(Xi)1{G∗

ij,n = 0} + ρ1(Xi)1{G∗

ij,n = 1}, with ρ0(Xi), ρ1(Xi) ≥ 0
and ρ0(Xi) + ρ1(Xi) < 1 a.s.

Assumption 4 implies that the probability of misclassification can be covariate-specific. This setting captures het-
erogeneity in the misclassification due to differences in the observed types and allows for correlation within the
misclassification of links for a given individual, i.e., the misclassification process of Gij and Gik could be correlated through
Xi. This specification might be desirable if the researcher is concerned that individuals of certain profiles (e.g., age, religion,
caste) are more prone to fatigue or apprehensive about listing all their individual connections.

Under Assumption 4, we can modify Lemma 2 as follows.

Lemma 19. If Assumptions 1, 2 and 4 hold, then for every distinct i, j, k ∈ Nn,

γ ∗

ij,n =

⎛⎜⎝ E
[
G∗

ji,n | X, σn
]

1
n

∑
k E
[
G∗

kj,n | X, σn
]

1
n

∑
k E
[
G∗

ki,nG
∗

kj,n | X, σn
]
⎞⎟⎠

=

⎛⎜⎝ ω(Xj)−1
{
E
[
Gji,n | X, σn

]
− ρ0(Xj)

}
1
n

∑
k ω(Xk)−1

{
E
[
Gki,n | X, σn

]
− ρ0(Xk)

}
1
n

∑
k ω(Xk)−2

{
E
[
Gki,nGkj,n | X, σn

]
− ρ0(Xk)E

[
Gki,n + Gkj,n | X, σn

]
+ ρ0(Xk)2

}
⎞⎟⎠

where ω(X ) = (1 − ρ (X ) − ρ (X )).
k 0 k 1 k
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roof. Notice that

E
[
G∗

ki,n | X, σn
]

= (1 − ρ0(Xk) − ρ1(Xk))−1 {E [Gki,n | X, σn
]
− ρ0(Xk)

}
nd

E
[
G∗

ki,n + G∗

kj,n | X, σn
]

= (1 − ρ0(Xk) − ρ1(Xk))−1 {E [Gki,n + Gkj,n | X, σn
]
− 2ρ0(Xk)

}
.

Consider

E
[
Gki,nGkj,n | X, σn

]
= E

[
Pr
[
Gki,n = 1,Gkj,n = 1 | X, σn,G∗

ki,nG
∗

kj,n

]
| X, σn

]
= E

[
Pr
[
Gki,n = 1 | X, σn,G∗

ki,nG
∗

kj,n

]
Pr
[
Gkj,n = 1 | X, σn,G∗

ki,nG
∗

kj,n

]
| X, σn

]
= (1 − ρ1(Xk))2Pr

[
G∗

ki,n = 1,G∗

kj,n = 1 | X, σn
]

+ρ0(Xk)(1 − ρ1(Xk))
{
Pr
[
G∗

ki,n = 1,G∗

kj,n = 0 | X, σn
]
+ Pr

[
G∗

ki,n = 0,G∗

kj,n = 1 | X, σn
]}

+ρ0(Xk)2Pr
[
G∗

ki,n = 0,G∗

kj,n = 0 | X, σn
]

= ρ0(Xk)2 + {ρ0(Xk)(1 − ρ0(Xk) − ρ1(Xk))} E
[
G∗

ki,n + G∗

kj,n | X, σn
]

+(1 − ρ0(Xk) − ρ1(Xk))2E
[
G∗

ki,nG
∗

kj,n | X, σn
]
,

where the fourth equality follows from using

Pr
[
G∗

ki,n = 1,G∗

kj,n = 1 | X, σn
]

= E
[
G∗

ki,nG
∗

kj,n | X, σn
]

Pr
[
G∗

ki,n = 1,G∗

kj,n = 0 | X, σn
]

= E
[
G∗

ki,n | X, σn
]
− E

[
G∗

ki,nG
∗

kj,n | X, σn
]

Pr
[
G∗

ki,n = 0,G∗

kj,n = 1 | X, σn
]

= E
[
G∗

kj,n | X, σn
]
− E

[
G∗

ki,nG
∗

kj,n | X, σn
]

Pr
[
G∗

ki,n = 0,G∗

kj,n = 0 | X, σn
]

= 1 − E
[
G∗

ki,n + G∗

kj,n | X, σn
]
+ E

[
G∗

ki,nG
∗

kj,n | X, σn
]

Solving for E
[
G∗

ki,nG
∗

kj,n | X, σn
]
we obtain

E
[
G∗

ki,nG
∗

kj,n | X, σn
]

= (1 − ρ0(Xk) − ρ1(Xk))−2 {E [Gki,nGkj,n | X, σn
]
− ρ0(Xk)2

}
−ρ0(Xk)(1 − ρ0(Xk) − ρ1(Xk))−1E

[
G∗

ki,n + G∗

kj,n | X, σn
]

= (1 − ρ0(Xk) − ρ1(Xk))−2 {(E [Gki,nGkj,n | X, σn
]
+ ρ0(Xk)2

)
− ρ0(Xk)E

[
Gki,n + Gkj,n | X, σn

]}
. □

Remark 2. We can further weaken Condition (ii) in Assumption 4 to Pr(Gij,n ̸= G∗

ij,n | G∗

ij,n, X, σn) = ρ0(X)1{G∗

ij,n =

0}+ρ1(X)1{G∗

ij,n = 1}, with ρ0(X), ρ1(X) ≥ 0 and ρ0(X)+ρ1(X) < 1 a.s. In this case, the network statistics can be written
as

γ ∗

ij,n =

⎛⎜⎝ E
[
G∗

ji,n | X, σn
]

1
n

∑
k E
[
G∗

kj,n | X, σn
]

1
n

∑
k E
[
G∗

ki,nG
∗

kj,n | X, σn
]
⎞⎟⎠

= D(p0(X), p1(X))

⎛⎜⎜⎜⎝
E
[
Gji,n | X, σn

]
1
n

∑
k E
[
Gki,n | X, σn

]
ω(X)−2 1

n

∑
k E
[
Gki,nGkj,n | X, σn

]
ω(X)−2ρ0(X) 1n

∑
k E
[
Gki,n + Gkj,n | X, σn

]
⎞⎟⎟⎟⎠+

⎛⎜⎝−ω(X)−1ρ0(X)
−ω(X)−1ρ0(X)
ω(X)−2ρ0(X)2

⎞⎟⎠ ,
here ω(X) = (1 − ρ0(X) − ρ1(X)) and

D(p0(X), p1(X)) =

⎡⎣ω(X)−1 0 0 0
0 ω(X)−1 0 0
0 0 ω(X)−2

−ω(X)−2ρ0(X)

⎤⎦ .
ppendix C. Semiparametric identification analysis

Given P ∈ P , we will characterize the identified set in the semiparametric model.

efinition 2. For each distribution P ∈ P , the identified set ΘI,SP (P) is defined as the set of all θ = (b, r0, r1) in Θ
for which there is some joint distribution P∗

∈ P∗ such that Conditions 1, 2(ii), and 3 hold, and that the distribution of
(G , X , γ ) induced from P∗ is equal to P .
ij,n ij ij,n
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heorem 4. Given P ∈ P , ΘI,SP (P) is equal to the set of θ ∈ Θ satisfying the following statements a.s. for some r0, r1 ≥ 0
such that r0 + r1 < 1 and some weakly increasing and right-continuous function Λ:

r0 ≤ EP
[
Gij,n | Zij,n

]
and r1 ≤ EP

[
1 − Gij,n | Zij,n

]
(17)

EP
[
Gij,n | Zij,n

]
= Λ

(
(c(r0, r1) + γ ′

ij,nC(r0, r1))
′b1 + X ′

ijb2
)
. (18)

roof. First, we are going to show that every element θ of ΘI,SP (P) satisfies the conditions in (17)–(18). Let (r0, r1) denote
he misclassification probabilities. Denote by Λ∗ the cdf of −εij and define Λ(v) = r0 + (1 − r0 − r1)Λ∗(v). By Lemmas 2
nd 3,

EP∗

[
Gij,n | Zij,n

]
= r0 + (1 − r0 − r1)EP∗

[
G∗

ij,n | Zij,n
]

= r0 + (1 − r0 − r1)Λ∗((c(r0, r1) + γ ′

ij,nC(r0, r1))
′b1 + X ′

ijb2),

nd we have the condition (18). Note that Λ is weakly increasing and right-continuous, because Λ∗ is weakly increasing
nd right-continuous. The two inequalities in (17) are shown as follows:

EP∗

[
Gij,n | Zij,n

]
= r0 + (1 − r0 − r1)EP∗

[
G∗

ij,n | Zij,n
]

≥ r0
EP∗

[
1 − Gij,n | Zij,n

]
= r1 + (1 − r0 − r1)EP∗

[
1 − G∗

ij,n | Zij,n
]

≥ r1,

here the inequalities follow from 1 − r0 − r1 ≥ 0.
Now, the rest of the proof is going to show that every element θ ∈ Θ satisfying (17)–(18), belongs to ΘI,SP (P). By the

ondition (18) as well as Condition (17), there is a weakly increasing and right-continuous function Λ : R → [r0, 1 − r1]
uch that

EP
[
Gij,n | Zij,n

]
= Λ

(
(c(r0, r1) + γ ′

ij,nC(r0, r1))
′b1 + X ′

ijb2
)
. (19)

enote by Λ∗ the cdf satisfying Λ(v) = r0 + (1 − r0 − r1)Λ∗(v).
Define the joint distribution P∗ in the following way. Define the cdf of εij such that Λ∗ is the cdf of −εij. The conditional

distribution of (γij,n, γ ∗

ij,n, Xij) given εij is

P∗((γij,n, γ ∗

ij,n, Xij) ∈ B | εij) = P((γij,n, c(r0, r1) + C(r0, r1)γij,n, Xij) ∈ B) (20)

for all the measurable sets B. The conditional distribution of G∗

ij,n given (γij,n, γ ∗

ij,n, Xij, εij) is

P∗(G∗

ij,n = 1 | γij,n, γ
∗

ij,n, Xij, εij) = 1{(Z∗

ij,n)
′b + εij ≥ 0}. (21)

The conditional distribution of Gij,n given (G∗

ij,n, γij,n, γ
∗

ij,n, Xij, εij) is

P∗(Gij,n = 1 | G∗

ij,n, γij,n, γ
∗

ij,n, Xij, εij) =

{
r0 if G∗

ij,n = 0
1 − r1 if G∗

ij,n = 1.
(22)

Note that (P∗, θ ) satisfies Conditions 1(ii), 2 and 3, because Condition 1(ii) follows from Eq. (20), Condition 2 follows
from Eq. (21), Condition 3(i) follows from Eqs. (21) and (22), and Condition 3(ii) follows from Eq. (20).

To conclude this proof, we are going to show that the distribution of (Gij,n, Xij, γij,n) induced from P∗ is equal to P . The
distribution of (Xij, γij,n) induced from P∗ is equal to that from P , by Eq. (20). The equality of P∗(Gij,n = 1 | Zij,n) = P(Gij,n =

1 | Zij,n) a.s. under P∗ is shown as follows. Note that

γ ∗

ij,n = c(r0, r1) + C(r0, r1)γij,n a.s. under P∗ (23)

Then

P∗(Gij,n = 1 | Zij,n) = P∗(Gij,n = 1 | Zij,n, γ ∗

ij,n)
= r0P∗(G∗

ij,n = 0 | Zij,n, γ ∗

ij,n) + (1 − r1)P∗(G∗

ij,n = 1 | Zij,n, γ ∗

ij,n)
= r0 + (1 − r0 − r1)P∗(G∗

ij,n = 1 | Zij,n, γ ∗

ij,n)
= r0 + (1 − r0 − r1)EP∗ [P∗(G∗

ij,n = 1 | Zij,n, γ ∗

ij,n, εij) | Zij,n, γ ∗

ij,n]

= r0 + (1 − r0 − r1)P∗((Z∗

ij,n)
′b + εij ≥ 0 | Zij,n, γ ∗

ij,n)
= r0 + (1 − r0 − r1)Λ∗((Z∗

ij,n)
′b)

= r0 + (1 − r0 − r1)Λ∗((c(r0, r1) + C(r0, r1)γij,n)′b1 + X ′

ijb2)
= P(Gij,n = 1 | Zij,n),

where the first and seventh equalities follow from Eq. (23), the second follows from Eq. (22), the fifth follows from Eq. (21),
and the last follows from Eq. (19). □

Appendix D. Additional tables
See Tables 9 and 10.
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Table 9
95% confidence intervals Ĉn(α) with r0 = 0.

r1 ≤ 0.6 r1 ≤ 0.7 r1 ≤ 0.8 r1 ≤ 0.9
(1) (2) (3) (4)

Reciprocation [ 0.823, 1.676] [ 0.701, 1.676] [ 0.694, 1.676] [ 0.500, 1.676 ]
In degree [ 12.292, 33.099] [ 9.830, 33.099] [ 6.934, 33.099] [ 4.192, 33.099 ]
Supported trust [ 12.939, 110.258] [ 7.808, 110.258] [ 3.400, 110.258] [ 1.825, 110.258 ]
Constant [−3.896, −3.246] [−3.896, −3.204] [−3.896, −3.027] [−3.896, −2.826 ]
Same religion [ 0.348, 0.548] [ 0.348, 0.591] [ 0.348, 0.643] [ 0.348, 0.730 ]
Same sex [ 0.565, 0.793] [ 0.565, 0.834] [ 0.565, 0.851] [ 0.565, 0.944 ]
Same caste [ 0.195, 0.353] [ 0.195, 0.373] [ 0.195, 0.396] [ 0.195, 0.449 ]
Same language [−0.022, 0.079] [−0.029, 0.079] [−0.044, 0.079] [−0.065, 0.079 ]
Same family [ 1.308, 2.139] [ 1.308, 2.381] [ 1.308, 2.845] [ 1.308, 6.118 ]

Note: Ĉn(α) is computed in Columns (1)–(4) as ∪r1≤R̄1
Cn(α; 0, r1), with R̄1 ∈ {0.6, 0.7, 0.8, 0.9}.

Table 10
Ratio of lengths of 95% confidence intervals, |Ĉn(α)|/|Cn(α, 0, 0)|.

r1 ≤ 0.6 r1 ≤ 0.7 r1 ≤ 0.8 r1 ≤ 0.9
(1) (2) (3) (4)

Reciprocation 2.555 2.919 2.941 3.522
In degree 3.088 3.453 3.883 4.290
Supported trust 1.917 2.018 2.104 2.136
Constant 1.802 1.918 2.412 2.968
Same religion 1.386 1.687 2.050 2.652
Same sex 1.628 1.920 2.042 2.702
Same caste 1.387 1.558 1.765 2.230
Same language 1.190 1.263 1.445 1.685
Same family 3.628 4.682 6.708 20.987
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