
DISCRETE ANALYSIS, 2021:4, 27 pp.
www.discreteanalysisjournal.com

A Decomposition of Multicorrelation
Sequences for Commuting Transformations

along Primes
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Abstract: We study multicorrelation sequences arising from systems with commuting
transformations. Our main result is a refinement of a decomposition result of Frantzikinakis
and it states that any multicorrelation sequences for commuting transformations can be
decomposed, for every ε > 0, as the sum of a nilsequence φ(n) and a sequence ω(n)
satisfying

lim
N→∞

1
N

N

∑
n=1
|ω(n)|< ε

and
lim

N→∞

1
|P∩ [N]| ∑

p∈P∩[N]

|ω(p)|< ε.

Key words and phrases: multicorrelation sequences, nilsequences, commuting transformations

1 Introduction

Given a measure preserving transformation T on a probability space (X ,µ) and functions f0, . . . , fk ∈
L∞(X), the sequence

α(n) =
∫

X
f0 ·T n f1 ·T 2n f2· . . . ·T kn fk dµ (1.1)

is called a multicorrelation sequence [2] or multiple correlation sequence [19, 20, 3, 16].
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Multicorrelation sequences play a central role in the theory of multiple recurrence and its connections
to combinatorics and number theory. The study of the structure of multicorrelation sequences was
pioneered by Bergelson, Host and Kra [2], who showed that so-called nilsequences (see Definition 2.3
below) arise as the natural object governing their behavior. More precisely, they proved that for any
multicorrelation sequence (α(n))n∈N defined as in (1.1) for an ergodic system (X ,µ,T ), there exists a
nilsequence (ψ(n))n∈N such that1

lim
N−M→∞

1
N−M

N

∑
n=M

∣∣α(n)−ψ(n)
∣∣= 0. (1.2)

Their result was later generalized by Leibman in [20] to multicorrelation sequences coming from non-
ergodic systems and in [19] to polynomial multicorrelation sequences, i.e., sequences of the form

α(n) =
∫

X
f0 ·T q1(n) f1 ·T q2(n) f2· . . . ·T qk(n) fk dµ

where q1, . . . ,qk ∈Q[x] are polynomials satisfying qi(N)⊂ Z.2 Another strengthening was obtained in
[18, 22], where it was shown that additionally to (1.2) one has

lim
N→∞

1
|P∩ [N]| ∑

p∈P∩[N]

∣∣α(q(p))−ψ(q(p))
∣∣= 0, (1.3)

where q ∈ Z[x] is any non-constant polynomial, P is the set of primes and [N] denotes the set {1, . . . ,N}.
This shows that even along the subsequence of primes, the behavior of (α(n))n∈N is described by a
nilsequence.

Given commuting measure preserving transformations T1, . . . ,Tk on a probability space (X ,B,µ) and
functions f0, . . . , fk ∈ L∞(X), one can consider the more general expression

α(n) =
∫

X
f0 ·T n

1 f1 ·T n
2 f2 · · ·T n

k fk dµ (1.4)

called a multicorrelation sequence for commuting transformations. In [3] Frantzikinakis established an
approximate version of the Bergelson-Host-Kra structure theorem in the case of commuting transforma-
tions, showing that for every multicorrelation sequence for commuting transformations (α(n))n∈N and
every ε > 0 there exists a nilsequence (ψ(n))n∈N such that

lim
N−M→∞

1
N−M

N

∑
n=M

∣∣α(n)−ψ(n)
∣∣6 ε. (1.5)

It is still an open problem whether one can take ε = 0 in (1.5) (see Question 3 in Section 6).
Our main result is a generalization of Frantzikinakis’s theorem along primes, answering affirmatively

a question asked in [18]:

1Given a sequence a : N→ C we write limN−M→∞
1

N−M ∑
N
n=M a(n) = L to denote that for every ε > 0 there exists N0 such

that | 1
N−M ∑

N
n=M a(n)−L|< ε for all M,N ∈ N with N−M > N0.

2Naturally, if T is non-invertible then the condition qi(N)⊂ Z needs to be replaced by qi(N)⊂ N.
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Theorem A. Given commuting measure preserving transformations T1, . . . ,Tk on a probability space
(X ,B,µ) and functions f0, . . . , fk ∈ L∞(X), let

α(n) =
∫

X
f0 ·T n

1 f1 ·T n
2 f2 · · ·T n

k fk dµ. (1.6)

Then for every ε > 0, there exists a k-step nilsequence (ψ(n))n∈N such that

lim
N−M→∞

1
N−M

N−1

∑
n=M
|α(n)−ψ(n)|6 ε

and
lim

N→∞

1
|P∩ [N]| ∑

p∈P∩[N]

∣∣α(p)−ψ(p)
∣∣6 ε.

The methods used in the proof of Theorem A are quite general and can be adapted to give the
following enhancement.

Theorem B. Let m,k ∈ N and qi, j ∈Q[x] satisfying qi, j(N)⊂ Z for all 16 i6 m,16 j 6 k. Then there
exists ` = `(m,k,maxi, j deg(qi, j)) such that the following happens: Let

(
Ti, j
)

i∈[m], j∈[k] be commuting
measure preserving transformations on a probability space (X ,B,µ) and functions f0, . . . , fk ∈ L∞(X).
Define

α(n) =
∫

X
f0 ·

m

∏
i=1

T qi,1(n)
i,1 f1 ·

m

∏
i=1

T qi,2(n)
i,2 f2 · · ·

m

∏
i=1

T qi,k(n)
i,k fk dµ. (1.7)

Then for every ε > 0,r ∈ N and s ∈ Z, there exists an `-step nilsequence (ψ(n))n∈N for which

lim
N−M→∞

1
N−M

N−1

∑
n=M
|α(n)−ψ(n)|6 ε

and
lim

N→∞

1
|P∩ [N]| ∑

p∈P∩[N]

∣∣α(rp+ s)−ψ(rp+ s)
∣∣6 ε.

It is natural to ask whether in Theorem B one can take ψ to be independent of r and s. In fact we
expect quite a lot more to be true (see Question 4) but the methods in this paper do not seem to be strong
enough to guarantee this strengthening.

1.1 Proof strategy

In this subsection we describe in broad strokes the main ideas behind our proof of Theorem A. The reader
is directed to Section 2 and Subsection 3.1 for definitions.

To begin with, we call upon a standard trick from multiplicative number theory to replace the average
Ep∈P∩[N] |α(p)−ψ(p)| with the weighted average En∈[N] Λ(n)|α(n)−ψ(n)|, where Λ is the classical
von Mangoldt function. Then, using the Gowers uniformity of the W-tricked von Mangoldt function
[12, Theorem 7.2] and a transference principle introduced by Green and Tao [11], we can compare
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the weighted average En∈[N] Λ(n)|α(n)−ψ(n)| with the unweighted average En∈[N] |α(n)−ψ(n)|. A
similar comparison was carried out by Tao and Teräväinen in [22] for multicorrelation sequences for
single transformations. In the case of multiple commuting transformations, however, a serious technical
complication arises during this step. To effectively relate the average En∈[N] Λ(n)|α(n)−ψ(n)| to the
average En∈[N] |α(n)−ψ(n)| using the W -trick, one must actually compare En∈[N] ΛW,b(n)|α(Wn+b)−
ψ(Wn+b)| with En∈[N] |α(Wn+b)−ψ(Wn+b)| for large W and uniformly over all b ∈ [W ] coprime
to W . As W increases, it is more challenging to control the second type of average in the case of multiple
commuting transformations than it is in the special case of single transformations, ultimately because
(1.5) is not available for ε = 0.

In order to overcome this issue, we need a variant of Frantzikinakis’s theorem where we have better
control on the nilsequences that appear. To obtain this variant, we first found the following description of
the Furstenberg system associated with a multicorrelation sequence.

Theorem 1.1. Let α : N→ C be as defined in (1.4) and let (X ,T ) be the topological Furstenberg system
associated with (α(n))n∈N. Then

(i) (X ,T ) is uniquely ergodic, and
(ii) if µ is the unique T -invariant measure on X , then the system (X ,µ,T ) is measure theoretically

isomorphic to an inverse limit of k-step nilsystems.

Using Theorem 1.1 we can produce, for every multicorrelation sequence (α(n))n∈N, a nilsequence that,
in addition to satisfying (1.5), is composed of more elementary building blocks called dual nilsequences,
whose anti-uniformity seminorm is easier to control.

Theorem 1.2. Let α : N→ C be as defined in (1.4) with ‖ fi‖∞ 6 1 for 06 i6 k. Then for every ε > 0,
there exists a k-step nilsequence (ψ(n))n∈N such that

(i)

lim
N−M→∞

E
n∈[M,N)

|α(n)−ψ(n)|< ε, and

(ii) (ψ(n))n∈N is a convex combination of finitely many dual nilsequences of the form (Dk+1φ(n))n∈N
in which (φ(n))n∈N is a k-step nilsequence with ‖φ‖Uk+1(N) 6 1.

The enhanced control over the anti-uniformity of the dual nilsequences appearing in Theorem 1.2
translates to an effective control on the size of the averages En∈[N]

(
ΛW,b(n)−1

)∣∣α(Wn+b)−ψ(Wn+b)
∣∣,

even for large W and uniformly over b, which allows us to finish the proof of Theorem A.

Structure of the paper. We start by setting up some notation and background in Section 2. Section 3
is used to provide some information on Furstenberg systems of bounded sequences and includes a proof
of Theorem 1.1. We prove Theorem 1.2 in Section 4 and Theorems A and B in Section 5. Finally, in
Section 6, we state some open questions.
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2 Preliminaries

2.1 Gowers norms

For a finite set A and a function f : A→ C, define Ex∈A f (x) = 1
|A| ∑x∈A f (x). Throughout this paper we

denote by ZN the quotient Z/(NZ).
Given k,N ∈ N and a function f : ZN → C, we define the k-Gowers norm of f on ZN , denoted by

‖ f‖Uk(ZN) to be

‖ f‖Uk(ZN) =

 E
n∈ZN

E
h∈Zk

N

∏
η∈{0,1}k

C|η | f (n+η ·h)

1/2k

,

where C denotes complex conjugation and, for η ∈ {0,1}k and h = (h1, . . . ,hk) ∈ [N]k, we let |η | be the
number of 1’s in η and η ·h := η1h1 + . . .+ηkhk. We also let {0,1}k

∗ := {0,1}k\{(0,0, . . . ,0)}.
Gowers [10] proved that ‖·‖Uk(ZN) is a norm when k > 2, and that it satisfies the following analogue

of the Cauchy-Schwarz Inequality (see [10, Lemma 3.8] or [12, Equation (B.12)]).

Proposition 2.1 (Cauchy-Schwarz-Gowers Inequality). Let k,N ∈ N. For every η ∈ {0,1}k, let fη :
ZN → C. Then ∣∣∣∣∣∣ E

n∈ZN
E

h∈Zk
N

∏
η∈{0,1}k

fη(n+η ·h)

∣∣∣∣∣∣6 ∏
η∈{0,1}k

‖ fη‖Uk(ZN).

2.2 Uniformity and anti-uniform seminorms in N

Given a bounded sequence φ : N→ C, we denote by A(φ) the smallest closed sub-algebra of `∞(N)
that contains φ , and is invariant under the left-shift and under pointwise conjugation. We say that φ is
uniquely ergodic if

∀ψ ∈A(φ) lim
N−M→∞

1
N−M

N

∑
n=M

ψ(n) exists. (2.1)

The choice for the term uniquely ergodic will be clear after Proposition 3.3. It is well known that
nilsequences are uniquely ergodic, and it follows from Walsh’s ergodic theorem [23] that multicorrelation
sequences are uniquely ergodic as well.

If φ is uniquely ergodic, then the k-uniformity seminorm of φ is defined as

‖φ‖Uk(N) =

 lim
H→∞

E
h∈[H]k

lim
N→∞

E
n∈[N]

∏
η∈{0,1}k

C|η |φ(n+η ·h)

1/2k

.

The sequence φ is called k-anti-uniform if there exists C > 0 such that for all uniquely ergodic
sequences b,

limsup
N−M→∞

∣∣∣∣∣ E
n∈[M,N)

φ(n)b(n)

∣∣∣∣∣6C‖b‖Uk(N). (2.2)
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Remark 2.2. This notion of anti-uniformity is weaker that the one defined in [3] since we only test
sequences b which are uniquely ergodic.

The infimum of all C that satisfy (2.2) is called the k-anti-uniform seminorm of φ and is denoted by
‖φ‖∗Uk(N).

Frantzikinakis [3] showed that all k-multicorrelation sequences as defined in (1.6) with f0, f1, . . . , fk
bounded by 1 are (k+1)-anti-uniform with a seminorm not exceeding 4. By a careful computation, it
can be shown that this anti-uniform norm is in fact not greater than 1 (cf. [16, Section 23.3.2]). For more
details on uniformity and anti-uniform seminorm, see [17, 3, 6].

2.3 Nilsystems and nilsequences

Given k ∈ N, a k-step nilmanifold is a homogeneous space G/Γ where G is a k-step nilpotent Lie group
and Γ is a co-compact and discrete subgroup. The group G acts naturally on X := G/Γ by left translations
and the unique G-invariant measure on X is denoted by µX . Fix g∈G and let Tg : X→ X be the translation
by g. The topological dynamical system (X ,Tg) is called a (topological) k-step nilsystem. We also call
the measure preserving system (X ,µX ,Tg) a (measurable) k-step nilsystem.

Definition 2.3. Let k ∈ N. A k-step nilsequence is a sequence of the form φ(n) = F(T nx) where (X ,T )
is a k-step nilsystem, x ∈ X and F ∈C(X) is a continuous function on X . If F ∈C∞(X) we say that φ is a
smooth k-step nilsequence.

A k-step nilsequence can be approximated uniformly by smooth k-step nilsequences. The family of
k-step nilsequences forms a shift invariant sub-algebra of `∞ which is closed under complex conjugation.
For more details on nilsystems see [1], and for details on nilsequences see [2, Section 4.3.1] or [16,
Section 11.3.2].

Remark 2.4. There are a number of slightly different definitions for nilsequences used throughout the
literature. We follow the definition used in [16, 6]. In [2], on the other hand, what we call a k-step
nilsequence is called a basic k-step nilsequence. In [12, 13, 14], for the sequence (F(gn · x))n∈N to be
called a nilsequence, the function F is required to be Lipschitz instead just being continuous.

2.4 Host-Kra seminorms and nilfactors

Let (X ,µ,T ) be an ergodic measure preserving system and F ∈ L∞(µ). The k-step Host-Kra seminorm
of F is defined as

|||F |||k =

 lim
H1→∞

. . . lim
Hk→∞

∫
X

E
h∈[H1]×...×[Hk]

∏
η∈{0,1}k

T η ·h(C|η |F)dµ

1/2k

.

An application of Holder’s inequality shows that if p is sufficiently large, depending on k, then
the function F 7→ |||F |||k from Lp(X)→ R is continuous. The existence of all the limits in the above
definition was established in [15]. The k-step nilfactor of (X ,µ,T ) is the maximal factor that is measure
theoretically isomorphic to an inverse limit of k-step nilsystems and is denoted by Zk(X). It is proved in
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[15] that for all F ∈ L∞(X) one has

E
(
F |Zk(X)

)
= 0 if and only if |||F |||k+1 = 0. (2.3)

If (X ,µ,T ) is an inverse limit of ergodic nilsystems in the measure theoretical sense, then there exists
a topological model for this system which is an inverse limit of nilsystems in the topological sense (see
[16, Section 13.3.1]). In view of this fact, we henceforth do not distinguish between topological and
measure theoretic inverse limits of ergodic nilsystems.

2.5 Dual nilsequences

Let (X ,µ,T ) be a measure preserving system and let F ∈ L∞(X). The dual function of F of degree k is
denoted by DkF and is defined by

DkF(x) = lim
N→∞

E
h∈ΦN

∏
η∈{0,1}k

∗

C|η |F(T η ·hx)

where (ΦN)N∈N is any Følner sequence in Zk. The existence of the above limit in L2(X ,µ) is shown in
[15, Theorem 1.2] (see also [16, Theorem 28 in Section 8.4.6]). It is also shown in [16, Theorem 27
in Section 12.3.4] that when (X ,T ) is an ergodic nilsystem and F is a continuous function on X , the
convergence is uniform on x ∈ X . This implies that DkF is also a continuous function on X . It follows
directly from the definition that

∫
X F ·DkF dµ = |||F |||2

k

k .
Given a nilsequence φ ∈ `∞, the degree k dual sequence associated to φ , written as Dkφ , is

Dkφ(n) = lim
N→∞

E
h∈ΦN

∏
η∈{0,1}k

∗

C|η |φ(η ·h+n)

for any Følner sequence (ΦN)N∈N in Zk. Writing φ(n) = F(T nx0) for some continuous function F on an
ergodic nilsystem (X ,µ,T ), we see that Dkφ can be written as

Dkφ(n) = lim
N→∞

E
h∈ΦN

∏
η∈{0,1}k

∗

C|η |F(T η ·hT nx0) = DkF(T nx0).

Hence Dkφ is again a nilsequence arising from the same nilsystem as φ , and in particular the limit
defining Dkφ(n) exists for all n ∈ N and does not depend on the choice of the Følner sequence (ΦN)N∈N.
We note for later use that in this case ‖φ‖Uk(N) = |||F |||k for all k > 2 ([17, Corollary 3.11]).

By writing DkF−DkG as a telescoping sum, we obtain the following lemma which will be used later.

Lemma 2.5. Let (X ,µ,T ) be a measure preserving system and let F,G∈L∞(X) with ‖F‖L∞(X),‖G‖L∞(X)6
1. Then3 for every k ∈ N,

‖DkF−DkG‖L1(X)�k ‖F−G‖L1(X).

3Given quantities A and B which depend on x1, . . . ,xr,y1, . . . ,ys we write A�y1,...,ys B if there exists a constant C > 0, that
possibly depends on y1, . . . ,ys but not on x1, . . . ,xr, such that A6CB.
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Proof. For η = (η1, . . . ,ηk),γ = (γ1, . . . ,γk) ∈ {0,1}k, we write η < γ if there exists j ∈ {1, . . . ,k} such
that ηi = γi for all i < j and η j < γ j. Let (ΦN)N∈N be a Følner sequence in Zk. By definition, we have

DkF−DkG = lim
N→∞

E
h∈ΦN

∏
η∈{0,1}k

∗

C|η |T η ·hF− lim
N→∞

E
h∈ΦN

∏
η∈{0,1}k

∗

C|η |T η ·hG =

∑
γ∈{0,1}k

∗

lim
N→∞

E
h∈ΦN

 ∏
η∈{0,1}k

∗
η<γ

C|η |T η ·hG

T γ·h(F−G)

 ∏
η∈{0,1}k

∗
η>γ

C|η |T η ·hF

 . (2.4)

Since ‖F‖L∞(X),‖G‖L∞(X) 6 1, the L1-norm of the right hand side of (2.4) is bounded above by (2k−
1)‖F−G‖L1(X).

We will also need the following technical result about dual sequences.

Lemma 2.6. Let φ be a nilsequence and let k ∈ N. Denote by h = (h1, . . . ,hk). Then the sequence

D[N]
k φ(n) = E

h1,...,hk−1∈[N]
lim

H→∞
E

hk∈[H]
∏

η∈{0,1}k
∗

C|η |φ(η ·h+n)

converges as N→ ∞ to Dkφ(n), and the convergence is uniform in n.

Proof. Note that since φ is a nilsequence, for every h1, . . . ,hk−1,n ∈ N, the limit

lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k

∗

C|η |φ(η ·h+n)

exists. By contradiction, assume D[N]
k φ does not converges uniformly to Dkφ . Thus there exist ε > 0 and

arbitrarily large N such that ∣∣∣D[N]
k φ(n)−Dkφ(n)

∣∣∣> ε

for some n ∈ N. It follows that there exists arbitrarily large N and H such that∣∣∣∣∣∣ E
h1,...,hk−1∈[N]

E
h∈[H]

∏
η∈{0,1}k

∗

C|η |φ(η ·h+n)−Dkφ(n)

∣∣∣∣∣∣> ε.

But this contradicts the fact that for any Følner sequence (ΦN)N∈N the limit

lim
N→∞

E
h∈ΦN

∏
η∈{0,1}k

∗

C|η |φ(η ·h+n)

converges uniformly to Dkφ .
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2.6 Primes and the Transference Principle

The modified von Mangoldt function Λ′ : N→ R is defined as

Λ
′(m) =

{
logm if m ∈ P
0 otherwise.

The following lemma is a well known corollary of the prime number theorem. For a proof see, for
example, [7].

Lemma 2.7. Let b : N→ C be a bounded sequence. Then

lim
N→∞

∣∣∣∣∣ E
n∈[N]

Λ
′(n)b(n)− E

p∈P∩[N]
b(p)

∣∣∣∣∣= 0

Let W ∈ N be a number of the form W = ∏p∈P, p<w p for some w ∈ N. For b ∈ [W ] coprime to W ,
define the W-tricked von Mangoldt function as

ΛW,b(m) =
φ(W )

W
Λ
′(Wm+b)

The W -tricked von Mangoldt function was first introduced by Green and Tao [11]. We will make use of
the following theorem, which follows from combining [12, Proposition 6.4] (or [11, Proposition 9.1])
and [12, Proposition 10.3].

Theorem 2.8 (Transference Principle). Let k > 1. Then there exist constants C = C(k) > 10 and
M = M(k) such that the following happens: Let ε > 0, let w : N→ R+ be any function with w(N) 6
1/2loglogN, and define W =W (N) = ∏p∈P,p<w(N) p. Then there exists N0 = N0(k,ε,w) such that for
all N > N0 and all N′ ∈ [CN,2CN] we can decompose any function g : ZN′ → C satisfying |g(n)| 6
ΛW,b(n) ·1[N/4,3N/4](n) for some b ∈ [W ] coprime to W and for all n ∈ ZN′ as g = g1 +g2 in such a way
that

1. |g1(n)|6M for all n ∈ ZN′

2. ‖g2‖Uk+1(ZN′ )
6 ε

3. and g1,g2 are supported on [N].

Remark 2.9. In [12, Proposition 10.3], the function g takes real values instead of complex values as in
Theorem 2.8. However, by decomposing g into its real and imaginary parts, it follows that [12, Proposition
10.3] also holds for complex valued functions.

Moreover, it is concluded in [12, Proposition 10.3] that if g is supported on [−N,N] then we can
arrange the matters so that g1 and g2 are supported on [−2N,2N]. But by exact the same proof, we have
our version stated above. More specifically, we can write g(n) = g(n)ψ(n) where ψ : ZN′ → [0,1] equals
to 1 on [N/4,3N/4], vanishes outside of [1,N] and interpolates smoothly in the range [1,N/4]∪ [3N/4,N].
Then if g = g1 +g2 is the previous decomposition, upon multiplying by ψ , we have g = g1ψ +g2ψ . By
choosing ψ carefully and with the same argument as in the proof of [12, Proposition 10.3], g1ψ and g2ψ

still enjoy the same conclusion as g1 and g2.
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In the previous theorem, w can be taken to be any sufficiently slow growing function of N. Hence, by
fixing ε , we can take w to be independent of N as in the following corollary.

Corollary 2.10. Let k > 1 and ε > 0. Then there exist integers C =C(k), M = M(k), w = w(k,ε)> 0,
and N0 = N0(k,ε) such that the following holds: For all N > N0, if N′ =CN and W = ∏p∈P,p<w p, then
any function g : ZN′ → C satisfying

|g(n)|6 ΛW,b(n) ·1[N/4,3N/4](n), ∀n ∈ ZN′ , (2.5)

can be decomposed as g = g1 +g2 on ZN′ in such a way that
1. |g1(n)|6M for all n ∈ ZN′

2. ‖g2‖Uk(ZN′ )
6 ε

3. and g1,g2 are supported on [N].

Proof. Let C and M be as in the conclusion of Theorem 2.8. By contradiction, assume Corollary 2.10
is not true. Then there exists an ε > 0 and increasing sequences (wh)h∈N, (Nh)n∈N, and a sequence of
functions (gh)h∈N such that wh 6 1/2loglogNh for all h ∈ N and gh : ZN′ → R satisfying (2.5) but can
not be decomposed as stated.

Define a function w : N→R+ by w(N) = Nh if Nh 6N < Nh+1. Then w is a non-decreasing sequence
with w(N)→ ∞ as N → ∞ and w(N) 6 1/2loglogN for all N ∈ N. Now w and gh satisfy all of the
hypothesis of Theorem 2.8, but do not satisfy its conclusion. This is a contradiction.

3 Approximate nilsequences and their Furstenberg systems

Following the terminology introduced in [3], we say that a bounded sequence α :N→C is an approximate
k-step nilsequence if for every ε > 0, there exists a k-step nilsequence ψ such that

limsup
N−M→∞

E
n∈[M,N)

|α(n)−ψ(n)|< ε.

The following simple lemma will be useful in the sequel and it follows immediately from the fact that
the set of k-step nilsequences forms a shift-invariant algebra (see [16, Section 3.1.1]).

Lemma 3.1. The collection of all approximate k-step nilsequences forms a shift invariant algebra.

Frantzikinakis’ main result in [3] states that a k-multicorrelation sequence for commuting transforma-
tions is an approximate k-step nilsequence. The proof consists of characterizing approximate nilsequences
as precisely those sequences which are both regular and anti-uniform. For our purposes, we will need a
strengthening of Frantzikinakis’ characterization of approximate nilsequences, described by Theorem 4.1
below. To formulate and prove this strengthening, we need to invoke the notion of a Furstenberg system
of a sequence.

3.1 Furstenberg system of a bounded sequence

We denote by N0 the set of non-negative integers. Given a bounded sequence α : N→ C, we define
its (topological) Furstenberg system to be the pointed topological system (X ,T,x) defined as follows.
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Let K ⊂ C be a compact set with α(N) ⊂ K and endow the product KN0 with the product topology.
Let x ∈ KN0 be a point with xn = α(n) for every n ∈ N. Let T : KN0 → KN0 be the left shift and let
X := {T nx : n ∈ N0} be the orbit closure of x. Observe that α can be recovered from its Furstenberg
system as α(n) = F(T nx) where F : X → C is the projection onto the 0-th coordinate.

The following observation will be used repeatedly.

Lemma 3.2. Any T -invariant sub-algebra of C(X) closed under conjugation and containing F is dense
in C(X).

Proof. The lemma follows from the Stone-Weierstrass theorem combined with the observation that the
set {T nF : n ∈ N0} separates points in X .

Several properties of a sequence are encoded in its Furstenberg system. For instance, the Furstenberg
system of φ is uniquely ergodic if and only if φ is uniquely ergodic (see Proposition 3.3). In Proposition 3.8
we also show that the Furstenberg system of a bounded sequence φ is a minimal nilsystem if and only if
φ is a nilsequence.

Proposition 3.3. Let φ : N→ C be a bounded sequence. Then the Furstenberg system of φ is uniquely
ergodic if and only if φ is uniquely ergodic (i.e., satisfies (2.1)).

Proof. Let (X ,T,x) be the Furstenberg system associated to φ and let F ∈C(X) be such that φ(n) =
F(T nx) for every n ∈ N. First assume that φ is uniquely ergodic. Let µ be an ergodic invariant measure
on (X ,T ). Since x has a dense orbit, [9, Proposition 3.9] implies that it is quasi-generic for µ , in the sense
that there exists a sequence (IN)N∈N of intervals in N whose lengths tend to infinity and such that∫

X
H dµ = lim

N→∞

1
|IN | ∑

n∈IN

H(T nx) ∀ H ∈C(X).

For every function H : X → C which belongs to the T -invariant and conjugation invariant algebra
generated by F , the sequence ψ(n) := H(T nx) belongs to the algebra A(φ) (which was defined at the
beginning of Section 2.2). Using the fact that φ is uniquely ergodic it follows that∫

X
H dµ = lim

N−M→∞

1
N−M

N

∑
n=M

ψ(n),

and in particular this quantity depends only on φ and H, but not in the choice of µ . Invoking Lemma 3.2,
this implies that the integral

∫
X H dµ does not depend on the choice of µ , for every H in a dense subset of

C(X). Finally, in view of the Riesz representation theorem, we conclude that there is a unique invariant
measure µ on (X ,T ).

Conversely, if the Furstenberg system (X ,T,x) is uniquely ergodic, then for every H ∈C(X) the limit

lim
N−M→∞

1
N−M

N

∑
n=M

H(T nx).

exists. Since for every ψ ∈A(φ) there exists H ∈C(X) such that ψ(n) = H(T nx), we conclude that φ is
uniquely ergodic.
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We collect a few lemmas of dynamical nature which will be invoked in the proofs of Theorems 4.1
and 1.1.

Lemma 3.4. Let α be a uniquely ergodic sequence and let (X ,T,x) be its Furstenberg system, with
unique invariant measure µ . Let G ∈C(X) and define b(n) := G(T nx) for all n ∈N. Then for each k ∈N,
we have |||G|||k = ‖b‖Uk(N).

Proof. By definition of the |||·|||k-seminorm, we have

|||G|||2
k

k = lim
H→∞

E
h∈[H]k

∫
X

∏
ε∈{0,1}k

C|ε|T ε·hGdµ.

Since µ is uniquely ergodic, x ∈ X is a generic point, so we can write the right hand side of the previous
equality as

lim
H→∞

lim
N→∞

E
h∈[H]k

E
n∈[N]

∏
ε∈{0,1}k

C|ε|b(n+ ε ·h).

This last expression equals ‖b‖2k

Uk(N), proving the claim.

Proposition 3.5 (see [17, Proposition 6.1] or [16, page 387]). Suppose (X ,T ) is a topological system,
x ∈ X is a transitive point (i.e. a point with a dense orbit), and µ is an invariant ergodic measure on X .
Let (Y,S) be a distal topological system, ν be an invariant measure on Y and let π : (X ,µ,T )→ (Y,ν ,S)
be a measure theoretic factor map. Then there exists a point y ∈ Y and a sequence of intervals (IN)N∈N
such that

lim
N→∞

E
n∈IN

f (T nx)g(Sny) =
∫

X
f ·g◦π dµ. (3.1)

for all f ∈C(X) and g ∈C(Y ).

Corollary 3.6. Let the set-up be as in Proposition 3.5. Then for any P : C2→ C continuous, we have

lim
N→∞

E
n∈IN

P( f (T nx0),g(Sny0)) =
∫

X
P( f ,g◦π)dµ.

Proof. It is easy to see the conclusion is true in the case P(z1,z2) is polynomial on z1,z2,z1,z2. Then by
the Stone-Weierstrass theorem, the conclusion is true for an arbitrary continuous function P.

We will also need the following proposition.

Proposition 3.7. Let φ and ψ be approximate nilsequences. Then for every continuous P : C2→ C, the
following uniform Cesàro limit exists:

lim
N−M→∞

E
n∈[M,N)

P(φ(n),ψ(n)).

Proof. Using the Stone-Weierstrass theorem we may assume that P(z1,z2) is a polynomial on z1,z2,z1,z2.
The result now follows from Lemma 3.1 and the fact that the uniform Cesàro limit of a nilsequence
exists.
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3.2 The Furstenberg system of approximate nilsequences

The following proposition reveals a new characterization of approximate nilsequences. Even though this
proposition is not needed in the sequel, it helps to put in perspective Theorems 1.1 and 3.9.

Proposition 3.8. A bounded sequence is a k-step nilsequence if and only if the associated topological
Furstenberg system is isomorphic to a minimal k-step nilsystem.

Proof. Let φ be a bounded sequence. First, assume its Furstenberg system (X ,T ) is isomorphic to a
minimal k-step nilsystem (X̃ , T̃ ) and let ρ : X̃→ X be the isomorphism. By the definition of a Furstenberg
system, there exists F ∈ C(X) and x ∈ X such that φ(n) = F(T nx). Letting x̃ = ρ−1x it follows that
φ(n) = (F ◦ρ)(T̃ nx̃), and hence φ is a k-step nilsequence.

Conversely, assume φ is a k-step nilsequence. Hence there exist a k-step nilsystem (Y,S), a function
G ∈C(Y ) and y0 ∈ Y such that φ(n) = G(Sny0) for all n ∈ N0. By restricting to the orbit closure of y0,
we can assume that (Y,S) is transitive (hence minimal and unique ergodic). Let (X ,T,x) be the pointed
Furstenberg system of φ .

We claim that (X ,T ) is a factor of (Y,S). Since a factor of a minimal k-step nilsystem is again a
minimal k-step nilsystem (see [21] or [16, Chapter 13, Theorem 11]) this will conclude the proof.

We prove the claim by explicitly constructing a factor map π : Y → X . Given y ∈ Y let π(y) =(
G(y),G(Sy),G(S2y), . . .

)
. Observe that π(Sny0) = T nx for all n ∈ N0. Since (Y,S) is transitive, for

every y ∈ Y there is a sequence (ni)i∈N such that Sniy0 → y. Since G is continuous, the sequence
T nix = (G(Sni)y0,G(Sni+1)y0, . . .) converges to π(y), showing that π(y) ∈ X . A similar argument shows
that π is continuous and surjective, and hence a factor map.

Here is the main theorem of this section.

Theorem 3.9. Let α : N→ C be an approximate k-step nilsequence and (X ,T ) be the topological
Furstenberg system associated to α . Then

(i) (X ,T ) is uniquely ergodic, and
(ii) If µ is the unique T -invariant measure on X , then the system (X ,µ,T ) is measure theoretically

isomorphic to an inverse limit of k-step nilsystems.

Proof. By combining Proposition 3.3 with Lemma 3.1 and the fact that the uniform Cesàro average of an
approximate nilsequence exists it follows that the Furstenberg system (X ,T,x) of α is uniquely ergodic.
Let F ∈C(X) be the function which generates α in the sense that α(n) = F(T nx) and let µ be the unique
invariant measure on X .

Let Zk be the k-step nilfactor of (X ,µ,T ). Let π : X → Zk be the factor map and by abuse of notation,
identify L∞(Zk) with

{
f ◦π : f ∈ L∞(Zk)

}
⊂ L∞(X). We claim that F ∈ L∞(Zk). Assuming the claim for

now, since L∞(Zk) is a closed T -invariant and conjugation invariant algebra, we have from Lemma 3.2
that C(X) ⊂ L∞(Zk). This in turn implies that L∞(Zk) = L∞(X) and hence that π is an isomorphism,
finishing the proof.

We are left to prove the claim that F ∈ L∞(Zk). Since α is an approximate k-step nilsequence, for
every ε > 0, there exists a smooth k-step nilsequence ψε such that

lim
N−M→∞

E
n∈[M,N)

|α(n)−ψε(n)|2 < ε
2. (3.2)
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By [17, Corollary 2.15], smooth k-step nilsequences are (k+1)-anti-uniform. In other words, ‖ψε‖∗Uk+1(N)<
∞.

Lemma 3.10. For every G ∈ L∞(X) and ε > 0,∣∣∣∣∫X
F ·Gdµ

∣∣∣∣6 ‖ψε‖∗Uk+1(N) · |||G|||k+1 + ε‖G‖L2 , (3.3)

where ψε is a smooth nilsequence satisfying (3.2).

Proof. If p is large enough depending on k, then both sides of (3.3) depend continuously on G with
respect to the Lp norm. Since every function in L∞(X) can be approximated by continuous functions in
the Lp norm, it suffices to prove the statement in the special case when G is continuous.

Let b(n) = G(T nx) and note that since (X ,T ) is uniquely ergodic, b is also uniquely ergodic. Using
the fact that x is generic for µ , we have∣∣∣∣∫X

F ·Gdµ

∣∣∣∣= lim
N→∞

∣∣∣∣∣ E
n∈[N]

α(n)b(n)

∣∣∣∣∣ .
Next, using the triangle inequality and the Cauchy-Schwarz inequality we have∣∣∣∣∣ E

n∈[N]
α(n)b(n)

∣∣∣∣∣6
∣∣∣∣∣ E
n∈[N]

ψε(n)b(n)

∣∣∣∣∣+√ E
n∈[N]
|α(n)−ψε(n)|2 · E

n∈[N]
|b(n)|2.

Finally, combining the above with (3.2) and the definition of anti-uniformity seminorms we conclude that∣∣∣∣∫X
F ·Gdµ

∣∣∣∣ 6 ‖ψε‖∗Uk+1(N) · ‖b‖Uk+1(N)+ ε

√
lim

N→∞
E

n∈[N]
|b(n)|2

= ‖ψε‖∗Uk+1(N) · ‖b‖Uk+1(N)+ ε‖G‖L2(X).

Lemma 3.4 implies that ‖b‖Uk+1(N) = |||G|||k+1, which finishes the proof of the lemma. �

We are now ready to prove the claim that F ∈ L∞(Zk). This is equivalent to the statement that F is
orthogonal to any G ∈ L∞(X) satisfying |||G|||k+1 = 0. Given such G, Lemma 3.10 implies that∣∣∣∣∫X

F ·Gdµ

∣∣∣∣6 ‖ψε‖∗Uk+1(N) · |||G|||k+1 + ε‖G‖L2 = ε‖G‖L2 .

Since ε is arbitrary, we have
∫

F ·G= 0, and hence F is indeed orthogonal to any G satisfying |||G|||k+1 = 0.
This proves the claim that F ∈ L∞(Zk) and concludes the proof of Theorem 3.9.

Proof of Theorem 1.1. By [3], k-multicorrelation sequences are approximate k-step nilsequences. Hence
Theorem 1.1 follows from Theorem 3.9.
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4 An enhancement of Frantzikinakis’ decomposition

In this section we prove Theorem 1.2. We will in fact establish the following more general result.

Theorem 4.1. Let α be an approximate k-step nilsequence with ‖α‖∗Uk+1(N) 6 1. Then, for every ε > 0,
there exists a k-step nilsequence ψ such that

(i)
lim

N−M→∞
E

n∈[M,N)
|α(n)−ψ(n)|< ε

(ii) ψ is a convex combination of dual nilsequences of the form Dk+1φ with φ being some k-step
nilsequence and ‖φ‖Uk+1(N) 6 1.

Proof of Theorem 1.2 using Theorem 4.1. Let α be defined as in Theorem 1.2. By [3], α is an approx-
imate k-step nilsequence and by [16, Section 23.3.2], ‖α‖∗Uk+1(N) 6 1 (see Section 2.2). Therefore,
Theorem 1.2 follows from Theorem 4.1.

Before going into the proof of Theorem 4.1, we need a definition.

Definition 4.2. Let (X ,µ,T ) be a measure preserving system. We denote by Nilk(X) the space of all
functions on X of the form G◦π where π : (X ,µ,T )→ (Y,ν ,S) is a factor map of measure preserving
systems, (Y,ν ,S) is a k-step nilsystem and G ∈C(Y ).

The following lemma is inspired by [17, Proposition 5.7].

Lemma 4.3. Let α be an approximate k-step nilsequence with ‖α‖∗Uk+1(N) 6 1. Let (X ,µ,T ) be its
Furstenberg system and let F be the continuous function associated to α as constructed in Section 3.1.
Let

A :=
{

Dk+1G : G ∈ Nilk(X) and |||G|||k+1 6 1
}
.

Then F is in the closed (with respect to the L1(µ) topology) convex hull of A.

Proof. Let K denote the closed convex hull of A. We assume, for the sake of a contradiction, that the
conclusion of the lemma is false. Then by the Hahn-Banach Separation Theorem, there exist a real
number c and a function H ∈ L∞(X) such that Re〈H,F〉 > c and Re〈H, f 〉 6 c for all f ∈ K. After
multiplying H by an appropriate complex scalar if necessary (and changing c accordingly) we can assume
that |||H|||k+1 = 1 and 〈H,F〉 ∈ R>0.

Let ε > 0 be such that 〈H,F〉> c+ ε . We claim that

〈H,F〉6 |||H|||k+1 = 1, (4.1)

whence c < 1− ε . To justify (4.1), first approximate H by a continuous function H̃ in L2k+1
, say

‖H− H̃‖L2k+1 �F δ . Let b(n) = H̃(T nx0) for n ∈ N. Then (b(n))n∈N is a uniquely ergodic sequence and
hence, using Lemma 3.4,

|〈H,F〉|6 |〈H̃,F〉|+δ = |E
n

b(n)α(n)|+δ 6 ‖b‖Uk+1(N)‖α‖∗Uk+1(N)+δ

6 ‖b‖Uk+1 +δ =
∣∣∣∣∣∣H̃∣∣∣∣∣∣k+1 +δ 6 |||H|||k+1 +2δ .

DISCRETE ANALYSIS, 2021:4, 27pp. 15

http://dx.doi.org/10.19086/da


ANH N. LE, JOEL MOREIRA, AND FLORIAN K. RICHTER

Letting δ → 0 we obtain (4.1) as claimed.
By Theorem 3.9, (X ,µ,T ) is an inverse limit of k-step nilsystems, which means that Nilk(X) is

dense in Lp(X) for every p < ∞. In particular, in view of Lemma 2.5, we can find H ′ ∈ Nilk(X) such
that |||H ′|||k+1 = 1 and ‖Dk+1H −Dk+1H ′‖L1(X) < ε/‖H‖L∞(X). In particular, Dk+1H ′ is in K and so
Re〈H,Dk+1H ′〉6 c < 1− ε . On the other hand,

Re〈H,Dk+1H ′〉> Re〈H,Dk+1H〉− ε = |||H|||k+1− ε = 1− ε

providing the desired contradiction.

Proof of Theorem 4.1. Let (X ,T ) be the Furstenberg system associated with α . In view of Theorem 3.9,
this system is uniquely ergodic. Let µ be the unique invariant measure.

By Lemma 4.3, there exists t ∈N and, for each i = 1, . . . , t, a k-step nilsystem (Yi,Si) which is a factor
of (X ,T ) via a factor map πi, and a function Gi ∈C(Yi) such that ‖F − G̃‖L1(µ) < ε for some convex
combination G̃ of the functions Dk+1Gi ◦πi, i = 1, . . . , t. Since all the (Yi,Si) are factors of (X ,T ) and are
k-step nilsystems, they are all factors of the maximal k-step nilfactor Zk(X). On the other hand, Zk(X) is
an inverse limit of k-step nilsystems, so it follows that there exists a factor (Y,S) of (X ,T ) which contains
each of (Yi,Si) as a further factor. From [17, Corollary 5.3] we deduce that Dk+1Gi ∈C(Y ) for all i, and
hence G̃ = G′ ◦π where π : X → Y is the factor map and G′ ∈C(Y ).

Applying Corollary 3.6 to the function P(z1,z2) = |z1− z2|, there exists a sequence of intervals
(IN)N∈N and a point y0 ∈ Y such that

lim
N→∞

E
n∈IN

|F(T nx0)−G′(Sny0)|=
∫

X
|F− G̃|dµ < ε.

Because (F(T nx0))n∈N is an approximate nilsequence and (G′(Sny0))n∈N is a k-step nilsequence, by
Proposition 3.7, the above average can be replaced by the uniform Cesàro average. Therefore,

lim
N−M→∞

E
n∈[M,N)

|F(T nx0)−G′(Sny0)|< ε.

Let ψ(n) = G′(Sn
i y0). Then by Section 2.5, ψ indeed is a convex combination of dual nilsequences of the

form Dk+1φ with φ being a k-step nilsequence and ‖φ‖Uk+1(N) 6 1.

5 Decomposition along the primes

The main of goal of this section is to prove Theorem A. Before presenting its proof, we need some
technical lemmas.

Lemma 5.1 ([16, Chapter 22, Lemma 10]). Let k ∈ N and φ be a uniquely ergodic sequence. Then

limsup
N→∞

‖φ1[N]‖Uk(ZN)�k ‖φ‖Uk(N).

The following lemma is reminiscient of Cauchy-Schwarz-Gowers inequality. However, due to the
involvement of both Gowers norm on cyclic groups and uniformity seminorm on N, we need some
technical modifications.

DISCRETE ANALYSIS, 2021:4, 27pp. 16

http://dx.doi.org/10.19086/da


COMMUTING MULTICORRELATIONS ALONG PRIMES

Lemma 5.2. Let k ∈ N and φ : N→ C be a nilsequence. Let g : N→ C and let (Nl)l∈N be an increasing
sequence of positive integers for which

limsup
l→∞

E
n∈[Nl ]

|g(n)|6 1.

Then

limsup
l→∞

∣∣∣∣∣ E
n∈[Nl ]

g(n)Dkφ(n)

∣∣∣∣∣�k limsup
l→∞

‖g1[Nl ]‖Uk(ZkNl )
· ‖φ‖2k−1

Uk(N).

Proof. As mentioned in Section 2.5, Dkφ is a nilsequence. In particular, it is bounded. Therefore,

limsup
l→∞

E
n∈[Nl ]

|g(n)Dkφ(n)|< ∞.

Passing to a subsequence of (Nl) if necessary, we may assume that the limit

A := lim
l→∞

E
n∈[Nl ]

g(n)Dkφ(n) (5.1)

exists.
Using Lemma 2.6 we can write

A = lim
l→∞

E
n∈[Nl ]

g(n) E
h∈[Nl ]k−1

lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k

∗

C|η |φ
(
n+η · (h,hk)

)
. (5.2)

We can rewrite the last limit as

lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k

∗

C|η |φ
(
n+η · (h,hk)

)
= lim

H→∞
E

hk∈[H]
∏

η∈{0,1}k−1
∗

C|η |φ
(
n+η ·h

)
∏

η∈{0,1}k−1

C|η |+1
φ
(
n+hk +η ·h

)
= ∏

η∈{0,1}k−1
∗

C|η |φ
(
n+η ·h

)
lim

H→∞
E

hk∈[H]−n
∏

η∈{0,1}k−1

C|η |+1
φ
(
hk +η ·h

)
= ∏

η∈{0,1}k−1
∗

C|η |φ
(
n+η ·h

)
lim

H→∞
E

hk∈[H]
∏

η∈{0,1}k−1

C|η |+1
φ
(
hk +η ·h

)
,

and putting this back into (5.2) we obtain that A equals

lim
l→∞

E
h∈[Nl ]k−1

E
n∈[Nl ]

g(n) ∏
η∈{0,1}k−1

∗

C|η |φ
(
n+η ·h

)
lim

H→∞
E

hk∈[H]
∏

η∈{0,1}k−1

C|η |+1
φ
(
hk +η ·h

)
.

Then using the Cauchy-Schwarz inequality,

|A|2 6 lim
l→∞

E
h∈[Nl ]k−1

∣∣∣∣∣∣ E
n∈[Nl ]

g(n) ∏
η∈{0,1}k−1

∗

C|η |φ(n+η ·h)

∣∣∣∣∣∣
2

×

lim
l→∞

E
h∈[Nl ]k−1

∣∣∣∣∣∣ lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k−1

C|η |+1
φ(hk +η ·h)

∣∣∣∣∣∣
2

. (5.3)
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We first deal with the second average of the right hand side of (5.3). Observe that for every fixed n ∈ N,

lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k−1

C|η |φ(hk +η ·h) = lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k−1

C|η |φ(n+hk +η ·h).

Therefore, expanding the square, we have

lim
l→∞

E
h∈[Nl ]k−1

∣∣∣∣∣∣ lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k−1

C|η |+1
φ(hk +η ·h)

∣∣∣∣∣∣
2

= lim
l→∞

E
h∈[Nl ]k−1

(
lim

N→∞
E

n∈[N]
∏

η∈{0,1}k−1

C|η |+1
φ(n+η ·h)

)

×

(
lim

H→∞
E

hk∈[H]
∏

η∈{0,1}k−1

C|η |φ(hk +η ·h)

)

= lim
l→∞

lim
N→∞

lim
H→∞

E
h∈[Nl ]k−1

(
E

n∈[N]
∏

η∈{0,1}k−1

C|η |+1
φ(n+η ·h)

)

×

(
E

hk∈[H]
∏

η∈{0,1}k−1

C|η |φ(n+hk +η ·h)

)

= lim
l→∞

lim
N→∞

lim
H→∞

E
h∈[Nl ]k−1

E
n∈[N]

E
hk∈[H]

(
∏

η∈{0,1}k−1

C|η |+1
φ(n+η ·h)

)

×

(
∏

η∈{0,1}k−1

C|η |φ(n+hk +η ·h)

)

= lim
l→∞

E
h1,...,hk−1∈[Nl ]

lim
N→∞

E
n∈[N]

lim
H→∞

E
hk∈[H]

 ∏
η∈{0,1}k

C|η |φ(n+η ·h)

 . (5.4)

Suppose φ(n) = F(T nx) for n ∈ N where F is a continuous function in an ergodic nilsystem (X ,µ,T ).
Then

lim
l→∞

E
h1,...,hk−1∈[Nl ]

lim
N→∞

E
n∈[N]

lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k

C|η |φ(n+η ·h) =

lim
l→∞

E
h1,...,hk−1∈[Nl ]

lim
N→∞

E
n∈[N]

lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k

C|η |T η ·hF(T nx) =

lim
l→∞

E
h1,...,hk−1∈[Nl ]

∫
X

lim
H→∞

E
hk∈[H]

∏
η∈{0,1}k

C|η |T η ·hFdµ (5.5)

where the last equality follows from the fact that the nilsystem (X ,µ,T ) is uniquely ergodic. Since the
limit inside the integral exists pointwise and F is bounded, we can move that limit to the outside of the
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integral. Hence (5.5) is equal to

lim
l→∞

E
h1,...,hk−1∈[Nl ]

lim
H→∞

E
hk∈[H]

∫
X

∏
η∈{0,1}k

C|η |T η ·hFdµ = |||F |||2
k

k (5.6)

which is equal to ‖φ‖2k

Uk(N) by Lemma 3.4.
We now deal with the first average of the right hand side of (5.3). Let N′l = kNl and define gN′l

,φN′l
:

ZN′l
→ C by gN′l

= g1[Nl ] and φN′l
= φ1[N′l ]. Then

E
h∈[Nl ]k−1

∣∣∣∣∣∣ E
n∈[Nl ]

g(n) ∏
η∈{0,1}k−1

∗

C|η+1|
φ(n+η ·h)

∣∣∣∣∣∣
2

6

kk+1 E
h∈Zk−1

N′l

∣∣∣∣∣∣ E
n∈ZN′l

gN′l
(n) ∏

η∈{0,1}k−1
∗

C|η+1|
φN′l

(n+η ·h)

∣∣∣∣∣∣
2

.

Expanding the square and using the periodicity of gN′l
and φN′l

, the right hand side of above inequality is
equal to

kk+1 E
h∈Zk−1

N′l

[
E

n∈ZN′l

E
hk∈ZN′l

gN′l
(n) ∏

η∈{0,1}k−1
∗

C|η |+1
φ(n+η ·h)×

gN′l
(n+hk) ∏

η∈{0,1}k−1
∗

C|η |φN′l
(n+hk +η ·h)

]
=

kk+1 E
n∈ZN′l

E
h∈Zk

N′l

gN′l
(n)gN′l

(n+hk) ∏
η∈{0,1}k

∗
η 6=(0,0,0,...,0,1)

C|η |φN′l
(n+η ·h).

By Cauchy-Schwarz-Gowers inequality (Proposition 2.1), the right hand side of above equality is bounded
by

kk+1‖gN′l
‖2

Uk(ZN′l
)‖φN′l

‖2k−2
Uk(ZN′l

)
. (5.7)

By definition, ‖gN′l
‖Uk(ZN′l

) = ‖g1[Nl ]‖Uk(ZkNl )
. On the other hand, according to Lemma 5.1,

‖φN′l
‖Uk(ZN′l

)�k ‖φ‖Uk(N) (5.8)

for N′l sufficiently large.
Combining (5.3), (5.6), (5.7) and (5.8), we have the conclusion.

The following theorem is the main ingredient in the proof of Theorem A.
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Theorem 5.3. Given k commuting measure preserving transformations T1, . . . ,Tk on a probability space
(X ,B,µ) and functions f0, . . . , fk ∈ L∞(X), let

α(n) =
∫

X
f0 ·T n

1 f1 ·T n
2 f2 · · ·T n

k fk dµ.

Then for every ε > 0 there exists a k-step nilsequence ψ satisfying

lim
N→∞

1
|P∩ [N]| ∑

p∈P∩[N]

∣∣α(p)−ψ(p)
∣∣< ε. (5.9)

Proof. Without loss of generality, assume that ‖ fi‖L∞ 6 1 for 0 6 i 6 k. First, we will show that for
every nilsequence ψ , the limit in (5.9) exists. Using [3, Proposition 2.4], we can uniformly approximate
the nilsequence ψ by a multicorrelation sequence. By [7, 8, 24], for every polynomial P ∈ Z[x] and
multicorrelation sequence β , the limit

lim
N→∞

1
|P∩ [N]| ∑

p∈P∩[N]

P(β (p))

exists. Hence, invoking the Stone-Weierstrass theorem, the limit

lim
N→∞

1
|P∩ [N]| ∑

p∈P∩[N]

|β (p)|

also exists, and therefore so does the limit in (5.9).
Fix ε > 0 and choose w so that it satisfies the conclusion of Corollary 2.10 corresponding to ε and k+1.

Let W = ∏p<w p and let b ∈ [W ] be coprime to W . The sequence n 7→ α(Wn+b) is a k-multicorrelation
sequence, so we can apply Theorem 1.2 to get a k-step nilsequence ψW,b with ‖ψW,b‖∞ 6 1 that is a
convex combination of dual nilsequences Dk+1φ with ‖φ‖Uk+1(N) 6 1 and satisfies

lim
N−M→∞

E
n∈[M,N)

|α(Wn+b)−ψW,b(n)|6 ε. (5.10)

Keeping W fixed, every m ∈ N can be written uniquely as m = Wn+ b for some n ∈ N and b ∈ [W ].
Define the nilsequence ψ = ψε as follows:

ψ(m) = ψ(Wn+b) =

{
ψW,b(n) if (b,W ) = 1,
0 if (b,W ) 6= 1.

That ψ is indeed an nilsequence follows from [20, Lemma 2.1]. In view of Lemma 2.7,

E
p∈P
|α(p)−ψ(p)|= lim

M→∞
E

m∈[M]
Λ
′(m)|α(m)−ψ(m)|6

E
(b,W )=1

limsup
N→∞

E
n∈[N]

ΛW,b(n)|α(Wn+b)−ψW,b(n)|.
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In order to establish (5.9) it suffices to show that for each b ∈ [W ] with (b,W ) = 1,

limsup
N→∞

E
n∈[N]

ΛW,b(n)|α(Wn+b)−ψW,b(n)| � ε

By partitioning [N] into [N] = (N/3,N]∪ (N/9,N/3]∪ . . ., it suffices to show that

limsup
N→∞

E
n∈[N/4,3N/4]

ΛW,b(n)|α(Wn+b)−ψW,b(n)| � ε. (5.11)

The left hand side of (5.11) can be written as

limsup
N→∞

E
n∈[N/4,3N/4]

g(n)
(
α(Wn+b)−ψW,b(n)

)
(5.12)

where4 g(n) = ΛW,b(n) · sign
(
α(Wn+b)−ψW,b(n)

)
. In particular, |g(n)|6 ΛW,b(n) for n ∈ N.

We now use Corollary 2.10 and the fact that w (and hence W ) was chosen to satisfy the conclusion of
that corollary. Let C =C(k) and M = M(k) be the constants provided by that corollary. For each N ∈ N,
let N′ =CN. We can decompose g1[N/4,3N/4] = g1,N′+g2,N′ on [N′] in such a way that

1. |g1,N′(n)|6M for n ∈ [N′],
2. ‖g2,N′‖Uk+1(ZN′ )

6 ε,
3. and g1,N′ ,g2,N′ are supported on [N].

Here and throughout the proof, we allow the implicit constant in the notation� to depend on k. Note
that because

E
n∈[N′]

|g(n)1[N/4,3N/4](n)|6 E
n∈[N′]

ΛW,b(n)� 1

and |g1,N′(n)|6M pointwise, we have En∈[N′] |g2,N′(n)| � 1.
Then it follows that

limsup
N→∞

E
n∈[N/4,3N/4]

g(n)
(
α(Wn+b)−ψW,b(n)

)
�

limsup
N′→∞

E
n∈[N′]

g1[N/4,3N/4](n)
(
α(Wn+b)−ψW,b(n)

)
=

limsup
N′→∞

E
n∈[N′]

(
g1,N′(n)+g2,N′

)(
α(Wn+b)−ψW,b(n)

)
. (5.13)

By (5.10),

limsup
N′→∞

∣∣∣∣ En∈N′
g1,N′(n)

(
α(Wn+b)−ψW,b(n)

)∣∣∣∣6
M limsup

N′→∞

E
n∈[N′]

|α(Wn+b)−ψW,b(n)| � limsup
N′→∞

E
n∈[N′]

|α(Wn+b)−ψW,b(n)| � ε. (5.14)

On the other hand, according to [7, Lemma 3] (or [8, Lemma 3.5]),

limsup
N′→∞

∣∣∣∣∣ E
n∈[N′]

g2,N′(n)α(Wn+b)

∣∣∣∣∣� limsup
N′→∞

‖g2,N′1[N′]‖Uk+1(Z(k+1)N′ )
. (5.15)

4For a complex number z ∈ C we define sign(z) to be z/|z| if z 6= 0 and sign(0) = 0.
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Since g2,N′ is supported on [N] and N′ =CN > (k+1)N,

limsup
N′→∞

‖g2,N′1[N′]‖Uk+1(Z(k+1)N′ )
= limsup

N′→∞

1
k+1

‖g2,N′‖Uk+1(ZN′ )
� ε. (5.16)

Therefore, it remains to show that

limsup
N′→∞

∣∣∣∣∣ E
n∈[N′]

g2,N′(n)ψW,b(n)

∣∣∣∣∣� ε. (5.17)

Since ψW,b is a convex combination of dual nilsequences of the form Dk+1φ with ‖φ‖Uk+1(N) 6 1, it
suffices to show that

limsup
N′→∞

∣∣∣∣∣ E
n∈[N′]

g2,N′(n)Dk+1φ(n)

∣∣∣∣∣� ε

for any nilsequence φ with ‖φ‖Uk+1(N) 6 1. To this end, we will patch the g2,N′ together to make use of
Lemma 5.2. We will choose a fast growing sequence (N′l )l∈N of natural numbers and define g2,∞ : N→C
by

g2,∞(n) = g2,N′l
(n) for n ∈ (N′l−1,N

′
l ].

For l ∈ N, N′l+1 is picked very large compared to N′l so that we can “identify" g2,∞ with g2,N′l
on [N′l ]. To

be more precise, we need for every l ∈ N,

E
n∈[N′l ]

|g2,∞(n)|6 E
n∈[N′l ]

|g2,N′l
(n)|+ ε � 1

and
‖g2,∞1[N′l ]‖Uk+1(ZN′l

) 6 ‖g2,N′l
‖Uk+1(ZN′l

)+ ε 6 2ε (5.18)

and

limsup
l→∞

∣∣∣∣∣ E
n∈[N′l ]

g2,N′l
(n)Dk+1φ(n)

∣∣∣∣∣6 limsup
l→∞

∣∣∣∣∣ E
n∈[N′l ]

g2,∞(n)Dk+1φ(n)

∣∣∣∣∣+ ε. (5.19)

With the constructed g2,∞, applying Lemma 5.2, we have

limsup
l→∞

∣∣∣∣∣ E
n∈[N′l ]

g2,∞(n)Dk+1φ(n)

∣∣∣∣∣� limsup
l→∞

‖g2,∞1[N′l ]‖Uk+1(Z(k+1)N′l
)‖φ‖2k+1−1

Uk+1(N)

6 limsup
l→∞

‖g2,∞1[N′l ]‖Uk+1(Z(k+1)N′l
). (5.20)

Because g2,∞1[N′l ] is supported on [Nl] where Nl = N′l/C 6 N′l/(k+1), we have

‖g2,∞1[N′l ]‖Uk+1(Z(k+1)N′l
) =

1
k+1

‖g2,∞1[N′l ]‖Uk+1(ZN′l
)� ε. (5.21)

Combining (5.20) and (5.21),

limsup
l→∞

∣∣∣∣∣ E
n∈[N′l ]

g2,∞(n)Dk+1φ(n)

∣∣∣∣∣� ε.
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Then by (5.19),

limsup
l→∞

∣∣∣∣∣ E
n∈[N′l ]

g2,N′l
(n)Dk+1φ

∣∣∣∣∣� ε.

This establishes (5.17), and hence effectively shows that

E
p∈P
|α(p)−ψ(p)| � ε. (5.22)

Now we are ready to prove Theorem A.

Proof of Theorem A. The main result from [3] guarantees that there exists a k-step nilsequence ψ0 such
that ‖ψ0‖`∞(N) 6 1 and

E
n∈N
|α(n)−ψ0(n)|< ε/2.

In view of Theorem 5.3, there exists a k-step nilsequence ψ1 such that

E
p∈P
|α(p)−ψ1(p)|< ε.

Let W be large enough so that φ(W )/W < ε/8 (such W exists because limW→∞ φ(W )/W = 0) and define
the sequence ψ as follows:

ψ(n) =

{
ψ0(n) if (n,W ) 6= 1,
ψ1(n) if (n,W ) = 1.

Then ψ is a k-step nilsequence (see for example, [20, Lemma 2.1]). Because all but finitely many primes
are coprime to W , we have

E
p∈P
|α(p)−ψ(p)|= E

p∈P
|α(p)−ψ1(p)|< ε.

On the other hand,

E
n∈N
|α(n)−ψ(n)| =

(
1− φ(W )

W

)
E

(n,W )6=1
|α(n)−ψ(n)|+ φ(W )

W E
(n,W )=1

|α(n)−ψ(n)|

= E
n∈N
|α(n)−ψ0(n)|+

φ(W )

W E
(n,W )=1

|α(n)−ψ1(n)|− |α(n)−ψ0(n)|

6 ε/2+4ε/8 = ε.

Proof of Theorem B. The proof is almost identical to the proof of Theorem A. We explain the parts that
need modifications.

Let α be as defined in (1.7) and choose W =∏p∈P,p<w sufficiently large that satisfies the conclusion of
Corollary 2.10 corresponding to ε and `+1. By [3, Theorem 1.2], for every r ∈N,s∈Z and b∈ [W ] with
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(b,W ) = 1, the sequence (α(r(Wn+b)+ s))n∈N is an approximate `-step nilsequence. Moreover, they
are `-antiuniform with anti-uniform seminorm bounded by 1 (see [16, Proposition 7 Section 23.2] or [5,
Proposition 6.1]). In view of Theorem 4.1, the sequence (α(r(Wn+b)+ s))n∈N can be approximated in
`2(N) by convex combinations of dual nilsequences of the form D`+1φ with ‖φ‖U`+1(N) 6 1. Proceeding
as in the proof of Theorem 5.3, we can find an `-step nilsequence ψ1 with ‖ψ1‖∞ 6 ‖α‖∞ such that

E
p∈P
|α(rp+ s)−ψ1(rp+ s)|6 ε.

By [3], there exists an `-step nilsequence ψ0 with ‖ψ0‖∞ 6 ‖α‖∞ such that

E
n∈N
|α(n)−ψ1(n)|6 ε.

Gluing ψ0 and ψ1 together as in the proof of Theorem A, we obtain a nilsequence ψ satisfying the
conclusion of Theorem B.

6 Open questions

Question 1. Let α be as defined in (1.6). Is it true that for any ε > 0 and finite collection of non-constant
polynomials Q1,Q2, . . . ,Qt ∈ Z[x], there exists a nilsequence ψ such that for all 16 i6 t,

lim
N−M→∞

1
N−M

N−1

∑
n=M
|α(Qi(n))−ψ(Qi(n))|6 ε

and

lim
N→∞

1
|P∩ [1,N]| ∑

p∈P∩[1,N]

∣∣α(Qi(p))−ψ(Qi(p))
∣∣6 ε?

Note that, in view of Theorem B, the answer to this question is affirmative for t = 1.
We can ask a similar question for Hardy field sequences.

Question 2. Let α be as defined in (1.6). Is it true that for any ε > 0 and c > 0, there exists a k-step
nilsequence ψ such that

lim
N−M→∞

1
N−M

N−1

∑
n=M
|α(n)−ψ(n)|6 ε

and

limsup
N→∞

1
N ∑

n∈[N]

∣∣α(bncc)−ψ(bncc)
∣∣6 ε.

where bxc denotes integer part of x.

The following question has been asked several times in the literature, see [3, Remark after Theorem
1.1], [4, Problem 20], [6, Problem 1, Section 2.7], and [16, Page 398].
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Question 3. Let α be defined as in (1.6) (or, more generally, as in (1.7)). Does there exist a uniform
limit of nilsequences ψ such that

lim
N−M→∞

1
N−M

N

∑
n=M

∣∣α(n)−ψ(n)
∣∣= 0?

If the answer to Question 3 is affirmative, then the method in [22] can be used to answer affirmatively
the following seemingly more difficult question:

Question 4. Let α be defined as in (1.6) (or, more generally, as in (1.7)). Does there exist a uniform
limit of nilsequences ψ such that for all r ∈ N,s ∈ N∪{0},

lim
N−M→∞

1
N−M

N

∑
n=M

∣∣α(rn+ s)−ψ(rn+ s)
∣∣= 0

and
lim

N→∞

1
|P∩ [N]| ∑

p∈P∩[N]

∣∣α(rp+ s)−ψ(rp+ s)
∣∣= 0?
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