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Abstract

A wide range of electronic, optical and magnetic properties of solids are

determined by electronic structure. Computational methods, such as density

functional theory, have been used successfully to model electronic structure

and thus allowed the investigation and prediction of properties of materials.

However, even now, the high computational cost of these ab initio methods

severely limits their applicability in material modelling to thousands of atoms

for static and hundreds of atoms for long-time dynamic simulations.

In modelling tasks involving only the mechanics of the atoms, one may

bypass the electronic structure model entirely and replace it with a surrogate

interatomic potential (IP), a functional form that may be fitted to theoretical

data from a high fidelity ab initio model. The aim of this thesis is to provide a

rigorous basis for IP models by justifying some of the underlying assumptions, in

particular with an eye towards physics-informed machine learning approaches.

More specifically, we consider the tight binding model, a quantum mechan-

ical model sharing many similarities with the more complex Kohn-Sham density

functional theories, and prove that the potential energy landscape (PEL) can

be decomposed into atom-centred site energy contributions depending only on

atoms within a small cut-off radius of the central atom. Moreover, we obtain

error estimates for body-ordered approximations, which allows one to reduce

the dimensionality of the site energy contributions. In particular, we are able

to decompose the PEL into low dimensional components which are easier to

analyse, manipulate, and fit.
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CHAPTER 1

Introduction

“The underlying physical laws necessary for the mathematical theory

of a large part of physics and the whole of chemistry are thus

completely known, and the difficulty is only that the exact application

of these laws leads to equations much too complicated to be soluble.

It therefore becomes desirable that approximate practical methods

of applying quantum mechanics should be developed, which can lead

to an explanation of the main features of complex atomic systems

without too much computation.”

— P. Dirac, 1929 [37]

Many properties of materials observed at the macroscopic scale are ulti-

mately driven by the quantum mechanical laws governing the behaviour of

matter at the atomistic level. A drastic example of this phenomenon is the

formation and evolution of defects in crystalline solids, a process involving the

breaking and formation of chemical bonds and thus also on the quantum mech-

anical nature of the electrons, which has the potential to lead to catastrophic

failure on a macroscopic scale, with serious consequences for engineering ap-
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plications.

However, except in the very simplest of cases, the governing equations

necessary for a complete description of these physical systems are far too

computationally expensive to solve. Therefore, a hierarchy of approximate

models must be considered where a reduction in computational complexity

is obtained at the expense of accuracy and transferability. Depending on

the application, one chooses an approximate model that is sufficiently rich to

describe the physical phenomenon of interest, while remaining computationally

tractable.

Figure 1.1 illustrates a ladder of approximations of the many-body problem,

allowing for the simulation of larger system sizes and longer timescales but

at the cost of accuracy. In the following sections, we describe the successive

coarse-graining steps starting from Kohn–Sham density functional theory

(DFT), which is itself already an approximation to the underlying quantum

mechanical many-body problem, to interatomic potentials.

Figure 1.1: Schematic representation depicting coarse-graining of the underlying
quantum mechanical many-body problem. The solid box indicates the main
focus of this thesis. Image courtesy of Gábor Csányi.
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1.1 Electronic Structure Models

A first and commonly made approximation to the fully quantum mechanical

many-body problem is the Born–Oppenheimer approximation where the nuclear

degrees of freedom are approximated by discrete points in space whereas

the electrons are quantum mechanical particles. Indeed, this is a reasonable

assumption in most situations because the mass of the electrons is much smaller

than that of the nuclei and the electrons move with a higher velocity. Therefore,

for a system of N nuclei with positions r ∈ (R3)N and charges Z ∈ RN , the

electronic degrees of freedom are governed by the high-dimensional wave

function Ψ: (R3)N → R solving the time-independent Schrödinger equation

ĤΨ = E0Ψ where E0 is the smallest eigenvalue of Ĥ, representing the ground

state energy of the system.

The extremely high-dimensionality of the many-body wave function motiv-

ates the mean field approximation where the interactions between the electrons

is replaced with a potential representing the mean potential generated by the

electrons. This idea, together with the observation that ground state properties

of the system can be written as functions of the electron density [72], leads to

Kohn–Sham density functional theory [78]. In this context the single particle

Schrödinger equations are known as the Kohn–Sham equations:

(
− 1

2
∆ + Veff [ρ](r)

)
ψn(r) = εnψn(r) (1.1.1)

ρ(r) =
∑
n occ

|ψn(r)|2 (1.1.2)

where Veff [ρ] := Vext + VH[ρ] + Vxc[ρ] is an effective potential (depending on

the electron density ρ) describing the interaction between the nuclei and the

electrons and between the electrons themselves. Here, Vext(r) :=
∑

`
−Z`
|r−r`|

is the potential generated by the nuclei (where Z` are the atomic numbers),

VH[ρ](r) =
´ ρ(r′)
|r−r′|dr

′ is the Hartree potential representing the repulsion

between the electrons at the mean-field level, and Vxc[ρ] is the exchange-

correlation potential, an (unknown) universal function of the electron density

3



which must be approximated. We may interpret εn as the energy of the

electron occupying orbital ψn and the summation is over the occupied (lowest

energy) orbitals. In particular, the Kohn–Sham equations must be solved self-

consistently. That is, for a fixed input density ρin, the effective potential Veff [ρin]

is constructed, the (linear) eigenvalue problem (−1
2∆ + Veff [ρin])ψn = εnψn

is solved, and the output density ρout =
∑

n occ |ψn|2 is defined. Then, a new

input density is constructed from previous output densities and the procedure

is repeated until self-consistency (i.e. until the input and output densities are

equal to within a given tolerance).

The computational cost involved in solving the linear eigenvalue problem

step scales cubically with respect to the system size N which limits the ap-

plicability of such calculations to systems consisting of tens to hundreds of

atoms [86].

1.2 Tight Binding Models

Throughout this thesis we will consider a class of tight binding models which

can either be seen as discrete approximations to density functional theory [53] or

alternatively as electronic structure toy models sharing many similarities with

the more complex Kohn–Sham DFT. Tight binding models therefore provide a

mathematically convenient framework allowing one to study properties of the

system without the need to deal with the additional technicalities related to

the continuous setting and underlying system of partial differential equations.

We briefly introduce the construction of the tight binding Hamiltonian from

the Kohn–Sham equations (1.1.1). To each atomic site `, we assign Nb local

“atomic orbitals” φ`a := φZ`,a( · −r`) centred on r` and only depending on ` via

the atomic species Z`. Then, by projecting the Kohn–Sham equations (1.1.1)

to this basis (that is, writing ψn =
∑

kbCn,kbφkb), we obtain an approximate

discrete operator eigenvalue problem which is the basis for the tight binding

4



framework:

HCn = εnSCn, (1.2.1)

where the Hamiltonian is given by H`a,kb :=
´
φ`aĤφkb and S`a,kb :=

´
φ`aφkb

is known as the overlap matrix. Since the orbitals φ`a are localised about

atom `, the discretised Hamiltonian H has off-diagonal decay. By applying the

Löwdin transform, we can (with out loss of generality) assume that {φ`a} is

orthonormal (that is, S = Id) [12,29].

The specific form of the tight binding Hamiltonian discussed in this thesis

(that is, the three-centre model described in §2.2) is obtained by approximating

the effective potential with a sum of site contributions Veff =
∑

` Veff,` =∑
` Veff,Z`( · − r`) and noting that

H`a,kb =
1

2

ˆ
∇φ`a · ∇φkb +

ˆ
φ`a
(
Veff,` + Veff,k

)
φkb +

∑
m 6∈{`,k}

ˆ
φ`aVeff,mφkb

=
1

2

ˆ
∇φZ`a · ∇φZkb( · − r`k)

+

ˆ
φZ`a

(
Veff,Z` + Veff,Zk( · − r`k)

)
φZkb( · − r`k)

+
∑

m 6∈{`,k}

ˆ
φZ`a( · − r`m)Veff,ZmφZkb( · − rkm) (1.2.2)

where r`k := rk − r`. This defines the linear three-centre Hamiltonian used in

this thesis.

1.2.1 Self-consistent Tight Binding

Of course, the effective potential should depend on the electron density ρ(x) =∑
n fn|ψn(x)|2 (where fn are the occupation numbers depending on εn from

(1.1.1)) which in turn depends on the Hamiltonian itself. In particular, (1.1.1)

or (1.2.1) must be solved self-consistently. For example, if we assume a local

density approximation (LDA) for the exchange-correlation energy Exc :=
´
ρ(x)εxc

(
ρ(x)

)
, the effective potential Veff may be approximated by the sum

5



of the following site contributions

ˆ
ρ(y)

|x− y|
dy −

∑
`

Z`
|x− r`|

+ εxc(ρ(x)) + ρ(x)ε′xc(ρ(x)) (1.2.3)

≈
∑
`

[
ρ` − Z`
|x− r`|

+
(
εxc(ρ`) + ρ`ε

′
xc(ρ`)

)
χN`(x)

]
(1.2.4)

where N` := r` +NZ` is an atomic neighbourhood of r` (possibly depending on

the atomic species Z`) and ρ` =
∑

n fn
∑

a |Cn,`a|2. Therefore, (1.2.2) should

contain terms of the form

∑
m

[
qm

ˆ
φ`aφkb
| · −rm|

+
(
εxc(ρm) + ρmε

′
xc(ρm)

)ˆ
Nm

φ`aφkb

]
(1.2.5)

≈ δ`k
[
δab
∑
m6=`

qm
r`m

+ v0(ρ`)ab

]
=: δ`k[v`]ab (1.2.6)

where r`m := |r`m| = |rm − r`|, q` := ρ` − Z` are the partial charges, and v0 is

some function with values in RNb×Nb . Here, we have used the fact that {φ`a}

is a local basis to make the approximation
´
Nm

φ`aφkb ≈ 0 unless ` = k = m.

Throughout this thesis, we suppose that v` is diagonal with constant diagonal,

which simplifies the notation without affecting the results presented.

Therefore, the self-consistent tight binding Hamiltonian considered in this

thesis takes the following form

H[ρ]`a,kb := HL
`a,kb + δ`kδabv(ρ)` (1.2.7a)

ρ` =
∑
n

fn
∑
a

|Cn,`a|2 (1.2.7b)

where H[ρ]Cn = εnCn (1.2.7c)

and HL is the linear tight binding Hamiltonian of the form (1.2.2). Since the

Hamiltonian depends on the electron density which in turn depends on the

eigenpairs of the Hamiltonian, (1.2.7) is a system of nonlinear (self-consistent)

equations. The formulation (1.2.7) naturally incorporates the density function

tight binding (DFTB) method [49,79,106].

In Chapters 3 and 4, we consider the case where r and v are independent

6



inputs into the Hamiltonian and show that the site energies E` from (1.4.1) are

local functions of {(r`k, vk)}. In Chapter 5, we discuss self-consistent models

and describe the extent to which the results can be extended to this setting. We

briefly note here however that our analysis explicitly excludes full long-range

Coulomb interactions and must instead consider the screened Yukawa potential∑
m 6=`

qm
r`m

e−γvr`m (for some γv > 0), for example. We briefly comment on the

Coulomb case in §5.5.1.

1.2.2 Bond-order Potentials (BOP)

Due to the underlying eigenvalue problem, standard implementations of the

tight binding model scale cubically with the number of particles in the system.

However, to access key quantities of interest, only integrals with respect to

certain spectral measures (the local density of states (LDOS)) are required

rather than the whole eigen-decomposition of the Hamiltonian.

The main idea behind bond-order potentials (BOP) [39,54,74] is to bypass

the eigenvalue problem by instead approximating the LDOS directly using only

the information from finitely many moments [Hn]`` whereH is the tight binding

Hamiltonian (1.2.2). Since H is sparse, BOP methods are linear scaling [57].

Related approaches, albeit in a slightly different setting, are the linear-

scaling spectral Gauss quadrature (LSSGQ) [116] and spectral quadrature

density functional theory (SQDFT) [117] methods where the LDOS is approx-

imated by various quadrature rules.

We show that the quantities of interest in the BOP formalism converge

exponentially to the corresponding tight binding quantities, thus rigorously

justifying this linear-scaling approach. Moreover, we go some way to justify

the LSSGQ and SQDFT methods.

1.3 Interatomic Potentials

The high computational cost of electronic structure models (e.g. naive imple-

mentations of tight binding models scale cubicly with the number of particles)

7



motivates the use of surrogate models for the simulation of materials, devised

to remain computationally tractable but capture as much detail of the reference

ab initio potential energy landscape (PEL) as possible.

Therefore, it may be advantageous to replace the electronic structure model

with an interatomic potential (IP). Empirical IPs are purely phenomenological

and aim to capture a minimal subset of desired properties of the reference ab

initio PEL, severely limiting their transferability [36,114].

Example 1.1 (Stillinger–Weber potential). A classical example of this ap-

proach is the Stillinger-Weber potential [114] for Si, which assigns to each atom

` ∈ Λ the site energy

Esw
` (r) :=

∑
k 6=`

(
Ar−p`k +Br−q`k

)
fc(r`k)

+
∑
k,m,n :

`∈{k,m,n}

λ
(

cos θkmn + 1
3

)2
fc(rmk)

γfc(rmn)γ (1.3.1)

where A,B, p, λ, γ > 0 are fixed parameters and fc(r) := e
1

r−r0 χ[0,r0)(r) for

some cut-off radius r0 > 0. The summation in the second term is over all bond

angles θkmn between rmk and rmn involving atom `. The angular part of this site

energy favours systems with tetrahedral bond angles. Then, a “limited search”

is carried out to choose parameters which capture certain desired properties.

For example, the choice of parameters ensures that diamond structures are

stable at low pressure.

Empirical IPs, such as the Stillinger–Weber potential, are computationally

inexpensive and can thus be used for large-scale, long-time dynamic simulations,

for example. However, the simplicity of these parametric models limits their

accuracy and transferability, and they are not systematically improvable.

1.3.1 Machine Learned Interatomic Potentials

The rapid growth in computational resources, increased both the desire and

the possibility to match as much of an ab inito PEL as possible. A continuous

8



increase in the complexity of parameterisations [7, 8, 51] has over time led to a

new generation of machine-learned interatomic potentials (MLIPs): for some

functional form ε depending on parameters θ, one writes

EIP(r) =
∑
`

ε
(
θ; {rk − r`}k

)
(1.3.2)

and learns the parameters θ by a fitting procedure with observations from the

reference PEL. Examples include artificial neural networks [9–11], symmetric

polynomials [16,108], and kernel methods [6]. A striking case is the Gaussian

approximation potential for Silicon [4], capturing the vast majority of the PEL

of Silicon of interest for material applications.

In practice, there are two main parts in the construction of (1.3.2): (i) a set

of descriptors (also known as fingerprints) that encodes information about the

atomic environment, and (ii) a function of the descriptors (the regression model).

If the set of descriptors satisfy the various physical symmetries (invariant under

rotation, translation, reflection, and permutation of like-atoms), then the model

respects the same physical symmetries. Moreover, if the system of descriptors is

complete (that is, the descriptors uniquely determine the atomic environment),

then the regression model is systematically improvable by increasing the number

of descriptors [5].

For example, in the neural network potentials [9, 10], a set of Behler and

Parrinello atom centred symmetry functions [11] are used as the descriptors,

while the regression model is an artificial neural network. However, it is an

open question as to whether these descriptors are complete.

More recent advances have been aimed at directly deriving a spanning

set of functions invariant under rotations and permutations (of like-atoms).

Examples include permutation invariant polynomials (PIPs) [16, 127], moment

tensor potentials (MTPs) [108], and the atomic cluster expansion (ACE) [38].

For more details of the ACE construction and a review of PIPs and MTPs,

see [2].

One of the main purposes of this thesis is to rigorously evaluate some of the

9



implicit or explicit assumptions underlying these machine-learned interatomic

potential models, as well as more general models for atomic properties. The

overarching principle in this work is to search for representations of properties

of ab initio models in terms of simple components which are easier to analyse,

manipulate analytically, and to fit than the PEL itself.

1.4 Summary of Results

1.4.1 Locality

For many materials (at least as long as Coulomb interaction does not play a

role) the first step in the construction of an IP is to decompose the PEL into

site energy contributions,

E(r) =
∑
`∈Λ

E`(r), (1.4.1)

where one assumes that each E` is local, i.e., it depends only weakly on atoms

far away. Partial justification for this assumption was given in [26,29] for linear

tight binding models at finite Fermi-temperature. In Chapter 3, we extend

these results to insulators at zero Fermi-temperature and significantly improve

the estimate for point defects.

In practice, one may therefore truncate the interaction by admitting only

those atoms within a finite cut-off range. Typical cut-off radii range from

5Å to 8Å, which means that on the order 30 to 100 atoms still make important

contributions. Thus the site energy is still an extremely high-dimensional

object and short of identifying low-dimensional features it would be practically

impossible to numerically approximate it, due to the curse of dimensionality.

Example 1.2 (Embedded Atom Model). A classical example that illustrates

our search for such low-dimensional features is the embedded atom model

(EAM) [36], which assigns to each atom ` ∈ Λ a site energy

Eeam
` (r) =

∑
k 6=`

φ(r`k) + F
(∑

k 6=` ρ(r`k)
)
.
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While the site energy Eeam
` remains high-dimensional, the representation is in

terms of three one-dimensional functions φ, ρ, F which are easily represented,

e.g. using splines or polynomials. Such a low-dimensional representation

significantly simplifies parameter estimation, and vastly improves generalisation

of the model outside a training set. Unfortunately, the EAM model and its

immediate generalisations [7] have limited ability to capture a complex ab initio

PEL. Still, this example inspires our search for representations of the PEL

involving parameters that are both low-dimensional and short-ranged.

1.4.2 Body-ordered Approximation

To control the dimensionality of the representation, a natural idea is to consider

the following body-ordered expansion,

E`(r) ≈ V0 +
∑
k 6=`

V1(r`k) +
∑

k1,k2 6=`
k1<k2

V2(r`k1 , r`k2)

+ · · ·+
∑

k1,...,kN 6=`
k1<···<kN

VN
(
r`k1 , . . . , r`kN ), (1.4.2)

where r`k := rk−r` and Vn(r`k1 , . . . , r`kn) is an (n+1)-body potential modelling

the interaction of a centre atom ` and n neighbouring atoms {k1, . . . , kn}. This

expansion was traditionally truncated at body-order three (N = 2) due to the

exponential increase in computational cost with N . However, it was recently

demonstrated by Shapeev’s moment tensor potentials (MTPs) [108] and Drautz’

atomic cluster expansion (ACE) [38] that a careful reformulation leads to models

with at most linear N -dependence. Indeed, algorithms proposed in [2, 108]

suggest that the computational cost may even be N -independent, but this has

not been proven. Even more striking is the fact that the MTP and ACE models

which are both linear models based on a body-ordered approximation, currently

appear to outperform the most advanced nonlinear models in regression and

generalisation tests [89,134].

These recent successes are in stark contrast with the “folklore” that body-

order expansions generally converge slowly, if at all [14, 38, 40, 64, 114]. The

11



fallacy in those observations is typically that they implicitly assume a vacuum

cluster expansion. We demonstrate in Chapter 4 that a rapidly convergent

body-order approximation can be constructed if one accounts for the chemical

environment of the material. We will precisely characterise the convergence

of such an approximation as N →∞, in terms of the Fermi-temperature and

the band gap of the material. In the process, we also prove (asymptotic)

error estimates for bond order potentials [74], as well as more general abstract

approximation schemes.

1.4.3 Thermodynamic Limit

To study bulk properties of a material with local defects, it is convenient to

consider an extended system of infinitely many nuclei where a naive definition

of the total energy is of course ill-defined. However, as a result of the strong

energy locality estimates described in §1.4.1, we are able to apply results of [27]

to obtain a well-defined renormalised energy functional for infinite systems.

Of course to simulate such a system, we must consider finite computational

domains and impose artificial boundary conditions. In Chapter 6, we consider a

sequence of supercell models and extend [26] to the zero Fermi-temperature case

by showing that, under a specific choice of electron numbers in the sequence of

finite domain approximations, the thermodynamic limit is given by a grand

canonical model with a defect-dependent chemical potential.

Moreover, in practice, a low but positive Fermi-temperature is chosen in

order to approximate the sharp cut-off with a smooth Fermi-Dirac function,

which ensures there is a unique Fermi-level, for example. We give detailed

justification for this approach by identifying the limiting model as Fermi-

temperature is sent to zero and obtain an exponential rate of convergence for

the nuclei configuration.
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CHAPTER 2

Mathematical Formulation of the

Tight Binding Models

In this chapter, we briefly introduce the tight binding Hamiltonian and the

main mathematical definitions which will be used throughout the thesis.

2.1 Atomic Configurations

For atomic index set Λ (for example Λ = {1, . . . , Nat} or Λ = N, or a multi-

lattice as in Chapter 6), we denote by r = {r`}`∈Λ ⊆ Rd the set of atomic

positions (for some spatial dimension d ∈ N). We write r`k := rk − r` for the

atomic positions relative to a central atom ` and r`k := |r`k|. Moreover, to

each atomic site ` ∈ Λ, we assign an effective potential (1.2.6) v` ∈ R and

the atomic species Z`. The state of atom ` will be denoted X` := (r`, v`, Z`)

and, to simplify notation further, we write X`k := (r`k, v`, vk, Z`, Zk) for the

state of atom k relative to the central atom `. To denote the whole atomic

configuration, we write X = (r, v, Z) := ({r`}`∈Λ, {v`}`∈Λ, {Z`}`∈Λ).

Throughout this chapter, we will assume that the configuration satisfies

the following no-collision assumption:
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(AC). There exist positive constants m = m(X), c = c(X) > 0 such that

r`k > m and |v`| 6 c for all `, k ∈ Λ.

2.2 Tight Binding Hamiltonian

We consider Nb atomic orbitals per atom and denote the corresponding indices

by 1 6 a, b 6 Nb. Then, by arguing as in §1.2, the tight binding Hamiltonian

H = H(X) is given by the following block matrix:

(TB). For X satisfying (AC), and `, k ∈ Λ, we suppose that

H(X)`k = h(X`k) +
∑

m6∈{`,k}

t
(
X`m,Xkm

)
+ δ`kv`IdNb

(2.2.1)

where h and t have values in RNb×Nb, are independent of the effective

potential v, and are ν times continuously differentiable with respect to

the relative atomic positions for some ν > 1. Moreover, we assume that

there exist h0, γ0 > 0 such that

∣∣∇jh(X`k)
∣∣ 6 h0e

−γ0r`k , and∣∣∇jt(X`m,Xkm)
∣∣ 6 h0e

−2γ0[r`m+rmk]. (2.2.2)

for 0 6 j 6 ν and all `, k,m ∈ Λ.

Symmetries. (i) We suppose that H(X) is symmetric (i.e. h(X`k) =

h(Xk`)
T and t(X`m,Xkm) = t(Xkm,X`m)T). (ii) For orthogonal

Q ∈ Rd×d, there exist orthogonal D`(Q) such that

H(QX) = D(Q)H(X)D(Q)T

where D(Q) = diag({D`(Q)}`∈Λ) and QX := ({Qr`}, v, Z). The nota-

tion D(Q) is inspired by the fact that they are most commonly block

Wigner-D matrices.

Remark 2.1. (i) It is important to emphasise that the constants h0, γ0 > 0 in

(2.2.2) are chosen to be independent of the atomic sites `, k,m ∈ Λ.
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(ii) The condition in (2.2.2) with j = 0 is satisfied for most common linear

tight binding models. In fact, in most tight binding models, a finite cut-off

radius is used and so Hamiltonian entries are zero for atoms beyond a finite

interaction range.

(iii) The symmetry properties [112] are derived, e.g., in [29, Appendix A].

(iv) In practice, the number of atomic orbitals per atom depends on the

atomic species. This notational complication can easily be avoided as outlined

Appendix B.1.

We now briefly review elementary properties of the tight binding Hamilto-

nian:

Lemma 2.1. There exists constants γj > 0 such that

|H(X)`k| 6 Ce−γ0r`k and

∣∣∣∣ ∂jH(X)`k
∂Xn1 . . . ∂Xnj

∣∣∣∣ 6 Ce−γj
∑j
l=1[r`nl+rnlk] (2.2.3)

for 1 6 j 6 ν and n1, . . . , nj ∈ Λ.

As a result of (TB), H(X) is symmetric and so the spectrum is real.

Moreover, as a direct result of Lemma 2.1, the spectrum is uniformly bounded

[29, Lemma 4]:

Lemma 2.2. There exists σ, σ depending only on X through m(X) and c(X)

from (AC) such that σ
(
H(X)

)
⊆ [σ, σ].

2.3 Metals, Insulators, and Defects

The structure of the spectrum σ
(
H(X)

)
will have a key role in the analysis.

To illustrate the main ideas, we briefly describe typical spectra seen in metals

and insulating systems.

In the case where X describes a multi-lattice in Rd formed by taking the

union of finitely many shifted Bravais lattices, the spectrum σ
(
H(X)

)
is the

union of finitely many continuous energy bands (see [77] or Appendix B.2).

That is, there exist finitely many continuous functions, εα : BZ → R, on the
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µ

Figure 2.1: Schematic plots of the spectrum σ
(
H(X)

)
of a metal (top) and

insulator (bottom).

Brillouin zone BZ, a compact connected subset of Rd, such that

σ
(
H(X)

)
=
⋃
α

εα(BZ).

In particular, in this case, σ
(
H(X)

)
= σess

(
H(X)

)
is the union of finitely many

intervals on the real line. The band structure {εα} relative to the position of the

chemical potential, µ, determines the electronic properties of the system [118].

In metals µ lies within a band, whereas for insulators, µ lies between two

bands in a spectral gap. Schematic plots of these two situations are given in

Figure 2.1.

We now consider perturbations of the reference configuration X consisting

of a small global perturbation combined with a point defect:

(Pδ). Let δ > 0. Suppose X = (r, v, Z) satisfies (AC) and the defect con-

figuration Xd = (rd, vd, Zd) defined on some index set Λd satisfies

(AC) and, for some Rd > 0,

• Λff := {` ∈ Λd : |rd
` | > Rd} = {` ∈ Λ: |r`| > Rd},

• Zd
k = Zk for all k ∈ Λff , and

• supk∈Λff

[
|rd
k − rk|+ |vd

k − vk|
]
6 δ.

For (X,Xd) satisfying (Pδ), the Hamiltonians H(X) and H(Xd) may

be defined on different spatial domains (e.g. when considering a vacancy or

interstitial defect). Therefore, in order to directly compare these operators, we

extend their definitions to the larger spatial domain Λ∪Λd by inserting finitely

many additional zero rows and columns. We denote the resulting operators by
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H̃(X) and H̃(Xd) (full details are presented in the proof of Proposition 2.3,

below). We now see how the Hamiltonian is affected by considering point

defect configurations:

Proposition 2.3 (Decomposition of the Hamiltonian). Fix ε > 0. Then, there

exists δ > 0 such that if (X,Xd) satisfies (Pδ), then there exists R > 0 and

operators Pε, PFR such that

H̃(Xd) = H̃(X) + PFR + Pε, (2.3.1)

[PFR]`k = 0 if |r`| > R or |rk| > R, and ‖Pε‖`2→`2 < ε.

Moreover, σ
(
H(Xd)

)
\Bε

(
σ
(
H(X)

))
is a finite set.

In particular, if X describes a multi-lattice, then, since local perturbations

in the defect core are of finite rank, the essential spectrum is unchanged and

we obtain finitely many eigenvalues bounded away from the spectral bands.

Moreover, a small global perturbation can only result in a small change in the

spectrum. A schematic plot of this situation is given in Figure 2.2.

To summarise this discussion, we make the following definitions:

Definition 2.2. Fix ε > 0 and suppose (X,Xd) satisfies (Pδ) with δ = δ(ε)

coming from Proposition 2.3. Then, we define I− and I+ to be compact intervals

and {λj} to be a finite set such that

Bε
(
σ
(
H(X)

))
⊆ I− ∪ I+, σ

(
H(Xd)

)
⊆ I− ∪ {λj} ∪ I+, (2.3.2)

and max I− 6 µ 6 min I+. Moreover, we define

g := min I+ −max I− > 0, and (2.3.3)

gd := min I+ ∪ {λj : λj > µ} −max I− ∪ {λj : λj 6 µ}. (2.3.4)

The parameters in Definition 2.2 are also displayed in Figure 2.2. The

constant g is slightly arbitrary in the sense that as long as Bε
(
σ
(
H(X)

))
⊆

I− ∪ I+, then there exists a finite set {λj} as in (2.3.2). Choosing smaller g
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I− I+

µ

g

gd

Figure 2.2: Top: Schematic plot of the spectrum σ
(
H(X)

)
for an insulating

system, together with two compact intervals I− and I+ as in (2.3.2) and the
constant g from (2.3.3). Bottom: The spectrum σ

(
H(Xd)

)
after considering

perturbations satisfying (Pδ). While the edges of the spectrum may be accu-
mulation points for a sequence of eigenvalues within the band gap, the number
of such eigenvalues bounded away from the edges is finite.

reduces the size of the set {λj}.

2.4 Local Analytic Observables

Fix X, Xd satisfying Definition 2.2. We suppose that O : U → C is analytic

for some open subset U ⊆ C containing I− ∪ I+ ⊇ σ
(
H(X)

)
. Then, for ` ∈ Λ,

the corresponding local observables are defined as

O`(X) := trO
(
H(X)

)
``

= tr

[˛
CO

O(z)
(
z −H(X)

)−1 dz

2πi

]
``

(2.4.1)

where CO ⊆ U is a simple closed positively oriented contour (or union of

contours) encircling I− ∪ I+. We use the notation O(X) := {O`(X)}`∈Λ.

Similarly, if CO encircles I− ∪ {λj} ∪ I+, we may use (2.4.1) to define O`(X
d).

Remark 2.3 (Holomorphic Functional Calculus). In (2.4.1), we have applied

the holomorphic functional calculus to define the operator O(H) for functions

O analytic in some neighbourhood of σ(H). This approach for the tight binding

model has been widely used [26, 29, 45, 58].

The distance between the contour CO and the spectrum will be important

for the analysis:
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Definition 2.4. For CO as in (2.4.1), we define

dO := inf
z∈CO

dist
(
z, I− ∪ I+

)
(2.4.2)

dd
O := inf

z∈CO
dist

(
z, I− ∪ {λj} ∪ I+

)
. (2.4.3)

If it is clear from the context, we write C = CO, d = dO, and dd = dd
O.

Although all of the results apply to general local observables, we will be

primarily interested in the following two special cases.

Electron density. For fixed inverse Fermi-temperature β ∈ (0,∞] and

chemical potential µ, the electron density is given by

ρ = F β(X) where F β(z) :=


(
1 + eβ(z−µ)

)−1
if β <∞

χ(−∞,µ)(z) + 1
2χ{µ}(z) if β =∞.

(2.4.4)

When making the choice of chemical potential explicit in the notation, we will

write F β(z;µ) and F β(X;µ). In Chapter 5, we consider the case where the

effective potential, v`, itself depends on the electron density, introducing a

nonlinearity into the system.

Grand potential. While nuclei are treated as classical particles, we assume

that electrons are described by a grand canonical potential model. That is, the

Fermi-temperature, volume and chemical potential are fixed model parameters

and we consider the grand potential:

Gβ` (X) := tr
[
Gβ
(
H(X)

)
``

]
where

Gβ(z) :=


2
β log

(
1− F β(z)

)
if β <∞,

2(z − µ)χ(−∞,µ)(z) if β =∞.

(2.4.5)

Again, we will also write Gβ` (X;µ) and Gβ(z;µ) for (2.4.5).

Remark 2.5 (Zero Fermi-temperature Limit). We justify the zero Fermi-

temperature definitions via a limiting argument, see Chapter 6 for the details.
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The next results summarise the main properties of these analytic functions:

Lemma 2.4. For fixed β ∈ (0,∞], the functions F β( · ) and Gβ( · ) extend to

analytic functions on Dβ(µ) := C \ {µ+ ir : r ∈ R, |r| > π
β}.

Therefore, to define (2.4.1), for O = F β or Gβ , we must choose Cβ ⊆ Dβ(µ).

In particular, for zero Fermi-temperature (β = ∞), we require a spectral

gap (that is, µ 6∈ σ(H)) in order to define local observables (2.4.1) via the

holomorphic functional calculus.

In order to describe the asymptotic behaviour in the zero Fermi-temperature

limit, we require uniform bounds on F β and Gβ as β →∞:

Lemma 2.5. Suppose Cβ is a family of contours contained in a bounded set

such that (2.4.1) holds for O = F β or Gβ. Moreover, suppose there exists

b ∈ (0, π) such that dist(z, {µ ± iπβ−1}) > bβ−1 for all z ∈ Cβ. Then, for

β0 > 0, we have

sup
β>β0

sup
z∈Cβ

|Oβ(z)| <∞

for both Oβ = F β and Gβ.

See Fig. 2.3 for a representative example of such a contour.

2.5 Proofs

2.5.1 Tight Binding Hamiltonian

For this section, we fix a configuration X and corresponding Hamiltonian

H = H(X) satisfying Definition 2.2 and (TB), respectively.

We first show that the tight binding Hamiltonian is short ranged:

Proof of Lemma 2.1. In the j = 0 case, the result follows from the estimate∑
m e
−2γ0[r`m+rmk] 6 Cm,d

γd0
e−γ0r`k for some Cm,d depending on m and d (see

Appendix B.3).

Now suppose that 1 6 j 6 ν. The result clearly holds if ` = k and so

we assume ` 6= k. Since h and t are independent of the effective potential all
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I− I+

g

gd

Cβ

Figure 2.3: Schematic plot of an admissible integration contour Cβ for F β or
Gβ (see (2.4.1)).

mixed partial derivatives are zero. Moreover, we have

∂H(X)`k
∂vn

= δ`kδ`nIdNb
. (2.5.1)

and all higher order partial derivatives are zero.

A simple calculation reveals that

∂jh(X`k)

∂rn1 . . . ∂rnj
=


(−1)

∑j
l=1 δ`nl ∇jh(X`k) if n1, . . . , nj ∈ {`, k},

0 otherwise.

On the other hand, derivatives of the three centre term take the form

∂j

∂rn1 . . . ∂rnj

∑
m 6∈{`,k}

t(X`m,Xkm)

=
∑

m6∈{`,k}

〈
∇⊗jt ;umn1

, . . . , umnj

〉
(X`m,Xkm), (2.5.2)

where umn := (δnm− δn`, δnm− δnk)T. (Here, we use the notation from (A.2.1)).

In particular, if n ∈ {`, k}, then umn 6= 0 and if n 6∈ {`, k}, then umn = (1, 1)Tδnm

and the summation over m 6∈ {`, k} can be restricted to the single term m = n.
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Therefore, in the case n1, . . . , nj ∈ {`, k}, the left hand side of (2.2.3) can

be bounded above by

∣∣∇jh(X`k)
∣∣+ Cj

∑
m 6∈{`,k}

∣∣∇jt(X`m,Xkm)
∣∣ 6 Ce−γj

∑j
l=1[r`nl+rnlk], (2.5.3)

where γj := 1
j γ0.

On the other hand if n1, . . . , nj ∈ {`, k, n} and nl = n 6∈ {`, k} for some

1 6 l 6 j, then the left hand side of (2.2.3) can be bounded above by

Cj
∣∣∇jt(X`n,Xkn)

∣∣ 6 Cjh0e
−2γ0[r`n+rnk] 6 Ce−γj

∑j
l=1[r`nl+rnlk]. (2.5.4)

In all other cases the left hand side of (2.2.3) is zero.

As a direct corollary, σ
(
H(X)

)
is bounded [29, Lemma 4]:

Proof of Lemma 2.2. The off-diagonal decay of the Hamiltonian allows us to

conclude by applying the Gershgorin circle theorem [73]: for fixed ` ∈ Λ, we

have

∑
k 6=`

∣∣H(X)`k
∣∣ 6 C

∑
k 6=`

e−γ0r`k 6 Cm

ˆ
e−γ0|r|dr =

Cm,d

γd0
(2.5.5)

and so |λ| 6 h0 + c + Cm,dγ
−d
0 for all λ ∈ σ

(
H(X)

)
.

2.5.2 Perturbation of the Spectrum

In this section, we prove Proposition 2.3, a slightly stronger statement than

Weyl’s theorem [76] on the stability of the essential spectrum.

First, in order to compare H(X), an operator on `2(Λ;RNb), and H(Xd),
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an operator on `2(Λd;RNb), we first extend the definitions to Λ∪Λd by defining

H̃(X)`k :=


H(X)`k if `, k ∈ Λ,

0 otherwise

and

H̃(Xd)`k :=


H(Xd)`k if `, k ∈ Λd,

0 otherwise.

(2.5.6)

Since this only introduces at most finitely many additional zero rows and

columns corresponding to additional atoms within the defect core, the spectra

only change by the addition of finitely many zero eigenvalues. Shifting the

spectrum away from {0}, we are able to replace H(X) and H(Xd) with H̃(X)

and H̃(Xd), respectively.

That is, for an appropriate contour C , we choose z0 ∈ C such that the

contour C + z0 does not encircle {0}, and note that for O( · ;µ) = F β or Gβ

with chemical potential µ, we have

O`(X) =

˛
C
O(z;µ)

(
z −H(X)

)−1

``

dz

2πi

=

˛
C +z0

O(z − z0;µ)
(
z − z0 −H(X)

)−1

``

dz

2πi

=

˛
C +z0

O(z;µ+ z0)
(
z − (H̃(X) + z0)

)−1

``

dz

2πi
.

The exact same argument also applies to H̃(Xd). In the following we assume

that the spectra σ
(
H(X)

)
and σ

(
H(Xd)

)
are bounded away from zero.

Now that the Hamiltonians are directly comparable, we obtain the following

decomposition:

Proof of Proposition 2.3. For fixed R0 > 0, we let Pε be the operator (depend-

ing on R0) with matrix entries

[Pε]`k :=


[
H̃(X)− H̃(Xd)

]
`k

if `, k ∈ Λff or r`k > R0,

0 otherwise
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and suppose that PFR is defined such that (2.3.1) is satisfied. In particular,

[PFR]`k = 0 if |r`|, |rk| > Rd (i.e. if `, k ∈ Λff), or if |r`| 6 Rd and |rk| > R :=

Rd +R0 (or vice versa). It remains to show that ‖Pε‖`2→`2 < ε for sufficiently

small δ and sufficiently large R0.

We first consider the case `, k ∈ Λff . Along the diagonal (` = k), we have

the bound |[H(X) − H(Xd)]`k| 6 |v` − vd
` | 6 δ. Moreover, supposing δ is

sufficiently small such that |θr`k + (1 − θ)rd
`k| >

1
2r`k for all `, k ∈ Λ and

θ ∈ [0, 1], we have

∣∣h(X`k)− h(Xd
`k)
∣∣ =

∣∣∇h((ξ`k, Z`, Zk)) · (r`k − rd
`k

)∣∣ 6 Cδe−
1
2
γ0r`k (2.5.7)

for some ξ`k ∈ [r`k, r
d
`k]. Similarly, we have

∑
m

∣∣t(X`m,Xkm)− t(Xd
`m,X

d
km)
∣∣ 6 Cδe−

1
2
γ0r`k . (2.5.8)

In particular, using the off-diagonal decay of the Hamiltonian (Lemma 2.1),

we have: for ψ ∈ `2 with ‖ψ‖`2 = 1,

‖Pεψ‖2`2 6 C
[
δ2
∑
`k

e−γ0r`k |ψk|2 +
∑

`6∈Λff ,k∈Λ∪Λd :
r`k>R0

e−γ0r`k
]

(2.5.9)

6 C
[
δ2 +

ˆ
|x|>R0

e−γ0|x|dx
]
. (2.5.10)

Therefore, we may choose δ sufficiently small and R0 sufficiently large so that

‖Pε‖`2→`2 < ε.

Using the operator norm perturbation result [76, p. 291], we have

dist
(
σ
(
H̃(Xd)

)
, σ
(
H̃(X) + PFR

))
6 ‖Pε‖`2→`2 < ε

and so σ
(
H̃(Xd)

)
⊆ Bε

(
σ
(
H̃(X) + PFR

))
. Therefore, we have

σ
(
H(Xd)

)
\Bε

[
σ
(
H(X)

)]
⊆ Bε

[
σ
(
H̃(X) + PFR

)
\ σ
(
H̃(X)

)]
.
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We conclude by showing that σ
(
H̃(X) + PFR

)
\ σ
(
H̃(X)

)
is finite. Since

PFR is finite rank, we may directly apply Weyl’s theorem [76] on the stability

of the essential spectrum (i.e. σess

(
H̃(X) + PFR

)
= σess

(
H̃(X)

)
) and conclude

σ
(
H̃(X) + PFR

)
\ σ
(
H̃(X)

)
⊆ σ

(
H̃(X) + PFR

)
\ σess

(
H̃(X)

)
= σdisc

(
H̃(X) + PFR

)
\ σess

(
H̃(X) + PFR

)
is both compact and discrete and therefore finite.

2.5.3 Fermi-Dirac Distribution and Grand Potential

Proof of Lemma 2.4. Firstly, we note that F β( · ) is analytic away from the

simple poles at {z ∈ C : 1 + eβ(z−µ) = 0} = µ+ i(2Z + 1)πβ−1.

Moreover, extending Gβ( · ) into the complex plane amounts to choosing a

branch cut of the complex logarithm. Therefore, for each n ∈ Z, we define,

Gβn(z) :=
2

β

[
log
∣∣1− F β(z)

∣∣+ iArgn(1− F β(z))
]

where (2.5.11)

Argn(z) = Arg(z) (mod 2π) and Argn(z) ∈ ((n− 1)π, (n+ 1)π].

Choosing the principal branch of the complex logarithm, we get Gβ0 which

agrees with Gβ on the real axis.

Now, Gβn( · ) is analytic on the set that avoids the branch cut of the complex

logarithm and the non-analyticity of 1− F β. That is, Gβn( · ) is analytic on


{z ∈ C : 1− F β(z) 6∈ (−∞, 0]} \

{
µ+ (2k+1)πi

β

}
k∈Z

for n even,

{z ∈ C : 1− F β(z) 6∈ [0,∞)} \
{
µ+ (2k+1)πi

β

}
k∈Z

for n odd.

Rewriting 1− F β we obtain,

1− F β(z) =
eβ(z−µ)

(
1 + eβ(z−µ)

)
|1 + eβ(z−µ)|2

=
eβ(Re(z)−µ)

|1 + eβ(z−µ)|2
(
eiβ Im(z) + eβ(Re(z)−µ)

)
.

(2.5.12)

The factor, eβ(Re(z)−µ)|1 + eβ(z−µ)|−2, is real and positive and so 1 − F β(z)
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avoids the branch cut if and only if h(z) := eiβ Im(z) + eβ(Re(z)−µ) does. Now,

h(z) ∈ (−∞, 0] if and only if Re(z) 6 µ and β Im(z) ∈ π(2Z+ 1). On the other

hand h(z) ∈ [0,∞) if and only if β Im(z) ∈ 2πZ.

In particular, we may conclude that Gβ0 is analytic on

A0
β :=

{
z ∈ C : Re(z) > µ

}
∪
{
z ∈ C : β Im(z) ∈ (−π, π)

}

and Gβn (for n 6= 0) is analytic on the set

Anβ :=
{
z ∈ C : Re(z) < µ, β Im(z) ∈ ((n− 1)π, (n+ 1)π)

}
.

Since Anβ ∩A
n+1
β = {z ∈ C : Re(z) < µ, β Im(z) ∈ (nπ, (n+ 1)π)}, and by

(2.5.12), we have that

Argn(1− F β(z)) = Argn+1(1− F β(z)) ∈ (nπ, (n+ 1)π]

for all z ∈ Anβ ∩A
n+1
β . That is, Gβn = Gβn+1 on Anβ ∩A

n+1
β .

We may therefore consider the analytic continuation of Gβn to Anβ ∪A
n+1
β .

We do this for each n ∈ Z and since
⋃
n∈ZA

n
β = Dβ(µ) this concludes the

proof.

We now denote by z 7→ Gβ(z) the analytic continuation of (2.4.5) to Dβ(µ).

Proof of Lemma 2.5. Since Cβ are contained in a bounded set S, we can find

a strip of width r > 0 about the real axis containing all Cβ. This means that

for fixed β > 0, the number branches of the complex logarithm that we must

consider, as in (2.5.11), in order to have extended Gβ to the whole of S is at

most a constant multiple of rβ
π . This means that

∣∣Argn(1− F β(z))
∣∣ 6 (n+ 1)π 6 Crβ

for all n such that S ∩ {β Im(z) ∈ ((n − 1)π, (n + 1)π)} 6= ∅ and z ∈ Anβ.

Therefore, for z ∈ S and β > 0, we have that Im
(
Gβ(z)

)
is bounded on S
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independently of β.

Fix β > β0. Now we show that, away from the singularities, Re
(
Gβ(z)

)
is uniformly bounded. Since Re

(
Gβ(z;µ)

)
= 2 Re(z − µ)− 2

β log
∣∣1 + eβ(z−µ)

∣∣
and 2(z − µ) is uniformly bounded on S, we conclude by showing

2
β log

∣∣∣1 + eβ(z−µ)
∣∣∣ 6 2

β log

(
1 + exp

(
β sup
z∈S
|Re(z)− µ|

))
6 C

for some C > 0 depending only on S and β0. Therefore, all that is left to

show is that |1 + eβ(z−µ)| is uniformly bounded below by a positive constant.

If Re(z − µ) < −cβ−1 for some c > 0 then |1 + eβ(z−µ)| > 1− e−c > 0 and if

Re(z − µ) > cβ−1 then |1+eβ(z−µ)| > ec−1 > 0. Moreover, if |β Im(z)−r| > θ

for all r ∈ R such that |r| > π, then |1 + eβ(z−µ)| > tan(θ) > 0.
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CHAPTER 3

Locality of Interatomic Interactions
in Linear Tight Binding Models

This chapter is based on the article [98] “Locality of interatomic

forces in tight binding models for insulators” published in ESAIM:

Mathematical Modelling and Numerical Analysis, 54(6): 2295-2318

(2020). This paper is co-authored by Huajie Chen, who ran the

numerical simulations, and Christoph Ortner.

3.1 Introduction

A starting assumption in most interatomic potential (IP) models for materials

is that the potential energy landscape (PEL) can be decomposed into site

energies, i.e. contributions from individual atoms that depend only on a small

neighbourhood.

Partial justification for this assumption was given in [26,29] for linear tight

binding models at finite Fermi-temperature. In particular, it was shown that

the grand potential has the site energy decomposition
∑

`G
β
` (X) where the
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site contributions Gβ` , defined in (2.4.5), are local :

∣∣∣∣∣∂Gβ` (X)

∂rk

∣∣∣∣∣ . e−η r`k (3.1.1)

for some η > 0. Similar estimates hold for higher derivatives.

However, one expects (and this is made precise in this chapter) that the

exponent η in (3.1.1), which measures the interatomic interaction range, in

general satisfies η ∼ β−1. This means that, for moderate to low temperature

regimes (e.g. room temperature), the practical value of (3.1.1) is limited. The

main purpose of this chapter is to demonstrate that, for insulators, the presence

of a spectral gap significantly improves the estimate. Specifically, we consider

a linear tight-binding model at either zero or finite Fermi-temperature, with

electrons in a grand-canonical ensemble. In this setting we prove that (3.1.1)

holds with η independent of β but instead η is linear in the spectral gap.

Moreover, we demonstrate that “pollution” of the spectral gap by a point

spectrum caused by local defects in the crystal, affects only the pre-factors,

but not the exponent η in (3.1.1). We therefore significantly strengthen

the estimates of [26, 29] to the case of insulating multi-lattice materials in

the presence of point defects as well as extending the results to zero Fermi-

temperature models.

3.2 General Locality Estimates

With the notation of Chapter 2, we have the following locality estimates

for general systems at finite Fermi-temperature or insulators at zero Fermi-

temperature. Recall from Appendix A that ‖O‖C := len(C )
2π supz∈C |O(z)|

denotes the contour norm.

Theorem 3.1. Suppose that X and O satisfy Definitions 2.2 and 2.4, re-

spectively. Then, for 1 6 j 6 ν, there exist positive constants Cj and ηj such
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that

∣∣∣∣ ∂jO`(X)

∂Xm1 . . . ∂Xmj

∣∣∣∣ 6 Cj‖O‖C e−ηj
∑j
l=1 r`ml (3.2.1)

for any `,m1, . . . ,mj ∈ Λ. Moreover, Cj ∼ d−(j+1) and ηj ∼ d as d→ 0 where

d is the constant from (2.4.2) applied to O.

Remark 3.1. In the case O = F β or Gβ, we may choose C (depending on β)

so that ‖O‖C is independent of β (Lemma 2.5) and d > c
(
β−1+dist(µ, I−∪I+)

)
for some fixed constant c > 0. In particular, we have (3.2.1) with ηj ∼ β−1 + g

as β−1 + g→ 0 as long as the g→ 0 limit is approached symmetrically about µ.

Sketch of the Proof. The estimate (3.2.1) for some Cj , ηj > 0 was previously

known [29, Theorem 10] for functions O analytic in a neighbourhood of [σ, σ]

(in particular, for O = F β or Gβ at finite Fermi-temperature). Here, we

carefully track the d dependence in the estimates and, in particular, extend the

results to the zero Fermi-temperature case (i.e. O = F∞ or G∞ for insulators).

The exponents in these estimates depend on the distance between the

spectrum σ
(
H(X)

)
and the integration contour C as in (2.4.1), see Figure 2.3

for a schematic plot of such a contour. Therefore, the asymptotic behaviour

of these constants comes from the analyticity of O (see Lemma 2.4) and the

spectral gap (see Definition 2.2). We give a full proof in §3.6.1 below.

3.3 Locality Estimates for Point Defects

In this section, we consider a reference configuration X and corresponding

point defect reference configurations Xd arising as in (Pδ). Moreover, we use

the notation from Definition 2.2.

Proposition 2.3 allows us to approximate H(Xd) as a finite rank update of

the reference Hamiltonian H(X). This means we can apply the existing locality

estimates of Theorem 3.1 on the reference spectrum. The approximation does

not affect the exponent in the estimates and only increases the constant pre-

factor. We show that the pre-factor may be chosen to depend on the atomic
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sites and this converges to the corresponding pre-factor in the defect-free case,

as we send the atomic sites away from the defect core. That is, away from

the defect, the locality estimates resemble the corresponding estimates for the

reference configuration.

Theorem 3.2. Fix (X,Xd) and O satisfying Definitions 2.2 and 2.4, respect-

ively, and the constants (Cj , ηj) from Theorem 3.1 when applied to O(X).

Then, for 1 6 j 6 ν, ` ∈ Λd, and m = (m1, . . . ,mj) ∈ (Λd)j, there exist

positive constants Cd
j = Cd

j (`,m) such that

∣∣∣∣∣ ∂jO`(X
d)

∂Xd
m1
. . . ∂Xd

mj

∣∣∣∣∣ 6 Cd
j ‖O‖C e−ηj

∑j
l=1 r`ml (3.3.1)

Moreover, Cd
j (`,m) is uniformly bounded independently of (`,m) and, if

`,m1, . . . ,mj ∈ BR(ξ) for some R > 0, then Cd
j (`,m) → Cj as |ξ| → ∞,

with an exponential rate.

Remark 3.2. In the j = 1 case, we have

∣∣Cd
1 (`,m)− C1

∣∣ . e−η1[|r`|+|rm|−|r`m|].

For higher derivatives, the relationship between ` and m is more complicated.

3.4 Numerical Experiments

In the following numerical simulations, we use the NRL tight binding model

[32,91, 99] to test the force-locality in bulk carbon and silicon, both with and

without an interstitial defect. Since we are unaware of established codes that

compute site energies and their derivatives, these models were implemented in

the Julia package SKTB.jl [28]. The implementation was tested against an

NRL tight binding implementation in the QUIP package [13].
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3.4.1 The NRL Tight Binding Model

The NRL tight binding model, developed by Cohen, Mehl, and Papaconstanto-

poulos [32], is slightly more general than our formulation in (TB). Since this

model is non-orthogonal, the energy levels are now determined by the following

generalised eigenvalue problem

H(X)ψs = λsS(X)ψs where ψT
s S(X)ψs = 1. (3.4.1)

Furthermore, the NRL Hamiltonian and overlap matrices are constructed both

from hopping elements as in (6.3.1) as well as on-site matrix elements as a

function of the local environment. For carbon and silicon they are parameterised

as follows (for other elements the parameterisation is similar): To define the

on-site terms, each atom ` is assigned a pseudo-atomic density

ρ` :=
∑
k

e−λ
2r`kfc(r`k),

where λ is a fitting parameter, fc is the cutoff function

fc(r) :=
θ(Rc − r)

1 + exp
(
(r −Rc)/lc + Lc

) ,
with θ the Heaviside step function, and the parameters lc = 0.5, Lc = 5.0

for most elements. Although, in principle, the on-site terms should have off-

diagonal elements, the NRL model follows traditional practice and only include

the diagonal terms. Then, the on-site terms for each atomic site ` are given by

H(X)υυ`` := aυ + bυρ
2/3
` + cυρ

4/3
` + dυρ

2
` , (3.4.2)

where υ = s, p, or d is the index for angular-momentum-dependent atomic

orbitals and (aυ), (bυ), (cυ), (dυ) are fitting parameters. The on-site elements

for the overlap matrix are simply taken to be the identity matrix.

The off-diagonal NRL Hamiltonian entries follow the formalism of Slater

and Koster who showed in [112] that all two-centre (spd) hopping integrals can
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be constructed from ten independent “bond integral” parameters hυυ′µ, where

(υυ′µ) = ssσ, spσ, ppσ, ppπ, sdσ, pdσ, pdπ, ddσ, ddπ, and ddδ.

The NRL bond integrals are given by

hυυ′µ(r) :=
(
eυυ′µ + fυυ′µr + gυυ′µr

2
)
e−iυυ′µrfc(r) (3.4.3)

with fitting parameters eυυ′µ, fυυ′µ, gυυ′µ, iυυ′µ. The matrix elements H(X)υυ
′

`k

are constructed from the hυυ′µ(r) by a standard procedure [112].

The bond integral parameterisation of the overlap matrix is given by

sυυ′µ(r) :=
(
δυυ′ + jυυ′µr + kυυ′µr

2 + lυυ′µr
3
)
e−mυυ′µrfc(r) (3.4.4)

with the fitting parameters jυυ′µ, kυυ′µ, lυυ′µ,mυυ′µ.

The fitting parameters in the foregoing expressions are determined by fitting

to high-symmetry first-principle calculations. In the NRL method, a database

of eigenvalues (band structures) and total energies was constructed for several

crystal structures at several volumes. Then the parameters are chosen such

that the eigenvalues and energies in the database are reproduced to within some

acceptable tolerance. For practical simulations, the parameters for different

elements can be found in [99].

3.4.2 Test systems

Our two test systems are diamond cubic bulk carbon and bulk silicon, which

provide ideal test cases of our theory due to their clearly defined band gaps.

Since carbon has a much larger band gap than silicon we will also be able to

test how this affects locality of interaction.

For both elements, we simulate a supercell model consisting of 5× 5× 5

diamond cubic unit cells, containing 1000 atoms in total. First, we use the

NRL tight binding model to relax the cells to their ground states (this only

rescales the cells but does not change their shape). We then compute the band
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structures which are, respectively, shown in Figures 3.1 and 3.2. We verified

our implementation by comparing the band structure for the silicon model

against that published in [100]. The chemical potential is chosen to be the

mid-point between the highest occupied state and the lowest unoccupied state

of the 1000-atom system. For both systems, we observe clearly defined band

gaps, approximately 0.98 eV for Si and 3.83 eV for C.

Figure 3.1: Band structure of C; spectrum of the homogeneous lattice (supercell
approximation) and defective system.

Figure 3.2: Band structure of Si, spectrum of the homogeneous lattice (supercell
approximation) and defective system.

Next, we create a self-interstitial near the origin, and observe (in Figures

3.1 and 3.2) the expected pollution of the band gap in the defect system. By

tweaking the position of the interstitial we are able to create configurations

where an eigenvalue is arbitrarily close to the chemical potential in order to
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provide a challenging situation to confirm the result of Theorem 3.2.

3.4.3 Site energy locality

To test the locality of interatomic interaction we evaluate all first and second site

energy derivatives G`,j = ∂rjG` and G`,ij = ∂ri∂rjG` in both the homogeneous

and defective system, and plot the data points

(
r`j , |G`,j |

)
and

(
r`i + r`j , |G`,ij |

)
in Figures 3.3 and 3.4. For the homogeneous systems all sites are equivalent,

hence we only plot the site energy derivatives for a single site. For the defective

systems we plot the data points for the interstitial site itself (“|r`| small”) as

well as for the site in the computational cell that has the largest distance to

the interstitial atom (“|r`| large”).

We clearly observe the exponential decay of interaction strength as predicted

in Theorem 3.2. Moreover, we also observe that for sites ` far from the defect

the site derivative decay perfectly matches that of the bulk system.

Two additional observations were unexpected for us: (1) the decay of site

derivatives for “near-defect sites” does not exhibit the increased prefactor that

we predicted; however we do see this increase in the second derivatives. (2)

the decay of interaction in the silicon system is nearly identical (after rescaling

by the lattice constants) to the carbon system even though silicon has a much

smaller band gap.

These observations suggest that there are further effects leading to improved

locality of interaction that our analysis does not fully capture. While a possible

explanation is that the locality of the bond integral functions dominates the

locality of the resolvents, this does not explain the excellent locality of the Si

systems which have a fairly small band gap.
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(a) Decay of site energy derivatives. (b) Decay of site energy hessians.

Figure 3.3: Carbon: Locality of site energies in homogeneous lattice and
defective system.

(a) Decay of site energy derivatives. (b) Decay of site energy hessians.

Figure 3.4: Silicon: Locality of site energies in homogeneous lattice and
defective system.

3.4.4 Force Locality

Finally, we compare the decay of site energy derivatives to the decay of force

derivatives. The reason for this additional test is that our definition of a

site-energy is somewhat arbitrary. Indeed, there are infinitely many possible

decompositions of total energy G =
∑

`G` into site energies and each choice

may lead to a different rate of decay of the interaction. Forces, on the other

hand, are uniquely defined.

In Figure 3.5, we compare the decay of site energy derivatives and force

derivatives. We evaluate the force derivatives f`,j = ∂rjf`, where the force is

defined by the (negative) derivative of the total energy f` = −∂r`G, and plot
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the data points

(
r`j , |f`,j |

)
and

(
r`i + r`j , |G`,ij |

)
in Figures 3.5. We observe that the site energy locality matches force locality

very closely, which suggests that our choice of site energies leads to near-optimal

locality of interaction.

(a) Carbon. (b) Silicon.

Figure 3.5: The decay of force derivatives in homogeneous lattice and defective
system.

3.5 Conclusions

In this chapter, we have extended existing locality estimates [29] to insulators

at zero Fermi-temperature. We have described a site energy decomposition

for a zero Fermi-temperature linear tight binding model and shown that the

site contributions are exponentially localised. Most importantly, we have

shown that the exponents in these estimates are independent of the discrete

spectrum inside the band gap caused by point defects, and even the pre-factors

converge to the pre-factors that would result from using the homogeneous

site energy in the estimates, as the distance of a site to the defect increases.

Our numerical results strongly support our analysis, but also point to possible

further extensions in particular in the limit of small band gaps where our

results may not yet be sharp.

The results of this chapter allow the formulation of zero Fermi-temperature
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lattice relaxation as a variational problem on the energy space of displacements

analogous to the finite Fermi-temperature problem of [26]. Results regarding

the zero Fermi-temperature limit in these geometry optimisation problems are

presented in Chapter 6.

3.6 Proof of the Main Results

3.6.1 General Locality Estimates: Proof of Theorem 3.1

Using the resolvent calculus formulation (2.4.1), it suffices to prove that deriv-

atives of the resolvent operators are local. That is, since

∣∣∣∣ ∂jO`(X)

∂Xm1 . . . ∂Xmj

∣∣∣∣ 6 ‖O‖C sup
z∈C

∣∣∣∣ ∂jRz(X)``
∂Xm1 . . . ∂Xmj

∣∣∣∣, (3.6.1)

where ‖O‖C := len C
2π supz∈C |O(z)| and Rz(X) :=

(
H(X)− z

)−1
.

In order to show that derivatives of the resolvent Rz(X) are local, we

start by stating the following Combes–Thomas [33] estimate (which we state

for general operators because we will later apply it to the stability operator,

introduced in Chapter 5):

Lemma 3.3 (Combes–Thomas). Suppose that A : `2(Λ;Rn)→ `2(Λ;Rn) is a

invertible bounded linear operator with the off-diagonal decay |A`k| 6 cAe
−γAr`k

for some cA, γA > 0. Then, for d := infλ∈σ(A) |λ|, we have

∣∣[A−1
]
`k

∣∣ 6 2d−1e−γCT(d)r`k ,

where γCT(d) := c0γA min
{

1,
γdA
cA

d
}

and c0 > 0 depends only on m and d.

Remark 3.3. We obtain the estimate for the resolvents
(
H− z

)−1
in (3.6.1)

by setting A := H− z and d := dO from (2.4.2).

Proof. The estimate follows the proof of [29, Lemma 6] (or the main ideas

of [45]), however, to obtain the explicit d-dependence in the exponent, we

require sharper bounds. We sketch the argument for completeness.
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First, we observe that if ‖I − A−1B‖`2→`2 6 1
2 , then B is necessarily

invertible on `2 with |[B−1]`k| 6 ‖B−1‖`2→`2 6 2‖A−1‖`2→`2 6 2
d . The final

inequality follows from ‖A−1‖`2→`2 = supλ∈σ(A) |λ−1| 6 1
d . In particular, if B

given by B`k := eγCTr`k0A`ke
−γCTrkk0 for some k0 ∈ Λ and γCT > 0 sufficiently

small such that ‖B−A‖`2→`2 6 1
2d, then we obtain |[A−1]`k| 6 2

de
−γCT[r`k0

−rkk0
].

The result follows by choosing k0 = k.

Proof of ‖B−A‖`2→`2 6 1
2d. We consider the `∞ → `∞ operator norm and

note that the exact same arguments work for `1 → `1, therefore by interpolation,

the same bound holds for `2 → `2. We have

‖B −A‖`∞→`∞ 6 cA sup
`∈Λ

∑
k∈Λ

e−γAr`k
(
eγCTr`k − 1

)
. (3.6.2)

Now for fixed `, the function θ(γCT) :=
∑

k∈Λ e
−γAr`k

(
eγCTr`k − 1

)
satisfies

θ(0) = 0 and is differentiable on [0, 1
2γA] with |θ′| 6 C−1

m,d

γd+1
A

where Cm,d is a

constant depending on m and d. In particular, we have

‖B −A‖`2→`2 6
cA

Cm,dγ
d+1
A

γCT

for all γCT 6 1
2γA. We conclude by choosing γCT := 1

2γA min
{

1,
Cm,dγ

d
A

cA
d
}
>

c1γA min{1, c−1
A γdAd}.

We are now ready to conclude the proof of Theorem 3.1. For z ∈ C with

dist
(
z, σ
(
H(X)

))
> d > 0, we define Rz :=

(
H(X)− z

)−1
, and obtain

∣∣∣∣∂[Rz]``
∂Xm

∣∣∣∣ =

∣∣∣∣[Rz
∂H
∂Xm

Rz

]
``

∣∣∣∣
6 C

∑
kn

d−2e−γCT[r`k+rn`]e−γ1[rkm+rmn]

6 Cd−2γ−2d
1 e−min{γCT,γ1}r`m . (3.6.3)
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Similarly, for the second derivatives,

∂2[Rz]``
∂Xm1∂Xm2

=

[
Rz

∂H
∂Xm1

Rz
∂H
∂Xm2

Rz −Rz
∂2H

∂Xm1∂Xm2

Rz

+ Rz
∂H
∂Xm2

Rz
∂H
∂Xm1

Rz

]
``

.

(3.6.4)

Each of the terms in (3.6.4) can be bounded separately:

∣∣∣∣[Rz
∂H
∂Xm1

Rz
∂H
∂Xm2

Rz

]
``

∣∣∣∣
6 Cd−3

∑
`1,`2,`3,`4∈Λ

e−γCT(r``1+r`2`3+r`4`)e−γ1(r`1m1
+rm1`2

+r`3m2
+rm2`4)

6 Cd−3e−
1
2

min{γCT,γ1}(r`m1
+rm1m2+rm2`) (3.6.5)

and

∣∣∣∣[Rz
∂2H

∂Xm1∂Xm2

Rz

]
``

∣∣∣∣
6 Cd−2

∑
`1,`2∈Λ

e−γCT(r``1+r`2`)e−γ2(r`1m1
+rm1`2

+r`1m2
+rm2`2)

6 Cd−2e−
1
2

min{γCT,γ2}(r`m1
+rm1m2+rm2`). (3.6.6)

For higher derivatives the same arguments can be made and analogous

estimates hold.

To conclude the proof of Theorem 3.1 for O = F β or Gβ, we apply (3.6.1)

with an appropriately chosen contour C (depending on β and the spectral

gap g). Provided the limit g → 0 is approached symmetrically about µ, the

distance d may be chosen to be linear in both β−1 and g as β−1 + g→ 0, see

Figure 2.3. Here, we apply Lemma 2.5 to conclude that the prefactor ‖O‖C

may be chosen to be β independent in the zero Fermi-temperature limit for

both O = F β and Gβ.

3.6.2 Point Defects: Proof of Theorem 3.2

We first prove an improved Combes–Thomas resolvent estimate for finite rank

updates (which, in particular, applies to H(X) + Pε from Lemma 2.3 and thus
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gives improved resolvent estimates for H(Xd)):

Lemma 3.4 (Improved Combes–Thomas). Suppose that A,P : `2(Λ;Rn) →

`2(Λ;Rn) are bounded linear operators such that A and A+ P are invertible,

|A`k| 6 cAe
−γAr`k , and P`k = 0 if |r`| > R or |rk| > R for some R > 0. Then,

for d := infλ∈σ(A) |λ| and dd := infλ∈σ(A+P ) |λ|, we have

∣∣[(A+ P )−1
]
`k

∣∣ 6 2d−1e−γCT(d)r`k + cP e
−γCT(d)[|r`|+|rk|], (3.6.7)

where γCT(d) is the constant from Lemma 3.3 when applied to A and cP > 0

depends on dd.

Remark 3.4. This result applies to A := H(X) + Pε − z and P := PFR where

Pε, PFR are from Lemma 2.3. Since A + P = H(Xd) − z, we may choose d

and dd as in Definition 2.4.

Proof. First, we note that (A + P )−1 − A−1 = (A + P )−1[A − (A + P )]A−1,

I + PA−1 is invertible with inverse A(A+ P )−1, and I + A−1P is invertible

with inverse (A+ P )−1A. In particular, we have

(A+ P )−1 = A−1 −A−1(I + PA−1)−1PA−1 (3.6.8)

= A−1 −A−1P (I +A−1P )−1A−1, (3.6.9)

and [(I + PA−1)−1P ]`k = [P (I +A−1P )−1]`k = 0 if |r`| > R or |rk| > R.

Therefore, applying the standard Combes–Thomas estimate (Lemma 3.3)

to A, we obtain

∣∣[(A+ P )−1
]
`k

∣∣ 6 2d−1e−γCT(d)r`k

+ 4d−2
∥∥(I + PA−1)−1P

∥∥
max

∑
`1,`2 :

|r`|,|rk|6R

e−γCT(d)[r``1+r`2k].

We conclude by bounding
∥∥(I + PA−1)−1P

∥∥
max

=
∥∥A(A+ P )−1P

∥∥
max

: for
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fixed `, k, we have

∣∣[A(A+ P )−1P
]
`k

∣∣ 6 2cA(dd)−1
∑

`1,`2 : |r`2 |6R

e−γAr``1e−γCT(dd)r`1`2 |P`2k|

.R cA(dd)−1γ−dA ‖P‖max, (3.6.10)

where γCT(dd) is the Combes–Thomas exponent from Lemma 3.3 when applied

to A+ P .

We are now ready to combine Lemma 3.4 (applied to A := H(X) + Pε − z

and P := PFR as in Remark 3.4) together with the general estimate (4.2.2) to

prove Theorem 3.2. Directly applying Lemma 3.4, we have

∣∣[(H(Xd)− z
)−1]

`k

∣∣ 6 (2d−1 + cP
)
e−γCT(d)r`k

In particular, we may apply the exact same arguments as in §3.6.1 to ob-

tain locality estimates with defect-independent exponents but with increased

prefactors.

We now show that the prefactors in these improved estimates converge to

the corresponding defect-free prefactors as the subsystem containing ` and

m1, . . . ,mj move away from the defect core.

The improved resolvent estimate of Lemma 3.4 is given as the sum of the

resolvent estimate from the defect-free case 2d−1e−γCT(d)r`k and the additional

term cP e
−γCT(d)[|r`|+|rk|]. Therefore, we may bound quantities such as (3.6.3),

(3.6.5), and (3.6.6) for Rz :=
(
H(Xd)− z

)−1
by the sum of the corresponding

quantity in the defect-free case, and terms that arise by replacing estimates

of the form 2d−1e−γCT(d)r`k with cP e
−γCT(d)[|r`|+|rk|]. That is, we replace an

exponential depending on the length of the path between r` and rk with an

exponential depending on the length of the path between r` and rk which also

visits 0 ∈ Rd in-between.

For example, first derivatives of the resolvent Rz :=
(
H(Xd)− z

)−1
may

be bounded above by the sum of (3.6.3) and a constant multiple (depending
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on cP and d but independent of `,m) of

∑
kn

[
e−η1[|rk|+rn`] + e−η1[r`k+|rn|] + e−η1[|rk|+|rn|+|r`|]

]
e−η1[|r`|+rkm+rmn]

.
(
e−

1
2
η1[|r`|+|rm|−r`m] + e−η1[|r`|+|rm|−r`m]

)
e−η1r`m , (3.6.11)

where η1 := min{γCT(d), γ1}. In particular, the constant prefactor in (3.6.11)

vanishes and thus the prefactor in the locality estimate (3.2.1) converges to

the corresponding defect-free prefactor as the subsystem (`,m) moves away

from the defect core: that is, Cd
1 (`,m)→ C1 as |r`|+ |rm| − r`m →∞.

The same argument may be applied for second derivatives. First, we write

(3.6.4) and consider each term in turn. The exponent in (3.6.5) is the length of

the path starting at r`, visiting rm1 and rm2 in that order, and returning to

r`. Each time a resolvent is applied in the line above (3.6.5), we now need to

also consider an additional cP e
−γCT(d)[|r`|+|rk|] term. Therefore, we may bound

(3.6.5) above by the sum of the defect-free quantity and all paths starting and

ending at r`, visiting rm1 and rm2 in that order, and visiting 0 at least once

in-between. The latter is a constant multiple (independent of `,m1,m2) of

[
e−

1
2
η[|r`|+|rm1 |−r`m1

] + e−
1
2
η[|rm1 |+|rm2 |−rm1m2 ] + e−

1
2
η[|rm2 |+|r`|−r`m2

]

+ e−
1
2
η[|r`|+|rm1 |−r`m1

]e−
1
2
η[|rm1 |+|rm2 |−rm1m2 ]e−

1
2
η[|rm2 |+|r`|−r`m2

]

+ e−
1
2
η[|r`|+|rm1 |−r`m1

]
(
e−

1
2
η[|rm1 |+|rm2 |−rm1m2 ] + e−

1
2
η[|rm2 |+|r`|−r`m2

]
)

+ e−
1
2
η[|rm1 |+|rm2 |−rm1m2 ]e−

1
2
η[|rm2 |+|r`|−r`m2

]
]
e−

1
2
η[r`m1

+rm1m2+rm2`
].

Similarly, the second term in (3.6.4) may be bounded by the sum of (3.6.6) in

the defect-free case, and a constant multiple of

[
e−

1
2
η2[|r`|+|rm1 |−r`m1

] + e−
1
2
η2[|r`|+|rm2 |−r`m2

]

+ e−
1
2
η2[|r`|+|rm1 |−r`m1

]e−
1
2
η2[|r`|+|rm2 |−r`m2

]
]
e−

1
2
η2[r`m1

+rm1m2+rm2`
],

where η2 := min{γCT(d), γ2}. Therefore the prefactor in the improved estimates
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converges to the corresponding defect-free prefactor as the subsystem moves

away from the defect core together: that is, Cd
2 (`,m1,m2) → C2 as |rk| +

|rm| − rkm →∞ for all distinct k,m ∈ {`,m1,m2}.
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CHAPTER 4

Body-ordered Approximations
of the Potential Energy Landscape

This chapter is based on the article [123] “Rigorous body-order

approximations of an electronic structure potential energy landscape”

submitted to the arXiv preprint server, arXiv:2106.12572 (2021).

This paper is co-authored by Huajie Chen and Christoph Ortner.

4.1 Introduction

In this Chapter, we construct body-ordered approximations (1.4.2) to local

analytic observables (2.4.1) and prove an exponential rate of convergence. That

is, for fixed body-order N ∈ N, we construct

ON` (X) :=
N−1∑
n=0

∑
k1,...,kn 6=`
k1<···<kn

VnN (X`;X`k1 , . . . ,X`kn) (4.1.1)

(for some (n+1)-body potentials VnN ), and show
∣∣O`(X)−ON` (X)

∣∣ . e−γN for

some γ > 0 depending on the Fermi-temperature and band gap of the material.

Moreover, we show that related nonlinear approximation schemes lead to
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superior theoretical properties, with convergence rates only weakly depending

on defect states within the band gap, similarly to the locality estimates in

Chapter 3.

In addition to justifying and supporting the development of new models for

general atomic properties, our results establish generic properties of ab initio

models that have broader consequences, e.g. for the study of the mechanical

properties of atomistic materials [27,48,98,122].

Recall from Chapter 3 that we have decomposed the PEL into local contri-

butions from each atomic site (1.4.1). In practise, one may therefore truncate

the interaction introducing a finite cutoff radius. However, as we have seen

in Chapter 1, the site energy E` is still an extremely high-dimensional object,

and so in order to control the dimensionality of the representation, we consider

the body-ordered approximation (1.4.2).

The vacuum cluster expansion (which we review in §4.5) is the traditional

and, arguably, the most natural many-body expansion of a potential energy

landscape. However, in many systems, it converges extremely slowly with

respect to the body-order and is thus computationally impractical. An intuitive

explanation for this slow convergence is that, when defining the body-order

expansion in this way, we are building an interaction law for a condensed

system from clusters in vacuum where the bonding chemistry is significantly

different.

The approach considered here uses an entirely different mechanism where

environment information is incorporated. In the simplest scheme, we approx-

imate the local observables O`(X) = trO
(
H(X)

)
``

(2.4.1) by approximating

O with a polynomial p on the spectrum σ
(
H(X)

)
. This approach results in

the approximation tr p
(
H(X)

)
``

, which is naturally body-ordered. To obtain

quasi-optimal approximation results, naive polynomial approximation schemes

(e.g. Chebyshev) are suitable only in the simplest scenarios. For the insulating

case we leverage potential theory techniques which in particular yield quasi-

optimal approximation rates on unions of disconnected domains (the occupied

and unoccupied bands). Our main results are obtained by converting these into
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approximation results on atomic properties, analysing their qualitative features,

and taking care to obtain sharp estimates in the zero Fermi-temperature limit.

These initial results provide strong evidence for the accuracy of a linear

body-order approximation in relatively simple scenarios, and would for example

be useful in a study of the mechanical response of single crystals with a

limited selection of possible defects. However, they come with limitations

that we discuss in the main text. In response, we then explore a much more

general framework, generalizing the theory of bond order potentials [74], that

incorporates our linear body-ordered model as well as a range of nonlinear

models. We will highlight a specific nonlinear construction with significantly

improved theoretical properties over the linear scheme.

4.2 A General Framework

Before we consider two specific body-ordered approximations, we present a

general framework which illustrates the key features needed for a convergent

scheme: To that end, we introduce the local density of states (LDOS) [53]

which is the (positive) measure D` supported on σ(H) such that

ˆ
xndD`(x) = tr[Hn]``, for n ∈ N0. (4.2.1)

Existence and uniqueness follows from the spectral theorem for normal operators

(e.g. see [1, Theorem 6.3.3] or [121]). In particular, (2.4.1) may be written as

the integral O`(X) =
´
O dD`.

Since the moments [Hn]`` have finite body order (see Proposition 4.1), on

constructing a (possibly signed) measure DN
` with

´
xndDN

` (x) = tr[Hn]`` for

n = 0, 1, . . . , N , we may define the body-ordered approximate local observable

ON` (X) :=
´
O dDN

` . Now, the conditions on the moments of DN
` imply that

´
PNd(D` −DN

` ) = 0 for all polynomials PN of degree at most N , and thus
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we obtain the following general error estimates:

∣∣O`(X)−ON` (X)
∣∣ = inf

PN∈PN

∣∣∣ˆ (
O − PN

)
d
(
D` −DN

`

)∣∣∣
6
∥∥D` −DN

`

∥∥
op

inf
PN∈PN

∥∥O − PN∥∥∞ (4.2.2)

where PN denotes the set of polynomials of degree at most N , and ‖ · ‖op is

the operator norm on a function space (S, ‖ · ‖∞). For example, we may take

S to be the set of functions analytic on an open set containing C , a contour

encircling supp
(
D` −DN

`

)
and satisfying (2.4.1), and consider

‖O‖C :=
len(C )

2π
‖O‖L∞(C ).

Alternatively, we may consider S = L∞
(
supp(D` −DN

` )
)

leading to the total

variation operator norm. Equation (4.2.2) highlights the key generic features

that are crucial ingredients in obtaining convergence results:

• Analyticity. The potential theory results of §4.8.1 connect the asymptotic

convergence rates for polynomial approximation to the size and shape of

the region of analyticity of O.

• Spectral Pollution. While suppD` ⊆ σ(H), this need not be true for DN
` .

Indeed, if suppDN
` introduces additional points within the band gap, this

may significantly slow the convergence of the polynomial approximation;

cf. §4.5.

• Regularity of DN
` . Roughly speaking, the first term of (4.2.2) measures

how “well-behaved” DN
` is. In particular, if DN

` is positive, then this

term is bounded independently of N , whereas, if DN
` is a general signed

measure, then this factor contributes to the asymptotic convergence

behaviour.

In the following sections, we introduce linear (§4.3) and nonlinear (§4.4)

approximation schemes that fit into this general framework. Moreover, in

§4.5, we also write the vacuum cluster expansion as an integral against an
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approximate LDOS and investigate which of the requirements listed above fail.

This analysis complements the intuitive explanation for the slow convergence

of the vacuum cluster expansion.

In the appendices, we review other approximation schemes that fit into this

general framework such as the quadrature method (Appendix C.3), numerical

bond order potentials (Appendix C.4), and the kernel polynomial method

(Appendix C.5).

4.3 Linear Body-ordered Approximation

To construct our first model we exploit the observation that polynomial ap-

proximations of an analytic function correspond to body-order expansions of

an observable.

An intuitive approach is therefore to write the local observable in terms

of its Chebyshev expansion and truncate to some maximal polynomial degree.

The corresponding projection operator is a simple example of the kernel

polynomial method (KPM) [110] and the basis for analytic bond order potentials

(BOP) [101]. We discuss in Appendix C.5 that these schemes put more

emphasis on the approximation of the local density of states (LDOS) and, in

particular, exploit particular features of the Chebyshev polynomials to obtain

a positive approximate LDOS. Since our focus is instead on the approximation

of observables, we employ a different approach that is tailored to specific

properties of the band structure and leads to superior convergence rates for

these quantities.

For a set of N + 1 distinct interpolation points X = XN , and a complex-

valued function O defined on X , we denote by IXO(z) the degree N polynomial

interpolant of z 7→ O(z) on X . This gives rise to the body-ordered approxima-

tion

IXO`(X) := tr
[
IXO

(
H(X)

)
``

]
. (4.3.1)
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We may connect (4.3.1) to the general framework in §4.2 by writing

IXO`(X) =

ˆ
OdDN,lin

` where DN,lin
` := tr

∑
j

`j(H)`` δ( · − εj) (4.3.2)

and `j are the node polynomials corresponding to the interpolation set X = {εj}

(that is, `j(εi) = δij).

Proposition 4.1. IXO`(X) has finite body-order. More specifically, there

exists a maximal body order M ∈ N and (n + 1)-body potentials VnN for

n = 0, . . . ,M − 1 such that

IXO`(X) =
M−1∑
n=0

∑
k1,...,kn 6=`
k1<···<kn

VnN (X`;X`k1 , . . . ,X`kn). (4.3.3)

For two-centre tight binding models M = N , whereas M = 2N in the three-

centre case.

Sketch of the Proof. Since (4.3.1) is a linear combination of the monomials

[Hn]``, it is enough to show that, for each n ∈ N,

[Hn]`` =
∑

`1,...,`n−1

H``1H`1`2 · · ·H`n−1` (4.3.4)

has finite body order. Each term in (4.3.4) depends on the central atom `, the

n− 1 neighbouring sites `1, . . . , `n−1, and the at most n additional sites arising

from the three-centre summation in the tight binding Hamiltonian (TB). In

particular, (4.3.1) has body order at most 2N for three-centre tight binding

models, and at most N for two-centre models. See §4.8.2 for a complete proof

including an explicit definition of the VnN .

If one uses Chebyshev points as the basis for the body-ordered approx-

imation (4.3.1), the rates of convergence depend on the size of the largest

Bernstein ellipse (that is, ellipses with foci points ±1) contained in the region

of analyticity of z 7→ O(z) [124]. This leads to a exponentially convergent

body-order expansion in the metallic finite-temperature case (see §4.8.1 for the
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details).

However, the resulting estimates depend on β−1 and deteriorate in the zero-

temperature limit. Instead, we apply results of potential theory to construct

interpolation sets X that are adapted to the spectral properties of the system

(see §4.8.1 for examples) and (i) do not suffer from spectral pollution, and

(ii) (asymptotically) minimise the total variation of DN,lin
` which, in this

context, is the Lebesgue constant [124] for the interpolation operator IX .

This leads to rapid convergence of the body-ordered approximation based on

(4.3.1). The interpolation sets XN depend only on the intervals I−, I+ from

Definition 2.2 (see also Figure 2.2) and can be chosen independently of X as

long as Bε
(
σ
(
H(X)

))
⊆ I− ∪ I+.

Theorem 4.2. Suppose X satisfies Definition 2.2. Fix 0 < β 6 ∞ and

suppose that, either β <∞ or g > 0. Then, there exist constants γN > 0 and

interpolation operators IN := IXN satisfying (4.3.3) and with XN ⊆ I− ∪ I+

such that

∣∣Oβ` (X)− INOβ` (X)
∣∣ 6 C1e

−γNN , and∣∣∣∣∣∂Oβ` (X)

∂Xm
−
∂INO

β
` (X)

∂Xm

∣∣∣∣∣ 6 C2e
− 1

2
γNNe−η r`m ,

where Oβ = F β or Gβ and C1, C2 > 0 are independent of N . The asymptotic

convergence rate γ := limN→∞ γN is positive and exhibits the asymptotic

behaviour

C1 ∼ (g + β−1)−1, C2 ∼ (g + β−1)−3, and γ, η ∼ g + β−1 as g + β−1 → 0.

In this asymptotic relation, we assume that the limit g → 0 is approached

symmetrically about the chemical potential µ.

Remark 4.1. Higher derivatives may be treated similarly under the assumption

that higher derivatives of the tight binding Hamiltonian (TB) exist and are

short ranged.

51



Remark 4.2 (Locality). (i) By Theorem 4.3, and the locality estimates for

the exact observables Oβ` (Theorem 3.2), we immediately obtain corresponding

locality estimates for the approximate quantities:

∣∣∣∣∣∂INOβ` (X)

∂Xm

∣∣∣∣∣ . e−η r`m . (4.3.5)

(ii) We investigate another type of locality in Appendix C.1 where we show

that various truncation operators result in approximation schemes that only

depend on a small atomic neighbourhood of the central site. An exponential

rate of convergence as the truncation radius tends to infinity is obtained.

4.3.1 The role of the point spectrum

We now turn towards the important scenario when a localised defect is embed-

ded within a homogeneous crystalline solid. Recall from §2.3 (see in particular

Fig. 2.2) that this gives rise to a discrete spectrum, which “pollutes” the

band gap [95]. Thus, the spectral gap is reduced and a naive application of

Theorem 4.2 leads to a reduction in the convergence rate of the body-ordered

approximation. We now improve these estimates by showing that, away from

the defect, we obtain improved pre-asymptotics, reminiscent of similar results

for locality of interaction (Chapter 3).

In the following, we suppose that (X,Xd) satisfies Definition 2.2. While

improved estimates may be obtained by choosing {λj} as interpolation points,

leading to asymptotic exponents that are independent of the defect, in practice,

this requires full knowledge of the point spectrum. Since the point spectrum

within the spectral gap depends on the whole atomic configuration, the ap-

proximate quantities of interest corresponding to these interpolation operators

would no longer satisfy Proposition 4.1.

Remark 4.3. This phenomenon has been observed in the context of Krylov

subspace methods for solving linear equations Ax = b where outlying eigenvalues

delay the convergence by O(1) steps without affecting the asymptotic rate

[43]. Indeed, since the residual after n steps may be written as rn = pn(A)r0

52



where pn is a polynomial of degree n, there is a close link between polynomial

approximation and convergence of Krylov methods.

On the other hand, we may use the exponential localisation of the eigen-

vectors corresponding to isolated eigenvalues to obtain pre-factors that decay

exponentially as |r`| → ∞:

Theorem 4.3. Suppose (X,Xd) satisfies Definition 2.2 with g > 0. Fix

0 < β 6∞ and suppose that, if β =∞, then gdef > 0, and let C1, C2, γN , γ, η,

and IN := IXN with XN ⊆ I− ∪ I+ given by Theorem 4.2. Then,

∣∣Oβ` (Xd)− INOβ` (Xd)
∣∣ 6 C1e

−γNN + C3e
−γCT|r`|e−

1
2
γdef
N N∣∣∣∣∣∂Oβ` (Xd)

∂Xd
m

−
∂INO

β
` (Xd)

∂Xd
m

∣∣∣∣∣ 6 (C2e
− 1

2
γNN + C4e

−γCT|r`|e−
1
2
γdef
N N

)
e−η r`m

(4.3.6)

where Oβ = F β or Gβ and C3, C4 > 0 are independent of N . The asymptotic

convergence rate γdef := limN→∞ γ
def
N is positive and we have

γdef ∼ gdef + β−1 as gdef + β−1 → 0,

γCT, η ∼ g + β−1 as g + β−1 → 0.

In these asymptotic relations, we assume that the limits gdef , g → 0 are ap-

proached symmetrically about the chemical potential µ.

In practice, Theorem 4.3 means that, for atomic sites ` away from the

defect-core, the observed pre-asymptotic error estimates may be significantly

better than the asymptotic convergence rates obtained in Theorem 4.2.

Remark 4.4 (Connection to the General Framework §4.2). The fact that the

exponents in Theorem 4.3 depend on the discrete eigenvalues of H(X) can be

seen from the general estimate (4.2.2) applied to the approximate LDOS DN,lin
`

from (4.3.2):

• Spectral Pollution. We choose the interpolation points so that the support
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of DN,lin
` lies within σ

(
H(X)

)
and so spectral pollution does not play a

role,

• Regularity. The total variation of DN,lin
` can be estimated by the Lebesgue

constant [124] for the interpolation operator IN :

‖DN,lin
` ‖TV := sup

‖f‖L∞(σ(H))=1
|INf(H)``|

6 sup
‖f‖L∞(σ(H))=1

sup
x∈σ(H)

|INf(x)|

= sup
x∈σ(H)

∑
j

|`j(x)|. (4.3.7)

This quantity depends on the discrete eigenvalues within the band gap.

4.4 Nonlinear Body-ordered Approximation

The method presented in §4.3 approximates local quantities of interest by

approximating the integrand O : C→ C with polynomials. As we have seen,

this leads to approximation schemes that are linear functions of the spatial

correlations {[Hn]``}n∈N. In this section, we construct a non-linear approx-

imation related to bond-order potentials (BOP) [39, 54, 74] and show that

the added non-linearity leads to improved asymptotic error estimates that

are independent of the discrete spectra lying within the band gap. In this

way, the nonlinearity captures “spectral information” from H rather than only

approximating O : C→ C without reference to the Hamiltonian.

Applying the recursion method [66, 67], a reformulation of the Lanczos

process [81], we obtain a tri-diagonal (Jacobi) operator T on `2(N0) whose

spectral measure is the LDOS D` [120] (see §4.8.3 for the details). We then

truncate T by taking the principal 1
2(N + 1)× 1

2(N + 1) submatrix T 1
2

(N−1),

diagonalise T 1
2

(N−1) to find the normalised eigenpairs (λs, ψs), and define the
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spectral measure

DN,nonlin
` :=

∑
s

[ψs]
2
0δ( · − λs) and (4.4.1)

Θ
(
H``, [H2]``, . . . , [HN ]``

)
:= O(T 1

2
(N−1))00 =

ˆ
OdDN,nonlin

` . (4.4.2)

By showing that the first N moments of DN,nonlin
` are exact, we are able to

apply (4.2.2) to obtain the following error estimates. The asymptotic behaviour

of the exponent in these estimates follows by proving that the spectral pollution

of DN,nonlin
` in the band gap is sufficiently mild.

Theorem 4.4. Suppose (X,Xd) satisfies Definition 2.2 and H := H(Xd).

Fix 0 < β 6∞ and suppose that, if β =∞, then g > 0. Then, for N odd, there

exists an open set U ⊆ CN such that (4.4.2) extends to an analytic function

Θ: U → C, independent of H, such that

∣∣∣O`(Xd)−Θ
(
H``, [H2]``, . . . , [HN ]``

)∣∣∣ . e−γNN (4.4.3)

where O = F β or Gβ. The asymptotic convergence rate γ := limN→∞ γN is

positive and γ ∼ g + β−1 as g + β−1 → 0 where the g→ 0 limit is approached

symmetrically about the chemical potential.

Remark 4.5. It is important to note that Θ: U → C can be constructed

without knowledge of H because, as we have seen, if the discrete eigenvalues are

known a priori, then Theorem 4.4 is immediate from Theorem 4.3 by adding

finitely many additional interpolation points on the discrete spectrum.

In particular, the fact that Θ is a material-agnostic nonlinearity has poten-

tially far-reaching consequences for material modelling.

Remark 4.6 (Connection to the General Framework §4.2). The fact that the

exponents in Theorem 4.4 are independent of the discrete eigenvalues of H(Xd)

can be seen from the general estimate (4.2.2) applied to the approximate LDOS

DN,nonlin
` from (4.4.2):

• Spectral Pollution. We prove that if [a, b] ∩ σ
(
H(Xd)

)
= ∅, then the
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number of points in [a, b]∩suppDN,nonlin
` is at most one (see Lemma 4.5).

In particular, the spectral pollution within the band gap is sufficiently

mild to ensure that the asymptotic error estimates in the polynomial

approximation problem in (4.2.2) are independent of the discrete points

in the band gap,

• Regularity. By construction, DN,nonlin
` is a positive measure and thus the

first term of (4.2.2) is bounded independently of N .

Remark 4.7 (Quadrature Method). Alternatively, we may use the sequence

of orthogonal polynomials [55] corresponding to D` as the basis for a Gauss

quadrature rule to evaluate local observables. This procedure, called the Quad-

rature Method [68,93], is a precursor of the bond order potentials. Outlined in

Appendix C.3, we show that it produces an alternative scheme also satisfying

Theorem 4.4.

Remark 4.8 (Convergence of Derivatives). In this more complicated nonlinear

setting, obtaining results such as (4.3.6) is more subtle. We require an additional

assumption on D`, which we believe may be typically satisfied, but we currently

cannot justify it and have therefore postponed this discussion to Appendix C.2.

We briefly mention, however, that if D` is absolutely continuous (e.g., in

periodic systems), we obtain

∣∣∣∣ ∂

∂Xm

(
Oβ` (X)−Θ

(
H``, [H2]``, . . . , [HN ]``

))∣∣∣∣ . e−
1
2
γNNe−η r`m .

4.5 Vacuum Cluster Expansion

The vacuum cluster expansion is a many-body expansion of the form (1.4.2)

where the (n + 1)-body potentials V (n) are constructed by considering all

isolated clusters of j 6 n atoms. That is, on defining the restriction of the

Hamiltonian matrix H
∣∣
`;K

corresponding to the finite system {`} ∪K ⊆ Λ,

[
H
∣∣
`;K

]
k1k2

:= h(Xk1k2) +
∑

m∈{`}∪K

t(Xk1m,Xk2m) + δk1k2vk1IdNb
, (4.5.1)
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we define

ON,vac
` (X) :=

N−1∑
n=0

∑
k1,...,kn 6=`
k1<···<kn

V (n)(X`;X`k1 , . . . ,X`kn), where (4.5.2)

V (n)(X`;X`k1 , . . . ,X`kn) =
∑

K⊆{k1,...,kn}

(−1)n−|K|O
(
H
∣∣
`;K

)
``
. (4.5.3)

For a system of N particles, this expansion is exact.

Therefore, on defining the measure D`;K :=
∑

s δ
(
· −λs(K)

)
|[ψs(K)]`|2

where
(
λs(K), ψs(K)

)
the are normalised eigenpairs of H

∣∣
`;K

, we may write

the vacuum cluster expansion as in §4.2:

ON,vac
` (X) =

ˆ
O dDN,vac

` where

DN,vac
` :=

N−1∑
n=0

∑
k1,...,kn 6=`
k1<···<kn

∑
K⊆{k1,...,kn}

(−1)n−|K|D`;K . (4.5.4)

While DN,vac
` is a generalised signed measure (with values in R ∪ {±∞}),

all moments are finite:

ˆ
xj dDN,vac

` (x) =
∑

`1,...,`j−1
|{`,`1,...,`j−1}|6N

H``1H`1`2 . . .H`j−1`. (4.5.5)

Equation (4.5.5) follows from the proof of Proposition 4.1, see (4.8.17). In

particular, the first N moments of DN,vac
` are exact. Therefore, we may apply

the general error estimate (4.2.2) and describe the various features of DN,vac
`

which provide mathematical intuition for the slow convergence of the vacuum

cluster expansion:

• Spectral Pollution. When splitting the system up into arbitrary sub-

systems as is the case in the vacuum cluster expansion, one expects

significant spectral pollution in the band gaps, leading to a reduction in

the convergence rate,

• Regularity. The approximate LDOS is a linear combination of countably

many Dirac deltas and does not have bounded variation. Moreover,
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DN,vac
` has values in R ∪ {±∞}.

4.6 Pre-asymptotic Regime

Possibly the most significant limitation of our analysis of the linear body-

ordered approximation scheme is that the estimates deteriorate when defects

cause a pollution of the point spectrum. Here, we briefly demonstrate that

this appears to be an asymptotic effect, while in the pre-asymptotic regime

this deterioration is not noticeable.

To explore this we choose a union of intervals E ⊇ σ(H) and a polynomial

PN of degree N and note

∣∣∣[O(H)− PN (H)
]
``

∣∣∣ 6 ∥∥O(H)− PN (H)
∥∥
`2→`2 =

∥∥O − PN∥∥L∞(σ(H))

6
∥∥O − PN∥∥L∞(E)

. (4.6.1)

We then construct interpolation sets (Fejér sets) such that the corresponding

polynomial interpolant gives the optimal asymptotic approximation rates

(for details of this construction, see §4.8.1). We then contrast this with a

best L∞(E)-approximation, and with the nonlinear approximation scheme

from Theorem 4.4. We will observe that the non-linearity leads to improved

asymptotic but comparable pre-asymptotic approximation errors.

As a representative scenario we consider the Fermi-Dirac distribution

F β(z) = (1 + eβz)−1 with β = 100 and both the “defect-free” case E1 :=

[−1, a]∪ [b, 1] and E2 := [−1, a]∪ [c, d]∪ [b, 1] with the parameters a = −0.2, b =

0.2, c = −0.06, and d = −0.03. Then, for fixed polynomial degree N and

j ∈ {1, 2}, we construct the (N+1)-point Fejér set for Ej and the corresponding

polynomial interpolant Ij,NF
β. Moreover, we consider a polynomial P ?j,N of

degree N minimising the right hand side of (4.6.1) for E = Ej . Then, we

plot the errors ‖F β − Ij,NF β‖L∞(Ej) and ‖F β − P ?j,N‖L∞(Ej) for both j = 1

(Fig. 4.1) and j = 2 (Fig. 4.2) against the polynomial degree N together

with the theoretical asymptotic convergence rates for best L∞(Ej) polynomial
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approximation (4.8.13).

Figure 4.1: Approximation errors for Chebyshev projection (green), polyno-
mial interpolation in Fejér sets on E1 (black), and best L∞(E1) polynomial
approximation (blue) for E1 = [−1, a] ∪ [b, 1]. We also plot the corresponding
predicted asymptotic rates (from (4.8.3) and (4.8.13)). Here, we only plot data
points for N ∈ {1, 6, 11, 16, . . . }.

What we observe is that, as expected, introducing the interval [c, d] into

the approximation domain drastically affects the asymptotic convergence rate

and the errors in the approximation based on interpolation. While the best

approximation errors follow the asymptotic rate for larger polynomial degree, it

appears that, pre-asymptotically, the errors are significantly reduced. We also

see that the approximation errors are significantly better than the general error

estimate ‖F β −ΠNF
β‖L∞ . e−πβ

−1N where ΠN is the Chebyshev projection

operator (see §4.8.1).

Moreover, in Figure 4.2, we plot the errors when using a nonlinear ap-

proximation scheme satisfying Theorem 4.4. In this simple experiment, we

consider the Gauss quadrature rule Θ :=
´
IXNF

βdD` where XN are the zeros

of the degree N + 1 orthogonal polynomial (see Appendix C.3) with respect to

dD`(x) :=
(
χE0(x) +

∑
j δ(x− λj)

)
dx, for a finite set {λj} ⊆ [c, d]. While D`

does not correspond to a physically relevant Hamiltonian, the same procedure
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Figure 4.2: Approximation errors for Chebyshev projection (green), polynomial
interpolation in Fejér sets on E2 (black), best L∞(E2) polynomial approx-
imation (blue), and errors in the nonlinear approximation scheme (red) for
E2 = [−1, a] ∪ [c, d] ∪ [b, 1] and {λj} = {c, c+d2 , d}. We also plot the corres-
ponding predicted asymptotic rates (from (4.8.3), (4.8.13), and Theorem 4.2).
Here, we only plot data points for N ∈ {1, 6, 11, 16, . . . } in the linear schemes
(which captures the oscillatory behaviour), and N ∈ {1, 7, 13, 19, . . . } for the
nonlinear scheme (since N must be odd).

may be carried out for any measure supported on E1 with suppD`∩ [c, d] finite.

Then plotting the upper bounds
´
|F β − IXNF β|dD`, we observe improved

asymptotic convergence rates that agree with that of the “defect-free” case

from Figure 4.1. However, the improvement is only observed in the asymptotic

regime which corresponds to body-orders never reached in practice.

4.7 Conclusions

In this chapter we have seen a sequence of rigorous results about body-ordered

approximations of a wide class of properties extracted from tight-binding models

for condensed phase systems, the primary example being the potential energy

landscape. Our results demonstrate that exponentially fast convergence can

be obtained, provided that the chemical environment is taken into account. In

the spirit of the results in Chapter 3 on the locality of interaction [29, 98, 122],
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this chapter provides further theoretical justification — albeit qualitative

— for widely assumed properties of atomic interactions. More broadly, the

analysis illustrates how to construct general low-dimensional but systematic

representations of high-dimensional complex properties of atomistic systems.

4.8 Proofs of the Main Results

4.8.1 Preliminaries

Here, we briefly introduce the concepts needed in the proofs of the main results.

Hermite integral formula

For a finite interpolation set X ⊆ C, we let `X (z) :=
∏
x∈X (z − x) be the

corresponding node polynomial.

For fixed z ∈ C\X , we suppose that O is analytic on an open neighbourhood

of X ∪ {z}. Then, for a simple closed positively oriented contour (or system

of contours) C contained in the region of analyticity of O, encircling X , and

avoiding {z}, we have

IXO(z) =

˛
C

`X (ξ)− `X (z)

`X (ξ)

O(ξ)

ξ − z
dξ

2πi
. (4.8.1)

If, in addition, C encircles {z}, then

O(z)− IXO(z) =

˛
C

`X (z)

`X (ξ)

O(ξ)

ξ − z
dξ

2πi
. (4.8.2)

The proof of these facts is a simple application of Cauchy’s integral formula,

[3, 124].

Chebyshev Projection and Interpolation in Chebyshev Points

We denote by {Tn} the Chebyshev polynomials (of the first kind) satisfying

Tn(cos θ) = cosnθ on [−1, 1] and, equivalently, the recurrence T0 = 1, T1 = x,

and Tn+1(x) = 2xTn(x)− Tn−1(x).
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For O Lipshitz continuous on [−1, 1], there exists an absolutely convergent

Chebyshev series expansion: there exists cn such that O(z) =
∑∞

n=0 cnTn(z).

For maximal polynomial degree N , the corresponding projection operator is

denoted ΠNO(z) :=
∑N

n=0 cnTn(z). This approach is a special case of the

Kernel Polynomial Method (KPM) which we briefly review in Appendix C.5.

On the other hand, supposing that the interpolation set is given by the

Chebyshev points X = {cos jπN }06j6N , we may expand the polynomial inter-

polant INO := IXO in terms of the Chebyshev polynomials: there exists c′n

such that INO(z) =
∑N

n=0 c
′
nTn(z).

For functions O that can be analytically continued to the Bernstein ellipse

Eρ := {1
2(z+z−1) : |z| = ρ} for ρ > 1, the corresponding coefficients {cn}, {c′n}

decay exponentially (|cn|, |c′n| . ‖O‖L∞(Eρ)ρ
−n), which leads to the following

error estimates

‖O −ΠNO‖L∞([−1,1]) + ‖O − INO‖L∞([−1,1]) . ‖O‖L∞(Eρ)
ρ−N

ρ− 1
. (4.8.3)

For Oβ = F β or Gβ , these estimates give an exponential rate of convergence

with exponent depending on ∼ β−1. Indeed, after scaling H so that the

spectrum is contained in [−1, 1], we obtain

∣∣∣Oβ` (X)−ΠNO
β
` (X)

∣∣∣ 6 ∥∥∥Oβ(H)−ΠNO
β(H)

∥∥∥
`2→`2

6 ‖Oβ −ΠNO
β‖L∞([−1,1]), (4.8.4)

and we conclude by directly applying (4.8.3). The same estimate also holds for

IN (or any polynomial).

For full details of all the statements made in this subsection, see [124].

Classical logarithmic potential theory

In this section, we give a very brief introduction to classical potential theory

in order to lay out the key notation. For a more thorough treatment, see [103]

or [52,82,104,124].
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It can be seen from the Hermite integral formula (4.8.2) that the approx-

imation error for polynomial interpolation may be determined by taking the

ratio of the size of the node polynomial `X at the approximation points to the

size of `X along an appropriately chosen contour. Logarithmic potential theory

provides an elegant mechanism for choosing the interpolation points so that

the asymptotic behaviour of `X can be described.

We suppose that E ⊆ C is a compact set. We will see that choosing the

interpolation nodes as to maximise the geometric mean of pairwise distances

provides a particularly good approximation scheme:

δn(E) := max
z1,...,zn∈E

( ∏
16i<j6n

|zi − zj |
) 2
n(n−1)

. (4.8.5)

Any set Fn ⊆ E attaining this maximum is known as a Fekete set. It can be

shown that the quantities δn(E) form a decreasing sequence and thus converges

to what is known as the transfinite diameter : τ(E) := lim
n→∞

δn(E).

We let `Xn(z) :=
∏
x∈Xn(z − x) denote the node polynomial corresponding

to a Fekete set Xn and note that

|`Xn(z)|δn(E)
n(n−1)

2 =
∏
x∈Xn

|z − x| · max
z1,...,zn∈E

∏
16i<j6n

|zi − zj |

= max
z0,...,zn∈E : z0=z

∏
06i<j6n

|zi − zj |

6 max
z0,...,zn∈E

∏
06i<j6n

|zi − zj | = δn+1(E)
n(n+1)

2 . (4.8.6)

Therefore, rearranging (4.8.6), we obtain limn→∞ ‖`Xn‖
1/n
L∞(E) 6 τ(E). In fact,

this inequality can be replaced with equality, showing that Fekete sets allow us

to describe the asymptotic behaviour of the node polynomials on the domain

of approximation.

To extend these results, it is useful to recast the maximisation problem

(4.8.5) into the following minimisation problem, describing the minimal log-

arithmic energy attained by n particles lying in E with the repelling force
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1/|zi − zj | between particles i and j lying at positions zi and zj , respectively:

En(E) := min
z1,...,zn∈E

∑
16i<j6n

log
1

|zi − zj |
=
n(n− 1)

2
log

1

δn(E)
. (4.8.7)

Fekete sets can therefore be seen as minimal energy configurations and described

by the normalised counting measure νn := 1
n

∑n
j=1 δzj where Fn = {zj}nj=1.

The minimisation problem (4.8.7) may be extended for general unit Borel

measures µ supported on E by defining the logarithmic potential and corres-

ponding total energy by

Uµ(z) :=

ˆ
log

1

|z − ξ|
dµ(ξ) and I(µ) :=

¨
log

1

|z − ξ|
dµ(ξ)dµ(z).

The infimum of the energy over the space of unit Borel measures supported

on E, known as the Robin constant for E, will be denoted −∞ < VE 6 +∞.

The capacity of E is defined as cap(E) := e−VE and is equal to the transfinite

diameter [50]. Using a compactness argument, it can be shown that there

exists an equilibrium measure ωE with I(ωE) = VE and, in the case VE <∞,

by the strict convexity of the integral, ωE is unique [105]. Moreover, if VE <∞

(equivalently, if cap(E) > 0), then UωE (z) 6 VE for all z ∈ C, with equality

holding on E except on a set of capacity zero (we say this property holds

quasi-everywhere).

Moreover, if capE > 0, then it can be shown that the normalised counting

measures, νn, corresponding to a sequence of Fekete sets weak-? converges to

ωE . Since Uνn(z) = 1
n log 1

|`n(z)| , the weak-? convergence allows one to conclude

that

lim
n→∞

‖`n‖1/nL∞(E) = cap(E), and

lim
n→∞

|`n(z)|1/n = e−U
ωE (z) =: cap(E)egE(z) (4.8.8)

uniformly on compact subsets of C \ E. Here, we have defined the Green’s

function gE(z) := VE − UωE (z), which describes the asymptotic behaviour
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of the node polynomials corresponding to Fekete sets. We therefore wish to

understand the Green’s function gE .

Construction of the Green’s function

Now we restrict our attention to the particular case where E ⊆ R is a union of

finitely many compact intervals of non-zero length.

It can be shown that the Green’s function gE satisfies the following Dirichlet

problem on C \ E [103]:

∆gE(z) = 0 on C \ E, (4.8.9a)

gE(z) ∼ log |z| as |z| → ∞, (4.8.9b)

gE(z) = 0 on E. (4.8.9c)

In fact, it can be shown that (4.8.9) admits a unique solution [103] and

thus (4.8.9) is an alternative definition of the Green’s function. Using this

characterisation, it is possible to explicitly construct the Green’s function gE

as follows.

In the upper half plane, gE(z) = Re(GE(z)) where

GE : {z ∈ C : Im(z) > 0} → {z ∈ C : Re(z) > 0, Im(z) ∈ [0, π]}

is a conformal mapping on {z : Im(z) > 0} with GE(E) = i[0, π], GE(minE) =

iπ, and GE(maxE) = 0. Using the symmetry of E with respect to the real

axis, we may extend Re(GE(z)) to the whole complex plane via the Schwarz

reflection principle. Then, one can easily verify that this analytic continuation

satisfies (4.8.9). Since the image of GE is a (generalised) polygon, z 7→ GE(z)

is an example of a Schwarz-–Christoffel mapping [42]. See Figure 4.3 for the

case E = [−1,−ε] ∪ [ε, 1].

We shall briefly discuss the construction of the Schwarz-–Christoffel mapping

GE for E = [−1, ε−]∪ [ε+, 1]. We define the pre-vertices z1 = −1, z2 = ε−, z4 =

ε+, z5 = 1 and wish to construct a conformal map GE with GE(zk) = ωk as in
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Figure 4.3: The Schwarz-–Christoffel mapping GE with E = [z1, z2] ∪ [z4, z5]
which maps the upper half plane (left) onto the infinite slit strip {ω ∈ C : Reω >
0, Imω ∈ (0, π)} (right), is continuous on {z ∈ C : Rez > 0} and maps the
intervals [z1, z2], [z4, z5] to [ω1, ω2], [ω4, ω5] ⊆ i[0, π], respectively. We also plot
the image of an 10× 10 equi-spaced grid. A parameter problem is solved in
order to obtain z3 and thus ω3 and ω2 = ω4 whereas the other constants are
fixed. Here, we take z1 = −1, z2 = −ε, z4 = ε, z5 = 1, ω1 = iπ, ω5 = 0 with
ε = 0.3.

Figure 4.3. For simplicity, we also define z0 := −∞ and z6 :=∞ and observe

that because the image is a polygon, argG′E(z) must be constant on each

interval (zk−1, zk) and

argG′E(z+
k )− argG′E(z−k ) = (1− αk)π (4.8.10)

where z−k ∈ (zk−1, zk), z
+
k ∈ (zk, zk+1), and αkπ is the interior angle of the

infinite slit strip at vertex ωk (that is, α1 = α2 = α4 = α5 = 1
2 and α3 = 2).

After defining zα := |z|αeiα arg z where arg z ∈ (−π, π], we can see that for

z ∈ (zk−1, zk), we have arg
∏5
j=k(z − zj)αj−1 =

∑5
j=k(αj − 1)π and so the

jump in the argument of z 7→
∏5
j=1(z− zj)αj−1 is (1−αk)π at zk as in (4.8.10).

Therefore, integrating this expression, we obtain

GE(z) = A+B

ˆ z

1

ζ − z3√
ζ + 1

√
ζ − ε−

√
ζ − ε+

√
ζ − 1

dζ. (4.8.11)

Since GE(1) = A, we take A = 0 (to ensure (4.8.9c) holds). Moreover, since the

real part of the integral is ∼ log |z| as |z| → ∞, we apply (4.8.9b) to conclude

B = 1. Finally, we can choose z3 such that ReGE(z) = 0 for all z ∈ E. That
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is,

z3 ∈ (ε−, ε+) :

ˆ ε+

ε−

ζ − z3√
ζ + 1

√
ζ − ε−

√
ε+ − ζ

√
1− ζ

dζ = 0. (4.8.12)

For more details, see [52]. We use the Schwarz-–Christoffel toolbox [42] in

matlab to evaluate (4.8.11) and plot Figure 4.4.

For the simple case E := [−1, 1], by the same analysis, we can disregard

z2, z3, z4 and ω2, ω3, ω4 and integrate the corresponding expression to obtain

the closed form G[−1,1](z) = log(z +
√
z − 1

√
z + 1).

A similar analysis allows one to construct conformal maps from the upper

half plane to the interior of any polygon. For further details, rigorous proofs

and numerical considerations, see [44].

(a) Metal: E = [−1, 1]. (b) Insulator: E = [−1,−ε]∪ [ε, 1], ε = 0.30
(2 s.f.).

Figure 4.4: Equi-potential curves Crk := {z ∈ C : egE(z) = rk} for both metals
(a) and insulators (b) where 1

2(rk − r−1
k ) = kπ

β for k ∈ {1, 2, 3, 4, 5} and β = 10.
In the case of metals (a), the equi-potential curves agree with Bernstein ellipses.
We also plot the poles of F β( · ) which determine the maximal admissible
integration contours: for (a), we can take contours Cr for all r < r1 and, for
(b), the contour Cr2 can be used for all positive Fermi-temperatures (we have
chosen the gap carefully so that Cr2 self-intersects at µ). Shown in black crosses
are 30 Fejér points in each case. To create these plots we consider an integral
formula for the Green’s function z 7→ gE(z) [52] and use the Schwarz-Christoffel
matlab toolbox [41,42] to approximate these integrals.

Interpolation nodes

The only difficulty in obtaining (4.8.8) in practice is the fact that Fekete sets

are difficult to compute. An alternative, based on the Schwarz-–Christoffel
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mapping GE , are Fejér points. For equally spaced points {ζj}nj=1 on the

interval i[0, π], the nth Fejér set is defined by {G−1
E (ζj)}nj=1. Fejér sets are also

asymptotically optimal in the sense that (4.8.8) is satisfied where `n is now the

node polynomial corresponding to n-point Fejér set.

Another approach is to use Leja points which are generated by the following

algorithm: for fixed z1, . . . , zn, the next interpolation node zn+1 is construc-

ted by maximising
∏n
j=1 |zj − z| over all z ∈ E. Sets of this form are also

asymptotically optimal [119] for any choice of z1 ∈ E. Since we have fixed the

previous nodes z1, . . . , zn, the maximisation problem for constructing zn+1 is

much simpler than that of (4.8.5).

More generally, if the normalised counting measure corresponding to a

sequence of sets {zj}nj=1 ⊆ E weak-? converges to the equilibrium measure ωE ,

then the corresponding node polynomials satisfy (4.8.8).

For the simple case where E = [−1, 1], many systems of zeros or maxima

of sequences of orthogonal polynomials are asymptotically optimal in the sense

of (4.8.8). In fact, since the equilibrium measure for [−1, 1] is the arcsine

measure [104]

dµ[−1,1](x) =
1

π

1√
1− x2

dx,

any sequence of sets with this limiting distribution is asymptotically optimal.

An example of particular interest are the Chebyshev points {cos jπn }06j6n

given by the n+ 1 extreme points of the Chebyshev polynomials defined by

Tn(cos θ) = cosnθ.

Asymptotically optimal polynomial approximations

Suppose that E is the union of finitely many compact intervals of non-zero

length and O : E → C extents to an analytic function in an open neighbourhood

of E. On defining Cγ := {z ∈ C : gE(z) = γ}, we denote by γ? the maximal

constant for which O is analytic on the interior of Cγ? . We let P ?N be the best

L∞(E)-approximation to O in the space of polynomials of degree at most N

and suppose that IN is a polynomial interpolation operator in N + 1 points
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satisfying (4.8.9). Then, the Green’s function gE determines the asymptotic

rate of approximation for not only polynomial interpolation but also for best

approximation:

lim
N→∞

‖O − P ?N‖
1/N
L∞(E) = lim

N→∞
‖O − INO‖1/NL∞(E) = e−γ

?
. (4.8.13)

For a proof that the asymptotic rate of best approximation is given by the

Green’s function see [104]. The result for polynomial interpolation uses the

Hermite integral formula and (4.8.8), see (4.8.18) and (4.8.19), below.

4.8.2 Linear body-order approximation

In this section, we use the classical logarithmic potential theory from §4.8.1

to prove the approximation error bounds for interpolation. However, we

first show in more detail that polynomial approximations lead to body-order

approximations:

Proof of Proposition 4.1. We first simplify the notation by absorbing the ef-

fective potential and two-centre terms into the three-centre summation:

H(X)k1k2 =
∑
m

Hk1k2m, where

Hk1k2m :=


1
2h(Xk1k2) + δk1k2vk1IdNb

, if m ∈ {k1, k2},

t(Xk1m,Xk2m), if m 6∈ {k1, k2}.
(4.8.14)

Now, supposing that IXO(z) =
∑|X |−1

j=0 cjz
j , we obtain

IXO`(X) = tr

|X |−1∑
j=0

cj
∑

`1,...,`j−1

H``1H`1`2 . . .H`j−1`

= tr

|X |−1∑
j=0

cj
∑

`1,...,`j−1
m1,...,mj

H``1m1H`1`2m2 . . .H`j−1`mj , (4.8.15)

where the first two terms in the outer summation are c0 and c1H``. Now,

for a fixed body-order (n + 1), and k1 < · · · < kn with kl 6= `, we construct
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VnN (X`;X`k1 , . . . ,X`kn) by collecting all terms in (4.8.15) with 0 6 j 6 |X |−1

and {`, `1, . . . , `j−1,m1, . . . ,mj} = {`, k1, . . . , kn}. In particular, the maximal

body-order in this expression is 2(|X | − 1) for three-centre models and |X | − 1

in the two-centre case.

More explicitly, using the notation (4.5.1), we have

VnN (X`;X`k1 , . . . ,X`kn)

= tr

|X |−1∑
j=0

cj
∑

`1,...,`j−1,m1,...,mj
{`,`1,...,`j−1,m1,...,mj}={`,k1,...,kn}

H``1m1H`1`2m2 . . .H`j−1`mj (4.8.16)

= tr
∑

K⊆{k1,...,kn}

(−1)n−|K|IXO
(
H
∣∣
`;K

)
``
. (4.8.17)

Here, we have applied an inclusion-exclusion principle to ensure that we are

not only summing over sites in {k1, . . . , kn} but we select at least one of

each site in this set. Indeed, if we choose `1, . . . , `j−1,m1, . . . ,mj such that

{`, `1, . . . , `j−1,m1, . . . ,mj} = {`}∪K0, then the expressionH``1m1 · · ·H`j−1`mj

appears in each term of (4.8.17) with K ⊇ K0 exactly once (with a ± sign).

Therefore, the number of times H``1m1H`1`2m2 . . .H`j−1`mj appears is exactly

n−|K0|∑
l=0

(−1)n−|K0|−l
(
n− |K0|

l

)
=


1 if |K0| = n,

0 otherwise.

That is, (4.8.17) only contains the terms in the summation (4.8.16).

Proof of Theorem 4.2. We let `N (x) :=
∏
j(x−xNj ) be the node polynomial for

XN := {xNj }Nj=0. Again, we fix the configuration X and consider H := H(X).

Supposing that C is a simple closed positively oriented contour encircling

70



σ(H), we apply the Hermite integral formula (4.8.2) to obtain:

∣∣Oβ` (X)− IXNO
β
` (X)

∣∣ 6 ‖Oβ(H)− IXNO
β(H)‖`2→`2

= sup
z∈σ(H)

∣∣Oβ(z)− IXNO
β(z)

∣∣
6 sup

z∈σ(H)

∣∣∣∣ 1

2πi

˛
C

`N (z)

`N (ξ)

Oβ(ξ)

ξ − z
dξ

∣∣∣∣
6

‖Oβ‖C
dist

(
C , σ(H)

) sup
z∈σ(H), ξ∈C

∣∣∣∣`N (z)

`N (ξ)

∣∣∣∣. (4.8.18)

At this point we apply standard results of classical logarithmic potential

theory (see, §4.8.1 or [82]) and conclude by noting that if the interpolation

points are asymptotically distributed according to the equilibrium distribution

corresponding to E := I− ∪ I+, then after applying (4.8.8), we have

lim
N→∞

∣∣∣∣`N (z)

`N (ξ)

∣∣∣∣ 1
N

= egE(z)−gE(ξ). (4.8.19)

Here, the equilibrium distribution and the Green’s function gE(z) are concepts

introduced in §4.8.1.

Therefore, by choosing the contour C := {ξ ∈ C : gE(ξ) = γ} for 0 < γ <

gE(µ+ iπβ−1), the asymptotic exponents in the approximation error is γ. The

maximal asymptotic convergence rate is given by gE(µ+ iπβ−1) since C must

be contained in the region of analyticity of Oβ and the first singularity of Oβ

is at µ+ iπβ−1 (for Oβ = F β or Gβ). Examples of the equi-potential level sets

C are given in Figure 4.4.

Using the Green’s function results of §4.8.1, we have gE(µ + iπβ−1) =

ReGE(µ+ iπβ−1) where GE is the integral (4.8.11). The asymptotic behaviour

of this maximal asymptotic convergence rate for the separate β → ∞ and

g→ 0 limits can be found in [52,109]. Here, we consider the β−1 + g→ 0 limit

where the gap remains symmetric about the chemical potential µ.

To simplify the notation we consider I− ∪ I+ = [−1, ε−] ∪ [ε+, 1] where

ε± = µ± 1
2g. By choosing to integrate (4.8.11) along the contour composed of
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the intervals [1, µ] and [µ, µ+ iπβ−1], we obtain

GE(µ+ iπβ−1) = GE(µ) +

ˆ µ+iπβ−1

µ

ζ − z3√
ζ + 1

√
ζ − ε−

√
ζ − ε+

√
ζ − 1

dζ.

(4.8.20)

Since gE(µ) ∼ g as g→ 0 [52], we only consider the remaining term in (4.8.20).

For ζ ∈ µ+ i[0, πβ−1], we have c−1 6 |
√
ζ ± 1| 6 c, and so the integral in

(4.8.20) has the same asymptotic behaviour as the following

ˆ µ+iπβ−1

µ

ζ − z3√
ζ − ε−

√
ζ − ε+

dζ

= g

ˆ 1
2

+ iπβ−1

g

1
2

√
ζ√

ζ − 1
dζ + (ε− − z3)

ˆ 1
2

+ iπβ−1

g

1
2

1√
ζ
√
ζ − 1

dζ, (4.8.21)

where we have used the change of variables ζ−ε−
ε+−ε− → ζ. Since the integrands

are uniformly bounded along the domain of integration, (4.8.21) is ∼ β−1 as

β →∞.

The constant pre-factor in (4.8.18) is inversely proportional to the distance

dist
(
C , σ(H)

)
between the contour C = {gE = γ} and the spectrum σ(H). In

particular, since gE is uniformly Lipschitz with some constant L > 0 on the

compact region bounded by C , we have: there exists λ ∈ σ(H) and ξ ∈ C such

that

dist
(
C , σ(H)

)
= |ξ − λ| > 1

L
|gE(ξ)− gE(λ)| = 1

L
γ.

Therefore, choosing γ to be a constant multiple of gE(µ+ iπβ−1), we conclude

that the constant pre-factor C satisfies C ∼ (g + β−1)−1 as g + β−1 → 0.

To extend the body-order expansion results to derivatives (in particular, to

forces), we write the quantities of interest using resolvent calculus, apply (3.6.3)

to bound the derivatives of the resolvent, and use the Hermite integral formula

(4.8.18) to conclude: for C1, C2 simple closed positively oriented contours

72



encircling the spectrum σ
(
H(X)

)
and C1, respectively, we have

∣∣∣∣∂O`(X)

∂Xm
− ∂IXNO`(X)

∂Xm

∣∣∣∣ =
1

2π

∣∣∣∣˛
C1

(
O(z)− IXNO(z)

)∂(H(X)− z
)−1

``

∂Xm
dz

∣∣∣∣
=

1

4π2

∣∣∣∣ ˛
C1

˛
C2

`N (z)

`N (ξ)

O(ξ)

ξ − z
∂
(
H(X)− z

)−1

``

∂Xm
dξdz

∣∣∣∣
6 Ce−ηr`m sup

z∈C1,ξ∈C2

∣∣∣∣`N (z)

`N (ξ)

∣∣∣∣. (4.8.22)

We conclude by choosing appropriate contours Cl = {gE = γl} for l = 1, 2 and

applying (4.8.19).

Role of the Point Spectrum

Proof of Theorem 4.3. Suppose that C is a simple closed contour encircling

the spectrum σ
(
H(Xd)

)
and (λs, ψs) are normalised eigenpairs corresponding

to the finitely many eigenvalues outside I− ∪ I+. Therefore, we have

Oβ` (Xd)− IXNO
β
` (Xd) = tr

˛
C

(
Oβ(z)− IXNO

β(z)
)(
z −H(Xd)

)−1

``

dz

2πi

+
∑
s

(
Oβ(λs)− IXNO

β(λs)
)∣∣[ψs]`∣∣2.

(4.8.23)

The first term of (4.8.23) may be treated in the same way as in the proof of

Theorem 4.2. Moreover, derivatives of this term may be treated in the same

way as in (4.8.22). It is therefore sufficient to bound the remaining term and

its derivative.

Firstly, we note that the eigenvectors corresponding to isolated eigenvalues

in the spectral gap have the following decay [98]: for C ′ a simple closed

positively oriented contour (or system of contours) encircling {λs}, we have

∑
s

∣∣[ψs]`∣∣2 =
1

2π

∣∣∣∣˛
C ′

[(
H(Xd))− z

)−1]
``

dz

∣∣∣∣
=

1

2π

∣∣∣∣˛
C ′

[(
H(Xd))− z

)−1 −
(
H(X)− z

)−1]
``

dz

∣∣∣∣
6 Ce−γCT[|r`|−Rd], (4.8.24)
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where γCT is the Combes–Thomas constant from Lemma 3.3 depending on the

constant d = dist
(
C ′, σ(H(Xd))

)
. The constant pre-factor in (4.8.24) depends

on the distance between the contour and the defect spectrum σ
(
H(Xd)

)
.

Similar estimates hold for the derivatives. For full details on the derivation of

(4.8.24), see [98, (5.18)–(5.21)] or the proof of Theorem 3.2.

Therefore, combining (4.8.24) and the Hermite integral formula (4.8.2), we

conclude as in the proof of Theorem 4.2.

4.8.3 Non-linear body-order approximation

Recursion method

In the following we briefly introduce the recursion method [66, 67], a refor-

mulation of the Lanczos process [81], which generates a tri-diagonal (Jacobi)

operator T [120] whose spectral measure is D` and the corresponding sequence

of orthogonal polynomials [55]. This process provides the basis for constructing

approximations to the LDOS giving rise to nonlinear approximation schemes

satisfying Theorem 4.4.

Recall that D` is the LDOS satisfying (4.2.1). We start by defining p0 := 1,

a0 :=
´
xdD`(x) and b1p1(x) := x−a0 where b1 is the normalising constant to en-

sure
´
p1(x)2dD`(x) = 1. Then, supposing we have defined a0, a1, b1, . . . , an, bn

and the polynomials p0(x), . . . , pn(x), we set

bn+1pn+1(x) := (x− an)pn(x)− bnpn−1(x), with (4.8.25)ˆ
pn+1(x)2dD`(x) = 1, an+1 :=

ˆ
xpn+1(x)2dD`(x). (4.8.26)

Moreover, for each N , we define

TN :=



a0 b1

b1 a1
. . .

. . .
. . . bN

bN aN


, (4.8.27)
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and let T∞ = T to be the infinite symmetric tridiagonal matrix on N0 with

diagonal (an)n∈N0 and off-diagonal (bn)n∈N.

Then, we have the following key preliminary result (the proof of which

follows the proof of Theorem 4.4):

Lemma 4.5. The sequence of polynomials pn generated by the recursion

(4.8.25) and TN defined by (4.8.27) satisfy

(i) {pn} are orthonormal with respect to D`. That is,

ˆ
pnpmdD` = [pn(H)pm(H)]`` = δnm,

(ii) D` is the spectral measure of T corresponding to e0 := (1, 0, 0, . . . )T,

(iii) If [a, b] ∩ σ(H) = ∅, then [a, b] ∩ σ(TN ) contains at most a single point.

Remark 4.9. It will also prove convenient for us to renormalise the orthogonal

polynomials by defining Pn(x) := bnpn(x) and b0 := 1. That is,

P0(x) = 1, P1(x) = x− a0,

Pn+1(x) =
x− an
bn

Pn(x)− bn
bn−1

Pn−1(x), for n > 1 (4.8.28)

b2n+1 =

ˆ
Pn+1(x)2dD`(x), and an+1 =

´
xPn+1(x)2dD`(x),

b2n+1

. (4.8.29)

One advantage of this formulation is that the coefficients {bn} are explicit.

Therefore, if we have the first 2N + 1 moments H``, . . . , (H2N+1)``, it is

possible to evaluate Q2N+1(H)`` (that is,
´
Q2N+1dD`) for all polynomials

Q2N+1 of degree at most 2N + 1, and thus compute TN . In particular, for a

fixed observable of interest O, we may write

Θ
(
H``, . . . , [H2N+1]``

)
:= O(TN )00. (4.8.30)

Remark 4.10. In Appendix C.4 we introduce more complex bond order po-

tential (BOP) schemes based on the recursion method and show that they also

satisfy Theorem 4.4.
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Error estimates

Equation (4.8.30) states that the nonlinear approximation scheme given by Θ

simply approximates the LDOS with the spectral measure of TN corresponding

to e0 := (1, 0, . . . , 0)T. Since [(TN )n]00 = [Tn]00 for all n 6 2N + 1 and

[Tn]00 = [Hn]`` for all n (Lemma 4.5 (ii)), we may apply the general error

estimate (4.2.2) to conclude

∣∣O` −Θ
(
H``, . . . , [HN ]``

)∣∣ 6 2 inf
P2N+1∈P2N+1

‖O − P2N+1‖L∞(σ(H)∪σ(TN )).

(4.8.31)

Now, applying Lemma 4.5 (iii), we may conclude that there are at most finitely

many points in σ(TN ) outside I−∪ I+, independently of N . In particular, these

points do not affect the asymptotic error estimates for best L∞ polynomial

approximation on I− ∪ {λj} ∪ I+.

Analyticity

To conclude the proof of Theorem 4.4, we show that Θ as in (4.8.30) extents to

an analytic function on some open set U ⊆ C2N+1. Throughout this section,

we use the rescaled orthogonal polynomials {Pn} from Remark 4.9.

For a polynomial P (x) =
∑m

j=0 cjx
j , we use the notation LP (z1, . . . , zm) :=

c0 +
∑m

j=1 cjzj for the linear function satisfying P (x) = LP (x, x2, . . . , xm). To

extend the recurrence coefficients from Remark 4.9, we start by defining

b0 = 1, a0(z1) := z1, P1(x; z1) := x− a0(z1) = x− z1,

b21(z1, z2) := L
(
x 7→ P1(x; z1)2

)
(z1, z2) = z2 − z2

1 , (4.8.32)

a1(z1, z2, z3) :=
L
(
x 7→ xP1(x; z1)2

)
(z1, z2, z3)

b21(z1, z2)
=
z3 − 2z1z2 + z3

1

z2 − z2
1

.

To simplify the notation, we write z1:m for the m-tuple (z1, . . . , zm). Given

a0(z1), . . . , an(z1:2n+1) and b1(z1:2), . . . , bn(z1:2n), we define Pn+1(x; z1:2n+1)

to be the polynomial in x satisfying the same recursion as Remark 4.9 but as
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a function of z1:2n+1:

Pn+1(x; z1:2n+1) =
x− an(z1:2n+1)

bn(z1:2n)
Pn(x; z1:2n−1)

− bn(z1:2n)

bn−1(z1:2n−2)
Pn−1(x; z1:2n−3).

With this notation, we define

b2n+1(z1:2n+2) := L
(
x 7→ Pn+1(x; z1:2n+1)2

)
(z1:2n+2), (4.8.33)

an+1(z1:2n+3) :=
L
(
x 7→ xPn+1(x; z1:2n+1)2

)
(z1:2n+3)

b2n+1(z1:2n+2)
. (4.8.34)

Since Pn+1(x) = Pn+1(x;H``, . . . , [H2n+1]``), we have extended the definition

of the recursion coefficients (4.8.29) to functions of multiple complex variables.

We now show that an(z1:2n+1) and b2n(z1:2n) are rational functions. As a

preliminary step, we show that both P 2
n+1 and Pn+1Pn

bn
are polynomials in x

with coefficients given by rational functions of an, b
2
n and all previous recursion

coefficients. This statement is clearly true for n = 0: P 2
1 = (x − a0)2 and

P1P0
b0

= x− a0. Therefore, by induction and noting that

P 2
n+1 =

(
x− an
bn

Pn

)2

− 2(x− an)
PnPn−1

bn−1
+

b2n
b2n−1

P 2
n−1 (4.8.35)

Pn+1Pn
bn

=
x− an
b2n

P 2
n −

PnPn−1

bn−1
, (4.8.36)

we can conclude. Therefore, by (4.8.32) and (4.8.33) and (4.8.34), we can apply

another induction argument to conclude that an+1(z1:2n+3) and b2n+1(z1:2(n+1))

are rational functions.

We fix N and define the following complex valued tri-diagonal matrix

TN (z) :=



a0(z1) b21(z1:2)

1 a1(z1:3) b22(z1:4)

1
. . .

. . .

. . .
. . . b2N (z1:2N )

1 aN (z1:2N+1)


. (4.8.37)
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If zj = [Hj ]`` for each j = 1, . . . , N , (4.8.37) is similar to TN from (4.8.27).

Now, on defining U := {z ∈ C2N+1 : b2n(z1:2n) 6= 0 ∀n = 1, . . . , N}, the

mapping U → C(N+1)×(N+1) given by z 7→ TN (z) is analytic. Therefore, for

appropriately chosen contours Cz encircling σ
(
TN (z)

)
, we have

Θ(z) := O
(
TN (z)

)
00

=

˛
Cz

O(ω)
[(
ω − TN (z)

)−1
]

00

dω

2πi
. (4.8.38)

In particular, Θ is an analytic function on

{
z ∈ U : O analytic in an open neighbourhood of σ

(
TN (z)

)}
.

Remark 4.11. Since C2N+1 \U is the zero set for some (non-zero) polynomial

P in 2N + 1 variables, it has (2N + 1)-dimensional Lebesgue measure zero [63].

Remark 4.12. In Appendix C.3 we show that the eigenvalues of TN (z) are

distinct for z in some open neighbourhood, U0 ⊆ U , of R2N+1, which leads

to the following alternative proof. On U0, the eigenvalues and corresponding

left and right eigenvectors can be chosen to be analytic: there exist analytic

functions εj , ψj , φ
?
j for j = 0, . . . , N such that φ?i (z)ψj(z) = δij and

TN (z)ψj(z) = εj(z)ψj(z) and φ?j (z)TN (z) = εj(z)φ?j (z).

(More precisely, we apply [62, Theorem 2] to obtain analytic functions ψj , φ
?
j of

each variable z1, . . . , z2N+1 separately and then apply Hartog’s theorem [80] to

conclude that ψj , φ
?
j are analytic as functions on U ⊆ C2N+1). Therefore, the

nonlinear method discussed in this section can also be written in the following

form

Θ =

N∑
j=0

[ψj ]0[φ?j ]0 ·
(
O ◦ εj

)
(4.8.39)

which is an analytic function on {z ∈ U0 : O analytic at εj(z) for each j}

(as it is a finite combination of analytic functions only involving products,

compositions and sums).
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Proof of Lemma 4.5

The idea behind the proofs are standard in the theory of Gauss quadrature

(e.g. see [55]) and collected here for convenience of the reader.

Proof of (i). First note that
´
p0p1dD` = 0. We assume that p0, . . . , pn are

mutually orthogonal with respect to D`, and note that,

b1 = b1

ˆ
p2

1dD` =

ˆ
(x− a0)p1(x)dD`(x) =

ˆ
xp0(x)p1(x)dD`(x), and

bn = bn

ˆ
p2
ndD` =

ˆ (
(x− an−1)pn−1(x)pn(x)− bn−1pn−2(x)pn(x)

)
dD`(x)

=

ˆ
xpn−1(x)pn(x)dD`(x) for n > 2. (4.8.40)

Therefore, we conclude by noting

bn+1

ˆ
pn+1pjdD` =

ˆ (
(x− an)pn(x)pj(x)− bnpn−1(x)pj(x)

)
dD`(x)

=



´
xpn(x)2dD` − an if j = n,

´
xpn(x)pn−1(x)dD` − bn if j = n− 1

0 if j 6 n− 2,

(4.8.41)

and applying (4.8.40).

Proof of (ii). By the orthogonality, we have

[T 0]ij =

ˆ
pi(x)x0pj(x)dD`(x) = δij .

Therefore, assuming [Tn]ij =
´
pi(x)xnpj(x)dD`(x), we can conclude

[Tn+1]ij =
∑
k

[Tn]ikTkj

=

ˆ
pi(x)xn

[
bjpj−1(x) + ajpj(x) + bj+1pj+1(x)

]
dD`(x)

=

ˆ
pi(x)xn+1pj(x)dD`(x).

Here, we have applied (4.8.25) directly. In particular, if i = j = 0, we obtain

[Tn]00 = [Hn]`` for all n.
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Proof of (iii). First, we note that the recurrence relation (4.8.25) may be

written as xp(x) = TNp(x) + bN+1pN+1(x)eN where TN is the tri-diagonal

matrix (4.8.27), p(x) :=
(
1, p1(x), . . . , pN (x)

)T
, and [eN ]j = δjN . In particular,

the spectrum of TN is exactly the set of zeros of pN+1.

Now, suppose that [a, b] ∩ σ(H) = ∅ and σ(TN ) = {εj}Nj=0 with ε0, ε1 ∈

σ(TN ) ∩ [a, b]. Then, after defining R(x) :=
∏N
j=2(x − εj), a polynomial of

degree N − 1, and noting (x− ε0)(x− ε1) > 0 on σ(H), we obtain

ˆ
pN+1(x)R(x)dD`(x) =

ˆ
R(x)2(x− ε0)(x− ε1)dD`(x) > 0,

contradicting the orthogonality property (part (i)).
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CHAPTER 5

Locality & Body-ordered Approximations:

Self-consistent Tight Binding

• Sections §5.3 and §5.4 are based on the article [122] “Locality of in-

teratomic interactions in self-consistent tight binding models” published

in the Journal of Nonlinear Science, 30(6): 3293–3319 (2020). However,

the locality estimates for point defects in this thesis are sharper than those

of [122]. Full details of the improvements are given in Remark 5.3,

• The results presented in §5.5.1 are from [123, §2.7] “Rigorous body-order

approximations of an electronic structure potential energy landscape”

submitted to the arXiv preprint server, arXiv:2106.12572 (2021). This

paper is co-authored by Huajie Chen and Christoph Ortner,

• The content of §5.5.2 was previously unpublished.

5.1 Introduction

In contrast to Chapter 3 and the previous works [26, 29], in this chapter

we let the on-site Hamiltonian matrix entries depend on the local electron

density through an effective potential. This results in a class of nonlinear tight

81



binding models encompassing for example DFTB [49,79,106], since the electron

density itself depends on the Hamiltonian via a self-consistency condition. This

approach therefore represents a key stepping stone between linear tight binding

and more accurate nonlinear models such as Kohn–Sham density functional

theory.

The self-consistency introduces the interesting issue of stability of the

electronic structure problem; the main additional technical difficulty when

compared to the linear model. Under a natural stability condition [45], stating

that the linearised operator is invertible, we show that the potential energy

landscape in this model can be decomposed into exponentially localised site

contributions, thus justifying many classical interatomic potential (IP) and

multiscale methods.

Again, we also consider point defects and show improved estimates which

only weakly depend on the defect states within the band gap.

The highly nonlinear charge-equilibration leads in principle to arbitrarily

complex intermixing of the nuclei information, and thus arbitrarily high body-

order. However, the results on the body-ordered approximations for linear

tight-binding models mean that each iteration of the self-consistent field (SCF)

iteration can be expressed in terms of a low body-ordered and local interaction

scheme. This leads us to propose a self-similar compositional representation

of atomic properties that is highly reminiscent of recurrant neural network

architectures. Each “layer” of this representation remains local and low-

dimensional in the sense of Chapter 4.

We present a related approach by constructing a mapping between the

configuration (r, ρ) and energies whose Euler–Lagrange equation is the self-

consistency equation. Therefore, approximation of this energy by “simple”

components yields an alternative approximation scheme that is both low-

dimensional and short-ranged.
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5.2 Self-consistency and Stability

For fixed (r, Z) and electron density ρ, we consider the following effective

potential: for an infinitely differentiable function v0 : R→ R, we define

v(ρ)` := v0(ρ`) +
∑
m 6=`

ρm − Zm
r`m

e−γvr`m (5.2.1)

for some γv > 0. Of course v(ρ) also depends on the positions and species of

the atoms (r, Z), but for notational simplicity, we omit this dependence in the

notation.

Taking γv = ∞, we obtain the simplest abstract nonlinear tight binding

models as discussed in [45, 122]. If γv ∈ (0,∞), (5.2.1) is a (short-ranged)

Yukawa potential which covers many important modelling scenarios and also

serves as a crucial stepping stone towards charge equilibration under full

Coulomb interaction (i.e. with γv = 0). This latter case goes beyond the

mathematical results of this thesis but is discussed in more detail in §5.5.1,

below.

For a given configuration X, we consider corresponding self-consistent

electron densities, giving rise to the nonlinearity of the problem:

(SC). We say ρ is a self-consistent electronic density if ρ = F β
(
X(ρ)

)
where

X(ρ) :=
(
r, v(ρ), Z

)
, z 7→ F β(z) is the Fermi–Dirac distribution (2.4.4),

and F β(X) is defined in (2.4.1).

In this chapter, the configuration will be written as a function of the

variable of interest. For example, in (SC) the electron density ρ is essential

in the definition and so we write X(ρ). In (5.2.3) below, we instead write

the configuration as a function of the atomic positions r locally about a self-

consistent configuration. This slight abuse of notation significantly simplifies

the presentation.

Remark 5.1. For a finite system, the self-consistency equation (SC) takes
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the following form:

ρ` =
∑
s

F β(λs)
∣∣[ψs]`∣∣2 (5.2.2)

where H
(
X(ρ)

)
=
∑

s λs |ψs〉 〈ψs| for normalised eigenpairs (λs, ψs). That

is, the electronic structure of the system is obtained by assigning electrons

to the eigenstates of lowest energy, according to the Fermi–Dirac occupation

distribution and subject to Pauli’s exclusion principle.

We wish to show that, for fixed X and associated self-consistent electronic

density ρ, the quantities O`
(
X(ρ)

)
are exponentially localised. As shown in

Chapter 3 for the linear model, the exponent in these locality results are linear

in the distance between the spectrum σ
(
H(X)

)
and the integration contour C

from (2.4.1). For the nonlinear model that we consider here, the locality result

also depends on the stability of the model; discussed below.

Supposing that
(
r, v(ρ), Z

)
is self-consistent and satisfies a natural stability

condition (see (Stab), below), it is possible to rewrite the local observables as

a function of the atomic configuration. That is, for r in a small neighbourhood

of r, there exists a locally unique ρ = ρ(r) in a neighbourhood of ρ such

that X(r) :=
(
r, v
(
ρ(r)

)
, Z
)

satisfies (SC). See Lemma 5.9 for the rigorous

statement. Therefore,

Osc
` (r) := O`

(
X(r)

)
(5.2.3)

is a well-defined ν−times continuously differentiable mapping in a neighbour-

hood of r.

We may now consider the derivatives of the local observables with respect

to the perturbation of atomic positions. Using the resolvent calculus approach

(2.4.1), it is sufficient to consider derivatives of the resolvent operators. Since

the linear part has already been studied in Chapter 3, we only consider the

additional nonlinear contribution, which involves derivatives of the electronic
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density. Due to the self-consistency, we obtain

∂ρ`
∂rn

=
[(
I −L (ρ)

)−1
φn
]
`
, (5.2.4)

where the stability operator L (ρ) is the Jacobian of F β
(
X(ρ)

)
with respect to

ρ and φn ∈ `2(Λ). Therefore, the following stability condition, which we take

from [45,46], is the minimal starting assumption required for the analysis:

(Stab). We say X(ρ) is stable if I −L (ρ) : `2(Λ) → `2(Λ) is an invertible

bounded linear operator.

5.3 General Locality Estimates

We are now in a position to state general locality estimates:

Theorem 5.1. Suppose that X(r) satisfies (SC), (Stab), and Definition 2.2

and that O,F β satisfy Definition 2.4. Then, for 1 6 j 6 ν, there exists

Cj , ηj > 0 such that

∣∣∣∣ ∂jOsc
` (r)

∂rm1 . . . ∂rmj

∣∣∣∣ 6 Cj‖O‖C e−ηj
∑j
l=1 r`ml

for any `,m1, . . . ,mj ∈ Λ. Moreover, ηj := cj min{1, dO, dFβ , cFβdL } where

dL := dist
(
1, σ
(
L (ρ)

)
> 0, cFβ := d2

Fβ
min{1, dd+1

Fβ
}, and cj > 0 is independ-

ent of dO, dFβ , and dL .

Sketch of the Proof. The proof follows the analogous proof in the linear case,

together with bounds on the nonlinear contribution (5.2.4). Locality of the

nonlinear term not only depends on dO, as in the linear case, but also on the

stability. Full details are presented in §5.6.1.

5.4 Locality Estimates for Point Defects

Now we consider the specific example of point defect reference configurations.

In this case we show improved locality estimates in which, away from the defect
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core, the pre-factors and exponents behave like the corresponding defect-free

case.

Fix a reference configuration X =
(
r, v, Z

)
and, for a point defect (rd, Zd),

we let vd : `∞(Λd) → `∞(Λd) be the corresponding Yukawa potential (5.2.1)

and consider Xd := (rd, vd, Zd). Moreover, we suppose there exist stable,

self-consistent electron densities ρ = ρ(r) and ρd = ρd(rd) corresponding

to X and Xd, respectively. In particular, we may define the self-consistent

configurations X(r) and Xd(rd) for r and rd in neighbourhoods of r and rd,

respectively, as in (5.2.3). We simplify notation by writing L and L d for the

stability operators for X and Xd, respectively.

Now, if
(
X(r), Xd(rd)

)
satisfies (Pδ), we may approximate the Hamilto-

nian H
(
Xd(rd)

)
with a finite rank update of H

(
X(r)

)
(Proposition 2.3) and

thus apply the improved resolvent estimates from Lemma 3.4 as in the linear

setting. Analogously, showing that the stability operator L d may be approxim-

ated by a finite rank update of L , leads to improved estimates for the stability

operator:

Proposition 5.2 (Decomposition of the Stability Operator). Fix ε > 0. Then,

there exists δ > 0 such that if
(
X(r),Xd(rd)

)
satisfies (Pδ) and

lim sup
|rk|→∞

∣∣v′0(ρd
k)− v′0(ρk)

∣∣ < δ, (5.4.1)

then there exists R > 0 and operators Qε, QFR such that

L d = L +QFR +Qε, (5.4.2)

[QFR]`k = 0 if |r`| > R or |rk| > R, and ‖Qε‖`2→`2 < ε. Moreover, we have∣∣σ(L d
)
\Bε

(
σ(L )

)∣∣ <∞.
Remark 5.2. In particular, for

(
X(r),Xd(rd)

)
to satisfy (Pδ), we require

lim sup
|rk|→∞

∣∣∣[v0(ρd
k)− v0(ρk) +

∑
m∈Λff

ρd
k − ρk
rkm

e−γvrkm
]∣∣∣ < δ. (5.4.3)
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This is the minimal technical assumption required for the analysis. Indeed, if

(5.4.3) does not hold, then the defect Hamiltonian cannot be approximated by a

finite rank update of the defect-free Hamiltonian, and the method of proof used

in this chapter cannot be applied. Moreover, (5.4.1) is the minimal assumption

needed for (5.4.2).

Theorem 5.3. Fix ε > 0 such that dL := dist
(
1, Bε

(
σ(L )

))
> 0 and suppose

Xd(rd) satisfies (5.4.1) and (Pδ) with δ > 0 sufficiently small such that

Propositions 2.3 and 5.2 hold with the constant ε > 0. Moreover, suppose

(Cj , ηj) are the constants from Theorem 5.1 when applied to X(r) and with the

constant dL , and O,F β satisfy Definition 2.4. Then, for 1 6 j 6 ν, ` ∈ Λd,

and m = (m1, . . . ,mj) ∈ (Λd)j, there exists Cd
j = Cd

j (`,m), such that

∣∣∣∣∣ ∂jOsc
` (rd)

∂rd
m1
. . . ∂rd

mj

∣∣∣∣∣ 6 Cd
j ‖O‖C e−ηj

∑j
l=1 r`ml .

Moreover, Cd
j (`,m) is uniformly bounded independently of (`,m) and, if

`,m1, . . . ,mj ∈ BR(ξ) for some R > 0, then Cd
j (`,m) → Cj, with an ex-

ponential rate.

Remark 5.3. Theorem 5.3 is an improved version of the published estimate.

In the published version, the exponent depends on the defect and is given as

a function of the relevant atomic positions: ηd
j = ηd

j (`,m). Similarly to the

prefactor, it is shown that ηd
j → ηj as the subsystem (`,m) moves away from the

defect core together, with an exponential rate. In the published version, improved

resolvent estimates are used to obtain estimates on L with prefactors depending

on the atomic positions which, in turn, leads to estimates on (I −L )−1 in

which the exponents depend on the atomic positions. Instead of this approach,

the present work directly uses the low rank update formula (5.4.2) to obtain

improved estimates on (I −L )−1.
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5.5 Body-ordered Approximations

We present two related methods for incorporating electronic information in a

self-consistent manner into the body-ordered approximation schemes presented

in Chapter 4.

5.5.1 Approximate Self-consistent Equations

Perhaps the most natural approach is to to first approximate self-consistent

electron densities ρ? = F β
(
X(ρ?)

)
with self-consistent solutions to the following

approximate self-consistency equation:

ρN = INF
β
(
X(ρN )

)
, (5.5.1)

where IN is an interpolation operator given by (4.3.1), and then use ρN in

the definition of the approximate quantities. That is, the fixed point mapping

for the exact electron density ρ? is replaced with an approximate fixed point

mapping based on the body-ordered approximation schemes of Chapter 4. This

approach leads to the following two results:

Theorem 5.4. Suppose that ρ? satisfies (SC) and (Stab). Then, for N

sufficiently large, there exist self-consistent solutions ρN of (5.5.1) such that

∥∥ρN − ρ?∥∥`∞ 6 Ce−γNN , (5.5.2)

where γN are the constants from Theorem 4.2 applied to X(ρ?).

Corollary 5.5. Suppose that ρ? and ρN are as in Theorem 5.4. Then,

∣∣O`(X(ρ?)
)
− INO`

(
X(ρN )

)∣∣ 6 Ce−γNN ,

where γN are the constants from Theorem 4.2 applied to X(ρ?).

In order for this result to be of any practical use, we need to solve the

non-linear equation (5.5.1) for the electron density via a self-consistent field
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(SCF) procedure. Supposing we have the electron density ρi and corresponding

state Xi := X(ρi) after i iterations, we diagonalise the Hamiltonian H(Xi)

and hence evaluate the output density ρout = INF
β(Xi). At this point, since

the simple iteration ρi+1 = ρout does not converge in general, a mixing strategy,

possibly combined with Anderson acceleration [31], is used in order to compute

the next iterate. The analysis of such mixing schemes is a major topic in

electronic structure and numerical analysis in general and so we only present a

small step in this direction.

In particular, solving (5.5.1) via a SCF iteration motivates the use of

compositional models, reminiscent of artificial neural networks.

Proposition 5.6 (Stability). The approximate electron densities ρN arising

from Theorem 5.4 are stable in the following sense: I − LN (ρN ) : `2 → `2

is an invertible bounded linear operator where LN is the Jacobian of ρ 7→

INF
β
(
X(ρ)

)
. Moreover,

(
I − LN (ρN )

)−1
is uniformly bounded in N in

operator norm.

Theorem 5.7. For X satisfying Definition 2.2, suppose that ρN is a cor-

responding approximate self-consistent electron density stable in the sense of

Proposition 5.6. For fixed ρ0, we define {ρi}∞i=0 via the Newton iteration

ρi+1 = ρi −
(
I −LN (ρi)

)−1
(
ρi − INF β

(
X(ρi)

))
.

Then, for ‖ρ0 − ρN‖`∞ sufficiently small, the Newton iteration converges quad-

ratically to ρN .

A more thorough treatment of these SCF results is beyond the scope of

this work. See [20, 70, 83] for recent results in the context of Hartree-Fock

and Kohn-Sham density functional theory. For a recent review of SCF in the

context density functional theory, see [129].

Remark 5.4. It is clear from the proofs of Theorems 5.4 and 5.7 that as long
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as an approximate scheme F β,N , e.g. F β,N = INF
β, satisfies

∣∣∣F β` (X)− F β,N` (X)
∣∣∣ . e−γNN and (5.5.3)∣∣∣∣∣∂F β` (X)

∂vm
−
∂F β,N` (X)

∂vm

∣∣∣∣∣ . e−
1
2
γNNe−ηr`m , (5.5.4)

then we may approximate self-consistent electron densities with approximate

self-consistent solutions ρN = F β,N
(
X(ρN )

)
. In particular, as long as we have

the estimate from Remark 4.8 (see Appendix C.2 for the technical details),

then we may use the nonlinear approximation scheme Θ from Theorem 4.4

in Theorems 5.4 and 5.7. In this case, we obtain error estimates that are

(asymptotically) independent of the discrete spectrum.

Remark 5.5 (Coulomb interactions). In principle, one could solve (5.5.1) for

finite systems under full Coulomb interactions (i.e. with γv = 0). However,

following the proofs of this section, we would only obtain Theorem 5.4 with the

prefactor and choice of N in (5.5.2) depending on system size. Indeed, the error

estimates in (5.5.2) depend on the operator norm of
(
I −L (ρ?)

)−1
: `∞ → `∞,

which a priori depends on the size of the system (and the stability constant∥∥(I −L (ρ?)
)−1∥∥

`2→`2). In the γv > 0 case, we are able to use the exponential

off-diagonal decay of L to show that
∥∥(I −L (ρ?)

)−1∥∥
`∞→`∞ may be bounded

above by a constant depending on γv but independent of system size.

5.5.2 Outlook: Energy Minimisation Approach

The self-consistency equation ρ? = F β
(
X(ρ?)

)
can be seen as the Euler–

Lagrange equation for minimising the following energy for the one particle

density matrix P , a self-adjoint bounded linear operator with 0 6 P 6 1 and

diagonal ρ` = P``. For fixed chemical potential µ and [H0]`k := h(X`k) +∑
m 6∈{`,k} t(X`m,Xkm) the linear part of the Hamiltonian, we consider

G[P ] := Tr
[
H0P + β−1S

(
P
)
− µP

]
+
∑
`

ρ`W (ρ`) +
1

2

∑
`,k 6=`

q`qk
r`k

e−γvr`k ,

(5.5.5)
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where S(f) = f log(f) + (1−f) log(1−f) is the Fermi–Dirac entropy, the term

−µTrP comes from the fact that we are in the grand canonical ensemble and

so we subtract the contribution resulting from varying the particle number,

and q` = ρ` − Z` are the partial charges.

Minimising (5.5.5) yields the Euler–Lagrange equation P = F β
(
H0 + v(ρ)

)
where v(ρ) is given by (5.2.1) with v0(x) = W (x) + xW ′(x). Therefore, the

energy (at a critical point P ) can be written as a function of the electron

density alone:

G[ρ] = Tr
[
(H0 − µ)F β

(
H0 + v(ρ)

)
+ β−1S

(
F β
(
H0 + v(ρ)

))]
+
∑
`

ρ`W (ρ`) +
1

2

∑
`,k 6=`

q`qk
r`k

e−γvr`k

=
∑
`

Gβ
(
H0 + v(ρ)

)
``
−
∑
`

ρ`v(ρ)` +
∑
`

ρ`W (ρ`) +
1

2

∑
`,k 6=`

q`qk
r`k

e−γvr`k ,

(5.5.6)

where Gβ is the grand canonical potential function (2.4.5).

Therefore, we have constructed a mapping from (r, ρ) to energy whose

critical points satisfy the self-consistency equation ρ? = F β
(
X(ρ?)

)
. In §5.5.1

we approximated this nonlinear equation with the body-ordered approximation

presented in Chapter 4. Here, we propose an alternative approach where the

following approximate energy

GN [ρ] :=
∑
`

ING
β
(
H0 + v(ρ)

)
``

+
∑
`

ρ`
(
W (ρ`)− v(ρ)`

)
+
∑
`<k

q`qk
r`k

e−γvr`k .

(5.5.7)

(where IN is an interpolation operator from Chapter 4) is minimised over ρ

producing a ρN analogous to (5.5.1). Mathematical results concerning the

convergence ρN → ρ? as N →∞ are left for future work.

In this approximate energy, the first term is the sum of atom centred

contributions that are “simple” in the sense described in Chapter 4. That is,

the site contributions are body-ordered and depend only on the configuration
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{(
r`k, v(ρ)k

)}
in a small atomic neighbourhood of the central site `. Moreover,

the second term is the sum of local functions of the density and effective

potential. In particular, (5.5.7) is a systematic variant of the BpopNN (Becke

Population Neural Network) [130] where the first term of (5.5.7) is replaced by

the sum of atomic neural networks depending on the configuration via various

SOAP-like atomistic descriptors. Therefore, a key difference between (5.5.7)

and the BpopNN is that we explicitly include the site effective potential as

features in the neural network architecture.

5.6 Proofs of the Main Results

We start with the following preliminary lemma:

Lemma 5.8. Suppose that T : `2(Λ)→ `2(Λ) is an invertible bounded linear

operator with matrix entries T`k satisfying
∣∣T`k∣∣ 6 cT e

−γT r`k for some positive

constants cT , γT . Then, there exists an invertible bounded linear operator

T : `∞(Λ)→ `∞(Λ) extending T : `2(Λ)→ `2(Λ) (that is, T
∣∣
`2(Λ)

= T ).

Proof. First, we denote the inverse of T and its matrix entries by T−1 : `2(Λ)→

`2(Λ) and T−1
`k , respectively. Then, applying the Combes–Thomas estimate

(Lemma 3.3) to T yields the off-diagonal decay estimate |T−1
`k | 6 Ce−γCTr`k for

some C, γCT > 0.

Due to the off-diagonal decay properties of the matrix entries, the operators

T , T
−1

: `∞(Λ)→ `∞(Λ) given by

[Tφ]` :=
∑
k∈Λ

T`kφk and [T
−1
φ]` :=

∑
k∈Λ

T−1
`k φk

are well defined bounded linear operators with norms sup`
∑

k∈Λ |T`k| and

sup`
∑

k∈Λ |T
−1
`k |, respectively. To conclude, we note that

[TT
−1
φ]` =

∑
k

∑
m

T`kT
−1
kmφm =

∑
m

[TT−1]`mφm = φ` (5.6.1)

and so T
−1

is the inverse of T . Here, we have exchanged the summations over
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k and m by applying the dominated convergence theorem:
∣∣∑

k T`kT
−1
kmφm

∣∣ 6
Ce−

1
2

min{γT ,γCT}r`m‖φ‖`∞ is summable over m ∈ Λ.

5.6.1 General Locality Estimates: Proof of Theorem 5.1

Firstly, we note that for self-consistent configurations X(ρ), the corresponding

stability operator is given by L (ρ) = F (ρ)∇v(ρ) where

F (ρ)`k := tr

˛
C
F β(z)[Rz,`k]

TRz,`k
dz

2πi
(5.6.2)

and Rz :=
(
H(X(ρ))− z

)−1
.

In particular, by applying the Combes–Thomas estimate (Lemma 3.3) to

H
(
X(ρ)

)
− z for z ∈ C , we obtain

∣∣L (ρ)`k
∣∣ 6∑

m

∣∣F (ρ)`m
∣∣∣∣∇v(ρ)mk

∣∣ (5.6.3)

6 C
∥∥F β∥∥

C
d−2
Fβ

∑
m

e−2γCT(d)r`me−γvrmk 6 cL e
−γL r`k , (5.6.4)

where dFβ := dist
(
z, σ
(
H(X(ρ))

))
, cL := C

∥∥F β∥∥
C
d−2
Fβ
γ−dv , and the exponent

is γL := min{γCT(dFβ ), 1
2γv}.

Therefore, the operator I −L (ρ) has off-diagonal decay and we can apply

the Combes–Thomas estimate to obtain

∣∣∣[(I −L (ρ)
)−1]

`k

∣∣∣ 6 2d−1
L e−γCT(dL )r`k , (5.6.5)

where γCT(dL ) = c0γL min
{

1,
γdL

1+cL
dL

}
. Therefore, for z contained in a

bounded set, γCT(dL ) > c1 min
{

1, dFβ , d
2
Fβ

min{1, dd+1
Fβ
}dL

}
for some con-

stant c1 > 0 independent of dFβ and dL .

Using the off-diagonal decay estimate (5.6.5), we may apply Lemma 5.8 to

conclude that I −L (ρ) is also an invertible operator on `∞(Λ):

Lemma 5.9. For stable self-consistent X(ρ), I−L (ρ) : `2(Λ)→ `2(Λ) extends

to an invertible bounded linear operator on `∞(Λ).

In the following, we denote by Bδ(ρ) and Bδ(r) the open balls of radius δ
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centred on ρ and r with respect to the `∞(Λ) and `∞(Λ;Rd) norms, respectively.

We now show that locally about a stable configuration, there is a unique choice

of self-consistent electron density:

Lemma 5.10. Suppose that
(
r, v(ρ), Z

)
satisfies (SC) and (Stab). Then,

there exists δ1, δ2 > 0 such that for all r ∈ Bδ1(r), there exists a unique

electron density ρ = ρ(r) ∈ Bδ2(ρ) satisfying ρ = F β
(
(r, v(ρ), Z)

)
. Moreover,

the mapping r 7→ ρ is ν-times continuously Frechet differentiable at r.

Proof. We define T : `∞(Λ;Rd)× `∞(Λ)→ `∞(Λ) to be the mapping (r, ρ) 7→

ρ− F β
(
(r, v(ρ), Z)

)
and apply the implicit function theorem about (r, ρ).

By (SC), we have T (r, ρ) = 0 and, by (Stab), the Frechet derivative of T

at (r, ρ) in the ρ−direction is given by the operator I−L (ρ) : `∞(Λ)→ `∞(Λ),

invertible by Lemma 5.9. Therefore, there exists δ1, δ2 > 0 and a Frechet

differentiable function ρ : Bδ1(r) → Bδ2(ρ) such that T
(
r, ρ(r)

)
= 0 for all

r ∈ Bδ1(r).

Applying Lemma 5.10, we can conclude that the self-consistent local observ-

ables Osc
` (r) := O`

(
X(r)

)
from (5.2.3) are well-defined, ν−times continuously

differentiable functions of the atomic configuration in a neighbourhood of r.

To simplify notation in the following, we will define

HL(X)`k := h(X`k) +
∑

m 6∈{`,k}

t(X`m,Xkm) and (5.6.6)

HNL(X)`k := δ`kv(ρ)`IdNb
. (5.6.7)

We apply (2.4.1) to write Osc
` as a contour integral in the complex plane,

and so it is sufficient to apply (3.6.1) and bound the derivatives of the resolvent

operators.

We start with the first derivatives: for z ∈ C with dO := dist
(
z, σ(H(X))

)
>

0 (the constant dO depends on the region on which O is analytic, and may
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differ from dFβ ), and Rz :=
(
H
(
X(r)

)
− z
)−1

, we have

∂[Rz]``
∂rm

= −
[
Rz

∂H
∂rm

Rz

]
``

= −
[
Rz

∂HL

∂rm
Rz

]
``

−
∑
k,n

[Rz,`k]
TRz,`k∇v(ρ)kn

∂ρn
∂rm

.
(5.6.8)

The first contribution in (5.6.8) is exactly what we obtained in (3.6.3) in

the linear case. That is,

∣∣∣∣[Rz
∂HL

∂rm
Rz

]
``

∣∣∣∣ . d−2
O e−min{γCT(dO),γ1}r`m . (5.6.9)

It remains to consider the non-linear contribution in (5.6.8), which includes

derivatives of the electron density:

Lemma 5.11. For 1 6 j 6 ν, there exists γρ > 0 such that

∣∣∣∣ ∂jρ`
∂rm1 . . . ∂rmj

∣∣∣∣ . e−γρ
∑j
l=1 r`ml ,

where γρ = cmin{1, γCT(dL ), γCT(dFβ )} and c > 0 is independent of γCT(dL )

and γCT(dFβ ).

We return to the proof of Lemma 5.11 after the conclusion of the proof of

Theorem 5.1.

Therefore, applying Lemma 5.11, we may bound the second term in (5.6.8):

∑
k,n

∣∣∣∣[Rz,`k]
TRz,`k∇v(ρ)kn

∂ρn
∂rm

∣∣∣∣ .∑
kn

d−2
O e−2γCT(dO)r`k · e−γvrkn · e−γρr`m

. e−
1
4

min{γv ,γCT(dO),γρ}. (5.6.10)

Combining (5.6.9) and (5.6.10) together with (3.6.1), we conclude the proof

for j = 1.

Higher derivatives can be treated by taking derivatives of (5.6.8). For
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example, for j = 2, we have

∂2Rz,``

∂rm2∂rm1

= − ∂

∂rm2

[
Rz

∂H
∂rm1

Rz

]
``

−
∑
kn

(∂[Rz,`k]
T

∂rm2

Rz,`k + [Rz,`k]
T∂Rz,`k

∂rm2

)
∇v(ρ)kn

∂ρn
∂rm1

−
∑
k

[Rz,`k]
TRz,`kv

′′
0(ρk)

∂ρk
∂rm2

∂ρk
∂rm1

−
∑
kn

[Rz,`k]
TRz,`k∇v(ρ)kn

∂2ρn
∂rm2∂rm1

. (5.6.11)

Now, using the off-diagonal decay of the resolvent operators and their first

derivatives ((5.6.8), (5.6.9) and (5.6.10)), the off-diagonal decay of ∇v(ρ), and

the locality of the electron density (Lemma 5.11), we may conclude the proof

of Theorem 5.1.

Proof of Lemma 5.11. We first consider j = 1. Taking derivatives in the

self-consistency equation for ρ, we obtain the following identity,

∂ρ`
∂rm

= −tr

˛
C
F β(z)

∂Rz,``

∂rm

dz

2πi

= tr

˛
C
F β(z)

[
Rz

∂HL

∂rm
Rz

]
``

dz

2πi
+

[
L (ρ)

∂ρ

∂rm

]
`

.

That is,

∂ρ`
∂rm

=
[
(I −L (ρ))−1φm

]
`
, where (5.6.12)

φm` := tr

˛
C
F β(z)

[
Rz

∂HL

∂rm
Rz

]
``

dz

2πi
. (5.6.13)

Applying (5.6.5) and (5.6.9) (but for z in an admissible contour for F β instead

of O), we obtain

∣∣∣∣ ∂ρ`∂rm

∣∣∣∣ .∑
k

2d−1
L e−γCT(dL )r`k · ‖F β‖C d−2

Fβ
e−min{γCT(d

Fβ
),γ1}rkm

. e−
1
2

min{γCT(dL ),γCT(d
Fβ

),γ1}r`m . (5.6.14)
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Now take j = 2. We have

∂2ρ`
∂rm2∂rm1

=
[(
I −L (ρ)

)−1
{∂L (ρ)

∂rm2

(
I −L (ρ)

)−1
φm1 +

∂φm1

∂rm2

}]
`
,

(5.6.15)

where

∂L (ρ)`k
∂rm2

= tr

˛
C
F β(z)

[
[Rz,`k]

TRz,`kv
′′
0(ρk)

∂ρk
∂rm2

+
∑
m

(∂[Rz,`m]T

∂rm2

Rz,`m + [Rz,`m]T
∂Rz,`m

∂rm2

)
∇v(ρ)mk

]
dz

2πi
,

∂φm1
`

∂rm2

= tr

˛
C
F β(z)

∂

∂rm2

[
Rz

∂HL

∂rm1

Rz

]
``

dz

2πi
. (5.6.16)

In particular, since each term in (5.6.16) has off-diagonal decay, it can be shown

that
∣∣∂L (ρ)`k
∂rm2

∣∣ . e−γ(r`m2
+rm2k

) and
∣∣∂φm1

`
∂rm2

∣∣ . eγ
′[r`m1

+r`m2
] for some γ, γ′ > 0

depending on dFβ , dL . Therefore, using the off-diagonal decay of (I −L )−1

from (5.6.5), (5.6.15) may be bounded appropriately.

Higher derivatives may be treated similarly by taking derivatives of (5.6.15).

5.6.2 Point Defects: Proof of Theorem 5.3

Throughout this section, we will denote by L and L d, the stability operators

for X(r) and Xd(rd), respectively, and, to simplify notation further, we write

H := H
(
X(r)

)
, Hd := H

(
Xd(rd)

)
, and Rz :=

(
H− z)−1,Rd

z :=
(
Hd − z)−1.

For the moment, we suppose Proposition 5.2 holds and prove Theorem 5.3.

Applying Lemma 3.4 to H + Pε − z with P := PFR and I − L − Qε with

Q := −QFR (where Pε, PFR andQε, QFR are the operators from Propositions 2.3

and 5.2, respectively), we obtain

∣∣Rd
z,`k

∣∣ 6 2d−1e−γCT(d)r`k + cP e
−γCT(d)[|r`|+|rk|] (5.6.17)∣∣[(I −L d)−1]`k

∣∣ 6 2d−1
L e−γCT(dL )r`k + cQe

−γCT(dL )[|r`|+|rk|]. (5.6.18)

Therefore, similarly to the improved locality estimates in the linear tight
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binding model, we are able to replace the both the standard resolvent estimate

from Lemma 3.3 and the estimate (5.6.5) with the improved estimates of (5.6.17)

and (5.6.18), respectively. Therefore, whenever we apply these estimates, we

obtain the exact same bound as in the defect-free case together with additional

terms with larger prefactors but with exponential decay as (`, k) move away

from the defect core together. In particular, these additional terms vanish

as the subsystem of interest moves away from the defect core together. See

(3.6.11) for the analogous argument in the linear tight binding model.

Proof of Proposition 5.2. Recall that, since X(r) and Xd(rd) satisfy Defini-

tion 2.2, after shifting the spectra of the Hamiltonians (as well as the chemical

potential and integration contour) away from {0}, and extending the Hamilto-

nians to bounded linear operators on `2(Λ ∪ Λd) as in (2.5.6), we have

Hd = H+ PFR + Pε

where [PFR]`k = 0 unless (r`, rk) ∈ (BR)2 for some R and ‖Pε‖`2→`2 < ε.

In order to apply the improved Combes–Thomas estimates on I −L d, we

must prove an analogous low rank decomposition result for the stability operator.

First, we note that Rd
z = Rz −Rz

(
I + (PFR + Pε)Rz

)−1
PFRRz −Rd

zPεRz.

and so we may apply an argument identical to the proof of Proposition 2.3 to

conclude

Rd
z = Rz +Qz,FR +Qz,ε (5.6.19)

where

[Qz,FR]`k :=


−
[
Rz

(
I + (PFR + Pε)Rz

)−1
PFRRz

]
`k

if (r`, rk) ∈ B2
R0
,

0 otherwise

for R0 > 0 sufficiently large such that ‖Qz,ε‖`2→`2 6 Cε for some constant

C > 0 depending on d and dd. This in turn implies that the operator F (ρd)
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from (5.6.2) may be approximated by a finite rank update of F (ρ): on defining

SFR,`k :=


[
F (ρd)−F (ρ)

]
`k

if (r`, rk) ∈ B2
R0
,

0 otherwise,

we have [F (ρd)−F (ρ)− SFR]`k = tr
¸
C F

β(z)[(Qz,ε)`k]T
(
Rz + Rd

z

)
`k

dz
2πi and

so
∥∥F (ρd)−F (ρ)−SFR

∥∥
`2→`2 6 Cε for some constant C depending on ‖F β‖C ,

d−1, and (dd)−1.

Therefore, we may apply (5.4.1) and

L (ρd)−L (ρ) =
(
F (ρd)−F (ρ)

)
∇v(ρd) + F (ρ)

(
∇v(ρd)−∇v(ρ)

)
to conclude.

5.6.3 Body-ordered approximation

Throughout the following proofs, we denote by Br(ρ) the open ball of radius r

about ρ with respect to the `∞-norm. Recall that the stability operator can be

written as the product L (ρ) := F (ρ)∇v(ρ) where F (ρ) is given by (5.6.2).

Proof of Theorem 5.4. Since ρ 7→ F β(X(ρ)) is C2, and
(
I − L (ρ?)

)−1
is a

bounded linear operator, we necessarily have that
(
I −L (ρ)

)−1
is a bounded

linear operator for all ρ ∈ Br(ρ?) for some r > 0.

By applying Theorem 4.2, together with (5.2.1), we obtain

∣∣[L (ρ)−LN (ρ)
]
`k

∣∣ 6∑
m

∣∣∣∣[∂F β` (X)

∂vm
−
∂INF

β
` (X)

∂vm

]
∂v(ρ)m
∂ρk

∣∣∣∣ (5.6.20)

6 C
[∑

m

e−η r`me−γv rmk
]
e−

1
2
γNN (5.6.21)

6 Ce−
1
2

min{η,γv}r`ke−
1
2
γNN (5.6.22)

for all ρ ∈ Br(ρ?). As a consequence, ‖L (ρ)−LN (ρ)‖`2→`2 6 Ce−
1
2
γNN and

thus we may choose N such that ‖L (ρ)−LN (ρ)‖`2→`2 < ‖(I−L (ρ))−1‖−1
`2→`2 .

In particular, for such N , the operator I −LN (ρ) : `2 → `2 is invertible with
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inverse bounded above in operator norm independently of N .

We now show that I−LN (ρ) satisfies the assumptions of Lemma 5.8. Using

(5.6.2) and (5.2.1), together with the Combes–Thomas estimate (Lemma 3.3),

we conclude

∣∣LN (ρ)`k
∣∣ 6 C sup

z∈C
|INF β(z)|

∑
m∈Λ

e−2γCTr`me−γvrmk 6 Ce−
1
2

min{2γCT,γv}r`k

for all ρ ∈ Br(ρ?). In particular, I −LN (ρ) extends to a invertible bounded

linear operator `∞ → `∞ and thus its inverse
(
I − LN (ρ)

)−1
: `∞ → `∞ is

bounded.

Now, the mapping ρ 7→ ρ − INF β
(
X(ρ)

)
between `∞ → `∞ is continu-

ously differentiable on Br(ρ
?) and the derivative at ρ? is invertible (i.e.

(
I −

LN (ρ?)
)−1

: `∞ → `∞ is a well defined bounded linear operator). Since the

map ρ 7→ INF
β
(
X(ρ)

)
is C2, its derivative LN is locally Lipschitz about ρ?

and so there exists L > 0 such that

∥∥(I −LN (ρ?)
)−1(

LN (ρ1)−LN (ρ2)
)∥∥
`∞→`∞ 6 L‖ρ1 − ρ2‖`∞

for ρ1, ρ2 ∈ Br(ρ?). Moreover, by Theorem 4.2, we have

∥∥(I −LN (ρ?)
)−1(

ρ? − INF β(X(ρ?))
)∥∥
`∞

6 C
∥∥F β(X(ρ?))− INF β(X(ρ?))

∥∥
`∞

=: bN ,

where bN . e−γNN . In particular, we may choose N sufficiently large such that

2bNL < 1 and t?N := 1
L(1−

√
1− 2bNL) < r.

Thus, the Newton iteration with initial point ρ0 := ρ?, defined by

ρi+1 = ρi −
(
I −LN (ρi)

)−1(
ρi − INF β(X(ρi))

)
,

converges to a unique fixed point ρN = INF
β(X(ρN )) in Bt?N (ρ?) [131, 133].

That is, ‖ρN−ρ?‖`∞ 6 t?N 6 2bN . Here, we have used the fact that 1−
√

1− x 6

x for all 0 6 x 6 1.
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Since ρN ∈ Br(ρ?), we have I −LN (ρN ) : `2 → `2 is invertible and thus

Lemma 5.6 also holds.

Proof of Proposition 5.7. We proceed in the same way as in the proof of The-

orem 5.4. In particular, since ρN is stable, if ‖ρ0 − ρN‖`∞ is sufficiently small,

(I −LN (ρ0))−1 is a bounded linear operator on `2. Moreover, by the exact

same argument as in the proof of Theorem 5.4, I −LN (ρ0) : `∞ → `∞ defines

an invertible bounded linear operator. Also, I − LN (ρ) is Lipschitz in a

neighbourhood about ρ0 and

∥∥(I −LN (ρ0)
)−1(

ρ0 − INF β(X(ρ0))
)∥∥
`∞

6 C
∥∥ρ0 − ρN −

(
INF

β(X(ρ0))− INF β(X(ρN ))
)∥∥
`∞

6 C‖ρ0 − ρN‖`∞ .

Here, we have used:

∣∣INF β` (X(ρ0))− INF β` (X(ρN ))
∣∣

=
1

2π

∣∣∣˛
C
INF

β(z)
[
Rz(ρ

0)−Rz(ρN )
]
``

∣∣∣
6 C

∑
k∈Λ

e−2γCTr`k |v(ρ0)k − v(ρN )k|

6 C
∑
k∈Λ

e−2γCTr`k
∣∣∣ ˆ 1

0

∑
m∈Λ

∂v(tρ0 + (1− t)ρN )k
∂ρm

[
ρ0 − ρN

]
m

dt
∣∣∣

6 C
∑
m∈Λ

e−
1
2

min{2γCT,γv}r`m
∣∣[ρ0 − ρN

]
m

∣∣
6 C‖ρ0 − ρN‖`∞ . (5.6.23)

Therefore, as long as ‖ρ0 − ρN‖`∞ is sufficiently small, we may apply the

Newton iteration starting from ρ0 to conclude.
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Proof of Corollary 5.5. As a direct consequence of (5.6.23), we have

∣∣Osc
` (X)− INO`

(
X(ρN )

)∣∣
6
∣∣O`(X(ρ?)

)
− INO`

(
X(ρ?)

)∣∣+
∣∣INO`(X(ρ?)

)
− INO`

(
X(ρN )

)∣∣
6 C

[
e−γNN + ‖ρN − ρ?‖`∞

]
6 Ce−γNN . (5.6.24)

Here, we have applied the standard convergence result (Theorem 4.2) with

fixed effective potential.
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CHAPTER 6

An Application:

Geometry Optimisation

This chapter is based on the article [95] “Point defects in tight

binding models for insulators” published in Mathematical Models

and Methods in Applied Sciences, 30(14): 2753–2797 (2020). This

paper is co-authored by Christoph Ortner.

6.1 Introduction

In this chapter, we consider atomistic geometry relaxation in the context of

linear tight binding models for point defects and formulate the limiting model

as Fermi-temperature tends to zero. Further, we consider the thermodynamic

limit at zero Fermi-temperature and explore the extent to which these two

limits commute.

The simulation of local defects in solids remains a major issue in materials

science and solid state physics [102,115]. For a mathematical review of some

works related to the modelling of point defects in materials science see [21].

Progress on local defects in the context of Thomas-Fermi-von-Weizsäcker
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(TFW) and reduced Hartree-Fock (rHF) models has been made in [15,18,85]

and [17,60], respectively.

Thermodynamic limit (or bulk limit) problems have been widely studied in

the literature. The case of a perfect crystalline lattice has been studied in [85]

for the Thomas-Fermi (TF) model, [23] for the TFW model and in [25] and [24]

for Hartree and Hartree-Fock type models, respectively. In these papers, the

limit of the ground state energy per unit volume and minimising electronic

density as domain size tends to infinity are identified in the cases where the

energy functionals are convex (that is, for the TF, TFW, restricted Hartree

and rHF models). For more general Hartree and Hartree-Fock type models,

periodic models have been proposed and shown to be well-posed. In the setting

of the rHF model, an exponential rate of convergence for the supercell energy

per unit cell is obtained in the case of insulators [59].

It is important to note that in all of the papers mentioned above the

nuclei degrees of freedom are fixed on a periodic lattice or with a given defect.

Preliminary results concerning the simultaneous relaxation of the electronic

structure together with geometry equilibriation (of the nuclei positions) can be

found in [92] for the TFW model and [26,29] for tight binding models.

This chapter is motivated by [26] which establishes the following two results:

(i) under a mild condition on the prescribed number of electrons in the sequence

of finite domain approximations, the Fermi level is shown to converge in the

thermodynamic limit to that of a perfect crystal and is thus independent of the

electron numbers and the defect. This result enables, (ii) the formulation of a

unique limiting model in the grand-canonical ensemble for the electrons with

chemical potential fixed at the perfect crystal level. The purpose of the present

work is to explore the extent to which these results can be extended to the

zero Fermi-temperature case, as well as consider the zero Fermi-temperature

limit of the model described in [26].
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Summary of Results

The main convergence results of [26] and the present work are summarised in

Figure 6.1.

CE

β <∞, R <∞
GCE

β <∞, R =∞
GCE

β <∞, R <∞

CE

β =∞, R <∞
GCE

β =∞, R =∞
GCE

β =∞, R <∞

R→∞
[26]

β→∞
Thm. 6.5,
Prop. 6.6

β→∞
Thm. 6.3,
Prop. 6.4

R→∞
[26]

β→∞
Thm. 6.3,
Prop. 6.4

R→∞
Thm. 6.9,
Prop. 6.10

R→∞
Thm. 6.7,
Prop. 6.8

Figure 6.1: Diagram to illustrate the main results of [26] and Chapter 6 of
the present work. Here, “GCE” denotes the grand canonical ensemble and
“CE” the canonical ensemble. The top two thermodynamic limits represent
the results of [26] and the results of this paper are indicated on the remaining
arrows. The squiggly arrow in the bottom left of this diagram signifies the
fact that the chemical potential used in the limiting grand canonical ensemble
model is given as the limit of the sequence of the finite Fermi levels and is thus
defect-dependent. This is in contrast to the finite Fermi-temperature case (top
left arrow) in which the limiting chemical potential is fixed and equal to the
Fermi-level for the homogeneous crystal.

Thermodynamic Limit

Since we are interested in the bulk properties of a material with local defects,

it is convenient to consider an extended system of infinitely many nuclei.

However, to simulate such a system, we must of course restrict ourselves to

finite computational domains and impose an artificial boundary condition.

Throughout this chapter we shall consider periodic boundary conditions for the

nuclei (that is, a supercell model) in the form of a torus tight binding model

and show that the thermodynamic limit is well defined under some appropriate

choice of electron numbers in the sequence of finite domain approximations.

More precisely, we consider linear tight binding models with electrons in

the canonical ensemble and at zero Fermi-temperature. We show that, because

the zero temperature Fermi levels depend globally on each eigenvalue (and not

just on the limiting density of states as in the case of finite Fermi-temperature),
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the zero temperature Fermi levels only converge in the thermodynamic limit

under strict conditions on the number of electrons imposed in the sequence of

finite domain approximations. Moreover, the limiting Fermi level depends upon

the polluted band structure and consequently also on the defect. Using this,

the thermodynamic limit model is shown to be a grand canonical model with

chemical potential fixed (but defect-dependent) and given by the limit of the

sequence of finite domain Fermi levels. That is, the number of electrons imposed

in the sequence of finite domain approximations is critical in identifying a

limiting model. This analysis clarifies questions left open in [26] about the

effect of Fermi-temperature on the convergence.

Zero Temperature Limit.

A key feature of zero temperature electronic structure models is the sharp

cut-off between unoccupied and occupied electronic states. In practice (e.g. [30]

for density functional theory), a low but positive Fermi-temperature may be

chosen in order to approximate the sharp cut-off with a smooth Fermi-Dirac

distribution (alternatively, artificial smearing methods may be used). One can

then show that the error committed does not drastically affect the simulation;

see [19] for an in-depth error analysis for typical observables (including the

Fermi level, total energy and the density). Choosing a finite Fermi-temperature

has the additional benefit that there is a unique Fermi level (see (6.3.3))

solving the electron number constraint which is advantageous in numerical

simulations [30,132].

In the present work, we give a comprehensive justification of this approach;

assuming the electrons are in finite Fermi-temperature and the nuclei degrees of

freedom are determined by minimising the grand potential associated with the

electrons, we uniquely identify the limiting model as Fermi-temperature tends

to zero by a grand canonical model for the electrons at zero Fermi-temperature.

We obtain an exponential rate of convergence for the nuclei configuration.
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Strong Energy Locality.

A key tool in [26] and the present work is the strong energy locality of the tight

binding model (Chapter 3). This locality allows for a straightforward definition

of a renormalised energy functional on the infinite lattice with embedded point

defect and thus allows for the formulation of a limiting model [27].

6.2 Point Defect Reference Configurations

In this chapter, we restrict our attention to point defects embedded in multil-

attice reference configurations.

6.2.1 Multilattice Reference Configurations

For an invertible matrix A ∈ Rd×d and a unit cell Γ ⊆ Rd such that Γ is

finite and contains the origin, we set Λref =
⋃
γ∈Zd

(
Γ + Aγ

)
and Xref

`+Aγ :=

(`+ Aγ, vref
` , Zref

` ) for all ` ∈ Γ and γ ∈ Zd.

By exploiting the translational symmetry of the reference configuration,

we may apply the Bloch transform [53] to conclude that the spectrum of the

reference Hamiltonian is the union of finitely many spectral bands:

σ
(
H(Xref)

)
=
⋃
j

εj(BZ),

where εj : BZ→ R are continuous on the (first) Brillouin zone BZ, a compact

and connected subset of Rd. See Appendix B.2 for the full details.

For the remainder of this chapter, we will suppose that the system is an

insulator:

(Gap). There is a gap in the spectrum σ
(
H(Xref)

)
and the chemical potential

µ lies within the gap (i.e. µ 6∈ σ
(
H(Xref)

)
).

6.2.2 Point Defects

Now, we consider point defect domains Λ with respect to the reference domain

Λref as in Chapter 2. That is, we suppose there exists Rd > 0 such that
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Λ\BRd
= Λref \BRd

and Λ∩BRd
is finite. Then, for displacements u : Λ→ Rd,

we consider configurations X(u) with X`(u) := (`+ u(`), v`, Z`) for ` ∈ Λ and

(v`, Z`) = (vref
` , Zref

` ) for all ` ∈ Λ \BRd
. In particular,

(
Xref ,X(0)

)
satisfies

(P0) with Λff = Λ \BRd
.

Following [26,27,29,98], we introduce a space of finite energy displacements

which restricts the class of admissible configurations: Given ` ∈ Λ and ρ ∈ Λ−`,

we define the finite difference Dρu(`) := u(` + ρ) − u(`). The full (infinite)

finite difference stencil is then defined to be Du(`) := (Dρu(`))ρ∈Λ−` and for

Υ > 0, we define the `2Υ semi-norm by

‖Du‖`2Υ :=

(∑
`∈Λ

∑
ρ∈Λ−`

e−2Υ|ρ||Dρu(`)|2
)1/2

.

Since all of the semi-norms ‖D · ‖`2Υ , for Υ > 0, are equivalent [27], we will fix

Υ > 0 for the remainder of this chapter and define the following function space

of finite energy displacements:

Ẇ 1,2(Λ) :=
{
u : Λ→ Rd : ‖Du‖`2Υ <∞

}
with semi-norm ‖D · ‖`2Υ . Recall also that r`k(u) := ` + u(`) − k − u(k) and

r`k(u) = |r`k(u)| and suppose that the following non-interpenetration condition

is satisfied:

(L). There exists m > 0 such that r`k(u) > m r`k(0) for all `, k ∈ Λ.

Configurations arising in this way satisfy (Pδ):

Lemma 6.1 (Decomposition of the Spectrum). Suppose u ∈ Ẇ 1,2(Λ) such

that (L) is satisfied. Then,
(
Xref ,X(u)

)
satisfies (Pδ) for all δ > 0.

To simplify notation in the following, we will write H(u) := H
(
X(u)

)
.

6.3 Torus Tight Binding Model

We follow the notation of §6.2 and take a reference Xref and corresponding

point defect configuration X(u) for displacements u ∈ Ẇ 1,2(Λ) such that X(u)
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satisfies (L).

In order to simulate the model described in §2.2, we must restrict ourselves

to finite computational domains and impose artificial boundary conditions. A

popular choice for simulating the far-field behaviour of point defects is periodic

boundary conditions which we now introduce.

For R > 0, we consider a sequence, ΛR, of computational cells given by:

(RefR). For R > 0, we suppose ΩR ⊆ Rd is a bounded connected domain with

BR ⊆ ΩR. Further, we take an invertible matrix MR = (m1, . . . ,md) ∈

Rd×d such that mj ∈ Λref and Rd is the disjoint union of the shifted

domains ΩR + MRα for α ∈ Zd. The computational cell is defined to

be ΛR := ΩR ∩ Λ.

When employing periodic boundary conditions, we consider displacements

u : Λ→ Rd or u : ΛR → Rd and the corresponding configuration XR(u) with

index set
⋃
α∈Zd(ΛR+MRα) and atomic positions r`+MRα(u) := `+u(`)+MRα

for ` ∈ ΛR and α ∈ Zd.

To simplify notation, we define r#
`k(u) := minα∈Zd |r`k(u) + MRα| to be the

torus distance between atomic positions ` + u(`) and k + u(k). If it is clear

from context, we shall drop the argument (u).

The torus tight binding Hamiltonian is defined as follows: for `, k ∈ ΛR,

the torus model is given by considering the interactions between atomic sites `

and k and all periodic images:

HR(u)`k :=
∑
α∈Zd

H
(
XR(u)

)
`,k+MRα

. (6.3.1)

Remark 6.1. We consider periodic boundary conditions in order to avoid

spectral pollution that is known to occur when using clamped boundary con-

ditions, see for example [22]. Indeed, in Lemma 6.14 we prove that spectral

pollution does not occur in our setting.
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6.3.1 Potential Energy at Finite Fermi-Temperature

Canonical Ensemble. We consider a particle system containing Ne,R electrons

and nuclei described by some admissible displacement u : ΛR → Rd. We first

suppose that the electrons are in a canonical ensemble. That is, we fix the

number of particles in the system, the volume and Fermi-temperature.

The particle number functional is then given by summing the electronic

occupation numbers according to the Fermi-Dirac distribution:

N β,R(u; τ) := 2
∑
s

F β(λs; τ) and F β(ε; τ) :=
1

1 + eβ(ε−τ)
, (6.3.2)

where {λs}s is some enumeration of σ(HR(u)). Here, the factor of two accounts

for the spin.

Since τ 7→ N β,R(u; τ) is strictly increasing, for any electron number Ne,R ∈

(0, 2Nb · |ΛR|), the Fermi level, εβ,RF = εβ,RF (u), at finite Fermi-temperature,

solving

N β,R(u; εβ,RF ) = Ne,R (6.3.3)

is well-defined.

The Helmholtz free energy is then given by

Eβ,R(u) :=
∑
s

Eβ(λs; ε
β,R
F ) where

Eβ(λ; τ) := 2λF β(λ; τ) +
2

β
S
(
F β(λ; τ)

)
= 2τF β(λ; τ) +

2

β
log
(

1− F β(λ; τ)
) (6.3.4)

where S(f) := f log(f) + (1− f) log(1− f) is the Fermi-Dirac entropy. More

details regarding the derivation can be found in [26] or [96, Appendix C].

In the following, it will be useful to consider the Helmholtz free en-

ergy as a function of both the configuration and Fermi level. That is, we

define Eβ,R(u; τ) :=
∑

sE
β(λs; τ). In this notation, we have Eβ,R(u) ≡

Eβ,R(u, εβ,RF (u)).
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Grand Canonical Ensemble. For a many-particle system that is free to

exchange particles with a reservoir, it is useful to also consider the grand

canonical ensemble. This framework will also allow us to formulate the limiting

models as R→∞. In this case, the Fermi-temperature, volume and chemical

potential, µ, are fixed model parameters (TV µ) and, instead of the Helmholtz

free energy, we subtract the contribution resulting from varying the particle

number and consider the grand potential:

Gβ,R(u;µ) := Eβ,R(u;µ)− µN β,R(u;µ) =
∑
s

Gβ(λs;µ) where

Gβ(λ; τ) := Eβ(λ; τ)− 2τF β(λ; τ) =
2

β
log
(

1− F β(λ; τ)
)
.

(6.3.5)

When it is clear from the context, we will drop µ in the argument for the

particle number functional and grand potential: that is, N β,R(u;µ) = N β,R(u)

and Gβ,R(u;µ) = Gβ,R(u).

6.3.2 Potential Energy at Zero Fermi-Temperature

We now consider the Helmholtz free energy and grand potential at zero Fermi-

temperature. We simply take the pointwise limit of (6.3.5) as β → ∞ to

obtain

G∞,R(u;µ) :=
∑
s

G∞(λs;µ) where

G∞(λ; τ) = 2(λ− τ)χ(−∞,τ)(λ).

(6.3.6)

See Lemma 6.15 for justification of this limit. Moreover, we define the zero

temperature particle number in the limit as β →∞:

N∞,R(u; τ) := 2
∑
s

F∞(λs; τ)

= 2#{λ ∈ σ(HR(u)) : λ < τ}+ #{λ ∈ σ(HR(u)) : λ = τ},

where the Fermi-Dirac distribution at zero Fermi-temperature F∞( · ; τ) is

given by (2.4.4) with chemical potential τ .
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For the Helmholtz free energy, we must also consider the Fermi level

constraint. However, taking the β →∞ limit of the particle number functional

yields a step function. This means that there may not be a unique solution to

the particle number constraint (6.3.3) at zero Fermi-temperature. We define

the zero temperature Fermi level as the zero temperature limit of the finite

temperature Fermi levels:

Lemma 6.2 (Fermi Level at Zero Fermi-Temperature). Suppose u : ΛR → Rd

satisfies (L) and that εβ,RF is the corresponding Fermi level solving (6.3.3).

Then, on defining ε := arg max
{
λ ∈ σ(HR(u)) : N∞,R(u;λ) 6 Ne,R

}
and

ε := arg min
{
λ ∈ σ(HR(u)) : N∞,R(u;λ) > Ne,R

}
, we have

lim
β→∞

εβ,RF = ε∞,RF :=


ε if N∞,R(u; 1

2(ε+ ε)) > Ne,R,

1
2(ε+ ε) if N∞,R(u; 1

2(ε+ ε)) = Ne,R,

ε if N∞,R(u; 1
2(ε+ ε)) < Ne,R.

Proof. See [97, Appendix D].

This result suggests that we may formally define the zero Fermi-temperature

Helmholtz free energy by considering the pointwise limit as β →∞ and fixing

the Fermi level as in Lemma 6.2. That is, we define

E∞,R(u) ≡ E∞,R(u; ε∞,RF (u)) :=
∑
s

E∞(λs; ε
∞,R
F ),

where E∞(λ; τ) := 2λχ(−∞,τ)(λ) + λχ{τ}(λ).

(6.3.7)

6.4 Thermodynamic Limit

In this section, we apply the locality results of Chapter 3 to renormalise the

total energy in order to define a grand potential difference functional for infinite

systems.

Firstly we note that, if X is a finite system, we may diagonalise the
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Hamiltonian, H(X)ψs = λsψs, and write

∑
s

Gβ(λs;µ) = TrGβ
(
H(X);µ

)
= tr

∑
`

Gβ
(
H(X);µ

)
``

=
∑
`

Gβ` (X;µ)

(6.4.1)

where Gβ` (X;µ) are defined in (2.4.1).

While the site energies Gβ` are well-defined for infinite systems (Chapter 3),

the total energy (6.4.1) is of course ill-defined. However, we may renormalise

the total energy and, formally at first, define the following grand potential

difference functional: for β ∈ (0,∞],

Gβ(u;µ) :=
∑
`∈Λ

[
Gβ`
(
X(u);µ

)
−Gβ`

(
X(0);µ

)]
. (6.4.2)

The strong locality estimates for the site energies from Chapter 3 allow us to

conclude that the grand potential difference functional is well defined on the

space of compact displacements [27, Theorem 3.1]. Therefore, by a density

argument, we may extend the definition to the following space of admissible

displacements by continuity [27, Theorem 2.1]:

Adm(Λ) := {u ∈ Ẇ 1,2(Λ) satisfying (L) : µ 6∈ σ(H(u))}. (6.4.3)

The restriction µ 6∈ σ
(
H(X(u))

)
ensures the grand potential difference func-

tional is differentiable for β = ∞. We also impose this condition for β < ∞

since we are interested in taking the zero Fermi-temperature limit.

When it is clear from the context, we will drop µ in the argument for the

site energies and grand potential difference functional.

6.5 Equilibiration of Nuclei Positions

For a point defect configuration Λ, finite computational cells ΛR, β ∈ (0,∞],

and fixed chemical potential, µ, we consider the following geometry optimisation
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problems

u ∈ arg min
{
Eβ,R(u) : u satisfies (L)

}
, (CEβ,RNe,R)

u ∈ arg min
{
Gβ,R(u;µ) : u satisfies (L)

}
, and (GCEβ,Rµ )

u ∈ arg min
{
Gβ(u;µ) : u ∈ Adm(Λ)

}
. (GCEβ,∞µ )

Here and throughout, “arg min” denotes the set of local minimisers. We denote

these problems by (CEβ,RNe,R) and (GCEβ,Rµ ) so that we can reference the problem

and associated parameters using a single compact notation.

6.5.1 Stability Conditions

In the main results of this chapter, we will assume that solutions uR to (CEβ,RNe,R)

or to (GCEβ,Rµ ) and u to (GCEβ,∞µ ) are strongly stable in the following sense:

〈
δ2Eβ,R(uR)v, v

〉
> c0‖Dv‖2`2Υ (6.5.1)〈

δ2Gβ,R(uR;µ)v, v
〉
> c0‖Dv‖2`2Υ (6.5.2)〈

δ2Gβ(u;µ)v, v
〉
> c0‖Dv‖2`2Υ (6.5.3)

for some positive constant c0 > 0. Here, we have fixed the chemical potential

µ and are considering the second variation of Gβ,R( · ;µ) and Gβ( · ;µ) at uR

and u, respectively.

For β ∈ (0,∞], we denote by Gβref the reference grand potential which is

given by (6.4.2) but with Λ replaced with Λref . We assume that the reference

configuration is an equilibrium state and stable in the sense that: there exists

cstab > 0 such that

δGβref(0) = 0 and
〈
δ2Gβref(0)v, v

〉
> cstab‖Dv‖2`2Υ ∀ v ∈ Ẇ 1,2(Λ). (6.5.4)

We will often drop the superscript in the site energy and grand potential

difference functional in the case of zero Fermi-temperature (e.g. G = G∞).
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6.6 Main Results

The results of this work can be summarised in Figure 6.1. Each arrow represents

the following mathematical statements: (i) Strong limit: for any strongly stable

solution to the limit problem, there exists a sequence of solutions to the finite

domain or finite temperature problem that converges to the solution to the

limit problem; (ii) Weak limit: for any bounded sequence of solutions to the

finite domain or finite temperature problem, there is a weak limit along a

subsequence that is a critical point of the limiting energy functional.

This work generalises the results of [26] to the zero temperature case but

also to the case where Λ is not necessarily a Bravais lattice.

When we say that the limiting model is given by a grand-canonical model,

we have to be careful in specifying the limiting chemical potential. For example,

the limit of (CEβ,RNe,R) as R→∞ for β <∞ is given by (GCEβ,∞µ#
) where µ# is

the Fermi level for the homogeneous crystal [26, Theorems A.2 and A.3]. This

subtlety means that Figure 6.1 cannot be seen as a commutative diagram.

We also stress that these results only hold in the case where µ 6∈ σ(H(u)).

This is simply because the site energies and hence the grand potential difference

functional are not differentiable if the chemical potential is an eigenvalue. In

this case the main techniques used in this chapter cannot be applied.

6.6.1 Zero Temperature Limit

First, we state the zero Fermi-temperature limit result for the grand canonical

ensemble model

Theorem 6.3 (Strong Zero Temperature Limit, (GCEβ,∞µ ) → (GCE∞,∞µ )).

Suppose that µ satisfies (Gap) and u is a solution to (GCE∞,∞µ ) that is strongly

stable (6.5.3). Then, there exist solutions uβ to (GCEβ,∞µ ) such that

‖Duβ −Du‖`2Υ 6 Ce−
1
12

dβ and |Gβ(uβ)− G(u)| 6 Ce−
1
12

dβ

where d := dist(µ, σ(H(u))).
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Proposition 6.4 (Weak Zero Temperature Limit, (GCEβ,∞µ ) → (GCE∞,∞µ )).

Suppose that uβj is a bounded sequence (with βj →∞) of solutions to (GCE
βj ,∞
µ )

each satisfying (L) with an accumulation parameter uniformly bounded below by

m > 0 and such that µ is (eventually) uniformly bounded away from σ(H(uβj )).

Then, there exists u ∈ Ẇ 1,2(Λ) such that along a subsequence

Dρuβj (`)→ Dρu(`) ∀` ∈ Λ, ρ ∈ Λ− `. (6.6.1)

Moreover, u is a critical point of G.

The exact same arguments can be made in the finite domain case. That

is, every strongly stable solution to (GCE∞,Rµ ) is an accumulation point of

a sequence of solutions to (GCEβ,Rµ ). Moreover, for every bounded sequence

of solutions to (GCEβ,Rµ ), with spectrum uniformly bounded away from the

chemical potential, up to a subsequence, there exists a weak limit. The limit is

a critical point of the limiting functional.

Further, we have an analogous result in the canonical ensemble. Here we

only consider R <∞ since (CE∞,∞) is not well defined.

Theorem 6.5 (Strong Zero Temperature Limit, (CEβ,RNe,R) → (CE∞,RNe,R
)). Sup-

pose uR is a solution to (CE∞,RNe,R
) with ε∞,RF (uR) 6∈ σ(HR(uR)) and such that

(6.5.1) is satisfied. Then, there exist solutions uR,β to (CEβ,RNe,R) such that

‖DuR,β −DuR‖`2Υ +
∣∣εβ,RF (uR,β)− ε∞,RF (uR)

∣∣ 6 Ce−
1
12

dβ

where d = dist(µ, σ(HR(uR))).

Proposition 6.6 (Weak Zero Temperature Limit, (CEβ,RNe,R) → (CE∞,RNe,R
)).

Suppose that uR,βj is a bounded sequence (with βj →∞) of solutions to (CE
βj ,R
Ne,R

)

each satisfying (L) with an accumulation parameter uniformly bounded below

by m > 0. Then, there exists uR : ΛR → Rd such that along a subsequence

uR,βj → uR and ε
βj ,R
F (uR,βj )→ ε∞,RF (uR) as j →∞.

Moreover, if ε
βj ,R
F (uR,βj ) is (eventually) uniformly bounded away from

σ(HR(uR,βj )), then uR is a critical point of G∞,R( · ;µ) with µ := ε∞,RF (uR).
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Remark 6.2 (Convergence Rates). The convergence rates in Theorems 6.3

and 6.5 are obtained by a suitable consistency estimate and application of the

inverse function theorem. For example, in the R < ∞ case, we may use the

fact that u is an equilibrium state for β =∞ to conclude that,

∣∣∣∣∂GR,β(u)

∂u(`)

∣∣∣∣ 6 ∑
s : λs<µ

2(1− fβ(λs − µ))

∣∣∣∣∂λs(u)

∂u(`)

∣∣∣∣+
∑

s : λs>µ

2fβ(λs − µ)

∣∣∣∣∂λs(u)

∂u(`)

∣∣∣∣
(6.6.2)

where λs = λs(u) is some enumeration of σ(H(u)). The dominant contribution

in (6.6.2) is exponentially small in the distance from the closest eigenvalue to the

chemical potential. Unless there is significant cancellation in this summation

(which we have no reason to expect), this simple calculation suggests that

the convergence rates obtained in Theorems 6.3 and 6.5 depend on the defect

states within the band gap and can be no better than a constant multiple of

dist(µ, σ(H(u))).

6.6.2 Thermodynamic Limit

Now we move on to consider the thermodynamic limit results.

Theorem 6.7 (Strong Thermodynamic Limit, (GCE∞,Rµ ) → (GCE∞,∞µ )).

Suppose that µ is fixed such that (Gap) is satisfied and u is a solution to

(GCE∞,∞µ ) that is strongly stable (6.5.3). Then, there exist solutions uR to

(GCE∞,Rµ ) such that uR → u in Ẇ 1,2(Λ).

Proposition 6.8 (Weak Thermodynamic Limit, (GCE∞,Rµ ) → (GCE∞,∞µ )).

Suppose that uRj is a bounded sequence (with Rj → ∞) of solutions to

(GCE
∞,Rj
µ ) each satisfying (L) with an accumulation parameter uniformly

bounded below by m > 0 and such that µ is uniformly bounded away from

σ(HRj (uRj )). Then, there exists u ∈ Ẇ 1,2(Λ) such that along a subsequence

DρuRj (`)→ Dρu(`) ∀` ∈ Λ, ρ ∈ Λ− `. (6.6.3)

Moreover, u is a critical point of G( · ;µ).

117



We now turn our attention to the thermodynamic limit of the canonical

model. Here, we see that the prescribed number of particles in the sequence of

finite domain approximations is vital in identifying a limiting model.

Theorem 6.9 (Strong Thermodynamic Limit, (CE∞,RNe,R
) → (GCE∞,∞µ )). Sup-

pose that µ is fixed such that (Gap) is satisfied and u is a solution to (GCE∞,∞µ )

that is strongly stable (6.5.3). Then, there exists a sequence Ne,R and solutions

uR to (CE∞,RNe,R
) such that uR → u in Ẇ 1,2(Λ).

Moreover, ε∞,RF (uR) → ν as R → ∞ for some ν ∈ R and u is also a

strongly stable solution to (GCE∞,∞ν ).

Proposition 6.10 (Weak Thermodynamic Limit, (CE
∞,Rj
Ne,R

) → (GCE∞,∞µ )).

Suppose that uRj is a bounded sequence of solutions to (CE
∞,Rj
Ne,Rj

) each satisfying

(L) with an accumulation parameter uniformly bounded below by m > 0. Then,

there exists u ∈ Ẇ 1,2(Λ) and µ ∈ R such that along a subsequence

DρuRj (`)→ Dρu(`) ∀ ` ∈ Λ, ρ ∈ Λ− ` and ε
∞,Rj
F (uRj )→ µ.

Moreover, if ε
∞,Rj
F (uRj ) is (eventually) uniformly bounded away from

σ(HRj (uRj )), then u is a critical point of G( · ;µ).

Remark 6.3. Every strongly stable solution u to (GCE∞,∞µ ) also solves

(GCE∞,∞ν ) for all ν in some maximal interval (ν, ν), displayed in Figure 6.2.

In particular, u is a strongly stable solution to (GCE∞,∞ν ) with ν := 1
2(ν + ν).

Theorem 6.9 states that, under some appropriate choice of particle number,

there exist solutions uR solving (CE∞,RNe,R
) such that uR → u and ε∞,RF (uR)→ ν

as R→∞.

µ ν

ν ν

Figure 6.2: Cartoon depicting an approximation of σ(H(u)) together with the
limiting chemical potential, ν, from Theorem 6.9.

We are not implying that any of the problems (GCE∞,∞ν ) are equivalent for

ν ∈ (ν, ν), only that they are locally equivalent around the fixed displacement u.
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This is simply because there are no eigenvalues between ν and ν, as depicted in

Figure 6.2, and we are considering the case of zero Fermi-temperature.

Remark 6.4 (Convergence Rates). Since we are considering the case where

Λref is more general than a Bravais lattice AZd, we do not prove any convergence

rates for R→∞. In the case where Λref = AZd, strongly stable solutions u to

(GCE∞,∞µ ) satisfy the following far field decay estimate [27]:

( ∑
ρ∈Λ−`

e−2Υ|ρ||Dρu(`)|2
)1/2

. (1 + |`|)−d for all ` ∈ Λ. (6.6.4)

If the estimate (6.6.4) holds in the case where Λref 6= AZd, we can simply

repeat the proofs of Theorem 6.7 and 6.9 verbatim and obtain the following

convergence rate:

‖DuR −Du‖`2Υ . R−d/2.

For finite interaction range models and in the case of multilattices, far-field

decay estimates of the form (6.6.4) are satisfied [94]. In light of [27], which

extends [48] to infinite interaction range models, it is safe to assume that (6.6.4)

can be extended to our setting.

Remark 6.5. In the weak convergence results (Propositions 6.4, 6.6, 6.8

and 6.10) we assume that the chemical potential (or Fermi level) is uniformly

bounded away from the spectrum. By the spectral pollution results (Lemma 6.14,

below), this implies that the chemical potential (or the limit of the Fermi level)

is not in the limiting spectrum. However, we prefer to make the assumption

on the sequence of solutions rather than imposing a condition on the ( a priori

unknown) weak limit.

6.7 Conclusions

In this chapter, we have formulated the zero Fermi-temperature limit models

for geometry relaxation problems in the context of linear tight binding models

for point defects and quantified an exponential rate of convergence for the

119



nuclei positions.

Further, we have extended the results of [26] to the case of zero Fermi-

temperature under the assumption that the chemical potential is not an

eigenvalue of the Hamiltonian. That is, we have formulated zero Fermi-

temperature models in the grand canonical ensemble for the electrons for

general point defects. We have shown that, under an assumption on the

number of electrons imposed in the sequence of finite domain approximations,

this is a limiting model as domain size is sent to infinity in a tight binding model

in the canonical ensemble for the electrons and at zero Fermi-temperature.

In contrast to the finite Fermi-temperature results of [26], we have shown

that a specific choice of electron number in the sequence of finite domain

approximations is crucial in identifying the limiting model.

A consequence of these results is that, in general, the zero Fermi-temperature

and thermodynamic limits of the geometry optimisation problem do not com-

mute. In particular, taking the thermodynamic limit first, we obtain a limiting

model with fixed chemical potential at the reference domain level. On the

other hand, if we take the zero Fermi-temperature limit first, the limit model

is a grand canonical model but the fixed chemical potential depends on the

sequence of solutions to the finite domain problems. The limit of the Fermi

levels depends on the polluted band structure and so there is no reason why

the limiting Fermi level agrees with the reference Fermi level.

We stress again here that the weak convergence results of Propositions 6.4,

6.6, 6.8, and 6.10 are weaker than the analogous results in the finite Fermi-

temperature case [26]. Indeed, by assuming the chemical potential (or sequence

of Fermi levels) is bounded away from the spectrum, we are ensuring that the

limiting Fermi level is not an eigenvalue of the Hamiltonian, an assumption

that we cannot justify in general. We do this to ensure differentiability of the

limiting site energies which is required to define the zero Fermi-temperature

grand potential difference functional. Exploring the consequences of lifting this

technical assumption is beyond the scope of this work.

Thus, we have completed the diagram in Figure 6.1 however, we must
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reiterate here that some care is needed in order to interpret this diagram

correctly.

6.8 Proofs of the Main Results

It will be convenient to rewrite the site energies as a function of the full

interaction stencil, Du(`). This can be done since the site energies inherit

the translational invariance from the Hamiltonian operators (as in [26, 29]).

Therefore, in the following, we shall abuse notation slightly and write

Gβ,R` (Du(`);µ) := Gβ,R` (u;µ) (6.8.1)

for each β ∈ (0,∞] and R ∈ (0,∞]. In the case where R =∞, we simply write

Gβ` := Gβ,∞` .

Moreover, we will use the following notation: for ` ∈ Λ,m = (m1, . . . ,mj) ∈

Λj and ρ = (ρ1, . . . , ρj) ∈ (Λ− `)j , we write

H,m(u) :=
∂jH(u)

∂u(m1) . . . ∂u(mj)
, and

Gβ,R`,ρ (Du(`)) :=
∂jGβ,R` (Du(`))

∂Dρ1u(`) . . . ∂Dρju(`)
=

∂jGβ,R` (u)

∂u(`+ ρ1) . . . ∂u(`+ ρj)

and similarly for HR,m(u) (with appropriate m and u).

6.8.1 Spectrum of the Hamiltonian

First, we show that the error in the Hamiltonian operators may be bounded

above by the errors in the displacements:

Lemma 6.11. Suppose u1, u2 : ΛR → Rd satisfy (L) with some m > 0. Then,

for `, k ∈ ΛR with |Dk−`(u1 − u2)(`)| 6 m|`− k|, we have

∣∣∣[HR(u1)−HR(u2)
]ab
`k

∣∣∣ 6 Ce−cγ0 min
α∈Zd |`−k+MRα||Dk−`(u1 − u2)(`)|,

(6.8.2)

where c = m
√

3
4 .
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Moreover, if ‖D(u1 − u2)‖`2Υ is sufficiently small, then

dist
(
σ(HR(u1)), σ(HR(u2))

)
6 ‖HR(u1)−HR(u2)‖F

6 C‖D(u1 − u2)‖`2Υ . (6.8.3)

Proof. After extendingHR by periodicity, we may assume |`−k+MRα| > |`−k|

for all α ∈ Zd. Applying Taylor’s theorem we can conclude that there exists

ξα = (1− θ)(r`k(u1) +MRα) + θ(r`k(u2) +MRα) for some θ = θ(α, `, k) ∈ [0, 1]

such that

∣∣∣[HR(u1)−HR(u2)
]ab
`k

∣∣∣ =

∣∣∣∣ ∑
α∈Zd

∇h
(
(ξα, Z`, Zk)

)
·Dk−`(u1 − u2)(`)

∣∣∣∣
6 h0

∑
α∈Zd

e−γ0|ξα||Dk−`(u1 − u2)(`)|.

Since |r`k(ul) +MRα| > m|`− k| for l = 1, 2 and |Dk−`(u1− u2)(`)| 6 m|`− k|

we can conclude that |ξα| > m
√

3
2 |`− k| (here, we have used the following: if

x, y ∈ Rd with |x|, |y| > r and |x− y| 6 r, then |tx+ (1− t)y| >
√
r2 − ( r2)2 =

√
3

2 r for all t ∈ [0, 1]). Therefore, after summing over α ∈ Zd, we obtain (6.8.2).

In the following, we suppose that ‖D(u1 − u2)‖`2Υ is sufficiently small such

that |Dρ(u1 − u2)(`)| 6 m|ρ| for all ` ∈ Λ and ρ ∈ Λ− `. This can be done as

the semi-norm defined by sup`,ρ |Dρv(`)|/|ρ| is equivalent to ‖D · ‖`2Υ [27].

We extend HR and u1, u2 by periodicity and so, for each ` ∈ ΛR, we

can sum over the set ΛR(`) of all k ∈
⋃
α(ΛR + MRα) for which |` − k| =

minα |`− k + MRα|:

‖HR(u1)−HR(u2)‖2F 6 C
∑
`∈ΛR

∑
k∈ΛR(`)

e−2cγ0|`−k||Dk−`(u1 − u2)(`)|2

6 C
∑
`∈Λ̃R

∑
k∈Λ̃R

e−2cγ0|`−k||Dk−`(u1 − u2)(`)|2

6 C‖D(u1 − u2)‖2
`2Υ(Λ̃R)

6 Cd‖D(u1 − u2)‖2`2Υ(ΛR)

(6.8.4)

where Λ̃R :=
⋃
`∈ΛR

ΛR(`).
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The perturbation in the spectrum (6.8.3) follows directly from (6.8.2) since

small perturbations in the Frobenius norm give rise to small perturbations in

the spectrum [76].

We now consider the R =∞ case:

Lemma 6.12. Suppose u1, u2 ∈ Adm(Λ) satisfying (L) for both l = 1, 2 and

some m > 0. Then, for `, k,m ∈ Λ, if |Dk−`(u1 − u2)(`)| 6 m|`− k|, we have

∣∣∣[H(u1)−H(u2)]ab`k

∣∣∣ 6 Ce−cγ0|`−k||Dk−`(u1 − u2)(`)|, and∣∣∣[H,m(u1)−H,m(u2)]ab`k

∣∣∣ 6 Ce−cγ0(|`−m|+|m−k|)|Dk−`(u1 − u2)(`)|.
(6.8.5)

where c = m
√

3
2 .

In particular, if ‖D(u1 − u2)‖`2Υ is sufficiently small, we have

dist(σ(H(u1)), σ(H(u2))) 6 ‖H(u1)−H(u2)‖F

6 C‖D(u1 − u2)‖`2Υ . (6.8.6)

Proof. Using the same idea as in Lemma 6.11, we have

∣∣[H(u1)−H(u2)]ab`k
∣∣ 6 h0e

−γ0|ξ0||Dk−`(u1 − u2)(`)| and∣∣[H,m(u1)−H,m(u2)]ab`k
∣∣ 6 h0e

−γ0|ξ1||Dk−`(u1 − u2)(`)|

where ξj = (1 − θj)r`k(u1) + θjr`k(u2) for some θj = θj(a, b, `, k) ∈ [0, 1]

and both j = 1, 2. Now, since r`k(ul) > m|` − k| for both l = 1, 2 and

|Dk−`(u1 − u2)(`)| 6 m|` − k|, we necessarily have that |ξl| >
√

3
2 m|` − k|.

Therefore, we obtain (6.8.5) and thus (6.8.6) as in the proof of Lemma 6.11.

In particular, we have shown Lemma 6.1 holds and we also immediately

obtain the decomposition from Proposition 2.3:

H̃(u) = H̃ref + PFR(u) + Pε(u) (6.8.7)

where ‖Pε(u)‖F 6 ε and PFR(u)`k = 0 for all (`, k) 6∈ BRε ×BRε . Here, in an
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argument identical to (2.5.6), we have shifted the spectra away from zero and

added artificial zero rows and columns to the Hamiltonian operators to ensure

H̃(u) and H̃ref are defined on the same spatial domains.

We now discuss the corresponding R <∞ case which allows us to describe

σ(HR(uR)) and the limiting spectrum as R→∞ (in Lemma 6.14, below):

Lemma 6.13 (Decomposition of the Hamiltonian, R < ∞). For each R,

suppose that uR : ΛR → Rd satisfies (L) with some constant uniformly bounded

below by m > 0 and supR ‖DuR‖`2Υ <∞. Then, for ε > 0,

• There exists an R independent constant, Rε > 0, a constant R∞ = R∞(R)

with R∞(R)→∞ as R→∞ and operators PRε , P
R
loc, PR∞ such that

H̃R(uR) = H̃ref,R + PRε + PRloc + PR∞ (6.8.8)

where ‖PRε ‖F 6 ε and PRloc, P
R
∞ are finite rank operators with rank in-

dependent of R, and matrix entries non-zero only on BRε × BRε and

(ΛR \BR∞)× (ΛR \BR∞), respectively,

• Moreover, if uR ⇀ u, then PRloc → P∞loc where [P∞loc]
ab
`k := [H̃(u)− H̃ref ]ab`k

as R→∞ for all `, k ∈ BRε,

• In particular,

sup
R

#
(
σ(HR(uR)) \Bε(σ(Href))

)
<∞. (6.8.9)

Proof. The construction of (6.8.8) is similar to that of Proposition 2.3. For a

complete proof, see [96, Appendix F].

(6.8.9) follows in the same way as in the proof of Proposition 2.3 after

noting that σ(Href,R) ⊆ σ(Href). The latter statement can be shown by writing

σ(Href) as the union of energy bands defined on the Brillouin zone and noting

that σ(Href,R) can then be written as a union of these energy bands over a

discretised Brillouin zone (see [96, Appendix E] for the details).
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Resolvent Calculus

For fixed u ∈ Adm(Λ), we suppose that C− and C + are simple closed contours

encircling σ(H(u))∩ (−∞, µ) and σ(H(u))∩ (µ,∞), respectively, and avoiding

the line µ+iR, see Figure 6.3. Further, we may suppose that for all z ∈ C−∪C +,

we have

dist(z, σ(H(u))) >
1

2
d(u) and

|Re(z)− µ| > 1

2
d(u), (6.8.10)

where d(u) := dist(µ, σ(H(u))) and dref := dist(µ, σ(Href)).

C−

dref

d(u)

C +

Figure 6.3: Cartoon depicting an approximation of σ(H(u)) for u ∈ Adm(Λ)
(on the real axis) and the contours C− and C +. The positive constants d(u)
and dref are also displayed.

Therefore, C− ∪ C + is an admissible system of contours to define Gβ` as in

(2.4.1): for β ∈ (0,∞],

Gβ` (Du(`)) = tr

[˛
C−∪C +

Gβ(z;µ)
(
z −H(u)

)−1 dz

2πi

]
``

(6.8.11)

We shall often simplify notation and write G` := G∞` . We may define Gβ,R`

similarly.

From now on, we denote the resolvent operators by Rz(u) := (H(u)− z)−1

and RR
z (u) := (HR(u)− z)−1.

Remark 6.6. We briefly note here that the Combes–Thomas resolvent estimate

125



(Lemma 3.3) applies in the periodic setting by replacing r`k(u) with the torus

distance r#
`k(u). The proof of this result follows in the exact same way as in

the corresponding R =∞ result.

Spectral Pollution

It is well known (see [35, 84] and references therein) that, in general, when

approximating the spectrum of an operator with a sequence of finite dimensional

spaces, spurious eigenvalues may be present in the limit. That is, accumulation

points of eigenvalues along the sequence are not necessarily contained in the

spectrum of the limit operator. In this section, we discuss the extent to which

spectral pollution occurs when approximating σ(H(u)) with σ(HR(uR)).

More specifically, we are able to show that, if uR → u strongly, then

spectral pollution does not occur and, in the case that uR ⇀ u, we show

that the spectral pollution is very mild. That is, we may use Lemma 6.13 to

conclude that there are at most finitely many additional eigenstates in the

band gap which arise due to finitely many O(1) distortions of the lattice. These

distortions are sent to infinity as R→∞ and so the additional eigenstates are

not present in the limit.

We remark here that the use of periodic boundary conditions prevents

spectral pollution that is known to occur in the case of clamped boundary

conditions, for example. See [22] for a proof in the case of local defects in a

crystalline material in a PDE setting.

Lemma 6.14. Suppose uR : ΛR → Rd is a bounded sequence satisfying (L) with

some uniform constant m > 0 and uR ⇀ u for some u ∈ Ẇ 1,2(Λ). Let PR∞(uR)

be the finite rank operator from Lemma 6.13 with the constant ε > 0. Then,

(i) σ(H(u)) ⊆ lim inf
R→∞

σ
(
HR(uR)− PR∞(uR)

)
,

(ii) σ(H(u)) ⊆ lim inf
R→∞

σ
(
HR(uR)

)
,

(iii) σ(H(u)) ⊇ lim sup
R→∞

[
σ
(
HR(uR)− PR∞(uR)

)
\B2ε(σ(Href))

]
,

(iv) If uR → u strongly, then σ(H(u)) = lim
R→∞

σ(HR(uR)).
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Remark 6.7. Following the proof of Lemma 6.14, one can easily see that if

uβ, u ∈ Ẇ 1,2(Λ), satisfying (L) with a uniform constant m, and uβ ⇀ u as

β →∞, then σ(H(u)) ⊆ lim inf
β→∞

σ(H(uβ)).

Bδ(σ(H(u)))

σ
(
HR(uR)− PR∞(uR)

)

σ
(
HR(uR)

)
R suf. large

(a)

(b)

(c)

Figure 6.4: Cartoon illustrating Lemma 6.14. (a) is qualitatively similar
to σ(H(u)) for u ∈ Ẇ 1,2(Λ) as asserted in Lemma 6.1. (b) illustrates
Lemma 6.14 (i) and (iii): eigenvalues of H(u) lying in the band gap can
be approximated by eigenvalues of HR(uR) − PR∞(uR) and every accumula-
tion point of σ

(
HR(uR) − PR∞(uR)

)
is contained in σ(H(u)). (c) illustrates

Lemma 6.14 (ii) where the finitely many eigenvalues outside Bδ(σ(H(u))) are
the “defect states” that arise when including the far-field contribution PR∞(uR).
These defect states vanish in the weak limit.

Proof. The first part of this proof loosely follows the first part of [22, Proof of

Thm. 3.1].

(i). Take λ ∈ σ(H(u)). For every τ > 0, we may choose ψ of compact

support such that ‖ψ‖`2 = 1, supp(ψ) ⊆ BR0 for some R0 > 0, and

‖(H(u)− λ)ψ‖`2 6 τ.

For R > R0, we let ψR := ψ|ΛR and calculate: for ` ∈ ΛR,

[(
HR(uR)− PR∞(uR)

)
ψR
]
`

= [H(u)ψ]` −
∑

k∈ΛR∩BR0

PR∞(uR)`k[ψR]k

+
∑

k∈ΛR∩BR0

(H(uR)`k −H(u)`k)ψk

+
∑

k∈ΛR∩BR0

∑
α∈Zd
α6=0

H(uR)`,k+MRα[ψR]k. (6.8.12)

Therefore, after choosing R sufficiently large such that PR∞(uR)`k = 0 for all

k ∈ ΛR ∩BR0 , squaring, summing over ` ∈ ΛR and applying Lemma 6.12, we
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have: for sufficiently large R,

∥∥(HR(uR)− PR∞(uR)− λ
)
ψR
∥∥
`2(ΛR)

6
∥∥(HR(uR)− PR∞(uR)

)
ψR −H(u)ψ

∥∥
`2(ΛR)

+ ‖(H(u)− λ)ψ‖`2(ΛR)

6 C‖D(uR − u)‖`2Υ(ΛR∩B2R0
) + Ce−γ0mR0 + Ce−

1
2
γ0m(R−R0) + τ.

(6.8.13)

Here, we have used the fact that for ` ∈ ΛR and k ∈ BR0 , we have |`−k+MRα| >

R−R0 for all α ∈ Zd \ {0}.

Therefore, by choosing R0 and then R sufficiently large, we have either

λ ∈ σ
(
HR(uR)− PR∞(uR)

)
or

1 = ‖ψR‖`2(ΛR)

6 ‖(HR(uR)− PR∞(uR)− λ)−1‖`2→`2‖(HR(uR)− PR∞(uR)− λ)ψR‖`2(ΛR)

6 ‖(HR(uR)− PR∞(uR)− λ)−1‖`2→`2 · 2τ.

That is, if λ 6∈ σ
(
HR(uR)− PR∞(uR)

)
, then (HR(uR)− PR∞(uR)− λ)−1 defines

a bounded linear operator and so

dist
(
λ, σ

(
HR(uR)− PR∞(uR)

))
=

1

‖(HR(uR)− PR∞(uR)− λ)−1‖`2→`2
6 2τ.

Here, we have used the fact that, for a bounded normal operator, the operator

norm equals the spectral radius.

(ii). The exact same arguments may be made for the operator HR(uR). In

this case, the second term in (6.8.12) is omitted and ‖(HR(uR)−λ)ψR‖`2 6 2τ

for all R sufficiently large as in the proof of (i).

(iii). We suppose that λ ∈ lim supR→∞ σ
(
HR(uR) − PR∞(uR)

)
with λ 6∈

B2ε(σ(Href)). By Lemma 6.13, there exists Sε > 0 such that

σ
(
Href,R + PRε (uR)

)
∩Bε(λ) = ∅ (6.8.14)

#
(
σ
(
HR(uR)− PR∞(uR)

)
∩Bε(λ)

)
6 Sε ∀R (6.8.15)
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where PRε (uR) is the perturbation arising in Lemma 6.13 with ‖PRε (uR)‖F 6 ε.

By (6.8.14) and (6.8.15), we may let C = ∂Bε(λ) be the positively oriented

circle of radius ε centred at λ, and obtain

∑
j

λ
(j)
R ψ

(j)
R ⊗ ψ

(j)
R

= −
˛

C
(HR(uR)− PR∞(uR)− z)−1 dz

2πi

= −
˛

C

[
(HR(uR)− PR∞(uR)− z)−1 − (Href,R + PRε (uR)− z)−1

] dz

2πi

(6.8.16)

where span{ψ(j)
R }j is the eigenspace corresponding to the eigenvalues λ

(j)
R ∈

σ
(
HR(uR) − PR∞(uR)

)
with λ

(j)
R ∈ Bε(λ) and ‖ψ(j)

R ‖`2 = 1. By Lemma 6.13,

for sufficiently large R, we have

∣∣∣[(HR(uR)− PR∞(uR)− z)−1 − (Href,R + PRε (uR)− z)−1
]
`k

∣∣∣
=
∣∣∣[(HR(uR)− PR∞(uR)− z)−1PRloc(uR)(Href,R + PRε (uR)− z)−1

]
`k

∣∣∣
6 C

∑
`1,`2∈ΛR∩BRε

e
−γCT(r#

``1
+r#

`2k
) 6 Ce−γCT(|`|+|k|). (6.8.17)

Equation (6.8.17) is analogous to the R =∞ result shown in [98, Eq. (4.19)].

Therefore, by applying (6.8.16), we have

|ψ(j)
R (`)| 6 Ce−γCT|`| for all ` ∈ ΛR. (6.8.18)

Now, after defining ψ̃
(j)
R to be equal to ψ

(j)
R on ΛR and extending by zero

to Λ, we have: for sufficiently large R,

‖(H(u)− λ(j)
R )ψ̃

(j)
R ‖`2

6 C‖D(uR − u)‖`2Υ(Λ∩BR0
) + C

(
e−η1R0 + e−η2(R−R0) + e−η3R∞

)
where ηj > 0 for each j ∈ {1, 2, 3} and R∞ is the constant from Lemma 6.13

(that is, PR∞(uR) zero on (ΛR \ BR∞)2 with R∞ → ∞ as R → ∞). This
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calculation is analogous to (6.8.13) where, instead of exploiting the fact the

(approximate) eigenvectors are of compact support, we now use the exponential

decay of the eigenvectors (6.8.18).

For a strictly increasing sequence (Rn)n ⊆ N and sequence of indices (jn)n,

we define the subsequence (λn, ψn) := (λ
(jn)
Rn

, ψ̃
(jn)
Rn

). We can conclude that if

λn → λ as n→∞, we have

∥∥(H(u)− λ)ψn
∥∥
`2

6
∥∥(H(u)− λn)ψn

∥∥
`2

+ |λ− λn| → 0 as n→∞.

Therefore, by applying Weyl’s criterion [71, Ch. 7], we can conclude that

λ ∈ σ(H(u)).

(iv). In the case that uR → u strongly as R→∞, we have: for all ε > 0,

there exists Rε > 0 such that ‖DuR‖`2Υ(ΛR\BRε ) 6 ε for all R sufficiently large.

Following the proof of Lemma 6.13, we can conclude that PR∞(uR) = 0.

Limits of the Site Energies

We now state that Gβ( · ;µ) converges exponentially as β →∞ which is used

in the convergence of the site energies in the zero temperature limit.

Lemma 6.15. Fix z ∈ C such that d := 1
2 |Re(z) − µ| > 0. Then, for all

β0 > 0, there exists a positive constant Cβ0d such that

|Gβ(z;µ)−G∞(z;µ)| 6 Cβ0dβ
−1e−

1
3
β|Re(z)−µ| ∀β > β0.

Proof. A proof of this fact is elementary and can be found in [96, Appendix G].

We now apply Lemma 6.15 together with the Combes–Thomas estimate

(Lemma 3.3) to show that the site energies and their derivatives converge in

the zero temperature limit:

Lemma 6.16 (Zero Temperature Limit of the Site Energies). Let u ∈ Adm(Λ).

Then, for each β0 > 0, 0 6 j 6 ν, ` ∈ Λ, m = (m1, . . . ,mj) ∈ Λj and
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1 6 i1, . . . , ij 6 d, there exists a constant C depending on β0, Nb, d(u), d such

that, for all β > β0, we have

∣∣∣∣ ∂jGβ` (Du(`))

∂[u(m1)]i1 . . . ∂[u(mj)]ij
− ∂jG`(Du(`))

∂[u(m1)]i1 . . . ∂[u(mj)]ij

∣∣∣∣
6 Cβ−1e−

1
6
d(u)βe−γCT

∑j
l=1 r`ml .

Proof. The proof follows from the resolvent estimates of Lemma 3.3 and the

convergence of the integrand Gβ shown in Lemma 6.15.

The corresponding R→∞ result is as follows:

Lemma 6.17 (Thermodynamic Limit of the Site Energies). Let u ∈ Adm(Λ)

be of compact support and fix β ∈ (0,∞]. Then, for sufficiently large R and

each 0 6 j 6 ν, ` ∈ ΛR, m = (m1, . . . ,mj) ∈ Λj
R and 1 6 i1, . . . , ij 6 d, we

have

∣∣∣∣ ∂jGβ,R` (u)

∂[u(m1)]i1 . . . ∂[u(mj)]ij
−

∂jGβ` (u)

∂[u(m1)]i1 . . . ∂[u(mj)]ij

∣∣∣∣
6 Ce

−η
(

dist(`,Rd\ΩR)+
∑j
l=1 r

#
`ml

(u)
)

where η := 1
2mmin{γCT,

1
2γ0}.

Proof. Similar to the calculations in the proof of Lemma 6.16, we write the site

energies using resolvent calculus. Using the fact Gβ(z;µ) is uniformly bounded

along the contour C− ∪ C +, it is sufficient to prove that the derivatives of the

resolvent operators converge in the thermodynamic limit. A full proof is given

in [96, Appendix H].

6.8.2 Zero Temperature Limit

We are now in a position to prove the first main convergence results:

Proof of Theorem 6.3: β →∞ in the Grand Canonical Ensemble

We may choose r > 0 such that Br(u; ‖D · ‖`2Υ) ⊆ Adm(Λ). Now, since

Gβ ∈ C3(Br(u; ‖D · ‖`2Υ)), we know that δ2Gβ is Lipschitz in a neighbourhood
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of u.

For the remainder of the proof, we fix β0 > 0. By Lemma 6.16, for all

v, w ∈ Ẇ 1,2(Λ), we have,

〈(
δ2Gβ(u)− δ2G(u)

)
v, w

〉
=
∑
`∈Λ

∑
ρ1,ρ2∈Λ−`

Dρ1v(`)T
(
Gβ`,ρ1ρ2

(Du(`))− G`,ρ1ρ2(Du(`))
)
Dρ2w(`)

6 CCβ0dβ
−1e−

1
6
βd(u) · C2

∑
`∈Λ

∑
ρ1,ρ2∈Λ−`

e−γCT(|ρ1|+|ρ2|)|Dρ1v(`)||Dρ2w(`)|

6 Cβ−1e−
1
6
βd(u)‖Dv‖`2Υ‖Dw‖`2Υ (6.8.19)

for all β > β0. The constant C in the final line depends on d := d(u). By

the assumed strong stability (6.5.3) and (6.8.19), we immediately obtain the

following stability estimate,

〈
δ2Gβ(u)v, v

〉
=
〈
δ2G(u)v, v

〉
+
〈(
δ2Gβ(u)− δ2G(u)

)
v, v
〉

>
(
c0 − Cβ−1e−

1
6
βd(u)

)
‖Dv‖2`2Υ .

(6.8.20)

We now move on to consider consistency. It will be useful to consider the

following truncation operator to split a given displacement into core and far

field contributions [47, Lemma 7.3]:

Lemma 6.18 (Truncation Operator). For R > 0, there exist truncation

operators TR :
(
Rd
)Λ → Ẇ c(Λ) such that TRu has compact support in BR and,

for all R sufficiently large, DTRu(`) = Du(`) for all ` ∈ Λ ∩BR/2 and

‖DTRu−Du‖`2Υ 6 C‖Du‖`2Υ(Λ\BR/2), and

‖DTRu‖`2Υ 6 C‖Du‖`2Υ(Λ∩BR),

where C is independent of R and u.

We use the notation of Lemma 6.18 and let vco := TRv and vff = v− vco for

some R > 0 to be chosen later. In the following, we use the fact that δG(u) = 0
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and estimate each of the terms in the following expression:

〈
δGβ(u), v

〉
=
〈
δGβ(u)− δG(u), vco

〉
+
〈
δGβ(u)− δG(u), vff

〉
(6.8.21)

Core. Since the core region is finite, the first term of (6.8.21) is straightfor-

ward to deal with. Here, we simply apply the convergence of the site energies

directly to obtain

∣∣∣∣〈δGβ(u)− δG(u), vco
〉∣∣∣∣

6
∑

`∈Λ,ρ∈Λ−` :
|`|6R or |`+ρ|6R

∣∣∣(Gβ`,ρ(Du(`))− G`,ρ(Du(`))
)
·Dρv

co(`)
∣∣∣

6 Cβ−1e−
1
6
d(u)β

∑
`∈Λ,ρ∈Λ−` :
|`|6R or |`+ρ|6R

e−γCT|ρ|
∣∣Dρv

co(`)
∣∣.

(6.8.22)

Now we may use the fact that vco has compact support inside BR, to conclude:

∑
`∈Λ
|`|>R

∑
ρ∈Λ−`
|`+ρ|6R

e−η|ρ|
∣∣Dρv

co(`)
∣∣ 6 CRd/2

( ∑
|`|>R

e−η(|`|−R)

)1/2

‖Dvco‖`2Υ

6 CRd/2R(d−1)/2‖Dvco‖`2Υ .

(6.8.23)

In the exact same way,

∑
`∈Λ
|`|<R

∑
ρ∈Λ−`

e−η|ρ|
∣∣Dρv

co(`)
∣∣ 6 CRd/2R(d−1)/2‖Dvco‖`2Υ . (6.8.24)

Combining (6.8.22), (6.8.23), (6.8.24) and Lemma 6.18 we have

∣∣∣∣〈δGβ(u)− δG(u), vco
〉∣∣∣∣ 6 Cβ−1e−

1
6
d(u)βRd/2R(d−1)/2‖Dv‖`2Υ(Λ∩BR).

(6.8.25)

Far-field. We now turn our attention to the far field contribution in (6.8.21).

We will replace u with some compactly supported approximation ũ and show

that the error in this approximation can be bounded appropriately. We then

use the fact that ũ has compact support to bound the far field contribution to
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(6.8.21).

We define ũ := T
R̃
u for some 0 < R̃ < R to be chosen later and note that,

by Lemma 6.18, we have ‖Dũ − Du‖`2Υ 6 C‖Du‖`2Υ(Λ\B
R̃/2

). Therefore, by

Lemma 6.12, for R̃ sufficiently large, we have

dist(µ, σ(H(u))) >
1

4
d(u) (6.8.26)

for all u := tu+ (1− t)ũ and t ∈ [0, 1]. The inequality in (6.8.26) implies that,

for every displacement along the linear path between u and ũ, we have uniform

convergence rates in the site energies as β →∞ (as in Lemma 6.16). Since we

have perturbed the displacement, the exponent in the convergence estimates

are reduced (in this case by a factor of 2, but this factor is arbitrary).

We will now estimate the error committed by replacing u with the compactly

supported displacement ũ. By (6.8.19) and (6.8.26), we have

〈
δGβ(u)− δG(u), vff

〉
−
〈
δGβ(ũ)− δG(ũ), vff

〉
=

ˆ 1

0

〈(
δ2Gβ(tu+ (1− t)ũ)− δ2G(tu+ (1− t)ũ)

)
(u− ũ), vff

〉
dt

6 Cβ−1e−
1
12

d(u)β‖D(u− ũ)‖`2Υ‖Dv
ff‖`2Υ

6 Cβ−1e−
1
12

d(u)β‖Du‖`2Υ(Λ\B
R̃/2

)‖Dv‖`2Υ(Λ\BR/2). (6.8.27)

Now, since we are only considering the far field behaviour of v and ũ is

of compact support, we are able to show that
〈
δGβ(ũ)− δG(ũ), vff

〉
decays

exponentially in the buffer region BR \BR̃:

∣∣∣∣〈δGβ(ũ)− δG(ũ), vff
〉∣∣∣∣ 6 Cβ−1e−

1
12

d(u)βR̃d/2e−η(R−R̃)‖Dvff‖`2Υ (6.8.28)

where η := 1
2mmin{γCT, γ0}. A full proof of (6.8.28) is given after the conclu-

sion of the current proof.

Therefore, by applying (6.8.21), the estimate for the core region (6.8.25)

and (6.8.27) and choosing R̃ and R sufficiently large (independently of β) we
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obtain

∣∣∣〈δGβ(u), v
〉∣∣∣

6 Cβ−1e−
1
12

d(u)β
(
Rd/2R(d−1)/2 + ‖Du‖`2Υ(Λ\B

R̃/2
) + R̃d/2e−η(R−R̃)

)
‖Dv‖`2Υ .

We may choose R, R̃ in such a way as to obtain an exponential rate of conver-

gence as β →∞.

Applying the inverse function theorem [88, Lemma B.1], we can conclude

that, for sufficiently large β, there exist uβ ∈ Ẇ 1,2(Λ) and c1 > 0 such that

‖Duβ −Du‖`2Υ 6 Ce−
1
12

d(u)β, δGβ(uβ) = 0〈
δ2Gβ(uβ)v, v

〉
> c1‖Dv‖2`2Υ

for all v ∈ Ẇ 1,2(Λ).

Finally we consider the error in the energy. Using an analogous argument

to that of [29, Eq. (78)], we obtain

|Gβ(uβ)− Gβ(u)| 6 C‖Duβ −Du‖2`2Υ . (6.8.29)

In order to deal with the model error, we consider a compactly supported

displacement TRu:

(
Gβ(u)− Gβ(TRu)

)
−
(
G(u)− G(TRu)

)
=

ˆ 1

0

〈
δGβ(ut)− δG(ut), TRu− u

〉
dt

where ut := (1− t)u+ tTRu. Therefore, choosing R sufficiently large such that

dist(µ, σ(H(ut))) > 1
4d(u) for all t ∈ [0, 1], we may replace ut with a compactly

supported displacement ũ as in (6.8.27) and (6.8.28) and obtain

∣∣∣(Gβ(u)− Gβ(TRu)
)
−
(
G(u)− G(TRu)

)∣∣∣ 6 Ce−
1
12

d(u)β‖Du‖`2Υ(Λ\BR/2).

(6.8.30)
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Finally, by applying Lemma 6.12, we obtain

|Gβ(TRu)− G(TRu)|

6 C
∑
`∈Λ

‖Gβ( ·;µ)−G( ·;µ)‖C−∪C +

∣∣[Rz(TRu)[H(TRu)−H(x)]Rz(x)
]
``

∣∣
6 Cβ−1e−

1
12

dβ
∑
`1∈Λ

`2∈Λ∩BR

∣∣[H(TRu)−H(x)
]
`1`2

∣∣
6 CRd/2‖Du‖`2Υβ

−1e−
1
12

d(u)β (6.8.31)

where η is some positive constant and x : Λ→ Λ denotes the identity configur-

ation.

Combining (6.8.29), (6.8.30) and (6.8.31), we obtain |Gβ(uβ) − G(u)| 6

Ce−
1
12

d(u)β as required.

Proof of (6.8.28). We will argue that site energies are close to the correspond-

ing reference site energies. We again define H̃(ũ) and H̃ref as in (2.5.6) so that

we can compare these quantities.

If ` ∈ (Λref ∪ Λ) ∩B
R̃

or k ∈ (Λref ∪ Λ) ∩B
R̃

, then |`− k| > dist(`, B
R̃

) +

dist(k,B
R̃

) and so we have

∣∣∣[H̃(ũ)− H̃ref
]
`k

∣∣∣ 6 Ce−γ0m(|`|+|k|−2R̃)) (6.8.32)

Similarly, for m ∈ Λ,

∣∣∣[H̃(ũ),m − H̃ref
,m

]
`k

∣∣∣ 6 Ce−
1
2
γ0m(|`|+|k|−2R̃)e−

1
2
γ0(r`m(ũ)+rkm(ũ)). (6.8.33)

In the following, we use the notation Rz(ũ) := (H̃(ũ)− z)−1, and extend vff
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by zero to Λ ∪ Λref . Since δGβref(0) = 0, we have

〈
δGβ(ũ)− δG(ũ), vff

〉
=
〈
δGβ(ũ)− δGβref −

(
δG(ũ)− δGref

)
, vff
〉

=

˛
C−∪C +

[
Gβ(z)−G(z)

] ∑
`∈Λ∪Λref ,ρ∈Λ∪Λref−`
|`|>R or |`+ρ|>R

∂[Rz(ũ)−Rref
z ]aa``

∂u(`+ ρ)
·Dρv

ff(`)
dz

2πi

6 Cβ−1e−
1
12

d(u)β
∑

`,k∈Λ∪Λref

|`|>R or |k|>R

max
z∈C−∪C +

∣∣∣∣∂[Rz(ũ)−Rref
z ]``

∂u(k)
·Dk−`v

ff(`)

∣∣∣∣.
(6.8.34)

We have therefore reduced the problem to considering the derivatives of the

difference of two resolvent operators:

∂[Rz(ũ)−Rref
z ]``

∂u(k)
=
[
−Rz(ũ)H(ũ),kRz(ũ) + Rref

z H̃ref
,k Rref

z

]
``

=
[
(Rref

z −Rz(ũ))H̃ref
,k Rref

z + Rz(ũ)(H̃ref
,k − H̃(ũ),k)R

ref
z

+ Rz(ũ)H̃(ũ),k(R
ref
z −Rz(ũ))

]
``
. (6.8.35)

In the following, we shall drop the argument (ũ). Now, since Rz − Rref
z =

Rz(H̃ref − H̃)Rref
z , we have: for z ∈ C− ∪ C +,

∑
`,k∈Λ∪Λref

|`|>R or |k|>R

∣∣∣[(Rz −Rref
z )H̃,kRz

]
``
·Dk−`v

ff(`)
∣∣∣

6
∑

`,k∈Λ∪Λref

|`|>R or |k|>R

∑
`1,`2,`3,`4

∣∣∣[Rz]``3(H̃ref − H̃)`3`4 [Rref
z ]`4`1 [H̃,k]`1`2 [Rz]`2`

∣∣∣∣∣Dk−`v
ff(`)

∣∣
.

∑
`,k,`1,`2,`3,`4
|`|>R or |k|>R

e−γCT(r``3+r`4`1+r`2`)e−
1
2
γ0m(|`3|+|`4|−2R̃)e−γ0(r`1k+r`2k)

∣∣Dk−`v
ff(`)

∣∣
.

( ∑
`,k∈Λ∪Λref

|`|>R or |k|>R

( ∑
`1,`3,`4

e−η(r``3+r`4`1+|`3|−R̃+|`4|−R̃+r`1k)
)2
)1/2

‖Dvff‖`2Υ

(6.8.36)

where η := 1
2mmin{γCT,

1
2γ0}.

We now bound the first term in the product (6.8.36). Here we only consider
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the summation over `, k ∈ Λ ∪ Λref and |`| > R (the case where |`| 6 R and

|k| > R can be treated in a similar way):

∑
`,k,`1,`3,`4
|`|>R

e−η(r``3+r`4`1+|`3|+|`4|−2R̃+r`1k)

6 C

( ∑
`,`3
|`|>R

e−η(r``3+|`3|−R̃)
)(∑

k,`4

e−η(rk`4+|`4|−R̃)
)

6 CR̃de−
1
2
η(R−R̃). (6.8.37)

Here, the R̃d comes from the second factor in the line above. The exact same

argument can be used to bound the third term in (6.8.35) similarly.

We now consider the second term in (6.8.35): for z ∈ C− ∪ C +,

∑
`,k∈Λ∪Λref

|`|>R or |k|>R

∣∣∣[Rref
z (H̃,k − H̃ref

,k )Rz

]
``
·Dk−`v

ff(`)
∣∣∣

6
∑

`,k∈Λ∪Λref

|`|>R or |k|>R

∑
`1,`2∈Λ∪Λref

∣∣∣[Rref
z ]``1 [H̃,k − H̃ref

,k ]`1`2 [Rref
z ]`2`

∣∣∣∣∣∣Dk−`v
ff(`)

∣∣∣
6 C

∑
`,k,`1,`2∈Λ∪Λref

|`|>R or |k|>R

e−γCT(r``1+r`2`)e−
1
2
γ0m(|`1|+|`2|−2R̃)e−γ0(r`1k+r`2k)

∣∣Dk−`v
ff(`)

∣∣
6 C

∑
`,k∈Λ∪Λref

|`|>R or |k|>R

(∑
`1

e−η(r``1+|`1|−R̃+r`1k)

)
e−

1
2
ηr`k
∣∣Dk−`v

ff(`)
∣∣

6 C

( ∑
`,k,`1∈Λ∪Λref

|`|>R or |k|>R

e−η(r``1+|`1|−R̃+r`1k)

)1/2

‖Dvff‖`2Υ . (6.8.38)

We again show that the prefactor in this expression is bounded: by summing

over k, `1 and ` (in that order) we have,

∑
`,k,`1∈Λ∪Λref

|`|>R or |k|>R

e−η(r``1+|`1|−R̃+r`1k) 6 Ce−
1
2
η(R−R̃).

(6.8.39)

Therefore, after collecting (6.8.36)−(6.8.39) and applying (6.8.34) and

(6.8.35), we obtain (6.8.28).
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Proof of Proposition 6.4: β →∞ in the Grand Canonical Ensemble

We consider a sequence, uβj , of solutions to (GCE
βj ,∞
µ ) (with βj → ∞ as

j → ∞) such that supj ‖Duβj‖`2Υ < ∞. Noting that, after factoring out a

constant shift, Ẇ 1,2(Λ) is a Hilbert space and so we may apply the Banach-

Alaoglu theorem to conclude that there exists a u ∈ Ẇ 1,2(Λ) such that

uβj ⇀ u in Ẇ 1,2 as j →∞

along a subsequence (which we do not relabel). Now, because v 7→ Dρv(`) is a

linear functional for all ` ∈ Λ and ρ ∈ Λ− `, we have obtained (6.6.1).

To simplify notation, let us define the forces

Fβ` (u) :=
∂Gβ(u)

∂u(`)
and F`(u) :=

∂G(u)

∂u(`)
. (6.8.40)

Since uβj solves (GCE
βj ,∞
µ ), we have

0 =
〈
δGβj (uβj ), v

〉
=
∑
`∈Λ

Fβj` (uβj ) · v(`) for all v ∈ Ẇ 1,2(Λ).

Let us fix v ∈ Ẇ 1,2(Λ) with compact support in BRv for some Rv > 0. Now, it

is sufficient to show that

Fβj` (uβj )→ F`(u) as j →∞

for all ` ∈ Λ ∩ BRv . Here, we may apply Remark 6.7 and the fact that µ is

uniformly bounded away from σ(H(uβj )) to conclude that G(u) is differentiable.

For sufficiently large j,

|Fβj` (uβj )−F
βj
` (u)| 6 C

(
e−γCTRv + ‖D(uβj − u)‖`2Υ(Λ∩B2Rv )

)
. (6.8.41)

The proof of this estimate is given below. By first choosing Rv and then j

sufficiently large, (6.8.41) can be made arbitrarily small.

139



Applying Lemma 6.16, we obtain

|Fβj` (u)−F`(u)| 6 Cβ−1
j e−

1
6
d(u)βj

∑
k∈Λ

e−γCTr`k 6 Cβ−1
j e−

1
6
d(u)βj . (6.8.42)

Combining (6.8.41) and (6.8.42), we obtain Fβj` (uβj )→ F`(u) as j →∞

and so F`(u) = 0.

Proof of (6.8.41). We will prove a more general statement: for β ∈ (0,∞] and

u1, u2 ∈ Ẇ 1,2(Λ), with ‖D(u1 − u2)‖`2Υ(Λ∩B2Rv ) sufficiently small, we have

|Fβ` (u1)−Fβ` (u2)| 6 C
(
e−γCTRv + ‖D(u1 − u2)‖`2Υ(Λ∩B2Rv )

)
. (6.8.43)

This result is also true in the case of periodic displacements u1, u2 as will

become clear in the proof.

Using the chain rule, we obtain the formula:

Fβ` (u) =
∑
ρ∈`−Λ

Gβ`−ρ,ρ(Du(`− ρ))−
∑
ρ∈Λ−`

Gβ`,ρ(Du(`)), (6.8.44)

which is valid for both β <∞ and β =∞.

We first notice that

Gβ`,k−`(Du1(`))− Gβ`,k−`(Du2(`)) =

tr

˛
C +∪C−

Gβ(z;µ)
∂[Rz(u2)−Rz(u1)]``

∂u(k)

dz

2πi
. (6.8.45)

We again consider the derivative of the difference of two resolvents as in (6.8.35),

above. By Lemma 6.12, if ‖D(u1−u2)‖`2Υ(Λ∩B2Rv ) is sufficiently small, we have:
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for m ∈ Λ,

[Rz(u2)−Rz(u1)]`m = [Rz(u2)(H(u1)−H(u2))Rz(u1)]`m

.
∑

`1,`2∈Λ
|`1|>2Rv or |`2|>2Rv

e−γCT(r``1+r`2m)e−γ0r`1`2

+ C

( ∑
`1,`2∈Λ∩B2Rv

e−γCT(r``1+r`2m)

)1/2( ∑
`1,`2∈Λ∩B2Rv

∣∣[H(u1)−H(u2)]`1`2
∣∣2)1/2

6 C
(
e−

1
2

min{γCT,γ0}Rv + ‖D(u1 − u2)‖`2Υ(Λ∩B2Rv )

)
.

Here, we have used the fact that ` ∈ BRv in the first term. Therefore, we have:

[
(Rz(u2)−Rz(u1))H(u2),kRz(u2)

]
``

6 C
(
e−γCTRv + ‖D(u1 − u2)‖`2Υ(Λ∩B2Rv )

) ∑
`1,`2∈Λ

e−γ0(r`1k+r`2k)e−γCTr`2`

6 C
(
e−γCTRv + ‖D(u1 − u2)‖`2Υ(Λ∩B2Rv )

)
e−

1
2

min{γCT,γ0}r`k .

(6.8.46)

Similarly, by Lemma 6.12, we have

[
Rz(u1)[H(u2),k −H(u1),k]Rz(u2)

]
``

6 C
(
e−γCTRv + ‖D(u1 − u2)‖`2Υ(Λ∩B2Rv )

)
e−

1
2

min{γCT,cγ0}r`k
(6.8.47)

where c = m
√

3
2 is the constant from Lemma 6.12.

Therefore, by combining (6.8.46) and (6.8.47) and using the formula for the

derivative of the difference between two resolvent operators (6.8.35) together

with the chain rule formula (6.8.44), we have (6.8.43).

Proofs of Theorem 6.5 and Proposition 6.6: β →∞ in the Canonical

Ensemble

Before we proceed with the proofs of Theorem 6.5 and Proposition 6.6, we first

recall that εβ,RF (uR) denotes the Fermi level given by (6.3.3). For β =∞, we

define ε∞,RF (uR) via the zero Fermi-temperature limit (Lemma 6.2).
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Proof of Theorem 6.5. We suppose that uR is a strongly stable solution to

(CE∞,RNe,R
). In particular, uR is a strongly stable solution to (GCE∞,Rµ ) for all

µ ∈ I where I is a closed interval such that I ∩Bδ(σ(HR(uR))) = ∅ for some

δ > 0 and ε∞,RF (uR) ∈ I. Therefore, by Theorem 6.3, for sufficiently large β

(depending on δ and not on µ), there exists a unique solution uµR,β to (GCEβ,Rµ )

satisfying

‖DuµR,β −DuR‖`2Υ 6 Ce−
1
12

d(uR)β =: τβ. (6.8.48)

Since I ∩ Bδ(σ(H(uR))) = ∅, the pre-factor and exponent can be chosen to

depend on δ but not on µ ∈ I. Now by Lemma 6.11, for β sufficiently large,

we have

|λs(uµR,β)− λs(uR)| 6 Ce−
1
12

d(uR)β (6.8.49)

where λs(u) denotes the eigenvalues of HR(u) in increasing order. In particular,

εβ,RF (uµR,β) → ε∞,RF (uR) as β → ∞ and so, for sufficiently large β, we have

εβ,RF (uµR,β) ∈ I for all µ ∈ I.

For now, we assume that the mapping I → I given by µ 7→ εβ,RF (uµR,β) is

continuous for all sufficiently large β. We will prove this fact after noting that

this is sufficient to conclude. Since I is a compact and convex set, we can apply

Brouwer’s fixed point theorem to conclude that there exists µ? = εβ,RF (uµ
?

R,β) ∈ I.

In particular, uµ
?

R,β is a solution to (GCEβ,Rµ? ) with Fermi level µ?. That is, uµ
?

R,β

solves (CEβ,RNe,R) and, by (6.8.48), we have ‖Duµ
?

R,β −DuR‖`2Υ 6 Ce−
1
12

d(uR)β.

Continuity of µ 7→ εβ,RF (uµR,β): We now wish to show that I → I : µ 7→

εβ,RF (uµR,β) is continuous for all sufficiently large β. To do so, we fix ν ∈ I and

apply the inverse function theorem on δGβ,R( · ; ν) around uµR,β for µ ∈ I close

to ν.

Firstly, we remark that δ2Gβ,R( · ; ν) is Lipschitz continuous in a neighbour-

hood of uµR,β for all µ ∈ I with Lipschitz constant uniformly bounded below

by a positive constant for all µ ∈ I.

Since Gβ( · ; ν) is analytic on C \ {ν + ir : r ∈ R}, we know that Gβ( · ; ν) is

Lipschitz continuous on all compact sets K ⊆ C\{ν+ ir : r ∈ R}. In particular,
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if µ ∈ I, then

|Gβ(z;µ)−Gβ(z; ν)| = |Gβ(z + ν − µ; ν)−Gβ(z; ν)| 6 L|µ− ν|

for all z ∈ C−∪C + for some appropriate choice of contours as in Figure 6.3 with

dist(Re(z), I) > 1
2δ for all z ∈ C−∪C +. Since Gβ(z; ·)→ 2(z−· ) pointwise as

β →∞, we can conclude that the Lipschitz constant can be chosen uniformly

(for sufficiently large β). Using this, together with the stability of uµR,β (where

the stability constant c1 is independent of µ ∈ I), we obtain

〈
δ2Gβ,R(uµR,β ; ν)v, v

〉
=
〈
δ2Gβ,R(uµR,β ;µ)v, v

〉
−
〈(
δ2Gβ,R(uνR,β ; ν)− δ2Gβ,R(uνR,β ;µ)

)
v, v
〉

> (c1 − C|µ− ν|)‖Dv‖`2Υ and〈
δGβ,R(uµR,β ; ν), v

〉
=
〈
δGβ,R(uµR,β ; ν)− δGβ,R(uµR,β ;µ), v

〉
6 C|µ− ν|.

Therefore, if |µ− ν| is sufficiently small, the inverse function theorem yields

the existence of uµνR,β satisfying

δGβ,R(uµνR,β ; ν) = 0 and ‖DuµνR,β −Du
µ
R,β‖`2Υ 6 C|µ− ν|. (6.8.50)

In particular, uµνR,β solves (GCEβ,Rν ). By (6.8.48), if |ν − µ| is sufficiently small,

we necessarily have uµνR,β ∈ Bτβ (uR; ‖D · ‖`2Υ) and thus, by uniqueness of the

solution uνR,β to (GCEβ,Rν ) on Bτβ (uR; ‖D·‖`2Υ), we have uµνR,β = uνR,β . Therefore,

for all µ, ν ∈ I with |µ− ν| sufficiently small, ‖DuνR,β −Du
µ
R,β‖`2Υ 6 C|µ− ν|

and thus, by Lemma 6.11, dist
(
σ(HR(uµR,β)), σ(HR(uνR,β))

)
6 C|µ − ν|. In

particular, µ 7→ εβ,RF (uµR,β) is continuous on I.

Proof of Proposition 6.6. Suppose that uβj is a bounded sequence (with βj →

∞) of solutions to (CE
βj ,R
Ne,R

). As before, along a subsequence, there exists a

weak limit uβj ⇀ u as j →∞. By applying Lemma 6.11 and noting that weak

convergence on a finite domain implies strong convergence, we can conclude
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that

|λs(uβj )− λs(u)| → 0

as j →∞ for each s = 1, . . . , NR. Therefore ε
βj ,R
F (uβj )→ ε∞,RF (u) as j →∞.

Since we have assumed that ε
βj ,R
F (uβj ) is uniformly bounded away from

σ(HR(uβj )), we can apply Remark 6.7 to conclude µ := ε∞,RF (u) 6∈ σ(HR(u)).

Since uβj solves (CE
βj ,R
Ne,R

),

∣∣∣∣∣∂Gβj ,R(uβj ;µ)

∂uβj (`)

∣∣∣∣∣ =

∣∣∣∣∣∣∂G
βj ,R(uβj ;µ)

∂uβj (`)
−
∂Gβj ,R(uβj ; τ)

∂uβj (`)

∣∣∣∣∣
τ=ε

βj,R

F (uβj )

∣∣∣∣∣∣
6 C

∣∣εβj ,RF (uβj )− µ
∣∣→ 0 as j →∞.

(6.8.51)

On the other hand, as in the proof of Proposition 6.4 (see, (6.8.40)−(6.8.42)),

we have

∂Gβj ,R(uβj ;µ)

∂uβj (`)
→ ∂G∞,R(u;µ)

∂u(`)
as j →∞. (6.8.52)

Therefore, by combining (6.8.52) and (6.8.51), we can conclude that u is a

critical point of G∞,R( · ;µ).

6.8.3 Thermodynamic Limit

The results of [26] are analogous to Theorem 6.9 and Proposition 6.10 but

in the case of finite Fermi-temperature. Moreover, the authors of [26] only

consider the case of a Bravais lattice Λref = BZd. In this section, we prove

that these results can be extended to the case of zero Fermi-temperature for

insulators in the more general case where Λref need not be a Bravais lattice.

In principle, one may prove these thermodynamic limit results by using

Theorem 6.3 and Proposition 6.4 to compare the zero Fermi-temperature

problems with the analogous finite temperature problems and showing that

the convergence rates in [26] are independent of Fermi-temperature. However,

we opt for a more direct approach here because the case Λref 6= BZd was not

considered in [26] and thus a rigorous treatment would be lengthy.
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Proof of Theorem 6.7: R→∞ in the Grand Canonical Ensemble

Throughout this proof β ∈ (0,∞] will be fixed and therefore we omit the

index corresponding to Fermi-temperature on the grand potential and the site

energies. Again, we will use the notation of Lemma 6.18 for the truncation

operator TR : Ẇ 1,2(Λ)→ Ẇ c(Λ).

Step 1: Quasi-best approximation. For some r > 0 sufficiently small, we

have x + B2r(u) ⊆ Adm(Λ). We may choose R sufficiently large such that

TRu ∈ Br(u) and so x+Br(TRu) ⊆ Adm(Λ). We know that G ∈ C3(Adm(Λ))

and so δG and δ2G are Lipschitz continuous on Adm(Λ)∩Br(u). In particular,

‖δG(u)− δG(TRu)‖ 6 C‖Du−DTRu‖`2Υ 6 C‖Du‖`2Υ(Λ\BR/2), and

‖δ2G(u)− δ2G(TRu)‖ 6 C‖Du−DTRu‖`2Υ 6 C‖Du‖`2Υ(Λ\BR/2). (6.8.53)

Step 2: Consistency. We fix v : ΛR → Rd satisfying (L). Since v is periodic

and not necessarily an admissible displacement on Λ, we consider the compactly

supported displacement TR?v for some R? < R and extend by zero to Λ.

Rewriting
〈
δGR(TRu), v

〉
, we have

〈
δGR(TRu), v

〉
=
〈
δGR(TRu), (I − TR?)v

〉
+
〈
δGR(TRu)− δG(TRu), TR?v

〉
+ 〈δG(TRu)− δG(u), TR?v〉 (6.8.54)

We consider each of these contributions in turn.

Replacing TRu with TR̃u for some R̃ < R? < R in the first term of (6.8.54)

gives an approximation error of C‖Du‖`2Υ(Λ∩BR\BR̃/2). Since (I − TR?)v = 0

on Λ ∩ BR? and TR̃u = 0 on Λ \ BR̃, we can bound
〈
δGR(TR̃u), (I − TR?)v

〉
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as follows:

|
〈
δGR(TRu), (I − TR?)v

〉
|

6 |
〈
δGR(TR̃u), (I − TR?)v

〉
|+ |

〈
δGR(TRu)− δGR(TR̃u), (I − TR?)v

〉
|

6 CR̃d/2e−η(R?−R̃)‖Dv‖`2Υ(Λ\BR?/2) + C‖Du‖`2Υ(Λ∩BR\BR̃/2)‖Dv‖`2Υ(Λ\BR?/2)

(6.8.55)

where η := 1
2mmin{γCT,

1
2γ0}. The first term in (6.8.55) is bounded by compar-

ing the first derivative of the grand potential with the corresponding reference

grand potential and taking the derivatives inside the contour integration in an

argument that is exactly the same as in (6.8.28). Bounding the second term

in (6.8.55) is done by applying Taylor’s theorem and using the locality of the

second derivatives of the site energies (for an identical argument see (6.8.27)).

Next, we consider the second term of (6.8.54). We simply apply the

convergence of the site energies as R→∞ (Lemma 6.17), together with the

locality of the site energies (Theorem 3.1) and the fact that TR?v has compact

support in BR? to conclude:

〈
δGR(TRu)− δG(TRu), TR?v

〉
=
∑
`∈ΛR

∑
ρ∈ΛR−`

(
GR`,ρ(DTRu(`))− G`,ρ(DTRu(`))

)
·DρTR?v(`)

−
∑

`∈Λ,ρ∈Λ−`
6̀∈ΛR or `+ρ 6∈ΛR

G`,ρ(DTRu(`)) ·DρTR?v(`)

6 C
∑
`∈ΛR

∑
ρ∈ΛR−`

e−η(dist(`,ΩcR)+|ρ|)|DρTR?v(`)|

+ C
∑

`∈Λ,ρ∈Λ−`
` 6∈ΛR or `+ρ 6∈ΛR

e−γCT|ρ||DρTR?v(`)|

6 C(R?)d/2e−
1
2
η(R−R?)‖DTR?v‖`2Υ (6.8.56)

where η := 1
2mmin{γCT,

1
2γ0}. In the final line, we have used the fact that

TR?v has compact support in BR? . More specifically, in the first term, we have

used the fact that, if ` ∈ BR? or `+ ρ ∈ BR? , then dist(`,Ωc
R) + |ρ| > R−R?.
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Moreover, in the second term, we have that, if ` 6∈ ΛR then we must sum over

`+ ρ ∈ BR? and so |ρ| > R−R? (and vice versa).

Finally, we consider the third contribution from (6.8.54): by (6.8.53), we

have

|〈δG(TRu)− δG(u), TR?v〉| 6 C‖Du‖`2Υ(Λ\BR/2)‖DTR?v‖`2Υ . (6.8.57)

Combining (6.8.54)−(6.8.57) we obtain the following consistency estimate:

∣∣〈δGR(TRu), v
〉∣∣

6 C
(
R̃d/2e−η(R?−R̃) + ‖Du‖`2Υ(Λ\BR̃/2) + (R?)d/2e−

1
2
η(R−R?)

)
‖Dv‖`2Υ

(6.8.58)

where η := 1
2mmin{γCT,

1
2γ0}. Here, we can see that if ‖Du‖`2Υ(Λ\BR) . R−d/2

(which would follow if (6.6.4) holds), then we obtain a convergence rate as

discussed in Remark 6.4.

Step 3: Stability. We now show the following stability estimate: there exists

c1 > 0 such that

〈
δ2GR(TRu)v, v

〉
> c1‖Dv‖2`2Υ (6.8.59)

for all sufficiently large R.

We first take a sequence vR of test functions with ‖DvR‖`2Υ = 1 and note

that wR := TRvR ∈ Ẇ 1,2(Λ) and ‖DwR‖`2Υ 6 C‖DvR‖`2Υ(Λ∩BR) 6 C where

C is independent of R. Therefore, along a subsequence (which we do not

relabel) we have wR ⇀ v in Ẇ 1,2(Λ) as R → ∞ for some v ∈ Ẇ 1,2(Λ).

By [47, Lemma 7.8], we may choose a sequence of radii S(R) with S(R)→∞
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as R→∞ “sufficiently slowly” such that

TS(R)wR → v strongly in Ẇ 1,2(Λ), (6.8.60)

TS(R)wR − wR ⇀ 0 weakly in Ẇ 1,2(Λ) and (6.8.61)

R− S(R)→∞ as R→∞. (6.8.62)

We let vco
R := TS(R)wR and vff

R := vR − vco
R and expand

〈
δ2GR(TRu)vR, vR

〉
as

follows:

〈
δ2GR(TRu)vR, vR

〉
=
〈
δ2GR(TRu)vco

R , v
co
R

〉
+ 2
〈
δ2GR(TRu)vco

R , v
ff
R

〉
+
〈
δ2GR(TRu)vff

R, v
ff
R

〉
=: T1 + 2T2 + T3. (6.8.63)

We shall consider each of these terms separately.

Using the fact that vco
R has compact support in BS(R), we obtain:

〈(
δ2GR(TRu)− δ2G(u)

)
vco
R , w

〉
6 C

(
e−

1
2
η(R−S(R)) + ‖Du‖`2Υ(Λ\BR/2)

)
‖Dvco

R ‖`2Υ‖Dw‖`2Υ
(6.8.64)

where η := 1
2mmin{γCT,

1
2γ0}. The proof of this estimate is similar to that of

Step 2 ; see, [96, Appendix I] for the details.

T1: core term. Using the strong stability of the solution u together with

(6.8.64), we may conclude that, for sufficiently large R, we have

T1 =
〈
δ2GR(TRu)vco

R , v
co
R

〉
=
〈
δ2G(u)vco

R , v
co
R

〉
−
〈(
δ2G(u)− δ2GR(TRu)

)
vco
R , v

co
R

〉
>
c0

2
‖Dvco

R ‖2`2Υ .

(6.8.65)

T2: cross term. Now, we show that the cross term in (6.8.63) vanishes in
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the R→∞ limit. Rewriting T2, we have

T2 =
〈
δ2GR(TRu)vco

R , v
ff
R

〉
=
〈(
δ2GR(TRu)− δ2G(u)

)
vco
R , v

ff
R

〉
+
〈
δ2G(u)(vco

R − v), vff
R

〉
+
〈
δ2G(u)v, vff

R

〉
(6.8.66)

By (6.8.64), the first term of (6.8.66) vanishes as R→∞ and, since vco
R → v

strongly in Ẇ 1,2(Λ), the second term in (6.8.66) also vanishes:

〈
δ2G(u)(vco

R − v), vff
R

〉
6 C‖D(vco

R − v)‖`2Υ‖Dv
ff
R‖`2Υ → 0 as R→∞.

Finally, since δ2G(u)v is a bounded linear functional on Ẇ 1,2(Λ), we may apply

the Riesz representation theorem to conclude that there exists Φ ∈ Ẇ 1,2(Λ)

such that

〈
δ2G(u)v, vff

R

〉
=
〈
DΦ, Dvff

R

〉
`2Υ

.

This quantity vanishes as R → ∞ by the weak convergence of vff
R ⇀ 0 as

R→∞ (see (6.8.61)).

T3: far field term. Since vff
R only sees the far field behaviour of the test

function, and not the point defect, we may replace δ2GR(TRu) by δ2GRref giving

an approximation error of C‖DTRu‖`2Υ(ΛR\BS(R)/2). To do this, we extend vff
R

by zero to ΛR ∪ Λref
R and note that,

∣∣∣T3 −
〈
δ2GRrefv

ff
R, v

ff
R

〉∣∣∣ =
∣∣∣〈(δ2GR(TRu)− δ2GRref

)
vff
R, v

ff
R

〉∣∣∣
6 C‖DTRu‖`2Υ(ΛR\BS(R)/2)‖Dvff

R‖2`2Υ .
(6.8.67)

It is now sufficient to prove that there exists c1 > 0 such that

〈
δ2GRrefv

ff
R, v

ff
R

〉
> c1‖Dvff

R‖2`2Υ . (6.8.68)

A proof of this fact for Bravais lattices can be found in [75] which can be adapted
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to the multi-lattice setting. We also give an alternative proof in [96, Appendix I].

Therefore, applying (6.8.67) and (6.8.68) we can conclude that

T3 =
〈
δ2GR(TRu)vff

R, v
ff
R

〉
>
c1

2
‖Dvff

R‖2`2Υ

for all R sufficiently large.

Using the fact that ‖Dvco
R ‖2`2Υ + ‖Dvff

R‖2`2Υ > 1
2‖DvR‖

2
`2Υ

for all sufficiently

large R, which follows from [47, Lemma 7.9], allows us to conclude the proof

of the stability estimate (6.8.59).

Step 4: Application of the Inverse Function Theorem. The consistency

(6.8.58) and stability (6.8.59) estimates allow us to apply the inverse function

theorem [88, Lemma B.1] to conclude: for sufficiently large R, there exists uR

such that

δGR(uR) = 0 and ‖DuR −Du‖`2Υ → 0 as R→∞.

Moreover, there exists a constant c2 > 0 such that

〈
δ2GR(uR)v, v

〉
> c2‖Dv‖2`2Υ .

Proof of Proposition 6.8: R→∞ in the Grand Canonical Ensemble

Since supj ‖DuRj‖`2Υ < ∞, there exists a u ∈ Ẇ 1,2(Λ) such that uRj ⇀ u

along a subsequence as j →∞. Using Lemma 6.14 and the fact µ is uniformly

bounded away from σ(HRj (uRj )), we obtain µ 6∈ σ(H(u)).

We wish to show that δG(u) = 0. Using the notation from (6.8.40) and

noting that uRj solves (GCE
∞,Rj
µ ) we have, for all v ∈ Ẇ 1,2(Λ),

0 =
〈
δGRj (uRj ), v

〉
=
∑
`∈ΛRj

FRj` (uRj ) · v(`). (6.8.69)

It is sufficient to suppose that supp(v) ⊆ BRv for some Rv > 0 and show that
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FRj` (uRj )→ F`(u) as j →∞:

|FRj` (uRj )−F`(u)| 6 |FRj` (uRj )−F
Rj
` (u)|+ |FRj` (u)−F`(u)|. (6.8.70)

The first term of (6.8.70) may be treated in the exact same way as in (6.8.43)

to conclude that |FRj` (uRj )−F
Rj
` (u)| → 0 as j →∞.

For the second term of (6.8.70) we may use the chain rule formula (6.8.44)

to write the forces as sums over site energies. Using the fact that ` ∈ BRv and

Lemma 6.17, we have

∑
ρ∈ΛRj−`

(
GRj`−ρ,ρ(Du(`))− G`,ρ(Du(`))

)
−

∑
ρ∈Λ\ΛRj−`

G`,ρ(Du(`))

6
∑

ρ∈ΛRj−`
e
−η(dist(`,ΩcRj

)+|ρ|) −
∑

ρ∈Λ\ΛRj−`

e−γCT|ρ|

6 Ce−
1
2
η(Rj−Rv).

where η := 1
2mmin{γCT,

1
2γ0}. We can therefore conclude that |FRj` (u) −

F`(u)| → 0 as j →∞. That is, F`(u) = 0 for all ` ∈ Λ ∩BRv .

Proofs of Theorem 6.9 and Proposition 6.10: R→∞ in the Canonical

Ensemble

Proof of Theorem 6.9. We suppose that u is a strongly stable solution to

(GCE∞,∞µ ). By Theorem 6.7, there is a sequence of solutions uR to (GCE∞,Rµ )

with uR → u in Ẇ 1,2(Λ) as R→∞. This strong convergence means that, by

Lemmas 6.11 and 6.14, every isolated eigenvalue of σ(H(u)) is a limit point of

a sequence of eigenvalues contained in σ(HR(uR)) and the accumulation points

of every such sequence are contained in σ(H(u)). Since µ 6∈ σ(H(u)), we can

find adjacent points ν, ν ∈ σ(H(u)) such that ν < µ < ν. Now, choosing the

electron number Ne,R := N∞,R
(
uR; 1

2(ν + ν)
)
, and by applying Lemma 6.2,

we can conclude that ε∞,RF (uR)→ 1
2(ν + ν) as R→∞. Further, the interval

between ε∞,RF (uR) and 1
2(ν + ν) does not intersect σ(H(u)) for all sufficiently

large R. That is, for all sufficiently large R, uR solves (CE∞,RNe,R
).
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Proof of Proposition 6.10. Since ‖DuRj‖`2Υ is uniformly bounded, along a sub-

sequence, uRj ⇀ u as j →∞ for some u ∈ Ẇ 1,2(Λ). Now, because σ(HRj (uRj ))

is uniformly bounded, ε
∞,Rj
F (uRj )→ µ along a further subsequence as j →∞

for some µ ∈ R.

Supposing that σ(HRj (uRj )) is (eventually) bounded away from ε
∞,Rj
F (uRj ),

we know that µ is eventually bounded away from σ(HRj (uRj )). This means that,

for all j sufficiently large, uRj solves (GCE∞,Rν ) for all ν in a neighbourhood

of µ. Therefore, by Proposition 6.8, u is a critical point of G( · ;µ).

We remark here that the boundedness of the sequence (Ne,Rj −Nb · |ΛRj |)j

is a necessary condition for the limit µ to be contained in the band gap. We

do not state this as an assumption in Proposition 6.10 because we require the

stronger condition that µ is (eventually) bounded away from σ(HRj (uRj )).
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APPENDIX A

Notation and Assumptions

A.1 Basic Notation

Sets and Functions

• | · | : absolute value on Rn or C or the Frobenius matrix norm on Rn×n,

• N = {1, 2, 3, . . . } : natural numbers,

• N0 := {0} ∪ N : natural numbers including zero,

• R+ := {r ∈ R : r > 0} : positive real numbers,

• |A| = #A : cardinality of A,

• Br(x; ‖ · ‖X) := {y ∈ X : ‖x− y‖X < r} : open ball of radius r about x

in (X, ‖ · ‖X),

• dist(z,A) := infa∈A |z − a| : distance between z and the set A,

• dist(A,B) := max{supa∈A dist(a,B), supb∈B dist(b, A)} : Hausdorff dis-

tance between A and B,

• Bε(A) := {z : dist(z,A) < ε} : open ball of radius ε about A,
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• a+ bC := {a+ bc : c ∈ C},

• [a, b] := {(1− t)a+ tb : t ∈ [0, 1]} : closed interval between a, b ∈ Rn or C,

• convA := {(1− t)a+ tb : a, b ∈ A, t ∈ [0, 1]} : convex hull of A,

• lim infn→∞An := {a : ∃an ∈ An s.t. an → a},

• lim supn→∞An := {a : ∃an ∈ An s.t. an → a along a subsequence},

• limn→∞An : (topological) limit of (An); defined and equal to both

lim infn→∞An and lim supn→∞An in the case that these limits agree,

• χA0 : A → {0, 1} : characteristic function of A0 on A; function with

χA0 = 1 on A0 and χA0 = 0 on A \A0,

• f |A0 : restriction of f to A0,

• supp f : support of f ,

• ‖f‖L∞(A) := supx∈A|f(x)| : sup-norm of f on A,

Contour Integrals

• len C : length of the simple closed positively oriented contour C ,

• ‖O‖C := lenC
2π supz∈C |O(z)|,

•
¸
C : contour integral around C ,

•
´ b
a

:=
´

[a,b] : integral between a and b in C,

Sequences and Operators

• `p(Λ;Rn) : space of sequences ψ for which ‖ψ‖`p :=
(∑

`∈Λ |ψ`|p
)1/p

is

finite,

• `∞(Λ;Rn) : space of bounded sequences with ‖ψ‖`∞ := sup`∈Λ |ψ`|,

• ‖T‖X→Y := supx∈X,‖x‖X=1 ‖Tx‖Y : operator norm of T : X → Y ,

• ‖T‖F : Hilbert-Schmidt norm of T , a bounded linear operator on a

Hilbert space,
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• σ(T ) : spectrum of operator T ,

• σdisc(T ) : discrete spectrum; isolated eigenvalues of finite multiplicity,

• σess(T ) := σ(T ) \ σdisc(T ) : essential spectrum,

• TrT : trace of the operator T ,

• trTij : trace of the (i, j)-block of the block matrix T ; i.e. TrT =
∑

i trTii,

• Idn : n× n identity matrix,

• AT : transpose of matrix A,

• ‖A‖max = maxi,j |Aij | : maximum-norm of an operator,

Other Notation

• δij : Kronecker delta,

• δ( · ) : Dirac delta; distribution with δ(f) =
´
f(x)dδ(x) := f(0),

• C : generic positive constant that may change in calculations from one

line to the next. C will always be independent of important quantities

such as Fermi-temperature and the band gap. The dependencies of C

will normally be clear from context or stated explicitly,

• f . g : f 6 Cg for a generic positive constant as above,

• f ∼ g as x → x0 ∈ R ∪ {±∞} or C ∪ {∞} : there exists an open

neighbourhood U of x0 and positive constants c1, c2 > 0 such that

c1g(x) 6 f(x) 6 c2g(x) for all x ∈ U ,

• supp ν : support of the measure ν; set of all x for which every open

neighbourhood of x has non-zero measure,

• For multiindices θ, we write |θ|1 :=
∑

j θj and |θ|∞ := maxj θj ,

• 〈δG(u), v〉,
〈
δ2G(u)v, w

〉
,
〈
δ3G(u)v, w, z

〉
: first, second, and third vari-

ations of G ∈ C3(X).
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A.2 Atomic configurations

• r = {r`}`∈Λ ⊆ Rd : atomic positions for some finite or countable index

set Λ,

• X` := (r`, v`, Z`) : state of atom ` where v` is the effective potential and

Z` is the atomic species,

• X`k := (r`k, v`, vk, Z`, Zk) : state of atom k relative to the central site `

where r`k := rk − r`. Moreover, we write r`k := |r`k|,

• ∇jh(X`k) : derivatives with respect to relative atomic positions. For

functions h, independent of the effective potential, we write ∇0h(X`k) :=

h(X`k) and

[
∇jh(X`k)

]
i1...ij

:=
∂j
(
ξ 7→ h((ξ, v`, vk, Z`, Zk))

)
∂ξi1 . . . ∂ξij

∣∣∣∣∣
ξ=r`k

for each 1 6 i1, . . . , ij 6 d. We use ∇jt(X`m,Xkm) for derivatives of

the function (ξ, ζ) ∈ R2d 7→ t
(
(ξ, v`, vm, Z`, Zm), (ζ, vk, vm, Zk, Zm)

)
at

(ξ, ζ) = (r`m, rkm). Sometimes it will be useful to use the following:

[∇⊗jt(X`m,Xkm)]α1...αj := ∇α1 . . .∇αj t(X`m,Xkm), and〈
∇⊗jt ; v1, . . . , vj

〉
:=

∑
16α1,...,αj62

[∇⊗jt]α1...αj [v1]α1 . . . [vj ]αj , (A.2.1)

where ∇ := (∇1,∇2)T and ∇ι denotes the derivative with respect to the

ι ∈ {1, 2} component.

• X = {X`}`∈Λ = (r, v, Z) : whole atomic configuration,

• ∂
∂Xn

: derivative with respect to Xn. That is, for functions f with values

in Y , we denote by ∂f(X)
∂Xn

∈ Y 1+d the following derivative

[
∂f(X)

∂Xn

]
l

=


∂f(X)
∂vn

if l = 0,

∂f(X)
∂[rn]l

if 1 6 l 6 d.
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• | · | : Euclidean norm on Rn or C or the Frobenius matrix norm: e.g. for

a function h with values in a normed space (Y, | · |Y ),

∣∣∇jh(X`k)
∣∣ :=

√√√√ d∑
i1,...,ij=1

∣∣∇jh(X`k)i1...ij
∣∣2
Y

(for us Y = RNb×Nb and |A|Y :=
√∑

ab |Aab|2 again denotes a Frobenius

matrix norm).

A.3 Summary of the Assumptions

In this section we summarise the main assumptions of this thesis:

• (AC), p.g. 13 : atomic configurations for which r`k > m and |v`| 6 c,

• (TB), p.g. 14 : tight binding Hamiltonian H(X)`k ∈ RNb×Nb given by

H(X)`k = h(X`k) +
∑

m6∈{`,k}

t(X`m,Xkm) + δ`kv`IdNb
,

• (Pδ), p.g. 16 : a pair (X,Xd) where Xd is a point defect configuration

relative to X,

• (SC), p.g. 83 : self-consistency, ρ` = F β`
(
X(ρ)

)
for all ` ∈ Λ,

• (Stab), p.g. 85 : stability, I −L (ρ) : `2(Λ)→ `2(Λ) is invertible,

• (Gap), p.g. 107 : spectral gap in the homogeneous system,

• (L), p.g. 108 : uniform non-interpeneration condition,

• (RefR), p.g. 109 : supercell model.
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APPENDIX B

Mathematical Formulation of the

Tight Binding Models

B.1 Non-constant Number of Atomic Orbitals Per

Atom

As noted in §2.2, the number of atomic orbitals per atom should be able to

depend on the atomic species. That is, for ` ∈ Λ, the number Nb(`) of atomic

orbitals corresponding to ` may depend on Z`. In particular, the size of the

blocks H(X)`k depend on (Z`, Zk): the entries H(X)`k,ab are well-defined for

orbital indices 1 6 a 6 Nb(`) and 1 6 b 6 Nb(k) (see, (1.2.1)).

We may assume without loss of generality that the spectrum σ
(
H(X)

)
is

bounded below by a positive constant. If not, we may artificially add a constant

multiple of the identity z0Id to the Hamiltonian to shift the spectrum of H(X)

away from {0}. This modification does not affect the local observables (2.4.1)

as long as the integration contour and function arguments are also shifted away

from {0} by z0 (i.e. consider O( · − z0) and integration over CO + z0). We may

therefore assume that CO does not encircle {0}.

Now, by defining Nb := max`∈ΛNb(`), we may extend the definition of the
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Hamiltonian by adding additional zero rows and columns:

H̃(X)`k,ab :=


H(X)`k,ab if 1 6 a 6 Nb(`) and 1 6 b 6 Nb(k)

0 if Nb(`) < a 6 Nb or Nb(k) < b 6 Nb

which possibly introduces 0 as an eigenvalue but does not affect the rest of the

spectrum.

Therefore, the modified Hamiltonian H̃(X) satisfies (TB) and, in addition,

we have

O`(X) = tr
[˛

CO

O(z)
(
z −H(X)

)−1 dz

2πi

]
``

= tr
[˛

CO

O(z)
(
z − H̃(X)

)−1 dz

2πi

]
``
. (B.1.1)

Here, we have used the fact that the integration contour CO does not encircle

{0}. In particular, local observables corresponding to H(X) and H̃(X) are

identical and we may assume that the number of atomic orbitals per atom is

constant.

B.2 Band Structure of a Multi-lattice Reference Con-

figuration

We suppose that Λref is a multilattice reference configuration: consider a finite

unit cell Γ ⊆ Λref satisfying Λref =
⋃
γ∈Zd(Γ + Aγ) and Γ + Aγ are pairwise

disjoint for all γ ∈ Zd where A ∈ Rd×d is an invertible matrix. We consider the

band structure of general self-adjoint operators T : `2(Λref ;Cn)→ `2(Λref ;Cn)

satisfying T`+Aγ,k+Aγ = T`k for all `, k ∈ Γ and γ ∈ Zd.

For ξ ∈ Rd and ψ ∈ `2(Λref ;Cn), we define (Uψ)ξ ∈ `2(Λref ;Cn) by

(Uψ)ξ(`) :=
∑
γ∈Zd

ψ(`+ Aγ)e−i(`+Aγ)·ξ. (B.2.1)

We suppose that Γ? ⊆ Rd is a bounded connected domain containing the
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origin such that Rd is the disjoint union of Γ? + 2πA−Tη for η ∈ Zd. In

particular, for ξ ∈ Rd, there exist unique η ∈ Zd and ξ0 ∈ Γ? such that ξ =

ξ0 + 2πA−Tη and so e−iAγ·ξ = e−iAγ·ξ0e−iAγ·2πA
−Tη = e−iAγ·ξ0 for any γ ∈ Zd.

We therefore restrict ξ to Γ? and define U : `2(Λref ;Cn) → L2
(
Γ?; `2(Γ;Cn)

)
by (B.2.1). This operator is unitary between the Hilbert spaces `2(Λref ;Cn)

and L2
(
Γ?; `2(Γ;Cn)

)
with inner products

〈ψ, φ〉`2(Λref) :=
∑
`∈Λref

ψ(`) · φ(`) =
∑
`∈Λref

n∑
i=1

ψ(`)iφ(`)i and

〈Ψ,Φ〉L2(Γ?;`2) :=

 
Γ?
〈Ψξ,Φξ〉`2(Γ)dξ =

∑
`∈Γ

 
Γ?

Ψξ(`) · Φξ(`)dξ,

respectively. Therefore, we may write

(UTψ)ξ(`) =
∑
γ∈Zd

∑
k∈Λref

T`+Aγ,kψ(k)e−i(`+Aγ)·ξ

=
∑
k∈Γ

∑
η∈Zd

( ∑
γ∈Zd

T`+Aγ,k+Aηe
−i(`−k+A(γ−η)·ξ

)
ψ(k + Aη)e−i(k+Aη)·ξ

=
∑
k∈Γ

( ∑
γ∈Zd

T`+Aγ,ke
−i(`−k+Aγ)·ξ

)
(Uψ)ξ(k) =:

[
Tξ(Uψ)ξ

]
(`)

where Tξ is the operator `2(Γ;Cn) → `2(Γ;Cn) with matrix entries
[
Tξ
]
`k

=∑
γ∈Zd T`+Aγ,ke

−i(`−k+Aγ)·ξ.

Therefore, since U is unitary, we have

σ(T ) =
⋃
ξ∈Γ?

σ(Tξ).

Moreover, the eigenvalues of Tξ may be chosen to be continuous functions of

ξ ∈ Γ? [62].

B.3 Exponential Sums

Throughout this thesis, we frequently apply the following estimate:

Lemma B.1. Suppose X is a configuration satisfying (AC) with the constant
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m. Then, for γ > η > 0, we have

∑
m∈Λ

e−γ r`me−η rmk 6
Cd

(mγ)d
e−

1
2
η r`k

where Cd is a constant depending only on d.

Proof. Since γr`m + ηrmk > ηr`k and γr`m + ηrmk > γr`m, we obtain

∑
m∈Λ

e−γ r`me−η rmk 6

(∑
m∈Λ

e−
1
2
γ r`m

)
e−

1
2
η r`k . (B.3.1)

To conclude, we approximate the summation in (B.3.1) with an integral.

To do so, we note that e−γ r`m 6 e−γ|r−r`| for all r ∈ Br`m(r`), the sets

Br`m(r`)∩Bm/2(rm) are pairwise disjoint for m 6= `, and, after denoting the d-

dimensional Lebesgue measure by Ld, we have Ld
(
Br`m(r`)∩Bm/2(rm)

)
> cdm

d

where cd = Ld
(
B1(0) ∩B1/2(r)

)
for |r| = 1. For a schematic plot summarising

these properties, see Fig. B.1.

We therefore obtain

∑
m6=`

e−γ r`m 6
∑
m 6=`

 
Br`m (r`)∩Bm/2(rm)

e−γ|r−r`|dr 6
1

cdmd

ˆ
Rd
e−γ|r|dr

=
Ld(B1)

cdmd

ˆ ∞
0

e−γrrd−1dr =
Ld(B1)

cdmd

(d− 1)!

γd

where the final equality can be shown by induction.
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`

m5

m4

m3

m1

m2

m

Figure B.1: Schematic plot to demonstrate the proof of Lemma B.1. Dotted
circles represent the pairwise disjoint sets Bm/2(rm). Dashed arcs lie on
∂Br`m(r`). For r in the shaded region nearest mj (i.e. r ∈ Bm/2(rmj ) ∩
Br`mj (r`)), we have e

−γ r`mj 6 e−γ|r−r`|. Moreover, the volume of each shaded

region is bounded below by cdm
d = Ld

(
Bm/2(rm1)∩Br`m1

(r`)
)

since r`m1 = m.
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APPENDIX C

Body-ordered Approximations
of the Potential Energy Landscape

C.1 Truncation of the Atomic Environment

We have seen that analytic quantities of interest may be approximated by

body-order approximations. However, each polynomial depends on the whole

atomic configuration X. In this section, we consider the truncation of the

approximation schemes to a neighbourhood of the central site ` and prove the

exponential convergence of the corresponding sparse representation.

C.1.1 Banded Approximation

One intuitive approach is to restrict the interaction range globally and consider

the following banded approximation:

[H̃rc ]km :=


h(Xkm) +

∑
m′ 6∈{k,m} :

rkm′ ,rmm′6rc

t(Xkm′ ,Xmm′) + δkmvkIdNb
if rkm 6 rc

0 otherwise.

(C.1.1)
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Therefore, approximating O`(X) with a function depending on the first N

moments [(H̃rc)n]`` (e.g. applying Theorem 4.3 or 4.4 to H̃rc) results in an

approximation scheme depending only on finitely many atomic sites in a

neighbourhood of `. This can be seen from the fact that

[(H̃rc)n]`` =
∑

`1,...,`n−1

r``1 ,r`1`2 ,...,r`n−1`
6rc

H``1H`1`2 . . .H`n−1`. (C.1.2)

Moreover, we obtain appropriate error estimates by combining Theorem 4.3 or

4.4 with the following estimate:

Proposition C.1. Suppose X satisfies Definition 2.2. Fix 0 < β 6 ∞ and

suppose that, if β =∞, then g > 0. Then, we have

∣∣∣O`(X)− trO
(
H̃rc(X)

)
``

∣∣∣ . e−
1
2
γ0rc .

Suppose γN (rc) and γdef
N (rc) are the rates of approximation from Theorems 4.3

and 4.4 when applied to H̃rc. Then γN (rc) → γN and γdef
N (rc) → γdef

N as

rc →∞, with an exponential rate.

Proof. We first note that

[
H(X)− H̃rc(X)

]
km

=


H(X)km if rkm > rc∑

m′ :
rkm′>rc or rmm′>rc

t(Xkm′ ,Xmm′) if rkm 6 rc.

(C.1.3)

Therefore, applying (TB), we obtain

∣∣[H(X)− H̃rc(X)]km
∣∣ . e−

1
2
γ0rc

∑
m′

e−
1
2
γ0(rkm′+rmm′ ) . e−

1
2
γ0rce−

1
4
γ0 rkm .

(C.1.4)

To conclude we choose a suitable contour C and apply the Combes-Thomas
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estimate (Lemma 3.3) together with (C.1.4):

∣∣∣O`(X)− trO
(
H̃rc(X)

)
``

∣∣∣
6

∣∣∣∣∣ tr

2π

˛
C
O(z)

[
(H(X)− z)−1

(
H(X)− H̃rc(X)

)
(H̃rc(X)− z)−1

]
``

dz

∣∣∣∣∣
. ‖O‖C e−

1
2
γ0rc

∑
km

e−γCT(r`k+rm`)e−
1
4
γ0rkm . e−

1
2
γ0rc (C.1.5)

As a consequence of (C.1.4), we have ‖H(X) − H̃rc(X)‖`2→`2 . e−
1
2
γ0rc

and so dist
(
σ(H), σ(H̃rc)

)
. e−

1
2
γ0rc [76]. This means that for sufficiently large

rc, we obtain the same rates of approximation when applying Theorems 4.3

and 4.4 to H̃rc .

C.1.2 Truncation

One downside of the banded approximation is that the truncation radius

depends on the maximal polynomial degree (e.g. see (C.1.2)). In this section,

we consider truncation schemes that only depend on finitely many atomic sites

independent of the polynomial degree:

H̃rc := H
∣∣
`;Λ∩Brc (`)

(C.1.6)

where the restriction of the Hamiltonian has been introduced in (4.5.1).

On defining the quantities

IN Õ`(X) := tr
[
INO

(
H̃rc

)]
``
, (C.1.7)

where the operators IN are given by Theorem 4.2, we obtain a sparse repres-

entation of the N -body approximation depending only on finitely many atomic

sites, independently of the maximal body-order N .

Proposition C.2. Suppose X satisfies Definition 2.2. Fix 0 < β 6 ∞ and

suppose that, if β =∞, then g > 0. Then,

∣∣INOβ` (X)− IN Õβ` (X)
∣∣ . e−

1
4

min{γCT,γ0}rc
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where Oβ = F β or Gβ and γCT is the constant from Lemma 3.3.

Proof. Applying the Hermite integral formula (4.8.1) directly, we conclude

that INO
β(z) is bounded uniformly in N along a suitably chosen contour

C := {gE = γ} (examples of such contours are given in Figure 4.4). It is

important to note that the contour C must be chosen to encircle both σ(H)

and σ(H̃rc). In the following, we let γCT be the Combes-Thomas exponent

from Lemma 3.3 corresponding to H.

Similarly to (C.1.5), we obtain

∣∣∣INOβ` (X)− IN Õβ` (X)
∣∣∣

. ‖INO‖C
∑
km

e−γCTr`k
∣∣[H(X)− H̃rc(X)

]
km

∣∣
.

∑
k,m :

r`k>rc or r`m>rc

e−γCTr`ke−
1
2
γ0rkm +

∑
k,m :

r`k,r`m<rc

e−γCTr`k
∑
m′ :

r`m′>rc

e−γ0(rkm′+rmm′ )

. e−
1
2

min{γCT,
1
2
γ0}rc . (C.1.8)

This concludes the proof.

C.1.3 Divide-and-conquer Methods

The truncation scheme considered in §C.1.2 is closely related to the divide-

and-conquer method for solving the electronic structure problem [132]. In

this context the system is split into many subsystems that are only related

through a global choice of Fermi level. In our notation, this method consists of

constructing NDAC smaller Hamiltonians H̃rc,`j centred on the atoms `j (for

j = 1, . . . , NDAC) and approximating the quantities O`(X) for ` in a small

neighbourhood of `j by calculating trO
(
H̃rc,`j

)
``

. That is, the eigenvalue

problem for the whole system is approximated by solving NDAC smaller eigen-

value problems in parallel. In particular, this method leads to linear scaling

algorithms [57]. Theorem C.2 then ensures that the error in this approxima-

tion decays exponentially with the distance between ` and the exterior of the

subsystem centred on `j .
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A similar error analysis in the context of divide-and-conquer methods in

Kohn-Sham density functional theory can be found in [30].

C.1.4 General truncation operators

It should be clear from the proof of Proposition C.2 that more general truncation

operators may be used. Indeed, Proposition C.2 is satisfied for all truncation

operators H̃rc = H̃rc(X) satisfying the following conditions:

(T1) For every polynomial p, the quantity p
(
H̃rc

)
``

depends on at most finitely

many atomic sites depending on rc but not p,

(T2) For all k,m ∈ Λ, we have [H̃rc ]km → Hkm as rc →∞,

(T3) There exists c0 > 0 such that for all γ, rc > 0,

∑
km

e−γr`k
∣∣∣[H− H̃rc]km∣∣∣ 6 Ce−c0 min{γ0,γ} rc

for some C > 0 depending on γ but not on rc.

Due to the exponential weighting of the summation, (T3) states that H̃rc

captures the behaviour of the Hamiltonian in a small neighbourhood of the

site `. Moreover, when making the approximation INO
(
H
)
``
≈ INO

(
H̃rc

)
``

,

the number of atomic sites involved is finite by (T1).

C.1.5 Non-linear schemes

One may be tempted to approximate the Hamiltonian with the truncation,

H̃rc , and then apply the nonlinear scheme of Theorem 4.4. In doing so, we

obtain the following error estimates:

∣∣∣O`(X)−Θ
(
[H̃rc ]``, . . . , [(H̃rc)N ]``

)∣∣∣
6
∣∣∣O(H)`` −O

(
H̃rc

)
``

∣∣∣+
∣∣∣O(H̃rc)`` −Θ

(
[H̃rc ]``, . . . , [(H̃rc)N ]``

)∣∣∣
. e−

1
4

min{γ0,γCT}rc + e−γ̃N (rc)N . (C.1.9)
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A problem with this analysis is that the constant γ̃N (rc) in (C.1.9) arises by

applying Theorem 4.4 to H̃rc rather than the original system H. In particular,

this means that γ̃N (rc) depends on the spectral properties of H̃rc rather than

H. Since spectral pollution is known to occur when applying naive truncation

schemes [84], the choice of H̃rc is important for the analysis. In particular, it

is not clear that γ̃N (rc)→ γN in general. This is in contrast the the result of

Proposition C.1.

C.2 Derivatives in the Nonlinear Scheme

As mentioned in Remark 4.8, the results of this section depend on the “regu-

larity” properties of D`:

Definition C.1 (Regular nth-root Asymptotic Behaviour). For a unit measure

ν with compact support E := supp ν ⊆ R, we say ν is regular and write ν ∈ Reg

if the corresponding sequence of orthonormal polynomials {pn( · ; ν)} satisfy

lim
n→∞

|pn(z; ν)|
1
n = egE(z)

locally uniformly on C \ conv(E).

Remark C.2. The regularity condition says that the nth-root asymptotic be-

haviour of |pn(z; ν)| is minimal: in general, we have [113, Theorem 1.1.4]

egE(z) 6 lim inf
n→∞

|pn(z; ν)|
1
n 6 lim sup

n→∞
|pn(z; ν)|

1
n 6 egν(z)

where gν > gE is the minimal carrier Green’s function of ν [113].

Under the regularity condition of Definition C.1, we obtain results analogous

to (4.3.6):

Theorem C.3. Suppose that X satisfies Definition 2.2 and ` ∈ Λ is such that

D` ∈ Reg. Then, with the notation of Theorem 4.4, we in addition have

∣∣∣∣ ∂

∂Xm

(
Oβ` (X)−Θ

(
H``, [H2]``, . . . , [HN ]``

))∣∣∣∣ . e−
1
2
γNNe−η r`m .
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More generally, if the regularity assumption is not satisfied, it may still be

the case that Theorem C.3 holds but with reduced locality exponent η. To

formulate this result, we require the notion of minimal carrier capacity :

Definition C.3 (Minimal carrier capacity). For arbitrary Borel sets C, the

capacity of C is defined as

cap(C) := sup{cap(K) : K ⊆ C, compact},

where cap(K) is defined as in §4.8.1.

For a unit measure ν with compact support E := supp ν ⊆ R, the set of

carriers of ν and the minimal carrier capacity are defined as

Γ(ν) := {C ⊆ C : C Borel and ν(C \ C) = 0}, and (C.2.1)

cν := inf{cap(C) : C ∈ Γ(ν), C bounded} 6 cap(E), (C.2.2)

respectively.

Under these definitions, we have the following [113, p. 8-10]:

Remark C.4. For a unit measure ν with compact support E := supp ν ⊆ R,

we have

(i) The set of minimal carriers Γ0(ν) := {C ∈ Γ(ν) : cap(C) = cν , C ⊆ E}

is nonempty,

(ii) If cν > 0, then there exists a minimial carrier equilibrium distribution

ων , a (uniquely defined) unit measure with suppων ⊆ E satisfying

gν(z) = −
ˆ

log
1

|z − t|
dων(t)− log cν ,

(iii) gν ≡ gE if and only if cν = cap(E),

(iv) In particular, if cν = cap(E), then ν ∈ Reg (although the converse is

false [113, Example 1.5.4]),

(v) Suppose cν > 0. Then, on defining νn to be the discrete unit measure
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giving equal weight to each of the zeros of pn( · ; ν), the condition that

νn ⇀
? ωE ,

where ωE is the equilibrium distribution for E, is equivalent to ν ∈ Reg [113,

Thm. 3.1.4]. In particular, this justifies (4.8.8).

We therefore arrive at the corresponding result for ` ∈ Λ for which the

corresponding LDOS has positive minimal carrier capacity:

Proposition C.4. Suppose that X satisfies Definition 2.2 and ` ∈ Λ such

that cD` > 0. Then, with the notation of Theorem 4.4, we in addition have

∣∣∣∣ ∂

∂Xm

(
Oβ` (X)−Θ

(
H``, [H2]``, . . . , [HN ]``

))∣∣∣∣ . e−
1
2
γNNe−η` r`m

where η` > 0,

η` → η as cD` → cap(suppD`),

and η > 0 is the constant from Theorem C.3.

The proofs of Theorem C.3 and Proposition C.4 follow from the following

estimates on the derivatives of the recursion coefficients {an, bn}, and the

locality of the tridiagonal operators TN , together with the asymptotic upper

bounds (i.e. Definition C.1 or Remark C.2).

Lemma C.5. Suppose X satisfies Definition 2.2. Then, for a simple closed

positively oriented contour C ′ encircling the spectrum σ
(
H(X)

)
, there exists

η = η(C ′) > 0 such that

∣∣∣∣ ∂bn∂Xm

∣∣∣∣ 6 C‖pn‖2L∞(C ′)e
−η r`m and∣∣∣∣ ∂an∂Xm

∣∣∣∣ 6 C

n∑
l=0

‖pl‖2L∞(C ′)e
−η r`m

where η ∼ d as d→ 0 where d := dist
(
C ′, σ

(
H(X)

))
.

In the following, we denote by T∞ the infinite symmetric matrix on N0

with diagonal (an)n∈N0 and off-diagonal (bn)n∈N.
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Lemma C.6. Fix N ∈ N ∪ {∞}. Suppose that z ∈ C such that dN :=

dist
(
z, σ(TN )

)
> 0. Then, for each i, j ∈ N0, we have

∣∣∣(TN − z)−1
ij

∣∣∣ 6 Ce−γ|i−j|,N |i−j|.

(i) For each r ∈ N, we have γr,N ∼ dN as dN → 0.

(ii) We have limr→∞ γr,∞ = limN→∞ γN,N = gσ(T∞)(z) where gσ(T∞) is the

Green’s function for the set σ(T∞) as defined in (4.8.8).

Remark C.5. The fact that gσ(T∞) does not depend on the discrete eigenvalues

of T∞ means that asymptotically the locality estimates do not depend on defect

states in the band gap arising due to perturbations satisfying Proposition 2.3, for

example. Indeed, this has been shown in Lemma 3.4. We show an alternative

proof using logarithmic potential theory.

We will assume Lemmas C.5 and C.6 for now and return to their proofs

below.

We first add on a constant multiple of the identity, cI, to the operators

{TN} so that the spectra are contained in an interval bounded away from

{0}. Moreover, we translate the integrand by the same constant: Õ(z) :=

O(z − c). Then, we extend TN to an operator on `2(N0) by defining [TNψ]i =∑N
j=0[TN ]ijψj for 0 6 i 6 N and [TNψ]i = 0 otherwise. We therefore choose a

simple closed contour (or system of contours) C encircling
⋃
N σ(TN ) so that

∂
[
O`(X)−O(TN )00

]
∂Xm

=
1

2πi

˛
C
Õ(z)

∂

∂Xm

[
(T∞ − z)−1

0,N+1bN+1(TN − z)−1
N0

]
dz

=
1

2πi

˛
C
Õ(z)

[[
(T∞ − z)−1 ∂T∞

∂Xm
(T∞ − z)−1

]
0,N+1

bN+1(TN − z)−1
N0

+ (T∞ − z)−1
0,N+1

∂bN+1

∂Xm
(TN − z)−1

N0

+ (T∞ − z)−1
0,N+1bN+1

[
(TN − z)−1 ∂TN

∂Xm
(TN − z)−1

]
N0

]
dz. (C.2.3)
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Therefore, applying Lemma C.5, a simple calculation reveals

∣∣∣∣∂
[
O`(X)−O(TN )00

]
∂Xm

∣∣∣∣
6 C

∞∑
n=0

[∣∣∣ ∂an
∂Xm

∣∣∣+
∣∣∣ ∂bn
∂Xm

∣∣∣]e−min{γn,N ,γn,∞}ne−min{γN,N ,γN+1,∞}N

6 C

[ ∞∑
n=0

n∑
l=0

‖pl‖2L∞(C ′)e
−min{γn,N ,γn,∞}n

]
e−min{γN,N ,γN+1,∞}Ne−η r`m

(C.2.4)

where γr,N = γr,N (C ) is the constant from Lemma C.6. We therefore may

conclude by choosing C ′ := {gE = γ} if D` ∈ Reg and C ′ := {gD` = γ}

otherwise for some constant γ > 0 sufficiently small such that the summation

in the square brackets converges.

Proof of Lemma C.5. The proof follows from the following identities:

∂(b2n)

∂Xm
=

˛
C
b2npn(z)2

[
(H− z)−1∂H(X)

∂Xm
(H− z)−1

]
``

dz

2πi
and (C.2.5)

∂an
∂Xm

=

˛
C

(
(z − an)pn(z)2 +

n−1∑
k=0

(−1)n−k(2z − 3ak)pk(z)
2
)

·
[
(H− z)−1∂H(X)

∂Xm
(H− z)−1

]
``

dz

2πi
. (C.2.6)

To do this, it will be convenient to renormalise the orthogonal polynomials

as in Remark 4.9 (that is, we consider Pn(x) := bnpn(x)). Moreover, we define

b−1 := 1. Using the shorthand ∂ := ∂
∂Xm

, we therefore obtain: ∂b−1 = ∂b0 = 0,

∂P−1(x) = ∂P0(x) = 0, and

∂Pn+1(x)

=
x− an
bn

∂Pn(x)− bn
bn−1

∂Pn−1(x)− ∂
(an
bn

)
Pn(x)− ∂

( bn
bn−1

)
Pn−1(x),

(C.2.7)

for all n > 0.

By noting ∂P1(x) = −∂a0 and applying (C.2.7), we can see that ∂Pn is a

polynomial of degree n− 1 for all n > 0. Therefore, since Pn is orthogonal to
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all polynomials of degree n− 1, we have

∂(b2n) = 2

ˆ
Pn(x)∂Pn(x)dD` +

˛
C
Pn(z)2

[
(H− z)−1 ∂H

∂Xm
(H− z)−1

]
``

dz

2πi

=

˛
C
Pn(z)2

[
(H− z)−1 ∂H

∂Xm
(H− z)−1

]
``

dz

2πi

which concludes the proof of (C.2.6).

To prove a similar formula for the derivatives of an, we first state a useful

identity which will be proved after the conclusion of the proof of (C.2.6):

x∂Pn(x) =
n∑
k=0

cnkPk(x), where cnn =
n−1∑
k=0

(
ak
∂bk
bk
− ∂ak

)
. (C.2.8)

Therefore, we have

∂an =
1

b2n

˛
C
zPn(z)2

[
(H− z)−1 ∂H

∂Xm
(H− z)−1

]
``

dz

2πi

+
2

b2n

ˆ
xPn(x)∂Pn(x)dD`(x)− an

∂(b2n)

b2n

=
1

b2n

˛
C

(z − an)Pn(z)2
[
(H− z)−1 ∂H

∂Xm
(H− z)−1

]
``

dz

2πi

+
n−1∑
k=0

(
ak
∂(b2k)

b2k
− 2∂ak

)
. (C.2.9)

Applying (C.2.8) for k 6 n− 1, we can see that ∂an can be written as

∂an =

˛
C

(
(z − an)pn(z)2 +

n−1∑
k=0

(d1,kz + d0,k)pk(z)
2
)

·
[
(H− z)−1 ∂H

∂Xm
(H− z)−1

]
``

dz

2πi
.

for some coefficients d1,k, d0,k. Using (C.2.8) and assuming the result for

k 6 n− 1, we have

d1,kz + d0,k = ak − 2(z − ak)− 2
n−1∑
l=k+1

(−1)l−k(2z − 3ak)

= −2z + 3ak − (−1)k
(
(−1)k+1 + (−1)n−1

)
(2z − 3ak)

= (−1)n−k(2z − 3ak).
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for all k 6 n− 1.

Proof of (C.2.8). We have

x∂Pn(x) =
x

bn−1
x∂Pn−1(x)− ∂

(an−1

bn−1

)
xPn−1(x) + l.o.t. (C.2.10)

=
1

bn−1
cn−1,n−1xPn−1(x)− ∂

(an−1

bn−1

)
bn−1Pn(x) + l.o.t. (C.2.11)

= cn−1,n−1Pn(x)− ∂
(an−1

bn−1

)
bn−1Pn(x) + l.o.t. (C.2.12)

where l.o.t. (“lower order term”) denotes a polynomial of degree strictly less

than n that changes from one line to the next. That is, since c11 = −∂a0 =

∂
(
a0
b0

)
b0, we apply an inductive argument to conclude

cnn = cn−1,n−1 − ∂
(an−1

bn−1

)
bn−1 = −

n−1∑
k=0

∂
(ak
bk

)
bk

=
n−1∑
k=0

(
ak
∂bk
bk
− ∂ak

)
=

n−1∑
k=0

(ak
2

∂(b2k)

b2k
− ∂ak

)
.

Proof of Lemma C.6. The first statement is the Combes-Thomas resolvent

estimate (Lemma 3.3) for tridiagonal operators (which, in particular, satisfy

the off-diagonal decay assumptions of Lemma 3.3).

To obtain the asymptotic estimates of (ii), we apply a different approach

based on the banded structure of the operators. Since TN is tri-diagonal,

[(TN )n]ij = 0 if |i− j| > n. Therefore, for any polynomial P of degree at most

|i− j| − 1, we have [12]

|(TN − z)−1
ij | =

∣∣∣[(TN − z)−1 − P (TN )
]
ij

∣∣∣ 6 ∥∥∥ 1

· − z
− P

∥∥∥
L∞(σ(TN ))

. (C.2.13)

We may apply the results of logarithmic potential theory (see (4.8.13)), to

conclude. Here, it is important that |σ(T∞) \ σ(TN )| remains bounded inde-

pendently of N so that, asymptotically, (C.2.13) has exponential decay with

exponent gσ(T∞).
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The proof that |σ(T∞) \ σ(TN )| is uniformly bounded can easily be shown

when considering the sequence of orthogonal polynomials generated by T∞. A

full proof is given in parts (ii) and (iv) of Lemma C.7.

C.3 Quadrature Method

The quadrature method as outlined in this section was introduced in [93] to

approximate the LDOS. For a comparison of various nonlinear approximation

schemes, see [68] and [56]. The former is a practical comparison of quadrature

and BOP methods, while the later also discusses the maximum entropy method

[90].

We now give an alternative proof of Theorem 4.4 by introducing the

quadrature method [93].

Recall that D` is the local density of states (LDOS) satisfying (4.2.1) and

{pn} is the corresponding sequence of orthogonal polynomials generated via

the recursion method:

[pn(H)pm(H)]`` =

ˆ
pn(x)pm(x)dD`(x) = δnm.

We use the set of zeros of pN+1, denoted by XN = {ε0, . . . , εN}, as the

basis for the following quadrature rule:

O(H)`` =

ˆ
O(x)dD`(x) ≈

ˆ
IXNO(x)dD`(x) =

N∑
j=0

wjO(εj), where

wj =

ˆ
`j(x)dD`(x) = `j(H)``, and `j(x) =

∏
i 6=j

x− εi
εj − εi

.

Here, `j is the polynomial of degree N with `j(εi) = δij .

The following lemma highlights the fundamental properties of Gauss quad-

rature and allows us to show that the approximation scheme given by

Θq
(
H``, [H2]``, . . . , [H2N+1]``

)
:=

N∑
j=0

wjO(εj). (C.3.1)
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satisfies Theorem 4.4:

Lemma C.7. Suppose that {pn} is the sequence of polynomials generated by

the recursion method (4.8.25), XN is the set of zeros of pN+1, and {wj} are

the weights satisfying
´
IXNO(x)dD`(x) =

∑N
j=0wjO(εj). Then,

(i) XN ⊆ R is a set of N + 1 distinct points,

(ii) If P2N+1 is a polynomial of degree at most 2N + 1, then

P2N+1(H)`` =

N∑
j=0

wjP2N+1(εj),

(iii) The weights {wj} are positive and sum to one.

Proof. The idea behind the proofs are standard in the theory of Gauss quad-

rature (e.g. see [55]) but, for the convenience of the reader, they are collected

together in C.3.3.

Remark C.6. The quadrature rule discussed in this section can be seen as the

exact integral with respect to the following approximate LDOS

DN,q
` :=

N∑
j=0

wjδ( · − εj).

Lemma C.7 (ii)-(iii) allows us to conclude that the first 2N + 1 moments of

DN,q
` are given by [Hn]`` for n = 1, . . . , 2N + 1, and that DN,q

` is positive.

In the following two sections we prove error estimates and show that the

functional form is analytic on an open set containing
(
H``, . . . , [H2N+1]``

)
.

C.3.1 Error Estimates.

Applying Remark C.6, together with (4.2.2), we have: for every polynomial

P2N+1 of degree at most 2N + 1,

∣∣∣O`(r)−
N∑
j=0

wjO(εj)
∣∣∣ 6 2‖O − P2N+1‖L∞(σ(H)∪XN ). (C.3.2)
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Now, since σ
(
H
)
⊆ I− ∪ {λj} ∪ I+ where {λj} is a finite set, we may apply

Lemma 4.5 (iii) together with the fact XN = σ(TN ) where TN is the matrix

(4.8.27), to conclude that the number of points in XN \
(
I− ∪ I+

)
is bounded

independently of N . Accordingly, we may apply (4.8.13) with E = I− ∪ I+, to

obtain the desired asymptotic error estimates.

C.3.2 Analyticity.

To conclude the proof of Theorem 4.4, we show that Θq as defined in (C.3.1)

is analytic in a neighbourhood of (H``, [H2]``, . . . , [H2N+1]``). Recall that in

(4.8.37) we have extended the definition of TN to an analytic function on

U := {z ∈ C2N+1 : b2n(z1:2n) 6= 0 ∀n = 1, . . . , N}.

We define XN (z) to be the set of eigenvalues of TN (z). Since XN =

XN
(
H``, . . . , [H2N+1]``

)
is a set of N + 1 distinct points (Lemma C.7 (i)),

there exists a continuous choice of eigenvalues XN (z) = {ε0(z), . . . , εN (z)}

such that XN (z) is a set of N + 1 distinct points in a neighbourhood, U0, of

(H``, . . . , [H2N+1]``) ∈ U and each εj is analytic on U0 [76,125]. With this in

hand, we define Θq : U0 → C by

Θq(z) := L
(
x 7→ IXN (z)O(x)

)
(z1:N ) =

N∑
j=0

L
(
x 7→

∏
i 6=j

x− εi
εj − εi

)
·O ◦ εj ,

(C.3.3)

which is analytic on {z ∈ U0 : O analytic at εj(z) ∀j = 0, . . . , N}.

C.3.3 Proof of Lemma C.7

Proof of (i). Since TN is symmetric, the spectrum is real. Now, for each

εj ∈ XN = σ(TN ), the matrix (TN − εj)¬N¬0 formed by removing the N th

row and 0th column is lower-triangular with diagonal (b1, . . . , bN ). Since each

bi > 0, (TN − εj)¬N¬0 has full rank and thus εj is a simple eigenvalue of TN .

Proof of (ii). We may write P2N+1 = pN+1qN + rN where qN , rN are

polynomials of degree at most N and note that [pN+1(H)qN (H)]`` = 0 by

Lemma 4.5 (i) and P2N+1(εj) = rN (εj) since XN is the set of zeros of pN+1.
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Therefore,

ˆ
P2N+1(x)dD`(x) =

ˆ [
pN+1(x)qN (x) + rN (x)

]
dD`(x) (C.3.4)

=

ˆ
rN (x)dD`(x) =

ˆ
IXN rN (x)dD`(x) (C.3.5)

=
N∑
j=0

wjrN (εj) =
N∑
j=0

wjP2N+1(εj). (C.3.6)

In (C.3.5) we have used the fact that polynomial interpolation in N + 1 distinct

points is exact for polynomials of degree at most N .

Proof of (iii). `j(x)2 is a polynomial of degree 2N and so, by (ii), we have

0 6
ˆ
`j(x)2D`(x)dx =

N∑
i=0

wi`j(εi)
2 = wj .

Moreover,
∑N

j=0 `j(x) is a polynomial of degree N equal to one on XN (a

set of N + 1 distinct points) and so
∑N

j=0 `j(x) ≡ 1. Finally,
∑N

j=0wj =
´ (∑N

j=0 `j(x)
)
D`(x)dx = 1.

C.4 Numerical Bond-Order Potentials (BOP)

In mathematical terms, the idea behind BOP methods is to replace the local

density of states (LDOS) with an approximation using only the information

from the truncated tri-diagonal matrix TN (and possibly additional hyper-

parameters). Since the first N coefficients contain the same information as the

first 2N + 1 moments H``, . . . , [H2N+1]``, this approach is closely related to

the method of moments [34].

Equivalently, the resolvent [(z−H)−1]``, which can be written conveniently
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as the continued fraction expansion

[(z −H)−1]`` =
1

z − a0 −
b21

z − a1 −
b22

z − a2 −
. . .

, (C.4.1)

is replaced with an approximation GN` only involving the coefficients from TN .

For example, for fixed terminator t∞, we may define

GN` (z) :=
1

z − a0 −
b21

z − a1 −
b22

. . . −
b2N

z − aN − t∞(z)

. (C.4.2)

Truncating (C.4.1) to level N , which is equivalent to replacing the far-field

of the linear chain with vacuum and choosing t∞ = 0, results in a rational

approximation to the resolvent and thus a discrete approximation to the LDOS.

We have seen that truncation of the continued fraction in this way leads to an

approximation scheme satisfying Theorem 4.4.

Alternatively, the far-field may be replaced with a constant linear chain

with aN+j = a∞ and bN+j = b∞ for all j > 1 leading to the square root

terminator t∞(z) = b2∞
z−a∞−t∞(z) [53, 66,126].

More generally, one may choose any “approximate” local density of states

D̃` and construct a corresponding terminator that encodes the information

from D̃` [69, 87]. For example, D̃`(x) := 1
b∞π

√
1−

(
x−a∞
2b∞

)2
results in the

square root terminator. While we are unaware of any rigorous results, there is

numerical evidence [69] to suggest that the error in the approximation scheme

is related to the smoothness of the difference D` − D̃`.

Equivalently, we may choose any bounded symmetric tri-diagonal (Jacobi)

operator T̃N with diagonal a0, a1, . . . , aN , ãN+1, . . . and off-diagonal entries
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b1, . . . , bN , b̃N+1, . . . . That is, we may evaluate the recursion method exactly

to level N and append the far-field boundary condition {ãn, b̃n}n>N+1 to the

semi-infinite linear chain. This approach also includes the case t∞ = 0 as in

§4.8.3 by choosing ãn = b̃n = 0 for all n.

With this in hand, we define

ON,BOP
` (X) := O(T̃N )00 =

ˆ
O dD̃N,BOP

` (C.4.3)

where D̃N,BOP
` is the appropriate spectral measure corresponding to T̃N .

C.4.1 Error estimates

Since [(T̃N )n]00 = [(TN )n]00 = [(T∞)n]00 is independent of the far-field coeffi-

cients {ãj , b̃j} for all n 6 2N + 1, we can immediately see that the first 2N + 1

moments of D̃N,BOP
` agree with those of D`. In particular, we may immediately

apply (4.2.2) to obtain error estimates that depend on supp
(
D` − D̃N,BOP

`

)
.

Therefore, as long as the far-field boundary condition is chosen so that there

are only finitely many discrete eigenvalues in the band gap independent of N ,

the more complicated BOP schemes converge at least as quickly as the t∞ = 0

case. Intuitively, if the far-field boundary condition is chosen to capture the

behaviour of the LDOS (e.g. the type and location of band-edge singularities),

then the integration against the signed measure D`− D̃N,BOP
` as in (4.2.2) may

lead to improved error estimates. A rigorous error analysis to this affect is left

for future work.

C.4.2 Analyticity

Since T̃N is bounded and symmetric, the spectrum σ(T̃N ) is contained in a

bounded interval of the real line. In particular, we can apply the same arguments

as in (4.8.38) to conclude that (C.4.3) defines a nonlinear approximation scheme

given by an analytic function on an open subset of C2N+1.
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C.5 Kernel Polynomial Method & Analytic Bond

Order Potentials

We first introduce the Kernel Polynomial Method (KPM) for approximating

the LDOS [110,111,128]. In this section, we scale the spectrum and assume

that σ(H) ⊆ [−1, 1].

For a sequence of kernels KN (x, y), we define the approximate quantities

of interest

ON` :=

ˆ
KN ? O dD` =:

¨
KN (x, y)O(y) dy dD`(x). (C.5.1)

Under the choice KN (x, y) := 2
π

√
1− y2

∑N
n=0 Un(x)Un(y) (where Un denotes

the nth Chebyshev polynomial of the second kind), we arrive at a projection

method similar to that discussed in §4.8.1: if O(x) =
∑∞

m=0 cmUm(x), then

KN ? O(x) =
∑
m,n

cmUn(x)
2

π

ˆ 1

−1
Un(y)Um(y)

√
1− y2 dy =

N∑
n=0

cnUn(x).

(C.5.2)

Equivalently, we may consider the corresponding approximate LDOS

ON` =

ˆ
O(x)DN

` (x)dx where DN
` (x) =

2

π

√
1− x2

N∑
n=0

Un(H)``Un(x).

However, truncation of the Chebyshev series in this way leads to artifi-

cial oscillations in the approximate LDOS known as Gibbs oscillations [61].

Moreover, without damping these oscillations, the approximate LDOS need

not be positive. However, on defining

KFejer
N (x, y) :=

1

N

N∑
n=1

Kn(x, y) =
2

π

√
1− y2

N∑
n=0

(
1− n

N

)
Un(x)Un(y), (C.5.3)

we obtain a positive approximate LDOS [128] where the damping coefficients

dn := (1 − n
N ) reduce the effect of Gibbs oscillations. In practice, one may

instead choose the Jackson kernel [65].
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The problem with the above analysis in practice is that the damping factors

that we have introduced mean that more moments [Hn]`` are required in

order to obtain good approximations to the LDOS. Instead, analytic BOP

methods [101,107] compute the first N rows of the tridiagonal operator T∞,

thus obtaining the first 2N + 1 moments exactly. Then, a far-field boundary

condition (such as a constant infinite linear chain) is appended to form a

corresponding Jacobi operator T̃N as in Appendix C.4. Now, since higher order

moments of T̃N can be efficiently computed, we may evaluate the following

approximate LDOS

DN,M
` (x) :=

2

π

√
1− x2

M∑
n=0

dnUn(T̃N )00Un(x) (C.5.4)

where dn are damping coefficients and M > 2N + 1. The damping is chosen

so that the lower order moments which are computed exactly and are more

important for the reconstruction of the LDOS are only slightly damped. With

this choice of kernel, the approximate quantities of interest take the form

ON,M` =
2N+1∑
n=0

dncnUn(H)`` +
M∑

n=2N+2

dncnUn(T̃N )00

Efficient implementation of analytic BOP methods can be carried out using

the BOPfox program [65].
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