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Abstract
Let A/Q be an abelian variety such that A(Q) = {0A}. Let � and p be rational primes,
such that A has good reduction at p, and satisfying � ≡ 1 (mod p) and � � # A(Fp).
Let S be a finite set of rational primes. We show that (A \ {0A})(OL,S) = ∅ for 100%
of cyclic degree � fields L/Q, when ordered by conductor, or by absolute discriminant.
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1 Introduction

Let L be a number field and write OL for its ring of integers. Let S be a finite set
of places of L , and write OL,S for the ring of S-integers in L . Let A be an abelian
variety over L . A theorem of Faltings [6, Corollary 6.2] asserts that (A\D)(OL,S)

is finite for any ample divisor D of A (similar results are due to Silverman [21] and
Vojta [27]). Write 0A ∈ A for the origin. We refer to A\{0A} as a punctured abelian
variety, and refer to (A\{0A})(OL,S) as the set of S-integral points on A\{0A}. We
recall that (A\{0A})(OL,S) is the set of points P ∈ A(L) such that P does not reduce
to 0A modulo any P /∈ S. If dim(A) = 1, then the finiteness of (A\{0A})(OL,S) is a
famous theorem of Siegel [22, Section IX.3]. Little is known about the integral points
on A\{0A} for dim (A) � 2. A special case of the Arithmetic Puncturing Problem of
Hassett and Tschinkel [10, Problem 2.13] asks whether the integral points on A\{0A}
are potentially dense. Integral points on punctured abelian varieties are considered in
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[3, Section 8], [12] and [13]. The current paper explores an obstruction to the existence
of S-integral points on A\{0A}.

For a finite prime P of OL we denote the residue field by FP = OL/P, and the
completion of L atP by LP. If A has good reduction atP we will write A1(LP) for
the kernel of the reduction map A(LP) → A(FP).

Theorem 1.1 Let K be a number field, and let A be an abelian variety defined over
K satisfying A(K ) = {0A}. Let p be a finite prime of OK of good reduction for A. Let
L/K be an extension of degree m. Suppose that

(i) p is totally ramified in L;
(ii) gcd(# A(Fp),m) = 1.

Then A(L) ⊆ A1(LP) where P be the unique prime of OL above p. In particular,
(A\{0A})(OL,S) = ∅, for any set of places S not containing P.

Remark Mazur and Rubin [15, Corollary 1.11] proved the existence, for any number
field K , of elliptic curves E/K satisfying E(K ) = {0E }. By taking powers of such E
we obtain abelian varieties A/K of any desired dimension satisfying A(K ) = {0A}.
Proof of Theorem 1.1 for L/K Galois The theorem is proved in Sect. 3. However,
when L/K is Galois, the theorem admits a shorter and more conceptual proof, which
we now give. Recall that the inertia subgroup IP ⊆ Gal (L/K ) is by definition the
subset of σ ∈ Gal (L/K ) such that σ(α) ≡ α (modP) for all α ∈ OL . Since p is
totally ramified, we have IP = Gal (L/K ). We deduce that σ(Q) ≡ Q (modP) for
all Q ∈ A(L) and all σ ∈ Gal (L/K ). Thus

TraceL/K (Q) =
∑

σ∈Gal (L/K )

σ (Q) ≡ mQ (modP).

However, TraceL/K (Q) ∈ A(K ) = {0A} by assumption. Thus mQ ≡ 0A (modP).
Now, again as p is totally ramified, FP = Fp, and so A(FP) = A(Fp). By assumption
(ii) we have Q ≡ 0A (modP) completing the proof. ��
Remark The assumption that L/K is Galois is in fact merely needed to simplify the
proof of the intermediate conclusionTraceL/K (Q) ≡ mQ (modP). Lemma2.2 below
shows that this intermediate conclusion holds without the Galois assumption.

Corollary 1.2 Let C/K be a curve of genus � 1, and let Q0 ∈ C(K ). Let J be the
Jacobian of C and suppose J (K ) = {0J }. Let p be a finite prime of OK of good
reduction for C. Let L/K be an extension of degree m. Suppose that

(i) p is totally ramified in L;
(ii) gcd(# J (Fp),m) = 1.

Then (C \{Q0})(OL,S) = ∅ for any set of places S not containing P.

Proof If Q ∈ (C \{Q0})(OL,S) then the linear equivalence class [Q − Q0] yields an
element of (J \{0J })(OL,S), contradicting Theorem 1.1. ��
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We refer to [7, Theorem 4] for an analogue of Corollary 1.2 in the context of integral
points on P1\{0, 1,∞}.
Example 1.3 Let E/Q be an elliptic curve with complex multiplication by an order
in an imaginary quadratic field K . Let p be a prime of good supersingular reduction
for E , and write Kn for the n-th layer of the anticyclotomic Zp-extension of K .
It is known [9, Theorem 1.8] that E(Kn) has unbounded rank as n → ∞. Indeed
rank (EKn ) − rank (EKn−2) = 2pn−1(p − 1) for sufficiently large n.

Suppose now that p is unramified in K . As E/Fp is supersingular, we know that
p is inert in K . Write p = pOK for the unique prime of OK above p. Since E/Fp is
supersingular, ap(E) ≡ 0 (mod p), where ap(E) denotes the trace of Frobenius of E
at p. Thus # E(Fp) ≡ 1 (mod p). In particular, p � # E(Fp).

Let n � 1. By [11, Theorem 1], the extension Kn/K is unramified away from p.
We show that p is totally ramified in Kn . Let P be a prime ideal of OKn above p,
and let IP ⊆ Gal (Kn/K ) be the inertia group. As Kn/K is cyclic, IP is a normal
subgroup. In particular, IP = IP′ for any other prime ideal P′ of OKn above p. It

follows that the fixed field K
IP
n is an unramified cyclic extension of K . However, K

is the CM field of an elliptic curve defined over Q and so [23, Theorem II.4.3] it has

class number 1. Therefore K
IP
n = K , implying IP = Gal (Kn/K ), and so p is totally

ramified in K .
Finally we suppose that E(K ) = {0E }. It now follows from Theorem 1.1 that

(E \{0E })(OKn ) = ∅ for all n � 1, despite the fact that the rank of E(Kn) is
unbounded as n → ∞.

As a very concrete example of the above, let E/Q be the elliptic curvewithCremona
label 432a1 and Weierstrass model

E : Y 2 = X3 − 16.

This has conductor 432 = 24×33, andhasCMby the ring of integers of K = Q(
√−3).

We checked using the computer algebra system Magma [2] that E(K ) = {0E }. Let p
be an odd prime ≡ 2 (mod 3). Then p is a prime of good supersingular reduction for
E , and for every n � 1, we have (E \{0E })(OKn ) = ∅ where Kn is the n-th layer of
anticyclotomic Zp-extension of K .

Remark In view of the above, it is interesting to ask if a “positive proportion” of CM
elliptic curves E/Q satisfy E(K ) = {0E }, where K is the field of complex multipli-
cation. We rephrase this question a little more precisely. By the Baker–Heegner–Stark
theorem on imaginary quadratic fields of class number 1, we know that there are 13
CM j-invariants belonging to Q; for a list see [23, p. 483]. Let j be one of these 13
j-invariants and write E( j) for the family of elliptic curve E/Q (all twists of each
other) with this j-invariant, ordered by conductor. Let K be the common CM field for
E ∈ E( j). Is there a positive proportion of E ∈ E( j) satisfying E(K ) = {0E }?

Throughout the paper ζr denotes a primitive r -th root of 1.
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Corollary 1.4 Let A/Q be an abelian variety satisfying A(Q) = {0A}, and write NA

for the conductor of A. Let

RA = {
p � NA is prime : gcd(p(p − 1), # A(Fp)) = 1

}
.

Then (A\{0A})(Z[ζpn ]) = ∅ for all p ∈ RA and n � 1.

Proof Let p ∈ RA and write L = Q[ζpn ]. Then p is totally ramified in L , and as
p � NA, it is a prime of good reduction for A. Moreover, [L : Q] = pn−1(p − 1) is
coprime to # A(Fp). The conclusion follows from Theorem 1.1. ��
The set RA can be finite or empty. For example if A has a rational point of order 2
then 2 | # A(Fp) for all odd primes of good reduction, and so RA ⊆ {2} in this case.
In a forthcoming paper we provide heuristic and experimental evidence that RA has
positive density under some conditions on A. For now we content ourselves with two
examples.

Example 1.5 Let E/Q be the elliptic curve with LMFDB [25] label 67.a1 and Cre-
mona label 67a1. This has Weierstrass model

E : Y 2 + Y = X3 + X2 − 12X − 21, (1)

conductor 67 and Mordell–Weil group E(Q) = {0E }. By Corollary 1.4, the affine
Weierstrass model (1) does not have any Z[ζpn ]-points for the values of p ∈ RE . For
a positive integer N we shall write [1, N ] for the interval consisting of integers up to
N . A short Magma computation shows that

RE ∩ [1, 1000] = {
2, 17, 19, 23, 47, 59, 89, 107, 127, 149, 151, 157, 163,

173, 193, 199, 227, 257, 283, 359, 421, 431, 449, 479,

491, 509, 569, 601, 613, 617, 659, 691, 719, 773, 821,

823, 827, 839, 881, 887, 911, 947, 953, 971, 977
}
.

Table 1 gives some statistics.

Example 1.6 Let C/Q be the genus 2 curve with LMFDB label 8969.a.8969.1
having affine Weierstrass model

C : y2 + (x + 1)y = x5 − 55x4 − 87x3 − 54x2 − 16x − 2. (2)

We take A = J to be the Jacobian ofC . According to the LMFDB, J is absolutely sim-
ple, and J (Q) = {0J }. The conductor isNJ = 8969which is prime.Wenote thatC has
a rational point at∞, and thusC(Q) = {∞}. ByCorollary 1.4, (J \{0J })(Z[ζpn ]) = ∅

for all p ∈ RJ , and so the affine Weierstrass model in (2) has no Z[ζpn ]-points for all
n � 1. A short Magma computation gives

RJ ∩ [1, 1000] = {
11, 13, 43, 79, 149, 163, 223, 227, 269, 353, 367, 443,

523, 593, 641, 683, 743, 769, 797, 887, 929, 941, 991
}
.
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Table 1 We write π(N ) for the number of primes � N . This table gives statistics for RE ∩ [1, 10k ] for
2 � k � 8, where E is the elliptic curve 67a1

k # RE ∩ [1, 10k ] π(10k ) (# RE ∩ [1, 10k ])/π(10k ) (4 d.p.)

2 7 25 0.2800

3 45 168 0.2679

4 297 1229 0.2417

5 2309 9592 0.2407

6 19060 78498 0.2428

7 160958 664579 0.2422

8 1395958 5761455 0.2423

Note # RJ ∩ [1, 1000] = 23, π(1000) = 168, and so (# RJ ∩ [1, 1000])/π(1000) ≈
0.137.

Our next theorem concerns abelian varieties A defined overQwith trivial Mordell–
Weil group; i.e. A(Q) = {0A}. Let � be a rational prime, and let S be a finite set of
rational primes (we allow � ∈ S and also � /∈ S). The theorem states that, under an
additional hypothesis, (A\{0A})(OL,S) = ∅ for 100% of degree � cyclic extensions
L/Q, ordered by conductor. Here OL,S denotes OL,T where T is set of places of L
above the rational primes belonging to S. We denote by ζ� a fixed primitive �-th root
of 1, and by A[�] the �-torsion subgroup of A(Q). We observe that Q(ζ�) ⊆ Q(A[�])
(for a proof see Lemma 5.1 below). We shall write

G�(A) = Gal (Q(A[�])/Q), H�(A) = Gal (Q(A[�])/Q(ζ�)). (3)

We note that H�(A) is a normal subgroup of G�(A). We also write

C�(A) = {
σ ∈ H�(A) : σ acts freely on A[�]}. (4)

Theorem 1.7 Let � be a rational prime. Let A be an abelian variety defined over Q.
Suppose that

(i) A(Q) = {0A};
(ii) C�(A) 
= ∅.

For X > 0, let F cyc
� (X) be set of cyclic number fields L of degree � and conductor at

most X. Let S be a finite set of rational primes. Then

# {L ∈ F
cyc
� (X) : (A\{0A})(OL,S) 
= ∅}

#F cyc
� (X)

= O

(
1

(log X)γ

)

as X → ∞, where

γ = # C�(A)

# H�(A)
.
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Remark • Theorem 1.7 was inspired by [8] which studies the solutions to the unit
equation over families of cyclic number fields of prime degree.

• Let L/Q be cyclic of prime degree �. Write N for the conductor of L , andΔ for its
absolute discriminant. It easily follows from the discriminant-conductor formula
[28, Theorem 3.11] that Δ = N �−1. The conclusion of Theorem 1.7 is therefore
unchanged if instead we let F cyc

� (X) be the set of cyclic degree � number fields
with absolute discriminant at most X .

Condition (ii) of Theorem 1.7, in its present form, is computationally unfriendly.
The following lemma simplifies the task of checking condition (ii).

Lemma 1.8 Let p 
= � be a rational prime of good reduction for A. Write σp ∈ G�(A)

for a Frobenius element at p.

(a) σp ∈ H�(A) if and only if p ≡ 1 (mod �).
(b) σp ∈ C�(A) if and only if p ≡ 1 (mod �) and � � # A(Fp).

Proof Let p 
= � be a prime of good reduction for A. Recall that the isomorphism
Gal (Q(ζ�)/Q) ∼= (Z/�Z)× sends the Frobenius element at a prime q 
= � to the
congruence class of q modulo �. However, Gal (Q(ζ�)/Q) ∼= G�(A)/H�(A), thus
σp ∈ H�(A) if and only if p ≡ 1 (mod �). Write Pp for the characteristic polynomial
of Frobenius at p acting on the �-adic Tate module T�(A), and denote its reduction
modulo � by Pp(X) ∈ F�[X ]. We know [16, Theorem 19.1] that # A(Fp) = Pp(1).
Thus � | # A(Fp) if and only if 1 is a root of Pp(X). This is equivalent to 1 ∈ F� being
an eigenvalue for the action of σp on the F�-vector space A[�], which is equivalent to
σp failing to act freely on A[�]. ��

Lemma 1.8 gives a computational method for verifying condition (ii) of Theorem 1.7
for a given prime �: all we need to do is produce a prime p ≡ 1 (mod �) such that
� � # A(Fp). To check that condition (ii) holds for all primes �, or all but finitely many
primes �, the following lemma can be useful.

Lemma 1.9 Let A/Q be a principally polarized abelian variety of dimension d. Let �
be a rational prime and write

ρA,� : Gal (Q/Q) → GSp2d(F�)

for the mod � representation of A. Suppose ρA,� is surjective. Then C�(A) 
= ∅.

Proof Suppose ρA,� is surjective. The map ρA,� factors through G�(A). The image
of H�(A) ⊆ G�(A) is Sp2d(F�). An element σ ∈ H�(A) acts freely on A[�] if and
only if its image in Sp2d(F�) is a matrix with none of the eigenvalues equal to 1 ∈ F�.
All that remains is to specify such a matrix M ∈ Sp2d(F�). If � 
= 2 we may take
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M = −I2d where I2d is the 2d×2d identity matrix. If � = 2 then we may take

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 1 1 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1
0 0 0 0 · · · 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

��

It follows, thanks to the following theorem of Serre [20, Theorem 3], that condition
(ii) of Theorem 1.7 is satisfied for all sufficiently large � subject to some further
assumptions on A.

Theorem 1.10 (Serre) Let A be a principally polarized abelian variety of dimension
d, defined over Q. Assume that d = 2, 6 or d is odd and furthermore assume that
EndQ(A) = Z. Then there exists a bound BA such that for all primes � > BA the
representation ρA,� is surjective.

Example 1.11 We return to the elliptic curve E in Example 1.5. We noted previously
that E(Q) = {0E }. According to the LMFDB, ρE,� is surjective for all primes �. It
follows from Lemma 1.9 and Theorem 1.7 that for any prime �, and any fixed set of
rational primes S, the Weierstrass model (1) does not have OL,S-integral points, for
100% of cyclic degree � number fields L .

Example 1.12 We return to the genus 2 curve C in Example 1.6 and to its Jacobian
J . We observed previously that J (Q) = {0J }. In particular, J satisfies hypothesis
(i) of Theorem 1.7. Moreover, J is semistable as its conductor NJ = 8969 is prime.
Using the method in [1, 5] (which is particularly suited to semistable Jacobians), we
checked that ρ J ,� is surjective for � � 5, � 
= 8969. Thus, by Lemma 1.9, the Jacobian
J satisfies hypothesis (ii) of Theorem 1.7 for those primes. For � = 2, 3, 8969 we
choose p = 5, 7, 17939 respectively (all three satisfying p ≡ 1 (mod �)), and find

# J (F5) = 15, # J (F7) = 32, # J (F17939) = 317816600 = 23×52×1589083,

so, by Lemma 1.8, hypothesis (ii) of the theorem is satisfied for � = 2, 3 and 8969. It
follows from Theorem 1.7 that for all primes �, and any finite set of primes S, we have
(J \{0J })(OL,S) = ∅ for 100% of cyclic degree � number fields L . We conclude that
(C \{∞})(OL,S) = ∅ for 100% of cyclic degree � number fields L .

The paper is organized as follows. In Sect. 2, we study traces on abelian varieties
over totally ramified local extensions. In Sect. 3 we prove Theorem 1.1. Sect. 4 is
devoted to counting cyclic fields of prime degree � such that the conductor is divisible
only by primes belonging a certain ‘regular’ set. Section 5 gives a proof ofTheorem1.7.
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2 Traces over totally ramified local extensions

In this section, we let p be a rational prime, and K a finite extension of Qp, and L/K
a totally ramified extension of finite degree m. Let π and 
 be uniformizing elements
for K and L respectively. Let M/K be the Galois closure of L/K . Let | · | denote the
absolute value on these fields normalised so that |p| = p−1. Write σ1, . . . , σm for the
distinct embeddings L ↪→ M satisfying σi (a) = a for a ∈ K , where σ1 is the trivial
embedding σ1(α) = α for α ∈ L .

Lemma 2.1 Let α ∈ OL . Then |σi (α) − α| < 1 for i = 1, . . . ,m.

Proof As L/K is totally ramified we have OL/
 = OK /π . Hence there is some
a ∈ OK such that α ≡ a (mod
). It follows that |α − a| < 1. Now, as each σi is the
restriction to L of an automorphism of M/K , the differences α − a and σi (α) − a
are conjugate over K . Therefore, by [4, p. 119], |σi (α) − a| = |α − a| < 1. By the
ultrametric property of non-archimedean absolute values, |σi (α) − α| < 1. ��
Lemma 2.2 Let A/K be an abelian variety having good reduction. Let Q ∈ A(L).
Then

TraceL/K Q ≡ mQ (mod
). (5)

Proof We first prove (5) under the additional assumption that L = K (Q). Let
Qi = σi (Q) ∈ A(M) with Q = Q1. The assumption L = K (Q) ensures
Q1, . . . , Qm are distinct as well as being a single Galois orbit over K , and so
allows us to interpret the m-tuple {Q1, . . . , Qm} as a closed K -point on A. As A
has good reduction, it extends to an abelian scheme A over Spec (OK ), and the
closed K -point {Q1, . . . , Qm} extends to a Spec (OK )-point on A that we denote
by Q. We take an affine patch Spec (OK [x1, . . . , xn]/( f1, . . . , fr )) of A containing
Q. In this patch we can identify Q with a point Q = (q1, . . . , qn) ∈ On

L satisfying
f1(q1, . . . , qn) = · · · = fr (q1, . . . , qn) = 0. Then Qi = (σi (q1), . . . , σi (qn)). Let�
be a uniformizing element for M . Then σi (q j ) ≡ q j (mod�) by Lemma 2.1. Thus
Qi ≡ Q (mod�). Hence

TraceL/K Q =
m∑

i=1

Qi ≡ mQ (mod�).

Now (5) follows as both TraceL/K Q and mQ belong to A(L).
For the general case, let L ′ = K (Q) ⊆ L , m′ = [L ′ : K ] and 
′ be a uniformizer

for L ′. Then, by the above,

TraceL ′/K Q ≡ m′Q (mod
′).

Therefore

TraceL/K Q = TraceL/L ′(TraceL ′/K Q) ≡ [L : L ′] · m′Q = mQ (mod
′).

The lemma follows as 
 | (
′ ·OL). ��
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3 Proof of Theorem 1.1

With notation and assumptions as in the statement of Theorem 1.1, let Q ∈ A(L).
Then TraceL/K (Q) ∈ A(K ). However, by assumption, A(K ) = {0A}, and so
TraceL/K (Q) = 0A. By Lemma 2.2 we have

mQ ≡ TraceL/K (Q) (modP).

ThusmQ ≡ 0A (modP). But, since p is totally ramified, FP = Fp, and so A(FP) =
A(Fp). It follows from assumption (ii) of the statement of the theorem that Q ≡
0A (modP). Thus Q ∈ A1(LP) completing the proof.

4 Counting cyclic fields

Let P be the set of prime numbers and let P ⊆ P. Following Serre [18], we call P
regular of density α > 0 if

∑

p∈P

1

ps
= α · log

(
1

s − 1

)
+ θA(s) (6)

where θA extends to a holomorphic function onRe(s) � 1.We call the setPFrobenian
of density α > 0 if there exists a finite Galois extension L/Q and a subset C of
G = Gal (L/Q), such that

• C is a union of conjugacy classes in G;
• α = # C/#G;
• for every sufficiently large prime p, we have p ∈ P if and only if σp ∈ C where

σp is a Frobenius element of G corresponding to p.

By the Chebotarev Density Theorem [18, Proposition 1.5], ifP is Frobenian of density
α > 0 then it is regular of density α > 0.

Let � be a rational prime, and let

P� = {�} ∪ {p : p is prime ≡ 1 (mod �)}. (7)

The purpose of this section is to prove the following proposition which will be needed
for the proof of Theorem 1.7.

Proposition 4.1 Let P ⊆ P� and suppose P is regular of density α > 0. For X > 0 let
F

cyc
P,�

(X) be the set of number fields L such that:

(i) L is cyclic of degree �;
(ii) the conductor of L is divisible only by primes belonging to P;
(iii) the conductor of L is at most X.

There is some c > 0 such that

#F cyc
P,�

(X) ∼ c · X

(log X)1−β
,
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as X → ∞, where β = α ·(� − 1).

Remark (I) The method of proof does not yield a convenient formula for the constant
c in the above asymptotic estimate. See the remark at the end of the section.

(II) By Lemma 4.6 below,F cyc
P�,�

(X) = F
cyc
� (X) is the set of all degree � cyclic number

fields of conductor at most X . By Dirichlet’s Theorem, the set P� is regular of
density 1/(� − 1). The proposition is saying in this case that

#F cyc
� (X) ∼ cX

as X → ∞. This is in fact a theorem of Urazbaev [26]. A proof can also be found
in [17, Sect. 2.2], and a generalization to more general abelian extensions in [29].
Lemmas 4.2, 4.3, 4.4, 4.5, 4.6 below are in essence well-known, and can be found
in some form or other scattered across the literature, e.g. [14, Section 1], [17,
Section 2.2]. It however seemed more convenient to prove them from scratch.

Let G be a finite abelian group, for now written additively. Let � be a prime. We
define the �-rank of G to be the dimension of the F�-vector space G/�G.

Lemma 4.2 Let r be the �-rank of G. Then the number of subgroups of index � in G
is (�r − 1)/(� − 1).

Proof Any subgroup H ofG of index � contains �G. Thus there is a 1-1 correspondence
between subgroups of index � inG and subgroups of index � inG/�G, or equivalently
F�-subspaces of G/�G of codimension 1. But, regarded as an F�-vector space, G/�G
is isomorphic to F r

� . The codimension 1 subspaces of F r
� correspond to points in

P̌ r−1(F�), where P̌ r−1 denotes the projective space dual to P r−1. However, P̌ r−1 ∼=
P r−1. The lemma follows. ��

Let M(n) denote the number of degree � cyclic fields contained in Q(ζn). Let N (n)

denote the number of degree � cyclic fields of conductor n. Then

M(n) =
∑

d | n
N (d). (8)

Lemma 4.3 Let n be a positive integer. Write r�(n) for the �-rank of (Z/nZ)×. Then

M(n) = �r�(n) − 1

� − 1
.

Proof By the Galois correspondence, M(n) is the number of index � subgroups in

Gal (Q(ζn)/Q) ∼= (Z/nZ)×.

The lemma follows from Lemma 4.2. ��
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Lemma 4.4 Let q be a prime and α � 1. Then

r�(q
α) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if q ≡ 1 (mod �),

1 if q = � 
= 2 and α � 2,

1 if q = � = 2 and α = 2,

2 if q = � = 2 and α � 3,

0 in all other cases.

Proof If q 
= 2 then (Z/qαZ)× is cyclic of order (q − 1)qα−1. Thus r�(qα) = 0
unless q ≡ 1 (mod �) or q = � and α � 2, in which case r�(qα) = 1.

Suppose q = 2. Then

(Z/2αZ)× ∼=

⎧
⎪⎨

⎪⎩

0, α = 1,

Z/2Z, α = 2,

(Z/2Z)×(Z/2α−2Z), α � 3.

The lemma follows. ��
Lemma 4.5 If m1, m2 are positive integers and gcd(m1,m2) = 1 then

r�(m1m2) = r�(m1) + r�(m2).

Proof By the Chinese Remainder Theorem, (Z/m1m2Z)× ∼=(Z/m1Z)××(Z/m2Z)×.
The lemma follows. ��
Lemma 4.6 Let n be the conductor of a cyclic field of degree �. Then

n = �v ·
t∏

i=1

qi (9)

where q1, . . . , qt are distinct primes ≡ 1 (mod �) and

v =
{
0 or 2 if � 
= 2,

0, 2 or 3 if � = 2.

Moreover,

N (n) =

⎧
⎪⎨

⎪⎩

(� − 1)t−1 if v = 0,

(� − 1)t if v = 2,

�(� − 1)t if � = 2 and v = 3.
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Proof Applying Möbius inversion to (8) we have

N (n) =
∑

d | n
μ

(
n

d

)
· M(d).

From Lemma 4.3, and using the fact that
∑

d|n μ(n/d) = 0 for n > 1 we have

N (n) = 1

� − 1

∑

d | n
μ

(
n

d

)
· �r�(d). (10)

Now the function g(m) := �r�(m) is multiplicative by Lemma 4.5. Therefore the
convolution μ∗g is also multiplicative. Note that (10) may be re-expressed as
(� − 1)N (n) = (μ∗g)(n). Thus

(� − 1)N (n) =
∏

qα || n
(μ∗g)(qα),

where the product is taken over prime powers qα dividing n exactly. In particular,
since n is the conductor of a cyclic degree � field, N (n) 
= 0, and so (μ ∗ g)(qα) 
= 0
for all qα || n.

Now let q 
= � and α � 1. Then

(μ∗g)(qα) = �r�(q
α) − �r�(q

α−1) =
{

� − 1 if q ≡ 1 (mod �) and α = 1,

0 if q 
≡ 1 (mod �) or α � 2

by Lemma 4.4. It follows that n satisfies (9) where the qi are distinct primes
≡ 1 (mod �) and that

N (n) = (� − 1)t−1 · (μ∗g)(�v).

Finally

(μ∗g)(�v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if v = 0,

� − 1 if v = 2,

�2 − � if � = 2 and v = 3,

0 in all other cases,

again from Lemma 4.4. This completes the proof. ��
Lemma 4.7 Let � be a prime. Let P ⊆ P be regular of density α > 0. Suppose that all
primes in P are ≡ 1 (mod �). Let B be the set of all squarefree positive integers with
prime divisors belonging entirely to P. Denote by ω(n) the number of distinct prime
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divisors of an integer n. Then there is some κ > 0 such that

∑

n∈B
n�X

(� − 1)ω(n) ∼ κ · X

(log X)1−β

as X → ∞, where β = α ·(� − 1).

Proof Consider the Dirichlet series

D(s) :=
∑

n∈B

(� − 1)ω(n)

ns
=

∏

p∈P

(
1 + � − 1

ps

)
.

Then

log D(s) =
∑

p∈P

� − 1

ps
+ θ(s)

where θ is holomorphic on Re(s) > 1/2. By (6),

log D(s) = β · log
(

1

s − 1

)
+ φ(s) (11)

and φ is holomorphic on Re(s) � 1. Thus

D(s) = �(s)

(s − 1)β

where �(s) = exp(φ(s)) is holomorphic and non-zero on Re(s) � 1. Since P is
contained in the set of primes ≡ 1 (mod �) we know that 0 < α � 1/(� − 1), and so
0 < β � 1.

We now apply to D(s) a variant of Ikehara’s Tauberian theorem due to Delange
[24, Theorem II.7.28] to obtain

∑

n∈B
n�X

(� − 1)ω(n) ∼
�(1)

�(β)
· X

(log X)1−β
,

where � denotes the gamma function. The lemma follows, where

κ = �(1)

�(β)
= exp(φ(1))

�(β)
. (12)

��
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Proof of Proposition 4.1 Suppose first that � /∈ P, and let B be as in the statement of
Lemma 4.7. Then, by Lemma 4.6,

#F cyc
P,�

(X) =
∑

n∈B
n�X

N (n) = 1

� − 1

∑

n∈B
n�X

(� − 1)ω(n). (13)

The proposition follows immediately from Lemma 4.7 in this case. Suppose next that
� ∈ P and � 
= 2. Let P′ = P\{�} and now let B be the set of all squarefree positive
integers with prime divisors belonging entirely to P′. By Lemma 4.6

#F cyc
P,�

(X) =
∑

n∈B
n�X

N (n) +
∑

n∈B
n�X/�2

N (�2n) =
∑

n∈B
n�X

(� − 1)ω(n)−1 +
∑

n∈B
n�X/�2

(� − 1)ω(n).

The proposition follows from Lemma 4.7 in this case also. The case � = 2 ∈ P is
dealt with similarly. ��
Remark The constant c in the statement of Proposition 4.1 depends on the constant κ
in the statement of Lemma 4.7. Let us consider the simplest case where � /∈ P. Then
from (13) and (12) we have

c = κ

� − 1
= exp(φ(1))

(� − 1) ·�(β)
.

We do not see an explicit expression for φ(1). The best we can do, from (11), is to say

φ(1) = lim
s→1+

(
log D(s) − β log

(
1

s − 1

))
.

5 Proof of Theorem 1.7

Let � be a rational prime, and let A/Q be an abelian variety. The following result is
stated as an exercise in [19, Section 4.6].

Lemma 5.1 Q(ζ�) ⊆ Q(A[�]).
Proof If A is principally polarized then the lemma is a famous consequence of the
properties of the Weil pairing on A[�]. We learned the following more general argu-
ment from a Mathoverflow post by Yuri Zarhin [30]. Write A∨ for the dual abelian
variety, and let φ : A → A∨ be aQ-polarization of smallest possible degree. If A[�] ⊆
ker(φ), then P �→ φ((1/�)P) is a well-defined Q-polarization contradicting the min-
imality of the degree. Thus there is some Q ∈ A[�] such that φ(Q) ∈ A∨[�]\{0A∨}.
The non-degeneracy of the Weil pairing e� : A[�]× A∨[�] → 〈ζ�〉 ensures the exis-
tence of P ∈ A[�] such that e�(P,φ(Q)) = ζ�. Now P and φ(Q) are fixed by
Gal (Q/Q(A[�])), and so, by the Galois-compatibility of the Weil pairing, ζ� is also
fixed by Gal (Q/Q(A[�])). Thus ζ� ∈ Q(A[�]). ��

123



Integral points on punctured abelian varieties

We let G�(A), H�(A) be as in (3), and C�(A) as in (4). We note that C�(A) is a
finite union of conjugacy classes. We now suppose that A and � satisfy the hypotheses
of Theorem 1.7, namely

(i) A(Q) = {0A};
(ii) C�(A) 
= ∅.

Let S be a finite set of rational primes. Enlarge S so that it includes � and all the primes
of bad reduction for A. Let P� be as in (7). Let

P = {
p ∈ P� : p ∈ S or σp /∈ C�(A)

};

here, as in Lemma 1.8, σp ∈ G�(A) denotes a Frobenius element associated to p.

Lemma 5.2 The set P is Frobenian (and therefore regular) of density

α := # H�(A) − # C�(A)

(� − 1) · # H�(A)
. (14)

Proof Let p be a sufficiently large prime. By part (a) of Lemma 1.8, we have p ∈ P

if and only if σp ∈ H�(A)\C�(A). Thus P is Frobenian of density

# H�(A) − # C�(A)

#G�(A)
.

The lemma follows as G�(A)/H�(A) ∼= Gal (Q(ζ�)/Q) has order � − 1. ��
Lemma 5.3 Let L/Q be cyclic of degree � and suppose (A\{0A})(OL,S) 
= ∅. Then
the conductor of L is divisible only by primes belonging to P.

Proof We know from Lemma 4.6 that the prime divisors of the conductor of L belong
to P�. Let p ≡ 1 (mod �) be a prime of good reduction for A dividing the conductor
of L . It is sufficient to show that σp /∈ C�(A). Suppose σp ∈ C�(A). Since p divides
the conductor of L it is ramified in L . However, Gal (L/Q) is cyclic of order �.
As the inertia subgroup at p is non-trivial it must equal Gal (L/Q). We deduce that
p is totally ramified in L . Also, by Lemma 1.8, we have � � # A(Fp). Recall that
A(Q) = {0A} by assumption (i) above. We now apply Theorem 1.1 to conclude that
(A\{0A})(OL,S) = ∅, giving a contradiction. ��

Proof of Theorem 1.7

By assumption (ii) above C�(A) 
= ∅. It follows from (14) that α < 1/(� − 1).
Moreover, from the definition of C�(A) in (4), we note that 1 ∈ H�(A) but 1 /∈ C�(A).
It follows that α > 0. Lemma 5.2 tells us thatP is regular of density α. By Lemma 5.3,

{
L ∈ F

cyc
� (X) : (A\{0A})(OL) 
= ∅

} ⊆ F
cyc
P,�

(X),
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where F cyc
P,�

(X) is defined in Proposition 4.1. By Proposition 4.1 (see also Remark (II)
following that proposition), there are c1, c2 > 0 such that

#F cyc
P,�

(X) ∼ c1 · X

(log X)1−β
, #F cyc

� (X) ∼ c2 · X

as X → ∞, where

β = (� − 1)α = # H�(A) − # C�(A)

# H�(A)
.

This proves the theorem.
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